
Proceedings of the

4th International Workshop on
Equation-Based Object-Oriented Modeling

Languages and Tools

Zurich, Switzerland, September 5, 2011

Editors
François E. Cellier
David Broman
Peter Fritzson
Edward A. Lee

2011
EOOLT

ISSN: 1650-3686

4th International Workshop on

Equation-based Object-oriented

Modeling Languages and Tools

Proceedings

Editors:

François E. Cellier, David Broman, Peter Fritzson, and
Edward A. Lee

Copyright
The publishers will keep this document online on the Internet – or its possible replacement –
starting from the date of publication barring exceptional circumstances.

The online availability of the document implies permanent permission for anyone to read, to
download, or to print out single copies for his/her own use and to use it unchanged for non-
commercial research and educational purposes. Subsequent transfers of copyright cannot revoke
this permission. All other uses of the document are conditional upon the consent of the copyright
owner. The publisher has taken technical and administrative measures to assure authenticity,
security and accessibility.

According to intellectual property law, the author has the right to be mentioned when his/her
work is accessed as described above and to be protected against infringement.
For additional information about Linköping University Electronic Press and its procedures for

publication and for assurance of document integrity, please refer to its www home page:

http://www.ep.liu.se/.

Series: Linköping Electronic Conference Proceedings
Number 56
ISSN (print): 1650-3686
ISSN (online): 1650-3740
http://www.ep.liu.se/ecp_home/index.en.aspx?issue=056

Printed by ETH Zurich, 2011

Copyright © the authors, 2011

TABLE OF CONTENTS

Preface v François E. Cellier
 David Broman
 Peter Fritzson
 Edward A. Lee

International Program Committee vii

Languages and Tools for Model-based Design

Advancing Model-based Design by Modeling 3 Pieter J. Mosterman
Approximations of Computational Semantics Justyna Zander
(Invited Paper)

A Model-driven Approach for Requirements 9 Hongchao Ji
Engineering of Industrial Automation Systems Oliver Lenord
 Dieter Schramm

A Generic FMU Interface for Modelica 19 Wuzhu Chen
 Michaela Huhn
 Peter Fritzson

Modeling Language Design

Equation-based Model Data Structure for High 27 Hisahiro Ito
Level Physical Modelling, Model Simplification Akira Ohata
and Modelica-Export Ken Butts
 Jürgen Gerhard
 Masoud Abbaszadeh
 David Linder
 Erik Postma
 Elena Shmoylova

Safe Compositional Equation-based Modeling 35 Nate Soule
of Constrained Flow Networks Azer Bestavros
 Assaf Kfoury
 Andrei Lapets

A Compositional Semantics for Modelica-style 45 Peter Pepper
Variable-structure Modeling Alexandra Mehlhase
 Christoph Höger
 Lena Scholz

Simulation and Model Compilation

LIEDRIVERS – A Toolbox for the Efficient Computation 57 Klaus Röbenack
of Lie Derivatives Based on the Object-oriented Algorithmic Jan Winkler
Differentiation Package ADOL-C Siqian Wang

iii

Debugging Symbolic Transformations 67 Martin Sjölund
in Equation Systems Peter Fritzson

Modelica Code Generation from ModelicaML State 75 Uwe Pohlmann
Machines Extended by Asynchronous Communication Matthias Tichy

Real-time Oriented Modeling Languages and Tools

Using Equation-based Languages for Generating 87 Gregory Provan
Embedded Code for Smart Building Applications

Comodeling Revisited: Execution of Behavior 97 Toby Myers
Trees in Modelica Wladimir Schamai
 Peter Fritzson

Exploiting OpenMP in the Initial Section 107 Javier Bonilla
of Modelica Models Luis J. Yebra
(Work in Progress) Sebastián Dormido

Separate Compilation of Causalized Equations 113 Christoph Höger
(Work in Progress)

iv

Preface
During the past decade, integrated model-based design of complex cyber-physical systems
(which mix physical dynamics with software and networks) has gained significant attention.
Hybrid modeling languages based on equations, supporting both continuous-time and event-
based aspects (e.g. Modelica, SysML, VHDL-AMS, and Simulink/ Simscape) enable high-level
reuse and integrated modeling capabilities of both the physically surrounding system and
software for embedded systems. Using such equation-based object-oriented (EOO) modeling
languages, it has become feasible to model complex systems covering multiple application
domains at a high level of abstraction through reusable model components.

The interest in EOO languages and tools is rapidly growing in the industry because of their
increasing importance in modeling, simulation, and specification of complex systems. There
exist several different EOO language communities today that grew out of different application
domains (multi-body system dynamics, electronic circuit simulation, chemical process
engineering). The members of these disparate communities rarely talk to each other in spite of
the similarities of their modeling and simulation needs.

The EOOLT workshop series aims at bringing these different communities together to discuss
their common needs and goals as well as the algorithms and tools that best support them.

There was a good response to the Call for Papers. Ten papers were in the end accepted for full
presentations whereas two work-in-progress papers were accepted for shorter presentations. One
additional presentation was invited by the workshop organizers. All papers were subject to rather
detailed reviewing by the program committee; on the average, four reviews were received per
manuscript submitted.

On behalf of the program committee, the Program Chairs would like to thank all those who
submitted papers to EOOLT'2011. Special thanks go to the program committee members for
reviewing the papers on a strict time schedule.

Zurich, August 2011

François E. Cellier
David Broman
Peter Fritzson
Edward A. Lee

v

INTERNATIONAL PROGRAM COMMITTEE

François E. Cellier (chair) ETH Zurich Switzerland
David Broman (co-chair) Linköping University Sweden
Peter Fritzson (co-chair) Linköping University Sweden
Edward A. Lee (co-chair) University of California, Berkeley U.S.A.

Bernhard Bachmann University of Applied Sciences, Bielefeld Germany
Bert van Beek Eindhoven University of Technology The Netherlands
Jan Broenink University of Twente The Netherlands
Peter Bunus Linköping University Sweden
Francesco Casella Polytechnical University of Milano Italy
Christoph Clauß Fraunhofer Institute for Integrated Circuits, Dresden Germany
Olaf Enge-Rosenblatt Fraunhofer Institute for Integrated Circuits, Dresden Germany
Xenofon Floros ETH Zurich Switzerland
Sven-Erik Mattsson Dynasim AB, Lund Sweden
Jakob Mauß QTronic GmbH, Berlin Germany
Pieter J. Mostermann MathWorks, Inc., Natick, Mass. U.S.A.
Henrik Nilsson University of Nottingham United Kingdom
Dionisio de Niz Villaseñor Carnegie Mellon University U.S.A.
Martin Otter DLR Oberpfaffenhofen Germany
Chris Paredis Georgia Institute of Technology U.S.A.
Peter Pepper Technical University Berlin Germany
Adrian Pop Linköping University Sweden
Nicolas Rouquette Jet Propulsion Laboratory, NASA U.S.A.
Carl-Johan Sjöstedt KTH, Stockholm Sweden
Christian Sonntag Technical University Dortmund Germany
Alfonso Urquía UNED, Madrid Spain
Hans Vangheluwe McGill University Canada
 and University of Antwerp Belgium
Dirk Zimmer DLR Oberpfaffenhofen Germany
Johan Åkesson Lund University Sweden

vii

Languages and Tools

For Model-based Design

Advancing Model-Based Design by Modeling Approximations of
Computational Semantics

Pieter J. Mosterman1,2 Justyna Zander3

1Design Automation Department, MathWorks, USA,pieter.mosterman@mathworks.com
2School of Computer Science, McGill University, Canada

3Harvard Humanitarian Initiative, Harvard University, USA,justyna.zander@googlemail.com

Abstract
Over the past decades, engineered systems have increas-
ingly come to rely on embedded computation in order to
include advanced and sophisticated features. The unparal-
lelled flexibility of software has been a blessing for im-
plementing functionality with a complexity that could not
have been imagined heretofore. One important manifesta-
tion of this is in the use of software as the universal sys-
tem integration mechanism. With the increasing use, how-
ever, has come a suite of difficulties in effectively employ-
ing software engineering practices because (i) C (the lan-
guage of choice in embedded software implementation) is
very close to the hardware implementation and (ii) soft-
ware engineering methods typically only consider logical
correctness, irrespective of critical characteristics for em-
bedded computation (e.g., response time). To address these
problems, Model-Based Design helps raise the level of ab-
straction while accounting for such critical characteristics.
The corresponding models are designed using high-level
formalisms such as block diagrams and state transition di-
agrams whose meaning is particularly intuitive because of
their executable nature. The necessity to support increas-
ingly complicated language elements, however, has caused
the underlying execution engine to explode in complexity.
As a result, the meaning of the high-level formalisms ex-
ists almost exclusively by merit of simulation. This paper
attempts to present the challenges faced by the current state
of Model-Based Design tools and outlines a solution ap-
proach by modeling the execution engine.

Keywords Model-Based Design, Cyber-Physical Sys-
tems, Modeling, Simulation, Computation, Numerical In-
tegration, Hybrid Systems

4th International Workshop on Equation-Based Object-Oriented
Modeling Languages and Tools. September, 2011, ETH Zürich, Switzerland.

Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp/056/

EOOLT 2011 website:
http://www.eoolt.org/2011/

1. Introduction
With the advent of solid state transitors, computation has
been on a steady curve of making ever increasing compu-
tational power available. Because of the flexibility of soft-
ware in the design of functionality this trend has been a
boon for engineered system designers. Embedding power-
ful processors into most any engineered system has allowed
including features that are close to being limited only by
imagination.

However, while miniaturization has been driving an ex-
ponential increase in transistor count per surface area, de-
sign methods that enable exploitation of the corresponding
computing power have been lagging [23]. This problem not
only manifests in hardware but also in software. For exam-
ple, because of integration issues in the avionics software,
the F/A-22 fighter continuously struggled to meet its pro-
jected deployment dates [25].

The challenges in software producibility [8]1 are per-
haps especially curious in the face of the great strides that
have been made in programming and software engineer-
ing. However, approaches such asstructured programming,
modularization, object-oriented programming, etc. all con-
centrate on aninformationrather than adynamicsperspec-
tive. Consequently, these approaches do not sufficiently
benefit the embedded systems or Cyber-Physical Systems
(CPS) communities. For example, when it comes to the
effects ofembeddingcomputation in a physical environ-
ment the response time of a sequence of computations is
critical, yet software engineering approaches typically con-
sidertimea ‘nonfunctional’ characteristic (e.g., [10]) even
though computational complexity is a standard considera-
tion.

Abstraction is a natural approach to attempt to over-
come these difficulties in designing embedded computa-
tional features. In CPS design, abstraction attempts to fa-
cilitate critical characteristics such as computation timing
and data representation by providing high-level formalisms
that align well with the problem space (control algorithms,
signal processing algorithms, etc.), rather than the solution

1 In the automotive industry, the extensive use of software
has been responsible for distinct quality issues such as doc-
umented in “Sync sinks Ford’s J.D. Power quality ratings”
(http://money.cnn.com/2011/06/22/autos/ford_jd_power_initial_quality).

3

space (typically C code). The abstraction results inmodels
of the underlying software and so the corresponding ap-
proach to design is calledModel-Based Design(e.g., [20]).

Now, to enable Model-Based Design of CPS it is not
only necessary to abstract the embedded computation but
also the physical world to a representation that is most ap-
propriate for solving the design problem. The use of the
most appropriate formalism at the most appropriate level of
abstraction constitutes the underlying premise of the field
of Computer Automated Multiparadigm Modeling (CAM-
PaM), which highlights and studies the complications that
arise from models at multiple time scales, with multiple
levels of detail, and using a combination of multiple for-
malisms [15, 16, 17]. In this context, it is essential to con-
centrate on the formalization of the meaning of models that
represent the physical world so as to correspond to formal-
izations typical for embedded computation.

In Section 2, Model-Based Design is introduced in more
detail. Section 3 outlines the challenges that have emerged
from the increasing use of Model-Based Design. An out-
line of a possible solution approach is communicated in
Section 4. Section 5 concludes the considerations.

2. Model-Based Design
Design of engineered systems is a process in multiple
stages where each stage has a set of requirements as input
and a specification as output (e.g., [7]). A produced spec-
ification then serves as requirements for the next design
stage where additional information necessary to implement
a specification is included. This information comprises ad-
ditional implementation detail as well as functionality. For
example, a control law may be specified by a declarative
block diagram (e.g., [1]). This specification serves as the
requirements for the embedded software of the control law.
The block diagram specification then requires additional
detail such as data types of its signals so that the speci-
fication can be implemented in embedded software. Fur-
thermore, additional functionality such as a scheduler to
execute the blocks in the block diagram specification is
added.

The rise of Information Technology (IT) has supported
digital documents such as created with rich text, presen-
tation, and spreadsheet applications. Likewise, graphical
models of dynamic systems such as block diagram models
have become available in digital form. Such digital models
are at the core of Model-Based Design. This is depicted in
Figure 1 where a system specification is represented by a
triangle. The computer application that is used to create the
digital form of a specification is represented by the rectan-
gle at the base of the triangle. This computer application
executes on a host technology, as depicted by the rectangle
at the bottom.

Because a digital form of the specification exists, any
models that it contains can now be processed automatically.
Model-Based Design has exploited this substantially by en-
abling the (i) execution of dynamic models, (ii) transforma-
tion of models to include implementation detail (or even
complete C code), and (iii) integration of models with fur-

Technology

Specifi-

cation

Application

Figure 1. Digital representation of models.

ther design artifacts such as requirements and tests. In turn,
the availability of all these specific features has formed the
catalyst to developing an entire test and verification ecosys-
tem around the digital models through the various design
stages.

3. The Challenge
By making the digital representation of a model executable,
Model-Based Design introduces approximations necessary
for simulation algorithms. For example, the behavior of a
model as a differential equation system is typically approx-
imated by numerical integration algorithms that are imple-
mented in software modules (e.g., [21]). In case such a
continuous-time model includes discrete mode changes, a
hybrid dynamic system[3, 12] emerges that comprises fur-
ther approximations (e.g., because of the root-finding algo-
rithms that detect the point in time when a discrete mode
change occurs [13] and the reinitialization algorithms that
may follow such a mode change [14]). These approxima-
tions are depicted in Figure 2 by representing the original
system specification triangle of Figure 1 as a discretized tri-
angle. Often the approximations are specific to the partic-
ular Model-Based Design (MBD) application that is used
(e.g., SimulinkR© [24]).

Technology

Code

Imperative Spec

Specification

MBD Application (e.g., Simulink)

Figure 2. Computational approximation of executable
models.

In spite of these approximations, Model-Based Design
has shown to be very successful [9, 11]. To a large extent
this is precisely because an executable model exists. For ex-
ample, a computational model of a physical system can be
fit to constitute a precise representation by automatic sys-
tem identification methods that rely on a multitude of sim-
ulations to search for the optimal underlying model. As the

4

digital models have become prime design deliverables be-
tween design stages, the approximations are carried consis-
tently through to the eventual implementation. As a result,
the computational models can be successfully exploited,
though at the expense of a necessity for extensive testing
throughout. Moreover, any analysis other than simulation
based is prohibitively complex, as it requires analysis of
the entire execution engine code base.

To further mature and advance Model-Based Design, the
challenge that developers of Model-Based Design applica-
tions face is then one of defining the computational approx-
imations. Specifically, the computational approximations
are bestmodeledat a declarative level, as illustrated in Fig-
ure 3. Such a model of the execution engine enables anal-
yses of the models that the execution engine executes and
that are used in design, while accounting for the inherent
computational approximations. Moreover, the declarative
representation enables synthesis methods based on compu-
tational approaches such asmodel checking(e.g., [19]).

Technology

MBD Application (e.g., Simulink)

Declarative Specification

Specification

Figure 3. Declarative specification of computational ap-
proximations.

4. A Solution Approach
An approach to tackle the challenge of defining the com-
putational approximations must be declarative and suffi-
ciently formal so as to serve as a specification or reference
implementation. The approach must support analysis and
synthesis while being sufficiently powerful to apply to a
broad range of models of computation.

In previous work, Haskell was employed as the defini-
tion language [5] which satisfies the declarative require-
ment. Moreover, the functional nature supported a stream-
based approach (i.e., ‘state-less behavior’ of functions)
which aids greatly in analyzability (e.g., [2]). Furthermore,
work on synchronous languages [4, 6] has demonstrated
the breadth of applicability of such a stream-based declar-
ative approach while enabling synthesis of an implementa-
tion in terms of a state machine or software code.

More recently, the approximations of a variable-step
numerical integration algorithm have been formally mod-
eled in a declarative sense by a strict subset of Simulink
blocks [18, 19]. This subset includes only ‘delay’ and
‘latch’ operations as so-called ‘sequential’ operations [22]
that communicate between sample times. For example, Fig-
ure 4 shows a model of theEulerand Figure 5 of thetrape-
zoidal integration algorithms as they are used by a Heun

numerical integration scheme. Such a scheme employs two
stages, where in the first stage a forward Euler approxi-
mation is computed while in the second stage the Euler
estimate is used to compute a trapezoidal approximation.

The Euler and Heun approximations are then employed
in a variable-step numerical integration algorithm that com-
pares the two approximations and in case a tolerance is ex-
ceeded, the step size is reduced by a factor two. Because
in this case the integration has to undo the original approx-
imation as produced by theaggregate seriesfacility, the
Euler (Figure 4) and Trapezoidal approximation (Figure 5)
include areject seriesfacility to selectively subtract the ap-
proximations of failed time steps.

Because of the declarative model of a variable-step
solver, detailed analyses of the semantics in the face of
zero-crossings are enabled [26]. Moreover, it allows a
feedforward control to be synthesized for a stiff hybrid
dynamic system by using computational model checking
methods [19].

5. Conclusions
In this paper, a vision for continuous improvement of
Model-Based Design has been outlined. It was argued that
Information Technology ultimately enabled the develop-
ment of Model-Based Design principles that can be ap-
plied for developing computable and executable graphical
models. Such models introduce the necessity to properly
understand the semantics of the computation because the
power of computational execution amplifies numerical ap-
proximations. This highlights the challenge that Model-
Based Design is facing today. Whenever a specification of
a system is considered, its computational meaning com-
prises the approximation of the computation method used
for simulation. In this manner, the semantics of a system
design permeates down to the implementation detail of the
simulation engine (in some cases, it is even affected by host
technology specifics). This, in turn, renders activities such
as system analysis, design refinement, and synthesis very
complex and prone to human mistakes or errors, even (or
especially) in case automatic processing is exploited.

To mitigate the complexity, a separate conceptual and
simultaneously technical layer is introduced to the exist-
ing Model-Based Design artifacts. This layer is a formal
declarative specification that is applicable to a broad range
of models of computation. Its functional nature is sup-
ported by a stream-based approach, which lends itself well
to analysis. As an example, a declarative stream-based im-
plemention is outlined for a variable-step numerical inte-
gration algorithm (based on a forward Euler and Heun ap-
proximation).

The discussion above applies in particular to Cyber-
Physical Systems (CPS) where both embedded computa-
tion and the dynamics of the physical world must be repre-
sented in a unified computational manner to allow for com-
prehensive analyses. Neglecting the computational approx-
imation and execution semantic for such a combination is
prone to improper results and unpredictable conclusions.

5

Every other step, the Trapezoidal

Rejecting the increment

only occurs every other step.

increment

y

reject series

aggregate series

Trapezoidal

adoption series

u

step

reject

Trapezoidal

Figure 4. Euler approximation of the Heun numerical integration algorithm.

increment

y

to accept

reject series

aggregate series

u

step

reject

Figure 5. Trapezoidal approximation of the Heun numerical integration algorithm.

In the context of future directions, the formal model of
the execution engine represented by the declarative layer
proposed in this paper introduces the following benefits
over the current approach. The analysis and specific de-
sign of a CPS component can now be performed at a high
abstraction, without involving an imperative specification
or even implementation. Because the computation is de-
scribed in an abstract manner, it is easier for engineers to
understand. In turn, this illustrates how Model-Based De-
sign is not only of value for designing engineered systems,
but the principles also apply to Model-Based Design tools
themselves, thereby unlocking the potential for an autocat-
alytic trend

c© MATLAB and Simulink are registered trademarks of
The MathWorks, Inc. See www.mathworks.com/trademarks
for a list of additional trademarks.

References
[1] Karl J. Åström and Björn Wittenmark.Computer Controlled

Systems: Theory and Design. Prentice-Hall, Englewood
Cliffs, New Jersey, 1984.

[2] John Backus. Can programming be liberated from the
von neumann style? a functional style and its algebra of
programs. Communications of the ACM, 21(8):613–641,
1978.

[3] Maria Domenica Di Benedetto and Alberto L. Sangiovanni-
Vincentelli, editors. Hybrid Systems: Computation and
Control, volume 2034 ofLecture Notes in Computer
Science. Springer-Verlag, March 2001.

[4] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas
Halbwachs, Paul Le Guernic, and Robert de Simone. The
synchronous languages twelve years later.Proceedings of
the IEEE, 91(1):64–83, 2003.

[5] Ben Denckla and Pieter J. Mosterman. Stream- and
state-based semantics of hierarchy in block diagrams. In
Proceedings of the 17th IFAC World Congress, pages 7955–
7960, Seoul, Korea, July 2008.

6

[6] Nicolas Halbwachs, Pascal Raymond, and Christophe Ratel.
Generating efficient code from data-flow programs. In
Third International Symposium on Programming Language
Implementation and Logic Programming, Passau, Germany,
August 1991.

[7] Derek J. Hatley and Imtiaz Pirbhai.Strategies for Real-Time
Systems Specification. Dorset House Publishing Co., New
York, New York, 1988.

[8] High Confidence Software and Systems Coordinating
Group. High-confidence medical devices: Cyber-physical
systems for the 21st century health care. Technical report,
Networking and Information Technology Research and
Development Program, feb 2009.

[9] Jerry Krasner. Comparing embedded design outcomes
with and without model-based design. Technical report,
Embedded Market Forecasters, Framingham, MA, October
2010.

[10] Edward A. Lee. What’s ahead for embedded software.
Computer, 33(9):18–26, September 2000.

[11] Joy Lin. Measuring return on investment of model-based
design.EE Times Design, May 2011.

[12] Nancy Lynch and Bruce Krogh, editors.Hybrid Systems:
Computation and Control, volume 1790 ofLecture Notes in
Computer Science. Springer-Verlag, March 2000.

[13] Cleve Moler. Are we there yet? zero crossing and event
handling for differential equations.EE Times, pages 16–17,
1997. Simulink 2 Special Edition.

[14] Pieter J. Mosterman. HYBRSIM—a modeling and sim-
ulation environment for hybrid bond graphs.Journal of
Systems and Control Engineering, 216(1):35–46, 2002.

[15] Pieter J. Mosterman, Janos Sztipanovits, and Sebastian
Engell. Computer automated multi-paradigm modeling in
control systems technology.IEEE Transactions on Control
System Technology, 12(2):223–234, March 2004.

[16] Pieter J. Mosterman and Hans Vangheluwe. Guest editorial:
Special issue on computer automated multi-paradigm
modeling. ACM Transactions on Modeling and Computer
Simulation, 12(4):249–255, 2002.

[17] Pieter J. Mosterman and Hans Vangheluwe. Computer
automated multi-paradigm modeling: An introduction.
SIMULATION: Transactions of The Society for Modeling
and Simulation International, 80(9):433–450, September
2004.

[18] Pieter J. Mosterman, Justyna Zander, Gregoire Hamon,
and Ben Denckla. Towards computational hybrid system
semantics for time-based block diagrams. InProceedings of
the 3rd IFAC Conference on Analysis and Design of Hybrid
Systems, pages 376–385, Zaragoza, Spain, September 2009.
plenary paper.

[19] Pieter J. Mosterman, Justyna Zander, Gregoire Hamon,
and Ben Denckla. A computational model of time for
stiff hybrid systems applied to control synthesis.Control
Engineering Practice, 19, 2011.

[20] Gabriela Nicolescu and Pieter J. Mosterman, editors.
Model-Based Design for Embedded Systems. Computa-
tional Analysis, Synthesis, and Design of Dynamic Systems.
CRC Press, Boca Raton, FL, 2009. ISBN: 9781420067842.

[21] Linda R. Petzold. A description of DASSL: A differen-

tial/algebraic system solver. Technical Report SAND82-
8637, Sandia National Laboratories, Livermore, CA, 1982.

[22] Ingo Sander. System Modeling and Design Refinement
in ForSyDe. PhD thesis, Royal Institute of Technology,
Stockholm, Sweden, April 2003.

[23] Semiconductor Industry Association. International tech-
nology roadmap for semiconductors: 1999 edition—design.
Technical report, Sematech, Austin, TX, 1999.

[24] SimulinkR©. Using SimulinkR©. MathWorksR©, Natick, MA,
March 2011.

[25] Michael Sullivan. TACTICAL AIRCRAFT–F/A-22 and
JSF acquisition plans and implications for tactical aircraft
modernization. Technical Report GAO-05-519T, United
States Government Accountability Office, April 2005.

[26] Justyna Zander, Pieter J. Mosterman, Gréegoire Hamon,
and Ben Denckla. On the structure of time in computational
semantics of a variable-step solver for hybrid behavior
analysis. InProceedings of the 18th IFAC World Congress,
Milan, Italy, September 2011.

7

A Model Driven Approach for Requirements Engineering of
Industrial Automation Systems

Hongchao Ji1 Oliver Lenord1 Dieter Schramm2

1Bosch Rexroth AG, Germany
{hongchao.ji, oliver.lenord}@boschrexroth.de

2Institute for Mechatronics and System Dynamics , University of Duisburg-Essen, Germany
dieter.schramm@uni-due.de

Abstract
Model driven requirements engineering (MDRE) is pro-
posed to deal with the ever-increasing complexity of tech-
nical systems in the sense of providing requirement specifi-
cations as formal models that are correct, complete, consis-
tent, unambiguous and easy to read and easy to maintain. A
critical issue in this area is the lack of a universal and stan-
dardized modeling language which covers the whole re-
quirements engineering process from requirement specifi-
cation, allocation to verification. SysML is being proposed
to meet these requirements. In this paper a model driven re-
quirements engineering process for industrial applications
in the field of automation systems is described in order to
reveal shortcomings in recent modeling tools and modeling
languages. Special focus is layed on the requirements defi-
nition and the automated verification of the design against
the requirements using executable models. Based on the
analysis a new profile of the Unified Modeling Language
(UML) called Model Driven Requirements Engineering for
Bosch Rexroth (MDRE4BR) is presented which aims to
contribute to latest investigations in this field. An applica-
tion example of a hydrostatic press system is given to illus-
trate the approach.

Keywords Model Driven Requirements Engineering, In-
dustrial Automation Systems, SysML, Modelica

1. Introduction
Model driven engineering (MDE) has been proven to be ca-
pable to cope with complexity in the field of software engi-
neering. A trend in modeling and simulation is to apply the
MDE paradigms to technical systems consisting of compo-
nents in hardware and software. The increasing complexity
of technical systems has raised many challenges such as
keeping the the design consistent and approving the cor-

4th International Workshop on Equation-Based Object-Oriented
Modeling Languages and Tools. September, 2011, ETH Zürich, Switzerland.

Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp/056/

EOOLT 2011 website:
http://www.eoolt.org/2011/

rectness with respect to the customer requirements. Stud-
ies at the Bosch Group have shown that over50% of field
problems were due to insufficient requirements engineering
(RE) [6]. The RE accompanies the whole product develop-
ment process, in which various engineering disciplines are
involved. Therefore, a universal and standardized model-
ing language is required which shares the understanding
among engineers from different disciplines. This common
language shall enable the building of requirements models,
system design models, traceability models as well as veri-
fication models containing domain-specific details.

The Systems Modeling Language (SysML) [15] is being
proposed by the Object Management Group (OMG) [8] to
meet these requirements and has already been evaluated by
several researchers [4, 5]. The main drawbacks coincide
with the results of the analysis of the engineering process
of automation systems in section 2 which can be concluded
as follows: first the requirements constructs in SysML are
not sufficient for real industrial applications, and second the
SysML is not capable to describe continuous-time dynamic
models.

In order to contribute to the solution of these shortcom-
ings, a UML profile MDRE4BR is proposed in this paper.
It reuses and extends the current requirements constructs in
SysML targeting the first issue. Recent works on the inte-
gration of SysML and Modelica [7] like ModelicaML [12]
have already addressed the second issue and proved its ef-
fectiveness [13]. Reusing these improvements the proposed
extensions of the MDRE4BR are linked with the Modeli-
caML to transform the later introduced analytical models
into executable Modelica models.

This paper is organized in 6 sections. Section 2 moti-
vates the use of the model driven requirements engineering
approach in the field of industrial automation systems. Re-
quirements deriving from the application of this approach
to the systems engineering of automation systems are dis-
cussed. Section 3 gives a short introduction to the related
work on the modeling languages SysML, Modelica and
ModelicaML. Section 4 describes the implementation of
the MDRE4BR profile in detail. The capabilities of the pro-
posed methodology and the MDRE4BR profile are demon-
strated on behalf of an industrial application in section

9

5.The paper is closed with conclusions and an outlook to
future work.

2. Requirements Engineering in the Field of
Industrial Automation Systems

2.1 Scope

This work is seen from the systems engineer’s perspective
in the field of industrial automation. In terms of building
a solid foundation of the later derived requirements on the
modeling languages and the tool support, the engineering
process is described at first.

Industrial automation systems are characterized by their
ability to process a material or work piece according to
a defined procedure to achieve the output of a desired
product. The quality of the product shall remain stable even
though the boundary conditions as climate, disturbances
and material properties may differ in a given range. The
process is managed in an automated way in order to meet
the quality goals in a reproducible, efficient and reliable
way.

The systems engineer is now challenged to design a ma-
chine that is capable to run the process in a determinis-
tic way. This task is typically performed within a specific
design domain that refers to a field of technical expertise
such as: the treatment technology, the mechanical design,
the drive system and the control. The treatment is usually
considered as the core competence of the original equip-
ment manufacturer (OEM). The same is in general true for
the closely related mechanical design.

The drive and control technology is typically provided
by suppliers. This is due to the fact that power supply, ac-
tuators and controls are available on the market as cost ef-
ficient standard components in a high quality. Neverthe-
less the drive and control system is also strongly coupled
to other parts of the automation systems. The proper selec-
tion of the components and their integration into the overall
structure strongly influence function, performance, robust-
ness and reliability. Leading edge technology is determined
by the competence of interdisciplinary system design.

Due to the fact that the requirements specification is the
subject matter of contract between customer and contrac-
tor the above described context implies that the require-
ments engineering has to be seen not only from the tech-
nical perspective but also needs to consider the contractual
situation along the supplier chain. With respect to that it
is self-evident that the requirements shall be defined and
structured not only according to technical aspects but also
according to the contractual situation. The definition of lev-
els of abstraction is an appropriate way to meet these needs.
The depicted levels of abstraction in Figure 1 reflect the
described supplier chain and major technologies involved
and therefore are a reasonable choice on behalf of the au-
tomated press system considered in section 5.

In order to deal with the complexity of large systems
the design objects are clustered in a system break down
structure. The requirements derived on the different levels
of abstraction can be referenced in requirement specifica-

tions in order to provide the contractual views on subsets
of requirements.

Figure 1. Levels of Abstraction in Requirements and Sys-
tem Design

2.2 The Model Driven Requirements Engineering
Approach

Dealing with the above mentioned challenges of managing
requirements the MDRE is a very promising and well sup-
ported approach. In addition to the UML the SysML de-
fines requirements and several relations between require-
ments and between requirements and design objects such
as: derive, refine and copy. Together with an appropriate
package structure the proposed levels of abstraction can be
reflected in a SysML requirements model. A classification
of requirements can be easily established through stereo-
types.

Figure 2. V Model According to VDI 2206 [16]

Furthermore the SysML supports the system design
through structural and behavioral diagrams. Relations like
trace and satisfy support the traceability between design
objects and requirements.

All of this covers a wide range of what is needed in
order to refine abstract customer requirements towards a
detailed design. The descriptive character of the models are
a very appropriate representation of the system design since
it allows a certain fuzziness that is unavoidable in the early
stage of the system design. Referring to the well known V
Model according to the VDI 2206 standard [16] as depicted
in Figure 2, it is concluded that the system design phase is
well supported by the SysML.

10

In the domain-specific design, the vertical lower part
of the V Model, real world examples, i.e. the hydraulic
schematic of a press system, show that the expressiveness
of the SysML and its descriptive models are too weak
to precisely describe a design on a physical level. Stan-
dardized domain-specific schematics, like i.e. the ISO1219,
have a much stronger semantics. In practice they have been
proven to precisely describe a design such that there is no
doubt on how to actually manufacture, assemble and com-
mission the specified pieces. The challenge at this point
is to close the gap between the descriptive design model
and the physical design model. The SysML concept of
blocks and ports is reflected by object-oriented drawing
tools for hydraulic and electric circuits like D&C Scheme
Editor [1] and ePLAN [9]. The SysML supports domain-
specific graphical representations of blocks. The block at-
tributes can be used to define specific technical attributes.
Still it is very inconvenient to use common UML/SysML
tools for the purpose of drawing domain-specific schemat-
ics. Mainly this is due to the fact that no libraries of stan-
dard components are available including a large number of
symbols and related attributes for all kinds of components
and variants. Furthermore common drawing features like
title blocks or generating parts lists are not supported. A
future engineering tool aiming to support the whole engi-
neering process will have to cope with these requirements.

In the iterative process of refining the descriptive model
it is desirable to frequently check the design. According
to the V Model (Figure 2) this refers to the depicted iter-
ative step of ”assurance of properties”. Subject matter of
this task is to verify the integrated system model against
the requirements. Up to now this kind of system verifica-
tion and validation is a manual procedure that relies on the
expertise of the systems engineer. In the sense of a model
driven development process it would be beneficial to run
this procedure in an automated fashion. Not for all types of
requirements this is applicable. In case of analytically ver-
ifiable requirements (introduced in 4.2) this could be per-
formed based on a system simulation. To achieve this goal,
modeling languages and modeling tools are challenged to
answer the following questions:

1. How to achieve an executable analytical model that is
capable to approve functional requirements?

2. How to link the analytical model with the design objects
of the descriptive model in order to keep it consistent
with the evolving system design?

3. How to establish a link to the requirements such that the
execution of the analytical model reveals directly which
requirements are violated or satisfied?

Because of the interdisciplinary character of automation
systems, domain-specific simulation tools like SIMULINK,
ADAMS or PSPICE are applicable only in case of require-
ments that can be evaluated in the related domains sepa-
rately. In general an integrated interdisciplinary simulation
model is required. In the field of multi-physics simulations
several modeling methods and tools are available to pro-
vide a satisfying integrated system simulation that applies

to question number one. A well established and standard-
ized multi-physics modeling language is Modelica which
is considered in the following for further investigation.

The other two questions have been addressed by several
work on modeling languages that are discussed in the fol-
lowing section.

3. Background and Related Work
3.1 Introduction to SysML and Modelica

SysML is a general purpose language used in the field of
systems engineering. It is defined as a UML profile which
reuses subsets of UML constructs and extends them with
some additional modeling elements. The SysML is capa-
ble to capture the textual requirements and to allocate them
with the design models and test cases. However due to
loosely defined executable semantics SysML is not capable
to model physical systems in an executable way. In con-
trast to that, Modelica is an object oriented and equation
based modeling language for multi-domain physical sys-
tems. Graphical modeling is supported by the object dia-
gram which offers an intuitive way to describe power trans-
mission through acausal connections as well as directed
signal flows. The strong semantics allow the generation of
executable models of continuous as well as discrete sys-
tems. Object oriented language constructs enable the ef-
ficient reuse of models and the design of comprehensive
and easy to use model libraries. A language which inte-
grates the descriptive modeling power of SysML and the
formal executable simulation power of Modelica seems to
be a promising approach for the requirements engineering
in industrial automation systems. An overview on latest re-
search activities in this field is given in the following.

3.2 Requirements Specification

Several researchers have already used and extended the
SysML as requirement specification language. In Dubois
et. al. [2] a requirement meta model to enforce the trace-
ability concept in SysML in the automotive domain is pre-
sented, in which a traceability model connects three inde-
pendent flows (requirement model, solution model and ver-
ification and validation (V&V) model). However the trace-
ability of the V& V model to the other models is not clearly
defined.

The vVDR methodology [14] addresses the virtual ver-
ification of systems requirements. The other contribution
of this work is an approach to formalize requirements
such that they can be quantified and tested effectively. The
vVDR approach is considered in the later case study.

3.3 Integration of SysML and Modelica

Main target of the ModelicaML language by Schamai et. al.
[12, 13] is to provide an executable graphical language for
hybrid modeling and simulation while enabling an effec-
tive way to create, read and maintain Modelica models. In
contrast to the original ModelicaML [11], the new Modeli-
caML is implemented as a pure UML profile with no direct
dependency on the SysML. Instead, the new ModelicaML
uses a subset of UML, extends the UML meta model (us-

11

ing the UML profiling mechanism) with new constructs in
order to introduce missing Modelica concepts and to reuse
several SysML concepts like the requirement constructs.
ModelicaML is defined as a graphical notation that facili-
tates different views (e.g. composition, inheritance and be-
havior) on Modelica models. Those graphical notations can
be translated into Modelica code and simulated with any
Modelica tool.

The SysML-Modelica Transformation Specification is
another research activity on the integration of SysML and
Modelica. The main target of this work is to specify a stan-
dardized bi-directional transformation as foundation for
later implementations that support the unambiguous, ef-
ficient and automatic transfer of model information be-
tween SysML and Modelica. In order to define a formal
transformation between SysML and Modelica, an exten-
sion to SysML called SysML4Modelica profile, that rep-
resents most common Modelica constructs, is developed.
In this profile, each Modelica construct will be checked
whether there is already an equivalent construct in SysML
from a semantic point of view. When the corresponding
construct does not exist, a stereotype will be created to ex-
tend the SysML language accordingly. A mapping between
the SysML4Modelica profile and the Modelica meta model
is specified which enables a round-trip transformation from
SysML to Modelica and vice versa [10].

The SysML-Modelica Transformation addresses the
need of SysML users to define analytical relations in a
mathematical form in addition to the existing descriptive
constructs. The SysML4Modelica profile is simply applied
to a selected sub part of the system model which is con-
straint through mathematical relations to be analytically
resolved. This modeling and simulation approach is pretty
straight forward in case of rather simple relations and mea-
sures between parameters, referred to as parametrics. In
case of advanced simulation models this approach loses its
practical relevance. The expressiveness of the Modelica ob-
ject diagram in conjunction with the large number of easily
reusable models in Modelica libraries is indispensable for
even small system models.

The general approach of separating the descriptive
model from the analytical model is useful. The design pro-
cess is an incremental procedure which implies that not
all parts are defined on the same level of detail at a time.
Furthermore it is common that different parts of the model
shall be simulated under different circumstances. This as-
pect is not addressed in the ModelicaML profile which
considers the design and the simulation model as one con-
sistent instance of the system.

4. The MDRE4BR Profile
The MDRE4BR profile is structured in three parts, namely
the requirements definition package which classifies dif-
ferent types of requirements; the requirements traceabil-
ity package, which details different traceability links re-
lated to requirements allocation; the requirements verifica-
tion package, which covers the verification of the design
against the requirements by means of an executable model.

These packages are defined in detail right after the descrip-
tion of the underlying concept.

4.1 Overall Concept

The requirements model contains all requirements accord-
ing to the classification below.

The design model is a descriptive model to describe
structure and behavior of the system. Every design object
is uniquely defined in order to describe a complete and
consistent model of the system.

The analytical model is an executable model. This re-
quires a much more formal description of the behavior.
This is performed through the mathematical expressive-
ness of Modelica. The analytical model consists of one or
multiple mathematical models. Each mathematical model
describes one aspect of the overall context. In contrast to
the design model this may lead to the case that the very
same component is represented through different mathe-
matical models. Referring to the press system in section 5
this would refer to the case that i.e. the pressure supply is
considered under two different aspects. First in the analy-
sis of the stability of the control circuit, second to approve
the proper layout of the suction pipe of the hydraulic ag-
gregate. In the first case a simplified representation as ideal
constant pressure source is adequate, while in the other case
the dimensions of pump, suction pipe and tank have to be
considered in the mathematical description.

If the simulation models are decoupled from each other
redundant data is produced. Sooner or later this will lead to
inconsistencies that are hard to detect and have a strong im-
pact on the quality of the design. To prevent this situation
a relation between the mathematical models and the design
objects is required. In order to realize meaningful relations
the design object has to reflect the attributes of all related
models. In the profile this is easily considered by referenc-
ing the attributes of the design objects from the Modelica
parameters and constants of the analytical model. In the
case study these relations have been established manually
which is time consuming and error prone. At this point an
improved tooling is needed that supports the binding of re-
lated objects. A promising approach would be to provide
a component library of predefined objects that contain the
relevant attributes of the design object as well as references
to a number of meaningful mathematical models of differ-
ent level of detail.

The mathematical model can be transformed into an ex-
ecutable model. This transformation is performed through
compilation of the Modelica model and binding with the
simulation run-time. The simulation run-time instanti-
ates and runs the algorithm that is needed to solve the
differential-algebraic equations. This procedure requires
a definition of the simulation settings such as start time,
end time, tolerances and output step size. Furthermore the
initial state of the equation system needs to be defined.
In the MDRE4BR profile these informations are described
through the so-called test scenario. The test scenario de-
fines all these boundary conditions under which a mathe-
matical model shall be executed.

12

In order to use an executable model for the purpose of
requirements verification the test scenario can be extended
with so-called test cases. The test case is a mathematical
model that evaluates a specific measure by comparing the
simulation results with a desired output. Further details are
given in section 4.2.

4.2 Requirements Definition

A general definition of the MDRE4BR requirement (see
Figure 3) extends the standard requirement definition in
SysML with additional attributes which are described as
follows:

• The id property is the unique identifier of the require-
ment (as defined in SysML);

• The text property is the textual description of the re-
quirement (as defined in SysML);

• The abstrationLevel property defines the different ab-
stractions level of requirements;

• The priority property defines the importance of the re-
quirement such as mandatory or optional;

• The version property records the change history of the
requirement;

• ThesatisfyState identifies whether one requirement has
been fulfilled by a model object or not;

• TheverifyState property identifies the verification state
of the requirement which can be pending, passed, failed
or not verifiable according to the verification results in
the test cases.

Figure 3. General Requirement Definition

The requirements classification is another additional
concept in the requirements definition. The requirements
can be classified as analytically-verifiable and not-analytically-
verifiable requirements. Analytically verifiable refers to re-
quirements which can be verified through evaluation of the
system model against formally described criteria. In the
context of this paper this is limited to the case that the
behavior of the system is described by an executable sim-
ulation model which is verified through test scenarios and
test cases. In contrast to that not-analytically-verifiable re-
quirements refer to requirements which require additional
knowledge or judgment to decide whether or not the design

satisfies the requirement. In this case all related aspects of
the design need to be easily accessible to the decision mak-
ing system engineer. For this purpose the trace or satisfy
relation between requirement and design object shall be
used.

The following classification, based on the taxonomy
proposed in [3], is supported by the MDRE4BR profile
through stereotypes.

• A functional requirement is a requirement that should
produce an expected reaction to a given stimuli.

• A performance is a requirement to check whether a sys-
tem variable such as timing, speed, volume or through-
put is in a desired range.

• A structural requirement is a requirement which de-
scribes the structural demand of the stakeholder.

• All the other types of not-analytically-verifiable re-
quirements can be modeled with theother requirement
stereotype.

This classification allows distinguishing requirements
according to how they shall be processed in the verification
phase. Requirements that shall be verified automatically are
identified and described through additional attributes such
that they can be processed in the desired fashion.

4.3 Requirements Traceability

Requirements traceability is used to specify the relation-
ships from and to requirements. At first this defines the
relations needed to express an appropriate requirements
break down structure considering different levels of ab-
straction and other dependencies among the requirements.
Furthermore relations are defined that are needed to trace
the requirements from and to the objects of the design
model and/or the analytical model.

The current available traceability links in SysML are
defined as follows:

• The copy, containment and deriveReqt are defined to
model the traceability among requirements;

• Traceability between requirements and design objects
are supported by satisfy, trace and refine;

• The relationship between requirements and test cases
are defined with verify.

These traceability links defined in the SysML cover the
relationships needed in the considered industrial field of
application. The traceability between requirements and de-
sign objects supports the systems engineer to systemati-
cally complete the system model. This is done by incre-
mentally building up the design model through additional
design objects that are needed to satisfy a particular set of
requirements. Finally all design objects have been checked
against all requirements of the related level of abstraction
such that all applicable satisfy relations have been estab-
lished. In this process it may apply that a design object can
not be sufficiently specified through the existing require-
ments. This revealed incompleteness of the requirements is
resolved by the iterative refinement of the requirements.

13

In the described context of the design phase the trace-
ability links are very useful but the application for the de-
sired automated verification is limited due to the lack of
formal executable semantics and syntax. The proposed ex-
tended traceability link explicitly defines the information to
be transferred via this traceability links in order to achieve
an automated verification. This is done by allocating a per-
formance requirement with a performance test case, using
the MDRE4BRverify relation. The performance variable
defined in the performance requirement is associated with
the same in the test case as depicted in Figure 4.

Figure 4. Verify Relation in MDRE4BR Profile

4.4 Requirements Verification

The goal of the requirements verification in the MDRE
process is to verify the design against the requirements in
an automated and reproduceable way. In the MDRE4BR
profile this is achieved by combining the above described
extended semantics of the verify relation with the concept
of violation monitors and variable binding described in the
vVDR methodology [14].

In the MDRE4BR profile, different types of test cases
for different kinds of requirements are defined as stereo-
types, such as, the performance test case and the functional
requirement test case which are derived from the SysML
meta class TestCase as shown in Figure 5. The violation
monitor is modeled as part of the performance test case or
functional test case in order to evaluate the requirement.

A new stereotype called test scenario is defined, which
contains multiple test cases referring to at least one math-
ematical model. The requirements verification can be per-
formed by executing the test scenarios and related test cases
defined in the analytical model. The relations among these
elements are depicted in Figure 6.

Figure 5. The Performance and Functional Test Cases

In the verification process, the user defines the different
test scenarios by referencing the selected test cases and
the mathematical models needed to produce the simulation
results. The variable binding is used in the test scenario
to establish the links between test cases and mathematical
model as describe in the vVDR method [14] .

Figure 6. The Relations in Verification Package

5. Case Study: Hydrostatic Press System
In this section, a hydrostatic press system (Figure 7)is used
to illustrate the model driven requirements engineering ap-
proach by using the MDRE4BR profile. The main steps of
the procedure can be summarized as follows:

Figure 7. Hydrostatic Press

1. Capture the customer requirements as stereotyped re-
quirements according to the proposed classification.

2. Derive requirements on a lower level of abstraction us-
ing the «deriveReq» relation to the higher level require-
ments.

3. Create descriptive structural and behavioral design
models.

14

Figure 8. Derive Requirements from Different Abstraction Levels

4. Establish «satisfy» relations between requirements and
design objects.

5. Define test cases for those design objects that need to
satisfy verifiable requirements.

6. Establish «verify» relations in order to bind the result of
the test case to the verifyState of the related requirement
and to retrieve the measures from the requirement and
apply them to the related test case variable.

7. Create a mathematical model of the related design ob-
jects on the considered level of abstraction.

8. Define test scenarios which execute the mathematical
models under defined boundary conditions.

9. Integrate those test cases in the test scenarios which are
applicable.

10. Run a model verification that executes all related test
scenarios and updates the verifyStatus of all related
verifiable requirements.

This procedure is performed in an incremental fashion
until the design has reached a satisfying level of detail that
is also reflected in the analytical models. After the final
verification all verifiable requirements shall be approved
through the related test scenarios.

In the case study a press system is considered which
shall be used to demonstrate the procedure on behalf of a
real industrial application.

5.1 Requirements Capture and Refinement

The hydrostatic press shall be considered in the context of
the OEM-supplier relation as it applies to a typical Bosch
Rexroth engineering project. In this case the high level
requirements have already been refined to the subsystem

level. Figure 8 shows some exemplary requirements reflect-
ing different levels of abstraction.

Because of the limited space in the diagram, the descrip-
tions of the requirements are to be found in Table 1 and 2. In
the following the focus is on the the requirements from the
abstraction level system requirements and below. As shown
in Figure 8, these system requirements are derived from the
customers and process requirements and can be classified
according to the subtypes of the requirements definition in
the MDRE4BR profile. The beginning letter of the ID of
the requirement refers to the type of the requirement.

Name Description
MinimumWeight Steal structure shall have minimum

weight.
MaximalStrength Steal structure shall have maximum

strength.
ShrinkMaterial In-mold hardening shall not shrink

the material below manufacturing
tolerance of 0.1mm.

TensionStrength In-mold hardening shall increase the
tensile strength to1000N/mm2

Table 1. The Customers and Process Requirements

5.2 Structural and Behavioral Design

In Figure 9 the overall design on the subsystem level is
depicted using the SysML internal block diagram. This
rough design refers to an early phase of the design process
in which the subsystems and the interfaces are in the main
focus.

The behavior of the system is described through the
SysML activity diagram in Figure 10 according to the
working process shown in Table 3. The conditional state-

15

ID Description
P1 The pressing force of cylinder shall be

180000kN .
P2 The pressing time shall shall be8s.
P3 The cycle time shall not exceed27s.
P4 The approach velocity of the load shall

be0.5m/s.
P5 The pressure drop across the pump shall not

exceed340 bar.
P6 The driving speed of the pump is 3000 rpm in

approach phase.
F1 The cylinder pressure can not exceed120 bar.
S1 The number of driving cylinders is2.
O1 The moving mass shall be 40t.

Table 2. The System Requirements List

Figure 9. The System Architecture

ments precisely describe the transitions that refer to differ-
ent controller modes. In a later step these subsystems need
to be refined on the component level in order to specify how
the system shall be physically built. In the opinion of the
authors this kind of detailed design is done best based on
a domain-specific language as i.e. the ISO1219 in case of
hydraulic circuits. In consequence a future engineering tool
should integrate an object library of standard components
with the graphical representation according the ISO1219.
Additional attributes as i.e. material number and position
number are needed to reflect the functionality of drawing
schematics and generating parts lists as known from engi-
neering tools like D&C Scheme Editor or ePLAN.

State Entry E-Drive Cylinder
Condition Speed Velocity

Apporach x = 0 3000 0.50
Brake x > 1200 3000 0.015
Press x > 1240 1500 0.007
Keep Position x = 1300 controlled 0
Slow Return ∆t = 8 controlled 0.01
Return x < 1290 3000 0.2

Table 3. Desired Working Process

Figure 10. The Behavior of the System

Based on the captured requirements, shown in Figure 8,
additional satisfy relationships from the design objects to
the requirements have been established. In 11 this has been
done exemplarily with the requirement P4: ApproachVe-
locity from Table 2. A much more expressive represen-
tation as relation matrix of design objects versus require-
ments is not shown due to the limited space. In the relation
matrix, the SatisfyState of each requirement is checked to
see whether all the requirements are considered in the de-
sign. With help of the relation matrix, the coverage of the
requirements can be defined.

Figure 11. Building Satisfy Relation

5.3 Requirements Verification

The verification of the system behavior shall be performed
by means of simulations based on the analytical model.
This has been done exemplarily with the requirement P4:
ApproachVelocity. This has been linked to a performance
test case TestCase ApprochVelocity which is contained by
the TestScenario1 as depicted in Figure 12. Moreover the

16

TestScenario1 contain a mathematical model which is used
to stimulate the associated test cases. A performance test
case is modeled further by a Modelica state machine as
violation monitor to check the performance requirement
ApproachVelocity (Figure 13).

Figure 12. Verification Model

Figure 13. Modeling a Test Case

The mathematical model is defined by a Modelica
model that has been build in Dymola. It consists of the
four main parts: control unit, pressing system, driving sys-
tem and sensor. The instances of the subsystem models are
traced to the related objects of the design model. Since the
focus of this paper is to present the model driven require-
ments engineering approach, the system simulation model
will not be introduced in more detail here.

Currently, the binding of the corresponding variables
between test cases and simulation models is very incon-
venient. The future work shall address this issue in order
to integrate the MDRE4BR profile with the ModelicaML
code generator such that an automatic binding can be real-
ized on the code level.

5.4 Verification Results

The simulation results referring to the requirement P4is
presented in Figure 15. It can be seen that, the approach ve-
locity exceeds the desired velocity at the beginning. There-

Figure 14. Object Diagram of Hydrostatic Press

fore this requirement is violated in this test scenario. The
verifyState of the requirement is set to failed accordingly.

Figure 15. Verification of Requirement

In the same manner, all the other verifiable requirements
can be verified. The verification results are summarized in
the following figure (Figure 16).

6. Conclusion and Outlook
In this paper the model driven requirements engineer-
ing approach has been analyzed in the systems engineer-
ing context of industrial automation systems. Recent ap-
proaches integrating SysML and Modelica have been in-
vestigated according to their capability to describe a holis-
tic model that covers the requirements engineering, the
system design and the model verification and validation
through simulation. Extensions and modifications have
been presented as MDRE4BR profile. The concept has

17

Figure 16. Summary of Verification Results

been demonstrated by a case study of a typical engineering
project.

In the future work the tool support shall be improved.
This refers to the establishing of the relations between
design model and analytical model, as well as the relations
between test case and mathematical model.

Acknowledgments
This work is funded by the Bosch Rexroth AG and the Ger-
man Federal Ministry of Education and Research (BMBF)
in the ITEA2 OPENPROD project.

References
[1] Bosch Rexroth AG. D&C Scheme Editor Manual. Technical

report, Bosch Rexroth AG, 2010.

[2] Hubert Dubois, Marie-Agnès Peraldi-Frati, and Fadoi
Lakhal. A Model for Requirements Traceability in a Het-
erogeneous Model-Based Design Process: Application to
Automotive Embedded Systems. In15th IEEE Interna-
tional Conference on Engineering of Complex Computer
Systems, ICECCS 2010, Oxford, United Kingdom, 22-26
March 2010, pages 233–242, 2010.

