
4th International Workshop on Equation-Based Object-Oriented
Modeling Languages and Tools, September, 2011, ETH Zürich, Switzerland.

Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp/056/

EOOLT 2011 website:
http://www.eoolt.org/2011/

Comodeling Revisited: Execution of Behavior Trees in Modelica

Toby Myers1 Wladimir Schamai2 Peter Fritzson3

1Institute of Intelligent and Integrated Systems, Griffith University, Australia, toby.myers@griffithuni.edu.au
2EADS Innovation Works, Germany, wladimir.schamai@eads.net

3PELAB- Programming Environment Lab, IDA, Linköping University, Sweden, peter.fritzson@liu.se

Abstract

Large-scale systems increasingly consist of a mixture of
co-dependent software and hardware. The differing
nature of software and hardware means that they are
often modeled separately and with different approaches.
Comodeling is a design strategy that allows
hardware/software integration issues to be identified,
investigated and resolved in the early stages of
development. Previous work described a comodeling
approach that integrates Behavior Engineering with
Modelica. This paper revisits this approach and
introduces a new means of integration that natively
executes Behavior Trees in Modelica rather than
utilizing external functions. This enhanced integration
has several benefits. Firstly, it makes comodeling easier
to apply as the comodel is captured solely in Modelica.
Secondly, it makes the ability to execute Behavior Trees
widely available. Finally, it opens the possibility to use
comodeling with other complementary approaches such
as the virtual verification of system designs against
system requirements.

Keywords: Comodeling, Behavior Engineering,
Behavior Trees, Modelica, Model Driven Engineering

1. Introduction

The increasingly co-dependent nature of software and
hardware in large-scale systems causes a
software/hardware integration problem. During the early
stages of development, the requirements used to develop
a software specification often lack the quantified or
temporal information that is necessary when focusing on
software/hardware integration. Also early on in
development, the hardware details must be specified,
such as the requirements for the sensors, actuators and
architecture on which to deploy the software. There is a
risk of incompatibility if the software and hardware
specifications contain contradicting assumptions about
how integration will occur. Even if the software and

hardware specifications are compatible, it is possible
that a software/hardware combination with an alternative
form of integration exists that would be more
advantageous.

In previous work we introduced a design strategy
called comodeling [3],[4] that lets developers
systematically investigate and compare different
software and hardware partitions to meet a system’s
constraints earlier in the design process, when
integration problems are easier and cheaper to resolve.
Our comodeling approach used multiview modeling to
separately model the system’s software and hardware
aspects by integrating Behavior Engineering (BE) with
Modelica. BE is a system and software engineering
methodology that supports the engineering of large-scale
dependable software intensive systems from out of its
requirements. Modelica is an equation-based, object-
oriented mathematical modeling language suited to
modeling complex physical systems in multiple
domains. BE is initially used to formalize and integrate
the natural language requirements to create an
executable specification. This specification is then
combined with a Modelica model of the hardware and
environment to create an integrated comodel.

One limitation of our comodeling approach was that
the BE and Modelica models that together formed a
comodel were executed separately and integrated using
external functions. In this paper, we propose a new
means of integration that enables a Behavior Tree (BT)
to be natively executed in Modelica. This enhanced
integration has several benefits. Firstly, it makes
comodeling easier to apply as the comodel is captured
solely in Modelica. The BT can now directly affect the
acausal equations used to model the hardware and
environmental components. Secondly, it makes the
ability to execute Behavior Trees widely available.
Finally, it opens the possibility to use comodeling with
other complementary approaches such as the virtual
verification of system designs against system
requirements.