[3] Martin Glinz. On Non-Functional Requirements. In15th
IEEE International Requirements Engineering Conference,
RE 2007, October 15-19th, 2007, New Delhi, India, pages
21–26, 2007.

[4] Eric Herzog and Asmus Pandikow. SysML - an Assess-
ment. InProceedings of the 15th INCOSE International
Symposium, 2005.

[5] Marcos Vinicius Linhares, Alexandre Jose da Silva, and
Romulo Silva de Oliveira. Empirical Evaluation of SysML
through the Modeling of an Industrial Automation Unit.
In Proceedings of 11th IEEE International Conference on
Emerging Technologies and Factory Automation, 2006.

[6] Jürgen Lüttin. Bosch Requirements Engineering Frame-
work - Overview. Technical report, Robert Bosch GmbH,
2010.

[7] http://www.modelica.org.

[8] http://www.omg.org.

[9] http://www.eplan.de.

[10] Christiaan J.J. Paredis, Yves Bernard, Roger M. Burkhart,
Hans-Peter de Koning, Sanford Friedenthal, Peter Fritzson,
Nicolas F. Rouquette, and Wladimir Schamai. An Overview
of the SysML-Modelica Transformation Specification. In
2010 INCOSE International Symposium, July 2010.

[11] Adrian Pop, David Akhvlediani, and Peter Fritzson.
Towards Unified System Modeling with the ModelicaML
UML Profile. In Proceedings of the 1st International
Workshop on Equation-Based Object-Oriented Languages
and Tools (EOOLT’07), pages 13–24, 2007.

[12] Wladimir Schamai. Modelica Modeling Language (Mod-
elicaML). Technical report, EADS Innovation Works, Ger-
many, 2009.

[13] Wladimir Schamai, Peter Fritzson, Chris Paredis, and
Adrian Pop. Towards Unified System Modeling and Sim-
ulation with ModelicaML: Modeling of Executable Be-
havior Using Graphical Notations. InProceedings of the
7th International Modelica Conference, Como, Italy, 20-22
September 2009, number 43 in Linköping Electronic Con-
ference Proceedings, pages 612–621. Linköping University
Electronic Press, Linköpings universitet, December 2009.

[14] Wladimir Schamai, Philipp Helle, Peter Fritzson, and
Christiaan J. J. Paredis. Virtual Verification of System
Designs against System Requirements. InModels in
Software Engineering - Workshops and Symposia at
MODELS 2010, Oslo, Norway, October 2-8, 2010, Reports
and Revised Selected Papers, pages 75–89, 2010.

[15] http://www.omgsysml.org.

[16] VDI. Design Methodology for Mechatronic Systems (VDI
2206). Technical report, VDI, 2004.

18

A Generic FMU Interface for Modelica

Wuzhu Chen1 Michaela Huhn1 Peter Fritzson2

1Department of Informatics, Clausthal University of Technology, Germany,
{wuzhu.chen,michaela.huhn}@tu-clausthal.de

2Department of Computer and Information Science, Linköping University,Sweden, peter.fritzson@liu.se

Abstract
This paper discusses technical issues and implementation
of a generic interface to import a Functional Mock-up Unit
(FMU) into Modelica simulators, specifically the Open-
Modelica environment. Whereas other approaches for im-
porting the FMUs rely on functionality specific to the sim-
ulator environment, this approach tries to provide a generic
Modelica interface for embedding an FMU to be imported
into a Modelica model. In this way any FMU conforming
to the Functional Mock-up Interface (FMI) for Model Ex-
change v1.0 Specification for model exchange from MOD-
ELISAR can be imported into any Modelica simulator.
When importing an FMU into a model, the resulting Mod-
elica model can be used just like any pure Modelica mod-
els. Hence, a better reusability and interoperability for both
sides, namely the external models provided via FMI and
the Modelica environment, are achieved.

Keywords OpenModelica, Functional Mock-up Inter-
face(FMI), Functional Mock-up Unit (FMU) import, Mod-
elica code generation

1. Introduction
1.1 Modelica Models and Modelica Simulators
The Modelica language is primarily designed for mod-
eling and simulating complex hybrid dynamic systems,
so its features intend to reflect the structure, the inher-
ent behavior, the hierarchy and the heterogeneity of those
systems. Briefly speaking, Modelica language is object-
oriented, equation-based, component-based and capable of
modeling multi-domain problems. As a result of the mod-
ularity concepts, models described by the Modelica lan-
guage can be almost freely exchanged between different
Modelica tools only with some minimal restrictions, for in-
stance, differences in the version of Modelica language or
the version of the Modelica Standard Library being used.
All hierarchical information as well as the behavior of mod-

4th International Workshop on Equation-Based Object-Oriented
Modeling Languages and Tools. September, 2011, ETH Zürich, Switzerland.
Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp/056/

EOOLT 2011 website:
http://www.eoolt.org/2011/

els will be explicitly transferred during such exchanges,
since they are delineated in the standardized Modelica lan-
guage.

However, simulating complex and heterogeneous sys-
tems bears several needs for integrating models that origi-
nate from other sources: For some subsystems elaborated
or optimized models may have been implemented using
other domain-specific modeling languages or a general-
purpose programming language.

Another reason that applies even if Modelica is used
for subsystems is the protection of intellectual property.
In many situations it is a business case to enable using
the model for simulation without externalizing the model’s
structure and behavior. Thus, tool support for integrating
individual sub-models into a Modelica simulation environ-
ment as well as co-simulation that facilitates the coupling
of various simulators is a basic requirement for real-world
multi-domain modeling.

A Modelica simulator typically contains a compiler and
a run-time module. The compiler translates Modelica mod-
els into an appropriate programming language (C, C++,
etc.), which will be further translated into executables by
their own standard compilers. The run-time module then
executes the outcomes from the compiler, handles the con-
figuration of particular simulation runs, solves the equation
system, depicts and stores the results.

1.2 Functional Mock-up Interface (FMI)
The FMI for Model Exchange v1.0 [3] has been specified
and released by the MODELISAR1 consortium. This spec-
ification provides a series of open, standardized interfaces,
through which the instantiation, initialization, execution of
an individual executable (or C code) model representation
called Functional Mock-up Unit (FMU) can be performed
within a simulation environment. In order to use the FMI
from both sides, the FMU and the simulator have to imple-
ment the interface functions as defined in the FMI specifi-
cation. The FMU contains a concrete mathematical model
described by differential, algebraic and discrete equations
with possible events of a dynamic physical system trans-
formed into explicit form and represented as C code or ma-
chine code. The idea of the FMI standard is, that an FMU
can be generated from any modeling environment and im-

1 MODELISAR is a ITEA2 project focusing on the interoperability be-
tween Modelica and AUTOSAR to support Vehicle Functional Mock-up

19

ported into any simulation environment whenever the com-
pliance with FMI specification for model exchange is ful-
filled.

Technically, a generated FMU will be distributed as a
compressed .fmu file basically consisting of two parts. The
first part is the model interface functions according to the
FMI specification. They can be given either in C source
code or in binary forms (e.g. in the form of .dll or .so files)
to protect the model developers’ intellectual property. The
second part is the model description XML file, conforming
to the schema defined in the FMI specification. The XML
file contains all information about the model variables and
some other optional information. Additional parts can be
added and compressed into the FMU, as for instance the
documentation and the icon of the model. Compared to
the exchange of Modelica models, exchanging of FMUs
is at a lower abstraction level and more target-oriented,
and consequently less flexible due to the export and import
procedures and the conversion of acausal Modelica models
to causal explicit form.

1.3 State of the Art for FMU Import
Currently, some Modelica simulators already support FMU
import, for example SimulationX ®, Dymola ®, and the
open source tool JModelica.org2, and some others. Al-
though the FMI interface is vendor neutral, the implemen-
tations of import of the FMU realized by the above men-
tioned simulator tools are not. Either the import of FMU
is implemented on the basis of some specific program-
ming language [1], Python in this case, or the Modelica
language is internally extended [4] because the Modelica
language lacks support for the full range of functionalities
specified in FMI. However, since each tool vendor offers
a proprietary implementation of FMU import, we are actu-
ally keeping reinventing the wheel in the sense of multiple
implementations of FMU import. Moreover, there still ex-
ists some additional difficulties in the FMI specification of
FMU import that hamper the proliferation of the FMI stan-
dard in practice, for example the lack of support of multiple
instances of FMU models generated by some simulation
tool, the lack of coupling of imported FMUs with Model-
ica models, to name just some of them.

1.4 Motivation for a Generic FMU Interface to
Modelica

As discussed before, the benefits of a standardized interface
for model exchange are widely agreed and have led to the
FMI specification by MODELISAR. But furthermore there
is also a need for a generic and uniform implementation
of the import functionality for Modelica tools. A holistic
modeling of a heterogeneous system may incorporate the
combined simulation of Modelica models and a number
of imported FMUs within several Modelica simulators. In
this way, the systematic behavior of the total system can be
analyzed without revealing the modeling know-how em-
bedded of the FMU components. A key role to generalize

2 JModelica.org is an open source Modelica simulation environment tai-
lored for optimization problems. For more information please refer to
http://www.jmodelica.org

the model exchange and to glue all these benefits together is
a tool-independent, uniform interface from FMUs to Mod-
elica models, which can be also distributed along with the
FMUs for potential use by Modelica modelers. Thus, the
model exchange facility indeed crosses the boundary of
simulators in the Modelica context.

The rest of the paper is organized as follows: In Sec-
tion 2, the implementation of the generic interface are pre-
sented in detail. In section 3, a case study of a hybrid dy-
namic system is investigated and the results are analyzed
in OpenModelica environment. At the end in Section 4, the
conclusions of this FMU import approach are given.

2. Implementation of the Interface
2.1 Overview of the Implementation
As already mentioned in the introduction Section 1, we aim
at a generic interface for importing FMUs into Modelica
models in a way that any FMUs can be directly evaluated
and simulated in any Modelica simulator. Thus the key is-
sue is to decouple the FMU import process from specific
Modelica simulator implementations. Most of the FMU
interface functions will be mapped to Modelica external
functions bijectively. Some extra Modelica helper classes
and functions are also implemented to perform additional
tasks, for example type conversion, special construct in-
stantiation, message printing and so on. The imported FMU
itself is represented as a Modelica class through the exten-
sion of an external object with variable information from
parsing the model description XML file. In this way, mul-
tiple instances of this FMU can be easily declared and con-
nected with models that are described in Modelica.

The import process contains following key steps

• To extract the archived .fmu file in some specified folder
• To parse the model description file for model informa-

tion
• To load the library file or include the source file if

provided
• To integrate the functions and the variable information

into a Modelica block

Summing up these aspects, the concept of the imple-
mentation of FMU import is illustrated in Figure 1.

FMU
Model

Interface

Model

Description

Variable

Information

fmuWrapper.c

parser

wrapper

.mo generator

Modelica

Model

unzip

Figure 1. An overview of FMU import.

20

2.2 Details of the Prototype Implementation
A prototype of the generic FMU interface for Modelica
has been implemented and tested in the OpenModelica
environment. The details of the implementation are going
to be discussed in this section.

Even in the open-source domain, we find numerous
possibilities for the decompression of a .fmu archive file,
e.g. zlib, gzip, PowerArchiver, 7-zip, etc. Since this step is
rather trivial compared to the others, it will not be discussed
further.

After having decompressed the archive file, the model
description XML file and the model interface implemen-
tation are stored in a specified directory, e.g. in Open-
Modelica under Microsoft Windows®the directory will be
"<OPENMODELICAHOME> \tmp\fmu". Information
about model variables and other additional information can
be extracted from the XML file by an appropriate XML
parser, we will use the parser in the libxml2 library pro-
vided by the OpenModelica environment.

For the current prototype, the model interface imple-
mentation is supposed to be a shared dynamic link library
(DLL). By successfully parsing the XML and loading the
DLL, the handle of the DLL, the addresses of the exported
interface functions and the information data from the XML
file are stored in a data structure called FMI, which is de-
fined in a wrapper header file. The instantiation of this
structure in Modelica is achieved by a class, which extends
the Modelica External Object as shown below.

1 class fmuFunctions "List of interface functions"
2 extends ExternalObject;
3 function constructor
4 input String dllPath;
5 output fmuFunctions fmufun;
6 external "C" fmufun = instantiateFMIFun(dllPath)
7 annotation(Include = "#include <fmuWrapper.c>");
8 end constructor;
9 function destructor

10 input fmuFunctions fmufun;
11 external "C" freeFMIFun(fmufun)
12 annotation(Include = "#include <fmuWrapper.c>");
13 end destructor;
14 end fmuFunctions;

An FMU is represented as a Modelica class called
fmuModelInst in the prototype. In the generic inter-
face, the detailed structure of this class is however hid-
den behind the so-called Modelica External Object. Con-
sequently, the internal structure of the instance cannot be
accessed and manipulated directly by Modelica. Provided
the necessary inputs are given in Modelica, the instance of
an FMU can be declared and immediately instantiated, e.g.
fmuModelInst inst=fmuModelInst(argument_list);.
Later on, this instance reference may be passed as an ar-
gument to some external code for various purposes such as
data updating, data evaluation, memory freeing, etc. In fact,
the actual instantiation is done by calling the external C
function fmiInstantiate(...) defined in the construc-
tor section of the class fmuModelInst, see the following
Modelica code for details:

1 class fmuModelInst
2 extends ExternalObject;
3 function constructor
4 input fmuFunctions in_fmufun;
5 input String in_instName;
6 input String guid;
7 input fmuCallbackFuns functions;
8 input Boolean logFlag;
9 output fmuModelInst inst;

10 external "C" inst=fmiInstantiate(in_fmufun,
11 in_instName,guid,functions,logFlag)
12 annotation(Include="#include <fmuWrapper.c>");
13 end constructor;
14 function destructor
15 input fmuModelInst in_inst;
16 external "C" fmiFreeModelInst(in_inst)
17 annotation(Include="#include <fmuWrapper.c>");
18 end destructor;
19 end fmuModelInst;

There are 24 standard interface functions defined in the
FMI specification v1.0. Most of them are wrapped in the
fmuWrapper.c and then mapped one-to-one into Mod-
elica external functions with a slight difference in naming
convention to indicate the wrapped functions are not the
implementation of FMI but exclusive for FMU import. For
instance, the fmiGetDer(...) in C

1 void fmiGetDer(void* in_fmi, void* in_fmu,
2 double* der_x, size_t nx, const double* x){
3 FMI* fmi = (FMI*) in_fmi;
4 fmiStatus status;
5 if(fmi->getDerivatives){
6 status = fmi->getDerivatives(in_fmu,der_x,nx);
7 if(status>fmiWarning){
8 printf("fmiGetDerivatives(...) failed...\n");
9 exit(EXIT_FAILURE);} }

10 return; }

will be mapped in Modelica as the following snippet:

1 function fmuGetDer "calculate the derivatives"
2 input fmuFunctions fmufun;
3 input fmuModelInst inst;
4 input Integer nx;
5 input Real x[nx];
6 output Real der_x_out[nx];
7 external "C" fmiGetDer(fmufun,inst,der_x_out,nx,x)
8 annotation(Include = "#include <fmuWrapper.c>");
9 end fmuGetDer;

2.3 Implementation of FMI Calling Sequence
The UML 2.0 compliant state machine in Figure 2 shows
the calling sequence of the interface functions specified in
FMI for Model Exchange v1.0. This calling sequence has
to be implemented in the prototype in Modelica as well.

21

 Functional Mock-up Interface for Model Exchange
 MODELISAR (ITEA 2 - 07006)
 January 26, 2010
 Page 22 of 56

2.9. State Machine of Calling Sequence

Every implementation of the FMI must support calling sequences of the functions according to the
following state machine:

Figure 4: Calling sequence of Model Exchange C-functions in form of an UML 2.0 state machine.

If a transition is labelled with one or more function names (e.g. fmiGetReal, fmiGetInteger) this means
that the transition is taken if any of these functions is successfully called. The transition conditions "step
event", "time event", and "state event" are defined in section 2.1. Each state of the state machine
corresponds to a certain phase of a simulation as follows:

 instantiated:
In this state, inputs, start and guess values can be set.

 stepAccepted:
In this state, the solution at initial time, after a completed integrator step, or after event iteration can be

retrieved. If fmiInitialize or fmiEventUpdate return with eventInfo.terminated = fmiTrue, a

transition to state “terminated” occurs.

 stepInProgress:
In this state, an integrator step is performed. Also, the event time of a state event may be determined here

Figure 2. Calling sequence of interface functions[3].

A schematic view of communication between an FMU
instance and the environment is also given in the FMI
Specification in Figure 3. In this figure, it is shown that
different kinds of variables are defined to describe the state
of an FMU and the information flowing into\out of an
FMU.

 Functional Mock-up Interface for Model Exchange
 MODELISAR (ITEA 2 - 07006)
 January 26, 2010
 Page 6 of 56

v
0 0 0 0 0 0, ,inital values (a subset of { , , , , })t p x x y v m

Enclosing Model

Figure 1: Data flow between the components
Blue arrows: Information provided by the FMU.
Red arrows: information provided to the FMU.

1.1. Properties and Guiding Ideas

In this section, properties are listed and some principles are defined that guided the low-level design of
the Model Exchange interface. This shall increase self consistency of the interface functions. The listed
issues are sorted, starting from high-level properties to low-level implementation issues.

Expressivity: The FMI provides the necessary features that Modelica®, Simulink® and SIMPACK models2
can be transformed to an FMU.

Implementation: FMUs can be written manually or can be generated automatically from a modelling
environment. Existing manually coded models can be transformed manually to a model
according to the FMI standard.

Processor independence: It is possible to distribute an FMU without knowing the target processor. This
allows to run an FMU on a PC, a Hardware-in-the-Loop Simulation platform or as part of the
controller software of an ECU, e. g. as part of an AUTOSAR SW-C. Keeping the FMU
independent of the target processor increases the usability of the FMU and is even required by
the AUTOSAR software component model. Implementation: using a textual FMU (distribute the C
source of the FMU).

Simulator independence: It is possible to compile, link and distribute an FMU without knowing the target
simulator. Reason: The standard would be much less attractive otherwise, unnecessarily
restricting the later use of an FMU at compile time and forcing users to maintain simulator
specific variants of an FMU. Implementation: using a binary FMU. When generating a binary

2 Modelica is a registered trademark of the Modelica Association, Simulink is a registered trademark of the MathWorks Inc.,
SIMPACK is a registered trademark of SIMPACK AG.

Solver

u y

time t
discrete states (constant between events) m
parameters of type Real, Integer, Boolean, String p
inputs of type Real, Integer, Boolean, String u
all exposed variables v
continuous states (continuous between events) x
outputs of type Real, Integer, Boolean, String y
event indicators z

 External Model (FMU instance)

x , ,x m zt

Figure 3. Data flow for information exchange[3].

In order to satisfy the requirements of the function call-
ing sequence and the data exchange of an FMU, a suit-
able construct in Modelica should be defined and stan-
dardized. Despite the fact that Modelica is primarily de-
signed as a modeling language based on acausal equation
systems[2], Modelica does offer non-declarative algorith-
mic constructs, in which procedural methods may be called
in a specific order. Due to the arguments discussed pre-
viously, the calling sequence and specific data-flows can
be realized as a Modelica block incorporating with in-
ternal variables, input\output signals, algorithm and
equation sections. A snippet of such a Modelica block is
given below for illustration.

1 block FMUBlock "a prototype"
2 output Real y[ny];
3 input Real u[nu];
4 protected
5 constant String dllPath="fmu\\bouncingBall
6 \\binaries\\win32\\bouncingBall.dll";
7 constant String instName="bouncingBall";
8 constant String guid=
9 "{9d95f943-e636-4f71-8d7d-6f54c4128f13}";

10 parameter Boolean logFlag=false,tolControl=true;
11 parameter Integer nx = 2;
12 parameter Integer ni = 1;
13 replaceable parameter Real relTol = 0.0001;
14 replaceable Real x[nx](start={1.0,0.0}),der_x[nx];
15 Real out_x[nx],out_der_x[nx];
16 ...
17 fmuModelInst inst=fmuModelInst(fmufun,instName,
18 guid,functions,logFlag);
19 fmuEventInfo evtInfo = fmuEventInfo();
20 ...
21 fmuFunctions fmufun = fmuFunctions(dllPath);
22 fmuCallbackFuns functions = fmuCallbackFuns();
23 initial algorithm
24 fmuSetTime(fmufun, inst, time);
25 fmuInit(fmufun,inst,tolControl,relTol,evtInfo);
26 x:=fmuGetContStates(fmufun, inst);
27 algorithm
28 der_x:=fmuGetDer(fmufun, inst, x);
29 equation
30 der(x) = der_x;
31 algorithm
32 fmuSetContStates(fmufun, inst, x);
33 fmuCompIntStep(fmufun, inst, stepEvt);
34 prez:=z;
35 z:=fmuGetEventInd(fmufun, inst, ni);
36 fmuStateEvtCheck(stateEvt, ni, z, prez);
37 fmuEvtUpdate(fmufun,inst,evtInfo,timeEvt,
38 stepEvt,stateEvt,interMediateRes);
39 ...
40 when zeroCrossing<0 then
41 reinit(x[1], out_x[1]);
42 reinit(x[2], out_x[2]);
43 ...
44 end when;
45 end FMUBlock;

2.4 Other Technical Issues
In the FMI Specification v1.0, the fmiCallbackFunctions is
defined as a struct containing function pointers provided
by the environment. In Modelica there is no correspond-
ing record to store information about function pointers.
Nevertheless, Modelica provides the external object con-
struct, which allows the user to define and access his or
her own external data structures. Thus it is possible to de-
clare a subclass of this ExternalObject to instantiate and
de-instantiate the fmiCallbackFunctions data structure via
externally defined C functions.

The FMI specification also states that some functions,
such as fmiInitialize(...), should be called only once, but
this can not be ensured by the Modelica simulation envi-
ronment, because during the initialization phase the run-
time module may traverse the initial algorithm sec-
tion several times. A solution to solve this issue is to define
a flag as an initialization indicator in the above mentioned
class fmuFunctions. Whenever this flag records a call
for initialization, the fmiInitialize(...) will not be called
again.

22

Since the predefined type Boolean in Modelica and
fmiBoolean in FMI are implemented differently in terms of
C types, when importing an FMU into most Modelica sim-
ulators, the conversion between these two types needs to
be considered carefully. The former, i.e. the Boolean type,
corresponds to unsigned char in C in the OpenModelica
context. The latter, i.e. the fmiBoolean in FMI, corresponds
to char in C. As a consequence, external functions have
been implemented in the wrapper to perform the necessary
bi-directional conversions and these functions can be called
directly from Modelica.

Connecting imported FMU blocks together hierarchi-
cally might arise the difficulty in determining the correct
call sequence of setter and getter methods in FMUs for in-
put and output signals. A general alternative is to deter-
mine the call sequence according to the connection graph
based on some causal relationships between these signals.
As soon as the call sequence has been sorted, flags asso-
ciating with the setter or getter methods can be added in
the argument list to indicate the correct order. In this pa-
per, since the imported FMUs are transformed into Mod-
elica models, the correct call sequence of setter and getter
methods of input and output signals can be automatically
determined by the Modelica simulation environment, [3] in
Appendix B.5.

2.5 Difficulties in the Implementation
Some functionalities defined in FMI specification cannot
be mapped directly into Modelica without specific treat-
ment.

FMI functions fmiCompletedIntegratorStep, fmiEven-
tUpdate and fmiTerminate are not constant functions, so
they do not behave as mathematical functions and there
might be a need to mark these functions as "impure" in
Modelica via some extension to the language.

The FMI function fmiCompletedIntegratorStep cannot
be defined and called properly in Modelica, since Model-
ica language does not provide the functionalities, through
which the status of a integration step can be queried and
when an integrator step is finished can be detected.

When calling the FMI function fmiGetEventIndicators
from Modelica model, it will introduce the hysteresis twice
to the event indicators. According to the FMI specification,
FMUs will add a small hysteresis to the event indicators to
avoid event "chattering". And a Modelica tool will do the
same when calculating the "zero crossing". So the resulted
event triggered by the imported FMU is slightly inaccurate.
This problem can be solved by calling external functions,
e.g. fmuStateEventCheck(...), which will check the
events according to the current values and the previous
values of the event indicators given as function arguments.

This paper focuses mainly on FMU import in Open-
Modelica environment, some of these tricky issues requir-
ing specific treatments are temporarily handled in Open-
Modelica.

In the presented prototype, the Modelica model is par-
tially automatically generated by the code generator. A full
automation of the generation process will be completed

soon. After the translation from an FMU to a Modelica
model, any instances of this FMU can now be declared as "
FMUBlock fmu1,fmu2,...; " and connected with other
Modelica models. Such capabilities are shown below about
the the Bouncing Ball case study.

In the case study discussed in Section 3, the only kind
of events are state events. The state event is triggered by
the simulation environment outside the FMU model via the
FMUBlock. The function fmuStateEvtCheck(...) will
check for the state event and return information through the
formal fmiBoolean parameter stateEvt. If a state event
occurs, the fmuEvtUpdate(...) is called and updates
the states accordingly. Other events, such as time events
and step events, might also occur during simulations of
dynamic systems, but they are not covered in the case study
Bouncing Ball.

3. Case Study: Bouncing Ball
The bouncing ball example is a good candidate to show the
behavior of a hybrid dynamic system and the capability of
event handling in the presented FMU import prototype. The
bouncing ball FMU is generated using the free software
development kit FMU SDK provided by QTronic GmbH.
[5]

3.1 Multiple Instances of an FMU
As mentioned previously, multiple instances of an FMU
block can be easily created as below by the standard vari-
able declaration in Modelica. Furthermore, modifications
can also be applied to the declared variables e.g.:

1 model FMUMultipleInstance
2 FMUBlock fmu1,fmu2(redeclare parameter Real
3 relTol = 0.002, redeclare Real x[nx]
4 (start = {2.0,0.0}));
5 end FMUMultipleInstance;

The simulation results of the Modelica code above in Open-
Modelica 1.7.0 are illustrated in Figure 4, which shows the
expected property of multiple instances of an FMU block.

Figure 4. Results of multiple instances of an FMU

23

3.2 Connection with another Modelica Model
A simple connection between an FMU instance and a non-
linear block from the Modelica Standard Library 3.1 (MSL
3.1) is shown in Figure 5. From the user perspective, the
connection between an FMU instance and any Modelica
models becomes nearly trivial when using our generic in-
terface. The Modelica code is:

1 model FMUConnection
2 FMUBlock fmu;
3 Modelica.Blocks.Nonlinear.VariableDelay vd
4 (delayTime = 0.2);
5 equation
6 vardelay.u = fmu.x[1];
7 end FMUConnection;

and the simulation result from OpenModelica is given in
Figure 5, which also produced the expected delay of the
input signal.

Figure 5. Results of connection between an FMU instance
and Modelica model

4. Conclusions and Outlook
In this paper, we presented the concept of a generic inter-
face in Modelica and a prototypical implementation. The
interface enables multiple instances of an imported FMU
and a simple connection between FMU instances and Mod-
elica models. Of course, any properties provided by the
Modelica modeling language, e.g. inheritance, modifica-
tion, extension and so on, can be applied to the FMU block
and its declared variables. The approach presented here
fills the gap between the vendor-neutral FMI for model
exchange and currently existing vendor-dependent FMU
import implementations. An obvious drawback of our ap-
proach is the the higher memory consumption compared to
simulating a pure Modelica model or simulating an FMU
in a stand-alone simulator, because storages have to be as-
signed for both Modelica objects and FMU instances. Fu-
ture work includes more test cases of the prototype, full
automation of the code generation and tuning to support
other Modelica simulators. It is also worth mentioning that
FMI specification is not Modelica specific, so a similar ap-
proach for FMU import may be checked with other behav-

ioral languages, e.g. VHDL-AMS, provided they support
some mechanism to access external functions.

However, the following fundamental requirements need
to be satisfied to facilitate FMU import. Obviously, for the
generic FMU interface for Modelica to work properly, the
provided FMU needs to be fully compliant with the FMI
for Model Exchange v1.0 Specification. For instance, the
FMUs generated from Dymola®7.4 do not support mul-
tiple instances of an FMU at the moment. Secondly, the
simulator must not modify the generated Modelica models
during loading the FMU block, which is not guaranteed by
some simulators. Some simulators adapt the loaded Mod-
elica code according to their specific rules, which creates
problems in this situation. And thirdly, but not last, the con-
struction of the Modelica External Object construct has to
be well supported by the simulator.

Acknowledgments
This work is funded by the Federal Ministry of Education
and Research (BMBF), Germany, in the ITEA2 project
OPENPROD (grant 01|S09029D).

We are also thankful to Martin Sjölund and Mohsen
Torabzadeh-Tari from Linköping University for the pro-
ductive discussions on this topic.

References
[1] Christian Andersson, Johan Åkesson, Claus Führera, and

Magnus Gäfvert. Import and Export of Functional Mock-
up Units in JModelica.org. In Proceedings of 8th Modelica
Internationl Conference. Modelica Consortium, 2011.

[2] Peter Fritzson. Principle of Object-Oriented Modeling and
Simulation with Modelica 2.1. WILEY-INTERSCIENCE,
2003.

[3] MODELISAR. Functional Mock-up Interface for Model
Exchange 1.0. http://www.functional-mockup-interface.org.

[4] Christian Noll, Torsten Blochwitz, Thomas Neidhold, and
Christian Kehrer. Implementation of Modelisar Functional
Mock-up Interfaces in SimulationX. In Proceedings of
8th Modelica Internationl Conference, Webergasse1, 01067
Dresden, Germany, 2011. Modelica Consortium.

[5] QTronic. FMU SDK (FMU Software Development Kit).
http://www.qtronic.de/de/fmusdk.html.

24

Modeling Language Design

Equation-BasedModel Data Structure for High Level Physical
Modelling, Model Simplification and Modelica-Export

Hisahiro Ito1,∗ Akira Ohata1 Ken Butts2,∗∗

Jürgen Gerhard3,∗∗∗ Masoud Abbaszadeh3 David Linder3 Erik Postma3 Elena Shmoylova3

1Toyota Motor Corporation, 1200 Mishuku, Susono, Shizuoka, 410-1193, Japan
∗ito@hisahiro.tec.toyota.co.jp

2Toyota Technical Centre, 1555 Woodridge Avenue, Ann Arbor, Michigan, 48105-9748, USA
∗∗ken.butts@tema.toyota.com

3Maplesoft, 615 Kumpf Drive, Waterloo, Ontario, N2V 1K8, Canada
∗∗∗jgerhard@maplesoft.com

Abstract
This paper proposes a novel data structure for equation-
based plant models. The data structure facilitates the plant
modelling process starting from physics-based component
creation through model simplification to Modelica model
export.

Keywords DAE, HLMD, HLMT, Maple, Modelica, Model
Simplification, MSModel, Symbolic Manipulation

1. Introduction
The importance of plant models has been increasing in the
automotive industry where control systems must address
more stringent requirements for emissions, fuel economy,
and functional safety than ever before. Moreover, compet-
itive business pressures dictate that development time and
effort are effectively managed. One key strategy to meet
these challenges is to embrace Model-Based Development
(MBD), thereby enabling concurrent development of the
plant and controller subsystems as opposed to the conven-
tional serial process where the plant is developed first and
the controller second.

Concurrent plant–controller development implies that
there is no hardware (i.e. target plant) available for exper-
iment. Thus, in order to service controller development,
it is critical that the plant model can be developed in a
timely manner. Although there are many plant model li-
braries available, they are not (and will never be) sufficient
to meet the new and more challenging requirements that
arise from new and more sophisticated control system de-
velopment projects. As a consequence, we conclude there
is always a need to create new plant models.

4th International Workshop on Equation-Based Object-Oriented
Modeling Languages and Tools. September, 2011, ETH Zürich, Switzerland.

Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp/056/

EOOLT 2011 website:
http://www.eoolt.org/2011/

The traditional approach to build a plant model is to
first construct a set of equations to describe the dynamics
of the system. However, in this approach, it is the author’s
responsibility to ensure that the model adheres to physics-
based principles such as conservation and it is very difficult
for other people to check the quality of the model (i.e.
conformance to physics-based principles), especially when
the model is large and complex.

In order to overcome this problem, we developed the
High Level Modelling (HLM) framework [1, 5] wherein
a formalized and physics-based plant-model-development
process is defined. If one follows this process, a proper
description of the system in question can be created. We
call this description the High Level Model Description
(HLMD). With HLMD, those who are not the author of
the model can readily review and critique the design of
the model. In addition, HLMD-based models are easier to
reuse and/or modify than traditional equation-only models
due to the clear exposition of design intent.

To verify the feasibility of our HLM framework, we
also developed a software package called the High Level
Modelling Tool (HLMT). With HLMT, one can create an
HLMD of a system by following the formalized modelling
process and successively run a simulation. Due to the na-
ture of HLMD where the system is represented in highly re-
dundant, non-linear differential algebraic equations (DAE),
Maple’s [3] symbolic manipulation technology is used to
derive simulatable equations. To date, several application
models of various physical domains with different levels of
complexity have been successfully created and simulated
in HLMT. These models range from simple electric circuits
to an internal combustion engine with crankshaft angle re-
solved gas flow and mechanical dynamics.

With the aim of streamlining the plant modelling pro-
cess even further, we have developed a generalized data
structure calledMSModel to accommodate information
about an equation-based plant model. While this data struc-
ture can store information generated in HLMT, it is de-
signed to be flexible enough so that one can efficiently ap-

27

ply a variety of model simplification methods to the model.
Furthermore,MSModel contains sufficient information to
export the model to the Modelica language, which is be-
coming one of the most widely accepted plant modelling
languages [4].

This paper is organized as follows. In Section 2, the
HLM framework is briefly introduced. In Section 3, the
MSModel data structure is explained with some examples.
The full specification of theMSModel data structure is
described in Appendix A.

2. High Level Modelling Framework
As mentioned in Section 1, the HLM framework was devel-
oped to enable peer review of the design of a plant model
from the standpoint of adherence to physical principles and
to realize rapid modelling. In this section, HLM is briefly
introduced.

2.1 Formalized Modelling Process and HLMD

In the HLM framework, the process to create a plant model
is formalized as follows:

1. Partition the system in question into components

2. Define conserved quantities (CQ) in each component

3. Connect CQs to specify how they flow from one com-
ponent to another

4. Set physical constraints as needed

By following this process, a physical description called
HLMD of the system can be created.

As an example, let us consider a chemical reaction pro-
cess in a closed chamber where the mixture of hydrogen
gas and oxygen gas is burned, and water and heat are gen-
erated (Figure 1).

H2 +O2 → H2O +
1

2
O2 + c [J]

Figure 1. Combustion inside a chamber.

In this case, homogeneous mixing is assumed, and also
the combustion is assumed to occur at a thin layer as in-
dicated in Figure 1 by the dashed line traveling inside the
chamber from right to left. When modelling of this system
is considered, the following constraints apply:

punb(t) = pbur(t)

Vunb(t) + Vbur(t) = V0 (const)

wherepunb(t) andpbur(t) are the pressures of the unburned
and burned gas, respectively.Vunb(t), Vbur(t) andV0 are the
volumes of the unburned gas, burned gas, and combustion
chamber, respectively.

The HLMD of this system is shown in Figure 2 where a
component (e.g. “unburned”, “flame front” and “burned”)
is represented as a square with rounded corners, a CQ is
represented as a circle, a flow of CQ is represented as an
arrow whose direction specifies the sign convention, and
constraints are represented as a square with dashed lines
connected to components.

Equations appearing in the HLMD are assembled to
form the system equations. (Note that some of the equa-
tions are omitted in Figure 2 for the sake of simplicity.) For
example, we have the number of moles of generated water
molecule when the conservation law is applied:

d

dt
NH2O,ff (t) =nH2toH2O,ff (t) + nO2toH2O,ff (t)

− nH2O,ff (t)− eff (t)

The HLM framework allows the use of intermediate
variables in addition to CQs and flows. For example, the
average degrees of freedom of the unburned gasfunb(t),
and burned gasfbur(t), the gas pressurep(t) which is used
instead of eitherpunb(t) or pbur(t), as well asVunb(t) and
Vbur(t), are defined as intermediate variables, from which
the energies of the unburned gasEunb(t), and burned gas
Ebur(t), are computed as CQs:

Ei(t) =
fi(t)

2
· p(t) · Vi(t)

wherei is “unb” or “bur”.
Since the system equations assembled from HLMD are

highly redundant and nonlinear, some pre-processing is
necessary in order to perform a simulation (i.e. numerical
integration). Redundancy removal is obviously needed, but
we also need to deal with non-linearities which may lead
to multiple solutions. Consequently, a more sophisticated
symbolic manipulation algorithm must be used to derive
the physically meaningful single solution. Although we
have a working algorithm, we consider that this is one of
the most challenging aspects of the HLM approach, and,
thus, it is still a research topic to improve the robustness
and scalability of the multiple solution algorithm.

Apart from the mathematical aspects of the HLMD, the
purpose of creating an HLMD is to enable peer review on
the design of the model at the physics level. For example,
by looking at the HLMD in Figure 2, one can notice that
no interaction between gas and chamber is considered. Al-
though it is possible to make such an analysis by only ex-
amining the equations, what is done in such a case is to
construct a kind of HLMD in the mind. Also, the accept-
ability of the current model design depends on the purpose
of the model. The HLMD allows a physics level examina-
tion in an efficient manner.

2.2 Tool Support for HLMD

To evaluate the feasibility of the HLMD and its mathe-
matical framework, a software package called the HLMT
was developed by Maplesoft and Toyota. The tool is still a
prototype and Toyota owns the intellectual property. With
HLMT, one can author an HLMD and perform simulation.

28

Figure 2. High Level Model Description (HLMD) example - hydrogen-oxygen combustion in a closed chamber.

HLMT also allows export of the model at the equation level
to Maple where symbolic model manipulation and numer-
ical simulation services can be applied.

A simulation result of the combustion model explained
above is shown in Figure 3. It can be confirmed that the
two algebraic constraints, one for pressure and the other
for volume, are met.

By exporting the model from HLMT to Maple, some
equation-level information about the model can be ob-
tained. For example, it can be known that, after our sim-
plification algorithm derived a single simulatable solution,
this model has 11 differential equations. Seven of those are
explicit for 7 differential variablesddtp(t),

d
dtNH2,unb(t),

d
dtNO2,unb(t), d

dtNH2O,ff (t), d
dtNH2O,bur(t), d

dtNO2,bur(t)

and d
dtfbur(t). Four other differential equations are implicit

interms of 1 differential variableddtVunb(t), and 3 algebraic
variableseunb(t), nO2,unb(t) andnO2,bur(t). It can also be
confirmed that there is 1 DAE constraint, and thatVbur(t)
which does not appear in the aforementioned variables is
calculated fromVunb(t).

Since there are not only statistics but also full access to
all of the equations once the model is exported to Maple,
it is also possible to perform other types of manipulation
such as applying additional model simplification methods
including approximation, or exporting to yet another mod-
elling and simulation environment.

Eventually, after successful modelling and simulation in
HLMT for models with different levels of complexity, to-
gether with research progress in Maple-based model sim-
plification for HLMT-generated models, we decided to de-
velop a flexible data structure by which the modelling pro-
cess including simplification can be facilitated.

3. Data Structure for Model Simplification
Requirements for the model simplification data structure
include 1) it can store information generated in HLMT, 2) it
can store a simplified set of equations, 3) it can provide
convenience for model simplification methods, and 4) it
can generate a Modelica representation of the stored model.

The third requirement may need more breakdown as
we develop our model simplification methods, but we now
have a realization of this data structure calledMSModel.
An MSModel data structure is captured as a Maple Record
and it serves as a modelling research artefact with which
more a thorough design of the data structure can be made.

In this section, the current implementation of theMSModel
is explained with some examples. For the complete cov-
erage of the specification ofMSModel, please see Ap-
pendix A.

3.1 Overview ofMSModel Data Structure

The MSModel data structure consists of the following
pieces of information.

• An independent variable (e.g. timet)

• Differential equations (DE) and variables (DV)

• Algebraic equations (AE) and variables (AV)

• Intermediate equations (IE) and variables (IV)

• Dependent equations and variables

• Parameters

• Inputs and outputs

• Name, type and value of variables

• Blackbox functions (e.g. lookup tables and user-defined
functions)

29

Volume of unburned gas

Volume of burned gas

Pressureof unburned gas

Pressureof burned gas

Figure 3. Simulation result of the combustion model, pro-
duced in HLMT.

These elements are stored in a Maple Record in a structured
manner. A fictitious example ofMSModel is shown in
Figure 4.

In this example, each Record entry is accessible by,
for instance,msm:-DE[1] for a list / array element or
msm:-variables[x1] for a table element. The name
msmis just an example and any Maple variable name is
fine.

The combination of differential equations,msm:-DE,
algebraic equations,msm:-AE, and intermediate equa-
tions, msm:-intermediate, comprise the minimum
set of equations (i.e.core equations) with which the time
evolution of the system can be computed.

msm := Record(MSMODEL,
DE=[

(diff(x1(t),t)=-a * x1(t)+u1(t)),
...],

DV=[’x1’ , ...],
AE=[],
AV=[],
t=’t’,
intermediate=(Array(1..0,[])),
intermediateVariables=[],
dependent=(Array(1..3,{

1=[{ e1(t)=-1/2 * sin(x1(t)) },{e1(t)}],
2=[{ e2(t)=u1(t) * e1(t) },{e2(t)}],
3=[{ y(t)=e1(t)+e2(t) },{y(t)}] })),

dependentVariables=[’e1’ , ...],
parameters=[’a’ , ...],
inputs=[’u1’ , ...],
outputs=[’e1’ , ...],
variables=(table([

(x1)=Record(MSVARIABLE,
name=x1,
type="differential",
value=.9,
unit=(NULL)),

(a)=Record(MSVARIABLE,
name=a,
type="parameter",
value=2,
unit=(NULL)),

...])),
blackboxes=[]

);

Figure 4. MSModel data structure example.

While msm:-DE andmsm:-AE are a list of equations
in no particular order,msm:-intermediate is an array
ordered in a straight-line causal arrangement. The example
in Figure 4 has no element in themsm:-intermediate
field, but the examplemsm:-dependent field contains
an array of such an arrangement with 3 elements. In both
msm:-intermediate and msm:-dependent , each
element has two sub-elements. The first sub-element is
the equation, the second is the variable to be determined
by that equation. There are two significant differences
betweenmsm:-intermediate and msm:-depend-
ent . 1) In msm:-intermediate, there are no deriva-
tives contained whereas inmsm:-dependent , equa-
tions can be implicit and/or differential. 2) equations in
msm:-intermediate must be computed at every inte-
gration step time while those inmsm:-dependent have
to be computed only when necessary.

Differential, algebraic, intermediate and dependent vari-
ables are stored inmsm:-DV, msm:-AV , msm:-inter-
mediateVariables , andmsm:-dependentVari-
ables as a list of variable names, respectively. Variables
in these lists are stored, not as a function of the independent
variable, but just as a name.

30

A single independent variable by which all other vari-
ables may be parameterized is stored atmsm:-t .

Parameters, inputs and outputs are stored inmsm:-para-
meters, msm:-inputs andmsm:-outputs as a list
of their names, respectively.

TheMSModel Record has an entry calledvariables
which is a table of all the variables including parameters
described above with their type, initial value and unit in-
formation. In the example Record in Figure 4, the unit has
not been assigned to any variable.

To deal with special types of functions, specifically
lookup table functions and user-defined functions, the
MSModel Record has an entry calledblackboxes . It
can store information such as the dimension and the data
of a lookup table, or the definition of a user-defined Maple
procedure.

3.2 Workflow Example for HLMT, MSModel,
Simplification and Modelica-Export

To illustrate the use of anMSModel data structure as
part of the plant modeling process, here the hydrogen-
oxygen combustion model mentioned in the previous sec-
tion will be exported from HLMT to Maple, and stored in
MSModel. Then simplification methods will be applied to
it, and the reduced model will be exported to Modelica, and
finally run in a Modelica-based simulation tool.

After the first equation-based simplification algorithm
was applied to the HLMD of the system, the model con-
sisted of 11 DEs for 8 DVs and 3 AVs (see Section 2.2)
with 0 IEs. It also has 32 dependent equations and the
same number of dependent variables. Once this model is
stored inMSModel, other symbolic simplification algo-
rithms which Maplesoft and Toyota developed were ap-
plied to it. As a result, 10 DEs for 7 DVs and 3 AVs with
4 new IEs for 4 new IVs consisted of the core equations
while 1 DE for d

dtNH2O,ff (t) was categorized as one of the
8 dependent equations.

From thisMSModel, a Modelica language file was gen-
erated, and it was simulated in OpenModelica [2] with the
dassl solver as shown in Figure 5.

4. Conclusion
Part of a plant modelling process for Model Based Devel-
opment was introduced. A physics-based modelling frame-
work as well as a novel data structure for model simplifi-
cation and Modelica-export were developed. It was shown
that these tools and data structure can greatly streamline the
plant modelling process.

References
[1] Bakus J. Bernardin L. Gerhard J. Kowalska K. Léger M.

Wittkopf A. High-Level Physical Modeling Description and
Symbolic Computing.IFAC Proceedings of the 17th World
Congress, pages 1054–1055, 2008.

[2] Fritzson P.et al. http://www.openmodelica.org/.The
OpenModelica Project.

[3] Maplesoft. Maple 11 User Guide. 2007.

Volumes of unburned gas and burned gas

Pressureof unburned gas

Pressureof burned gas

Figure 5. Simulation result of the combustion model, pro-
duced in OpenModelica.

[4] Modelica Tools. http://www.modelica.org/tools.Modelica
Association, 2011.

[5] Ohata A. Ito H. Gopalswamy S. Furuta K. Plant Modeling
Environment Based on Conservation Laws and Projection
Method for Automotive Control Systems.SICE Journal of
Control, Measurement and System Integration, 1(3):227–234,
2008.

A. Appendix - The MSModel Data
Structure

The MSModel data structure is implemented as a Maple
Record, described in Section A.1. The Record structure
is designed as a general container whose nested contents
may be efficiently accessed for both reading and writing.
A Record has a number of exports, or fields, which can be
arbitrary Maple objects. A given field can itself be, for ex-

31

ample,a list of lists or a table of Records. In particular, two
types of sub-Records occur inside theMSModel Record:
the MSVariable Record used to give detailed informa-
tion about variables and described in Section A.2, and the
MSBlackBox Record, used to give detailed information
about black box functions and described in Section A.3.

A.1 MSModel Record type

The MSModel data structure is implemented as a Maple
Record. The particular structure and purpose of the indi-
vidual fields of anMSModel Record are described below.
The fields are references to someMSModel record named
model.

model:-DE

A list of the core differential equations of the model.
There is no additional structure or order to the appearance
of the equations in this list. Together with the algebraic
equationsmodel:-AE and the intermediate equations
model:-intermediate, these equations comprise the
set ofcore equations which capture the characteristic dy-
namics of the system.

model:-DV

A list whose elements are of typename. This list des-
ignates the full set of differential variables present in the
equations in either theDE,AE, orintermediate fields.
In particular, the derivative of each variable inDVoccurs in
DE.

model:-AE

A list of the core algebraic equations of the model. Equa-
tions appear in this field by virtue of not being core differ-
ential or intermediate equations of the model. There is no
additional structure or order to the appearance of the equa-
tions in this list.

model:-AV

A list whose elements are of typename. This list des-
ignates the full set of the algebraic variables present in
the equations in eithermodel:-DE, model:-AE, or
model:-intermediate, but excludes the input and
intermediate variables. These variables do not occur differ-
entiated anywhere in the model.

model:-t

This field is a single name, which designates the indepen-
dent variable (e.g., time) by which all other variables may
be parameterized.

model:-intermediate

An Array specifying the intermediate equations. These
equations are grouped into subgroups, each subgroup giv-
ing the equations to determine a certain subset of the in-
termediate variables. The elements of theArray are lists
consisting of two sets: first a set of explicit equations, then
the set of intermediate variables determined by those equa-
tions (represented as functions ofmodel:-t); in other

words, the second set forms the left hand sides of the equa-
tions making up the first set.

These lists are ordered in a straight-line causal arrange-
ment; that is, the only variables occurring in right-hand
sides of equations are either input variables, or differen-
tial variables, or they are intermediate variables that have
been defined in earlier elements of theArray. Further-
more,model:-intermediate contains no derivatives.

The equations could be substituted into each other and
then intomodel:-DE andmodel:-AE to obtain the core
equations in a more explicit form.

model:-intermediateVariables

This is a list of the variable names appearing in all the sec-
ond sets of the elements ofmodel:-intermediate , or
equivalently, on the left hand side of the equations in that
field. These variables do not occur differentiated anywhere
in the model.

model:-dependent

This is a list of differential or algebraic equations which
are not part of the core dynamics of the model. Like
model:-intermediate, the equations are given by
an Array of lists consisting of two sets, where each first
set specifies algebraic or differential equations or expres-
sions determining the values of the dependent variables
specified (as functions ofmodel:-t) in the correspond-
ing second set. Also, likemodel:-intermediate , the
lists are ordered in a straight-line causal arrangement; in
this case, that only means that dependent variables occur-
ring in the equations are never defined in later elements of
theArray (algebraic and differential core variables, inter-
mediate variables, and input variables can occur throughout
model:-dependent).

A difference betweenmodel:-dependent andmodel-
:-intermediate is that equations in the former can be
implicit or even differential.

Dependent equations can be solved after the core vari-
ables have been solved.

model:-dependentVariables

This is a list of all dependent variable names. That is, it
is the list of variables that are not part of the core system
or input or intermediate variables. They are to be solved in
terms of core variables, and correspond to the entries of the
second set of each list inmodel:-dependent.

model:-parameters

A list of parameter names. This list designates the full set
of parameters of the model. A parameter is understood to
be a quantity that, by design, does not vary over time.

model:-inputs

A list of input variable names. If the model is considered
as a subsystem, then these variables are the input ports.

model:-outputs

A list of output variable names. If the model is considered
as a subsystem, then these variables are the output ports.

32

Eachoutput variable also occurs in exactly one of the fields
DV, AV, intermediateVariables, dependent-
Variables, and inputs.

model:-variables

A table whose indices are of type name and whose cor-
responding entries are themselves Records. The indices
are precisely the names of the variables, parameters, and
blackbox functions occurring in the model. That is, the in-
dices are precisely those names occurring in the fieldsDV,
AV, intermediateVariables, dependentVari-
ables, inputs, parameters, and blackboxes .
Again in other words, the name of every function called in
model:-DE, model:-AE, model:-intermediate ,
andmodel:-dependent that is not a function built-in
to Maple is an index into themodel:-variables table.

Each entry in the table indexed by the name of a variable
or parameter is a Record ofMSVariable type, which is
described below. Each entry in this table indexed by the
name of a blackbox function has as its entry a Record of
MSBlackBox type, which is also described below.

model:-blackboxes

A list of undefined names representing lookup table func-
tions and user defined functions, which may occur in
any equation of the model. For example, asz23(t) =
L1(z35(t)), where the right hand side is an unevaluated
function call.

A.2 MSVariable Record type

This type of Record is used to store detailed information
about any variable or parameter of the model. This includes
core, input, dependent, and intermediate variables, and pa-
rameters. Such Records appear as entries of the variables
field of the parentMSModel Record.

The fields of anMSVariable Record, named here as
variable, are as follows:

variable:-name

The name of the variable described by the Record. This is
the same as the index of the Record in themodel:-vari-
ables table.

variable:-type

The role of the variable, given by one of the strings “al-
gebraic”, “differential”, “intermediate”, “dependent”, “pa-
rameter”, or “input”. This corresponds to the field of the
MSModel Record thatvariable:-name occurs in, as
follows:

variable occurs inmodel:- variable:-type

AV “algebraic”
DV “dif ferential”
intermediateVariables “intermediate”
dependentVariables “dependent”
parameters “parameter”
inputs “input”

variable:-value

For parameters, this field holds the value for this param-
eter. For differential variables (those inmodel:-DV and
the differential ones inmodel:-dependent), it con-
tains the initial value, expressed as a numerical value or an
expression in terms of the parameters. For algebraic vari-
ables, an initial value can also be given; this may contribute
to determining the initial conditions. For input variables
this entry will be a function of the independent variable
(model:-t). This field may be empty.

variable:-unit

The unit in which the variable is measured. This field may
be empty.

A.3 MSBlackBox Record type

This type of Record is used to store the particular informa-
tion of any implicit lookup table function in the model, and
for storing user-defined functions. The otherwise implicit
blackbox functions are listed by name in theblackboxes
field of the parent Record.

The MSBlackBox Record for a lookup table function
contains the original numeric data, stored in tabular form.
This allows for easy exporting of a lookup table to corre-
sponding fields of a Modelica representation of the parent
model.

The MSBlackBox Record for a user-defined function
is similar, but it contains the Maple procedure that imple-
ments the user-defined function.

The fields of aMSBlackBox Record, named here as
blackbox, are as follows:

blackbox:-name

The name of the blackbox function call described by the
Record. This is the same as the index of the Record in the
model:-variables table.

blackbox:-type

This string is the type of the black box function: either
"lookup" for a lookup table, or"procedure" for a
user-defined function.

blackbox:-dimension

The number of arguments of the blackbox function as oc-
curring in the equations. For lookup table functions, this
number corresponds to the dimension of the lookup table,
and it must currently be either 1 or 2, which corresponds to
the current support for lookup tables in MapleSim’s imple-
mentation of Modelica.

blackbox:-data

For lookup table functions, this field is a list of lists of in-
dependent data points; each list contains all values for one
of the arguments in strictly increasing order. The number
of such lists is equal toblackbox:-dimension . The
order of the lists corresponds to the order in which the ar-
guments to the lookup table are given. The number of data
points in each sublist must agree with the number of points

33

in the dependentblackbox:-value list for the given
lookup table.

For user-defined functions, this field is not used; it may
have any value.

blackbox:-value

For lookup table functions, this field contains the depen-
dent values that the function attains at the respective data
points; that is, the values corresponding to measurements
of the dependent variable or quantity. These should either
be given as one long list of numerical values, or a list of
sublists each containing numerical values. If the lookup
table is one-dimensional, then the list should simply con-
tain the dependent values at the points in the same order as
given in blackbox:-data . If the lookup table is two-
dimensional, then the first entry ofblackbox:-value
should be a list of all dependent values where the first co-
ordinate is the lowest value, ordered by increasing value of
the second coordinate; the second entry should be a simi-
lar list for the second lowest value of the first coordinate,
and so on. Alternatively,blackbox:-value may be the
concatenation of these lists.

For user-defined functions, this field should contain the
Maple language procedure that is to be used to evaluate the
function.

34

Safe Compositional Equation-based Modeling
of Constrained Flow Networks∗

Nate Soule1 Azer Bestavros1 Assaf Kfoury1 Andrei Lapets1

1Department of Computer Science, Boston University, USA, {nsoule,best,kfoury,lapets}@bu.edu

Abstract
Numerous domains exist in which systems can be mod-
eled as networks with constraints that regulate the flow of
traffic. Smart grids, vehicular road travel, computer net-
works, and cloud-based resource distribution, among oth-
ers all have natural representations in this manner. As these
systems grow in size and complexity, analysis and certifi-
cation of safety invariants becomes increasingly costly. The
NetSketch formalism and toolset introduce a lightweight
framework for constraint-based modeling and analysis of
such flow networks. NetSketch offers a processing method
based on type-theoretic notions that enables large scale
safety verification by allowing for compositional, as op-
posed to whole-system, analysis. Furthermore, by apply-
ing types to the modeled networks, analysis of composite
modules containing incomplete or underspecified compo-
nents can be conducted. The NetSketch tool exposes the
power of this formalism in an intuitive web-based graphical
user interface. We describe the NetSketch formalism and
tool, a translation from an instantiation of the NetSketch
formalism to the equation-based modeling language Mod-
elica, and the development of an accompanying Haskell li-
brary, HModelica, that enables the integration of NetSketch
and the OpenModelica modeling platform.

Keywords Flow networks, Network analysis, Safety veri-
fication, Constraint based modeling

1. Introduction
Many large scale systems can be modeled as assemblies of
subsystems, each of which produces, consumes, or regu-
lates a flow. Such models can contain variables and con-
straints representing the safe operation of the system. Net-
works that may be represented in this manner cross many
domains within software, hardware, electrical, material,
structural and other areas. Electric grids, vehicular road
networks, and computer networks are all modeled cleanly
in this structure; in addition, so are less immediately ob-

∗This work is supported in part by NSF awards CNS-0952145, CCF-0820138,
CSR-0720604, CNS-1012798, and EFRI-0735974.

4th International Workshop on Equation-Based Object-Oriented
Modeling Languages and Tools. September, 2011, ETH Zürich, Switzerland.
Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp/056/

EOOLT 2011 website:
http://www.eoolt.org/2011/

vious examples, such as the governance of service level
agreements (SLAs) in cloud computing environments. In
the case of SLAs, a physical processor may generate a flow
that is regulated by schedulers and consumed by comput-
ing processes. In electric grids, power plants may act as
nodes producing flow, with transmission lines, and trans-
formers routing and regulating flow to commercial and res-
idential customers (who may in turn act not only as sinks,
but as sources when, for example, they have solar panels).
Extended detail and further examples are described in sep-
arate papers [5, 22, 23]. Verification of safety invariants
across such a system is a critical analysis task, but this task
can quickly grow costly as the complexity of a model in-
creases. The NetSketch formalism and accompanying tool
offer a constraint-based modeling solution capable of han-
dling such complexity while providing an efficient analysis
engine.

The nodes in a constrained flow network may contain
arbitrarily complex constraints that serve to connect them
and regulate their operation. Solving for a set of feasible
values for the variables of the system will produce the in-
puts and outputs that constitute “safe” usage. This is a de-
sirable task both from a modeling perspective: ensuring or
discovering the range of safe values, and from a design per-
spective: considering alternative “what if” scenarios and
inspecting their properties in search of optimal values. In
large systems the size and complexity of the set of con-
straints and variables under consideration can limit or even
prohibit whole-system analysis. To allow for an analysis
under these circumstances, NetSketch employs techniques
from type theory to simplify the constraints of the network
at various levels of the system’s composition. A type is
given to various subsets of the network under considera-
tion. Each sub-network of nodes can then, for the purposes
of analysis, be replaced with an opaque container that ex-
poses only the ports at its interfaces. This new component is
then regulated by a type at each of its ports. By considering
only the types, and not the potentially complex set of in-
ternal constraints, it is possible to more efficiently analyze
this new component in the context of the larger network,
and to determine safe ways to connect this component to
others during a design process.

In this paper we describe the NetSketch formalism and
tool, and make connections between this work and the
broader equation-based objected-oriented modeling do-

35

HOLE
(X, In,Out) ∈ Γ

Γ ` (X, In,Out, { })

MODULE
(A, In,Out,Con) module

Γ ` (B, I, O, {C})
(B, I, O,C) = ′(A, In,Out,Con)

CONNECT
Γ ` (M, I1, O1, C1) Γ ` (N , I2, O2, C2)

Γ ` (conn(θ,M,N), I, O, C)
θ ⊆1-1 O1× I2, I = I1 ∪ (I2−range(θ)), O = (O1−domain(θ)) ∪O2,

C = {C1 ∪ C2 ∪ { p = q | (p, q) ∈ θ } |C1 ∈ C1, C2 ∈ C2}

LOOP
Γ ` (M, I1, O1, C1)

Γ ` (loop(θ,M), I, O, C)
θ ⊆1-1 O1× I1, I = I1−range(θ), O = O1−domain(θ),

C = {C1 ∪ { p = q | (p, q) ∈ θ } |C1 ∈ C1}

LET
Γ ` (Mk, Ik, Ok, Ck) for 1 6 k 6 n Γ ∪ {(X, In,Out)} ` (N , I, O, C)

Γ `
(

let X∈ {M1, . . . ,Mn} in N , I, O, C′
)

C′ =
{
C ∪ Ĉ ∪ { p = ϕ(p) | p ∈ Ik } ∪ { p = ψ(p) | p ∈ Ok }

∣∣∣ 1 6 k 6 n, C ∈ C, Ĉ ∈ Ck, ϕ : Ik → In, ψ : Ok → Out
}

Figure 1. Rules for Untyped Network Sketches.

main. In Section 2 we describe the domain specific lan-
guage at the heart of NetSketch. In Section 3 we describe
the NetSketch tool and its architecture. We take a deeper
look at the type generation algorithms in Section 4. In Sec-
tion 5 we investigate the relation of NetSketch to current
equation-based object-oriented modeling solutions (Mod-
elica in particular) via two avenues. First, we examine the
use of Modelica to assist various computational tasks re-
quired by NetSketch; here, we introduce a Haskell library
that exposes the power of Modelica to the NetSketch en-
gine. Second, we define a translation from NetSketch mod-
els to Modelica that allows for whole system analysis of
those models via simulation. Finally, we end with a discus-
sion of related and future work in Section 6.

2. NetSketch Formalism
In a constrained flow network each node of the network
or system may impose constraints on its inputs and out-
puts. The network and its entire constraint set form an exact
model1. Any whole-system analysis of the network must
compute the solution space of the constraint set for the
given network. Our compositional approach uses types to
approximate the constraints on the interface of each node
or group of nodes. In this way sub-systems can be analyzed
individually at an exact level, whereas the whole system
can be analyzed based solely on the results of the sub-
system analyses rather than the entire set of constraints.
This method allows for efficient analysis of large systems
even when the cost of a whole system analysis does not
scale linearly with the size of the system. Further, the com-
positional aspect of this method allows for analysis to oc-
cur in cases where it otherwise would require more infor-
mation i.e., in incomplete systems. When a portion of the
overall system has unknown constraints, but a known in-
terface, NetSketch can infer the types that will allow safe
operation of the system using the rest of the network and
its connectivity to the incomplete “hole”.

1 Here by “exact” we mean with respect to those properties under consid-
eration in the model. Any model is by neccessity an approximation of the
system being represented.

The NetSketch formalism defines a domain specific lan-
guage for describing constrained flow networks. In its orig-
inal form [4] the DSL consists of five main constructs:
Module, Hole, Connect, Loop, and Let. These are described
below, and the corresponding rules for constructing net-
work descriptions are depicted in Figure 1.

Module Module defines a new node in the network. This
node is atomic i.e., not composed of other nodes.

Hole A hole in a network describes an area that is incom-
plete (e.g., not yet designed or unknown to the modeler).
It provides the information that is known about this hole
(only the number of inputs and outputs) without the need
to fully specify the constraints. NetSketch enables its users
to infer the minimal requirements to be expected of (or to
be imposed on) such holes. This enables the design of a
system to proceed based only on the promised functional-
ity of missing parts.

Connect Connect allows for two distinct networks to be
combined into a larger network. This construct binds a
subset of the output ports of one network to a subset of
the input ports of another. The result is a new network that
can in turn be connected to others.

Loop Loop allows for the connection of an output port
of a network to be connected to an input port of the same
network.

Let Let is used to specify a set of networks that may be
placed in a given network hole.

3. NetSketch Tool and Architecture
The NetSketch formalism is partially implemented by the
current version of the NetSketch tool.2 The NetSketch tool
offers users the ability to visually create and define mod-
ules, and to create connections among them to form net-
work sketches. Subsets of networks may then be selected
for inclusion in the type generation process. This paper de-
scribes the state of the tool as of its first release, which
captures many of the core features of NetSketch but leaves

2 The tool can be found under Projects → NetSketch at the following
URL: http://www.cs.bu.edu/groups/ibench/.

36

Figure 2. View of a network consisting of 3 connected modules in the NetSketch tool.

others to future implementations. Section 6 discusses some
of the functionality yet to be added.

3.1 Interface and User Experience
Figure 2 shows a screen of the NetSketch tool in action.
Depicted are three modules from the domain of vehicular
traffic: a merge, a fork, and a 2-way cross intersection.
The interface of the tool is divided into two main areas.
The top represents the canvas onto which users will place
modules and create connections between these modules to
create networks. The bottom section presents the details of
the currently selected module, along with any environment
constants.

Creating Modules A user can begin defining a network
by first introducing new modules. This can be accom-
plished by creating a new module from scratch (i.e., with
no ports or constraints defined), or by selecting from a li-
brary of pre-defined modules and network sketches. Mod-
ules from the library come pre-built with a set number of
ports (input or output variables), and a base set of linear
constraints describing their operational requirements. Both
blank and library modules can then be extended by adding,
deleting, and modifying ports and constraints.

Ports are only given meaning when included in the con-
straints of the module containing the port. Thus, port cre-
ation is inferred during constraint definition. As a user cre-
ates a new constraint, x + y = z for example, the system
performs syntactic analysis of the constraint to determine
its variables, and automatically updates the list of ports for
the module. As constraints are created, modified, and re-
moved, the available ports for the given module will be
added or removed as appropriate. Once a port is defined,
it must be classified as either an input or an output port3.
Classifying a port as an input or output causes it to be
drawn on the canvas. Input ports align to the left of a mod-
ule, and output ports to the right.

3 In future implementations the ability to have internal variables that are
neither input or output will be allowed.

Connecting Modules Once constraints are defined, and
ports classified a module is ready for interfacing with
other modules and networks. The modules can be visually
dragged around the canvas to allow for appropriate posi-
tioning in relation to other modules with which potential
connections exist or to indicate logical groupings/relations.
To connect two modules a user creates a line by dragging
from the port of one modules to the port of another (or
among ports on the same module to create a loop). If port
P1 is connected to port P2 then either P1 is an input port,
or P2 is an input port, but not both (i.e., an exclusive-or
relationship).

Once two ports are connected their binding status in the
Variables area of the screen is updated from false to true
and the screen visually indicates this with a line between
the ports; an arrow indicates the direction of flow, and both
ends of the connection are shaded. Though not represented
explicitly in the Constraints area of the screen, an implicit
constraint is created for every port connection: an equality
constraint Pn = Pm is implied for every connection of port
Pn to port Pm.

As only the constraints of a single module are displayed
on the screen at any given time, variable names need not
be unique across a network. Internally, NetSketch performs
variable renaming by prepending the module name to the
variable name. From the user’s perspective only the mod-
ule specific variable name (i.e., x, not fork_1.x) is
displayed. This is possible and safe because the system
guarantees unique module names through a global counter
added to each module name.

Generating Types When a connected set of modules is
in a stable state the user can choose to generate a type
for that set. By selecting an option from the menubar a
type generation window will open. This window, as shown
in Figure 3, allows the user to select among the available
modules. A type can be created for a single module if the
user determines a typed version is easier to manipulate and
use than an untyped one, or a subset of connected modules
may be collectively typed. The decision regarding the level

37

Figure 3. Type generation window with two connected modules selected for type creation.

of granularity in type generation is an important one. This
represents the point where exact analysis is replaced with
compositional analysis.

At some point the constraint sets in a network of un-
typed modules may get sufficiently complex such that
compositional analysis becomes the preferred (if not only)
method for analysis. We define this point as the constraint
threshold. The constraint threshold may be determined in
any number of ways that might be beneficial to the user
(e.g., number of nodes, number of connections, number
of constraints, number of variables within the constraints,
time taken to bound the feasible region of the solution, the
shape of the constraints). Presently, our implementation of
NetSketch leaves the decision regarding the value of this
threshold to the user.

Once typed, a network is replaced visually by a single
container - slightly shaded to differentiate it from untyped
modules on the canvas. This process can be infinitely recru-
sive, in that a network of typed modules can itself be given
a type. The constraints shown in the bottom portion of the
screen are replaced with the intervals inferred for each port.

The types generated for a set of modules are non-empty
intervals over R. For each non-connected port P exposed
within the set of modules being typed, an interval of the
form P : [Pmin, Pmax] will be generated. Optimal typings
of this form can not be guaranteed to be uniquely generated
for the input variables without further guidance from the
user. In this implementation, this guidance takes the form
of a center point and an aspect ratio relating all input vari-
ables. See Section 4 for the reasons behind this requirement
and the details of the center-point/aspect-ratio solution, and
Section 6 for a description of work underway to alleviate
this need.

With types generated, what were formerly potentially
complex and numerous constraints are now simple inter-
vals that can be viewed, composed, and analyzed effi-
ciently. In addition, with this level of typing, unknowns
in the network can easily be left as holes that can have
their typings inferred without further specification simply
by connecting them appropriately to defined modules and
networks. Holes can be created in a fashion similar to that
of modules, with the exception that ports are listed explic-
itly as opposed to being inferred from the constraint set.
The Let construct of the formalism, which describes which
modules may be placed in a hole, is applied in the tool via

the ability to select existing components from the library as
potential hole replacements.

Persistence At any point the user can chose to save their
canvas in a persistent form. The tool will convert the in-
ternal representation of the model into JavaScript Object
Notation (JSON), and prompt the user to open or save the
generated JSON file. Users can then later load their saved
modules from disk to continue their modeling/analysis ef-
fort.

3.2 Architecture
The NetSketch tool architecture comprises a client compo-
nent and a server component as represented by the User
Interface and Core Engine boxes respectively in Figure 4.

Figure 4. Architecture of NetSketch Tool

The client-server paradigm was employed to allow for
a lightweight web deployment, while still retaining a non-
browser-resident server component for the linear program-
ming and other computationally heavy tasks. The client

38

and server communicate over HTTP using AJAX-style re-
quests.

User Interface The user interface was built using pure
JavaScript and HTML. Standalone executables offering
graphical user interface capabilities were considered (Java,
Python), but ultimately a web-based solution was chosen
due to a desire for an easily accessible, easily updatable,
zero-installation solution. While other web-based plat-
forms (JavaFX, Silverlight, Air, Flash) contain more robust
graphical capabilities, it was determined that JavaScript
and HTML alone could provide the required GUI capabili-
ties and would avoid attaching the project to a heavyweight
proprietary framework.

In order to alleviate some of the burden of ensuring
cross-browser compatibility, and development of a rich
set of widgets, the ExtJS JavaScript Framework [21] was
employed to provide the basic GUI elements. ExtJS is
an open source framework that provides a wide array of
user interface components as well as JavaScript utilities
for DOM (Document Object Model) manipulation, and a
simple AJAX model.

In addition to ExtJS, JSGL (the JavaScript Graphics
Library) [19], a pure JavaScript vector graphics toolkit,
was used. JSGL provided the vector graphics capabilities
needed to draw widgets, their ports, and the connections
between them. JSGL, as with ExtJS, also servers to hide
cross browser incompatibilities.

Core Engine The core of the NetSketch tool is imple-
mented as a server-side component. The server is writ-
ten in Haskell, with much of the heavy mathematical pro-
cessing being delegated to external C-based modules, or
to an implementation of the Modelica platform. The main
executable makes use of the Happstack Web Framework
[10]. NetSketch uses the built in HTTP server function-
ality of Happstack to expose the NetSketch API over the
web. HTTP GET requests can be constructed to provide
the NetSketch server with the description of the network
(including ports, connections, and constraints) in a format
based on the domain specific language defined in the work
outlining the NetSketch formalism [4].

Once the HTTP server component has received a request
it is passed to the untyped language engine for parsing. The
untyped language engine parses the request based on the
NetSketch untyped language DSL, and passes the text rep-
resenting linear constraints to the constraint language en-
gine. The grammars for both the NetSketch untyped DSL,
and the linear constraint language are defined in annotated
BNF. The Haskell parser generator Happy [12] was used
to generate parsers based on these grammars. Beyond the
parsing functionality, each language engine provides func-
tionality related to the manipulation of its respective lan-
guage (e.g., simplifying and removing redundancy from
linear constraints).

After a successful parse, the structure representing the
network described in the request is sent to the type gener-
ation engine. This module first performs input type gener-
ation, followed by output type generation. Input type gen-
eration must first project the constraints onto a subset of

the original dimensions (specifically those corresponding
to the input ports). This projection is done using two ex-
ternal C/C++-based modules: CDD+ [11] and Domcheck
[15]. CDD+ is a C++ implementation of the Double De-
scription Method for vertex and extreme ray enumeration.
Domcheck is a program that computes minimal linear de-
scriptions of projections of polytopes. These modules are
distributed as C/C++ source code. The only modifications
made were to Domcheck in order to allow non-interactive
execution (i.e., to call in batch without a user present).

Both the output type generator, and the input type gen-
erator (after projection) make use of linear programming
techniques to identify boundaries of the generated types.
The linear programming can be accomplished via one
of two mechanisms. The original implementation used a
Haskell wrapper, hmatrix-glpk [20], around the GNU Lin-
ear Programming Kit (GLPK) [9]. The GLPK is a C-based
callable library providing routines for linear programming,
mixed integer programming, and other related problems.
NetSketch makes use of the GLPK’s implementation of the
Simplex method. HMatrix-GLPK provides a pure Haskell
interface to this and a select set of other features from
GLPK. The other mechanism was developed after creat-
ing the HModelica Haskell library (see Section 5). In this
method NetSketch makes calls via HModelica to an in-
stance of the OpenModelica [17] platform. Here Modelica
code is executed to perform the required linear program-
ming tasks. By using OpenModelica 3, external libraries
(hmatrix, hmatrix-glpk, and glpk) were no longer required,
simplifying the code base.

4. Type Generation
Generating types from sets of untyped modules involves
transforming linear constraints into intervals over R. This
process is divided into two high-level steps: input port
type generation, and output port type generation. As the
output type generation can use the results of the input types
to create more accurate results, these sub-processes are
performed in the order listed above.

Input Port Type Generation In order to generate types
for the input ports of a set of modules, it helps to visualize
the set of linear constraints that define the set as a convex
hull. Figure 5 shows such a hull in 2-space (i.e., for a set
of constraints over two input variables). Here we see four
constraints labeled Constraint 1 through Constraint 4. The
convex hull formed by their intersection defines the set of
feasible input values.

To create intervals for the input variables we need to find
a largest enclosed hyper-rectangle4 within the convex hull.
Such an area is not necessarily unique. Various options ex-
ists for techniques to select a single typing from among
these non-unique hyper-rectangles. On the more expressive
and accurate side, options exist such as selecting a subset
of the possible enclosed hyper-rectangles and defining the
type as their union. Work on the use of dynamic adaptive

4 In this paper all hyper-rectangles are axis-aligned. For brevity we use
the term “hyper-rectangle” to ‘refer to “axis-aligned hyper-rectangle”
throughout.

39

Figure 5. Input Type Generation

types is underway as described in Section 6. For this imple-
mentation, a more restrictive process was used that involves
defining a center point for the hyper-rectangle, along with
an aspect ratio relating all input variables. In Figure 5 the
center point (x, y) is displayed along with the aspect ratio
relating x to y.

Given a center point and an aspect ratio, a unique maxi-
mally enclosed hyper-rectangle can be identified given the
set of linear constraints for the modules. Intuitively this
can be visualized (in 2 or 3-space) as enlarging a hyper-
rectangle (that begins as a single point at the given center
point) in increments defined by the given aspect ratio until
the hyper-rectangle intersects with the convex hull defined
by the linear constraints of the module set. Programmati-
cally, this is accomplished by determining the set of diag-
onals defined by the hyper-rectangle (labeled Diagonal 1,
and Diagonal 2 in Figure 5). There exist 2n−1 such diago-
nals for an n-dimensional hyper-rectangle. Given the cen-
ter point and aspect ratio of the desired hyper-rectangle,
expressions describing the diagonals can be created triv-
ially in parametric form (which the system later converts
to the standard linear equation form for use with an exist-
ing linear programming solver). With these diagonals de-
fined, the closest intersection (to the center point) with the
given linear constraints is then located using linear pro-
gramming. Four of the eight potential intersection points
in Figure 5 are highlighted with circles. Once the closest
intersection point Ix,y is identified a hyper-rectangle of di-
mensions |Ix − Cx| by |Iy − Cy| centered at Cx,y can be
defined. The bounds of this hyper-rectangle on any given
axis represent the bounds of the interval for that axis’s vari-
able. This example was given in 2-space for visual clarity,
but the principles extend to n dimensions where n≥ 2 (spe-
cial case coding exists to handle n = 1).

The discussion to this point has assumed that we al-
ready have the set of linear constraints to use when gen-
erating the input type. It must be noted, however, that the
set of linear constraints defined by the user does not equal
the set used for these constraints. This is the case for two
reasons. First, the set of linear constraints defined by the
user does not explicitly contain the equality constraints re-
quiring connected ports between modules to equal each
other. These constraints are implied in the visual connec-
tions drawn between modules, but made explicit in the in-
ner workings of the NetSketch tool. Secondly, when spec-
ifying the set of linear constraints for a given module, the
user may well define constraints relating the input and out-
put ports. The generation of the maximally enclosed hyper-
rectangle as described above requires the constraints to be
restricted to only contain variables from the input ports.
To accommodate this need the NetSketch tool first per-
forms a projection of the given constraints, plus the implicit
connection constraints, onto only those dimensions repre-
senting the input variables. For example, given input ports
I = {a, b, c}, output ports O = {x, y, z}, and a set of lin-
ear constraints C over I∪O, the system will project C onto
the 3-dimensional space of I . The resulting constraint set
is used in the generation of the maximally enclosed hyper-
rectangle.

Output Port Type Generation As with input type genera-
tion, it is helpful to visualize the linear constraints as form-
ing a convex hull as depicted in Figure 6. To determine
the feasible output values, unlike the maximally enclosed
hyper-rectangle needed for input ports, a minimally enclos-
ing hyper-rectangle must be identified. The determination
of this hyper-rectangle is significantly simpler than for that
of its input counterpart: an optimal enclosing is unique, so
a center point and aspect ratios are not required.

40

Figure 6. Output Type Generation

The hyper-rectangle can be computed by using linear
programming to solve the system of equations and inequal-
ities, first with the objective function Maximize(v), then
again with the objective function Minimize(v) for each
output variable v. The solution that maximizes v will be-
come the upper bound for the variable’s type, and the so-
lution that minimizes v will become the lower bound (i.e.,
∀v ∈ I, type(v) = [SolutionMin,SolutionMax]).

As mentioned previously, the constraints used when cal-
culating the output types should include those generated
as the input types. The intervals created during input type
generation are therefore converted into simple linear con-
straints (e.g., x : [0, 100] becomes two constraints: x ≥ 0,
and x ≤ 100). These constraints are then added to the
original constraints for use in determining the output types.
Without these extra constraints, the result would be correct,
but the range of values for the output types would be wider
than they truly need to be: in all but the most pathologi-
cal cases, the valid input values will have been restricted
during conversion to intervals.

5. Harnessing Modelica
Well-established constraint-based modeling systems exist
today. NetSketch shares a variety of similarities with these
tools, but also bears numerous non-trivial differences. No-
tably, NetSketch in its current form does not explicitly con-
sider time. Other constraint-based modeling tools, such as
Modelica [2], are largely centered around time and use sim-
ulation over time as their main form of analysis. Some
work has been done to show that a variation of NetSketch
can be created to more natively incorporate the concept
of time. Here, variables of the constraints are replaced by

functions of the same name that accept a time variable as
an argument. Given the simulation-based nature of Model-
ica and similar systems, other differences from NetSketch
arise, such as the need for balanced systems over equations
(rather than inequalities) [1].

Despite such differences, the overlap that does exist
offers a great opportunity for various forms of integration.
Here, we examine two forms of relation to Modelica: as a
computation platform, and as an environment for working
with translated NetSketch models.

5.1 Modelica as a Computation Platform
Modelica offers a wealth of functionality as well as a robust
library. The extensive library provides both reusable mod-
els and reusable functions spanning many domains. This
library can be of use to both NetSketch modelers (see sec-
tions 5.2 and 6), and to the NetSketch tool implementation
itself.

Modelica and the functions defined in the Modelica li-
brary can be used directly by the NetSketch implementa-
tion as a processing engine. For example, the NetSketch
engine requires frequent use of linear programming tech-
niques, namely the simplex method. A function implement-
ing this has been defined in Modelica code and can there-
fore be used by NetSketch to “farm out” some of the more
mathematically heavy computations.

To gain access to the power of Modelica from within
the NetSketch tool, a reusable Haskell library was devel-
oped to expose the functionality of the OpenModelica im-
plementation to Haskell code. This library, HModelica, en-
ables Haskell developers to create, manipulate, and simu-
late Modelica models, in addtion to directly executing func-

41

tions written in the Modelica language. Through the use of
this library the NetSketch simplex code was replaced with
calls to OpenModelica, alleviating the need for a handful of
Haskell- and C-based libraries that previously were tasked
with this work. Having a single platform and access mech-
anism for performing these types of tasks simplifies the
NetSketch code base, and this impact will continue to grow
as the set of tasks handed to Modelica increases.

The library exposes the OpenModelica API in two ways.
The primary mechanism is in place for a subset of the
OpenModelica API calls. These functions are implemented
as type-safe calls with full translation to and from Haskell
types. Second, for any functions not implemented in this
manner (the number continues to decrease as development
continues), a single function is implemented allowing the
caller to send commands to Modelica as a string, and then
to receive the results as a string. This allows for the execu-
tion of any arbitrary Modelica command.

HModelica has the potential to open Modelica up to
the community of Haskell developers. As such, its use can
extend outside of NetSketch. To that end the library is being
added to the Haskell package repository HackageDB [8].
Here, it will be available for public download and use in
the Cabal package format.

5.2 Translation to Modelica
Modelica and NetSketch share enough in common that a
translation between the two can be defined. Here, we con-
centrate on the translation from NetSketch to Modelica;
however, a subset of the models developed in Modelica
(those with linear constraints) could be directly translated
into typed NetSketch networks. This would provide NetS-
ketch users with access to a wider array of pre-built compo-
nents. A translation in this direction would map Modelica
classes and related definitions to NetSketch module defini-
tions with connections between classes and compositions
of modules accomplished via NetSketch Connect and Loop
constructs. A formal definition of such a mapping is being
considered for future work, as discussed in Section 6.

The reverse direction, a translation from NetSketch to
Modelica, generates models that can be used to perform
simulation as a safety analysis tool. This process is outlined
in detail in an accompanying work [22] and is described at
a high level here. To accomplish a translation, two restric-
tions must be placed on the model during the process. First,
any inequalities defined in the NetSketch constraints must
be transformed to a form of validation check, as opposed to
an active regulator of the system (as the equations section
of a Modelica model must contain only that - equations). In
some models this may require a binding of a subset of the
variables involved in the constraints to specific values for a
given simulation of the system (to allow the simulation to
uniquely determine the flow). Second, the system must be
balanced (not over- or underdetermined). This again may
result in the binding of particular variables to concrete val-
ues for a given run of the simulation. In these cases single
simulations can be run to test “what-if” scenarios corre-
sponding to the particular binding given to the variables,
or a set of simulations may be run on the extremes of the

valid range of values for each given variable to determine
a broader notion of safety across those ranges. Only the
extremes of the intervals must be tested because the con-
straints in the current implementation are linear and thus
form a convex hull; no gaps in safe ranges may exist.

Conn

Src0 Conn

Src1 Conn

M0 Sink0

Figure 7. Tree view of the NetSketch network depicted in
Figure 8

To reduce the number of variables that must be bound
to concrete values, the NetSketch model is first analyzed to
construct a minimal covering set. Such an analysis defines
a set of variables SMin ⊆ I ∪ O where I and O represent
the set of inputs and outputs, respectively, of the system.

As an example consider Figure 8. Here 6 variables,
a, b, c, d, e, f , and a constraint set exist to regulate flow
within the system. Since M0 conserves flow via the con-
straint c+ d = e, we need only bind two variables, namely
a, and b, to concrete values in order to determine the en-
tire system. Since c, d, e, and f all depend on a and b to
determine their values, these variables need not be consid-
ered when providing concrete values to drive a Modelica
simulation.

An accompanying report [22] defines two algorithms for
constructing SMin. The first is quite efficient, involving two
passes of the tree representing a NetSketch model (see Fig-
ure 7 for an example), but may not always produce the min-
imal set. It is causal in nature, and thus does not consider
the potential positive impact of variables down the causal
chain of the network. The first pass builds two transition
relations, and the second actually constructs SMin using a
set of formal rules and the transition relations from the first
pass. A Haskell implementation of this process has been
created and will be incorporated directly into the existing
implementation as described in Section 6. The second al-
gorithm described in [22] will always produce a minimal
set, but has a worst-case exponential running time under
a naive implementation. This algorithm transforms a sys-
tem into a set of propositional logic implication statements
representing how knowledge about one variable (or set of
variables) implies knowledge about others. The problem is
thus transformed into a search for the minimal number of
propositional atoms that must be explicitly bound to true
in order to imply the conjunction of atoms representing all

42

variables in the system. A hybrid approach is also described
that allows for the use of the first algorithm to set a max-
imum size of SMin from which the second can start. This
variant allows for significant savings in computation time.

Figure 8. Two source modules, a merge, and a sink.

Once a minimal covering set is constructed, a translation
can occur. This again involves a traversal of the tree repre-
senting the NetSketch model. Here, as each Module, Hole,
Conn, Loop, and Let node is visited, an abstract represen-
tation of a Modelica model is incrementally constructed.
NetSketch modules (and holes) are transformed into enti-
ties representing Modelica class definitions (or a restricted
version thereof) with any equation-based constraints rep-
resented directly in the equation section of the result-
ing class definition. For all variables in SMin the Modelica
parameter modifier is used. Inequality constraints are
moved to a “driver” class created to organize the system
and provide validation checks that the model is safe. Within
the driver class all modules/holes are present as instances of
their respective classes. Appropriate initial value equations
for the variables in SMin are present with user-specified
bindings. Modelica connect statements are used where
NetSketch Connect and Loop constructs existed. The driver
is thus a flat representation of the network. The driver also
contains a single additional boolean variable, not present in
the initial model: isValid. This variable is set to equal the
conjunction of all the inequality constraints that existed in
the individual modules/classes (as these could not be in-
cluded in the equation sections of their owning classes).
In this way a user can examine this variable post-simulation
to determine if the model is safe under the given param-
eters. The resulting abstract representation is then trans-
formed into a string which can be written to a text file, or
sent directly to Modelica via the HModelica interface de-
scribed above.

6. Related and Future Work
This work extends and generalizes our work in TRAFFIC
[3], and complements our earlier work in CHAIN [7]. An
essential functionality of NetSketch is the ability to rea-
son about, and find solution ranges that respect, sets of
constraints. In its general form, this is the widely studied
constraint satisfaction problem. NetSketch types are lin-
ear constraints, and linear constraint satisfaction is a clas-
sic problem for which many documented algorithms ex-

ist. A distinguishing feature of NetSketch and the under-
lying formalism is that it does not treat the set of con-
straints as monolithic. Instead, a tradeoff is made in favor
of providing users a way to manage large constraint sets
through abstraction, encapsulation, and composition. Other
formalisms and methods, such as [16], seek to enable early
detection of problems in a model by applying types to con-
straint sets in a modular way, but are intended for provid-
ing assurances that compilation prior to analysis/simulation
will succeed. In contrast the use of types in NetSketch di-
rectly support the analysis of the model itself.

NetSketch leverages a rigorous formalism for the spec-
ification and verification of desirable global properties
while remaining ultimately lightweight. By “lightweight”
we mean to contrast our work to the heavy-going formal
approaches – accessible to a narrow community of experts
– which are permeating much of current research on formal
methods and the foundations of programming languages
(such as the work on automated proof assistants [18, 13],
or the work on calculi for distributing computing [6]). In
doing so, our goal is to ensure that the formalisms pre-
sented to NetSketch users are the minimum that they would
need to interact with, keeping the more complicated parts
of these formalisms “under the hood”.

A number of planned areas of future work exist related
to extending the functionality of the NetSketch tool to
more closely match the power expressed in the NetSketch
formalism, furthering integration with existing equation-
based modeling tools, and extending the formalism itself.

Tool Enhancements Network Holes can currently be
used with the Let construct to select elements from the
library to act as hole replacements. Future versions of the
tool will allow for selection from additional sources (the
current canvas, persisted models, etc). Currently, variables
within constraints must be classified as input or output vari-
ables. In future implementations, internal variables will be
allowed that do not correspond to ports of the module.

NetSketch models the direction of data flow explicitly
(i.e. ports are marked as either input or output). By default
in Modelica’s acausal system this is not the case. While
NetSketch requires all ports to be causal, bidirectionality
can be modeled through either the use of two connections
- each representing a direction of flow, or by allowing flow
across a single connection to be either positive or negative.
Connecting an output port to an input port in NetSketch
requires the former be a subtype of the latter. This imples
that bidirectional flow over a single connection would re-
quire the participating ports have identical types. The NetS-
ketch formalism allows for both of these methods of mod-
eling bidirectionality, though extensions to the current im-
plementation may make such modeling more accesible and
transparent. Single connection bidirectionality may bene-
fit, for example, from the extension of the current system’s
strictly linear constraints to include constructs such as the
absolute value function.

Tool Integration As described in Section 5, Modelica
offers a wealth of reusable components. Formally defining
a translation from a Modelica model to NetSketch would

43

allow NetSketch users to quickly make use of the breadth
of components developed for the Modelica platform. The
translation is restricted in the current implementation to a
simplified subset of models with linear equations. It should
be noted, however, that the restriction to linear constraints
is an artifact of the implementation, and not the formalism.
The NetSketch formalism is parameterized by the chosen
constraint space, and thus allows for a much more general
set of constraints than the current tool implements.

The algorithms defined in Section 5 will be integrated
into the current tool implementation to allow in-tool ex-
ports of NetSketch models to Modelica models. Direct ex-
ecution of the resulting models will also be implemented as
a function of the tool.

Formalism A deeper examination of the proper model for
selecting among optimal typings is currently underway and
will likely lead to an alteration of both the tool (in its cur-
rent requirement for a center point and aspect ratio), and
potentially of the formalism. Enhancements to the type sys-
tem to allow for the expression of types as unions of inter-
vals or as function of the state of the network connections is
being explored. In addition, work is currently being under-
taken on a version of the formalism that restricts the con-
straints to a particular subset of linear equations resulting
in a simplified type inference mechanism, and an expanded
set of tractable forms of analysis, while still allowing for an
expressive constraint language with real-world applicabil-
ity. Papers describing the formalism [4], as well as related
papers [5, 14] outline a number of additional ideas for fur-
thering the core concepts behind NetSketch.

References
[1] Modelica Association. Modelica Language Specification

3.2. Technical report, Modelica Association, 2010.
http://www.modelica.org/documents/ModelicaSpec32.pdf.

[2] Modelica Association. Modelica and the Modelica Associ-
ation.
https://www.modelica.org/, May 2011.

[3] Azer Bestavros, Adam Bradley, Assaf Kfoury, and Ibrahim
Matta. Typed Abstraction of Complex Network Compo-
sitions. In Proceedings of the 13th IEEE International
Conference on Network Protocols (ICNP’05), Boston, MA,
November 2005.

[4] Azer Bestavros, Assaf Kfoury, Andrei Lapets, and Michael
Ocean. Safe Compositional Network Sketches: Formalism.
Technical report, Department of Computer Science, Boston
University, Boston, MA, USA, 2009. Tech. Rep. BUCS-
TR-2009-029, October 1, 2009.

[5] Azer Bestavros, Assaf Kfoury, Andrei Lapets, and Michael
Ocean. Safe Compositional Network Sketches: Tool and
Use Cases. Technical report, Department of Computer
Science, Boston University, Boston, MA, USA, 2009. Tech.
Rep. BUCS-TR-2009-028, October 1, 2009.

[6] Gérard Boudol. The π-calculus in direct style. In Conf. Rec.
POPL ’97: 24th ACM Symp. Princ. of Prog. Langs., pages
228–241, 1997.

[7] Adam Bradley, Azer Bestavros, and Assaf Kfoury. System-
atic Verification of Safety Properties of Arbitrary Network

Protocol Compositions Using CHAIN. In Proceedings
of ICNP’03: The 11th IEEE International Conference on
Network Protocols, Atlanta, GA, November 2003.

[8] Hackage Community. Hackagedb.
http://hackage.haskell.org, May 2011.

[9] GNU Project Developers. GLPK GNU Project.
http://www.gnu.org/software/glpk/, January 2011.

[10] Matthew Elder and Jeremy Shaw. Happstack - A Haskell
Web Framework.
http://happstack.com/index.html, January 2011.

[11] Komei Fukuda. cdd and cddplus homepage.
http://www.ifor.math.ethz.ch/∼fukuda/cdd_home/cdd.html,
January 2011. Swiss Federal Institute of Technology.

[12] Andy Gill and Simon Marlow. Happy - The Parser
Generator for Haskell.
http://www.haskell.org/happy/, January 2011.

[13] Hugo Herbelin. A λ-calculus structure isomorphic to
Gentzen-style sequent calculus structure. In "Proc. Conf.
Computer Science Logic", volume 933 of LNCS, pages
61–75. Springer-Verlag, 1994.

[14] Andrei Lapets, Assaf Kfoury, and Azer Bestavros. Safe
Compositional Network Sketches: Reasoning with Auto-
mated Assistance. Technical report, Department of Com-
puter Science, Boston University, Boston, MA, USA, 2010.
Tech. Rep. BUCS-TR-2009-028, January 19, 2010.

[15] Francois Margot. Francois Margot Homepage.
http://wpweb2.tepper.cmu.edu/fmargot/, January 2011.
Carnegie Mellon.

[16] Henrik Nilsson. Type-based structural analysis for modular
systems of equations. In Proceedings of the 2nd Inter-
national Workshop on Equation-Based Object-Oriented
Languages and Tools, July 2008.

[17] Open Source Modelica Consortium (OSMC). Welcome to
OpenModelica.
http://www.openmodelica.org/, May 2011.

[18] Lawrence C. Paulson. Isabelle: A Generic Theorem Prover,
volume LNCS 828. Springer-Verlag, 1994.

[19] Tomas Rehorek. JavaScript Graphics Library (JSGL)
official homepage.
http://www.jsgl.org/doku.php, January 2011.

[20] Alberto Ruiz. HackageDB: hmatrix-glpk-0.2.1.
http://hackage.haskell.org/package/hmatrix-glpk, January
2011.

[21] Sencha. Sencha - Ext JS - Client-side Javascript Framework.
http://www.sencha.com/products/js/, January 2011.

[22] Nate Soule, Azer Bestavros, Assaf Kfoury, and Andrei
Lapets. Safe Compositional Equation-based Modeling of
Constrained Flow Networks. Technical report, Department
of Computer Science, Boston University, Boston, MA,
USA, 2011. Tech. Rep. BUCS-TR-2011-014, June 5, 2011.

[23] Nate Soule, Azer Bestavros, Assaf Kfoury, and Andrei
Lapets. Use Cases for Compositional Modeling and
Analysis of Equation-based Constrained Flow Networks.
Technical report, Department of Computer Science, Boston
University, Boston, MA, USA, 2011. Tech. Rep. BUCS-
TR-2011-019, July 5, 2011.

44

A Compositional Semantics
for

Modelica-style Variable-structure Modeling

P. Pepper1 A. Mehlhase2 Ch. Höger3 L. Scholz41Institut für Softwaretechnik, TU Berlin, Germany,{peter.pepper}@tu-berlin.de2Institut für Softwaretechnik, TU Berlin, Germany,{a.mehlhase}@tu-berlin.de3Institut für Softwaretechnik, TU Berlin, Germany,{christoph.hoeger}@tu-berlin.de4Institut für Mathematik, TU Berlin, Germany,{lscholz}@math.tu-berlin.de

Abstract
Modelica traditionally has a non-compositional semantic
definition, based on so-called “flattening”. But in the realm
of programming languages and theoretical computer sci-
ence it is by now an accepted principle that semantics
should be given in a compositional way. Such a semantics
is given in this paper for Modelica-style languages. More-
over, the approach is also used to consider more general
modeling concepts, namely so-called variable-structure
systems. As an outlook we discuss the correspondence
between such an idealized mathematical semantics and a
more pragmatic numeric solver-oriented semantics.

Keywords Modelica, compositional semantics, structure
dynamics, uncertainty.

1. Introduction
A large class of technical multi-physics systems can be
modeled in languages like Matlab/Simulink/Stateflow, As-
cet, Labview, Scicos, Modelica and various others. These
systems are essentially based on the paradigms of con-
trol theory and differential-algebraic equations (DAEs). Of
these systems, Modelica is distinguished by the fact that
it integrates the control theoretical aspects with the soft-
ware engineering principles of object-oriented program-
ming. We consider this a major advantage and therefore
concentrate in this paper on Modelica-style modeling.

However, there are a number of modeling concepts that
are also missing from Modelica, most notably the so-called
structure dynamics, also referred to asvariable-structure
modeling. Roughly speaking this means that during its life-
time the system passes throughmodes, in which it obeys
different sets of (differential) equations. This paradigm is

4th International Workshop on Equation-Based Object-Oriented
Modeling Languages and Tools. September, 2011, ETH Zürich, Switzerland.

Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp/056/

EOOLT 2011 website:
http://www.eoolt.org/2011/

very helpful in the “natural” specification of many systems,
but unfortunately it adds a number of severe conceptual,
semantic and implementation problems to classical Mod-
elica. Nevertheless, it has already been – at least partly –
addressed in a few systems, notably Mosilab [21] or SOL
[29]. Structure dynamics is also possible in languages like
Hydra [24, 20, 7, 19] or frameworks like CIF (Composi-
tional Interchange Format) [25, 26, 27]. However, we do
not consider such languages or frameworks here, since they
are not Modelica-like languages; rather Hydra is a Haskell-
based functional language that achieves similar effects with
other means (see below); the same is true for MKL [3, 4].
And CIF is a framework that shall integrate all kinds of
languages and language paradigms.

We note in passing that variable-structure systems can
also be treated in tools like Simulink and Dymola, but only
efficiently by way of using scripting techniques and only
for systems consisting of a few different modes [16].

In this paper we consider the core principles of variable-
structure modeling and try to give a rigorous semantics for
them. This semantic treatment bases on ideas taken from
approaches such as Phase Transition Systems [14, 15] and
Hybrid Automata [11, 8], the latter of which in turn are
based on StateCharts [10]. Moreover, we also integrate
ideas taken from ESpec [22, 12] as well as from Lustre
[5], Ptolemy [23] , CIF and comparable systems. However,
since all these approaches and concepts are overlapping, we
will not make any attempt to attribute each of our individual
design decisions to their respective predecessors.

When comparing formal approaches such as Phase
Transition Systems to Modelica-style systems, one can im-
mediately see a fundamental difference in attitude, which
makes any semantic comparison almost vain from the be-
ginning: Whereas the former bases on clean mathematical
concepts of the real numbersR and their function space,
the latter immediately focuses on numeric solvers and all
problems that are coming with them. In order to bridge that
gap, we envision a two-level semantics:

45

1. Ideal semantics. The first semantics that we give lives in
the ideal mathematical world of real numbers, continu-
ous functions, dense time and the like.

2. Simulation semantics. The second semantics is derived
from the first one by taking issues such as discretiza-
tion, approximation, rounding errors and the like into
account. However, we should emphasize that this is still
work in progress.

Through this separation of concerns we do not mix
up different and unrelated kinds of aspects in a single
monolithic description.

In the realm of programming languages and theoretical
computer science it is by now a well established princi-
ple that the semantics of languages should be given in a
compositional way. This means that the global semantics
of the whole can be described by giving local semantics to
the parts, from which the overall semantics is derived by
suitable composition rules. (This is in accordance with the
principle of modularization in software and systems engi-
neering.)

system components

flat system system model

semantic
interpretation

flattening composition

semantic
interpretation

Figure 1. Compositional semantics

Figure 1 illustrates the relationship between compo-
sitional and non-compositional semantic definitions. The
standard definition of Modelica follows the lower left path:
One always considers the system as a whole and flattens
it into one large system of equations, which represents
its semantics. However, in the realm of programming lan-
guages one rather gives individual semantic definitions for
all components and then composes the overall semantics
from these local definitions. This is the approach, which
we will follow in this paper.

Note: In the literature one can also find attempts to give
semantics to a continuous modeling language by designing
it as an embedded DSL (domain-specific language) over
some existing host language. For example, Hydra [20, 7, 6]
uses Haskell as the encompassing host language. Also the
approaches taken in CIF, which in turn bases on earlier
work on Chi, or Ptolemy [23] can be subsumed under this
principle. Here the host for the embedding is not a real pro-
gramming language such as Haskell; rather one employs
a powerful mathematical framework (such as special au-
tomata with SOS-based semantic definition) into which the
modeling language is mapped.

We do not follow this idea here, since it adds consid-
erable complexity to the understandability of the seman-
tics. One first has to fully comprehend the host language
– which is not trivial for a language like Haskell or CIF –
and then one has to understand the embedding. This may

be acceptable for computer scientists, who want to enter
the field of continuous modeling, but it is unacceptable for
engineers, who are familiar with areas like control theory
and possibly can program in C or Fortran. For this audi-
ence, Haskell poses an insurmountable obstacle in prac-
tice. Therefore we prefer to give an independent semantics
to modeling languages such as Modelica, which strives for
simplicity and easy understandability.

Part I: Ideal Semantics

2. Preliminaries: Specifications and Models
In the realm of programming languages and their seman-
tics there is by now a well-established way of proceeding.
To begin with, one has to clarify what kinds of terms are
syntactically allowed. To this end we follow the principles
that have been laid down very precisely in the realm of al-
gebraic specifications. (For a comprehensive treatment see
[1]; we follow here mainly the approach taken in the Es-
pec system [22, 12].) But we have to adapt the pertinent
concepts to the new situation of differential-algebraic equa-
tions.

The starting point is asignature� that determines the
admitted types and operations. In our case this signature
essentially consists of the standard operations of real arith-
metic. (At least we focus on that part of the signature.) As
a special feature the signature contains the differential op-
eratordx(t)dt , which we usually denote as_x or x0.

Over such a signature� and a setX of (typed) vari-
ables one can then build the setT (�;X) of well-typed
terms. And over these terms one can then buildequa-
tions. Due to the availability of the differential operator,
these equations are actually so-calleddifferential-algebraic
equations, short: DAEs.

Such a signature� together with a setE of equations
over� is called aspecification(in formal logics sometimes
also theory presentation). As is well-known from algebra
and formal logics, such a specification in general has many
models, where the notionmodelrefers to a mathematical
structure (usually an algebra) that is conformant to the
signature and obeys the equations.1

Definition 2.1 (Specification, model)Let S = (�; E) be
a specification. The set ofmodels of this specification is
denoted as Mod(S) = f A j A j= S g. �

Note that we include in the notationA j= S not only the
validity of the equations but also the conformance to the
signature. If the signature is clear from the context, we also
writeA j= E.

3. Fixed-structure Systems
We first consider fixed-structure systems. This kind of sys-
tem corresponds essentially to the style of models that can

1 It is unfortunate that the word “model” occurs here in two conflicting
meanings. On the one hand, there is the terminology of “continuous-
system modeling” and on the other hand there is the formal-logic termi-
nology of “models” of theories. We hope that the two usages will always
be clear from the context.

46

be formulated in Modelica. These models are given as a hi-
erarchy of subsystems that are ultimately based on atomic
components. Since these subsystems are usually encapsu-
lated into some suitable context, they look like components
themselves.

Definition 3.1 A system is built up from interacting com-
ponents. Thesecomponents are in turn eithersubsystems
or atomic components.�

Modelica follows the approach of object-oriented lan-
guages and describes components and systems by way of
classes. Such a class can be seen as a “blueprint”, from
which at runtime concrete components (“objects”) are ob-
tained by instantiation. In the terminology of algebra (see
Section 2) these classes correspond to the specifications
and the components to models (in the sense of formal
logic). In the following we will often just speak of “com-
ponents” or “systems”. It will be clear from the context,
whether we are talking about the classes or about the in-
stances.

We present our semantic definition in a bottom-up fash-
ion. That is, we start from atomic components and then
compose them into larger systems.

3.1 Atomic Components

The most elementary kind of system is anatomic compo-
nent. As is illustrated by the example in Figure 2 such an
atomic component consists of parameters and constants,
variables and equations. Parameters and constants are an
important and convenient feature in practical applications,
but they do not play an important role in the semantics.
Therefore we will ignore them from now on and only con-
centrate on the variables.

m � gFy x L
ClassPendulum
PARAM Length L
PARAM Mass m
CONSTA

eleration gLength xLength yFor
e fm � �x = � xL � fm � �y = �m � g � yL � fx2 + y2 = L2

parameters

variablesV
equationsE

Figure 2. An atomic component

In general components (more precisely, the classes de-
scribing them) are embedded into the context of some en-

compassing system. According to the usual scoping prin-
ciples of programming and modeling languages this means
that the component has access to the variables of this con-
text. We refer to these variables asexternalvariables of the
component. These variables are usually not mentioned ex-
plicitly in the component but determined implicitly by the
scoping rules. In any case we need to split the set of vari-
ables into the two sets of “external” and “local” variables.

Definition 3.2 An atomic-component class is a named
triple C = (Ve; Vl; E) consisting of two disjoint setsVe
andVl of external and local variablesand a setE of hy-
brid differential-algebraic equations (DAEs). �

As mentioned in Section 2 such a class in general repre-
sents a whole set of possible models. (This is often referred
to as “underspecification”.) That is, there are many compo-
nents that fulfill the equations of the class.

In our application of continuous-system modeling the
variables of the class are interpreted as time-dependent
functions. For example, in Figure 2 the variablex stands for
a functionx(t) that gives the x-position of the pendulum at
any given point in timet.
Definition 3.3 Let C = (Ve; Vl; E) be an atomic-compo-
nent class. Amodel for this class is a structureM =(Fe; Fl) consisting of two sets of time-dependent functions,
which are in one-to-one correspondence to the setsVe andVl of variables. These functions have to fulfill the equations
in E. We denote this as usual byM j= C. By Mod(C) we
denote theset of all modelsof the classC. �

Note that the functions are completely general, that is,
they may be continuous or discontinuous or even discrete,
that is, only defined at selected time points. In this way
the set of equationsE may also contain equations that
determine the initial values.

In practice the one-to-one correspondence between the
variables and the functions is simply established by using
the same names for both, that is, e.g.x for the variable
andx(t) for the function. However, as we will see in a
moment, there may be many instances (objects) of the same
class coexisting in one system. Therefore we have many
different functions that correspond to the same variable,
namely one for each instance. In order to resolve these
conflicts systematically we assign unique identifiers to the
instances of the class (just like in Java every object of a
class is identified by a unique “reference”). The function
names are then annotated by these identifiers.

For example, if we have two componentsK1 andK2
as instances of a classC, and ifx is a variable inC, then
the two instances have functionsxK1(t) andxK2(t). In this
way an equation like_x = 2 � x of the class is interpreted
by the two model equalities_xK1(t) = 2 � xK1(t) and_xK2(t) = 2 � xK2(t).
3.2 Composition of Components

Systems are usually built by composition of atomic com-
ponents. The most elementary form of such a composition
is sketched in Figure 3. We have two classesC1 andC2
describing components with individual variable setsV1, V2

47

and equation setsE1, E2. Since they coexist in the same
context, they share the setVe of external variables. As men-
tioned earlier, these external variables are usually not de-
clared in the component but derived implicitly by the scop-
ing rules.

ClassC1(Ve)V1E1 ClassC1(Ve)V2E2E
onn
Figure 3. Composition of components

The components are linked to each other by way of
so-calledconnectors. From a semantic point of view such
connectors only contribute further equations, typically of
the form C1:e = C2:e e: potential/effortC1:f + C2:f = 0 f : flow

For the semantics this means that we have to combine
all models of the two classes, provided that they coincide
on their common external part. This set then needs to be
filtered further by the connection equations.