The remainder of this paper is structured as follows.
In Section 2 we first give some background on Modelica
and BE as well as briefly revisiting the automated train
protection system case study we previously used to
demonstrate comodeling. In Section 3 we discuss our
new approach that integrates BE and Modelica by
representing BTs in Modelica. Section 4 discusses some
of the design decisions taken by our approach, in

97

mailto:toby.myers@griffithuni.edu.au
mailto:wladimir.schamai@eads.net
mailto:peter.fritzson@liu.se

particular why we chose to use code generation rather
than develop a Modelica library. Section 5 discusses
how our new integration approach allows comodeling to
be complemented by other approaches such as vVDR.
In section 6 we present related work before concluding
in section 7.

2. Background

2.1 Introduction to Modelica

Modelica [5][6][7] is an open standard for system
architecture and mathematical modeling. It is envisioned
as the major next generation language for modeling and
simulation of applications composed of complex
physical systems.

The equation-based, object-oriented, and component-
based properties allow easy reuse and configuration of
model components, without manual reprogramming in
contrast to today’s widespread technology, which is
mostly block/flow-oriented modeling or hand-
programming.

The language allows defining models in a declarative
manner, modularly and hierarchically and combining of
various formalisms expressible in the more general
Modelica formalism.

The multi-domain capability of Modelica allows
combining of systems containing mechanical, electrical,
electronic, hydraulic, thermal, control, electric power or
process-oriented components within the same
application model. In brief, Modelica has improvements
in several important areas:

Object-oriented mathematical modeling. This
technique makes it possible to create model
components, which are employed to support
hierarchical structuring, reuse, and evolution of
large and complex models covering multiple
technology domains.

Physical modeling of multiple application domains.
Model components can correspond to physical
objects in the real world, in contrast to established
techniques that require conversion to “signal”
blocks with fixed input/output causality. That is, as
opposed to block- oriented modeling, the structure
of a Modelica model naturally corresponds to the
structure of the physical system.

Acausal modeling. Modeling is based on equations
instead of assignment statements as in traditional in-
put/output block abstractions. Direct use of
equations significantly increases re-usability of
model components, since components adapt to the
data flow context for which they are used.

Several tools implement the Modelica language, ranging
from open-source products such as OpenModelica [8], to
commercial products like Dymola [9] and
MathModelica [10].

2.2 Introduction to Behavior Trees

Prior to introducing BTs, it is necessary first to also have
an understanding of the overall BE methodology. This is
because BE is a tight interlinking of the Behavior
Modeling Process (BMP) and the Behavior Modeling
Language (BML). The BML consists of three integrated
views: Behavior Trees, Structure Trees and Composition
Trees [11],[12]. The Behavior Modeling Process (BMP)
uses these views in four stages: Requirements
Translation, Fitness for purpose test, Specification, and
Design.

The combination of the BML and the BMP results in
different uses of the views at each stage. When using
BTs for example, the first stage of the BMP translates
each requirement into a Requirement Behavior Tree
(RBT). These are then integrated to form a single
Integrated Behavior Tree (IBT), which is transformed
into an executable specification in a Model Behavior
Tree (MBT) and finally design decisions are applied to
create a Design Behavior Tree (DBT).

Of the three views, BTs are the most relevant to the
transformation to state machines as they capture
dynamic behavior. A BT is a formal, tree-like graphical
form that represents the behavior of individual or
networks of entities which realize and change states,
create and break relations, make decisions, respond to
and cause events, and interact by exchanging
information and passing control [11].

(A) Tag; (B) Component Name; (C) Behavior;
(D) Behavior Type; (E) Operator; (F) Label;

(G) Traceability Link; (H) Traceability Status

Figure 1. Elements of a BT Node

98

Figure 1 displays the co
form of a BT node
describing the name of
it exhibits qualified by a
the BT node may also h
a label (F). Each BT
contains information to
language requirements
translated. The traceabi
(G) which is used to lin
requirements. The trac
status of this link using

(a) State Realisation: Component realises the described behavior; (b) Selection: Allow thread to continue if condition is
true; (c) Event: Wait until event is received; (d) Guard: Wait until condition is true; (e) Input Event: Receive message*;
(f) Output Event: Generate message*; (g) Reference: Behave as the destination tree; (h) Branch-Kill: Terminate all
behavior associated with the destination tree; (i) Reversion: Behave as the destination tree. All sibling behavior is
terminated; (j) Synchronisation: Wait for other participating nodes; (k) Parallel Branching: Pass control to both child
nodes; (l) Alternate Branching: Pass control to only one of the child nodes. If multiple choices are possible make a non-
deterministic choice; (m) Sequential Composition: The behavior of concurrent nodes may be interleaved between these
two nodes; (n) Atomic Composition: No interleaving can occur between these two nodes. *Note: single characters mean
receive/send message internally from/to the system, double characters mean receive/send message from/to the
environment.
ntents of a BT node. The general
consists of a main part (B-D)
the component and the behavior
behavior type. The main part of

ave an optional operator (E) and
node also has a tag (A) which

trace the node to the natural
from which it was originally

lity link consists of an identifier
k the BT node to any associated
eability status (H) indicates the
a set of values.

A summary of the core elements of the BT notation is
shown in Figure 2. BTs are defined by a formal
semantics defined in CSPsigma, an extension of CSP
that can capture state based information [13].

2.3 Example: Automated Train Protection (ATP)

A key benefit of the BT notation is to provide a formal
path from natural language requirements to a model of
the software. To briefly demonstrate this, we will show
the first two stages of the BMP using two requirements
of an Automated Train Protection (ATP) system [3]. The
ATP system automates the train’s response to several
track-side signals by sensing each signal and monitoring

Figure 2. Summary of the Core Elements of the Behavior Tree Notation

99

the driver’s reaction. If the driver fails to act
appropriately, the ATP system takes control of the train
and responds as required.

Table 1 shows two requirements of the ATP system.
The translation of these two requirements into their
corresponding RBTs is shown in Figure 4(a). Consider
the RBT of requirement 6 (RBT6) with reference to the
system requirements.

The first two nodes show the ATP controller
receiving a value and a selection to determine if the
value is a caution signal. The second node has a ‘+’ in
the tag to indicate this behavior is implied from the
requirements as they do not explicitly state it is
necessary to check the signal is a caution signal.

The next node shows that the Alarm is enabled, and
captures that there is a relation between the Alarm and
the Driver’s Cab. Capturing the information about the
Driver’s Cab ensures that the original intent of the
requirements is retained. The next BT node assumes that
it is implied that the ATP Controller is responsible for
observing whether the speed of the train is decreasing.

The final two BT nodes of RBT6 describe the
relation between the ATP Controller and the Braking
System, and the Braking System realising the activated
state. Figure 4(b) also shows how integration of the two
requirements proceeds using the integration point, ATP
> value <.

The DBT shown in Figure 4(a) can then be used in
conjunction with a Modelica model to create a comodel.
This comodel can be used to determine appropriate
quantified and temporal values to augment the existing
requirements. For example, comodeling can be used for
R6 to determine how often the speed of the train must be
checked and how much of a change in speed is sufficient
for the speed of the train to be considered decreasing.

Table 1. Requirements R5 and R6 of the ATP system

3. Representing Behavior Trees in
Modelica

The integration of BE and Modelica to perform
comodeling was previously performed using external
functions in Modelica. These external functions
interacted with the Behavior Run-time Environment
(BRE) where the Behavior Trees were executed. In this
new approach, Modelica models are automatically
generated from behavior trees captured in TextBE [14],
a textual editor for capturing BE models. The generated
Modelica model represents BTs using an algorithmic

section that is linked to a class for each component in the
BT.

Each branch of the BT is represented by an integer
variable. The nodes of each branch are the represented
as integer values the branch variable. This simple
representation provides two benefits. Firstly, the one to
one mapping of a node to the value of a branch variable
makes it easy to follow the trace through the BT from
the simulation output. Secondly, the branch variables
simplify the representation of more complex BT
constructs such as alternative branching, reversion,
synchronization and branch-kill.