Definition 3.4 (Composition)Let a systemS be given,
which consists of the two classesC1 = (Ve; V1; E1) andC2 = (Ve; V2; E2) (sharing the same external variablesVe) together with a setE
onn of connection equations.
Then the models of thecombined system are derived from
the individual models as follows:

Mod(S) = (Mod(C1)
Mod(C2)) jE
onndef= fM1 [M2 j M1 2 Mod(C1);M2 2 Mod(C2);M1jVe = M2jVe ;M1 [M2 j= E
onn g�
Since we assume that the local variables are suffixed by

the component names, we can form the union of the models
without any danger of name clashes. (The operator
 is a
pushout in the sense of category theory; that is, we form
the direct product of the two sets of models while sharing
their common global parts.)

Based on this definition of the semantic meaning we also
write the composition of two components in the shorthand
form (C1
 C2) jE
onn.

This construction generalizes from two ton connected
components in the obvious way.

3.3 Subsystems

By connectingn components we obtain subsystems. But in
general such a subsystem is embedded into some encom-
passing component, which contributes both variables and
equations. This is illustrated in Figure 4.

Note that this construction is usually embedded into an
even larger context. Therefore we have the sets of variablesVe, VS , V1, . . . , Vn and the equationsES , E1, . . . , En

ClassS (Ve)VSES
Class C1V1E1

Class C2V2E2Class C3V3E3
Figure 4. A subsystem

together with the various connection equationsE
onn1 , . . . ,E
onnk . Note also that the subcomponentsC1, C2 andC3
haveVe [VS as their set of external variables.

Since the equations inES may refer to variables of
the components by using prefix notations such as_x =f(x;C1:y; C2:z), we have to respect this in the semantic
definition. That is, a class reference such asC1:y refers on
the model level toyK1(t), whereK1 is the model instance
of C1.
Definition 3.5 Let a system be given as described in Fig-
ure 4. Then the semantics is given by

Mod(S) =�
Mod(C1)
� � �
Mod(Cn)� j (ES[E
onn1[� � �[E
onnk)

Note thatVe [VS is part of the global variables of each
of theCi such that these variables are taken care of by the
operator
. �

The construction can be applied iteratively to nested hi-
erarchies of systems. Thus we obtain a bottom-up composi-
tional semantics for Modelica-like languages. This seman-
tics is equivalent to the monolithic flattening-based seman-
tics as it has been sketched in the commuting diagram of
Figure 1 in the introduction.

4. Variable-structure Systems
We want to go beyond classical Modelica and also con-
sider variable-structure systems. Such variable-structure
systems generalize the effects that can be achieved in Mod-
elica with a combination of the if- and when-constructs or
in Matlab/Simulink with the enabling blocks. Vice versa,
these constructs can be semantically explained in terms
of variable-structure systems. Non-standard Modelica sys-
tems such as Mosilab [21] or experimental designs such
as SOL [29] already provide principal implementations of
this idea.

In the fixed-structure systems discussed so far we only
need to consider a single time interval, namely thelife
spanof (the simulation of) the system. All components are
created at the beginning of this life span and the functionsx(t) are defined (and simulated) over this life span.

48

CLASSStringPendulumMass mA

eleration gLength L
SwingAngle 'For
e F�' = � gL � sin(')F = m � g �
os(') +m � L � _'2 FallLength x ; y; rVelo
ity vx ; vym � _vx = 0m � _vy = �g �mr = sqrt(x2 + y2)' = : : : F < 0 V x = : : : y = : : :vx = : : : vy = : : :

r = LV : : :
Figure 5. A simple dynamic component

However, it will frequently be the case that a component
passes through different modes, in which it exhibits differ-
ent kinds of behaviors. An example is given in Figure 6
and its specification in Figure 5. Here we consider a string
pendulum, which initially starts as a normal pendulum but
changes to a free-falling ball as soon as the forceF is less
than zero.

Figure 6. A simple dynamic component

For specifying such variable-structure systems and com-
ponents we use a notation that is oriented at so-calledHy-
brid Automata[11] which in turn can be seen as a combi-
nation ofState Charts[10] andPhase Transition Systems
[14, 15]. As can be seen in Figure 5 such a component still
has component-external variables and equations. (Actually,
in this simple example there are only parameters and con-
stants.) But now it also has modes with additional mode-
local variables and equations. Moreover, there are guarded
transitions between the modes, which also possess actions
that essentially describe, how the initial values of the next
mode are to be determined.

We will not indulge further into this slight generaliza-
tion, since we want to consider even more general settings
as described – again by an oversimplified example – in Fig-
ure 7. The specification of the two modes is sketched in
Figure 8.

Here our initial system consists of two components, a
car and a ball. The car exhibits the simple physics of a
rolling device on an inclined plane, while the ball only
contributes its mass. After hitting the block, there is only
one interesting component left, namely the ball, which now
follows the physical laws of a bouncing ball.

As can be seen in this example, each mode can contain
whole subsystems such that the overall topology of the
system under consideration may change dynamically.

Figure 7. A simple mode-changing system

ModeRollslope : Angle; dist : Length; : : :
ClassCarm : Massv; vx; vy : Speed;: : : ClassBallm : Mass

ModeBoun
eheight : Length; : : :
ClassBallm : Mass;vx; vy : Speed: : :

blo
ked VBall:vx = Car:vxBall:vy = Car:vy

Figure 8. A simple changing topology

This principle is illustrated more abstractly in Figure 9,
which shows the general setting.

A system has external variablesV , equationsE and
componentsC1; C2; C3; : : : . Moreover, it possesses modesM1;M2; : : : , which in turn have local variables, equations
and subsystems. In order not to overload the pictorial il-
lustration we have refrained in Figure 9 from drawing the
connectors between the mode-local subsystemsSMi and
the component-subsystemS. Of course, such connectors
are possible (and they are easily described in textual form).

This hierarchical structuring can be iterated over arbi-
trarily many levels.

49

ClassC V , E
ClassC1

ClassC2
ClassC3

ModeM1VM1; EM1
ClassC4 ClassC5

ModeM2VM2; EM2
ClassC6 ClassC7

ClassC8
a0 g1V a1g2V a2

Figure 9. Variable-structure systems

Definition 4.1 (Variable-structure component)A variable-
structure component is a named tupleC = (V;E; S;D),
whereV andE are sets of component-external variables
and equations,S is a subsystem, that is, a set of intercon-
nected subcomponents, andD is thedynamics, that is, a
set of modes and transitions. (The modes and transitions
will be defined more rigorously in the next sections.) Each
modeM 2 D in general comprises mode-local variablesVM and equationsEM as well as a mode-local subsystemSM of components. The dynamics has anentry point t�
and anexit point t!. �

In the remainder of this paper we will make this infor-
mal definition more precise by giving rigorous semantics
to its various features.

5. Modes and Time
The situation in a real-world system can be roughly sketched
as in Figure 10. The modes (more precisely: instances
of modes) follow each other along the time line. The
component-external variables correspond to functions that
live across the modes; an example is illustrated in Figure 10
by the thick linef(t). The mode-local variables correspond
to functions that live only during their mode; examples are
given in the figure by the thin linesg(t) andh(t).

f(t)g(t) h(t)modeM1 modeM2
T1 T2 system evolution

over timet (time)

Figure 10. Real-world semantics

Note that we do not put any additional constraints on
the functions; that is, within its realm each of the functions
may be continuous, possess discontinuities or may even
be discrete. In other words, we consider modes to be a
design concept, not a technical feature that shall handle
complications such as discontinuities.

Each mode – more precisely: eachinstanceMi of a
mode – is associated to a unique intervalTi = [t�i ; t!i)
of the time line. For reasons that will be discussed in a
moment we use half-open time intervals.

Note: In practical technical systems the transition be-
tween modes usually takes some time, in which the system
is non-observable. A typical point in case is a diode, for
which the switching fromon to off is a very short but con-
tinuous process. In the idealized mathematical treatment
such transition periods are often modeled as instantaneous
transitions (which makes them often discontinuous). It is
debatable, whether one might even allow whole transition
intervals instead of transition points, or whether one should
model such situations by transition modes. Both variations
would be mathematically feasible; but for reasons of sim-
plicity we opted for the design with left-closed intervals.

As a final preparatory remark we point out that a fixed-
structure system can be considered as a borderline case of a
variable-structure system with exactly one mode that spans
the whole life time of the system.

Definition 5.1 (Modes)Let a classC = (V;E; S;D) be
given as sketched in Figure 9. The instantiation of this
specification (at runtime) leads to the creation of a new
componentK, which is a model ofC. This component
has a lifetimeTK = [t�; t!). The start timet� is the
moment of the creation of the component, the end timet! is
determined by rules that will be discussed later (e.g. caused
by events). We requiret� < t!, i.e. we exclude components
with zero life time.

The fixed-structure partCfix = (V;E;C1; : : : Cn) of
the class is semantically defined as in Definition 3.5. Note
that the subcomponents also have the life spanTK .

The semantics of the system during amode M is de-
rived from the fixed-part semantics by composing it with
the mode-local systemSM , that is,Cfix
 SM jE
onn as
specified in Definition 3.4. HereE
onn are the additional
connection equations that link the subsystem of the mode
to the fixed-part subsystem.

50

The life span of the modeM is determined by rules that
will be explained in connection with transitions in the next
section.�

Note that this semantic definition entails a subtle aspect.
The fixed partCfix = (V;E;C1; : : : Cn) of the class in
general has a whole setMod(Cfix) of models. Since we
allow the individual modes to impose further restrictions
on the fixed-part variables inV; V1; : : : ; Vn, the behavior of
the corresponding functions varies from mode to mode.

Example: Let x 2 V be a component variable (with-
out a restricting equation) and letx1 andx2 be two local
variables of the modesM1 andM2, respectively. Let the
following equations be given:M1 : x1 = 1 M2 : x2 = 2x = x1 x = x2

Thenx(t) is a function, which is constant but different
in M1 andM2 and has a discontinuous jump between the
two modes.

6. Transitions and Events
Next we consider the actual mode transitions as illustrated
in the examples of Figure 6 and Figure 7 or more schemat-
ically in Figure 9. The principles of such a mode transition
are illustrated in Figure 11.

modeM1 modeM2guardV a
tion
T1 = [t�1 ; t�) T2 = [t�; t!2)
Figure 11. Semantics of transitions

During the execution of the model each mode instance
is associated to a time interval. In the situation of Figure 11
we have the two intervalsT1 = [t�1 ; t�) andT2 = [t�; t!2).
The start point ofT1 and the end point ofT2 are of no
interest here. The focus of our attention is the pointt�,
which represents the transition between (the instances of)
the two modes.

Definition 6.1 (Transition point) Let two modesM1 andM2 with a transition (guard V a
tion) be given as
sketched in Figure 11. During runtime the transition pointt� between (instances of) these two modes is defined as
follows: t� is the smallest time instance greater than the
entry pointt�1 of modeM1 such thatguard(t�) = true
andguard(�) = false for all � with t�1 < � < t�. Then,T1 = [t�1 ; t�) and the entry point of modeM2 is given byt�2 = t�. �

Since modes shall not degenerate to zero length, we
have the conditiont�1 < t� < t!2 .

[18] provides a nice discussion of many aspects of such
transitions from the point of view of physics. The design
with half-open intervals ensures a well-defined solutionx(t) for all times t. Nevertheless, there are cases where
the left-closedness may have to be relaxed (see also the

discussion in [18]). However, these are special cases that
certainly have to be dealt with by the solvers, but not an
issue of ideal semantics.

Remark 1: The case of the immediate re-firing in the
case of self-loops can be repaired by introducing the con-
cept ofsuperdense time[15]. (A typical example for such a
self-loop is provided by the “bouncing ball”.) Here the time
is not onlyR but the productR�N , where the second com-
ponent could be interpreted as the number of the “clock”
that is responsible for the event. Then each occurrence of
the eventy = 0 in the bouncing-ball example could be
associated to another clock. Even though this idea of su-
perdense time may turn out helpful in some situations, we
currently refrain from introducing it and try to work with
our simpler model.

Therefore we would rather consider the immediate re-
firing as a modeling error (analogously to infinite while
loops in programming). For instance, in the bouncing-ball
example the guard should not only bey = 0 but y =0 ^ vy < 0. The transition action (see below) has to setvynew = �vyold . When the velocity is zero, the mode
should be exited.

Remark 2: There is the possibility ofconflicting guards.
That is, two guardsg1 and g2 may fire at the same in-
stantt�. There are several options for treating this situa-
tion. One could let the system choose nondeterministically
between the transitions. One could avoid this nondetermin-
ism by enforcing priorities between the transitions (like in
Matlab/Simulink/Stateflow). Or one could require the dis-
jointness of the guards and report an error, when two of
them fire simultaneously. This is a topic for language de-
sign. Since each of these options is compatible with our
semantic concepts, we can ignore the issue here. We note
in passing that there are attempts to utilize the idea of su-
perdense time also for this issue.

So far we have only considered the guards that fire the
transitions and thus determine the transition pointt�. We
still need to define the meaning of theaction part of the
transition. The purpose of these actions is to provide the
initial valuesfor the next mode. There are various syntactic
means for achieving this effect.

Example: Consider again the bouncing-ball example.
When the ball hits the ground, the vertical velocityvy is
reversed and deminished by some constant factor
. This
could be written in a Pascal-like programming style asvy := �
 � vy. Or we could use an equation-style notation
like vynew = �
�vyold, which would necessitate notations
for “old” and “new” (which is implicitly contained in the
program-style notation by the occurrence ofvy on the left
or right side of the assignment). Again, the notation is an
issue of language design and thus does not concern us here.

But we need to give a semantic meaning toxold andxnew for all variablesx occurring inM1 and/orM2.
Definition 6.2 (Transition action) Consider the scenario
of Definition 6.1. Theaction part of the transition de-
scribes a computation that uses (implicitly or explicitly)
valuesxold and xnew for certain variablesx. Depend-
ing on the application, we can definexold = x(t�) or

51

xold = limh!0 x(t� � h). xnew is computed as a func-
tion of xold. Thenx = xnew is used as the initial-value
equation for the differential-algebraic system in modeM2.�

This completes the compositional definition of the
“ideal” semantics of Modelica-style variable-structure sys-
tems.

Part II Simulation Semantics

7. Numerical Integration and Solvers
The ideal semantics lives in the realm of the real numbersR with infinite precision and infinitely accurate computa-
tions. But in reality we have to make do with the limita-
tions of computers, where one struggles with floating-point
arithmetic and its rounding errors, with solver techniques
realized in packages like DASSL [2] or RADAU5 [9], with
causalization and index reduction and so forth. This leads
to a different kind of semantics that we baptize “solver se-
mantics” or “simulation semantics”.

The reason for dealing with this question is the current
situation in modeling languages such as Matlab/Simulink
or Modelica. The specification documents of these lan-
guages often switch back and forth between concepts that
we refer to as “ideal semantics” and the difficulties intro-
duced by the computer-related limitations. Hence it is not
always clear, which aspects describe fundamental seman-
tic concepts and which aspects are actually due to short-
comings of certain solver methods. Sometimes one even
gets the impression that certain statements actually address
specific features of certain compilers or compilation tech-
niques.

7.1 Solver Issues

Solver semantics differs from the ideal semantics primarily
in two respects: discretization and finite precision.

1. Discretization. Functions over the continuous time do-
main R are replaced by functions over discrete time
points ti, whereti+1 = ti + hi for some discretiza-
tion step sizehi, starting at the initial time pointt0; the
step size may be uniform or varying.

It should be noted that the principle of discretization is
still compatible with ideal real-number arithmetic overR. In the Haskell-oriented literature this is usually mod-
eled bystreamsof sample valuesf(ti). For example, in
[28] it is shown that this approximation is – under cer-
tain constraints – faithful in the limit, as the step size
goes to zero. (This is not really surprising in the light of
century-old work by mathematicians like Cauchy and
others, since their techniques are essentially translated
here into Haskell-speak.)

2. Precision. The real numbersR are replaced by ma-
chine numbers of limited size, usuallyfloat or at best
double, on some processors even by fixed-point emu-
lations of floating-point numbers. This limited precision
combined with the need for not only finite but actually
efficient computation leads to several kinds of errors:

� The use of limited machine numbers leads to the
well-knownrounding errors.� The numerical solution~x obtained by the solver is
only an approximation of the solutionx(t) at dis-
crete time points. This leads todiscretization errors.� Computations such as integration or Newton itera-
tion for finding zero values are only executed with
certain (fixed or variable) step sizes and terminated
after a finite number of steps. This also leads todis-
cretization and approximation errors.� Parameters and input values generally come with a
certain error. For example, neither� nor the gravityg have their exact values. This in addition leads to
modeling errors.� Event detection for variable-structure systems usu-
ally comprises interpolation of the discrete solution~x between mesh pointsti andti+1, and a root finding
procedure. Again, this introduces an error.

We cannot do away with the intrinsic difficulties of
Numerics. In particular when dealing with differential-
algebraic systems there are a number of additional diffi-
culties that have to be dealt with, e.g. the problem of order
reduction of numerical methods and drift-off of the numer-
ical solution due to high index problems or the problem
of inconsistencies of initial values. A number of elaborate
methods, including numerical integration, index reduction
and consistent initialization have been developed over the
last decades to deal with these problems, see [2, 9, 13].

The purpose of (this section of) our paper is not to in-
dulge into these numeric issues. Rather we accept their ef-
fects as a given fact and study the impacts that this obser-
vation has for our semantic considerations.

We should point out quite clearly that this is all work in
progress and that the following is but a sketch of a research
direction.

7.2 Uncertainty

In order to get a grasp on these difficulties we employ the
notion ofuncertainty. That is, all values are considered to
be “uncertain”. This applies to all kinds of values that are
computed in the simulation, also including the time pointst�. For example, if we compute the so-called zero crossing
in the bouncing-ball example, we obtain the pointt� in
time, at which the guardy = 0 becomes true and fires.
However, this is only so in the ideal semantics. In the solver
semantics we have an uncertain value~y which leads to an
uncertain time point~t�.

As mentioned before, we are not interested in the Nu-
merics behind this uncertainty. Uncertain values may be
represented as simple intervals of real numbers or they may
be represented as intervals with a, say, Gaussian distribu-
tion. One may even use ideas of fuzzy logic for such a rep-
resentation. The challenge in Numerical Mathematics is to
come up with algorithms and methods that allow us to in-
fer the uncertainty of the result of a computation from the
inputs of the computation.

52

In the following we presume the existence of such a no-
tion of uncertainty. Then we can derive the solver semantics
along the same lines as the ideal semantics, but now using
the uncertain values~x and their computations in the place
of the real valuesx, i.e.,~x = x� ! for a small uncertainty!.

Then, the solver semantics are defined by the signature~� containing float or double types and floating point op-
erations (introducing rounding errors) and the set of vari-
ables ~X with corresponding uncertainties contained in the
set ~W . Let ~E be the corresponding set of equations, then for
a specification~S = (~�; ~E) the set of models is denoted by
Mod(~S) = f ~A j ~A j= ~S g and a component is defined by~C = (~V ; ~W; ~E). Composition of components and of sub-
systems can be defined in an analogous way as in Section 3.
The same holds true for the definition of variable-structure
components.

7.3 Semantics and Uncertainty

If we analyze the definitions in the previous sections, it
is easily seen that the difference between the ideal and
the solver semantics only plays a role at a few points. To
begin with, all composition operators are not affected by
the differences in the two semantics. What needs to be
considered are the following issues:� The fulfillment of equations, that is(~A j= ~E) in the

structure ~A is influenced by uncertainty. The meaning
of an equation~x = ~y as compared tox = y is uncer-
tain again. To analyze such an uncertain equation math-
ematically interval arithmetic can be employed. Since
all our constructions are defined relative to the relation
“is-a-model-of” (short: “j=”), there is no fundamental
problem here.� The action parts of the mode transitions are analogous to
the above equations, since we essentially need to solve
an uncertain equation of the form~xnew = f(~xold).� The most severe problem concerns theguards. Here we
run into problems, since our definition of the transition
point t� now has to be interpreted with uncertainty, i.e.,~t� is defined by~g(~t�) = true and ~g(�) = false for
all � with ~t�1 < � < ~t�. Since both, the guard function~g and~t� are blurred, the whole interval~T1 = [~t�1 ; ~t�)
is blurred. This could have major effects. For example,
in the case of two very close events the uncertainty
could mean that the later event actually fires before
the earlier one. Or two events that in reality happen
simultaneously are considered as being separate due to
uncertainty effects. As can be seen in the bouncing-
ball example the events will (towards the end of the
simulation) be so close together that – due to uncertainty
– they can no longer be distinguished. (This leads in
many animated simulations to the funny effect that in
the end the ball breaks through the surface and travels
towards the center of the earth.)

The question, if the solver semantics are faithful, i.e.
converge to the ideal semantics, when the discretization
step size tends to zero, strongly depends on the given model

and on the employed numerical solver. Statements under
which conditions a specific solver semantics converges to
its ideal semantics have to be derived for individual cases.

The most challenging problems occur in variable-struc-
ture systems: besides the problem of robust treatment in the
case of blurring event times one has to ensure that each in-
stance of a mode lives long enough since the event time~t�
is determined as zero crossing in the discretization interval[ti; ti+1℄. Concerning DAEs, in variable-structure systems
not only the initial values have to be ensured to be consis-
tent with the algebraic constraints, but also consistency of
each reinitialization after events has to be guaranteed. We
will not go further into the details of these problems in this
paper. For the analysis and numerical treatment of hybrid
DAEs we refer to [17].

These problems do exist and there is no general mech-
anism to avoid them. As a matter of fact, most of these ef-
fects need an application-dependent individual treatment.
What we suggest is that in the semantic specification of
modeling languages these solver-related effects are clearly
separated from the other semantic concepts. Moreover, it
should be discussed what kinds of language constructs
could be added such that the modeler has the capability
to describe these uncertainty effects appropriately.

8. Conclusion
We have presented a compositional semantics for essential
parts of Modelica-style modeling languages. Such a com-
positional semantics is a mandatory prerequisite for a clean
design of conceptual ideas such as variable-structure sys-
tems or compilation paradigms such as separate compila-
tion.

Moreover, it is important to provide a clean separation
of the basic modeling principles of a language from the ef-
fects that are caused by the limitations of numerics. Clearly,
a deeper analysis of the latter issue is a field for extensive
research in the realm of Numerical Analysis. This separa-
tion is strongly motivated by the following consideration
(as was pointed out explicitly by one of the reviewers): The
possibility to handle structural changes in a model and the
ease of doing this depends on the computational framework
that is used. By separating the semantics of the model from
that of the computational framework, different frameworks
can be applied to the same model, thus allowing one to re-
alize simulators for a larger set of structural changes in the
future.

References
[1] Egidio Astesiano, Michel Bidoit, Hélène Kirchner, Bernd

Krieg-Brückner, Peter D. Mosses, Donald Sannella, and An-
drzej Tarlecki. CASL: the common algebraic specification
language.Theor. Comput. Sci., 286(2):153–196, 2002.

[2] Kathryn E. Brenan, Stephen L. Campbell, and Linda R.
Petzold. Numerical Solution of Initial-Value Problems in
Differential Algebraic Equations, volume 14 ofClassics in
Applied Mathematics. SIAM, Philadelphia, PA, 1996.

[3] David Broman. Meta-Languages and Semantics for
Equation-Based Modeling and Simulation. PhD thesis,

53

Linköping University, 2010.

[4] David Broman and Peter Fritzson. Higher-Order Acausal
Models.Simulation News Europe, 19(1):5–16, 2009.

[5] Paul Caspi, Daniel Pilaud, Nicolas Halbwachs, and John
Plaice. Lustre: A declarative language for programming
synchronous systems. InPOPL, pages 178–188, 1987.

[6] George Giorgidze and Henrik Nilsson. Embedding a Func-
tional Hybrid Modelling language in Haskell. InRevised
selected papers of the 20th international symposium on
Implementation and Application of Functional Languages,
Hatfield, England, volume 5836 ofLecture Notes in Com-
puter Science. Springer, 2008.

[7] George Giorgidze and Henrik Nilsson. Mixed-level
embedding and JIT compilation for an iteratively staged
DSL. In Proceedings of the 19th Workshop on Functional
and (Constraint) Logic Programming (WFLP’10), pages
19–34, 2010.

[8] Vineet Gupta, Thomas A. Henzinger, and Radha Ja-
gadeesan. Robust timed automata. InProceedings of
the First InternationalWorkshop on Hybrid and Real-time
Systems (HART 97), Lecture Notes in Computer Science
1201, pages 331–345, 1997.

[9] Ernst Hairer and Gerhard Wanner.Solving Ordinary
Differential Equations II: Stiff and Differential-Algebraic
Problems. Springer-Verlag, Berlin, second edition, 1996.

[10] David Harel. Statecharts: A visual formalism for complex
systems.Sci. Comput. Program., 8(3):231–274, 1987.

[11] Thomas A. Henzinger. The theory of hybrid automata. In
LICS, pages 278–292, 1996.

[12] Kestrel Institute, 3260 Hillview Ave., Palo Alto, CA
94304 USA. Specware System and documentation, 2003.
http://www.specware.org/.

[13] Peter Kunkel and Volker Mehrmann.Differential-Algebraic
Equations — Analysis and Numerical Solution. EMS
Publishing House, Zürich, Switzerland, 2006.

[14] Oded Maler, Zohar Manna, and Amir Pnueli. From timed
to hybrid systems. InREX Workshop, pages 447–484, 1991.

[15] Zohar Manna and Amir Pnueli. Verifying hybrid systems.
In Hybrid Systems, pages 4–35, 1992.

[16] Alexandra Mehlhase. Varying the level of detail during
simulation. Into appear in Proc. ASIM 2011, 2011.

[17] Volker Mehrmann and Lena Wunderlich. Hybrid systems
of differential-algebraic equations – analysis and numerical
solution.Journal of Process Control, 19:1218–1228, 2009.

[18] Pieter J. Mosterman. Hybrid dynamic systems: mode
transition behavior in hybrid dynamic systems. In Chick
S, P. J. Sanchez, D. Ferrin, and D. J. Morrice, editors,Proc.
2003 Winter Simulation Conference, pages 623–631, 2003.

[19] Henrik Nilsson and George Giorgidze. Exploiting structural
dynamism in functional hybrid modelling for simulation of
ideal diodes. InProceedings of the 7th EUROSIM Congress
on Modelling and Simulation, Prague, Czech Republic.
Czech Technical University Publishing House, 2010.

[20] Henrik Nilsson, John Peterson, and Paul Hudak. Functional
hybrid modeling. InProceedings of 5th Int. Workshop on
Practical Aspects of Declarative Languages, volume 2562
of Lecture Notes in Computer Science, pages 376–390.

Springer, 2003.

[21] Christoph Nytsch-Geusen, Andre Nordwig, Thilo Ernst,
Peter Schwarz, Matthias Vetter, Christoph Wittwer, Andreas
Holm, Jürgen Leopold, Gerhardt Schmidt, Ulrich Doll, and
Alexander Mattes. MOSILAB: Development of a Modelica
based generic simulation tool supporting model structural
dynamics. InProceedings of the 4th International Modelica
Conference, 2005.

[22] Dusko Pavlovic, Peter Pepper, and Douglas R. Smith.
Evolving specification engineering. InAMAST, pages 299–
314, 2008.

[23] Hridesh Rajan and Gary T. Leavens. Ptolemy: A language
with quantified, typed events. InECOOP, pages 155–179,
2008.

[24] Neil Sculthorpe and Henrik Nilsson. Keeping calm in the
face of change: Towards optimisation of FRP by reasoning
about change.Journal of Higher-Order and Symbolic
Computation (HOSC), 24(1), 2011.

[25] Dirk A. van Beek, Michel A. Reniers, Jacobus E. Rooda,
and Ramon R. H. Schiffelers. Foundations of an interchange
format for hybrid systems. In Alberto Bemporad, Antonio
Bicchi, and Giorgio Butazzo, editors,10th International
Workshop on Hybrid Systems: Computation and Control,
volume 4416 ofLecture Notes in Computer Science, pages
587–600. Springer, 2007.

[26] Dirk A. van Beek, Michel A. Reniers, Jacobus E. Rooda,
and Ramon R. H. Schiffelers. Revised hybrid system
interchange format. Technical Report HYCON Deliverable
D3.6.3, HYCON NoE, 2007.

[27] Dirk A. van Beek, Michel A. Reniers, Jacobus E. Rooda,
and Ramon R. H. Schiffelers. Concrete syntax and
semantics of the compositional interchange format for
hybrid systems. InProceedings of the 17th IFAC World
Congress (IFAC’08) July 11-16, 2008, Seoul, Korea, 2008.

[28] Zhanyong Wan and Paul Hudak. Functional reactive pro-
gramming from first principles. InPLDI 2000: Symposium
on Programming Language Design and Implementation,
pages 242–252, 2000.

[29] Dirk Zimmer. Equation-Based Modeling of Variable
Structure Systems. PhD thesis, ETH Zürich, 2010.

54

Simulation and Model Compilation

LIEDRIVERS — A Toolbox for the Efficient Computation of
L ie Derivatives Based on the Object-Oriented Algorithmic

Differentiation Package ADOL-C

Klaus Röbenack Jan Winkler Siqian Wang

Technische Universität Dresden, Faculty of Electrical and Computer Engineering, Institute of Control Theory,
{klaus.roebenack,jan.winkler,siqian.wang}@tu-dresden.de

Abstract
Lie derivatives are widely used in mathematics and physics.
They are usually computed symbolically using computer
algebra software. This symbolic computation might fail for
very complicated expressions. Moreover, symbolic differ-
entiation becomes more difficult if the function to be differ-
entiated is not described explicitly as a function but by an
algorithm. This is a situation occuring quite often in model-
ing languages. In this contribution we present an approach
for calculating Lie derivatives based on algorithmic differ-
entiation using the software package ADOL-C avoiding the
drawbacks of symbolic differentiation.

Keywords Lie derivatives, algorithmic differentiation

1. Introduction
Lie derivatives play an important role in mathematics as
well as physics [18, 26, 43]. Many methods in control
engineering and system theory require Lie derivatives as
well [20,25]. To get an intuitive understanding, Lie deriva-
tives can be considered as total derivatives of certain fields
along the solution of a differential equation [23].

Assume we have described a physical system as lumped
parameter model resulting in a set of nonlinear ordinary
differential equations

ẋ(t) = F (x,u), y =H(x,u) (1)

with the statex, the inputu, the outputy and appropri-
ate mapsF andH. If system (1) is formulated in terms
of a modeling language, this description is usually only
employed for simulation and optimization. However, op-
erator overloading techniques known from object-oriented
programming allow the simultaneous usage of the descrip-
tion of (1) for control-related tasks such as controller and
observer design [32]. More precisely, several algorithms in

4th International Workshop on Equation-Based Object-Oriented
Modeling Languages and Tools. September, 2011, ETH Zürich, Switzerland.

Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp/056/

EOOLT 2011 website:
http://www.eoolt.org/2011/

controller design rely on Lie derivatives [20,25]. Similarly,
several approaches for observer design can be formulated
in terms of Lie derivatives [11,14,38]. Using operator over-
loading, these derivatives can efficiently be computed using
an alternative differentiation technique calledalgorithmic
differentiation[17]. We present a toolbox to carry out these
calculations. Our implementation is based on the widely
used algorithmic differentiation package ADOL-C (Auto-
matic Differentiation by OverLoading in C++), cf. [16,46].

The paper is structured as follows. In Section 2 we re-
mind the reader of some definitions concerning Lie deriva-
tives. Section 3 addresses the calculation of derivatives.
The toolbox is presented in Section 4. The application of
Lie derivatives in nonlinear control is the topic of Section 5.
We use the toolbox for an example system in Section 6 and
draw some conclusions in Section 7.

2. Basic Definitions from Differential
Geometry

2.1 Tensors, Fields and Flows

First, we would like to recall some facts from differen-
tial geometry [3, 19, 23]. We restrict ourselves to then-
dimensional real vector spaceV = R

n. The elements of
a vector space arevectors, and we represent the elements
of V as column vectors. We denote the set of linear maps
from the vector spaceV to another vector spaceW by
L(V,W). Formally, the dual space ofV, denoted byV∗, is
the set of all linear functionals overV, i.e.,V∗ = L(V,R).
The dual spaceV∗ is also a vector space, whose elements
are calledcovectors. Due to Riesz’s representation theorem
we can represent the covectors by row vectors.

A multi-linear map (i.e., a map that is linear separately
in each variable)

(V∗)p × V
q → R (2)

is called ap-covariant q-contravariant tensor, or (p, q)-
tensor. The setVp

q of (p, q)-tensors overV is a vector space
itself. In case ofp = q = 0 we setV0

0 ≡ R, i.e., a
(0, 0)-tensor is a scalar. In case ofp = 0 andq = 1 the
map (2) simplifies to a linear mapV → R, which belongs
by definition to the dual space ofV, i.e.,V0

1 = V
∗. Hence,

(0, 1)-tensors are covectors. In case ofp = 1 andq = 0

57

the map (2) simplifies to another linear mapV∗ → R,
which belongs to the dual space(V∗)∗ of the dual spaceV∗.
Since the vector spaceV is finite dimensional, the so-called
bidual space is isomorphic to the original vector spaceV,
i.e., V1

0 = (V∗)∗ ∼= V. Therefore, the(1, 0)-tensors are
vectors.

The following consideration can be carried out for
smooth manifolds. Since the paper deals mainly with com-
putational issues, which will always be carried out in lo-
cal coordinates, we can restrict ourselves to an open subset
M ⊆ V of Rn. The tangent spaceat x ∈ M, denoted
by TxM, is isomorphic toV, i.e.,TxM ∼= V. (See [23,
Chap. 3] for the construction of the geometric tangent space
of Rn.) The dual space ofTxM is calledcotangent space
and denoted byT ∗

xM
∼= V

∗. In the paper, we will deal
with the following special cases: IfS(x) ∈ TxM

0
0
∼= R,

S is a scalar field. If S(x) ∈ TxM
1
0 = TxM ∼= V, S

is a vector field. If S(x) ∈ TxM
0
1 = T ∗

xM
∼= V

∗, S is
a covector field. Covector fields are also calleddifferential
formsof degree1 (1-forms). An exactdifferential form is
the gradient of a scalar field.

A vector fieldf , which maps each pointx ∈ M to the
corresponding tangent spacef(x) ∈ TxM (see Figure 1),
can be associated with the differential equation

ẋ(t) = f (x(t)) . (3)

The flow ϕt of the vector fieldf is the general solution
of (3), i.e., the curveϕt(x0) is the solution of (3) with
the initial conditionx(0) = x0 ∈ M. Moreover, the
flow is a one-parametric family of local diffeomorphisms
onM having the structure of a transformation group with
ϕ0(x0) = x0 andϕs(ϕt(x0)) = ϕs+t(x0) for all suffi-
ciently small|t|, |s|. The flow of (3) has the following series
expansion:

ϕt(x) = x+ f(x)t+ 1
2f

′(x)f (x) +O(t3) , (4)

which reflects the fact thatf(x) is tangent toϕt(x) in the
pointx.

V = R
n

M
f(x)

x

TxM

Figure 1. Tangent space and vector fieldf .

2.2 Lie Derivatives

In this section we will define Lie derivatives of scalar,
vector and covector fields.

2.2.1 Lie Derivative of a Scalar Field

Consider the differential equation (3) with the vector
field f : M → R

n and the associated flowϕt. TheLie
derivative of the scalar fieldh : M → R is defined as

Lfh(x) =
d

d t
h(ϕt(x))

∣
∣
∣
∣
t=0

. (5)

Using the series expansion (4) of the flow, with

Lfh(x) =
d

d t
h(ϕt(x))

∣
∣
∣
∣
t=0

= h′(ϕt(x))
d

d t
ϕt(x)

∣
∣
∣
∣
t=0

= h′(x)f (x) (6)

we obtain the explicit computation rule (6) as the scalar
product between the gradientdh = h′ and the vector
field f . In other words:Lfh is the directional derivative
of h in the direction off (see Figure 2). The Lie derivative
Lfh is again a scalar field. Therefore, we can repeat this
process and define multiple Lie derivatives along the same
vector fieldf by

Lk+1
f h(x) = LfL

k
fh(x) =

∂Lk
fh(x)

∂x
f(x) (7)

with L0
fh(x) = h(x).

t

h(x)

Lfh(x)

h(ϕt(x))

R

0

Figure 2. Lie derivativeLfh of a scalar fieldh

2.2.2 Lie Derivative of a Vector Field

We need some preliminary remarks before we introduce
the Lie derivative of a vector field. Consider a smooth map
ψ : M → M, which maps a pointx ∈ M into the
point ψ(x) ∈ M. The differential of push-forwardis a
linear map between the associated tangent spacesψ

∗
:

TxM → Tψ(x)M, which can be represented by the Jaco-
bian matrixψ′ of ψ. If ψ is a diffeomorphism, the inverse
mapψ−1 of ψ exists and is continuously differentiable.
Then, the linearization of the inverse mapψ−1 defines an-
other mapψ∗ := ψ−1

∗
: Tψ(x)M → TxM calledpull-

back. Clearly, the Jacobian of the inverse map is the inverse
Jacobian matrix of the original map. In case ofψ = ϕt, we
obtain from (4) a series expansion of push-forward

ϕt∗(x) = I + f ′(x)t+O(t2) , (8)

where I denotes the identity matrix. Due to the group
property, the inverse map of the flow is given as the flow in
reverse time, i.e.,ϕ−1

t = ϕ
−t. This impliesϕ∗

t = ϕ−1
t∗ =

ϕ
−t∗ having the series expansion

ϕ∗

t (z) = ϕ−t∗(z) = I − f ′(z)t+O(t2) (9)

58

with z = ϕt(x).
We are now able to introduce theLie derivative of a

vector fieldg alongf as

Lfg(x) = adf g(x) =
d

d t
ϕ∗

tg(ϕt(x))

∣
∣
∣
∣
t=0

. (10)

This Lie derivative is calledLie bracketand often denoted
by adf g = [f , g]. Using the series expansions (4) and (9)
we obtain

adf g(x) =
d

d t
ϕ∗

tg(ϕt(x))

∣
∣
∣
∣
t=0

=
d

d t
ϕ

−t∗g(ϕt(x))

∣
∣
∣
∣
t=0

= lim
t→0

ϕ
−t∗g(ϕt(x))− g(x)

t
(11)

= g′(x)f (x)− f ′(x)g(x) . (12)

The reason for the seemingly complicated construc-
tion (10) becomes apparent in Eq. (11). In general, the
derivative of a function is defined as the limit of the dif-
ference quotient. Formally, the two termsg(x) ∈ TxM
andg(ϕt(x)) ∈ Tϕ

t
(x)M required for the difference quo-

tient belong to different vector spaces. Using pull-back we
mapg(ϕt(x)) back fromTϕ

t
(x)M to TxM and obtain

ϕ∗

tg(ϕt(x)) ∈ TxM. Then, we can compute the differ-
ence in (11) since both objects lie in the same tangent
space.

The Lie derivativeadf g of a vector field is a vector field
again. Higher order Lie derivatives of a vector fieldg are
recursively defined by

adk+1
f g(x) = [f , adkf g](x) (13)

with ad0f g = g(x).

2.2.3 Lie Derivative of a Covector Field

Consider a smooth mapψ : M → M with its push-
forwardψ

∗
: TxM → Tψ(x)M and a covector fieldω,

i.e.,ω(x) ∈ T ∗

ψ(x)M for x ∈ M. Thedualor adjointmap
ψ∗ : Tψ(x)M → TxM defined by〈ψ∗ω, z〉 = 〈ω,ψ

∗
z〉

for all z ∈ TxM andω(x) ∈ T ∗

ψ(x)M is calledpull-back
of the covector fieldω. Forψ = ϕt we obtain from (4)
the following series expansion of pull-back of the covector
fieldω for the flow:

ϕ∗

tω(x) = ω(x)ϕt∗(x)
= ω(x)(I + f ′(x)t+O(t2)) .

(14)

TheLie derivative of the covector fieldω is defined by

Lfω(x) =
d

d t
ϕ∗

tω(ϕt(x))

∣
∣
∣
∣
t=0

. (15)

The definitions (10) and (15) of the Lie derivatives of a
vector and a covector field look exactly the same. How-
ever, pull-back acts on different mathematical objects (on
a vector field in (10) and on a covector field in (15)) and
therefore on different spaces.

Using the series expansions (4) and (14) we obtain by

Lfω(x) =
d

d t
ϕ∗

tω(ϕt(x))

∣
∣
∣
∣
t=0

=
d

d t
ω(ϕt(x))ϕt∗(ϕt(x))

∣
∣
∣
∣
t=0

= ω(x)f ′(x) + fT (x)

(
∂ωT (x)

∂x

)T

(16)

an explicit computation rule for the Lie derivative (15).
As mentioned in Section 2.1, the gradientdh of a scalar

field h is a covector field. Therefore, the Lie derivative
Lf dh can be calculated by (16) withω = dh. Alterna-
tively, the Lie derivativeLf dh can also be obtained from
the gradient of the Lie derivativeLfh:

Lf dh(x) = dLfh(x) . (17)

Eq. (17) can be stated as follows: The exterior derivative
commutes with the Lie derivative.

3. Computation of Derivatives
3.1 General Differentiation Techniques

The(Fréchet) derivativeof a smooth mapF : M → R
m in

the pointx0 ∈ M ⊆ R
n is a linear mapA ∈ L(Rn,Rm),

for which

F (x) = F (x0) +A(x− x0) + o(‖x− x0‖)

holds for allx in a neighbourhoud ofx0. The linear mapA
can be identified with anm × n-matrix A = F ′(x) ∈
R

m×n, the so-calledJacobian matrix.
In this paper we assume that the mapF : M → R

m

is given as a computer program (such as a function, pro-
cedure, method etc.), i.e.,F is described as a finite se-
quence of elementary functions and operations. The deriva-
tive of F can be computed systematically using elemen-
tary differentiation rules in combination with the chain rule.
This differentiation process can be carried out by computer
algebra systems such as MATHEMATICA [48], MAPLE [10]
or MAXIMA [2]. The result of thissymbolic computationis
a symbolic expression.

The computer algebra system might not be able to carry
out a symbolic differentiation if the function under consid-
eration is very complicated. Moreover, symbolic compu-
tation is usually not (directly) possible if the function to
be differentiated is not given explicitly but by algorithms
containing branches, loops and subroutines. Moreover, the
sizes of symbolic expressions usually increase significantly
w.r.t. the order of the derivative.

Another widely used method to compute derivative val-
ues isnumeric differentiationby divided differences. De-
pending on the step size, the resulting derivative will be
affected by truncation or cancellation errors. Even for an
optimal step size, the derivative value will have a signifi-
cantly reduced precision compared to the function value.

The disadvantages of symbolic and numeric differen-
tiation can be circumvented by an alternative technique

59

calledalgorithmic or automatic differentiation[17]. Sim-
ilar to symbolic differentiation, elementary differentiation
rules are applied systematically. In contrast to symbolic dif-
ferentiation, all intermediate results are not symbolic ex-
pressions but numerical values, i.e., the intermediate val-
ues are immediately evaluated and stored as floating point
numbers.

3.2 Symbolic Computation of Lie Derivatives

Symbolically, Lie derivatives of scalar, vector and covec-
tor fields are computed based on Eqs. (6), (12) and (16).
Hence, one needs to compute gradients or Jacobian ma-
trices. These operations are well-supported by the usual
computer algebra systems. For example in MAPLE, the Lie
derivative (6) of the scalar fieldh along the vector fieldf
can be implemented as follows:

wi th (l i n a l g) ;
L i e S c a l a r :=proc (f , h , x)

m u l t i p l y (j a c o b i a n (h , x) , f)
end_proc;

Higher order Lie derivatives can be calculated easily us-
ing finite recursions such as (7) or (13). The symbolic com-
putation of Lie derivatives was implemented in [7, 22, 27,
36] for MATHEMATICA and in [12,21,24,37] for MAPLE.
However, the symbolic calculation of Lie derivatives is not
restricted to commercial systems. The open source com-
puter algebra system MAXIMA contains toolboxes for ten-
sor calculus, which were developed for computations in
general relativity and support the calculation of arbitrary
types of Lie derivatives [42]. Alternatively, the Lie deriva-
tives (6), (12) and (16) can also be implemented in MAX -
IMA using the build-in linear algebra package. A possible
implementation of the Lie derivative (6) reads as follows:

l oad (" l i n e a r a l g e b r a ") ;
L i e S c a l a r (f , h , x) := j a c o b i a n ([h] , x) . f ;

3.3 Algorithmic Differentiation

3.3.1 Forward Mode

Assume we represent a vector-valued functionF : M →
R

m, M ⊆ R
n with

z = F (x) (18)

by appropriate C++ code. Input valuesx0 ∈ M, output
values (i.e., function values)z0 ∈ R

m as well as interme-
diate values are stored as floating point numbers, usually
with the build-in typedouble. Consideringx andz as
curves, we can compute the time derivative of (18) using
the chain rule:

ż = F ′(x) ẋ . (19)

For a given directionẋ of Rn we obtain the directional
derivativeż of F . The tangent valuėz can be obtained cal-
culating the tangent values of all intermediate values occur-
ring during the function evaluation. We repleace the float-
ing point typedouble by a new class, e.g.ddouble,
containing the function value and additionally the deriva-
tive value:

c l a s s ddouble
{

p u b l i c :
double v a l ; / / f u n c t i o n va lue
double der ; / / d e r i v a t i v e va lue

} ;

All differentiable functions (e.g.sin, cos, exp, log) that
act on the typedouble must be replaced by appropriate
methods for the classddouble such that in addition to
the function value one also computes the derivative value
using elementary differentiation rules in connection with
the chain rule:

ddouble s i n (ddoub le x)
{

ddoub le z ;
z . v a l = s i n (x . v a l) ;
z . de r = x . de r∗ cos (x . v a l) ;

}

In a similar way we have to provide the usual binary oper-
ation (e.g.+, −, ∗, /) for the new classddouble. In case
of multiplication we also have to take the product rule into
account:

ddouble operator ∗ (ddoub le x , ddoub le y)
{

ddoub le z ;
z . v a l = x . v a l∗y . v a l ;
z . de r = x . v a l∗y . de r +y . v a l∗x . de r ;

}

This approach to algorithmic differentiation is calledfor-
ward modebecause the program flow of function evalua-
tion and derivative computation have the same orientation.

3.3.2 Reverse Mode

In the reverse mode, the elementary statements are differ-
entiated in reverse order, i.e., from the end to the beginning
of the program. Therefore, the implementation is much
more complicated. The reverse mode can be interpreted as
a generalization of the backpropagation algorithm known
from neuronal networks [47].

Mathematically, for a given covector (i.e., row vector)
z̄ ∈ (Rm)∗, the reverse mode yields a covectorx̄ ∈ (Rn)∗

with
x̄ = z̄ F ′(x) , (20)

which can be seen as a weighted derivative. Form < n,
especially in case of a functional, i.e.,m = 1, the reverse
mode is more efficient than the forward mode. Therefore,
the reverse mode is widely used in optimization [15].

3.3.3 Taylor Arithmetic

Assume the functionF : M → R
m is sufficiently smooth

to map a truncated Taylor series

x(t) = x0 + x1t+ x2t
2 + · · ·+ xdt

d +O(td+1) (21)

with x0 ∈ M ⊆ R
n, x1, . . . ,xd ∈ R

n into a curve

z(t) = F (x(t))
= z0 + z1t+ z2t

2 + · · ·+ zdt
d +O(td+1)

(22)

60

with z0, . . . , zd ∈ R
d. Clearly, each Taylor coefficientzk

depends only on the Taylor coefficientsx0, . . . ,xk. The
Taylor coefficientzk can be calculated using the forward
mode of automatic differentiation.

In reverse mode of automatic differentiation, one can
compute the coefficient matricesA0, . . . , Ad ∈ R

m×n of
the Jacobian path

F′(x(t)) = A0 +A1t+ . . .+Adt
d +O(td+1) . (23)

The matricesA0, . . . , Ad are the partial derivatives of the
Taylor coefficients of the curvesx and z. We have the
following identity [8]:

∂zj
∂xi

=
∂zj−i

∂x0
=

{
Aj−i for j ≥ i
0 otherwise.

(24)

As illustrated, the curvesx andz associated with a func-
tion F are represented by the coefficients of their corre-
sponding truncated Taylor series expansions (21) and (22).
Thus, it is necessary to introduce another datatype holding
the values of these coefficients. As an example, one might
define

in c l u d e < vec to r >
c l a s s t d o u b l e :p u b l i c s t d : : vec to r <double >;

and implement the operations required for an appropriate
handling of these truncated series expansions.

3.4 Implementations and Tools

As sketched in Section 3.3, algorithmic differentiation can
easily be implmented if the programming language under
consideration supports operator overloading. For C++, this
approach is implemented in several algorithmic differenti-
ation packages such as ADOL-C [16], FADBAD [5], FAD-
BAD++ [41], TADIFF [6], AUTODIFF [39], CppAD [1].
Operator overloading is also supported in Fortran 90/95 and
used by the tools AUTO_DERIV [40] and TaylUR [45].
Moreover, there are also tools that use operator overloading
in Matlab for algorithmic differentiation, e.g. ADMAT [44]
and TOMLAB/MAD [13].

It should be mentioned that algorithmic differentiation
can also be implemented based on source code transforma-
tion, especially for programming languages such as C and
Fortran 77 which do not support operator overloading. For
more details on algorithmic differentiation tools and tech-
niques we refer to [4,17].

3.5 Differentiation Package ADOL-C

The software package ADOL-C provides routines for eval-
uation of derivatives of scalar or vector functions defined
by computer programs written in the programming lan-
guages C or C++. The resulting derivative evaluation rou-
tines can be used in C, C++, Fortran, or any other language
that can be linked against C [16]. ADOL-C uses opera-
tor overloading as described in Section 3.3, however with
some additional features that will be discussed in the next
section.

3.5.1 Tape generation

The fundamental working principle of ADOL-C is that in a
first step the code representing e.g. a scalar valued function
f : R → R is marked as a so called active section.
Input and output variables are assigned as variables of type
adouble, similar to the typeddouble discussed above:

t r a c e _ o n (t a g) ;/ / Begin of active section

adoub le x , z ; / / Active variables
double x0 ; / / point of expansion
double z0 ; / / function value

x <<= x0 ; / / Assignment of independents
z = f (x) ; / / Evaluation
z >>= z0 ; / / Assignment of dependents

t r a c e _ o f f () ; / / End of active section

This code creates a data structure calledtape holding
the trace of the function evaluation. This tape is used in
the following for the calculation of the derivatives using so
called drivers, e.g.gradient, jacobian, hessian,
cf. next section. It is important to understand that the tape
has only to be created once a time for an aribitrary input
valuex0 while repetitive calls of the drivers for different
input values differing from the values the tape was gen-
erated from may follow. This holds as long as there are
no user defined quadratures and all comparisons involv-
ingadoubles yield the same result. The drivers acting on
these tapes provide a C as well as C++ interface, i.e., once
a tape is generated it can also be used in environments that
do not support C++. The tape is referenced by the integer
tag.

3.5.2 Drivers

The package ADOL-C provides several commands called
drivers for evaluation of different types of derivatives.
Some of these drivers are sketched in the following:

Drivers for forward and reverse mode Given a tape of
the sufficiently smooth functionF : M → R

m and
the Taylor coefficientsX = (x0, . . . ,xd) of the series
expansion (21) of the curvex of the independent variable
one can compute the Taylor coefficientsZ = (z0, . . . , zd)
as given in (22) using the ADOL-C functionforward:

i n t f o rward (tag ,m, n , d , keep ,X, Z)
sh or t i n t t a g ; / / tape tag ofF
i n t m; / / number of dependent variablesm
i n t n ; / / number of independent variablesn
i n t d ; / / highest derivative degreed
i n t keep ; / / flag for reverse sweep
double X[n] [d + 1] ; / / Taylor coefficients(x0, ...,xd)
double Z[m] [d + 1] ; / / Taylor coeffcients(z0, ..., zd)

The keep flag must be set tokeep=1 if a further calcula-
tion using the reverse mode is intended. The2-dimensional
arraysX andZ are allocated as arrays of pointers.

The reverse mode can be employed for an efficient com-
putation of the coefficient matricesA0, . . . , Ad ∈ R

m×n

of the Jacobian path (23). They are obtained by calling

61

the ADOL-C functionreverse and stored in the3-
dimensional arrayA:

i n t r e v e r s e (tag ,m, n , d ,A)
sh or t i n t t a g ; / / tape tag ofF
i n t m; / / number of dependent variablesm
i n t n ; / / number of independent variablesn
i n t d ; / / highest derivative degreed
double A[m] [n] [d + 1] ; / / resulting matricesA0, ..., Ad

Drivers for ordinary differential equations Given an ini-
tial value problem

ẋ(t) = f (x(t)) with x(0) = x0 ∈ M ⊆ R
n (25)

of the ordinary differntial equation (3). We want to compute
a Taylor series expansion (21) of a solution of (25), i.e., of
the flow of the vector fieldf passing throughx0:

x(t) = ϕt(x0) . (26)

On the other hand, we can treatf as a functions mapping
the curve (21) into the curve (22) via

z(t) = f(x(t)) . (27)

Because off : M ⊆ R
n → R

n, both curvesx andz
belong to spaces of the same dimension. However, sincef

is a vector field, the curvez in the image off must be-
long to the tangent spaceTxM, i.e., we have the identify
z(t) = ẋ(t). Therefore, the Taylor coefficients of the series
expansions (21) and (22) must satiesfy the identity

xk+1 =
1

1 + k
zk . (28)

Knowing certain Taylor coefficientsx0, . . . ,xk of the solu-
tion of (25), one can use the forward mode to compute the
Taylor coefficientsz0, . . . , zk of the curve (27). Eq. (28)
yields the next Taylor coefficientxk+1. To carry out this
recursion, ADOL-C provides the functionforode:

i n t f o r o d e (Tape_F , n , d , X)
sh or t Tape_F ; / / tape tag of vector fieldf
sh or t n ; / / dimensionn
sh or t d ; / / highest degreed
double X[n] [d + 1] ; / / Taylor coefficientsx0, ...,xd

The initial valuex0 has to be stored in the zeroth position
of the arrayX, i.e., inX[0][0], . . . ,X[n-1][0].