Each component in the BT has an integer variable,
state, that records the current state of the component.
This variable is updated using enumerated values that
map an integer value to the string associated with each
behavior of that component.

Several design decisions were made to simplify the
execution of the BTs in Modelica. Firstly, only one
node may be active at any one time. Secondly, a node is
active for a user-specified delay. Finally, the execution
of the BTs has been constrained to ensure fairness when
multiple branches are executed in parallel.

Figure 3 shows the results of a simulation of a BT
translated into Modelica that demonstrates state
realisations, selections, sequential composition,
alternative branching and reversion. The Modelica code
and the translated BT are shown in Figure 5. The
described transformation has also been included as part
of the TextBE tool, together with a set of examples
available at www.behaviorengineering.org.

3.1 Basic Nodes

State Realisation – A state realisation updates the state
variable of the associated component to the enumerated
value of the behavior of the BT node.

c.state := Integer(c.states.s);

Selection – A selection performs an equality check on
the state variable of the associated component,
comparing it to the enumerated value of the behavior of
the BT node. Depending on the result of this equality
check, the flow of control either continues or is
terminated.

if c.state == c.state_s then
... // Continue flow of control

else
... // Terminate branch

end if;

Guard – A guard is similar to a selection, with the
exception that the else branch is not included to ensure
that the guard is continually re-evaluated until true.

if c.state == c.state_s then
... // Continue flow of control

end if;

Input – Inputs and outputs are implemented as boolean
variables. When the variable is true, the input is active.

R5
If a proceed signal is returned to the ATP
controller then no action is taken with respect
to the train’s brakes.

R6

If a caution signal is returned to the ATP
controller then the alarm is enabled within the
driver’s cab. Furthermore, once the alarm has
been enabled, if the speed of the train is not
observed to be decreasing then the ATP
controller activates the train’s braking system.

100

http://www.behaviorengineering.org/

Events last for one cycle, to ensure that if an internal
output is active in one branch, it can be received by an
internal output in another branch. Inputs are represented
with an equality check that is true if the associated event
becomes active.

if e2 then
... // Continue flow of control

end if;

Output – Each output is associated with a real variable.
When the boolean variable associated with the event is
set to true, the real variable is set to the current time plus
the value of the user-specified delay. An if statement
then ensures that the output is set to false one cycle after
they are activated.

e2 := true;
e2Delay := startTime + (delay/2);
...
if startTime > e2Delay then
e2 := false;

end if;

3.2 Branching and Composition

Sequential Composition – Updates the value of the
branch variable.

if branch1 == 1 then
... // Node behavior
branch1 := 2;

elseif ...

Parallel Branching – Clears the current branch value
and sets the branch value of the child branches to their
first node.

if branch1 == 1 then
... // Node behavior
branch1 := 0;
branch2 := 1;
branch3 := 1;

elseif ...

Alternative Branching – As per parallel branch, but
when the first node of any of the child branches is
activated all the sibling branches are terminated.

if branch2 == 1 then
... // Node behavior
branch2 := 2;
branch3 := 0;

end if;

Atomic Composition – Adds further constraint to all
sibling branches of atomic composed nodes that flow of
control cannot continue if the branch values of the
atomic composed nodes are active.

if branch3 == 1 and not(branch2==1 or
branch2==2) then
... // Node behavior
branch3 := 2;

3.3 Operators

Reference – Clears the current branch value and sets the
branch value of the destination node.

if branch1 == 3 then
branch3 := 0;
branch2 := 2;

Reversion – Clears the current branch value and all
sibling parallel branches and sets the branch value of the
destination node.

if branch1 == 3 then
branch2 := 0;
branch3 := 0;
branch1 := 1;

Branch-Kill – Clears the branch value of the destination
node and the branch value of any of its descendants.

if branch2 == 2 then
branch3 := 0;
... // Continue flow of control

Synchronization – One synchronisation node checks
when the branch value of all nodes is set correctly and
sets a boolean variable to true. All other synchronisation
nodes wait until this Boolean variable is true.

if branch3 == 2 and branch2 == 3 then
sync1 := true;
... // Node behavior
... // Continue flow of control

if branch2 == 3 and sync1 then
... // Continue flow of control

4. Libraries versus Code Generation

The approach taken to represent behavior trees in
Modelica was heavily influenced by previous work
involving the execution of UML state machines using
Modelica [1]. This work raised two points of discussion:
whether to use the declarative (equations) or imperative
(algorithms) constructs of Modelica and whether to
create a Modelica library or create a code generator.

The imperative portions of Modelica were found to be
necessary to represent a comprehensive set of state
machine concepts in Modelica such as inter-level
transitions; entry, do, and exit actions of states, and; fork
and synchronization of parallel regions. Algorithmic
code was necessary for these concepts because a
particular sequence of operations was required. A
similar situation occurred with the translation of
behavior trees to Modelica for concepts involving
concurrent behavior such as alternative branching,
atomic composition, reversion, reference, branch-kill
and synchronization. We were unable to find a means to
represent these concepts using equations but their
representation in algorithmic sections was reasonably
straightforward.

The second point of discussion involved whether the
representation should be implemented using a Modelica
library or if model transformation should be used to

101

generate the Modelica representation from a dedicated
modeling editor. As with state machines, we chose to
implement behavior trees in Modelica using the later
approach.

This implementation choice is a specific instance of
the two choices faced whenever any new domain-
specific language (DSL) is created [19]: language
invention and language exploitation. Language invention
involves developing a new language from scratch.
Language exploitation creates a DSL by extending an
existing general purpose language (GPL), a language
that uses generalized concepts that cut across multiple
modeling dimensions.

Language invention is best applied when existing
languages cannot be used to capture domain-specific
concepts. Language invention creates DSLs that provide
the most benefit to users but that also requires the
development and maintenance of completely new tools
such as an editor, compiler, debugger and simulator.
Language invention is most suited to DSLs with a focus
on syntax over semantics, which semantics often
implicitly defined by model compilers or generators
[20].

DSLs created by language exploitation can leverage
any existing technology developed by the chosen GPL to
simplify the implementation and mapping between
multiple DSLs. It also allows the utilization of existing
editors and the potential to benefit from a user’s
familiarity with the existing GPL. The ultimate success
of language exploitation, however, depends on the
effectiveness of the chosen GPL at capturing the
concepts of the DSL.

If a model library approach were to be taken, editors
would have to be used that were not specifically
designed for visual languages such as state machines and
behavior trees. It is likely that compromises would also
have to be made to accommodate the representation of
state machines or behavior trees in a Modelica library.

It is for these reasons that both the state machine and
the behavior tree mappings to Modelica used a language
invention approach for capturing and visualizing their
models. This allows editors that were specifically
designed for that DSL to be used. For model execution,
however, a language exploitation approach is taken
where the DSL is transformed into a Modelica
representation. This approach allows the advantages of
Modelica to be leveraged whilst also maintaining the
advantages of having an editor tailored to the particular
DSL. It also makes it possible to integrate BE with
ModelicaML and vVDR as discussed in the following
section.

5. Complementing Comodeling with vVDR

Comodeling, as has been outlined previously, provides a
number of benefits. It leverages BE to follow a process
that helps to ensure that system requirements are correct,
consistent, complete, and unambiguous. It also
determines the quantified and temporal information
required for software/hardware interactions in the early
stages of development. The effect different software and

hardware partitions have on the timing, performance and
complexity of individual components and on the
integrated system’s behavior as a whole can then be
determined by simulating different comodels.

The representation of BTs natively in Modelica,
however, makes it easier to integrate comodeling, and
BE in general, with other approaches such as vVDR.