Carrying out a reverse sweep afterforode we obtain
the coefficient matricesA0, A1, . . . , Ad−1 ∈ R

n×n similar
to (23). Recall that these matrices can be interpreted as
partial derivatives between Taylor coefficients as described
in (24). Taking the dependencies resulting from (28) into
account we can calculate the total derivatives

Bk =
dxk+1

dx0
∈ R

n×n (29)

for k = 0, . . . , d− 1 with the ADOL-C functionaccode:

i n t accode (n , d−1, A, B)
sh or t n ; / / dimensionn
sh or t d ; / / highest degreed
double A[n] [n] [d] ; / / partial derivativesA0, ..., Ad−1

double B[n] [n] [d] ; / / total derivativesB0, ..., Bd−1

Note that the total derivatives (29) are the coefficient matri-
ces of the series expansion of push-forward (8) of the flow:

ϕt∗(x0) = I +B0t+B1t
2 +B2t

3 + · · · .

ADOL-C provides much more drivers, e.g. for optimiza-
tion and nonlinear equations (calculation of gradients, Ja-
cobians and Hessians) and higher derivative tensors which
are not discussed here. For details refer to [16,46].

3.5.3 Calculation of Lie derivatives using ADOL-C

In contrast to the symbolic computation the calculation of
the Lie derivatives employing automatic differentiation is
based directly on the definitions (6), (10) and (15). In order
to use ADOL-C for the calculation of Lie-derivatives one
has to combine certain calls of the drivers discussed above.
This is illustrated by example of the Lie derivativeLk

f h(x)
of a scalar fieldh : M → R along a vector fieldf : M →
R

n. Using the ADOL-C driverforode, in a first step,
one computes the Taylor coefficientsx1, . . .xd ∈ R

n of
the series expansion (21) of (26) for a given initial value
x0 ∈ M ⊆ R

n. In a second step we have to compute
the Taylor coefficientsy0, y1, . . . , yd ∈ R of the series
expansion

y(t) = y0 + y1t+ · · · ydt
d +O(td+1) (30)

of the curve
y(t) = h(ϕt(x0)) . (31)

This can easily be done with the driverforward. Recall
that the first order Lie derivative (5) is the total derivative
of h along the flow off . Taking higher order Lie deriva-
tives into account yields a so-called Lie series

∞∑

k=0

Lk
fh(x0)

tk

k!
= h(ϕt(x0)) . (32)

Matching the coefficients of (30) and (31) allows an ex-
plicit computation of the function values of the Lie deriva-
tives by

Lk
fh(x0) = k! yk for k = 0, . . . , d . (33)

Assuming that the recorded tapes off andh are refer-
enced by the integersTape_f andTape_h, respectively,
one has:

/ / Taylor coefficientsX = (xk)
f o r o d e (Tape_f , n , d ,X) ;

/ / Taylor coefficientsY = (yk)
f o rward (Tape_h ,m, n , d ,X,Y) ;

/ / Lie-Derivatives up to orderd
double Lfh [d + 1] ;
i n t f ak = 1 ;
f o r (i =0 ; i <= d ; i ++) {

Lfh [i] = y [i] ∗ f ak ;
f ak ∗= (i + 1) ;

}

62

In a similar way one can compute the gradients of Lie
derivatives, the Lie derivatives of a covector field and Lie
brackets. For example, consecutive calls ofreverse and
accode provide the coefficient matrices of the series ex-
pansion (8) required for the computation of Lie derivatives
of covector fields, see Eqs. (14) and (16).

4. Toolbox of Lie-Derivatives
The drivers provided for calculating Lie derivatives of
scalar, vector, covector fields and gradient of Lie deriva-
tives of scalar or vector fields are prototyped in the header
<lie_tool.h>. Drivers utilizing C or C++ are provided all
of them working on the tapes generated previously as de-
scribed above, i.e., no repetitive direct evaluation of the
function source code is required. In the following we
give an overview about the routines provided by the Lie-
package.

4.1 Lie Derivatives of a Scalar Field

In order to compute the Lie derivatives of the scalar
field h along the vector fieldf at the pointx = x0 ∈
R

n, we need the tape numbers of active sections off

and h, the number of independent variablesn and the
highest derivative degreed. The values of the Lie deriva-
tives L0

fh(x0), . . . , L
d
fh(x0) will be stored in a one-

dimensional array (vector) of sized + 1. The C function
Lie_scalarc has the following arguments:

i n t L i e _ s c a l a r c (Tape_F , Tape_H , n , x0 , d , r e s)
sh or t Tape_F ; / / tape tag of vector fieldf
sh or t Tape_H ; / / tape tag of scalar fieldh
sh or t n ; / / dimensionn
double x0 [n] ; / / vectorx0

sh or t d ; / / highest degreed
double r e s [d + 1] ; / / Lie derivatives

Now, consider a vector-valued mapsh : Rn → R
m. The

component mapsh1, . . . , hm : Rn → R of whichh con-
sists of are scalar fields. We understand the Lie derivative
of h alongf as follows

Lfh(x) =






Lfh1(x)
...

Lfhp(x)




 , (34)

which is essentially a simplified notation for the Lie deriva-
tivesLfh1, . . . , Lfhm of the component maps. This nota-
tion is occasionally used in nonlinear control and the as-
sociated software implementations [22, 27]. Higher order
Lie derivativesLk

fh are definied by the same recursion as
in (7). Note that the Lie derivative (34) of the vector-valued
maph should not be confused with the Lie derivative of a
vector field.

The Lie derivatives of h along f at the
point x0 can be computed with the C function
Lie_scalarcv. The resulting values of the Lie
derivativesL0

fh(x0), . . . , L
d
fh(x0) will be stored in a

two-dimensional array (i.e., a matrix) of sizem× (d+ 1):

i n t L i e _ s c a l a r c v (Tape_F , Tape_H , n ,m, x0 , d , r e s)
sh or t Tape_F ; / / tape tag of vector fieldf

sh or t Tape_H ; / / tape tag of vector maph
sh or t n ; / / dimensionn
sh or t m; / / dimensionm
double x0 [n] ; / / vectorx0

sh or t d ; / / highest degreed
double r e s [m] [d + 1] ; / / lie derivatives

In addition, we implemented the C++ wrapper function
Lie_scalar which supports both calling conventions,
i.e., for m = 1 and arbitrarym ≥ 1. Details on the
computational algorithms can be found in [29,34].

4.2 Gradients of Lie Derivatives of a Scalar Field

The gradients

dh(x0), dLfh(x0), . . . , dL
d
fh(x0) (35)

of Lie derivatives (7) of a scalar fieldh along a vector
field f atx = x0 are row-vectors. They can be computed
with the C functionLie_gradientc, where the result
will be stored in a two-dimensional array of sizen×(d+1):

i n t L i e _ g r a d i e n t c (Tape_F , Tape_H , n , x0 , d , r e s)
sh or t Tape_F ; / / tape tag of vector fieldf
sh or t Tape_H ; / / tape tag of scalar fieldh
sh or t n ; / / dimensionn
double x0 [n] ; / / vectorx0

sh or t d ; / / highest degreed
double r e s [n] [d + 1] ; / / gradients of Lie derivatives

Different scalar fieldsh1, . . . , hm can be put together
in a vector-valued maph as in Eq. (34). The classical
derivative of (34) is a Jacobian matrix of sizem × n. The
Jacobian matrices

dh(x0), dLfh(x0), . . . , dL
d
fh(x0) (36)

can be computed at once with the C function
Lie_gradientcv, where the result will be stored
in a three-dimensional array of sizem× n× (d+ 1):

i n t L i e _ g r a d i e n t c v (Tape_F , Tape_H , n ,m, x0 , d , r e s)
sh or t Tape_F ; / / tape tag of vector fieldf
sh or t Tape_H ; / / tape tag of vector maph
sh or t n ; / / dimensionn
sh or t m; / / dimensionm
double x0 [n] ; / / vectorx0

sh or t d ; / / highest degreed
double r e s [m] [n] [d + 1] ; / / Jacobians

In addition, we implemented the C++ function
Lie_gradient supporting both cases (35) and (36) at
once. The computation is discussed in [33].

4.3 Lie Derivatives of a Covector Field

If we consider the elements ofRn as comlun-vectors, the
elements of the associated dual space(Rn)∗ can be writ-
ten as row-vectors. For programs, there are no differences
between a vector fieldf : Rn → R

n and a covector field
ω : Rn → (Rn)∗. The Lie derivative of the covector field
ω along the vector fieldf is given by (16). The Lie deriva-
tivesL0

fω(x0), . . . , L
d
fω(x0) at the pointx0 can be com-

puted with the C functionLie_covector. The results
will be stored in a two-dimensional array (i.e., a matrix) of
sizen× (d+ 1):

63

i n t L i e _ c o v e c t o r (Tape_F , Tape_W , n , x0 , d , r e s)
sh or t Tape_F ; / / tape tag of vector fieldf
sh or t Tape_W ; / / tape tag of covector fieldω
sh or t n ; / / dimensionn
double x0 [n] ; / / vectorx0

sh or t d ; / / highest degreed
double r e s [n] [d + 1] ; / / Lie derivatives

4.4 Lie Derivatives of a Vector Field (Lie Brackets)

Let g : R
n → R

n be a further vector field. The Lie
derivative of the vector fieldg alongf is also called Lie
bracket and defined by (12). The Lie derivativesadkf g(x)
alongf at the pointx0 can be computed with the C func-
tionLie_vector. The resulting values of the Lie deriva-
tives ad0f g(x0), . . . , ad

d
f g(x0) will be stored in a two-

dimensional array (i.e., a matrix) of sizen× (d+ 1):

i n t L i e _ v e c t o r (Tape_F , Tape_G , n , x0 , d , r e s)
sh or t Tape_F ; / / tape tag of vector fieldf
sh or t Tape_G ; / / tape tag of vector fieldg
sh or t n ; / / dimensionn
double x0 [n] ; / / vectorx0

sh or t d ; / / highest degreed
double r e s [n] [d + 1] ; / / Lie brackets

The computation of these Lie derivatives using algorithmic
differentiation is explained in [28,31,35].

5. Lie Derivatives in Nonlinear Control
The Lie derivatives described in the previous sections are
often used in nonlinear control. In this section, we will
sketch some application for nonlinear control systems of
the form

ẋ = f(x) + g(x)u, y = h(x) (37)

with the vector fieldsf , g : M → R
n and the scalar field

h : M → R defined onM ⊆ R
n. Here,x denotes the

state,u the input andy the output.

5.1 Exact Input-Output Linearization

Lie derivatives can also be computed along different vector
fields, which results in mixed Lie derivatives such as

LgLfg(x) =
∂Lfh(x)

∂x
g(x) .

System (37) hasrelative degreer in x0 ∈ M, if Lgh(x) =
0, . . . , LgL

r−2
f h(x) = 0 for all x in a neighbourhood

of x0, and LgL
r−1
f h(x0) 6= 0. Roughly speaking, the

relative degree is the lowest time derivative of the outputy
that depends explicitly on the inputu:

y(r) = Lr
fh(x) + LgL

r−1
f h(x)u . (38)

These nonlinearities can be compensated exactly with an
additional stabilisation of the resulting linear dynamics us-
ing the state-feedback

u = −
p0h(x) + · · ·+ pr−1L

r−1
f h(x) + Lr

fh(x)

LgL
r−1
f h(x)

, (39)

wherep0, . . . , pr−1 are the coefficients of the desired char-
acteristic polynomial [20, Chapter 4].

z = x1

y1

mC

mL

y2

ϕ = x2

l

u

g

Figure 3. Gantry crane

5.2 High-Gain Observer

The matrix

Q(x) := q′(x) =







dh(x)
dLfh(x)

· · ·
dLn−1

f h(x)







(40)

consisting of gradients of Lie derivatives is calledobserv-
ability matrix. If the observability matrix is regular, we can
design a high-gain observer

˙̂x = f(x̂) + g(x̂)u+ kHG(x̂) · (y − h(x̂)) (41)

with the state-dependend observer gain

kHG(x̂) = Q−1(x̂) (pn−1, . . . , p0)
T

for calculation of estimateŝx of the not directly measured
statex using the measured variabley, see [9,14,30].

Note that there are many other applications of Lie
derivatives in nonlinear control. For example, Lie brack-
etsadkf g are used in controllability analysis [25] and in
the design of extended Luenberger observers [49].

6. Example
The usefullness of the approach is illustrated by the exam-
ple of the control of a gantry crane, as shown in Figure 3.

In this underactuated system one has the massmc of the
travelling crab, the massmL of the load, the lengthl of the
cable, the earth accelerationg and the input forceu. The
equations of motion are given by

(
mL +mC mLl cosϕ
mLl cosϕ mLl

2

)(
z̈
ϕ̈

)

+

(
−mLlϕ̇

2 sinϕ
mLgl sinϕ

)

=

(
u
0

)

. (42)

Introducing the statesx1 := z, x2 := ϕ, x3 := ż, and
x4 := ϕ̇ one obtains a state space representation of (42)
which is of the form

ẋ =
(
x3 x4 ∗ ∗

)T

︸ ︷︷ ︸

f(x)

+
(
0 0 ∗ ∗

)T

︸ ︷︷ ︸

g(x)

u (43)

with vector fieldsf : R4 → R
4 andg : R4 → R

4.

64

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Order d or Lie bracket

T
im

e
in

 s
ec

Comparison of computation time

Symbolic (Maxima)
ADOL−C

Figure 4. Comparison of computation time for Lie brack-
ets (10) of system (43) using ADOL-C and symbolic ex-
pressions (mL = mC = 1 kg, l = 1m).

The iterated Lie derivatives (Lie brackets) of the vector
field g along the vector fieldf with n = 4 andd = 12 are
calculated using ADOL-C 2.1.5 on a 2.5 GHz Phenom PC
under Windows 7. The run time to compute the Lie deriva-
tives for the model (43) of the gantry crane using ADOL-C
is shown in Figure 4 (solid line). For a comparison the sym-
bolic expressions for the calculation of the Lie brackets up
to orderd = 12 have been computed using the computer
algebra system Maxima. These expressions have been ex-
ported as C and Fortran90 code after simplification using
the commandtrigsimp. The generation time and source
code size can be found in Table 1. The evaulation time of
the C-compiled code is given in Figure 4 (dashed line).

Order C-Code Fortran90-Code Generation
1 0.23 kB 0.16 kB 0.060 s
2 0.92 kB 0.77 kB 0.115 s
3 1.76 kB 1.54 kB 0.357 s
4 3.67 kB 3.16 kB 0.795 s
5 6.23 kB 5.46 kB 1.526 s
6 10.71 kB 9.30 kB 2.825 s
7 16.13 kB 14.13 kB 4.949 s
8 24.54 kB 21.61 kB 8.038 s
9 34.52 kB 30.77 kB 12.726 s
10 48.69 kB 43.44 kB 19.458 s
11 65.11 kB 58.63 kB 28.949 s
12 86.92 kB 79.19 kB 42.472 s

Table 1. Source code size and corresponding generation
time using Maxima.

As can be seen there is some overhead using ADOL-
C when computing low order Lie brackets compared to
the evaluation of the compiled C-code of the symbolic ex-
pressions. However, in case of ADOL-C computational ef-
fort does only slightly increase with the orderd of the
Lie brackets. Furthermore one circumvents the use of large
amount of C- or Fortran90 code as well as large computa-
tion times for its generation, cf. Table 1.

7. Conclusions
We presented a package for computation of several kinds
of Lie derivatives utilizing automatic differentiation based
on the software package ADOL-C. The routines allow the
convinient and efficient computation of even high order
Lie derivatives of complex systems. An example illustrates
the usefulness of the approach. Currently, we are working
toward a native integration of the toolbox into ADOL-C.

References
[1] CppAD: A Package for Differentiation of C++ Algorithms.

http://www.coin-or.org/CppAD/.

[2] Maxima, a computer algebra system.http://maxima.
sourceforge.net/.

[3] R. Abraham, J. E. Marsden, and T. Ratiu.Manifolds,
Tensor Analysis, and Applications. Springer, New York,
2nd edition, 1983.

[4] www.autodiff.org. Web-Portal über Automatisches
Differenzieren.

[5] C. Bendtsen and O. Stauning. FADBAD, a flexible
C++ package for automatic differentiation. Technical
Report IMM-REP-1996-17, TU of Denmark, Dept. of
Mathematical Modelling, Lungby, 1996.

[6] C. Bendtsen and O. Stauning. TADIFF, a flexible C++
package for automatic differentiation. Technical Report
IMM-REP-1997-07, TU of Denmark, Dept. of Mathemati-
cal Modelling, Lungby, 1997.

[7] G. L. Blankenship and H. G. Kwatny. Computational
methods for control of dynamical systems. In N. Munro,
editor, Symbolic methods in control system analysis and
design, volume 56 ofIEE Control Engineering Series,
chapter 15. IEE Press, London, 1999.

[8] B. Christianson. Reverse accumulation and accurate
rounding error estimates for Taylor series.Optimization
Methods & Software, 1:81–94, 1992.

[9] G. Ciccarella, M. Dalla Mora, and A. Germani. A
Luenberger-like observer for nonlinear systems.Int. J.
Control, 57(3):537–556, 1993.

[10] J.-M. Cornil and P. Testud.An Introduction to Maple V.
Springer, 2001.

[11] M. Dalla Mora, A. Germani, and C. Manes. A state observer
for nonlinear dynamical systems.Nonlinear Analysis,
Theory, Methods & Applications, 30(7):4485–4496, 1997.

[12] B. de Jager. The use of symbolic computation in nonlinear
control: Is it viable? IEEE Trans. on Automatic Control,
40(1):84–89, 1995.

[13] S. A. Forth. An efficient overloaded implementation of
forward mode automatic differentiation in MATLAB.ACM
Transactions on Mathematical Software, 32(2):195–222,
jun 2006.

[14] J. P. Gauthier, H. Hammouri, and S. Othman. A simple
observer for nonlinear systems — application to bioreactors.
IEEE Trans. on Automatic Control, 37(6):875–880, 1992.

[15] R. Giering and Th. Kaminski. Recomputations in reverse
mode ad. In G. Corliss, Ch. Faure, A. Griewank, Hascoët,
and U. Naumann, editors,Automatic Differentiation: From
Simulation to Optimization, chapter 33, pages 283–290.

65

Springer, 2002.

[16] A. Griewank, D. Juedes, and J. Utke. ADOL-C: A
package for automatic differentiation of algorithms written
in C/C++. ACM Trans. Math. Software, 22:131–167, 1996.

[17] A. Griewank and A. Walther.Evaluating Derivatives:
Principles and Techniques of Algorithmic Differentiation.
SIAM, 2nd edition, 2008.

[18] D. D. Holm, T. Schmah, and C. Stoica.Geometric
Mechanicas and Symmetry. Oxford University Press, 2009.

[19] C. J. Isham.Modern Differential Geometry for Physicists.
World Scientific, 2 edition, 2001.

[20] A. Isidori. Nonlinear Control Systems: An Introduction.
Springer-Verlag, London, 3. edition, 1995.

[21] A. Kugi, K. Schlacher, and R. Novaki.Symbolic Compu-
tation for the Analysis and Synthesis of Nonlinear Control
Systems, volume 2 ofSoftware Studies, pages 255–264.
WIT-Press, Southampton, 1999.

[22] H. G. Kwatny and G. L. Blankenship.Nonlinear Control
and Analytical Mechanics: A Computational Approach.
Birkhäuser, Boston, 2000.

[23] J. M. Lee. Introduction to Smooth Manifolds, volume 218
of Graduate Texts in Mathematics. Springer, New York,
2006.

[24] M. Lemmen, T. Wey, and M. Jelali. NSAS – ein Computer-
Algebra-Packet zur Analyse und Synthese nichtlinearer
systeme. Forschungsbericht Nr. 20/95, Gerhard-Mercator-
Universität-GH Duisburg, Meß-, Steuer- und Regelung-
stechnik, 1995.

[25] H. Nijmeijer and A. J. van der Schaft.Nonlinear Dynamical
Control systems. Springer, New York, 1990.

[26] R. Oloff. Geometrie der Raumzeit. Vieweg Verlag,
Wiesbaden, 3. edition, 2004.

[27] V. Polyakov, R. Ghanadan, and G. L. Blankenship. Sym-
bolic numerical computational tools for nonlinear and adap-
tive control. In Proc. IEEE/IFAC Joint Symposium on
Computer-Aided Control System Design, pages 117–122,
Tucson, Arizona, 1994.

[28] K. Röbenack. On the efficient computation of higher order
mapsadkfg(x) using Taylor arithmetic and the Campbell-
Baker-Hausdorff formula. In Alan Zinober and David
Owens, editors,Nonlinear and Adaptive Control, volume
281 of Lecture Notes in Control and Information Science,
pages 327–336. Springer, 2002.

[29] K. Röbenack. Automatic differentiation and nonlinear
controller design by exact linearization.Future Generation
Computer Systems, 21(8):1372–1379, 2005.

[30] K. Röbenack. Computation of high gain observers for
nonlinear systems using automatic differentiation.Journal
Dynamic Systems, Measurement, and Control, 127(1):160–
162, 2005.

[31] K. Röbenack. Computation of Lie derivatives of tensor
fields required for nonlinear controller and observer design
employing automatic differentiation.Proc. in Applied
Mathematics and Mechanics, 5(1):181–184, 2005.

[32] K. Röbenack. Nonlinear controller design based on
algorithmic plant description.Mathematical and Computer
Modelling of Dynamical Systems, 13(2):193–209, 2007.

[33] K. Röbenack and K. J. Reinschke. A efficient method to
compute Lie derivatives and the observability matrix for
nonlinear systems. InProc. 2000 International Symposium
on Nonlinear Theory and its Applications (NOLTA’2000),
Dresden, Sept. 17-21, volume 2, pages 625–628, 2000.

[34] K. Röbenack and K. J. Reinschke. Reglerentwurf mit Hilfe
des Automatischen Differenzierens.Automatisierungstech-
nik, 48(2):60–66, 2000.

[35] K. Röbenack and K. J. Reinschke. The computation
of Lie derivatives and Lie brackets based on automatic
differentiation. Z. Angew. Math. Mech., 84(2):114–123,
2004.

[36] R. Rothfuss and M. Zeitz. Einführung in die Analyse
nichtlinearer Systeme. In S. Engell, editor,Entwurf
nichtlinearer Regelungen, pages 3–22. Oldenbourg-Verlag,
München, 1995.

[37] C. Rui, I. V. Kolmanovsky, and N. H. McClamroch. Sym-
bolic computation in nonlinear control of multibody space
systems. InACC’1998 (American Control Conference),
Philadelphia, 1998.

[38] J. Schaffner and M. Zeitz. Variants of nonlinear normal form
observer design. In H. Hijmeijer and T. I. Fossen, editors,
New Direction in Nonlinear Observer Design, volume 244
of Lecture Notes in Control and Information Science, pages
161–180. Springer-Verlag, London, 1999.

[39] H. Skaug and D Fournier. Automatic approximation of
the marginal likelihood in nonlinear hierarchical models.
Computational Statistics and Data Analysis, 51(2):699–
709, 2006.

[40] S. Stamatiadis, R. Prosmiti, and S. C. Farantos.
AUTO_DERIV: Tool for automatic differentiation of aFOR-
TRAN code.Comput. Phys. Commun., 127(2&3):343–355,
may 2000. Catalog number: ADLS.

[41] O. Stauning and C. Bendtsen. FADBAD++: Flexible
automatic differentiation using templates and operator
overloading in ANSI C++.http://www2.imm.dtu.
dk/~km/FADBAD/.

[42] V. Toth. Tensor manipulation in GPL Maxima.
arXiv:cs/0503073v2 [cs.SC], 2005.

[43] V. S. Varadarajan.Lie Groups, Lie Algebras, and Their
Representation. Springer-Verlag, 1984.

[44] A. Verma. ADMAT: Automatic differentiation for MAT-
LAB using object oriented methods. InSIAM workshop on
object oriented methods, pages 174–183, 1999.

[45] G. M. von Hippel. Taylur, an arbitrary-order automatic dif-
ferentiation package for fortran 95.Comput.Phys.Commun.,
174:569–576, 2006.

[46] A. Walther, A. Griewank, and O. Vogel. ADOL-C:
Automatic differentiation using operator overloading in
C++. Proc. in Applied Mathematics and Mechanics,
2(1):41–44, 2003.

[47] P. J. Werbos.The Roots of Backpropagation: From Ordered
Derivatives to Neural Networks and Political Forecasting.
Wiley, 1994.

[48] S. Wolfram. The MATHEMATICA Book. Cambridge
University Press, 1999.

[49] M. Zeitz. The extended Luenberger observer for nonlinear
systems.Systems & Control Letters, 9:149–156, 1987.

66

Debugging Symbolic Transformations in Equation Systems

Martin Sjölund1 Peter Fritzson1

1Department of Computer and Information Science, Linköping University, Sweden,
{martin.sjolund,peter.fritzson}@liu.se

Abstract
How do you debug application models in an equation-based
object-oriented (EOO) programming language? Compilers
for these tools tend to optimize the model so heavily that it
is hard to tell the origin of an equation during runtime.

This work proposes and implements a prototype of a
method that is efficient, yet manages to keep track of all the
transformations/operations that the compiler performs on
the model. The method also considers the ability to collapse
certain operations so that they appear to the user as a single
expandable operation.

Using such a method enables makers of compilers for
EOO programming languages to create debugging tools
that contain sufficiently detailed information while still
being appealing to the user as they minimize duplicate
information.

Keywords debugging, modeling, simulation, compilation,
Modelica

1. Introduction
1.1 General
Equation-based object-oriented (EOO) programming lan-
guages have significant advantages in describing large mod-
els since it is easy to construct a hierarchy of models and
connecting them.

However, in order to simulate such models efficiently,
EOO simulation tools perform a lot of symbolic manipula-
tion in order to reduce the complexity of models and prepare
them for efficient simulation. By removing redundancy, the
generation of simulation code and the simulation itself can
be sped up significantly. The cost of this performance gain
is error-messages that are not very user-friendly due to sym-
bolic manipulation, renaming and reordering of variables
and equations. For example, the following error message
says nothing about the variables involved or its origin:

Error solving nonlinear system 2
time = 0.002

4th International Workshop on Equation-Based Object-Oriented
Modeling Languages and Tools. September, 2011, ETH Zürich, Switzerland.
Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp/056/

EOOLT 2011 website:
http://www.eoolt.org/2011/

residual[0] = 0.288956
x[0] = 1.105149
residual[1] = 17.000400
x[1] = 1.248448
...

It is usually hard for a typical user of the EOO simula-
tion tools to determine what symbolic manipulations have
been performed and why. If the tool only emits a binary
executable this is almost impossible. Even if the tool emits
source code in some programming language (typically C), it
is still quite hard to know what kind of equation system you
have ended up with. This makes it difficult to understand
where the model can be changed in order to improve the
speed or stability of the simulation.

While some tools allow you to export a description of
the translated system of equations [17], this is not enough.
After symbolic manipulation, the resulting equations no
longer need to contain the same variables or structure as
the original equations. As a simple example, the resulting
equation r = t in (1) holds given that r does not change
value during events and tstart = rstart = 0.

der(r) = 1.0⇔ r = 1.0 ∗ (t− tstart) + rstart ⇔ r = t
(1)

There are two main aspects of debugging application
models. One is debugging the simulation executable itself
[18]. In general, simulation tools can emit the value of each
variable at each time step so that it is possible to see if the
results are correct. However, it is usually not possible to
understand the cause(s) of slow simulations by studying
such data.

By using profiling techniques [12], it is possible to
detect which equations cause slowness in a simulation. By
using simple techniques to sample and log high-precision
clocks at each time step, you can see how much time is
spent calculating each strongly connected component. This
essentially means that the profiling returns a set equations
that calculate a set of variables. But these are variables in
the optimized equation system which makes it is hard to
know their origin [6].

Thus, you need to look earlier in the compilation pro-
cess where the equation system is symbolically optimized.
Moreover, to understand the causes of possible erroneous
variable values, you also need to be able to look into the
chain of symbolic transformations of the original model.
This can be regarded as debugging of the model compiler

67

regarding the efficiency of the generated code with your
application model as input.

1.2 Comparison with Traditional Debugging
When most people hear the word debugging, they think of
a statement or instruction-level debugger that uses break-
points, like GDB [19]. A debugger is a computer program
designed to help a programmer in the task of finding faults
in programs. But debugging is not limited to just instruction-
level debugging.

But there is a fundamental difference between our needs
and that of a debugger for a general-purpose programming
language. We need to be able to debug the symbolic trans-
formations/optimizations performed on the equation system
defined in our application model.

While you could use a statement-level debugger to find
out what is happening in the compiler, it is hard to use
for a regular user due to requiring compiler sources and a
debug version of the compiler itself. You also need some
knowledge about the data structures used since representing
data in certain ways improves the performance of many
algorithms used in these tools. This generally limits the use
of such debuggers to the compiler developers themselves.

However, even if you are a compiler developer, it is
problematic to use a regular debugger simply due to the
size of the equation systems that you are required to debug
as it becomes harder and harder to setup the debugger
to only look at a single variable or equation. Thus, these
traditional instruction-level debuggers are unsuitable also
from a compiler developer’s point of view.

Since equation-based modeling languages are quite dif-
ferent from general-purpose programming languages like C,
it is understandable that debuggers made for conventional
imperative languages do not work as well in our domain.
Thus, we need a domain-specific debugger that can show
the user the flow of transformations and calculations. This is
analogous to how a tool such as ANTLRWorks [4] can show
which rules were used to parse some input given a certain
ANTLR grammar, where the language to write grammars is
a domain-specific language.

We propose an approach to debugging the symbolic op-
timization and transformation of equation systems that is
usable by tool developers and modelers alike. The approach
can be used for debugging during translation (compilation),
statically after translation and dynamically during simula-
tion runtime. The focus of this article is on the method,
producing the information required to later on write an effi-
cient graphical debugger.

1.3 Common Operations on Continuous Equation
Systems

In order to create a debugger adapted for debugging the
symbolic transformations performed on equation systems,
we need to list its requirements. There are many symbolic
operations that we may perform on equation systems. The
description of operations described below also include a
rationale for each operation since it is not always apparent
why we perform such operations. There are of course many
more operations we may perform than the ones listed below.

The operations shown below are the ones we are most
concerned with, and the ones that our debugger for models
translated by the OpenModelica Compiler [10] should be
able to handle.

1.3.1 Variable aliasing
An optimization that is very common in Modelica compilers
is variable aliasing. This is due to the connection semantics
of the Modelica language. For example, if a and b are
connectors with the effort-variable v and flow-variable i, a
connection (2) will generate alias equations (3) and (4).

connect(a, b) (2)

a.v = b.v (3)

a.i+ b.i = 0⇔ b.i = −a.i (4)

In a result-file, this alias relation can be stored instead of
a duplicate trajectory, saving both space and computation
time. In the equation system, b.v may be substituted by a.v
and b.i by −a.i, which may lead to further optimizations of
the equations.

1.3.2 Known variables
Known variables are similar to alias variables in that you
may perform variable substitutions on the rest of the equa-
tion system if you find such an occurrence. For example, (5)
and (6) can be combined into (7). In the result-file, you no
longer need to store a for each time step; once is enough for
known variables, parameters and constants.

a = 4.0 (5)

b = 4.0− a+ c (6)

b = 4.0− 4.0 + c (7)

1.3.3 Equation Solving
If the tool has determined that x needs to be solved for in
(8), we need to symbolically solve the equation, producing
a simple equation with x on one side as in (9). Solving for x
is not always straight-forward, and it is not always possible
to invert user-defined functions such as (10). Since x is
present in the call arguments and we cannot invert or inline
the function, we fail to solve the equation symbolically and
instead solve it numerically using a non-linear solver during
runtime.

15.0 = 3.0 ∗ (x+ y) (8)

x = 15.0/3.0− y (9)

0 = f(3 ∗ x) (10)

68

1.3.4 Expression Simplification
Expression simplification is a symbolic operation that does
not change the meaning of the expression, while making
it faster to calculate. It is related to many different op-
timization techniques such as constant folding. We may
change the order in which arguments are evaluated (11).
Constant subexpressions are evaluated during compile-time
(12). We may also rewrite non-constant subexpressions (13)
and choose to evaluate functions fewer times than in the
original expression (14). We may also use special knowl-
edge about an expression in order to make it run faster (15)
and (16).

and(a, false, b)⇒ and(false, a, b)⇒ false (11)

4.0− 4.0 + c⇒ c (12)

max(a, b, 7.5, a, 15.0)⇒ max(a, b, 15.0) (13)

f(x) + f(x) + f(x)⇒ 3 ∗ f(x) (14)

if cond then a else a⇒ a (15)

if not cond then false else true⇒ cond (16)

1.3.5 Equation System Simplification
It is of course also possible to solve some equation systems
statically. For example a linear system of equations with
constant coefficients (17) can be solved using one step
of symbolic Gaussian elimination (18), generating two
separate equations that can be solved individually after
causalization (19). A simple linear equation system as (17)
may also be solved numerically using e.g. LAPACK [1]
routines. (

1 2
2 1

)(
x
y

)
=

(
4
5

)
(17)

(
1 2
0 −3

)(
x
y

)
=

(
4
−3

)
(18)

x = 2
y = 1

(19)

1.3.6 Differentiation
Symbolic differentiation [7] is used for many purposes. It is
used to expand known derivatives (20) or as one operation in
index reduction. Jacobian matrices have many applications,
e.g. to speed up simulation runtime [5]. The matrix is
often computed using automatic differentiation [7] which
combines symbolic differentiation with other techniques to
achieve fast computation.

∂

∂t
t2 ⇒ 2t (20)

1.3.7 Index reduction
In order to solve DAE’s numerically, we use discretization
techniques and methods to numerically compute deriva-
tives (often referred to as solvers). Certain DAE’s need
to be differentiated symbolically to enable stable numeric
solution. The differential index of a general DAE system

is the minimum number of times that certain equations in
the system need to be differentiated to reduce the system
to a set of ODEs, which can then be solved by the usual
ODE solvers, Chapter 18 in [9]. While there are techniques
to solve DAE’s of higher index than 1, most of them re-
quire index-1 DAE’s (no second derivatives). This makes
it more convenient to reformulate the problem using index
reduction algorithms [2]. One such technique uses dummy
derivatives [13]; this is the algorithm currently used in the
OpenModelica Compiler.

1.3.8 Function inlining
Writing functions to do common operations is a great way
to reduce the burden of maintaining your code. When
you inline a function call (21), you treat it as a macro
expansion (22) and may increase the number of symbolical
manipulations you can perform on an expression such as
(23).

2 ∗ f(x, y)/π (21)

2 ∗ π ∗ (sin(x+ y) + cos(x+ y − y))/π (22)

2 ∗ (sin(x+ y) + cos(x)) (23)

2. Debugging Equation-Based Models
The choice of techniques for implementation of a debugger
depends on where and for what it is intended to be used.
Translation and optimization of large application models
can be very time-consuming so it would be good if the ap-
proach has such a low overhead that it can be enabled by
default. It would also be good if error messages from run-
time could use the debug information from the translation
and optimization stages to give more understandable and
informative messages to the user (see Figure 1).

Figure 1. Using Information from the Translation in Sub-
sequent Phases

A technique that is commonly used for debugging is
tracing (sometimes called logging depending on context).
Some programs that output a trace in order to help in the de-
bugging of C applications are strace and valgrind.

69

strace (truss on some UNIX systems) logs all sys-
tem calls and signals that the attached process receives.
valgrind is a suite of tools for debugging (and profiling)
programs. Its default tool, MEMCHECK, helps C program-
mers that use pointers in unintended ways. It is capable of
reporting unreachable blocks of data, double free, accessing
recently free’d data, accessing non-allocated data and call-
ing standard C functions with input that has undefined result.
Both strace and valgrind display the information to
the user by streaming text.

The simplest way of implementing tracing is to print a
message to the terminal or file in order to log the operations
that you perform. The problem here is that if you roll back
an operation, the log-file will still contain the operation that
was rolled back. You also need to post-process the data if
you require the operations to be grouped by equation.

A more elegant technique is to treat operations as meta-
data on equations, variables or equation systems. Other
metadata that should already be propagated from source
code to runtime include the name of the component that an
equation is part of, which line and column that the equation
originates from, and more. Whenever we perform an oper-
ation, we store the operation kind and input/output inside
the equation as a list of operations. If the structure used to
store equations is persistent this also works if the tool needs
to roll back execution to an earlier state.

The cost of adding this metadata is a constant runtime
factor from storing a new head in the list. The memory cost
depends a lot on the compiler itself. If garbage collection
of reference counting is used, the only cost is a small
amount to describe the operation (typically an integer and
some pointers to the expressions involved in the operation).
If these expressions now referenced by being stored as
metadata would normally become garbage and subsequently
be deallocated, the memory usage increases, but this is a
small amount even for large models1.

2.1 Bookkeeping of Operations
2.1.1 Variable Substitution
We will consider the elimination of variable aliasing and
variables with known values (constants) as the same opera-
tion that can be done in a single phase. It can be performed
as a fixed-point algorithm where you collect substitutions
and record if any change was made (stop if no substitution
is performed or no new substitution can be collected). For
each alias or known variable, merge the operations stored
in the simple equation x = y before removing it from the
equation system. For each successful substitution, record it
in the list of operations for the equation.

The history of the variable a in the equation system (24)
could be represented as a more detailed version (25) instead
of the shorter (26) depending on the order in which the
substitutions were performed.

a = b, b = −c, c = 4.5 (24)

1 In the OpenModelica Compiler, the memory overhead for such tracing is
roughly 40MB in a model with 30,000 equations. Most of that is shared
with other data structures.

a = b⇒ a = −c⇒ a = −4.5 (25)

a = b⇒ a = −4.5 (26)

In equation systems that originate from a Modelica model
we prefer to see a substitution as a single operation rather
than a longer chain of operations (chains of 50 cascading
substitutions are not unheard of and makes it hard to get an
overview of the operations performed on the equation, even
though sometimes all the steps are necessary to understand
the reason for the final substitution).

We also plan to collect sets of aliases and select a sin-
gle variable (doing everything in one operation) in order
to make substitutions more efficient. However, alias elim-
ination may still cascade due to simplification rules (27),
which means that you need a work-around for substitutions
performed in a non-optimal order.

a = b− c+ d⇒ a = b− b+ d⇒ a = d (27)

Thus, we compare the previous operation with the new one
and if we detect a link in the chain, we store this relation.
When displaying the operations of an equation system, it is
then possible to expand and collapse the chain depending
on the user’s needs.

2.1.2 Equation Solving
Some equations are only valid for a certain range of input.
When solving an equation like (28), you assert that the
divisor is non-zero and eliminate it in order to solve for x.
We record a list of the assertions made (and their sources
for traceability). An assertion may be removed if we later
determine that it always holds or if it overlaps with another
assertion (29).

x/y = 1⇒ x = y (y 6= 0) (28)

y 6= 0, 46.0 < y < 173.3⇒ 46.0 < y < 173.3 (29)

2.1.3 Expression Simplification
Tracking changes to an expression is easy if you have a
working fixed-point algorithm for expression simplification
(record a simplification operation if the simplification algo-
rithm says that the expression changed). However, if your
simplification algorithm oscillates (as in 30) it is hard to use
it as a fixed-point algorithm.

2 ∗ x⇒ x ∗ 2⇒ 2 ∗ x (30)

The simple solution is to use an algorithm that is fixed-
point, or conservative (reporting no change made when
performing changes that may cause oscillating behaviour).
Finding where this behaviour occurs is not hard to find for
a compiler developer (simply print an error message after
10 iterations). If it is hard to detect if a change has actually
occurred (due to changing data representation to use more
advanced techniques), you may need to compare the input
and output expression in order to determine if the operation
should be recorded. While comparing large expressions may
be expensive, it is often possible to let the simplification
routine keep track of any changes at a smaller cost.

70

2.1.4 Equation System Simplification
It is possible to store these operations as pointers to a shared
and more global operation or as many individual copies
of the same operation. It is preferable to store this as a
single global operation (see Figure 2) since the only cost
is only some indirection when reading the data. It is also
recommended to store reverse pointers (or indices) from the
global operation back to each individual operation as well,
so that reverse lookup can be performed at a low cost.

Figure 2. Sharing Result of Linear System Evaluation

As the tool we are using performs only limited simpli-
fication of these strongly connected components, we are
currently limited to only recording evaluation of constant
linear systems. As more of these optimizations, e.g. solving
for y in (31), are added to the compiler, they will also need
to be traced and support added for them in the debugger.1 1 2

1 i 1
−i 1

xy
z

 =

15
18
18

 (31)

2.1.5 Differentiation
Whenever we perform symbolic differentiation in an expres-
sion, e.g. to expand known derivatives (32), we record this
operation in the equation. We currently do not eliminate this
state variable as in (33), but if we did the operation would
also be recorded.

der(x) = der(time)⇒ der(x) = 1.0 (32)

der(x) = 1.0⇒ x = time+ (xstart − timestart) (33)

2.1.6 Index reduction
For the index reduction algorithm, we record any substitu-
tions made, add source information to the new variable, and
the operations performed on the affected equations. As an
example for the dummy derivatives algorithm, this includes
differentiation of the Cartesian coordinates (x, y) of a pen-
dulum with length L (34) into (35) and (36). After the index
reduction is complete, further optimizations such as variable
substitution (37), are performed to reduce the complexity of
the complete system.

x2 + y2 = L2 (34)

der(x2 + y2)⇒ 2 ∗ (der(x) ∗ x+ der(y) ∗ y) (35)

der(L2)⇒ 0.0 (36)

2 ∗ (der(x) ∗ x+ der(y) ∗ y)⇒ 2 ∗ (u ∗ x+ v ∗ y) (37)

2.1.7 Function inlining
Since inlining functions may cause a new function call to
be added to the expression, we inline functions until a fixed
point is reached (with a maximum depth to avoid problems
with recursive functions). We also simplify expressions in
order to reduce the size of the final expression. When we
have completed inlining calls in an equation, we record this
is an inline operation with the expression before and after.

2.2 Presentation of Operations
Until now we have focused on collecting operations as data
structured in the equation system. What can we do with
this information? During the translation phase we can use it
directly to present information to the user. Assuming that
the data is well structured, it is possible to store it in a static
database (e.g. SQL) or simply as structured data (e.g. XML).
That way the data can be accessed by various applications
and presented in different ways according to the user needs
for all of them. Our OpenModelica prototype only outputs
text at present; this is sufficient for a proof of concept as
the output is human-readable, but it is not suitable for user
tools that require structured data in order to be efficient.

The number of operations stored for each equation varies
widely. The reason is that when you replace a known
variable x with for example the number 0.0, you may
start removing subexpressions. You then end up with a
chain of operations that loops over variable substitutions
and expression simplification. The number of operations
performed may scale with the total number of variables
in the equation system if you do not limit the number of
iterations that the optimizer may take [8]. This makes some
synthetic models very hard to debug. The example model
in Listing 1 performs 1 + 2 + ... + N substitutions and
simplifications in order to deduce that a[1] = a[2] = ... =
a[n].

Listing 1. Alias Model with Poor Scaling
model AliasClass_N
constant Integer N=60;
Real a[N];

equation
der(a[1]) = 1.0;
a[2] = a[1];
for i in 3:N loop
a[i] = i*a[i-1]-sum(a[j] for j in

1:i-1);
end for;

end AliasClass_N;

Using a real-world example, the Engine1a model2, the
majority of equations have less than 10 operations (Fig-
ure 3), which is a manageable number to go through when

2 Modelica.Mechanics.MultiBody.Examples.Loops.Engine1a from MSL
3.1 [15]

71

you need to debug your model and to know which equations
are problematic.

Figure 3. The number of symbolic operations performed
on equations in the Engine1a model

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 2 4 6 8 10 12 14 16

eq
ua

tio
ns

operations

accumulated (reverse)
count

2.3 Runtime
In order to produce better error messages during runtime,
it would be beneficial to be able to trace the source of the
problem. We use the toy example in Listing 2 to show
the information that the augmented runtime can display
when an error occurs. The user should be presented with
an error message from the solver (linear, nonlinear, ODE
or algebraic does not matter). Here, the displayed error
comes from the algebraic part of the solver. It clearly shows
that log(0.0) is not defined and the source of the error in
the concrete syntax (the Modelica code that the user may
influence) as well as the name of the component (which may
be used as a link by a graphical editor to quickly switch view
to the diagram view of this component). We also display the
symbolic transformations performed on the equation, which
will help us debug some problems with the model.

Listing 2. Runtime Error
Error: At t=0.5, block1.u = 0.0 is not

in the domain of log (>0)
Source equation: [Math.mo

:2490:9-2490:33] y = log(u)
Source component: block1 (MyModel

Modelica.Blocks.Math.Log)
Flattened equation: block1.y = log(

block1.u)
Manipulated equation: y = log(u)
<Operations>
variable substitution: log(block1.u

) = log(u)
<Depending on equations (from BLT)>
u <:link>

The equation that threw an assertion also depends on
other variables. We display these as a link (which opens up
a view with the information in Listing 3), enabling a user to
debug the input of the equation. Using this view, we quickly
realize that v is a constant, which causes the expression

v ∗ (1.5 − v) − time to become 0 at some point in time.
If v was time-variant, it is possible that the equation could
always be calculated.

Listing 3. Runtime Error Dependency
Source equation: [MyModel.mo:X:Y-Z:A] u

= p-time
Source component: <top> (MyModel)
Flattened equation: u = v*(1.5-v)-time
Manipulated equation: u = 0.5-time
<Expand operations>
simplify: 0.5*(1.5-0.5)-time =>

0.5-time
variable substitution: v*(1.5-v)-

time => 0.5*(1.5-0.5)-time

If the user interface is intuitive enough (i.e. it is possible
to follow links), this should give a user all the information
he needs to debug his model. All possible error sources
(including but not limited to solvers not converging, domain
errors, singular equations, assertions) should be able to dis-
play such error messages and open up a browser/debugger
of the optimized equation system.

This information can be easily made available in gener-
ated code by loading the database containing the transfor-
mation traces and annotating the source code with the key
to the correct row in the table.

3. Conclusions and Further Work
A prototype design and implementation for tracing symbolic
transformations and operations in a compiler (the OpenMod-
elica Compiler [11]) for an EOO language (Modelica [14])
has been constructed. It has an overhead in the order of
0.01%. The rest is simply writing the database to file, which
is relatively cheap compared to generation and compilation
of the generated C code. The implementation also consid-
ers that some operations, e.g. cascading alias elimination,
should be considered as an expandable operation that com-
bines a simple overview and a detailed view. Further, a
design for constructing a debugger using this data has been
provided. This design can be used for static debugging,
runtime debugging and to provide understandable runtime
errors.

The runtime system of OpenModelica [10] simulations
needs to be extended to take advantage of the collected
information. It currently uses a mixture of text-files and
compiled C sources to set parameters, start values, variable
names and source information. The choice of using SQL
or XML to store the description of the symbolic operations
is a difficult one to make since many other tools rely on
being able to set parameters in the OpenModelica text-based
init-file (this is scheduled to change once OpenModelica
supports the FMI interface [3], which uses XML files for
initialization of data). While XML could also be used
together with an template written in XSLT to display the
information in a regular web browser, the overhead of
writing and parsing huge XML files (hundreds of MB). We
plan to implement our database using SQL as it is a more
practical choice given that the database is usually never

72

needed (if the simulation succeeds and gives the correct
result noone needs the debugger). The savings in storage
and computation time should make up for the flexibility
XML would give us.

A graphical debugger/browser for the transformations
also needs to be designed as the current prototype only relies
on searching in text-based files. Without this, a regular user
will not be capable of taking advantage of the trace. At
the time of this writing, the trace is rather cryptic and only
available from the command-line, but an advanced user
could still take advantage of the current trace (Listing 4) as
it is more readable than the source code (Listings 5 and 6).

Listing 4. OpenModelica Trace (Snipped for Brevity)
nonlinear: x,y
residual: xloc[0] - xloc[1] * time;
operations (3):

subst:
x - y * time
=>
xloc[0] - xloc[1] * time

simplify:
y * (time * 1.0)
=>
y * time

subst:
y * (time * z)
=>
y * (time * 1.0)

residual: xloc[1] - sin(xloc[0] *
time);

operations (1):
subst:
y - sin(x * time)
=>
xloc[1] - sin(xloc[0] * time)

Listing 5. OpenModelica ODE code fragment
start_nonlinear_system(2);
nls_x[0] = extraPolate($Px);
nls_xold[0] = Pold$Px;
nls_x[1] = extraPolate($Py);
nls_xold[1] = Pold$Py;
solve_nonlinear_system(residualFunc2);
$Px = nls_x[0];
$Py = nls_x[1];
end_nonlinear_system();

Listing 6. OpenModelica residualFunc2
res[0] = (xloc[0] - (xloc[1] * time));
tmp1008 = sin((xloc[0] * time));
res[1] = (xloc[1] - tmp1008);

This work focused mainly on operations performed on
individual equations. By analyzing the BLT matrix of the
equation system, a user could additionally be presented
with equations that need to be solved before or after the
selected equation. With more bookkeeping it should even

be possible to show how the relationships change during the
optimization process.

We also did not consider operations performed on algo-
rithmic code or optimizations that can be performed on the
hybrid parts of the system, e.g. dead code elimination of
unreachable discrete events.

References
[1] Ed Anderson et al. LAPACK Users’ Guide. Society

for Industrial and Applied Mathematics, 1999.

[2] Uri Ascher and Linda Petzold. Computer Methods
for Ordinary Differential Equations and Differential-
Algebraic Equations. Society for Industrial and Ap-
plied Mathematics, 1998.

[3] Torsten Blochwitz et al. The functional mockup
interface for tool independent exchange of simulation
models. In Modelica’2011 [16].

[4] Jean Bovet and Terence Parr. ANTLRWorks: an
ANTLR grammar development environment. Soft-
ware: Practice and Experience, 38:1305--1332, 2008.

[5] Willi Braun, Lennart Ochel, and Bernhard Bachmann.
Symbolically derived Jacobians using automatic dif-
ferentiation - enhancement of the OpenModelica com-
piler. In Modelica’2011 [16].

[6] Peter Bunus. Debugging and Structural Analysis of
Declarative Equation-Based Languages. Licentiate
thesis No 964, Linköping University, Department of
Computer and Information Science, 2002.

[7] Conal Elliott. Beautiful differentiation. In Inter-
national Conference on Functional Programming
(ICFP), 2009.

[8] Jens Frenkel, Christian Schubert, Günter Kunze, Pe-
ter Fritzson, and Adrian Pop. Towards a benchmark
suite for modelica compilers: Large models. In Model-
ica’2011 [16].

[9] Peter Fritzson. Principles of Object-Oriented Modeling
and Simulation with Modelica 2.1. Wiley-IEEE Press,
February 2004.

[10] Peter Fritzson, Peter Aronsson, Håkan Lundvall, Kaj
Nyström, Adrian Pop, Levon Saldamli, and David
Broman. The OpenModelica Modeling, Simulation,
and Software Development Environment. Simulation
News Europe, 44/45, December 2005.

[11] Peter Fritzson et al. Openmodelica 1.7.0, April 2011.

[12] Michaela Huhn, Martin Sjölund, Wuzhu Chen, Chris-
tan Schulze, and Peter Fritzson. Tool support for Mod-
elica real-time models. In Modelica’2011 [16].

[13] Sven Erik Mattsson and Gustaf Söderlind. Index reduc-
tion in differential algebraic equations using dummy
derivatives. Siam Journal on Scientific Computing,
14:677--692, May 1993.

[14] Modelica Association. The Modelica Language Speci-
fication version 3.2, 2010.

73

[15] Modelica Association. Modelica Standard Library
version 3.1, 2010.

[16] Proceedings of the 8th International Modelica Confer-
ence. Linköping University Electronic Press, March
2011.

[17] Roberto Parrotto, Johan Åkesson, and Francesco
Casella. An XML representation of DAE systems
obtained from continuous-time Modelica models. In
Proceedings of the 3rd International Workshop on
Equation-Based Object-Oriented Modeling Languages
and Tools, pages 91--98. Linköping University Elec-
tronic Press, October 2010.

[18] Adrian Pop and Peter Fritzson. Towards run-time de-
bugging of equation-based object-oriented languages.
In Proceedings of the 48th Scandinavian Conference
on Simulation and Modeling (SIMS), October 2007.

[19] Richard Stallman, Roland Pesch, Stan Shebs, et al.
Debugging with GDB. Free Software Foundation,
2011.

74

Modelica code generation from ModelicaML state machines
extended by asynchronous communication

Uwe Pohlmann1 and Matthias Tichy2

1Software Engineering Group, Department of Computer Science, University of Paderborn, Germany,
upohl@uni-paderborn.de

2Organic Computing, Department of Computer Science, University of Augsburg, Germany,
tichy@informatik.uni-augsburg.de

Abstract
Innovation in cyber-physical systems is today largely driven
by embedded software. Thus, appropriate approaches have
to be employed to handle the complexity that results
from the multi-discipline nature of these innovative cyber-
physical systems. Modelica as modeling language specif-
ically targets these multi-discipline systems. The UML
profile ModelicaML combines the graphical notation of
the UML with the sound formal modeling provided by
Modelica. ModelicaML currently does not support mod-
eling asynchronous communication which is increasingly
required when cyber-physical systems have to coordinate
their behavior. In this paper, we present our approach for
Modelica code generation from ModelicaML state ma-
chines which have been extended by asynchronous com-
munication. We illustrate our approach by an extended
two tanks system that contains two distributed controllers
which coordinate themselves by message exchange.