5.1 Introduction to vVDR

vVDR is a method for a virtual Verification of system
Design alternatives against system Requirements. The
application of this method is illustrated in [2] using
ModelicaML. ModelicaML is a UML- and Modelica-
based language. It supports all textual Modelica
constructs and, in addition, supports an adopted version
of the UML state machines and activity diagrams for
behavior modeling as well as UML class diagram and
composition diagram for structure modeling. This
enables engineers to use the simulation power (i.e.,
solving of hybrid DAEs) of Modelica by using
standardized graphical notations for creating the system
models.

In the vVDR method, each requirement, or more
general any analysis question, is formalized as a model
which evaluates the violation or fulfilment of a
requirement, or more generally provides the answer to
the stated analysis question.

In case of a requirement, the formalization is done by
relating measurable properties, that are addressed in the
requirement statement, to each other in order to express
when this requirements is violated.

Then requirements models and a system design
alternative model are instantiated and bound to each
other in a test model. The test model also includes the
test scenario, which provides stimuli for the system
model. Finally, the models are translated into Modelica
code, the test model is simulated and the results are
analysed.

The vVDR method and its implementation in
ModelicaML focus on enabling the analysis and
verification of different design alternatives against the
same set of requirements. It is designed to automate the
composition of test model and to facilitate a flexible
way to reuse formalized requirements models, test
scenario models and system design alternative models in
various combinations.

For example, the same test scenario model can be
used to verify different system design alternatives
against the same set of requirements. Similarly, the same
requirements can be used for verifications that are driven
by different test scenario models.

The vVDR approach does not integrate individual
requirements and, hence, does not provide means to
determine inconsistencies between requirements.
Inconsistencies between requirements can only be
detected when requirement violations are detected
during simulations.

In contrast, the BE methodology provides means to
ensure the consistency of the specification. Any
inconsistency or incompleteness detected in the

102

specification is resolved and corrected so that that each
of the individual requirements does not conflict with any
other requirement in the specification.

This is the starting point for the vVDR that assumes a
set of requirements that do not conflict with each other.
The advantage of using the vVDR approach is that it
enables the verification of a system model against a
subset of requirements that are of interest for a particular
analysis. This is useful for the assessment of design
alternatives by focusing on specific aspects as well as for
regression testing when some requirements have
changed or design model has evolved.

5.2 Integrating vVDR with BE and Comodeling

There are two applications that could be investigated for
integrating vVDR with BE and Comodeling.

The first application is to integrate BE with vVDR by
using a Model Behavior Tree as a source for the
generation of both vVDR requirements violation
monitors and test cases. Test cases would be used to
drive a design alternative in order to determine if it
fulfils the requirements by evaluating the generated
requirements violation monitors.

The second application is to augment the existing
comodeling approach with vVDR. vVDR would not
need to provide violation monitors, as the comodels have
been built from out of the requirements. Instead vVDR
could provide monitors that evaluate the performance of
different comodels to find the best candidate that fulfils
a set of criteria.

6. Related Work

We are not aware of any other work that represents BTs
in Modelica. Schamai et al have defined an approach to
transform state machines into Modelica using code
generation [1]. Modelica libraries also exist for state
machines, e.g., Stategraph [15] and Petri nets [16].
Myers et al [17] have also created a transformation for
converting BTs into executable UML state machines.

Wendland [18] has outlined an approach to augment
the BMP to capture testing information and generate test
cases from BTs. This could be integrated with vVDR
and comodeling.

7. Conclusion

This paper presents an approach for executing BTs
using Modelica in order to support comodeling and
simulation of system requirements, hardware and
software. Modelica is used as action language and as
execution technology. By using Modelica as action
language in BTs the mathematical modeling and
simulation power of Modelica is leveraged. For
example, Modelica equations or algorithm code is used
for capturing of encapsulated behavior (e.g. inside state
realization) in BTs. This enables the modeling of
continuous-time, discrete-time or event-based behavior
including the solving of differential algebraic equations
and events handling. This way logical requirements or

software models can be simulated together with physical
system behavior models using the same technology.