Keywords UML 2.2, State Machine, ModelicaML, Mod-
elica, State Graph2, MechatronicUML

1. Introduction
Today’s cyber-physical systems such as aircrafts, space-
crafts, or automobiles are large and very complex. Engi-
neers can design them virtually using digital computers be-
fore any physical prototypes are built. The development of
virtual models of complex systems requires a close collabo-
ration between engineers from different disciplines. To de-
scribe the integration of mechanical and electronic compo-
nents in consumer products the word mechatronics orig-
inated in Japan around 1970. Mechatronics has come to
mean multidisciplinary systems engineering and is the syn-
ergistic integration of physical systems, electronics, con-
trols, and computers through the design process [5].

4th International Workshop on Equation-Based Object-Oriented
Modeling Languages and Tools. September, 2011, ETH Zürich, Switzerland.
Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp/056/

EOOLT 2011 website:
http://www.eoolt.org/2011/

As all elements of a cyber-physical system interact with
each other, engineers cannot engineer them independently.
Instead, a tight integration in mechatronic design is the
key element as complexity has been transferred from me-
chanical domain to electronic and computer software do-
mains. “Mechatronics is the best practice for synthesis by
engineers driven by the needs of industry and human be-
ings" [5].

Modelica is an object-oriented, declarative, multi-domain
modeling language for describing and simulating hybrid
models. Such models can represent physical behavior, the
exchange of energy, signals or other continuous-time in-
teractions between system components as well as reactive,
discrete-time behavior. Modelica uses the hybrid differen-
tial algebraic equation formalism as a sound mathematical
representation. Furthermore, mature compilation and sim-
ulation environments for Modelica exist.

ModelicaML is a UML profile which extends the UML
with concepts of Modelica and enables the modeler to spec-
ify advanced constructs like requirements for Modelica.
The motivation of ModelicaML is to integrate Modelica
and UML. UML’s strength in graphical and descriptive
high-level modeling is combined with Modelica’s formal
executable models for analyses and trade studies. There-
fore, we use Modelica also as an action language for
UML models. ModelicaML does not only target model-
ers who are familiar with UML. Modelica modelers will
also benefit from using ModelicaML/UML for editing and
maintaining Modelica models, because graphical modeling
promises to be more effective and efficient than textual rep-
resentation. The strength and efficiency of UML for system
modeling and simulation has been proven in recent years.
Common understanding of models for parties involved in
development of systems results in high-quality models.
Further, the combination of discrete-time and continuous-
time simulation gives modelers a great benefit. The con-
crete ModelicaML profile documentation can be found in
the technical report [16]. Pop et al. defined earlier versions
of ModelicaML [14, 13].

Modelica and ModelicaML mainly focus on tightly cou-
pled systems. In these systems the components (mechani-
cal, electrical, embedded control, etc.) from different dis-

75

ciplines are tightly coupled for an optimal system per-
formance [18]. But today’s systems are increasingly dis-
tributed and form systems of systems. They typically co-
ordinate via message passing. Statecharts respectively state
machines are an appropriate modeling formalism for the
specification of the coordination of these distributed sys-
tems. Currently, ModelicaML does allow state machines
but it does not consider sending and receiving messages at
transitions of the state machines.

In this paper, we present an extension of ModelicaML
state machines for the specification of sending and receiv-
ing messages based on a running example. We present the
syntax as well as the semantics of this extension. Finally,
we explain the translation of these extended state machines
to plain Modelica code.

We present the running example in the following sec-
tion. In section 3, we present the message extensions to the
ModelicaML state machines including the code generation
to plain Modelica. We show the simulation results of our
example in Section 5. After a discussion of related work in
Section 6, we conclude in Section 7 and give an overview
of future work.

2. Example
An example for a hybrid mechatronic system is a rainwater
system with two tanks as shown in Figure 1. The use case
for the example is that water flows into tank 1 when it is
raining. The tank collects all the rain until it is full. If the
tank is full the additive water flows into the rain drainage.
The second tank stands on a lower floor. It is a closed tank
with no drainage. Periodically, water is taken from tank 2.
Therefore, tank 2 needs always a certain amount of water
which it can get from tank 1.

Every tank has a sensor which measures the current level
of water in the tank. Each tank has one controller. Both
controllers communicate with each other via messages.
Each controller has a message box which stores incoming
messages. Each controller gets the current value of the
level in its tank from the sensor. The controller of tank 1
regulates the position of the valve. This valve blocks the
pipe between the two tanks. When the valve is open, the
water from tank 1 flows into tank 2.

The controller of tank 2 has the master role in the com-
munication protocol when both controllers communicate
with each other. Accordingly, the left controller has the
slave role. The master controller asks the slave controller
via messages to send some water. The slave controller com-
mits or rejects this request. If tank 2 has got enough water,
the master controller asks the slave controller to close the
valve of tank 1 again.

3. State Machines with Message Semantics
In many cases discrete controllers have to interact with
each other to achieve a common goal. Further, they are of-
ten physically separated and arranged in different locations.
Therefore, they cannot access the same memory and com-
municate via shared variables. For this reason they have to
use (parameterized)-messages to interact with each other.

message port

valve

continuous port

tank 1

rain

tank 2

slave controller master controller

sink

legend

pipeconnector

Figure 1. Two Tanks System (cf. [7, p. 391])

The communication needs a protocol as a formal descrip-
tion. We formalize protocols via state machines. Addition-
ally, state machines are a good form to describe discrete
behavior of a system.

Figure 2 shows the state machine which represents the
master role of the communication protocol between the two
controllers and Figure 3 shows the state machine which
represents the slave role of the communication protocol
between the two controllers. Figure 4 shows the state ma-
chines protocolMasterControl and protocolSlaveControl of
both controllers which make the decisions which affect
the further execution of the protocol behavior. A possi-

Figure 2. Protocol Behavior of the Master Controller

Figure 3. Protocol Behavior of the Slave Controller

ble communication scenario and the resulting sequence of
messages are shown in the sequence diagram in Figure 5.

76

Figure 4. Protocol Control Behavior of the Controllers

For each message that is sent in this example scenario a di-
rected edge is drawn from the sender to the receiver state
machine. The protocolMasterControl state machine sends
the message startAdjustLevel to the protocolMaster state
machine when the level of water in tank 2 is below a cer-
tain level and a minimum of 15 seconds is over. This mes-
sage starts the protocol behavior. The protocolMaster state
machine sends the message adjustRequest to the slave con-
troller. The slave controller can agree or reject to open
its valve. The slave controller opens the valve of tank 1,
if the state machine protocolSlaveControl agreed by send-
ing the message adjustCommitDecision. Then water flows
from tank 1 to tank 2. The master can ask the slave con-
troller to close the valve if it is in the state levelAdjust. The
slave controller can reject or commit this proposal.

Figure 5. Communication Scenario

To show a more complex state machine with hierarchy
and history we include a domination state to the state ma-
chines. In this state the master controller dominates the
slave controller and forces the slave controller to close
its valve if the amount of water of tank 2 is too high. In
real systems this may not be the best solution to model
such a behavior. To dominate the slave controller the mas-
ter controller changes to the state dominationClosedValve
and forces the slave controller to close the valve of tank
1. Before the state change occurs the history state stores
the most recent active state of the composite state adjust-
Control. The message dominationDeact informs the slave
controller about the state change.

The master controller reactivates the most recent ac-
tive state of the composite state adjustControl when the
amount of water is below a certain level. The slave con-
troller also reactivates its most recent active state of adjust-
Control when it receives the message dominationAct from

the master. The whole coordination protocol represents a
reactive communication between both controllers.

In the next section we give a brief introduction of syntax
and semantics of ModelicaML state machines. Afterwards,
we describe the semantics for messages. Messages are cur-
rently not defined for ModelicaML state machines. After
this, we show a mapping from ModelicaML state machines
extended by messages to Modelica code.

3.1 ModelicaML State Machines
State machines mainly consist of states and transitions be-
tween states. States can contain regions to add hierarchy
or orthogonal behavior. The hierarchy of states and regions
builds a tree structure. A configuration of a state machine
defines all active states at a point in time.

A state is entered and activated when an incoming tran-
sition fires and a state is exited and deactivated when an
outgoing transition fires. A state can have an entry-action,
which is executed when the state is entered, an exit-action,
which is executed when a state is exited, and do-actions,
which are executed as long as a state is active.

A transition is enabled when the boolean guard expres-
sion is true and, if required, the boolean message variable
is true. If more than one transition is enabled the transitions
are in conflict with each other. Only the transition with the
highest priority of those transitions, which are in conflict
with each other, fires. The transition with the lowest prior-
ity integer value has the highest priority.

3.2 Semantics Definition by Modelica
In this section we address the semantics of state machines
with the target to map this semantics to Modelica language
constructs. A special focus is set on the message seman-
tics. We translate state machines into Modelica algorithmic
codes. The state machine semantics definition is closely
linked to the UML semantics definition. However, there are
some issues in which the state machine semantics differs
from UML. This is based on the target language Modelica.

The state machine semantics does not change the syn-
chronous data flow principle of Modelica. The developer
must explicitly model the real-time characteristics.

The UML defines the behavior of state machines as
follows:

“Behavior is modeled as a traversal of a graph of
state nodes interconnected by one or more joined
transition arcs that are triggered by the dispatching
of series of (event) occurrences.” [19, p.564].

The state machines react immediately to each value change
of a model variable because Modelica evaluates the algo-
rithm section of the code continuously, namely, after hav-
ing finished continuous time integration steps and at Mod-
elica event iterations. For a description of the discrete/ con-
tinuous modeling/simulation in Modelica based on the syn-
chronous data-flow principle see e. g. Otter et al. [10].

Schamai et al. discuss the execution semantics of Mod-
elicaML state machines [17]. A more detailed definition of
ModelicaML state machines syntax and semantics is given
by Pohlmann [12].

77

3.3 Message Syntax and Semantics
A message implementation in Modelica exists in the DEVS
approach [15]. We use this approach for sending and re-
ceiving messages between different state machines. We
define messages by modeling them as operations of the
owner class of the state machine. In the two tanks example
the messages are defined as operations in the classes Dis-
creteMasterController and DiscreteSlaveController which
are the model classes of the components masterController
and slaveController as shown in Figure 6. Additionally, the
Figure shows the composite structure of the whole system
modeled with ModelicaML.

Figure 6. Component Structure

A good way to define messages is to model them as
UML operations of the owner class of the state machine.
In the two tanks example the messages are defined as op-
erations in the class BaseController. The class BaseCon-
troller is the abstract parent class of the model classes Dis-
creteMasterCotroller and DiscreteSlaveController. Fig-
ure 7 shows the inheritance relation of the involved classes
and a part of the needed messages. The state machines of
both child classes can use all defined messages. The syntax
is the same as in UML for operations.

Figure 7. Message Definition of the Controller Classes

In the two tanks example messages could be sent from
slaveController to masterController and vice versa. The
destination of a message from slaveController to master-
Controller is the inPort of masterController. The outPort
of slaveController is connected via a connector to the in-
Port of masterController. In a similar way is the outPort
of masterController connected to the inPort of slaveCon-
troller.

In ModelicaML the causality of ports can be specified.
They can be declared as input or output ports. In general, a

port with causality input receives messages and via a port
with causality output messages are sent. The transmission
of messages is instantaneous when no behavior for the con-
nector is defined. The content of a message is independent
from its type. Accordingly, a message can contain parame-
ters. Further, various messages can be received simultane-
ously over an input-port or sent via an output-port.

An output-port can only be connected to an input-port.
An input-port is associated with the destination object.
Each message port has its own message box, also called
message pool. Additionally, each component has a compo-
nent message pool which collects all messages from all of
its message ports. This makes it easier to search for a cer-
tain message, because only the component message pool
has to be searched and not all port message pools.

Figure 8 shows the internal representation of the mes-
sage pools and the message flow via the port between the
two controllers. Each component has the input-port mes-
sage pool inPortMessagePool and the component message
pool (controllerMessagePool).

Figure 8. Internal Message Pool Representation and Mes-
sage Flow

A component monitors the message pools by periodi-
cally sampling the status of the message pool. Before the
system can react on a received message, the message pool
is completely iterated and all received variables are read.
For each message type one boolean variable exists. An
available message is dispatched from the message pool and
the corresponding variable becomes true, if it previously
was false. If the message variable is true, the message is put
back into the message pool. The message queue is ordered
as a FIFO-queue. The execution semantics mostly does not
depend on the order of messages in the message pool. It
depends only on the order of messages in the message pool
if messages from the same type are received via different
ports at the same time. In this case we use an explicit or-
der of the input-ports to get an explicit prioritization. We
do not differ between messages in the message pool which
we received from other components or messages which are
raised within the same component. At one event iteration
at a time instance it is not possible that multiple transitions
react on the same message type. If there are multiple tran-
sitions they have to wait until the next event iteration.

Figure 9 shows an example. Both state machines are cur-
rently located in the marked states A2, B2. In the previous
step the transition A1→ A2 sent message1 and simultane-
ously, the transition B1 → B2 sent message2. The Figure
shows the current state of the component message pools
below the components. However, the relevant information

78

for the execution semantics is the priority order of the en-
abled outgoing transitions (A2 → A3 [priority value = 2],
A2 → A5 [priority value = 3]) of state A2. Transition
A2 → A3 has the higher priority and fires. Message2 is
dispatched and state A3 becomes active.

Figure 9. Message Execution Semantics

4. From State Machines to Modelica Code
The translation from ModelicaML models to Modelica
consists of two steps. Firstly, the static semantics of the
model is validated. The validation process automatically
traverses the state machine graph. During this traversing a
template checks the model for certain conditions such as if
each composite state has at least one initial state. For each
found error an error marker is set in the Eclipse problem
view. The modeler can start the validation process at any
time. Secondly, the modeler can start the code generation
process if the model is error free. We use the template-
based model-to-text approach of Acceleo1 for the code
generation2.

4.1 Modelica Code for the State Machine Structure
The code generation of the static part of state machines
generates a Modelica record structure for each state ma-
chine and its regions and states. A Modelica record is a
class for specifying data without behavior. The behavior is
located in an algorithm section of the state machine owner
model class.

The state machine and each state have the variables
active, timeAtActivation, stime, and selfTransitionActi-
vated. The variable active indicates whether a state is
active (active = 1) or inactive (active = 0). The vari-
able timeAtActivation is set to the current simulation time
when the state is activated. The variable stime is a local
timer. The value is calculated by the statement time −

1 http://www.acceleo.org
2 The developed code generator for ModelicaML state machines with-
out messages is a result of the master thesis of Pohlmann [12] which
was done in a cooperation with Schamai from EADS Innovation Works.
It is available at http://www.openmodelica.org/index.php/
developer/tools/134.

timeAtActivation. The variable selfTransitionActivated
is an auxiliary variable, which is needed to identify if a
self-transition has been fired. Listing 1 shows the Modelica
record definition of a simple state.

Listing 1. Simple State Record Definition
record SimpleState
Boolean active;
Real timeAtActivation;
Real stime;
Boolean selfTransitionActivated;

end SimpleState;

The Modelica record definition of a state machine con-
sists of several variables. The variable startBehavior is
used to initialize the state machine behavior. Each region
has the variable numberOfActiveStates. This variable is
used to assert that in a region there is never more than one
state active at the same time. Listing 2 shows the Modelica
structure code for the protocolMasterControl state machine
shown in the left part of Figure 4.

Listing 2. State Machine Record Definition
record masterController_SM_protocolMasterControl
Boolean active;
Real timeAtActivation;
Real stime; // local timer.
Boolean selfTransitionActivated;
Boolean startBehavior;
protocolMasterControl_Region_0 Region_0;
// REGION records
record protocolMasterControl_Region_0
// SIMPLE STATES instantiation
SimpleState protocolControl;
SimpleState wait;
InitialState Initial_0;
Integer numberOfActiveStates;

end protocolMasterControl_Region_0;
...
end masterController_SM_protocolMasterControl;

A special record is required if, instead of an initial-
pseudostate, a shallowHistory-pseudostate is used like in
Figure 2. The record of the composite state adjustControl
must have a type with an enumeration of all states of the
region. Further, the variable lastActive is an instance of this
type. Listing 3 shows an example for such a record.

Listing 3. ShallowHistory Record Definition
record Region_0_HistoryState
Boolean active;
Real timeAtActivation;
Real stime;
Boolean selfTransitionActivated;
type HistoryStateT = enumeration(

deactivateLevelAdjust, requestLevelAdjust,
levelAdjust, requestDeactivation);
HistoryStateT lastActive;

end Region_0_HistoryState;

Besides the generation of the state machine structure,
the structure for messages is implemented. A message is
stored as a record. This record has at least the integer
variable msgType. The msgType value must have a unique

79

value, because it is the identifier of the message type. Fur-
ther, a message can have user defined attributes. Listing 4
shows an example of a message record. It has the inte-
ger variable port which encodes the port-id over which the
message should be sent and the integer variable msgType
which identifies the type of a message. Additionally, at-
tributes which hold parameterisable values could be added.

Listing 4. Message Type Record Definition
replaceable record stdMessage

Integer port;
Integer msgType;

end stdEvent;

For the two tanks example the message type values are
encoded as defined in Table 1.

10 = adjustRequest 11= adjustCommit
12 = adjustReject 13 = adjustDeact
14 = deactRequest 15 = deactCommit
16 = deactReject 17 = dominationDeact
18 = dominationAct 19 = startAdjust
20 = startAdjustLevel 21 = adjustRequestDecision
22 = adjustRejectDecision 23 = adjustCommitDecision
24 = deactRequestDecision 25 = deactRejectDecision
26 = deactCommitDecision

Table 1. Message Type Encoding

Because of the limitations that Modelica cannot han-
dle data structures with a dynamic size, such as a linked
list, we implement the message mechanism like Sanz [15]
by using Modelica external functions. The external func-
tion invokes a C-implementation that stores messages in
the dynamic memory. The dynamic memory address of the
component message pool is stored in the variable cmpMsg-
PoolAdr. Additionally, for each message port the variables
inputMsgPoolAdr, outputMsgPoolAdr are used. They store
the dynamic memory location of the port message pools.
The variables numIn, numOut, numreceived are auxiliary
variables. For each message a boolean variable exists which
has the name of the message. Listing 5 shows the code
which is needed for the messages and pools of component1.

Listing 5. Message Representations
//Number of Ports
parameter Integer numIn = 1
parameter Integer numOut = 1
//Memory address of the pools
Integer cmpMsgPoolAdr;
Integer inputMsgPoolAdr[numIn];
Integer outputMsgPoolAdr[numOut];
// Number of received messages
Integer numreceived;
// Message occurrence variables
Boolean adjustCommit;
Boolean adjustReject;
Boolean adjustDeact;
Boolean adjustRequest;
Boolean deactRequest;
Boolean deactCommit;
Boolean deactReject;
...

4.2 Modelica Code for State Machine Behavior
The order of the generated algorithmic code is very impor-
tant for the semantics of the state machines. The order of
the resulting Modelica algorithm code is defined as pseudo-
code by the Algorithms 4.1, 4.2, 4.3, and 4.4.

At the beginning of the Modelica algorithm code, the
initialization of the state machine is stated. Afterwards, the
code for message handling is stated, if required. Accord-
ingly, the region codes are generated in the order of their
execution order which is defined by a priority value.

Algorithm 4.1: STATEMACHINEBEHAVIORCODE(
StateMachine)

initializeStateMachine
messageHandlingStatements
for each Region.sortRegion()

do
{

REGIONBEHAVIORCODE(Region)

Algorithm 4.2 shows the structure of the region behav-
ior code. The region behavior code starts with the local time
management. This local time management sets and calcu-
lates the variables timeAtActivation and sTime. Afterwards,
the history nodes, if present, are set to the currently active
states. Now the transition code is generated for the region.
Accordingly, the code for the do-actions is generated. At
the end of the region behavior code the region behavior
code of composite states and submachine states is stated.
The code generation invokes the Algorithm 4.2 REGION-
BEHAVIORCODE recursively at this point.

Algorithm 4.2: REGIONBEHAVIORCODE(Region)

set local Time Behavior
set History Node to Current Active State
TRANSITIONBEHAVIORCODE(Region)
execute do code
for each CompositeState

do
{

for each Region.sortRegions()
do
{

REGIONBEHAVIORCODE(Region)
for each SubMachineState

do
{

for each Region.sortRegions()
do
{

REGIONBEHAVIORCODE(Region)

Algorithm 4.3 shows the structure of the transition be-
havior code. The code starts with the behavior code for the
initial- and shallowHistory-pseudostates. These states are
auxiliary states and are directly processed in favor. The be-
havior code for each state is nested within an if-clause. This
clause is only processed if the parent state is still active.
Therefore, it is ensured that transitions can never fire if the
parent is not active.

Algorithm 4.3: TRANSITIONBEHAVIORCODE(Region)

initialBehaviorCode
shallowHistoryBehaviorCode
if (parent is still active)

then

for each State

do
{

if (state is pre active)
then

{
TRANSITONCODE(State)

80

Algorithm 4.4 shows the structure of a simple transi-
tion code. The concrete execution of a compound transi-
tion depends on the pseudostates involved in the chain of
transitions from one state to another. This example directly
connects two states. The transition with the highest prior-
ity is in the if-clause. Then the other transitions follow in
the order of their priority in the else-if-clauses. If the guard
is empty the condition is set to true. A trigger is optional.
Entry-, and exit-actions are only generated if available.

Algorithm 4.4: TRANSITIONCODE(State)

comment: First Transition (Highest Priority)

if guard [and trigger]

then


execute exit-action
deactivate active state
execute effect
activate transition target state
execute entry-action

comment: Second Transition (Lower Priority)

else if guard [and trigger]

then

execute exit-action
deactivate active state
. . .

In the following sections we describe the Modelica code
for particular elements.

State Machine Initialization State machines are initial-
ized when the simulation is started. The initialization sets
all initial- or history-pseudostates of all regions to true.

Further, the message pools for the component and all
discrete input-ports are created. Listing 6 shows the al-
gorithmic code which creates the needed message pools
initially. Listing 7 shows the invoked Modelica function
which calls the corresponding C-Code <events.c>3 of a
message pool from Sanz.

Listing 6. Initialization of Message Pools
for i in 1:numIn loop

inputMsgPoolAdr[i] := CreatePool();
end for;
cmpMsgPoolAdr := CreatePool();
end if;

Listing 7. Modelica Function which creates a new pool for
messages in the dynamic memory
function CreatePool
output Integer q;
external "C" q = QCreate();

annotation (Include="#include <events.c>");
end CreatePool;

Message and MessageTrigger A message event is the
dispatch of an asynchronous message instance. A boolean
message trigger represents the receipt of this instance. A

3 http://www.euclides.dia.uned.es/DESLib/Files/
DESLib_1.2.zip

message can be created and sent by invoking a special
sendMessage Modelica-function by a transition action. The
message function is similar to the sendEvent-function of
Sanz [15]. The sendMessage function is shown in listing 8.

Listing 8. Sends a message to a pool
function sendMessage
input Integer poolAdr;
input stdMessage e;
output Integer out;

external "C" out =
QAdd(poolAdr,e.port,e.msgType,e.value,0);

annotation (Include="#include <events.c>");
end sendMessage;

At the beginning of the state machine behavior code the
message handling code is stated. This code has the func-
tion to handle incoming messages and to put them from the
different input-ports into the message pool of the compo-
nent. Further, it handles the occurrence of messages in the
message pool. If a message occurs and the corresponding
variable is false, it sets the variable to true.

Listing 9 shows an example of the message handling.
In the first for loop all messages from all input-ports are
collected in the component message pool. The address
of the memory location of the message pool is stored in
the variable cmpMsgPoolAdr. Afterwards, the component
message pool is searched for messages by the statement
message := getMessage(cmpMsgPoolAdr);.
The value of the variable message.msgType is used to check
if a certain message is in the pool. If a message is in the
pool then the corresponding message variable is set to true.
For example if a message of message.msgType=10
is in the pool and the variable adjustRequest is false, then
the variable is set to true. Otherwise the message is put back
into the message pool by the statement
sendMessage(cmpMsgPoolAdr,message).

Listing 9. messageHandlingStatements
for i in 1:numIn loop

numreceived := numMessages(inputMsgPoolAdr[i]);
for j in 1:numreceived loop

message := getMessage(inputMsgPoolAdr[i]);
message.port := i;
sendMessage(cmpMsgPoolAdr,event);

end for;
end for;
numreceived := numMessages(cmpMsgPoolAdr);
for j in 1:numreceived loop

message := getMessage(cmpMsgPoolAdr);
if message.msgType == 10

and adjustRequest == false) then
adjustRequest := true;

...
else

sendMessage(cmpMsgPoolAdr,message);
end if;

...

A transition, which wants to react on the occurrence
of a specific message, uses the boolean message vari-
able as reference in its guard. When the message is avail-
able the guard becomes true and the transition fires and
the transition action is executed. The transition action

81

resets the message variable back to false. For example
in Figure 2 the transition from requestLevelAdjust →
deactivateLevelAdjust has as guard the variable
adjustReject and the transition action statement
adjustReject:=false. At the moment when the
message adjustReject arrives from protocolSlave the vari-
able is set to true by the message handling. The transition
fires and resets the variable back to false, so that the next
time when the message is available it could be set to true.

Local Time Behavior Each state has the time variables
timeAtActivation and stime. The variable timeAtActivation
is set to the current time when a state is entered. The vari-
able stime is set in each integration step to the difference
of the current simulation time and the timeAtActivation. If
a state is not active the local timer stime is set to zero.

Initial/ShallowHistory-Pseudostate Behavior If the ini-
tial-pseudostate is active it is deactivated and the target of
the outgoing transition is activated. If the shallowHistory-
pseudostate is active the most recent active state is acti-
vated. If no most recent active state exists the target of the
outgoing transition is activated.

Simple Transition Behavior A simple transition is a tran-
sition which directly connects two states. It is activated if
the source state is pre-active. The Modelica pre-function is
used to ensure that a state is active at the beginning of the
event iteration. Therefore, it is not possible that a state be-
comes active and not active during the same iteration of an
algorithm section.

For example if the state deactivateLevelAdjust from the
state machine protocolMaster (see Figure 2) is active, the
message startAdjustLevel has already arrived and therefore
the boolean variable startAdjustLevel is true. Then the tran-
sition fires and sends the message adjustRequest to the state
machine protocolSlave (Figure 3) of component slaveCon-
troller. Listing 10 shows the resulting Modelica code.

Listing 10. Simple Transition Behavior
if pre(protocolMaster.Region_0

.adjustControl.active) then
if pre(... .adjustControl.

deactivateLevelAdjust.active) then
if startAdjustLevel then //guard

//...; exit behavior
... .deactivateLevelAdjust.active := false;
//start effect behavior
startAdjustLevel:=false;
message.msgType:=10;
sendMessage(pre(cmpMsgPoolAdr,message);
//end effect behavior
... .requestLevelAdjust.active := true;
// ... ; entry behavior

end if;
end if;
end if;

Highlevel Transition Behavior Highlevel transitions are
outgoing transitions of composite or submachine states.
When a highlevel transition deactivates these hierarchi-
cal states it has to be ensured that all active nested sub-
states are deactivated before the composite-/ submachine

is deactivated. Consider the state machine in Figure 2.
Suppose, the state adjustControl is activate and the guard
cIn.val>=0.6 is true. Then the currently active state
deactivateLevelAdjust, requestLevelAdjust, levelAdjust or
requestDeactivation is deactivated. Afterwards, the state
adjustControl itself is deactivated. Accordingly, the high-
level transition adjustControl→ dominationClosedV alve
is taken and the message dominationDeact with message
type identifier 17 is sent to the protocolSlave state ma-
chine. Finally, state dominationClosedValve is activated.
Listing 11 shows the corresponding Modelica code.

Listing 11. Highlevel Transition Behavior
if pre(protocolMaster.Region_0

.adjustControl.active) then
if(cIn.val>=0.6) then
if (...deactivateLevelAdjust.active) then
...deactivateLevelAdjust.active:=false;

end if;
if (...requestLevelAdjust.active) then
...requestLevelAdjust.active:=false;

end if;
...
...adjustControl.active := false;
message.msgType:=17;
sendMessage(pre(outputMsgPoolAdr[1]),message);
...dominationClosedValve.active := true;

end if;
end if;

5. Evaluation
We modeled the rainwater two tanks system as shown in
Figure 1 with ModelicaML. The resulting composite struc-
ture of the system is shown in Figure 6. We modeled the
sketched state machines of Figures 2, 3, and 4 with Mod-
elicaML state machines and embedded them as behavior
of the model classes DiscreteMasterController and Dis-
creteSlaveController. Further, we extended this model with
our Modelica-Functions, like sendsMessage as shown in
Listing 8. Further, we added Modelica code for the mes-
sage passing and variables for our message types to the
ModelicaML model. We generated from that ModelicaML
model the whole Modelica code. The model and the gen-
erated code is available online at4. We simulated it with
Dymola 7.4.

Figure 10 shows a part of the simulation results. The
variable rain.qOut.lflow in the upper diagram shows the
amount of rain which flows into tank 1. The inflow of tank
1 is not controllable by the slave controller of tank 1. At
simulation time = 16 the rain decreases. The variable
tank1.qOut.lflow shows the amount of water which flows
from tank 1 into tank 2 when the valve is opened. The
valve is opened at simulation time = 15. Then 0.6m3

s
water leave tank 1 for 24.3 seconds. The diagram in the
middle shows the resulting water level in both tanks. When
the valve is opened the water level of tank 1 decreases and
the water level of tank 2 increases. In our example tank

4 http://www.cs.uni-paderborn.de/fileadmin/
Informatik/FG-Schaefer/Personen/upohl/downloads/
TwoTanksSystemExample.zip

82

2 is bigger than tank 1 and therefore the amount of wa-
ter in tank 2 increases slower than the decrease of water
in tank 1. The lower diagram shows the state levelAdjust
of the master controller. At time = 15 the state levelAd-
just become active, because the self-transition of state pro-
tocolControl in state machine protocolMasterControl fires
(see Figure 4). This starts the communication between both
controllers to open the valve. At time = 39.3 the state lev-
elAdjust is deactivated and the valve is closed.

Figure 10. Simulation Results

The sequence diagram in Figure 11 shows the commu-
nication that appeared within the simulation. The messages
coincide with our predicted scenario (see Figure 5). For
each message that is sent a directed edge is drawn from
the sender to the receiver state machine. Additionally, the
time when the message is sent is annotated below the edge.
When a message is drawn below another message and has
the same time of sending it is sent after the upper message.
Currently, ModelicaML only supports the specification of
timing behavior in a rudimentary way. Therefore, we do
not specify discrete timing behavior in our protocol. As a
result it is difficult to grasp the timing behavior of the dis-
crete controller and the communication protocol. This can
be seen within the sequence diagram, because several mes-
sages that are sent one after another have the same time of
sending.

Figure 11. Communication Simulation with Concrete
Time Annotation

6. Related Work
6.1 MechatronicUML
MechatronicUML [2, 9, 8, 4] is an approach for the model-
driven development and verification of mechatronic real-
time systems. The MechatronicUML refines the UML in
order to make it applicable to mechatronic real-time sys-
tems. The component-based architecture of mechatronic
systems is modeled using discrete and continuous compo-
nents. Their discrete behavior is modeled using real-time
statecharts, an extension of UML state machines with con-
structs from timed automata [1]. Continuous behavior is
modeled with the help of the CAMeL-View [3] tool which
allows the object-oriented modeling of different parts of
mechatronic systems like multi-body system dynamics,
control technology, and hydraulics. The MechatronicUML
focuses on the real-time coordination between mechatronic
systems and supports its formal verification with respect to
safety properties. The presented extension of ModelicaML
with message exchange has been based on the Mecha-
tronicUML. However, it enables the seamless modeling
of mechatronic systems using a single formalism and tool
in contrast to the MechatronicUML.

6.2 StateGraph2
The Modelica StateGraph2 library [11] is a free Modelica
library providing components to model discrete events, re-
active and hybrid systems with deterministic hierarchical
state diagrams. It utilizes Modelica as action language. Via
special blocks actions can be defined in a graphical way de-
pending on the active step. StateGraph does not support a
comprehensive set of state machines as defined in the UML
and reused in ModelicaML. Larger StateGraph models are
not easy to grasp as they are graphically more complex than
UML state machines. Additionally, in contrast to our ap-
proach, StateGraph does not support message exchange.

6.3 SimulationX
The SimulationX modeling and simulation tool does di-
rectly support the specification of a subset of UML state
machines [6]. The subset is rather restricted as they do
not support orthogonal states. Orthogonal states are an im-
portant feature as they enable the modeling of parallel ac-
tivities and, thus, can greatly reduce the model complex-
ity. They also provide no mechanism like submachines to
group a state machine into multiple parts and to reduce the
visual complexity and to reuse once defined state machines.
Furthermore, they do not support asynchronous message
exchange.

7. Conclusion and Future Work
In this paper, we have presented an extension to Modeli-
caML for the specification of message exchange. We have
illustrated our extension by a rainwater two tanks system
using two controllers which exchange messages for their
coordination. Furthermore, we presented how we trans-
late the ModelicaML models to plain Modelica code and
a helper C-function and finally, showed a simulation run.
Our translation to Modelica code has been implemented as

83

plugins for the eclipse case tool Papyrus5. We are working
on finishing the code generation with respect to messages.

Currently, we work on a new version of our translation
directly to the StateGraph2 library. We want to combine
StateGraph2 with algorithmic code for constructs which
depend on a particular order of execution. Translating to
StateGraph2 has the advantage that the resulting models
are structured similarly to the ModelicaML state machines
and are, thus, easier to understand by the developer than
the generated Modelica code. Though, we have to extend
the StateGraph2 library to support message sending and
receiving for that translation.

Furthermore, we want to add more syntactical con-
structs to ModelicaML state machines for the better spec-
ification of temporal behavior. Specifically, clocks, time
guards and invariants as used in timed automata will be
added to ModelicaML state machines. Finally, we want to
translate simulation runs done in a Modelica tool back to
ModelicaML. For example, the states and transitions which
are taken during a simulation run can be appropriately vi-
sualized using sequence diagrams.

Acknowledgments
This work was developed in the project ’ENTIME: En-
twurfstechnik Intelligente Mechatronik’ (Design Methods
for Intelligent Mechatronic Systems). The project EN-
TIME is funded by the state of North Rhine-Westphalia
(NRW), Germany and the EUROPEAN UNION, European
Regional Development Fund, ’Investing in your future’.

Matthias Tichy is currently on leave from the Software
Engineering Group at the University of Paderborn.

References
[1] Rajeev Alur and David L. Dill. A theory of timed automata.

Theoretical Computer Science, 126:183–235, 1994.

[2] Steffen Becker, Stefan Dziwok, Thomas Gewering, Chris-
tian Heinzemann, Uwe Pohlmann, Claudia Priesterjahn,
Wilhelm Schäfer, Oliver Sudmann, and Matthias Tichy.
Mechatronicuml - syntax and semantics. Technical Report
tr-ri-11-325, Software Engineering Group, University of
Paderborn, Heinz Nixdorf Institute, 2011.

[3] Sven Burmester, Holger Giese, Stefan Henkler, Martin
Hirsch, Matthias Tichy, Alfonso Gambuzza, Eckehard
Münch, and Henner Vöcking. Tool support for developing
advanced mechatronic systems: Integrating the fujaba real-
time tool suite with camel-view. In Proceedings of ICSE,
pages 801–804, 2007.

[4] Sven Burmester, Holger Giese, and Matthias Tichy. Model-
driven development of reconfigurable mechatronic systems
with mechatronic uml. In Proceedings of MDAFA, pages
47–61, 2004.

[5] Kevin C. Craig. Mechatronic system design. In Proceedings
of the Motor, Drive & Automation Systems Conference,
2009.

[6] Ulrich Donath, Jürgen Haufe, Torsten Blochwitz, and
Thomas Neidhold. A new approach for modeling and

5 http://www.openmodelica.org/index.php/
developer/tools/134

verification of discrete control components within a
Modelica environment. In Proceedings of the 6th Modelica
Conference, Bielefeld, pages 269–276, 2008.

[7] Peter Fritzson. Principles of Object-Oriented Modeling
and Simulation with Modelica 2.1. Wiley-IEEE Press, 1st
edition, 2004.

[8] Holger Giese, Sven Burmester, Wilhelm Schäfer, and Oliver
Oberschelp. Modular design and verification of component-
based mechatronic systems with online-reconfiguration. In
Proceedings of 12th ACM SIGSOFT FSE, pages 179–188,
2004.

[9] Holger Giese, Matthias Tichy, Sven Burmester, Wilhelm
Schäfer, and Stephan Flake. Towards the compositional
verification of real-time uml designs. In Proceedings of 9th
ESEC and 11th ACM SIGSOFT FSE, pages 38–47. ACM
Press, 2003.

[10] Martin Otter, Hilding Elmqvist, and Sven E. Mattsson.
Hybrid modeling in Modelica based on the synchronous
data flow principle. In Proceedings of CACSD, pages 151–
157, 1999.

[11] Martin Otter, Martin Malmheden, Hilding Elmqvist, Sven E.
Mattsson, and Charlotta Johnsson. A New Formalism for
Modeling of Reactive and Hybrid Systems. In Proceedings
of the 7th Modelica Conference, pages 364–377, 2009.

[12] Uwe Pohlmann. A uml based modeling language with
operational semantics defined by modelica. Master thesis,
University of Paderborn, Department of Computer Science,
Software Engineering Group, 2010. Master Thesis.

[13] Adrian Pop, David Akhlevidiani, and Peter Fritzson.
Integrated UML and modelica system modeling with
ModelicaML in Eclipse. In Proceedings of the 11th
IASTED, 2007.

[14] Adrian Pop, David Akhlevidiani, and Peter Fritzson.
Towards unified system modeling with the ModelicaML
UML profile. In Proceedings of EOOLT, pages 13–24,
2007.

[15] Victorino Sanz, Alfonso Urquia, and Sebastian Dormido.
Introducing messages in modelica for facilitating discrete-
event system modeling. In Proceedings of EOOLT, pages
83–93, 2008.

[16] Wladimir Schamai. Modelica modeling language (mod-
elicaml) : A uml profile for modelica. Technical report,
Linköping University, Department of Computer and Infor-
mation Science, The Institute of Technology, 2009.

[17] Wladimir Schamai, Uwe Pohlmann, Peter Fritzson, Christi-
aan J.J. Paredis, Philipp Helle, and Carsten Strobel. Execu-
tion of uml state machines using modelica. In Proceedings
of EOOLT, pages 1–10, 2010.

[18] Rajarishi Sinha, Vei-Chung Liang, Student Member, Chris-
tiaan J. J. Paredis, and Pradeep K. Khosla. Modeling and
simulation methods for design of engineering systems.
Journal of Computing and Information Science in Engi-
neering, 1:84–91, 2001.

[19] Object Management Group UML. Unified modeling
language, superstructure, v2.2. Technical report, 2009.

84

Real-time Oriented

Modeling Languages and Tools

Using Equation-Based Languages for Generating Embedded Code
for Smart Building Applications

Gregory Provan1

1Computer Science Department, University College Cork, Cork, Ireland, g.provan@cs.ucc.ie

Abstract
While significant research has been done on applying
equation-oriented object languages, such as Modelica, to
the simulation of complex systems, much research remains
to use such languages for generating application-specific
embedded code. We describe a method for using a hybrid
system language (as a reference model), from which we
generate reduced-order models suitable for creating em-
bedded code for tasks such as control and diagnostics. We
apply our approach to the generation of embedded diag-
nostics code for the operation of heating, ventilation and
air-conditioning (HVAC) for complex buildings.

Keywords Embedded systems, efficient code generation,
model-driven development

1. Introduction
The design of buildings that can simultaneously reduce
energy use and integrate multiple building services, such
as heating, ventilation and air-conditioning (HVAC), light-
ing, security, and fire&safety, is receiving widespread at-
tention. Optimised building performance can save signifi-
cant amounts of energy and reduce greenhouse-gas emis-
sions, and integrating different building operations can en-
hance such optimisation and also lead to cheaper build-
ing management solutions1. Equation-oriented object lan-
guages, such as Modelica [12], play a major role in such
design.

The major focus of building optimization research, to
date, has been the simulation of energy use, in order to
design structures that minimize energy usage [25]. How-
ever, little research has focused on extending languages like
Modelica to enable the design of the embedded code that is
used to control the building services once the design pro-
cess is completed. As a consequence, the design of building
structures remains decoupled from the design of key em-

1 See www.smart2020.org

4th International Workshop on Equation-Based Object-Oriented
Modeling Languages and Tools. September, 2011, ETH Zürich, Switzerland.
Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp/056/

EOOLT 2011 website:
http://www.eoolt.org/2011/

bedded services such as HVAC controls, diagnostics and
maintenance.

Some tools are now appearing to integrate design of
structures and of embedded code. For example, Wetter
[26] has proposed a tool that uses a Modelica building
simulation library for energy simulation, in conjunction
with MATLAB and Ptolemy for control simulation. Such a
tool, although a significant advance over energy-simulation
tools such as EnergyPlus2, lacks suitable approaches for
actually generating embedded-systems code, as it is fo-
cused on simulation. Furthermore, several embedded ap-
plications require information beyond just simulation be-
haviours of nominal conditions. For example, diagnostics
requires knowledge of failure modes and their behaviours,
and fire&safety systems require the ability to identify the
effects of fire and smoke, in order to design escape routes.

Given the use of equation-based languages for system
specification, we describe a framework based on model
transformation for generating embedded code designed for
specific applications, such as diagnostics or control. Our
contributions are as follows.

• This article proposes a framework for embedded sys-
tems design that uses a high-fidelity model, called a ref-
erence model ΦR, as the basis for (a) the simulation of
a system during the design phases, and (b) the genera-
tion of embedded code for operation of the system. We
adopt a hybrid systems language (defined using Model-
ica) that explicitly defines system operational and fail-
ure modes, thereby extending such languages to include
mode-based specifications.
• We develop a model library for HVAC with mode-

specifications and fidelity-level tailored to generating
embedded code for control and diagnostics purposes.
• We describe model transformation techniques that can

be used to transform ΦR into a languages suitable for
embedded diagnostics.
• We apply our approach to the area of energy-efficient

buildings, and demonstrate how to generate reduced-
order models for diagnostics code that result in com-
putationally efficient embedded diagnostics code.

2 http://apps1.eere.energy.gov/buildings/energyplus/

87

2. Related Work
Our work is based on prior research in the area of building
energy simulation and design, model-based code genera-
tion and reduced-order modeling.

Energy simulation: Building energy simulation tools [5]
typically focus on whole-building simulation, which in-
cludes both the building envelope and the energy-delivery
systems, like HVAC. Such tools provide users with impor-
tant building performance indicators, such as energy usage
and demand, energy costs, and parameters such as tempera-
ture, humidity, light-level, etc. These tools provide a variety
of capabilities, but the majority (e.g., EnergyPlus, TRN-
SYS) can be viewed as black-box or grey-box tools, in that
they hide the underlying energy diffusion equations from
the user, as well as the actual simulation code.

Modelica is gaining increasing usage for building en-
ergy simulation, and unlike leading tools such as Energy-
Plus or TRNSYS, exposes its fundamental equations within
an object-oriented framework. Several libraries exist for
HVAC simlation, e.g., [26]. However, for the purposes of
generating embedded code, the existing model libraries are
too detailed, and their use complicates the code genera-
tion process. As a consequence, we have developed simpler
model components that suit our particular needs better.

Model-Based Code Generation: Model Driven Devel-
opment (MDD) is a field in which significant efforts are
being deployed, typically for pure software development
from requirements through to embedded code. The Object
Management Group, Inc. (OMG) has raised the level of in-
terest in model transformation through standardization of
modeling formalisms, e.g., UML or SysML, and of model-
based code generation. Hundreds of tools exist for the pur-
pose of requirements capture, modeling and code genera-
tion. However, industrial-strength, mature model-to-model
transformation systems remain the subject of significant re-
search. In particular, where we transform equation-based
models to other models or code, e.g., [3, 13], relatively lit-
tle research has been done.

In this article we apply standard model transformation
methods [6] to a Modelica model (the target language), in
order to generate a model in a more specific, lower-fidelity
diagnosis model (the target language). Our innovation is
not the model transformation process, but the specification
of rules for a model-to-model transformation in which the
models differ significantly in terms of fidelity, semantics,
and purpose. In contrast, most model-to-model transforma-
tions in the literature are between models that are relatively
similar.

There are several existing code generators for Modelica.
The standard code-generation approach creates code (e.g.,
C code) for simulating the Modelica model [15]. Other
generators create control code for subsets of the Modelica
model, e.g., [8]. Our approach differs from these generators
in that it uses a model transformation approach to generate
code defined according to source and target metamodel
specifications. Hence, instead of using flags to identify
subsets of a Modelica model and compile them separately,

e.g., as in [8], our approach can work on the full Modelica
model.

Our approach is most closely related to the MetaModel-
ica framework [11]. In this article we provide an example
of using model transformation for generating embeddable
diagnosis models from Modelica models for an HVAC sys-
tem. We explicitly specify the transformation rules that
map the Modelica objects into the diagnosis language ob-
jects. Note that we apply manually-generated rules in this
article; in other work we are exploring automated methods
to create these rules [2].

Reduced-order modeling: Model reduction is well es-
tablished within the engineering literature as a means for
creating models of appropriate fidelity and computational
demands [1, 19]. Typically, model reduction applies math-
ematical operators to system-level models. These reduc-
tion operations include proper orthogonal decomposition
(POD), centroidal Voronoi tessellation (CVT), and energy-
based reductions.

Reducing a model Φ into another model Φ′ entails ac-
curately approximating a function for Φ by another func-
tion for Φ′ that is more efficient according to some metric,
e.g., that requires much less data to define. The reduced
function may be explicitly defined, e.g., by a formula or
pre-computed function, such as a simpler PDE or a coarse-
grid approximation, an interpolant or a least-squares ap-
proximant. In other words, reduced-order modeling can be
viewed as the use of data compression techniques. This
article differs from engineering model-reduction in that it
creates a reduced-order diagnosis model, but in an entirely
different language (propositional logic) than that of the
original HVAC model, which is expressed as a hybrid au-
tomaton [14].

3. Application Domain
3.1 System Schematic
We model an air-handling unit (AHU) as a system that sup-
plies air to a single zone in a building (although in general,
it can supply air to multiple, separately controlled zones),
as shown in Figure 1. The AHU consists of a set of com-
ponents which includes: a bypass mixer, a heating coil fol-
lowed by a cooling coil, all housed in a single air duct.
The bypass dampers are controlled to provide a mixture
of outside air and return (re-circulated) air; we constrain
the amount of outside air to vary between the lower and
upper proportions µmin and µmax of the maximum air-
flow through the AHU. The air supplied to the zone(s), at
temperature Ts, is processed through a variable air volume
(VAV) box containing a damper and heating/cooling coils.
We constrain the airflow to each zone (as regulated by a
damper) to vary between the lower and upper proportions
of the specified maximum flow.

3.2 AHU Control Strategy
The AHU controller aims to maintain the supply air tem-
perature Ts at its set point T ∗ by controlling the heating
coil, dampers, and cooling coil in sequence. We assume
that we have a simplified system, in which we focus only

88

Figure 1. Schematic for Air Handling Unit with a single
zone

on the supply air temperature Ts. In reality, we also need to
control the zone parameters, e.g., temperature Tz , humidity
Wz and CO2 level Cz .

The AHU controller is split into controllers for air-flow,
and temperature (heating/cooling).

1. Air-flow control: we must control the supply and return
fans, in conjunction with the dampers, to ensure that the
flow of air to the zone and through the AHU meets the
relevant targets. A PID controller governs the mixing of
return and outside air through setting the dampers for
(a) exhaust air, (b) outside air and (c) recirculated air.

2. Air temperature control: Given air that has been already
mixed (with return air and outside air), the temperature
of this air must be modulated to achieve the supply air
set-point s for the zone. We use separate PID controllers
for the chiller and heater coils to achieve the zone’s
temperature set-point Tz .

The AHU can operate in multiple modes, the most im-
portant of which are as follows:

• Heating: the heating mode operates if the heating load
exceeds the capacity of the return and outdoor air to
achieve the required supply air temperature Ts.
• Cooling: the cooling mode operates if the cooling load

exceeds the capacity of the return and outdoor air to
achieve the required supply air temperature Ts.
• Economizing: the economizer mode operates if there is

a cooling load and the outdoor air temperatures are low
enough to satisfy this load. Extra outside air is brought
in instead of running the cooling coil to cool the mix of
return air and minimum outdoor air.

The AHU control system is a switching controller, and
must be able to switch between its modes dependent on the
set-points for temperature (T ∗), humidity (W ∗) and CO2

(C∗), and on the current zone loads and outdoor air con-
ditions. Within any mode, we need dynamical models to
adequately capture the thermodynamics of flow of humidi-
fied air throughout the system.

4. System Architecture
This section describes the architecture for transforming the
reference model into embedded code.

We define a reference model, ΦR, as the basis from
which we generate all other models and embedded code.
We transform ΦR into application-specific representations,
e.g., simulation and diagnosis models, as shown in Fig-
ure 2. This figure shows how we map the reference model,
ΦR, into a model suitable for embedded-code generation;
in our case we examine control and diagnosis models, ΦC
and ΦD, respectively. Given one of these models, we then
need to “compile" the model into an embeddable represen-
tation, based on the requirements of the target platform. For
example, if the embedded platform is a SunSpot with par-
ticular CPU and memory restrictions, we can generate Java
control code ξC that abides by the restrictions. In this ar-
ticle we focus on the transformation from reference model
ΦR to diagnosis model ΦD.



Φ



Φ



Φ




ξ




ξ

   

η  η 

Figure 2. Mapping Reference Model to Embedded Code

Figure 3 shows a more detailed snapshot of the model
transformation process. 3 Figure 3 shows that we must use


















Figure 3. Architecture for Model and Embedded Code
Generation

metamodels for the source and target models in order to
apply transformation rules:

DEFINITION 1 (Model Transformation System). A Model
Transformation System consists of the tuple 〈MS ,MC ,R〉,
where MS and MT are the source and target metamod-
els, respectively, and R is the collection of transformation
rules applied toMS andMT .

3 More details of model transformation for HVAC systems can be found
in [2].

89

There are many different theories for model transforma-
tion, as well as corresponding tools (see [17]); here we fo-
cus on describing the rules used for the model transforma-
tion, as applied to our HVAC domain for diagnostics.

In this article, the reference model ΦR is defined using
the Modelica language to specify hybrid automata [14].
The metamodel for this language is summarized in Fig-
ure 4. The diagnosis model ΦD is defined using the Lydia

Figure 4. MetaModel for Reference Model

language [9]. The metamodel for this language is summa-
rized in Figure 5.

Figure 5. MetaModel for Diagnostics Model

5. Reference Model
This section outlines our notation for the reference model.

5.1 Component-Based Systems
In contrast to modeling and model-reduction approaches
that work on monolithic models, we propose an object-
oriented approach where we assume that a system can be
represented as an inter-connected set of components [24].

Hence, we can define a component-based reference system
as follows:

DEFINITION 2 (Component-Based Reference System). A
Reference System consists of the pair 〈G, C〉, where G is the
system topology multi-graph in which each component is a
node and each component connection is an edge-set, and
C is the collection of components from which the system
model can be composed.

The multi-graph notation enables us to define any two
components as having multiple connections between them.
A multi-graph G is an ordered pair G := (V,E) in which
V is a set of vertices or nodes, and E is a multi-set of
unordered pairs of vertices, called edges or connections.

A key aspect of a reference system is the notion of
component [7]:

DEFINITION 3 (Component). A component consists of the
tuple 〈I,O, ζ〉, where I and O are sets of input and out-
put ports (variables), respectively, and ζ is a relation that
specifies the transformation of input port values to output
port values.

5.2 Relations for Reference Model
We model mode changes as discrete, i.e., they activate
and deactivate constituent equations of model components.
Given a discrete set of system modes, the system can oper-
ate in a single mode at any time. For example, a hydraulic
system with a valve stuck open will operate with equations
in which the valve does not respond to actuator commands
to close the valve. We can also model different sets of equa-
tions for the valve being opened and shut: when the valve
is shut, it enforces zero pressure drop across it; when it
is open, it enforces zero flow across it. Using this frame-
work, we define a hybrid system [14] as one that operates
in piecewise continuous modes, each of which can be mod-
eled by ODEs and DAEs, or by PDEs (depending on the
class of Hybrid System). Our simulation model is thus de-
fined as a Hybrid System.

We explicitly model in the hybrid system a set of modes
for normal and for failure states. We also assume that only
a subset of events are observable, and in our models we de-
note these events as those relating to sensors and actuators
changing state. We assume fault events are unobservable.

DEFINITION 4 (Hybrid System). A hybrid system is de-
fined as ΦS = (H, X,Σ,H0, E, f,G) where

• H is the set of discrete states (or modes) of the system,
• X ⊆ <n is the continuous state space,
• Σ is a finite set of transition labels or events,
• H0 ⊆ H×X is the set of initial conditions,
• E ⊂ H × Σ × H is the transition relation, which

defines the set of (controlled and autonomous) discrete
transitions,
• f : < × H × X is the flow condition for every mode

defined by a differential equation,
• and G : E → 2X × π is a partial function that asso-

ciates a guard condition (represented as a subset of X)
with each autonomous transition, given a probability π.

90





























 ∧


∧ 

∧


∧


 ∧


∧ 

∧
 ∧


∧
 ∧


∧
 ∧


Figure 6. Hybrid Systems model for AHU

We define a set X of continuous-valued variables, and a
set H of discrete-valued (mode) variables, and denote the
system variables as Z = X ∪H. Each variable zi ∈ Z has
a corresponding domain θi ∈ Θ.

Example: We model the hybrid system for an AHU
as shown in Figure 6, with the modes, events and mode
transitions specified. We see that we can transition between
the nominal modes, but that the fault modes are absorbing,
since we assume no repair. The fault modes are linked to
nominal modes in terms of the effect of particular failed
components on that mode; e.g., a fouled heating coil will
affect the heating mode and not the other nominal modes.

We can define the generic state equations for control as
follows:

DEFINITION 5 (State-space Equations ES). We represent
a simulation model as having a set E of dynamical equa-
tions over a set Z of variables, where E is given by:

Ẋ(t) = f [X(t),U(t), ~(t)] (1)
Y (t) = g[X(t),U(t), ~(t)]. (2)

For simplicity of exposition, we will suppress the temporal
notation, e.g., state x rather than x(t).

Example: In the literature, an AHU simulation model
consists of a set of equations defining normal-mode be-
haviours, with no specification of modes [26]. Here, we
explicitly define the system modes and their entailed equa-
tions. In our AHU model, we assume a control vector U
= (u1, u2, u3), where u1 is the return-air mass flow rate,
u2 is the chiller pump flow rate, and u3 is the heating coil
rate. We also define our three primary continuous-valued
state variables as X = (x1, x2, x3), where x1 is the zone
temperature Tz , x2 is the zone humidity Wz , and x3 is the
supply temperature Ts.

5.3 System Modes
A system may be defined as operating in a particular mode,
which has a characteristic set of equations. We define two
types of system modes: operating and fault. An operating
mode ~o ∈ HO is defined by a control setting Ũ and ob-
served state Ỹ , and presumes that all components are oper-
ating normally. A fault mode ~f ∈ Hf specifies the health
of the system components, i.e., whether each component
is functioning in a nominal or degraded/faulty state. Each

failure mode can take on the value of OK or one of multiple
failure states.

For the system-level mode specificationH, we will need
to define H as the cross-product of the operating mode
MO ∈ HO and the failure mode MF ∈ HF , i.e., H=
HO × HF . This is because the dynamics of a failure de-
pends on the particular operating mode in which that failure
occurs. For example, an aircraft during takeoff or during
high-altitude cruising faces very different airflow dynam-
ics, and a flap fault will affect the plane differently in the
two situations.

Each mode is characterized by a set of (a) set-points and
(b) ambient conditions. In our AHU model, all modes share
two set-points: zone temperature T ∗z (e.g., 18oC); and zone
humidity W ∗z (e.g., 0.6). The control settings for operating
modes heating, cooling and economizing are denoted by
(ū1, 0, ū3), (ū1, ū2, 0), and (ū1, 0, 0), respectively, where
ūi denotes ui > 0.

In typical circumstances, the ambient conditions force
the use of a particular control setting that characterises an
operating mode. For example, when the desired supply air
temperature TS is higher than both the outside air temper-
ature TO and the return air temperature Tr, then we must
be in heating mode. If we assume that ṁs is fixed and con-
stant, then the modes and ambient conditions drive many
other system set-points, e.g., damper set-points. For exam-
ple, we can compute the control settings for the dampers
based on the temperatures in the AHU: the damper setting
to introduce outside air is set such that the proportion of
outside air, µA, is given by µA = Tm−Tr

To−Tr
; similarly, the

dampers are set such that the proportion of CO2, µC , is
given by µC = CR−CS

CR−CO
.

5.4 Reduced-Order HVAC Reference Model
This section describes how we generate a physics-based
reduced-order model given the fundamental equations for
thermodynamics. The basic principle that we adopt is the
First Law of Thermodynamics, which defines conservation
of energy (and indirectly mass). The heat balance equation
is ∆E = H −W, where the change in internal heat ∆E is
the difference between the heat H input and the energy W
extracted from the system.

In an HVAC system, we use either water or air to trans-
fer energy to (heating) or extract energy from (cooling) a
zone. A standard equation specifying heat transfer through
a substance is Fourier’s equation, which is a 3D PDE with
time.

ρCp
dT

dt
= k

[
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2

]
, (3)

where k is thermal conductivity.
We simplify this to an atemporal, 1D representation, as

follows.

ρCp
dT

dt
= Q̇ = kA

∆T
∆x

=
kA

`
(T1 − T2), (4)

where A is cross-section (area), ` is material thickness, and
T1/T2 are the high/low temperatures.

We can apply this simplification to heat and mass trans-
fer in HVAC flow systems as follows. Given supply and

91

return air temperatures Ts and Tr, respectively, heat trans-
fer into a zone is given by Q̇ = ρV̇ Cp(Ts−Tr) for heating
and Q̇ = ρV̇ Cp(Tr − Ts) for cooling, where V̇ is the vol-
umetric flow rate.

We can generalise this approach to a situation where
we assume energy and mass conservation across the in-
terchange of multiple fluid streams. In this case, we as-
sume steady and adiabatic conditions, and that no frictional
losses occur across the mixing regions. We adopt a standard
approach, the Hardy–Cross method [10], for evaluating the
air flow rate and the pressure drops across the components
of a duct network. We model the VAV air distribution sub-
system’s duct-work as a serial-parallel hydraulic network,
in which each component is defined as a flow resistance.
We assume that the air distribution duct-work is hydrauli-
cally balanced.

For example, in an AHU where we mix air masses from
the return ~r and outside, ~o, to create a mixed mass ~m,
we have energy and mass balance equations as follows:

ṁrCpaTr + ṁoCpaTo = ṁmCpaTm (5)

ṁr + ṁo = ṁm. (6)

We can compute the mixing temperature Tm and mixing
humidity Wm from the input streams as follows:

Tm =
ṁrTr + ṁoTo
ṁr + ṁo

(7)

Wm =
ṁrWr + ṁoWo

ṁr + ṁo
(8)

From equation 7, we can derive

Tm = Tr
ṁr

ṁr + ṁo
+ To

mo

ṁr + ṁo
= µTr + (1− µ)To,

(9)
where µ = ṁr

ṁr+ṁo
is the return air fraction of the total air

mass flow-rate. Wm can be deduced as

Wm = µWr + (1− µ)Wo. (10)

We can also apply energy balance across the portion of
the AHU from the mixing box to the supply airflow into
the zone. If we denote the heat of the airflow in the mixing
box and supply as Q̇m and Q̇s respectively, as the supply
fan and heating coil inject heat denoted by Hsf and Hhc

respectively, then by energy balance we must have

Q̇s = Q̇m +Hsf +Hhc.

If we have a constant flow-rate ṁs in this portion of the
AHU, and there is a temperature increase of ∆Tsf and
∆Thc at the supply fan and heating coil, respectively, then
we must have

ṁsCpTs = ṁmCpTm + ṁsCp∆Tsf + ṁsCp∆Thc,

from which we can deduce, if ṁs = ṁm,

Ts = Tm + ∆Tsf + ∆Thc (11)

In an analogous fashion, we can define the energy bal-
ance when we have a temperature increase of ∆Tcc due to
a cooling coil, to give

Ts = Tm + ∆Tsf −∆Tcc. (12)

6. Diagnosis Model-Generation Process
We transform a reference model ΦS to a diagnosis model
ΦD using model transformation methods [17], which map
the (source) metamodel for ΦS into the (target) metamodel
for ΦD using a set of transformation rules. Here, we focus
on the HVAC diagnostics application domain, and provide
domain-specific examples of the transformation rather than
a formal analysis. We have addressed other applications
of this approach, e.g., control code generation for building
lighting systems, elsewhere [16].

6.1 Diagnosis Model
The purpose of a diagnostics model is to be able to distin-
guish the mode of the system given an observation. Hence
the level of model fidelity is only that which is sufficient
to perform such mode-identification. As a consequence, a
diagnostics model is typically more abstract than the corre-
sponding reference model.

We adopt a diagnosis model analogous to the reference
model, except that we have a restricted form for the variable
domains and equations. We assume that each domain is
discrete, and that each equation is propositional.

We represent a diagnosis model for an artifact as a
propositional formula over a set Z of discrete-valued vari-
ables [20].

DEFINITION 6 (Diagnostic Model). A diagnostic model
ΦD is defined as the triple ΦD = 〈ED,Hf ,yD〉, where
ED is a propositional theory over a set of variables ZD,
Hf ⊆ Z , yD ⊆ ZD, Hf is the set of component failure-
mode variables, and yD is the set of observable variables.

6.2 Diagnosis Model Generation
We model HVAC systems using both the nominal and fail-
ure modes of the system components. HVAC systems are
stiff, i.e., they have a mixture and fast and slow processes.
We can simplify such stiff systems by abstracting the fast,
continuous transients into discontinuous changes between
slow states; this process converts the models into mixed
continuous/discrete, hybrid, models. We also model the
transition from a nominal to a failure state as a discontinu-
ous change.

In this work, we assume that the system is in steady-
state conditions, i.e., it is not switching between operating
modes. Hence we only model and map steady-state nomi-
nal conditions and transitions from an operating mode to a
fault mode. This steady-state analysis is the approach con-
sidered in most approaches, e.g., APAR [22].

To distinguish reference and diagnosis models, we use
superscript R for reference, and superscript D for diagno-
sis. We apply model transformation, which uses the meta-
model ΥR for ΦR and the metamodel ΥD for ΦD, together
with a set R of transformation rules, to transform ΦR into

92

ΦD, i.e., ΥR
R→ ΥD. The rules R transform the model

entities for ΦR and ΦD as follows:

• map variables: zRi → zDi
• map domains: θRi → θDi
• map equations: ERi → EDi
• map guard conditions G into diagnosis equation condi-

tions.

Variable Mapping: We assume a 1:1 mapping for vari-
ables, i.e., we do not abstract away any variables in ΦR.
Domain Mapping: For many variables, we assume that
we know the nominal operating value, given a particular
mode. For some variables, such as the damper position,
the best that we can know is the most-likely range of its
value. If we know the nominal value (or set-point x), as
well as the minimum and maximum values xmin, xmax
respectively, then we can perform a precise mapping from
a continuous-valued variable XR ∈ ZR to its counterpart
XD ∈ ZD in a diagnosis model. In other words, if XR

has domain [xmin, xmax] and nominal set-point x∗, we
can map it to a discrete-valued variable XD with domain
{ξmin, ξ−, ξ, ξ+, ξmax}, where ξ− ∈ (xmin, x) and ξ+ ∈
(x, xmax).4 This is shown in Figure 7.

x x
x

ε

ξξ ξ

Figure 7. Discrete quantization of continuous-valued vari-
able domain. We subdivide the domain of x into three
ranges, corresponding to nomimal (ξ), sub-nominal (ξ−),
and super-nominal (ξ+).

Equation Mapping: We map equations based on the equa-
tion type. Section 6.3 provides a subset of equation map-
pings, in order to exemplify the approach. We address three
main equation types:

Temporal Arithmetic Relations Given relation X1(t) =
X2(t + τ), we map X1 and X2 to propositions denot-
ing different times, i.e., Xt

1 and Xt+τ
2 ; we then define

a propositional formula based on the temporal prece-
dence, i.e., Xt

1 ⇒ Xt+τ
2 .

Atemporal Arithmetic Relations GivenXi = αf(Xj , U),
we map this to a proposition of the form [Xi = ξ] ⇒
[αf(Xj , U) = ξ] for the relevant discrete domain val-
ues of Xi, Xj .

Differential-equation Relations For a relation of the form
Ẋ = αf(X,U), we enforce our steady-state assump-
tion to set Ẋ = 0, from which we obtain αf(X,U) =
0.

4 In practice, we will need to calibrate this discretization, using machine
learning to identify the nominal operating range.

Guard Conditions: If the guard condition G is satisfied
and we execute a transition to a diagnosis mode ~, then the
resultant equations in the diagnosis model will be of the
form (G∧ ~)∧W , where W is a proposition formed from
the equations in ΦR for mode ~.

6.3 Component-Specific Mapping
We adopt a component-based modeling approach, in which
we define a system-level model from an interconnected set
of components. We assume that by automatically generat-
ing diagnosis components from reference components, we
can then define a system-level diagnosis model by compos-
ing these diagnosis components.

This section describes a subset of the mappings defined
for the AHU system components. We classify our model
reduction process into two types:

1. Sensor/Actuator device reduction

2. Thermodynamics-Based reduction

6.3.1 Fault Modes Covered
We adopt a component-based modelling approach, so we
list the fault modes on a component basis, as shown in
Table 1. We adopt most of the same component faults as
done in the APAR model [22], with some modifications.

Component Failure-Mode
sensor no-signal

drift-high
drift-low

damper stuck-open
stuck-closed

leakage
duct/pipe clogged

leakage
valve stuck-open

stuck-closed
leakage

fan fail
coil fouled

Table 1. Failure Modes for AHU

6.3.2 Sensor/Actuator Device Transformation
This class of reduction focuses on generating a tractable
diagnostics-oriented representation of the physical sen-
sor/actuator devices. The primary principle is that the real-
world setting equals the device setting when the device
is functioning normally; for example, a real temperature
equals the sensor-measured temperature.5

Sensor Mapping: We can represent an ideal, fault-free
sensor using the reference equation

Xs(t+ τ) = Xm(t),

where the subscript s denotes the sensed value and m
denotes the measured (true) value, t is a time index, and τ is

5 Here, we focus on device functionality, and we will deal with calibration
and internal parameter estimation issues in future work.

93

a time offset. This equation notes that the sensed value for
variableX , when the sensor is nominal, should be identical
to the true value, given a temporal offset due to the sensing
process.

The device mode values for ~S we consider are: {OK,
no-data, fail-low}. In the case of a sensor with actual and
measured values S and Ŝ, respectively, we perform fault
isolation when a residual has magnitude δS , which is a
device-dependent offset.

For sensors, we apply the rules defined earlier, assuming
that Xm(t) has a nominal value, x, and an offset εx around
x that represents the sensor error or allowable variability.

From a diagnostic perspective, we are only interested in
knowing is we are at the nominal value or not. Hence we
map Xm’s domain to a discrete-valued domain as follows:
[xmin, x−εx]→ ξ−; [x−εx, x+εx]→ ξ; [x+εx, xmax]→
ξ−. By including the nil value to record the case when the
sensor produces no output, we obtain the domain {nil,ξ−,
ξ, ξ+}.

We map the equations as follows. We denote the failure-
modes, the reference model equations (given δ > εx), and
the diagnosis model equations in Table 2.

Actuator Mapping: We can represent an ideal, fault-
free actuator using the reference equation

Xm(t+ τ) = Xc(t),

where the subscript m denotes the measured (actual) value
and c denotes the commanded (desired) value, t is a time
index, and τ is a time offset. This equation notes that
the physically-assigned value for variable X , when the
actuator is nominal, should be identical to the commanded
value, given a temporal offset due to the actuation process.
Analogous to a sensor, we assume that an actuator has
domain [xmin, xmax]. For example, an actuator for a valve
has values that can range from fully-open to fully-closed.
The device mode values for ~A we consider are: {OK, no-
data, stuck-open, stuck-closed}.

We map the equations as follows. We denote the failure-
modes, the reference model equations (given δ > εx), and
the diagnosis model equations in Table 2.

6.3.3 Thermodynamics-Based Transformation
This class of reduction focuses on generating a tractable
diagnostics-oriented representation of the fundamental
thermodynamic heat and mass conservation equations.

Pipe/Duct: Given a pipe/duct, the rate of change of
temperature given inlet and outlet temperatures of Ti and
To is [4]:

dTo
dt

=
(hi + ho)maCp

hiMcCc
(Ti − To).

We abstract away the temporal elements of this equa-
tion, and define a lumped-parameter relation for the outlet
temperature as To = Ti(1−γ(h,C,m)), where γ(h,m,C)
is a function parameterised by the relevant coefficients for
heat transfer h, specific heat C, and the mass m. For sim-
plicity of exposition, we will drop the parameters for γ.

We introduce the following failure modes for the pipe/duct:
~d = {OK, clogged, leakage}, where clogged denotes no

throughput flow, and leakage denotes some loss of fluid
flow. Given these mode values and the lumped-parameter
relation, we can generate diagnostic equations for tem-
perature changes along a pipe/duct, as in Table 2, where
λ ∈ (0, 1) is a leakage parameter. We can define an analo-
gous set of equations for mass flowrate m.

Variable-orifice valve (or damper): We now define our
model for a simple variable-orifice valve (or damper for air-
flow). For a valve with inlet/outlet flowrates of ṁi, ṁo and
position π ∈ (πmin, πmax), we have ṁo = f(ṁi, π). For
simplicity, we assume that ṁo = ṁi when π = πmax,
and ṁo = 0 when π = πmin. Together, this information
is sufficient to develop a set of diagnostic equations given
the failure modes ~v = { OK, clogged, leakage}, in Table 2,
where λ ∈ (0, 1) is a leakage parameter.

Fan/Pump: We model a fan/pump as a device that in-
creases the outflow pressure based on a pump constant
η: Po = f(Pi, η). Using this simplified equation, to-
gether with given the failure modes ~f = { OK, fail, VSD-
fail}, where fail denotes total failure and VSD-fail denotes
anomalous variable-speed drive (VSD), we can define di-
agnostic equations analogous to those for the damper.

6.3.4 Flow Composition/Decomposition
The mixing box component explicitly computes mixed
flow-rates, temperatures and humidity based on incoming
air-flows. Equations 6, 9 and 10 specify the flow-rate, tem-
perature and humidity relationships, respectively. We can
map these relations directly to diagnosis-model relations
by introducing failure-modes defining causes for incon-
sistencies in either the mix-ratio µ, i.e., blocked ducts or
other upstream blockages (e.g., damper faults), or in the
temperatures of incoming flows, TR and To.

7. Deployment and Validation
The large buildings for which we are targeting our code-
generation system typically use Building Management Sys-
tems to deploy the control and diagnostics code [21]. As
such, we assume that we have a PC-style processor on
which control and diagnostics are computed in a central-
ized manner. We are also investigating the generation of
distributed control code that can be deployed on a variety
of wireless networks. For example, we have shown how to
automate the generation of control code for SunSpot nodes
[16].

We are in the process of validating our approach, both in
terms of computational feasibility and correctness. We have
performed a preliminary comparison of the diagnostics re-
sults with those of a well-known commercially-deployed
tool, the APAR rule-based system for HVAC [23]. Our
comparison indicates that the auto-generated rules isolate
faults with accuracy similar to that of APAR, using simu-
lated building data [18]. However, validation on real-world
data is necessary to constitute a proper validation.

8. Conclusions
This article has described a model-driven approach for gen-
erating embedded diagnosis code using the equation-based

94

Mode Reference Model Equation Diagnosis Model Equation
Sensed OK Xs(t) = Xm(t+ τ) (~ = OK)⇔ [(Xt

m = ξ)⇒ (Xt+
s = ξ)]

variable X drift-high Xs(t) = Xm(t+ τ) + δ (~ = high)⇔ [(Xt
s = ξ)⇒ (Xt+

s = ξ+)]
drift-low Xs(t) = Xm(t+ τ)− δ (~ = low)⇔ [(Xt

m = ξ)⇒ (Xt+
s = ξ−)]

no-signal Xs(t) =nil (~ = no− signal)⇔ (Xt+
s = nil)

Actuator U OK Um(t) = Uc(t+ τ) (~ = OK)⇔ [(U t
c = ξ)⇒ (U t+

m = ξ)]
stuck-open Um(t) = Uc(t+ τ) + δ (~ = open)⇔ [(U t

c = ξ)⇒ (U t+
m = ξ+)]

stuck-closed Um(t) = Uc(t+ τ)− δ (~ = closed)⇔ [(U t
c = ξ)⇒ (U t+

m = ξ−)]
no-data Um(t) =nil (~ = no− data)⇔ (U t+

m = nil)
Pipe/Duct OK To(t) = (1− γ)Ti(t) (~d = OK)⇔ [(T t

i = ξ)⇒ (T t
o = ξ)]

leakage To(t) = (1− γ)(1− λ)Ti(t) (~d = leakage)⇔ [(T t
i = ξ)⇒ (T t

o = ξ−)]

OK ṁo(t) = (1− γ)ṁi(t) (~d = OK)⇔ [(ṁt
i = ξ)⇒ (ṁt

o = ξ)]
clogged ṁo(t) = 0 (~d = clogged)⇔ (ṁt

o = 0)
leakage ṁo(t) = (1− γ)(1− λ)ṁi(t) (~d = leakage)⇔ [(ṁt

i = ξ)⇒ (ṁt
o = ξ−)]

Damper OK ṁo(t) = f(ṁi(t), π(t)) (~v = OK)⇔ [(ṁt
i = ξ)⇒ (ṁt

o = ξ)]
clogged ṁo(t) = 0 (~v = clogged)⇔ [(ṁt

o = 0)
leakage ṁo(t) = f(ṁi(t), π(t))(1− λ) (~v = leakage)⇔ [(ṁt

i = ξ)⇒ ((ṁt
o = ξ−)]

Table 2. Equation Mappings for selected AHU Components

object language Modelica as a source representation. We
applied our approach to the generation of qualitative diag-
nostics code for HVAC applications, showing the transfor-
mation rules for this domain.

We have done a preliminary validation of the feasibil-
ity and correctness of our approach, showing that the auto-
generated diagnostics compare favorably with those of a
well-known commercial diagnostics system. We are ex-
tending this work to incorporate control-code generation
and deployment on a distributed wireless network. This
HVAC domain will complement the building lighting sys-
tem control system previously reported [16]. We also plan
to apply this approach to real buildings.

Acknowledgments
This work was funded by Science Foundation Ireland (SFI)
grant 06-SRC-I1091.

References
[1] AC Antoulas, DC Sorensen, and S. Gugercin. A survey

of model reduction methods for large-scale systems. In
Structured matrices in mathematics, computer science, and
engineering, volume 280, page 193. Amer. Mathematical
Society, 2001.

[2] M. Behrens and G. Provan. Temporal model-based
diagnostics generation for hvac control systems. Proc. Itnl.
Conf. on Theory and Practice of Model Transformations
(ICMT), pages 31–44, 2010.

[3] M. Behrens, G. Provan, M. Boubekeur, and A. Mady.
Model-driven diagnostics generation for industrial automa-
tion. In 7th IEEE International Conference on Industrial
Informatics (INDIN), pages 708–714. IEEE, 2009.

[4] DR Clark, CW Hurley, and CR Hill. Dynamic models
for HVAC system components. ASHRAE transactions,
91(1):737–751, 1985.

[5] D.B. Crawley, J.W. Hand, M. Kummert, and B.T. Grif-
fith. Contrasting the capabilities of building energy per-
formance simulation programs. Building and Environment,
43(4):661–673, 2008.

[6] K. Czarnecki and S. Helsen. Feature-based survey of
model transformation approaches. IBM Systems Journal,
45(3):621–645, 2006.

[7] B. Denckla and P.J. Mosterman. Formalizing causal block
diagrams for modeling a class of hybrid dynamic systems.
In Decision and Control, 2005 and 2005 European Control
Conference. CDC-ECC’05. 44th IEEE Conference on,
pages 4193–4198. IEEE, 2005.

[8] H. Elmqvist, M. Otter, D. Henriksson, B. Thiele, and S.E.
Mattsson. Modelica for embedded systems. In Proceedings
of the 7th International Modelica Conference, pages 354–
363. Linköping University Electronic Press, 2009.

[9] A. Feldman, J. Pietersma, and A. van Gemund. All roads
lead to fault diagnosis: Model-based reasoning with lydia.
Proc. BNAICŠ06, 2006.

[10] J.A. Fox. An introduction to engineering fluid mechanics.
McGraw-Hill, 1974.

[11] P. Fritzson, A. Pop, and M. Sjölund. Towards modelica
4 meta-programming and language modeling with meta-
modelica 2.0. Technical Report Computer and Information
Science, ISSN 1654-7233, 2011.

[12] P.A. Fritzson. Principles of object-oriented modeling and
simulation with Modelica 2.1. Wiley-IEEE Press, 2004.

[13] Z. Hemel, L. Kats, and E. Visser. Code generation by
model transformation. Theory and Practice of Model
Transformations, pages 183–198, 2008.

[14] T.A. Henzinger. The theory of hybrid automata. In Logic in
Computer Science, 1996. LICS’96. Proceedings., Eleventh
Annual IEEE Symposium on, pages 278–292. IEEE, 1996.

[15] J. Larsson and P. Fritzson. A modelica-based format for
flexible code generation and causal model transformation.
In 5th International Modelica Conference, 2006. Vienna:
Arsenal, 2006.

[16] A. Mady, M. Boubekeur, and G. Provan. Compositional
model-driven design of embedded code for energy-efficient
buildings. In 7th IEEE International Conference on
Industrial Informatics (INDIN), pages 250–255. IEEE,
2009.

95

[17] T. Mens and P. Van Gorp. A taxonomy of model
transformation. Electronic Notes in Theoretical Computer
Science, 152:125–142, 2006.

[18] G. Provan. Generating Reduced-Order Diagnosis Models
for HVAC Systems. In Itnl. Workshop on Principles of
Diagnosis, Murnau, Germany, October 2011.

[19] T. Reis and T. Stykel. A survey on model reduction of
coupled systems. Model Order Reduction: Theory, Research
Aspects and Applications, pages 133–155, 2008.

[20] Raymond Reiter. A theory of diagnosis from first principles.
Artificial Intelligence, 32(1):57–95, 1987.

[21] T. Salsbury. A survey of control technologies in the building
automation industry. In Proc. of the 16th IFAC World
Congress, pages 331–341, 2005.

[22] J. Schein and S.T. Bushby. A hierarchical rule-based
fault detection and diagnostic method for HVAC systems.
HVAC&R Research, 12(1):111–125, 2006.

[23] J. Schein, S.T. Bushby, N.S. Castro, and J.M. House. A
rule-based fault detection method for air handling units.
Energy and buildings, 38(12):1485–1492, 2006.

[24] J.L. Stein and L.S. Louca. A component-based modeling
approach for system design: Theory and implementation.
Ann Arbor, 1001:48109–2125.

[25] C. Turner, M. Frankel, and U.S.G.B. Council. Energy
performance of LEED for new construction buildings. New
Buildings Institute, 2008.

[26] M. Wetter. Modelica Library for Building Heating,
Ventilation and Air-Conditioning Systems. In Proc. IBPSA
Conference, pages 652–659, 2010.

96

4th International Workshop on Equation-Based Object-Oriented
Modeling Languages and Tools, September, 2011, ETH Zürich, Switzerland.

Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp/056/

EOOLT 2011 website:
http://www.eoolt.org/2011/

Comodeling Revisited: Execution of Behavior Trees in Modelica

Toby Myers1 Wladimir Schamai2 Peter Fritzson3

1Institute of Intelligent and Integrated Systems, Griffith University, Australia, toby.myers@griffithuni.edu.au
2EADS Innovation Works, Germany, wladimir.schamai@eads.net

3PELAB- Programming Environment Lab, IDA, Linköping University, Sweden, peter.fritzson@liu.se

Abstract

Large-scale systems increasingly consist of a mixture of
co-dependent software and hardware. The differing
nature of software and hardware means that they are
often modeled separately and with different approaches.
Comodeling is a design strategy that allows
hardware/software integration issues to be identified,
investigated and resolved in the early stages of
development. Previous work described a comodeling
approach that integrates Behavior Engineering with
Modelica. This paper revisits this approach and
introduces a new means of integration that natively
executes Behavior Trees in Modelica rather than
utilizing external functions. This enhanced integration
has several benefits. Firstly, it makes comodeling easier
to apply as the comodel is captured solely in Modelica.
Secondly, it makes the ability to execute Behavior Trees
widely available. Finally, it opens the possibility to use
comodeling with other complementary approaches such
as the virtual verification of system designs against
system requirements.

Keywords: Comodeling, Behavior Engineering,
Behavior Trees, Modelica, Model Driven Engineering

1. Introduction

The increasingly co-dependent nature of software and
hardware in large-scale systems causes a
software/hardware integration problem. During the early
stages of development, the requirements used to develop
a software specification often lack the quantified or
temporal information that is necessary when focusing on
software/hardware integration. Also early on in
development, the hardware details must be specified,
such as the requirements for the sensors, actuators and
architecture on which to deploy the software. There is a
risk of incompatibility if the software and hardware
specifications contain contradicting assumptions about
how integration will occur. Even if the software and

hardware specifications are compatible, it is possible
that a software/hardware combination with an alternative
form of integration exists that would be more
advantageous.

In previous work we introduced a design strategy
called comodeling [3],[4] that lets developers
systematically investigate and compare different
software and hardware partitions to meet a system’s
constraints earlier in the design process, when
integration problems are easier and cheaper to resolve.
Our comodeling approach used multiview modeling to
separately model the system’s software and hardware
aspects by integrating Behavior Engineering (BE) with
Modelica. BE is a system and software engineering
methodology that supports the engineering of large-scale
dependable software intensive systems from out of its
requirements. Modelica is an equation-based, object-
oriented mathematical modeling language suited to
modeling complex physical systems in multiple
domains. BE is initially used to formalize and integrate
the natural language requirements to create an
executable specification. This specification is then
combined with a Modelica model of the hardware and
environment to create an integrated comodel.

One limitation of our comodeling approach was that
the BE and Modelica models that together formed a
comodel were executed separately and integrated using
external functions. In this paper, we propose a new
means of integration that enables a Behavior Tree (BT)
to be natively executed in Modelica. This enhanced
integration has several benefits. Firstly, it makes
comodeling easier to apply as the comodel is captured
solely in Modelica. The BT can now directly affect the
acausal equations used to model the hardware and
environmental components. Secondly, it makes the
ability to execute Behavior Trees widely available.
Finally, it opens the possibility to use comodeling with
other complementary approaches such as the virtual
verification of system designs against system
requirements.

The remainder of this paper is structured as follows.
In Section 2 we first give some background on Modelica
and BE as well as briefly revisiting the automated train
protection system case study we previously used to
demonstrate comodeling. In Section 3 we discuss our
new approach that integrates BE and Modelica by
representing BTs in Modelica. Section 4 discusses some
of the design decisions taken by our approach, in

97

mailto:toby.myers@griffithuni.edu.au
mailto:wladimir.schamai@eads.net
mailto:peter.fritzson@liu.se

particular why we chose to use code generation rather
than develop a Modelica library. Section 5 discusses
how our new integration approach allows comodeling to
be complemented by other approaches such as vVDR.
In section 6 we present related work before concluding
in section 7.

2. Background

2.1 Introduction to Modelica

Modelica [5][6][7] is an open standard for system
architecture and mathematical modeling. It is envisioned
as the major next generation language for modeling and
simulation of applications composed of complex
physical systems.

The equation-based, object-oriented, and component-
based properties allow easy reuse and configuration of
model components, without manual reprogramming in
contrast to today’s widespread technology, which is
mostly block/flow-oriented modeling or hand-
programming.

The language allows defining models in a declarative
manner, modularly and hierarchically and combining of
various formalisms expressible in the more general
Modelica formalism.

The multi-domain capability of Modelica allows
combining of systems containing mechanical, electrical,
electronic, hydraulic, thermal, control, electric power or
process-oriented components within the same
application model. In brief, Modelica has improvements
in several important areas:

Object-oriented mathematical modeling. This
technique makes it possible to create model
components, which are employed to support
hierarchical structuring, reuse, and evolution of
large and complex models covering multiple
technology domains.

Physical modeling of multiple application domains.
Model components can correspond to physical
objects in the real world, in contrast to established
techniques that require conversion to “signal”
blocks with fixed input/output causality. That is, as
opposed to block- oriented modeling, the structure
of a Modelica model naturally corresponds to the
structure of the physical system.

Acausal modeling. Modeling is based on equations
instead of assignment statements as in traditional in-
put/output block abstractions. Direct use of
equations significantly increases re-usability of
model components, since components adapt to the
data flow context for which they are used.

Several tools implement the Modelica language, ranging
from open-source products such as OpenModelica [8], to
commercial products like Dymola [9] and
MathModelica [10].

2.2 Introduction to Behavior Trees

Prior to introducing BTs, it is necessary first to also have
an understanding of the overall BE methodology. This is
because BE is a tight interlinking of the Behavior
Modeling Process (BMP) and the Behavior Modeling
Language (BML). The BML consists of three integrated
views: Behavior Trees, Structure Trees and Composition
Trees [11],[12]. The Behavior Modeling Process (BMP)
uses these views in four stages: Requirements
Translation, Fitness for purpose test, Specification, and
Design.

The combination of the BML and the BMP results in
different uses of the views at each stage. When using
BTs for example, the first stage of the BMP translates
each requirement into a Requirement Behavior Tree
(RBT). These are then integrated to form a single
Integrated Behavior Tree (IBT), which is transformed
into an executable specification in a Model Behavior
Tree (MBT) and finally design decisions are applied to
create a Design Behavior Tree (DBT).

Of the three views, BTs are the most relevant to the
transformation to state machines as they capture
dynamic behavior. A BT is a formal, tree-like graphical
form that represents the behavior of individual or
networks of entities which realize and change states,
create and break relations, make decisions, respond to
and cause events, and interact by exchanging
information and passing control [11].

(A) Tag; (B) Component Name; (C) Behavior;
(D) Behavior Type; (E) Operator; (F) Label;

(G) Traceability Link; (H) Traceability Status

Figure 1. Elements of a BT Node

98

Figure 1 displays the co
form of a BT node
describing the name of
it exhibits qualified by a
the BT node may also h
a label (F). Each BT
contains information to
language requirements
translated. The traceabi
(G) which is used to lin
requirements. The trac
status of this link using

(a) State Realisation: Component realises the described behavior; (b) Selection: Allow thread to continue if condition is
true; (c) Event: Wait until event is received; (d) Guard: Wait until condition is true; (e) Input Event: Receive message*;
(f) Output Event: Generate message*; (g) Reference: Behave as the destination tree; (h) Branch-Kill: Terminate all
behavior associated with the destination tree; (i) Reversion: Behave as the destination tree. All sibling behavior is
terminated; (j) Synchronisation: Wait for other participating nodes; (k) Parallel Branching: Pass control to both child
nodes; (l) Alternate Branching: Pass control to only one of the child nodes. If multiple choices are possible make a non-
deterministic choice; (m) Sequential Composition: The behavior of concurrent nodes may be interleaved between these
two nodes; (n) Atomic Composition: No interleaving can occur between these two nodes. *Note: single characters mean
receive/send message internally from/to the system, double characters mean receive/send message from/to the
environment.
ntents of a BT node. The general
consists of a main part (B-D)
the component and the behavior
behavior type. The main part of

ave an optional operator (E) and
node also has a tag (A) which

trace the node to the natural
from which it was originally

lity link consists of an identifier
k the BT node to any associated
eability status (H) indicates the
a set of values.

A summary of the core elements of the BT notation is
shown in Figure 2. BTs are defined by a formal
semantics defined in CSPsigma, an extension of CSP
that can capture state based information [13].

2.3 Example: Automated Train Protection (ATP)

A key benefit of the BT notation is to provide a formal
path from natural language requirements to a model of
the software. To briefly demonstrate this, we will show
the first two stages of the BMP using two requirements
of an Automated Train Protection (ATP) system [3]. The
ATP system automates the train’s response to several
track-side signals by sensing each signal and monitoring

Figure 2. Summary of the Core Elements of the Behavior Tree Notation

99

the driver’s reaction. If the driver fails to act
appropriately, the ATP system takes control of the train
and responds as required.

Table 1 shows two requirements of the ATP system.
The translation of these two requirements into their
corresponding RBTs is shown in Figure 4(a). Consider
the RBT of requirement 6 (RBT6) with reference to the
system requirements.

The first two nodes show the ATP controller
receiving a value and a selection to determine if the
value is a caution signal. The second node has a ‘+’ in
the tag to indicate this behavior is implied from the
requirements as they do not explicitly state it is
necessary to check the signal is a caution signal.

The next node shows that the Alarm is enabled, and
captures that there is a relation between the Alarm and
the Driver’s Cab. Capturing the information about the
Driver’s Cab ensures that the original intent of the
requirements is retained. The next BT node assumes that
it is implied that the ATP Controller is responsible for
observing whether the speed of the train is decreasing.

The final two BT nodes of RBT6 describe the
relation between the ATP Controller and the Braking
System, and the Braking System realising the activated
state. Figure 4(b) also shows how integration of the two
requirements proceeds using the integration point, ATP
> value <.

The DBT shown in Figure 4(a) can then be used in
conjunction with a Modelica model to create a comodel.
This comodel can be used to determine appropriate
quantified and temporal values to augment the existing
requirements. For example, comodeling can be used for
R6 to determine how often the speed of the train must be
checked and how much of a change in speed is sufficient
for the speed of the train to be considered decreasing.

Table 1. Requirements R5 and R6 of the ATP system

3. Representing Behavior Trees in
Modelica

The integration of BE and Modelica to perform
comodeling was previously performed using external
functions in Modelica. These external functions
interacted with the Behavior Run-time Environment
(BRE) where the Behavior Trees were executed. In this
new approach, Modelica models are automatically
generated from behavior trees captured in TextBE [14],
a textual editor for capturing BE models. The generated
Modelica model represents BTs using an algorithmic

section that is linked to a class for each component in the
BT.

Each branch of the BT is represented by an integer
variable. The nodes of each branch are the represented
as integer values the branch variable. This simple
representation provides two benefits. Firstly, the one to
one mapping of a node to the value of a branch variable
makes it easy to follow the trace through the BT from
the simulation output. Secondly, the branch variables
simplify the representation of more complex BT
constructs such as alternative branching, reversion,
synchronization and branch-kill.

Each component in the BT has an integer variable,
state, that records the current state of the component.
This variable is updated using enumerated values that
map an integer value to the string associated with each
behavior of that component.

Several design decisions were made to simplify the
execution of the BTs in Modelica. Firstly, only one
node may be active at any one time. Secondly, a node is
active for a user-specified delay. Finally, the execution
of the BTs has been constrained to ensure fairness when
multiple branches are executed in parallel.

Figure 3 shows the results of a simulation of a BT
translated into Modelica that demonstrates state
realisations, selections, sequential composition,
alternative branching and reversion. The Modelica code
and the translated BT are shown in Figure 5. The
described transformation has also been included as part
of the TextBE tool, together with a set of examples
available at www.behaviorengineering.org.

3.1 Basic Nodes

State Realisation – A state realisation updates the state
variable of the associated component to the enumerated
value of the behavior of the BT node.

c.state := Integer(c.states.s);

Selection – A selection performs an equality check on
the state variable of the associated component,
comparing it to the enumerated value of the behavior of
the BT node. Depending on the result of this equality
check, the flow of control either continues or is
terminated.

if c.state == c.state_s then
... // Continue flow of control

else
... // Terminate branch

end if;

Guard – A guard is similar to a selection, with the
exception that the else branch is not included to ensure
that the guard is continually re-evaluated until true.

if c.state == c.state_s then
... // Continue flow of control

end if;

Input – Inputs and outputs are implemented as boolean
variables. When the variable is true, the input is active.

R5
If a proceed signal is returned to the ATP
controller then no action is taken with respect
to the train’s brakes.

R6

If a caution signal is returned to the ATP
controller then the alarm is enabled within the
driver’s cab. Furthermore, once the alarm has
been enabled, if the speed of the train is not
observed to be decreasing then the ATP
controller activates the train’s braking system.

100

http://www.behaviorengineering.org/

Events last for one cycle, to ensure that if an internal
output is active in one branch, it can be received by an
internal output in another branch. Inputs are represented
with an equality check that is true if the associated event
becomes active.

if e2 then
... // Continue flow of control

end if;

Output – Each output is associated with a real variable.
When the boolean variable associated with the event is
set to true, the real variable is set to the current time plus
the value of the user-specified delay. An if statement
then ensures that the output is set to false one cycle after
they are activated.

e2 := true;
e2Delay := startTime + (delay/2);
...
if startTime > e2Delay then
e2 := false;

end if;

3.2 Branching and Composition

Sequential Composition – Updates the value of the
branch variable.

if branch1 == 1 then
... // Node behavior
branch1 := 2;

elseif ...

Parallel Branching – Clears the current branch value
and sets the branch value of the child branches to their
first node.

if branch1 == 1 then
... // Node behavior
branch1 := 0;
branch2 := 1;
branch3 := 1;

elseif ...

Alternative Branching – As per parallel branch, but
when the first node of any of the child branches is
activated all the sibling branches are terminated.

if branch2 == 1 then
... // Node behavior
branch2 := 2;
branch3 := 0;

end if;

Atomic Composition – Adds further constraint to all
sibling branches of atomic composed nodes that flow of
control cannot continue if the branch values of the
atomic composed nodes are active.

if branch3 == 1 and not(branch2==1 or
branch2==2) then
... // Node behavior
branch3 := 2;

3.3 Operators

Reference – Clears the current branch value and sets the
branch value of the destination node.

if branch1 == 3 then
branch3 := 0;
branch2 := 2;

Reversion – Clears the current branch value and all
sibling parallel branches and sets the branch value of the
destination node.

if branch1 == 3 then
branch2 := 0;
branch3 := 0;
branch1 := 1;

Branch-Kill – Clears the branch value of the destination
node and the branch value of any of its descendants.

if branch2 == 2 then
branch3 := 0;
... // Continue flow of control

Synchronization – One synchronisation node checks
when the branch value of all nodes is set correctly and
sets a boolean variable to true. All other synchronisation
nodes wait until this Boolean variable is true.

if branch3 == 2 and branch2 == 3 then
sync1 := true;
... // Node behavior
... // Continue flow of control

if branch2 == 3 and sync1 then
... // Continue flow of control

4. Libraries versus Code Generation

The approach taken to represent behavior trees in
Modelica was heavily influenced by previous work
involving the execution of UML state machines using
Modelica [1]. This work raised two points of discussion:
whether to use the declarative (equations) or imperative
(algorithms) constructs of Modelica and whether to
create a Modelica library or create a code generator.

The imperative portions of Modelica were found to be
necessary to represent a comprehensive set of state
machine concepts in Modelica such as inter-level
transitions; entry, do, and exit actions of states, and; fork
and synchronization of parallel regions. Algorithmic
code was necessary for these concepts because a
particular sequence of operations was required. A
similar situation occurred with the translation of
behavior trees to Modelica for concepts involving
concurrent behavior such as alternative branching,
atomic composition, reversion, reference, branch-kill
and synchronization. We were unable to find a means to
represent these concepts using equations but their
representation in algorithmic sections was reasonably
straightforward.

The second point of discussion involved whether the
representation should be implemented using a Modelica
library or if model transformation should be used to

101

generate the Modelica representation from a dedicated
modeling editor. As with state machines, we chose to
implement behavior trees in Modelica using the later
approach.

This implementation choice is a specific instance of
the two choices faced whenever any new domain-
specific language (DSL) is created [19]: language
invention and language exploitation. Language invention
involves developing a new language from scratch.
Language exploitation creates a DSL by extending an
existing general purpose language (GPL), a language
that uses generalized concepts that cut across multiple
modeling dimensions.

Language invention is best applied when existing
languages cannot be used to capture domain-specific
concepts. Language invention creates DSLs that provide
the most benefit to users but that also requires the
development and maintenance of completely new tools
such as an editor, compiler, debugger and simulator.
Language invention is most suited to DSLs with a focus
on syntax over semantics, which semantics often
implicitly defined by model compilers or generators
[20].

DSLs created by language exploitation can leverage
any existing technology developed by the chosen GPL to
simplify the implementation and mapping between
multiple DSLs. It also allows the utilization of existing
editors and the potential to benefit from a user’s
familiarity with the existing GPL. The ultimate success
of language exploitation, however, depends on the
effectiveness of the chosen GPL at capturing the
concepts of the DSL.

If a model library approach were to be taken, editors
would have to be used that were not specifically
designed for visual languages such as state machines and
behavior trees. It is likely that compromises would also
have to be made to accommodate the representation of
state machines or behavior trees in a Modelica library.

It is for these reasons that both the state machine and
the behavior tree mappings to Modelica used a language
invention approach for capturing and visualizing their
models. This allows editors that were specifically
designed for that DSL to be used. For model execution,
however, a language exploitation approach is taken
where the DSL is transformed into a Modelica
representation. This approach allows the advantages of
Modelica to be leveraged whilst also maintaining the
advantages of having an editor tailored to the particular
DSL. It also makes it possible to integrate BE with
ModelicaML and vVDR as discussed in the following
section.

5. Complementing Comodeling with vVDR

Comodeling, as has been outlined previously, provides a
number of benefits. It leverages BE to follow a process
that helps to ensure that system requirements are correct,
consistent, complete, and unambiguous. It also
determines the quantified and temporal information
required for software/hardware interactions in the early
stages of development. The effect different software and

hardware partitions have on the timing, performance and
complexity of individual components and on the
integrated system’s behavior as a whole can then be
determined by simulating different comodels.

The representation of BTs natively in Modelica,
however, makes it easier to integrate comodeling, and
BE in general, with other approaches such as vVDR.

5.1 Introduction to vVDR

vVDR is a method for a virtual Verification of system
Design alternatives against system Requirements. The
application of this method is illustrated in [2] using
ModelicaML. ModelicaML is a UML- and Modelica-
based language. It supports all textual Modelica
constructs and, in addition, supports an adopted version
of the UML state machines and activity diagrams for
behavior modeling as well as UML class diagram and
composition diagram for structure modeling. This
enables engineers to use the simulation power (i.e.,
solving of hybrid DAEs) of Modelica by using
standardized graphical notations for creating the system
models.

In the vVDR method, each requirement, or more
general any analysis question, is formalized as a model
which evaluates the violation or fulfilment of a
requirement, or more generally provides the answer to
the stated analysis question.

In case of a requirement, the formalization is done by
relating measurable properties, that are addressed in the
requirement statement, to each other in order to express
when this requirements is violated.

Then requirements models and a system design
alternative model are instantiated and bound to each
other in a test model. The test model also includes the
test scenario, which provides stimuli for the system
model. Finally, the models are translated into Modelica
code, the test model is simulated and the results are
analysed.

The vVDR method and its implementation in
ModelicaML focus on enabling the analysis and
verification of different design alternatives against the
same set of requirements. It is designed to automate the
composition of test model and to facilitate a flexible
way to reuse formalized requirements models, test
scenario models and system design alternative models in
various combinations.

For example, the same test scenario model can be
used to verify different system design alternatives
against the same set of requirements. Similarly, the same
requirements can be used for verifications that are driven
by different test scenario models.

The vVDR approach does not integrate individual
requirements and, hence, does not provide means to
determine inconsistencies between requirements.
Inconsistencies between requirements can only be
detected when requirement violations are detected
during simulations.

In contrast, the BE methodology provides means to
ensure the consistency of the specification. Any
inconsistency or incompleteness detected in the

102

specification is resolved and corrected so that that each
of the individual requirements does not conflict with any
other requirement in the specification.

This is the starting point for the vVDR that assumes a
set of requirements that do not conflict with each other.
The advantage of using the vVDR approach is that it
enables the verification of a system model against a
subset of requirements that are of interest for a particular
analysis. This is useful for the assessment of design
alternatives by focusing on specific aspects as well as for
regression testing when some requirements have
changed or design model has evolved.

5.2 Integrating vVDR with BE and Comodeling

There are two applications that could be investigated for
integrating vVDR with BE and Comodeling.

The first application is to integrate BE with vVDR by
using a Model Behavior Tree as a source for the
generation of both vVDR requirements violation
monitors and test cases. Test cases would be used to
drive a design alternative in order to determine if it
fulfils the requirements by evaluating the generated
requirements violation monitors.

The second application is to augment the existing
comodeling approach with vVDR. vVDR would not
need to provide violation monitors, as the comodels have
been built from out of the requirements. Instead vVDR
could provide monitors that evaluate the performance of
different comodels to find the best candidate that fulfils
a set of criteria.

6. Related Work

We are not aware of any other work that represents BTs
in Modelica. Schamai et al have defined an approach to
transform state machines into Modelica using code
generation [1]. Modelica libraries also exist for state
machines, e.g., Stategraph [15] and Petri nets [16].
Myers et al [17] have also created a transformation for
converting BTs into executable UML state machines.

Wendland [18] has outlined an approach to augment
the BMP to capture testing information and generate test
cases from BTs. This could be integrated with vVDR
and comodeling.

7. Conclusion

This paper presents an approach for executing BTs
using Modelica in order to support comodeling and
simulation of system requirements, hardware and
software. Modelica is used as action language and as
execution technology. By using Modelica as action
language in BTs the mathematical modeling and
simulation power of Modelica is leveraged. For
example, Modelica equations or algorithm code is used
for capturing of encapsulated behavior (e.g. inside state
realization) in BTs. This enables the modeling of
continuous-time, discrete-time or event-based behavior
including the solving of differential algebraic equations
and events handling. This way logical requirements or

software models can be simulated together with physical
system behavior models using the same technology.

The model-transformation rules, described in section
3, are implemented as in the code generator that can be
used in TextBE[14] as a prototype. The decision for
implementing a code generator instead of developing a
Modelica library for BTs is discussed in section 4. The
Modelica code, that is generated from BTs models, can
then be loaded and simulated using OpenModelica tools
[8]. This combination is the first publically available
runtime execution environment for Behavior Trees
models. Moreover, using Modelica as a common
modeling and simulation technology enables
complementing BE methodology with other approaches,
such as the vVDR method implementation in
ModelicaML[2], as discussed in section 5.

Acknowledgements

This research was supported under Australian Research
Council Linkage Projects funding scheme (project
number LP0989363) and by VINNOVA the Swedish
Governmental Agency for Innovation Systems in the
OPENPROD project.

References

[1] Wladimir Schamai, Uwe Pohlmann, Peter Fritzson,
Christian J.J. Paredis, Philipp Helle, Carsten Strobel.
Execution of UML State Machines Using Modelica
In Proceedings of the 3rd International Workshop on
Equation-Based Object-Oriented Modeling Languages
and Tools, (EOOLT 2010), Published by Linkoping
University Electronic Press, www.ep.liu.se, In
conjunction with MODELS 2010, Oslo, Norway, Oct 3,
2010.

[2] Wladimir Schamai, Philipp Helle, Peter Fritzson,
Christian Paredis. Virtual Verication of System Designs
against System Requirements, In Proc. of 3rd
International Workshop on Model Based Architecting and
Construction of Embedded Systems (ACES 2010). In
conjunction with MODELS 2010. Oslo, Norway, Oct 4,
2010.

[3] Toby Myers, Geoff Dromey, Peter Fritzson. Comodeling:
From Requirements to an Integrated Software/Hardware
Model, IEEE Computer 44(4) pp.62-70, April 2011 doi:
10.1109/MC.2010.270.

[4] Toby Myers. The Foundations for a Scaleable
Methodology for Systems Design, PhD Thesis, School of
Computer and Information Technology, Griffith
University, Australia, 2010.

[5] Modelica Association. Modelica: A Unified Object-
Oriented Language for Physical Systems Modeling:
Language Specification Version 3.0, Sept 2007.
http://www.modelica.org.

[6] Michael Tiller. Introduction to Physical Modeling with
Modelica. Kluwer Academic Publishers, 2001.

[7] Peter Fritzson. Principles of Object-Oriented Modeling
and Simulation with Modelica 2.1. Wiley-IEEE Press,
2004.

[8] Open Source Modelica Consortium. OpenModelica.
http://www.openmodelica.org.

[9] Dynasim. Dymola. http://dynasim.com.
[10] MathCore. Mathmodelica. http://www.mathcore.com.

103

http://www.modelica.org/
http://www.openmodelica.org/
http://dynasim.com/
http://www.mathcore.com/

[11] Geoff Dromey. From requirements to design: Formalizing
the key steps. in Proc. Conf. on Software Engineering and
Formal Methods (SEFM). IEEE Computer Society, pp. 2-
13, 2003.

[12] Geoff Dromey. Climbing over the “no silver bullet” brick
wall. IEEE Software, vol. 23, pp. 120, 118-119, 2006.

[13] Robert Colvin and Ian Hayes. A semantics for Behavior
Trees using CSP with specification commands. Science of
Computer Programming, In Press, Corrected Proof,
Available online 9 December 2010.

[14] Toby Myers. TextBE: A Textual Editor for Behavior
Engineering. Proceedings of the 3rd Improving Systems
and Software Engineering Conference (ISSEC), Sydney,
Australia, 2-5 August 2011 (Accepted).

[15] Martin Otter, Martin Malmheden, Hilding Elmqvist, Sven
Erik Mattsson, and Charlotta Johnsson. A New
Formalism for Modeling of Reactive and Hybrid Systems.
In Proceedings of the 7th International Modelica
Conference, Como, Italy. September 20-22, 2009.

[16] Sabrina Proß and Bernhard Bachmann. A Petri Net
Library for Modeling Hybrid Systems in OpenModelica.

Proceedings of the 7th International Modelica
Conference, Como, Italy, 20-22 September 2009.

[17] Toby Myers, M. Wendland, S. Kim, Peter Lindsay. From
Requirements to Executable UML State Machines: A
Formal Path using Behavior Engineering and M2M
Transformations, Proceedings of the 14th International
Conference on Model Driven Engineering Languages and
Systems, Wellington, New Zealand, 16-21 October 2011
(submitted).

[18] M. Wendland, I. Schieferdecker, A. Vouffo-Feudjio.
Requirements driven testing with behavior trees.
In Proceedings of the ICST Workshop Requirements and
Validation, Verification & Testing (ReVVerT 2011). 2011.
Accepted.

[19] M. Mernik, J. Heering and A. M. Sloane. When and how
to develop domain-specific languages, ACM Computing
Surveys (CSUR), vol. 37(4), 2005. pp. 316-344.

[20] J. Heering and M. Mernik, Domain-specific languages in
perspective, Tech. rep., CWI, sEN-E0702. 2007.