The model-transformation rules, described in section
3, are implemented as in the code generator that can be
used in TextBE[14] as a prototype. The decision for
implementing a code generator instead of developing a
Modelica library for BTs is discussed in section 4. The
Modelica code, that is generated from BTs models, can
then be loaded and simulated using OpenModelica tools
[8]. This combination is the first publically available
runtime execution environment for Behavior Trees
models. Moreover, using Modelica as a common
modeling and simulation technology enables
complementing BE methodology with other approaches,
such as the vVDR method implementation in
ModelicaML[2], as discussed in section 5.

Acknowledgements

This research was supported under Australian Research
Council Linkage Projects funding scheme (project
number LP0989363) and by VINNOVA the Swedish
Governmental Agency for Innovation Systems in the
OPENPROD project.

References

[1] Wladimir Schamai, Uwe Pohlmann, Peter Fritzson,
Christian J.J. Paredis, Philipp Helle, Carsten Strobel.
Execution of UML State Machines Using Modelica
In Proceedings of the 3rd International Workshop on
Equation-Based Object-Oriented Modeling Languages
and Tools, (EOOLT 2010), Published by Linkoping
University Electronic Press, www.ep.liu.se, In
conjunction with MODELS 2010, Oslo, Norway, Oct 3,
2010.

[2] Wladimir Schamai, Philipp Helle, Peter Fritzson,
Christian Paredis. Virtual Verication of System Designs
against System Requirements, In Proc. of 3rd
International Workshop on Model Based Architecting and
Construction of Embedded Systems (ACES 2010). In
conjunction with MODELS 2010. Oslo, Norway, Oct 4,
2010.

[3] Toby Myers, Geoff Dromey, Peter Fritzson. Comodeling:
From Requirements to an Integrated Software/Hardware
Model, IEEE Computer 44(4) pp.62-70, April 2011 doi:
10.1109/MC.2010.270.

[4] Toby Myers. The Foundations for a Scaleable
Methodology for Systems Design, PhD Thesis, School of
Computer and Information Technology, Griffith
University, Australia, 2010.

[5] Modelica Association. Modelica: A Unified Object-
Oriented Language for Physical Systems Modeling:
Language Specification Version 3.0, Sept 2007.
http://www.modelica.org.

[6] Michael Tiller. Introduction to Physical Modeling with
Modelica. Kluwer Academic Publishers, 2001.

[7] Peter Fritzson. Principles of Object-Oriented Modeling
and Simulation with Modelica 2.1. Wiley-IEEE Press,
2004.

[8] Open Source Modelica Consortium. OpenModelica.
http://www.openmodelica.org.

[9] Dynasim. Dymola. http://dynasim.com.
[10] MathCore. Mathmodelica. http://www.mathcore.com.

103

http://www.modelica.org/
http://www.openmodelica.org/
http://dynasim.com/
http://www.mathcore.com/

[11] Geoff Dromey. From requirements to design: Formalizing
the key steps. in Proc. Conf. on Software Engineering and
Formal Methods (SEFM). IEEE Computer Society, pp. 2-
13, 2003.

[12] Geoff Dromey. Climbing over the “no silver bullet” brick
wall. IEEE Software, vol. 23, pp. 120, 118-119, 2006.

[13] Robert Colvin and Ian Hayes. A semantics for Behavior
Trees using CSP with specification commands. Science of
Computer Programming, In Press, Corrected Proof,
Available online 9 December 2010.

[14] Toby Myers. TextBE: A Textual Editor for Behavior
Engineering. Proceedings of the 3rd Improving Systems
and Software Engineering Conference (ISSEC), Sydney,
Australia, 2-5 August 2011 (Accepted).

[15] Martin Otter, Martin Malmheden, Hilding Elmqvist, Sven
Erik Mattsson, and Charlotta Johnsson. A New
Formalism for Modeling of Reactive and Hybrid Systems.
In Proceedings of the 7th International Modelica
Conference, Como, Italy. September 20-22, 2009.