(a)

(b)

Figure 3. Simulation Plots of Selection Example Translation (a) branch and activeBranch variables (b) c.state variable

104

Figure 4. Behavior Engineering model of the Automated Train Protection System (a) Integration of
Requirements R5 and R6 (b) Design Behavior Tree

105

model Selection
Integer branch1(start=1),branch2,branch3;
Integer activeBranch(start=1),
lastActiveBranch;
Boolean next(start=true);
C c;
Real startTime;
constant Real delay = 0.1;

algorithm
when time>startTime + delay then
while branch1==pre(branch1) and
branch2==pre(branch2) and
branch3==pre(branch3) and next loop
if activeBranch==1 then
if branch1==1 then
c.state := Integer(c.states.s);
branch1:=2;

elseif branch1==2 then
c.state := Integer(c.states.t);
branch1 := 3;

elseif branch1==3 then
if c.state==c.state_t then
branch1 := 4;
else
branch1 := 0;
end if;

elseif branch1==4 then
c.state := Integer(c.states.u);
branch1 := 0;
branch2 := 1;
branch3 := 1;

end if;
elseif activeBranch==2 then
if branch2==1 then
if c.state==c.state_s then
branch2 := 2;
branch3 := 0;
else
branch2 := 0;
end if;

elseif branch2==2 then
c.state := Integer(c.states.v);
branch2 := 0;

end if;
elseif activeBranch==3 then
if branch3==1 then
if branch2==0 then
branch3 := 2;
end if;

elseif branch3==2 then
branch3 := 0;
branch1 := 1;

end if;
end if;

activeBranch := activeBranch + 1;
if activeBranch==4 then
activeBranch := 1;

end if;
if activeBranch==1 and branch1==0 then
activeBranch := activeBranch + 1;

end if;

if activeBranch==2 and branch2==0 then
activeBranch := activeBranch + 1;
end if;
if activeBranch==3 and branch3==0 then
activeBranch := 1;
end if;
if activeBranch==1 and branch1==0 then
activeBranch := activeBranch + 1;
end if;
if activeBranch==2 and branch2==0 then
activeBranch := activeBranch + 1;
end if;
if activeBranch==lastActiveBranch then
next := false;
end if;

end while;
startTime := time;
lastActiveBranch := activeBranch;
next := true;
end when;
end Selection;

class C
type states = enumeration(s,t,u,v);
constant Integer state_s =
Integer(states.s);
constant Integer state_t =
Integer(states.t);
Integer state;
end C;

C

[t]

C

? t ?

C

[u]

[]

C

? s ?

C

? ELSE ?

C

[v]

^C

[s]
Figure 5. Example Translation of a Behavior Tree into Modelica

106

Exploiting OpenMP in the Initial Section of Modelica Models

(Work in Progress)

Javier Bonilla1 Luis J. Yebra1 Sebastián Dormido2

1PSA-CIEMAT, Plataforma Solar de Almería - Centro de Investigaciones Energéticas, MedioAmbientales y
Tecnológicas, Almería, Spain, {javier.bonilla,luis.yebra}@psa.es

2UNED, Universidad Nacional de Educación a Distancia, Madrid, Spain, sdormido@dia.uned.es

Abstract

This paper presents a practical case where parallelization
for multi-core processors can be exploited in Modelica
models using OpenMP. Although this parallelization is ap-
plied to a particular case and to a particular section in the
code, the parallel implementation is straightforward and a
gain in speed of around 11% is obtained. The particular sec-
tion in the code is the initial section and the particular case
is to consider that the initial section is time consuming and
the operations are independent from each other. The par-
ticular case is tested in a real dynamic model during the
simulation and calibration processes. The most appealing
feature of this method is that it is straightforward to imple-
ment and that it could be easily adopted by equation-based
modelling languages. On the other hand, the process is not
automatically performed and the modeller needs to have a
minimum knowledge about parallel computing.

Keywords Modelica, OpenMP, parallelization, initial sec-
tion, multi-core processors

1. Introduction

Nowadays, modern equation-based object-oriented (EOO)
modelling languages are continuously increasing their ex-
pressiveness to describe and model complex systems. How-
ever, there is an important drawback of having large and
complex system models, the required computational effort
to simulate is very high.

Commonly, EOO models are compiled as single-threaded
executables not taking advantage of the newest multi-core
processors available even on desktop computers. Moreover,
and considering the particular case of Modelica [13], the
extension of the language to consider multi-core proces-
sors is not easy due to the flattening of the equation-based
object-oriented Modelica code into C code.

4th International Workshop on Equation-Based Object-Oriented
Modeling Languages and Tools. September, 2011, ETH Zürich, Switzerland.

Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp/056/

EOOLT 2011 website:
http://www.eoolt.org/2011/

With regard to parallelization in EOO modelling lan-
guages it is worth mentioning [3, 4, 12, 19]. This paper does
not pretend to be a meticulous study about parallelization
in EOO modelling languages, it just describes a straight-
forward parallelization method in the initial section of the
resulting C source code obtained from the Modelica model,
and not considering the parallelization in the numerical in-
tegration process.

2. OpenMP

OpenMP (Open Multi-Processing) [2] is an application
programming interface (API) for multi-platform (Unix and
Microsoft Windows platforms) shared-memory parallel
programming in C/C++ and Fortran. It provides a sim-
ple and flexible interface to develop parallel applications
by means of a set of compiler directives, library routines,
and environment variables. Its applicability ranges from
desktop computers to clusters and supercomputers.

OpenMP is maintained by the OpenMP Architecture
Review Board (ARB). The first OpenMP API specifica-
tions was released in 1997 for Fortran 1.0 whereas for the
C/C++ languages was released the following year, in 1998.
The OpenMP version 2.0 was released in 2000 and 2002
for Fortran and C/C++ respectively. In 2005, both versions
were unified in version 2.5. Version 3.0 was released in
2008. The current version, version 3.1, has been recently
released in June, 2011.

The key concept in OpenMP is multithreading, in this
method of parallelization the master thread forks a series
of slave threads for particular parallel tasks, the run-time
environment is responsible of allocating the threads to dif-
ferent processors or cores. Figure 1 illustrates this concept,
where the master thread forks 2 additional threads for tasks
I, 3 additional threads for task II and 1 additional thread for
task III.

The core elements of the OpenMP API are summarized
and briefly explained in the following list.

• Parallel control directives. They control the flow exe-
cution of the program (i.e. parallel directive).

• Work sharing. They distribute the execution of instruc-
tion among the processors or cores (i.e. parallel for or
section structures).

107

Figure 1. OpenMP multithreading concept [1].

• Data environment. It is defined by the scope variables,
shared and private.

• Synchronization. It is controlled by the critical, atomic

and barrier directives.

• Run-time functions. Set and provide run-time informa-
tion (i.e. omp_set_num_thread()and omp_get_num_thread()

which set and obtain the maximum number of threads
that can be allocated).

3. Real System Under Study

This section explains briefly the facility under study, the de-
veloped Modelica model and the defined simulator scheme
to facilitate the simulation, calibration and validation pro-
cesses.

3.1 DISS facility: Direct Steam Generation

Parabolic-Trough Solar Thermal Power Plant

The real system under study is the CIEMAT-PSA (Centro
de Investigaciones Energéticas Medioambientales y Tec-
nológicas - Plataforma Solar de Almería, a Spanish govern-
ment research and test center) DISS (DIrect Solar Steam)
test facility, a parabolic-trough solar thermal power plant.
A general view of this facility is shown in Figure 2.

The parabolic-trough technology is one of the several
different solar thermal concentrating technologies avail-
able. Parabolic-Trough Collectors (PTCs) are solar concen-
trators which convert the direct solar radiation into thermal
energy, heating a heat transfer fluid (HTF) up to around
675K. Their high working temperature makes PTCs suit-
able for supplying heat to industrial processes, replacing
traditional fossil fuels [11] [18].

The HTF used in the DISS test facility is the two-phase-
flow steam-water, which circulates in three different states,
subcooled liquid, steam-water mixture and superheated
steam.The aim of the DISS facility is to develop a new
generation of solar thermal power plants using parabolic-
trough collectors to produce high pressure steam in the
absorber tubes, thus eliminating the oil commonly used as
a heat transfer medium between the solar field and the con-
ventional power block. This kind of technology is known

as Direct Steam Generation (DSG), it increases overall sys-
tem efficiency while reducing investment costs.

3.2 Modelica model

A DISS solar thermal power plant equation-based object-
oriented dynamic model was developed to study the behav-
ior of the real plant [17]. An EOO methodology was chosen
in order to describe the system as a set of equations which
are acausal, maintaining it mathematical meaning. More-
over, a object-oriented methodology allows to define basic
models which can be reused to develop new complex mod-
els without additional effort [5]. This methodology allows
to develop reusable and easy to maintain components.

The modelling language chosen was Modelica. Model-
ica is developed and maintained by the Modelica Associa-
tion. Modelica is a suitable modelling language to develop
complex mathematical models of physical systems. Mod-
elica also has useful libraries to develop thermo-hydraulic
systems. Modelica Media [14] is a thermodynamic proper-
ties computation library, which follows IAPWS (the Inter-
national Association for the Properties of Water and Steam)
recommendations in its latest IF97 formulation, (Industrial
Formulation 1997) [10]. This formulation is optimised for
short computing times and low CPU load. Furthermore, the
ThermoFluid library [16, 8] provides a framework and ba-
sic components for modelling thermo-hydraulic and pro-

Figure 2. General view of the DISS test facility owned by
Plataforma Solar de Almería (CIEMAT).

108

cess systems in Modelica. The Integrated Development En-
vironment (IDE) chosen, which supports the Modelica lan-
guage, has been Dymola [7].

Figure 3 shows the DISS test facility Modelica compo-
nent diagram which has 11 PTC components. The model
inputs are: the ambient temperature (Tamb), the solar ra-
diation (Rad), regarding the HTF, the inlet temperature
(inletT emp), the inlet pressure (inletPres) and the mass
flow (mdot_ws) of the fluid, the three last inputs are also
provided for the last PTC injector.

3.3 Simulator scheme

With the aim of facilitating the settlement of the initial
conditions for the simulation, the calibration and validation
processes, a simulator scheme was developed. Figure 4
shows the DISS facility simulator scheme which is not
only the model itself but a series of tools to facilitate the
simulation.

Among the developed tools in the simulator scheme, it
is worth mentioning the following.

• A web application to easily access the real data from the
data acquisition system (DAS) with the aim of compar-
ing the real data with the simulation results and also to
obtain the initial conditions for the dynamic simulation.

• A computer program to convert the real data obtained
from the web application to a input trajectory file used
in the Dymola IDE.

• A Modelica library to retrieve the initial values from the
trajectory file and solve the initial condition problem.
This Modelica library reads the input trajectory file to
set values to certain parameters which are used to solve
the initial condition problem. These reading operations
are time consuming and they can be easily parallelized.

The calibration process has been performed using Mat-
lab/Simulink [15]. Dymola includes mechanisms to ex-
port Modelica models to Simulink in a easy and direct
way using a Simulink block where parameters and inputs
can be defined. The Matlab Genetic Algorithm Toolbox
[6] has been used to calibrate the DISS model, a multi-

Cont...

Water...

Tp

b...
cl...p0...

C
o

n
t.

..

W
a
te

r...T
p

b
...

c
l...

p
0

...

CCP_diss

Tamb Rad

CCP_diss

Tamb Rad

CCP_diss

Tamb Rad

CCP_diss

Tamb Rad

CCP_diss

Tamb Rad

CCP_diss

Tamb Rad

CCP_diss

Tamb Rad

CCP_diss

Tamb Rad

CCP_diss

Tamb Rad

CCP_diss

Tamb Rad

CCP_diss

Tamb Rad

Water...

T p

b...
cl...p0...

Tamb

Rad

InletTe...

InletPr...

mdot_...

Outle...

pout

Tout

mdotout

is_liquid

Tmout

pin

In
le

tT
e
m

p
_
in

j

In
le

tP
re

s
s
u
r.

..

m
d
o
t_

in
j.
..

Figure 3. DISS test facility Modelica model.

objective approach was selected in order to minimize the
absolute value of the percentage relative error between the
real and simulated output temperatures for each PTC. Fig-
ure 5 shows the DISS Simulink block in Matlab. More in-
formation about calibration of Modelica models in Matlab
together with a practical example can be found in [9].

4. Initial Section Parallelization

As previously explained in section 3.3, a Modelica library
was developed to retrieve real data from the input trajec-
tory file with the aim of setting several parameters to solve
the initial condition problem. Reading from a text file is a
time consuming operation. Some data must be read from
this input file, including the initial inlet and outlet pressure,
temperature, mass flow of the HTF, etc. These reading op-
erations can be easily parallelized because they are inde-
pendent from each other.

The procedure to parallelize the initial section in the re-
sulting C code, obtained from the translation of the Model-
ica model by the Dymola tool, is the following.

1. In the resulting C source code generated by the Dymola
tool (dsmodel.c), it has been included a reference to the
OpenMP header (omp.h), as shown in Listing 1, in order
to use in the source code, the OpenMP API, directives
and functions.

1 # i n c l u d e <omp . h>

Listing 1. OpenMP header inclusion

2. Set the maximum number of threads to be executed
using the omp_set_num_threads() function as shown
in Listing 2. In our particular case this value was set
considering the number of the processor cores, 4 cores.

1 c o n s t a n t i n t NCores = 4 ;
omp_se t_num_threads (NCores) ;

Listing 2. Setting the maximum number of threads

Figure 5. DISS Simulink block.

109

��������	��AB	��CDC	�E�FB�	�

��F	�C���FB�	�

����ECD����	��	DEC�CE�

����	����	���B���B�	�

�������������

�����FB�	�CD��FB�	�

����	DEB��

�C�	 ����E�

��CEC�������	�

�	���E�����

AB����C�B�

�������B�	DE

��E� ��	
�	��B��

��E���C�	

�C�	�DB��	��CB�

!"���������"�#���CD�ECB�$

%	&�#���CD�ECB�

�����E	�E���DC�CE�

�	���E�'�	�C	�

��E��

#D(�C�CECB��

���E	��!�#�$

�	�����E�

!A��C&�����$

��E�

�C�	

�����	E�C)�&�	�D����	�

���������	E	��

Cont...

Water...

Tp

b...
cl...p0...

C
o

n
t.

..

W
a
te

r...T
p

b
...

cl...
p

0
...

CCP_diss

Tamb Rad

CCP_diss

Tamb Rad

CCP_diss

Tamb Rad

CCP_diss

Tamb Rad

CCP_diss

Tamb Rad

CCP_diss

Tamb Rad

CCP_diss

Tamb Rad

CCP_diss

Tamb Rad

CCP_diss

Tamb Rad

CCP_diss

Tamb Rad

CCP_diss

Tamb Rad

Water...

T p

b...
cl...p0...

Tamb

Rad

InletTe...

InletPr...

mdot_...

Outle...

pout

Tout

mdotout

is_liquid

Tmout

pin

In
le

tT
e
m

p
_
in

j

In
le

tP
re

ss
u
r.

..

m
d
o
t_

in
j..

.

Figure 4. DISS simulator scheme.

pragma omp p a r a l l e l
2 {

pragma omp s e c t i o n s
4 {

pragma omp s e c t i o n
6 {

.
8

T [0] = g e t I n i V a l u e (in iT ime , "Tem PTC1") ;
10 T [1] = g e t I n i V a l u e (in iT ime , "Tem PTC2") ;

.
12

}
14 # pragma omp s e c t i o n

{
16

.
18 p [0] = g e t I n i V a l u e (in iT ime , " P r e s PTC1") ;

p [1] = g e t I n i V a l u e (in iT ime , " P r e s PTC2") ;
20

.
22 }

pragma omp s e c t i o n
24 {

.
26

r [0] = g e t I n i V a l u e (in iT ime , " Rad PTC1") ;
28 r [1] = g e t I n i V a l u e (in iT ime , " Rad PTC2") ;

.
30

}
32 # pragma omp s e c t i o n

{
34

.
36 m[0] = g e t I n i V a l u e (in iT ime , " Mflow PTC1") ;

m[1] = g e t I n i V a l u e (in iT ime , " Mflow PTC2") ;
38

.
40 }

}
42 }

Listing 3. OpenMP parallel sections

3. Locate the initial section/s in the dsmodel.c file which
can be identified in the C source code by the InitialSec-

tion identifier.

After that, the sentences in the initial section must be
manually distributed between the different threads to
balance the computational load between cores. For that
purpose the OpenMP sections directives were used, the
source code is shown in Listing 3.

First, the parallel directive was used to indicate that
the following sentences must be executed in parallel,
then the sections and section directives were used to
define 4 sections which correspond with 4 threads. The
reading operations were equally distributed between the
4 sections, each one executed by a different thread in
each available processor core.

4. Compile the dsmodel.c including the OpenMP library.
For the GNU Compiler Collection (GCC) in Linux op-
erating systems, only the -fopenmp modifier is nec-
essary to compile the dsmodel.c source code with
OpenMP support. For that purpose, a script file, com-

pile.sh, was created to include the previously mentioned
modifier in the compilation script. The default compi-
lation script for the Dymola tool in Linux operating
systems is dsbuild.sh.

The previously described procedure to parallelize the
initial section of Modelica models must be done manually.
It could be worth studying how this procedure could be
performed directly in the Modelica code and not in the
resulting C source code. However, this is not easy, only
constant and parameter values can be paralellized with this
approach. Obviously, time consuming operation must be
involved in the computation of these values because in
other case no performance improvement in simulation will
be obtained. It must be also taken into consideration the
dependencies between these values to properly distribute
their calculation between the different threads.

110

3 3.5 4 4.5 5 5.5

x 10
4

450

500

550

600

650

700

Time (s)

T
e
m

p
e
ra

tu
re

 (
K

)

Real temperature

Simulated temperature

Figure 6. Real and simulated output DISS field temperature in the calibration process.

3.5 4 4.5 5 5.5 6 6.5

x 10
4

450

500

550

600

650

Time (s)

T
e
m

p
e
ra

tu
re

 (
K

)

Figure 7. Real and simulated output DISS field temperature in the validation process.

5. Simulation Results

The tests presented in this section were performed using
a Intelr CoreTM i5 CPU M540, 2.53 GHz. Several tests
using different input trajectory files from several operation
days were performed and a mean execution time has been
calculated. It is important to note that the parallelization
is only considered in the initial section and not during the
numerical integration.

The simulation statistics are summarized in Table 1.
Although the gain in speed is not enormous, just a global
speedup of 1.13 was obtained, the calibration process using
genetic algorithms is time consuming and even a modest
performance improvement is worthwhile. Moreover, if it
is considered that the parallelization was only performed
in the initial section and not in the whole simulation, the
speedup obtained is considerably high, 2.80, because the
mean initial section secuential and parallel execution times
are 31.231 and 11.127 seconds respectively.

With respect to the calibration process using genetic al-
gorithms, if 20 elements in the population and 100 itera-
tions are considered, the calibration execution time is re-
duced in 4.5 hours. Although it keeps being time consum-
ing, because it lasted 3 days and 4.5 hours in being per-
formed.

As an example, Figures 6 and 7 show the real DISS test
field output temperature (solid line) and the simulated DISS
test field output temperature (dashed line) for two different
operation days. Figure 6 corresponds to a day used in the
calibration process whereas Figure 7 corresponds to a day
used in the validation process. The x axis represents the
time in seconds from the beginning of the day and the y

axis shows the real and simulated DISS test field output
temperatures in kelvin.

6. Conclusions and Future Work

The most remarkable conclusions are the following.

• OpenMP can be easily used to parallelize the initial
section in the resulting C source code obtained from
Modelica models when necessary.

• To take advantage of the parallelization in the initial sec-
tion of Modelica models it is required time consuming
calculations in the initial section.

• The proposed approach has been tested in a dynamic
model, which has been validated by experimental data,
obtaining a mean speedup of 1.13 in the whole simula-
tion and a mean speedup of 2.80 in the initial section
where the parallelization takes place.

• The gain in speed is worth not only in simulation but
also in the calibration process where the simulation time
is a critical aspect.

Kind of model Original Parallelized
Execution time (s) 170.727 151.415
Execution time speedup 1 1.13
Initialization section time (s) 31.231 11.127
Initialization section speedup 1 2.80
Calibration execution time 3 d 9 h 3 d 4.5 h

Table 1. Simulation statistics

111

As future work it would be useful to study and tackle
the following open issues.

• Study how to include mechanisms to describe the use of
the OpenMP API directly in the Modelica code instead
of using it in the resulting C source code.

• Study how to take advantage of the OpenMP API dur-
ing the whole simulation, specially in the numerical in-
tegration process, and not only in the initial section of
Modelica models.

• Take advantage of a 13-node cluster and consider the
parallelization not only in the simulation but also in the
genetic algorithm calibration method by evaluating con-
currently members of the population in each cluster’s
node.

Acknowledgments

This work has been financed by CIEMAT research centre
and UNED own funds, and by the National Plan Project
DPI2010-21589-C05-04 of the Spanish Ministry of Sci-
ence and Innovation and FEDER funds. This support is
gratefully acknowledged by the authors. This work has
been also performed within the scope of the collabora-
tion agreement between the Automatic Control Group
of CIEMAT at Plataforma Solar de Almería, and the
Computer Science and Automatic Control Department of
UNED.

References

[1] OpenMP, wikipedia the free encyclopedia, http://en.
wikipedia.org/wiki/OpenMP.

[2] The OpenMP Architecture Review Board ARB. The
OpenMP API specification for parallel programming,
http://openmp.org/.

[3] Peter Aronsson. Automatic Parallelization of Equation-

Based Simulation Programs. Doctoral thesis No 1022,
Linköping University, Department of Computer and Infor-
mation Science, 2006.

[4] Peter Aronsson and Peter Fritzson. A task merging
technique for parallelization of modelica models. In
Modelica conference, Hamburg, Germany, 2005.

[5] F.E. Cellier. Object-oriented modeling: Means for dealing
with system complexity. In Proc. 15th Benelux Meeting

on Systems and Control, pages 53–64, Mierlo, The Nether-
lands, 1996.

[6] Andrew Chipperfield, Peter Fleming, Hartmut Pohlheim,
and Carlos Fonseca. Genetic algorithm toolbox for use with
matlab. Technical report, 1994.

[7] A.B. Dynasim. Dymola 6.0 User Manual, 2006. http:

//www.dynasim.se.

[8] J. Eborn. On Model Libraries for Thermo-hydraulic

Applications. PhD thesis, Department of Automatic
Control, Lund Institute of Technology, Sweden, March
2001.

[9] K. Hongesombut, Y. Mitani, and K. Tsuji. An incorporated
use of genetic algorithm and a modelica library for
simultaneous tuning of power system stabilizers. In
Modelica Association, editor, Modelica Conference 2002

Proceedings, pages 89–98, Germany, March 18-19 2002.
Modelica Association and Deutsches Zentrum für Luft- und
Raumfahrt (DLR).

[10] IAPWS. Release on the IAPWS Industrial Formulation
1997 for the Termodynamic Properties of Water and
Steam. Technical report, The International Association
for the Properties of Water and Steam, Erlangen, Germany,
September 1997.

[11] C.F. Kutshcer, R.L. Davenport, D.A. Dougherty, R.C. Gee,
P.M. Masterson, and E. Kenneth. Design approaches for
solar industrial process-heat system. Tech. rep. seri/tr-253-
1356, Solar Energy Research Institute, Golden (Colorado),
USA, 1982.

[12] Håkan Lundvall. Automatic Parallelization using Pipelining

for Equation-Based Simulation Languages. Licentiate thesis
No 1381, Linköping University, Department of Computer
and Information Science, 2008.

[13] Modelica Association. Modelica specification 2.2.1, 2007.

[14] Modelica Association. Modelica standard library 2.2.1,
2007.

[15] The MathWorks, Inc. MATLAB Documentation. The
MathWorks, Inc., 2009.

[16] Hubertus Tummescheit, Jonas Eborn, and Falko Wagner.
Development of a modelica base library for modeling of
thermo-hydraulic systems. In Modelica Association, editor,
Modelica 2000 Workshop Proceedings, Lund, October
2000.

[17] L. J. Yebra. Object-Oriented Modelling of Parabolic-

Trough Collectors with Modelica (in Spanish). PhD thesis,
Universidad Nacional de Educación a Distancia (UNED),
Madrid, Spain, 2006.

[18] E. Zarza. The Direct Steam Generation with Parabolic

Collectors. The DISS project (in Spanish). PhD thesis,
Escuela Superior de Ingenieros Industriales de Sevilla,
Seville, Spain, Nov 2000.

[19] Per Östlund. Simulation of Modelica Models on the
CUDA Architecture. Master’s thesis, Linköping University,
Department of Computer and Information Science, 2009.

112

Separate Compilation of Causalized Equations - Work in Progress

Christoph Ḧoger

Technische Universität Berlin

christoph.hoeger@tu-berlin.de

Abstract
Separate Compilation is currently considered impossible
for Modelica in practice, because several features of state-
of-the-art Modelica compilers currently rely on global in-
formation. One prominent example for those features is
causalization. This particular feature is very important for
the generation of fast simulation code. In this work we
show how a post-compilation causalization can fit into the
operational semantics of a language like Modelica. We
present the semantics of a causalizing language system are
together with a prototype. This prototype shows that sep-
arately compiled models can form a causalized, thus fast,
simulation program.

1. Introduction
Separate Compilation as defined in [5] is the process of cre-
ating code fragments that can be used inany (type-valid)
context. This method is a standard approach in software
engineering and allows both code re-usage and modulariza-
tion. Those features are prominent design goals for Mod-
elica [1], yet no current implementation currently imple-
ments a separate compilation model.

As we have already shown in [9], there is no principal
reason, why Modelica cannot be separately compiled as a
language. The only necessary difference is to interpret the
process of flattening as theoperational semanticsof the
language. Naturally this means that the process of flatten-
ing must then happen at runtime.

Although Modelica thus supports separate compilation,
there are several obstacles when it comes toefficientcode
generation: Symbolic methods for the handling of systems
of equations seem to naturally demand the presence of
those equations in a uncompiled form.

One of those methods iscausalizationas described e.g.
in [6]. Causalization can drastically enhance the simulation
performance of models with sparse systems of equations.
Therefore we consider it a must-have for a decent Model-
ica implementation. Since we also consider separate com-
pilation a necessity, the question arises, how that particular

4th International Workshop on Equation-Based Object-Oriented
Modeling Languages and Tools. September, 2011, ETH Zrich, Switzerland.

Copyright is held by the author/owner(s). The proceedings are published by
Linkping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp/056/

EOOLT 2011 website:
http://www.eoolt.org/2011/

symbolic method can be implementedafter code genera-
tion. That question shall be answered.

The rest of the paper is organized as follows: We will
first give a formal definition of causalization in the context
of a tiny modeling language, TinyModelica. We will also
present the operational semantics of that language. Subse-
quently we will discuss (on the basis of linear equations)
how models in TinyModelica can be compiled separately
and causalized afterwards. Finally we will present our cur-
rent prototype implementation and demonstrate its perfor-
mance compared to OpenModelica.

2. TinyModelica Syntax
For the purpose of this document, we will describe a small
modeling language, called TinyModelica. We use this lan-
guage to give a formal overview of the instantiation process
of a model and its causalization.

TinyModelica is a very basic language for modeling
continuous systems. It does not allow inheritance nor mod-
ifications. In fact, it does not even contain parameters or
initial value definitions. Its only feature is the definition
of models that may contain variables, equations and sub-
models.

2.1 Syntax

The syntax of TinyModelica is defined below in EBNF
form. We use the∗ operator to denote repetitions of any
(including zero) length and the+ operator for repetitions
of length≥ 1.

Statement ::= causalize

| solve (Block+)

| Var

| Eq

| ModelDef

| Statement ; Statement

ModelDef ::= model id Var* Eq* end

Eq ::= equation id Block*
Var ::= var id :Name

Name ::= id [. Name]

Block ::= Name := Expr

A program contains a list of statements. Every model
definition contains typed variables (including sub-models)
and equations. Additionally, TinyModelica contains two
kinds of special statements:causalize andsolve. Their
formal semantics will be discussed below.

113

One important difference between Modelica and Tiny-
Modelica is the syntax of equations. While the former one
supports nearly mathematical notations (limited only by the
restrictions of text editors), likėx = f(y, t), TinyModel-
ica’s equations are defined by sets ofblocks.

Every block is a variable name together with an expres-
sion. Informally, such a block representsone solutionto an
equation. This difference in presentation makes it possible
to compile models separately.

Also note that our definition of equations contains a
name. This is not only necessary for some of the semantics
given below. It also seems natural to allow a modeler to
at least name some equations. This ease the process of
analyzing models as well as simplifying error reporting.

As a special restriction, TinyModelica does not contain
a definition of its expression language. This is very impor-
tant: We want to show, that separate compilation of Tiny-
Modelica models is possible. Since we do not give a defi-
nition of expressions, there is no way to use any symbolic
information in the operational semantics.

This restriction also allows us to ignore important mod-
eling aspects like integration or time events. We simply fo-
cus on algebraic equations and assume those features to be
part of a decent runtime implementation (in fact, our pro-
totype supports both).

3. TinyModelica Operational Semantics
The operational semantics of TinyModelica are rather sim-
ple. Since we do not cover features like inheritance of
types, the rules given below should be easy to understand.

In the following, we will use a simple environment
structureΓ. This environment can be seen as a partial func-
tion mapping names to real values.

Γ : Name →֒ R

We also introduce another partial functionM, mapping
names to model definitions. AndE for the mapping of
equations.

M : Name →֒ Model

E : Name →֒ Equation

Thestatesof a TinyModelica program are tuples of three
such functions:

State ⊆ {(M, E ,Γ)|M : Name →֒ Model . . .}

Updates of the environment are written with the� op-
erator:

(f � (x 7→ y))(z) =







y z = x

f(z) z 6= x

The operational semantics are given in the form of struc-
tural operational semantics. One simple example for such a
rule would be the statement composition rule:

COMP

〈(M, E ,Γ) s → (M′, E ′,Γ′
)

〈(M′, E ′,Γ′
) S → (M′′, E ′′,Γ′′

)

〈(M, E ,Γ) s ; S 〉 → (M′′, E ′′,Γ′′
)

This rule reads as follows: To evaluate a compositional
statements ; S, first s is evaluated. AfterwardsS is evalu-
ated in the resulting state.

3.1 Model Collection

The first rule of the operational semantics handles model
collection. Essentially, every model in a program is loaded
into the environment.

MODEL

(〈M, E ,Γ〉, model x . . . end) → 〈M � (x 7→ s), E ′,Γ′〉

Note that this just creates an environmentM, that can
easily be calculated statically. This is an important property
for separate compilation. In fact, any decent compiler will
probably generateM as part of it’s type-checking process.

3.2 Model Instantiation

Model instantiation is a recursive procedure. Every sub-
model (including variables) and equations are handled.
During this procedure. The model-name is passed through
(and attached as a prefix to subsequent sub-models).

INSTMODEL

M(t) = model N V E end

V = var x1:t1 . . . var xn:tn
E = equation e1B1 . . . equation emBm

Vnew = { var x. xj : tj |j = 1 . . . n}
Enew = { equation x. ei app(Bi, x) |i = 1 . . . m}

〈(M, E ,Γ), Vnew Enew 〉 → 〈M′, E ′,Γ′〉

〈(M, E ,Γ), var x:t 〉 → (M′, E ′,Γ′
)

This rule uses theapp function, which basically re-
names all occurring variables in a set of blocks according
to the given instance name:

app({ ni:= ei }, x) = { x. ni:= prefix (ei, x)}

We assume thatprefix renames all variables in an ex-
pression accordingly. Thus the expression of every block
can be seen as a function over the unknowns occurring in
it.

The recursive instantiation process stops atreal vari-
ables (which is simply a built-in type to denote unknowns
in the model). Those variables are stored in the environ-
ment. They are identified with the (arbitrarily chosen) ini-
tial value0.

LOADVAR

〈(M, E ,Γ), var x:real 〉 → (M, E ,Γ � (x 7→ 0)

114

Equations are also loaded into the environment.

LOADEQ

E = equation x B

〈(M, E ,Γ), E〉 → (M, E � (x 7→ E),Γ)

3.3 Causalization

With those simple rules in place, we can now define the
process of causalization. Causalization is the process of
converting acausal (algebraic) equations into an assignment
that solves the equation.

The basic idea of that process is well known from school
books. For instance if one would want to solve the equation

x + 3 = y − 5

for the variablex, knowing y, the corresponding assign-
ment would be

x := y − 8

Computing such an expression is naturally much faster
than solving the system of equations with an iterative
method. The hierarchic structure of object oriented lan-
guages like Modelica makes it very likely that for many of
the variables of a system, such an assignment can be found.
So causalization is a very important aspect of any Compiler
for such a language.

In the following we will formally define the process of
causalization. Note that the general idea is not new (see,
e.g. [6]). The most famous algorithm used in practice is
probably that presented by Tarjan [13]. The novelty in our
approach is that we do not need any symbolic informa-
tion for the process (recap: we did not even define a lan-
guage for such information). Therefore we can easily de-
fine causalization as part of the operational semantics being
executedaftercompilation.

The first element of the process is theoccurrencerela-
tion occ established between equations and variables: In-
formally, if a variable is used inside an equation both are in
the occurrence relation.

(equation id B , x) ∈ occ ⇔ x := E ∈ B

That relation is then used to build theoccurrence Graph
Gocc = (Eocc, Vocc) for a state(M, E ,Γ):

Vocc(M, E ,Γ) = dom(E) ∪ dom(Γ)

Eocc(M, E ,Γ) = {(v, e)|E(e) occ v}

Note, thatGocc is bipartite (if dom(E) ∩ dom(Γ) =

∅, which we assume).Gocc can be used to check some
properties for solvability, e.g. the existence of at least one
equation for each variable. But since we do not deal with
error handling for now, we assume only solvable systems
of equations as input.

In a next step, the occurrence Graph is transformed into
the dependency graph. For this task, we search a perfect
matchM(M, E ,Γ) in thetransposedset of edges ofGocc.

(In the following we will omit the parameter(M, E ,Γ) for
brevity)

M ⊆ ET
occ s.t. ∀v ∈ dom(Γ)∃!e s.t. (e, v) ∈ M

∧∀e ∈ dom(E)∃!v s.t. (e, v) ∈ M

The existence of such a perfect match is again consid-
ered a property of the given system of equations (if it does
not exist, there is a under- or over-determined subsystem).

The (directed) dependency graphGdep is defined as
follows:

Gdep = (Vdep , Edep) = (Vocc , Eocc ∪ M)

Because the edges inM are drawn from equations to
unknowns, we can state an important property: Every name
in Vocc is part of a strongly connected component with
exactly 2 nodes.

Lemma 1. Every Node inVocc is part of a 2-element
strongly connected component.

x ∈ Vocc ⇒ ∃!y ∈ Voccs.t.{(x, y), (y, x)} ⊆ Edep

Proof.

x ∈ Vocc ⇒ x ∈ dom(Γ) ∨ x ∈ dom(E)

⇒ ∃!(e, x) ∈ M ∨ ∃!(x, v) ∈ M

⇒ ∃(x, e) ∈ Eocc ∨ ∃(v, x) ∈ Eocc

⇒ ∃!y ∈ Vocc : {(x, y), (y, x)} ⊆ Edep

Such a strongly connected component (consisting of the
name of an equation and the name of an unknown) can
directly be identified with a block:

E(e) = equation e . . . v:= Ex . . .

∧ {(v, e), (e, v)} ∈ Edep

⇒ block(e) = block(v) = v:= Ex

Note thatblock yields exactly one result for every name,
if the variable names of all blocks of an equation are pair-
wise unequal (another static property of the input program,
that we (yet) do not care about). The fact that there isat
least oneblock for every such pair in the graph follows
directly from the construction ofEocc. Since we are inter-
ested in actually solving a system of equations, we need
another kind of graph, thecalculation order graph:

Gcalc = ({block(v) | v ∈ Vocc},≤calc⊆ (Block ×Block))

Here ≤calc can be seen informally as a dependency
between two blocks:b1 ≤calc b2 means thatb2 depends
on the variable calculated byb1. :

(v, e) ∈ Eocc

b1 = block(v) b2 = block(e) b1 6= b2

b1 ≤calc b2

115

For obvious reasons, such a dependency relation needs
to be transitive:

b1 ≤calc b2 b2 ≤calc b3

b1 ≤calc b2

It might occurr thatb1 ≤calc b2 ∧ b2 ≤calc b1. For
that reason we introduce=calc to express such a cyclic
dependency:

b1 ≤calc b2 b2 ≤calc b1

b1 =calc b2

Because<calc is transitive, we can easily lift it to a
relation over sets of cyclic dependent blocks≺calc:

Qcalc = Vcalc/=calc

≺calc ⊆ Qcalc × Qcalc

B1 ≺calc B2 ⇔ (b1, b2) ∈ B1 × B2 ⇒ b1 <calc b2

Lemma 2. Tcalc = (Qcalc,≺calc) forms a forest.

Proof. Assume that∃B1, B2 ∈ Qcalc s.t. B1 ≺calc B2 ∧
B2 ≺calc B1 ∧ B1 6= B2

From the definition, it follows, that(b1, b2) ∈ B1 ×
B2 ⇒ b1 ≤calc b2 ∧ b2 ≤calc b1 ⇒ b1 =calc b2

But sinceB1, B2 ∈ Qcalc = Vcalc/=calc
, by the defini-

tion of the quotient set, it follows thatb1 =calc b2 ⇒ b2 ∈
B1 ⇒ B1 = B2.

At that point we can now define the behavior of the
causalize statement.

CAUSALIZE

Tcalc(M, E ,Γ) = ({B1 . . . Bn},≺calc)

B1 ≺calc . . . ≺calc Bn

〈(M, E ,Γ), solve B1; . . . solve Bn 〉 → (M′, E ′,Γ′
)

〈(M, E ,Γ), causalize 〉 → (M′, E ′,Γ′
)

Causalization is now built into the operational seman-
tics: First create the calculation tree and then simply walk it
in order. More prominently, no symbolic information about
expressions was used during this process. Yet we still have
to discuss the properties of thesolve statement.

3.4 Block evaluation

The only semantics left to discuss concern thesolve state-
ment. Up until now everything in TinyModelica’s seman-
tics did not yield actual calculation of simulation data. To
fill this gap, we assume that the semantics of the (still un-
defined) expression language is given via two evaluation
functions:

A : State × Expr → R

J : State × Name × Expr → R

The first rule for solving an equation is rather simple: If
the set of blocks to solve has only one element, the block is
interpreted as an assignment.

SOLVE SINGLE

B = { x := E } Γ
′
= Γ � (x 7→ A((M, E ,Γ), E)

〈(M, E ,Γ), solve (B) 〉 → (M, E ,Γ′
)

The actual new value for the variablex depends on
the evaluation function. Complete DAEs can be solved by
using builtin constructs for numerical integration and time.

SOLVE MULTI

B = { x1 := E1 , . . . , xn := En }
F ∈ R

n Fi = A((M, E ,Γ), Ei) − Γ(xi)

J ∈ R
n×n J(i,j) = J ((M, E ,Γ), xi, Ej), i 6= j

J(i,i) = −1 ∆x ∈ R
n

: J∆x = −F
Γ
′
= Γ � (x1 7→ Γ(x1) + ∆x1) . . . � (xn 7→ Γ(xn) + ∆xn)

〈(M, E ,Γ), solve (B) 〉 → (M, E ,Γ′
)

This (last) rule of the operational semantics demands
the solution of a linear systems of equations for∆x. Infor-
mally, by using Newtons method (see, e.g. [10]), we com-
pute a fixed point for the functionF (x̄) = A(Ē) − Γ(x̄).

Note, that this interpretation assumes a unique order on
the variables in the system. Such an order can easily be
computed (we did not include it in the semantics to keep
the rules as small as possible). The numerical properties of
this evaluation rule completely depend onA andJ .

4. Compiling systems of linear equations
In the following section we will discuss, how TinyModelica
can be used to solve systems of linear equations. Especially
we will show, how the block expressions must evaluate to
yield a valid solution.

4.1 Block triangular form

Consider a linear system of equations:Ax̄ = 0 with x̄ ∈
R

n andA ∈ R
n×n. In the following, we assume thatxi is

likewise the expression yielding the value of an unknown in
the compiled model as a component of the solution vector
x̄.

For every equation̄aix̄ = 0, we can reduce the sum to
the non-zero components̄aix̄ = ᾱiz̄ = 0. Now we can
create a solution vectorb(i, j) for every equation̄ai and
every variablexj :

b(i, j) = (
αi,1

−αi,j

. . .
αi,j−1

−αi,j

, 0,
αi,j+1

−αi,j

. . .)

Naturally, we compile every equation into all such
blocks. If we evaluate such a block according to SOLVE

SINGLE, we have a solution for̄ai. Note, that such a vector
directly delivers the partial derivatives. Therefore for any
set of blocks{(b(i1, j1), . . . b(in, jn)}, we can calculateF
andJ as follows:

J = F =






b(i1, j1) − ej1

...
b(in, jn) − ejn






116

We know that, after evaluating SOLVE MULTI , J∆x̄ =

−Fx̄. It follows directly, thatF (∆x̄ + x̄) = 0. There-
fore, after one evaluation,Γ contains a valid solution to
{āi1 , . . . , āin

}.
In the case of multiple sets of blocks to be solved (which

should be considered the usual case), from [6] it is known
that the calculation order returned by the causalization
B1 ≺calc . . . ≺calc Bn can be represented as a block
matrix in lower triangular form:








J1 0 · · · 0 0

A21 J2 · · · 0 0

...
. . .

...
An1 An2 · · · Jn 0








Notably, hereJi 6= Fi, since theFi also take theAnm

as inputs:

Fi =
[

Ai1 · · ·Ai(i−1) Ji

]

Therefore after every evaluation of SOLVE MULTI , the
following equation holds:

J∆x̄ = −F

[
ȳ
x̄

]

= −
[

Ai1 · · ·Ai(i−1) Ji

]
[

ȳ
x̄

]

This (again), leads to the fact that:

[
Ai1 · · · Ai(i−1)

]
ȳ + J(∆x̄ + x̄) = 0

In other words: applying SOLVE MULTI to systems of
linear equations is not much different from applying Gaus-
sian elimination to a block matrix. This shows that this se-
mantic rule can be applied efficiently to systems of linear
as well as nonlinear equations.

5. Nonlinear equations
Although we only described systems of linear equations,
the proposed method naturally works in the nonlinear case:
Instead of directly calculating the block expressions one
has to use a decent computer algebra system to generate
inverse functions, to generate the block representation of
a single equation. It may of course occur that even a com-
puter algebra system does not find a direct solution (or mul-
tiple solutions exist). In such a case a numerical method
could be used to emulate a direct solution, as long asJ de-
livers the partial derivatives (which in turn could be derived
e.g. by automatic differentiation).

For the operational semantics, the existence of nonlinear
equations is no big problem: After a single step of a Newton
iteration, in SOLVE MULTI , we need to check the validity
of the solution:

SOLVE MULTI RECURSIVE

B = { x1 := E1 , . . . , xn := En }
F ∈ R

n Fi = A((M, E ,Γ), Ei) − Γ(xi)

J ∈ R
n×n J(i,j) = J ((M, E ,Γ), xi, Ej), i 6= j

J(i,i) = −1 ∆x ∈ R
n

: J∆x = −F F ≁ 0

Γ
′
= Γ � (x1 7→ Γ(x1) + ∆x1) . . . � (xn 7→ Γ(xn) + ∆xn)

〈(M, E ,Γ), solve (B) 〉 → (M, E ,Γ)

SOLVE MULTI STOP

B = { x1 := E1 , . . . , xn := En }
F ∈ R

n Fi = A((M, E ,Γ), Ei) − Γ(xi)

F ∼ 0

〈(M, E ,Γ), solve (B) 〉 → (M, E ,Γ)

A more problematic case is the distance of the initial
values from a solution: The method we use, might diverge,
if the initial solution is too far from the next one.

Since this paper is not about numerics, we ignore those
problems for now and focus on systems of linear equations,
where an exact solution can be computed.

Frontend

Symbolic Solver

Symbolic Differentiator

C++ Code Generator

SymPy

Figure 1. Prototype Compiler Architecture

6. Prototype Implementation
We implemented a TinyModelica runtime system and a
Modelica to TinyModelica compiler as a prototype. The
runtime is based on the C++ boost libraries1. Currently
it features a simple explicit Euler integration, Newton’s
method and an implementation of TinyModelica’s causal-
ization and solve statements.

The Compiler is written in Java and translates Modelica
source (actually a subset of Modelica) into C++ source
files. Those output files contain classes and functions, that
implement the model and equation instantiation part of
the TinyModelica semantics. Models can be compiled into
linkable objects and (linked against the runtime) be used in
different contexts.

For the computer algebra part of the compiler we chose
SymPy 2, a computer algebra system written in Python

1 www.boost.org
2 www.sympy.org

117

(Figure 1). This construction allows also nonlinear systems
(although we did not yet implement the iteration semantics
in the runtime by now).

6.1 Example

We tested our implementation with a very simple example
for a linear system of equations:

model Test1

Real a,b,c;

equation

a + 3*b - 2*c = time;

2 * a + 2*b + 6*c = 4;

end Test1;

model Test2

Test1 test1;

equation

test1.a + test1.b - test1.c = 0;

end Test2;

model MainTest

Test2[1000] test2;

end MainTest;

We used Modelica as a concrete syntax for our Tiny-
Modelica test implementation. The translation of the above
shown models into TinyModelica’s abstract syntax should
be pretty obvious (with the notable exception of the array
definition used, our implementation was extended at that
point). Below is the definition ofTest2 in TinyModelica
syntax as an example:

model Test2

var test1 : Test1

equation e1

test1.a := test1.c - test1.b

test1.b := test1.c - test1.a

test1.c := test1.a + test1.b

end

All three models were compiled separately into one
C++ header and source file. By varying the size of the
test2 array, we can demonstrate the value of separate
compilation. As a reference, we compiled the model also
with OpenModelica 1.7 [7].

 0

 50

 100

 150

 200

 250

 300

 0 200 400 600 800 1000

S
ec

on
ds

Instances of test2

compilation time

Figure 2. Compilation times in OpenModelica

The process of compiling a model with OpenModel-
ica can be described by two phases: A Modelica front-
end, which parses the source code, flattens the model and
does all kind of symbolic manipulations. The output of this
front-end is some C++ program that is able to solve the
generated system of equations. That C++ program is then
compiled and linked by a appropriate compiler. We mea-
sured the time of the back-end (the GNU C++ compiler in
our case), since the front-end was faster by some orders of
magnitude.

Figure 2 shows, how the compilation time for the exam-
ple model grows byond unbearable limits. As mentioned
this doesnot imply some performance problem with the
omc, since we measured the time that is spent by the com-
pilation of the generated C++ source code. The only prob-
lem is the sheersizeof the generated code (the source file
grew to ca. 3.2MB). The time of re-compilation with our
prototype remained constantly around one second (which
is mainly caused by the heavy use of C++ templates, using
pure C could lead to even faster compilation times). In turn
our front-end also took around a second which was caused
by general slow startup of Java applications, the loading of
SymPy from an embedded python interpreter and the pro-
totype style implementation. More important than the ac-
tual numbers of our implementation is the fact that they re-
mainedconstantregardless how many instances oftest2

models were instantiated.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 200 400 600 800 1000

R
un

tim
e

in
 s

ec
on

ds

Instances of test2

omc
TinyModelica

Figure 3. Performance comparison, OpenModelica -
TinyModelica

To demonstrate the scalability of our approach, we mea-
sured the runtime of a one-second simulation of the test
model. Note, that due to the absence of differential equa-
tions, the implemented integration method could not af-
fect the runtime behavior. Figure 3 shows our performance
comparison. Unsurprisingly, OpenModelica simulated this
trivial model very fast, even for many instances. As one
could expect the simulation time grows lineary. Although
our prototype is not nearly as advanced as the OpenModel-
ica implementation, it shows roughly the same scaling.

7. Conclusion
Separate Compilation of acausal equations is not only pos-
sible, but can also be implemented in an efficient equation
solver. Although the worst case space consumption grows

118

from O(n) to O(n2), in practice this compilation scheme
saves space.

Obviously compilation time is also drastically improved:
Generating all possible variations of a single equation turns
out to much more efficient as soon as several instances of a
model are active during simulation.

Although it might seem to be a rather technical issue, the
development of efficient separate compilation techniques
might have a sever impact on upcoming modeling lan-
guages: The operational semantics of languages like Mod-
elica are currently built into the tools as interpreters. This
does not only limit the size of the compiled models. It also
impacts the runtime features a simulation can offer: Fea-
tures like model structural dynamics [15, 12] are hard if
not impossible to implement with current compiler tech-
niques. Additionally, with our method, model libraries can
be distributed in acompiledform, without any need for en-
cryption methods.

8. Related Work
A different approach to separate compilation of Modelica-
like languages is mentioned in [11]. Here it is proposed to
extend the language itself to allow for separate compilation.
As we have shown, it is not necessary to change anything at
the language level as long as a different approach to model
instantiation is chosen.

Defining flattening as operational semantics of a model-
ing language is not a new idea. It has been developed i.e.
in [4] and [3]. Although to our knowledge there has been
no further research into causalization or index reduction in
that context.

The negative effects of a global compilation model for
Modelica have been addressed in [14]. Instead of compil-
ing every module separately, another compilation stage is
proposed to detect good candidates of code re-usage. This
approach clearly has the advantage of generating very good
(i.e. fast) code, but seems rather complex to implement. In
contrast to our proposal it is an optimization of the state-
of-the-art compilation model.

Instead of relying on a classical compilation scheme [8]
presents an approach tocompletelymove the handling of a
system of equations (i.e. symbolic processing, compilation
etc.) into the runtime of a host system (Haskell in that case).
This idea goes much further than our proposal. The idea of
just-in-time compilation for hybrid systems is very appeal-
ing (discrete values can become constants and the code can
be even more efficient than with ahead-of-time compila-
tion). In form of specialization, a just-in-time compiler like
LLVM might as well be useful in our case. Yet there is no
reason to postpone the actual symbolic manipulation and
code generation into the runtime, as we have shown.

9. Future Work
With TinyModelica we have shown that it is possible to im-
plement a separate compilation scheme with efficient code
generation for algebraic equations. Though, some points
are still open research questions:

• Index reduction is very important for the solution of
most practical models. Currently it is unclear how a
compiler might generate code prior to knowing the in-
dex of the global system. Usually a index reduction
demands a symbolic differentiation up to to the index
of the system. Automatic differentiation (see e.g. [2])
might be a solution here.

• The performance difference observed between our pro-
totype and OpenModelica may be caused by the runtime
causalization as well as some inefficiencies (e.g. addi-
tional function calls in the code). More research here
might yield a faster simulation.

• Causalization might be moved into a separate linking
phase. This could as well speed up the simulation start
as allow earlier error detection (e.g. singular or under-
determined systems of equations).

References
[1] The Modelica Association. Modelica - a unified object-

oriented language for physical systems modeling, 2010.

[2] Willi Braun, Lennart Ochel, and Bernhard Bachmann. Sym-
bolically derived jacobians using automatic differentiation -
enhancement of the openmodelica compiler.

[3] David Broman. Safety, Security, and Semantic Aspects of
Equation-Based Object-Oriented Languages and Environ-
ments. Licentiate thesis. Thesis No 1337. Department of
Computer and Information Science, Linköping University,
December 2007.

[4] David Broman and Peter Fritzson. Higher-order acausal
models. In2nd International Workshop on Equation-Based
Object-Oriented Languages and Tools,2008, pages 59–.
Linköping University Electronic Press, 2008.

[5] Luca Cardelli. Program fragments, linking, and modular-
ization. InProceedings of the 24th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, POPL
’97, pages 266–277, New York, NY, USA, 1997. ACM.

[6] François E. Cellier and Ernesto Kofman.Continuous System
Simulation. Springer, 1 edition, March 2006.

[7] Peter Fritzson, Peter Aronsson, Håkan Lundvall, Kaj
Nyström, Adrian Pop, Levon Saldamli, and David Broman.
The openmodelica modeling, simulation, and development
environment. InProceedings of the 46th Conference on
Simulation and Modeling, pages 83–90, 2005.

[8] George Giorgidze and Henrik Nilsson. Mixed-level
embedding and jit compilation for an iteratively staged
dsl. InProceedings of the 19th international conference on
Functional and constraint logic programming, WFLP’10,
pages 48–65, Berlin, Heidelberg, 2011. Springer-Verlag.

[9] Christoph Ḧoger, Florian Lorenzen, and Peter Pepper. Notes
on the separate compilation of modelica. In Peter Fritzson,
Edward Lee, François E. Cellier, and David Broman,
editors,3rd International Workshop on Equation-Based
Object-Oriented Modeling Languages and Tools, pages
43–51. Link̈oping University Electronic Press, 2010.

[10] C. T. Kelley. Solving Nonlinear Equations with Newton’s
Method. SIAM, Philadelphia, 2003.

[11] Ramine Nikoukhah. Extensions to modelica for efficient
code generation and separate compilation. InProceed-

119

ings of the 1st International Workshop on Equation-Based
Object-Oriented Languages and Tools, Linköping Elec-
tronic Conference Proceedings, page 49âC“59. Linköping
University Electronic Press, Linköpings universitet, 2007.

[12] Christoph Nytsch-Geusen and Thilo Ernst. Mosilab:
Development of a modelica based generic simulation tool
supporting model structural dynamics. In Gerhard Schmitz,
editor, Proceedings of the 4th International Modelica
Conference, Hamburg, March 7-8, 2005, pages 527–535.
TU Hamburg-Harburg, 2005.

[13] Robert Endre Tarjan. Depth-first search and linear graph
algorithms.Siam Journal on Computing, 1:146–160.

[14] Dirk Zimmer. Module-preserving compilation of mod-
elica models. InProceedings of the 7th International
Modelica Conference, Como, Italy, 20-22 September 2009,
Linköping Electronic Conference Proceedings, pages 880–
889. Linköping University Electronic Press, Linköpings
universitet, 2009.

[15] Dirk Zimmer. Equation-based Modeling of Variable-
structure Systems. PhD thesis, ETH Z̈urich, 2010.

120