[16] Sabrina Proß and Bernhard Bachmann. A Petri Net
Library for Modeling Hybrid Systems in OpenModelica.

Proceedings of the 7th International Modelica
Conference, Como, Italy, 20-22 September 2009.

[17] Toby Myers, M. Wendland, S. Kim, Peter Lindsay. From
Requirements to Executable UML State Machines: A
Formal Path using Behavior Engineering and M2M
Transformations, Proceedings of the 14th International
Conference on Model Driven Engineering Languages and
Systems, Wellington, New Zealand, 16-21 October 2011
(submitted).

[18] M. Wendland, I. Schieferdecker, A. Vouffo-Feudjio.
Requirements driven testing with behavior trees.
In Proceedings of the ICST Workshop Requirements and
Validation, Verification & Testing (ReVVerT 2011). 2011.
Accepted.

[19] M. Mernik, J. Heering and A. M. Sloane. When and how
to develop domain-specific languages, ACM Computing
Surveys (CSUR), vol. 37(4), 2005. pp. 316-344.

[20] J. Heering and M. Mernik, Domain-specific languages in
perspective, Tech. rep., CWI, sEN-E0702. 2007.

(a)

(b)

Figure 3. Simulation Plots of Selection Example Translation (a) branch and activeBranch variables (b) c.state variable

104

Figure 4. Behavior Engineering model of the Automated Train Protection System (a) Integration of
Requirements R5 and R6 (b) Design Behavior Tree

105

model Selection
Integer branch1(start=1),branch2,branch3;
Integer activeBranch(start=1),
lastActiveBranch;
Boolean next(start=true);
C c;
Real startTime;
constant Real delay = 0.1;

algorithm
when time>startTime + delay then
while branch1==pre(branch1) and
branch2==pre(branch2) and
branch3==pre(branch3) and next loop
if activeBranch==1 then
if branch1==1 then
c.state := Integer(c.states.s);
branch1:=2;

elseif branch1==2 then
c.state := Integer(c.states.t);
branch1 := 3;

elseif branch1==3 then
if c.state==c.state_t then
branch1 := 4;
else
branch1 := 0;
end if;

elseif branch1==4 then
c.state := Integer(c.states.u);
branch1 := 0;
branch2 := 1;
branch3 := 1;

end if;
elseif activeBranch==2 then
if branch2==1 then
if c.state==c.state_s then
branch2 := 2;
branch3 := 0;
else
branch2 := 0;
end if;

elseif branch2==2 then
c.state := Integer(c.states.v);
branch2 := 0;

end if;
elseif activeBranch==3 then
if branch3==1 then
if branch2==0 then
branch3 := 2;
end if;

elseif branch3==2 then
branch3 := 0;
branch1 := 1;

end if;
end if;

activeBranch := activeBranch + 1;
if activeBranch==4 then
activeBranch := 1;

end if;
if activeBranch==1 and branch1==0 then
activeBranch := activeBranch + 1;

end if;

if activeBranch==2 and branch2==0 then
activeBranch := activeBranch + 1;
end if;
if activeBranch==3 and branch3==0 then
activeBranch := 1;
end if;
if activeBranch==1 and branch1==0 then
activeBranch := activeBranch + 1;
end if;
if activeBranch==2 and branch2==0 then
activeBranch := activeBranch + 1;
end if;
if activeBranch==lastActiveBranch then
next := false;
end if;

end while;
startTime := time;
lastActiveBranch := activeBranch;
next := true;
end when;
end Selection;

class C
type states = enumeration(s,t,u,v);
constant Integer state_s =
Integer(states.s);
constant Integer state_t =
Integer(states.t);
Integer state;
end C;

C

[t]

C

? t ?

C

[u]

[]

C

? s ?

C

? ELSE ?

C

[v]

^C

[s]
Figure 5. Example Translation of a Behavior Tree into Modelica

106

