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Abstract: Distributed generators systems and Microgrid are becoming more important to increase the renewable 
energy penetration in the public utility. This paper presents a mathematical model for connected inverters in 
Microgrid systems with large range variations in operating conditions. No-lineal tools and computer simulations, 
phase-plane trajectory analysis, method of Lyapunov and bifurcations analysis for evaluate the limits of the 
small signal models are used, and conclusion suggested utilizing models that can permit to analysis of the system 
when subjected to a severe transient disturbance such as loss a large load or loss of generation. The study of 
transient stability for Microgrid systems in stand-alone of the utility grid is useful to improve the design of 
Microgrid's architecture. 
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1. Introduction 
Distributed generators systems and Microgrid are becoming more important to increase the 
renewable energy penetration in the public utility [1-2]. Thus, the use of intelligent power 
interfaces between the electrical photovoltaic generation source and the grid is required. 
These interfaces have a final stage consisting of dc/ac inverters, which can be classified in 
current source inverters (CSI) and voltage-source inverters (VSI). In order to inject current to 
the grid, CSI are commonly used, while in island or autonomous operation, VSI are needed to 
maintain the voltage stability [3-5]. 
 
A Microgrid can be operated either in grid connected mode or in stand-alone mode. In grid 
connected mode, most of the system level dynamics are established by the public utility, this 
is due to the relatively small size of local generators. In stand-alone mode, the system 
dynamics are established by micro generators themselves [6]. This paper presents an analysis 
of transient stability of power systems for parallel connected inverter in a Microgrid under 
autonomous operation. 
 
The power inverters do not present the natural relations between frequency and active output 
power, neither between output voltage and reactive output power. Therefore, in order to reach 
stable operation, when the inverters are connected in parallel, these inherent operating 
conditions must be established by the inverter’s control system [7]. 
 
Previous analysis of stability of stand-alone systems have been done by means of small signal 
models [5, 8], either assuming an ideal inverter or considering power inverter with a high 
switching frequency and their closed-loop inner controllers. Simulation and experimental 
result show that the systems work well when there is a small perturbation, but when the 
perturbation is bigger, the system could be in unstable operation. 
 
The small signal analysis works with root locus plots Bode diagrams, Nyquist plots, etc., 
researching the desired dynamic behaviour of the systems. On the contrary, this paper works 
with no-lineal tools for large signal analysis supported by computer simulations. It is used 
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phase-plane trajectory analysis and method of Lyapunov to evaluate the limits of the small 
signal models. It is suggested the utilization of models that allow to analyze the system when 
it is subjected to a s evere transient disturbance such as loss of large loads or loss of 
generation. 
 
2. A Microgrid Study 
Fig 1 shows the circuit diagram of the Microgrid systems in stand-alone considered in this 
paper. This system configuration was studied by Duminda, in [8]. It was considered small 
signal modeling. For simplicity, the system has two inverter connected, but it can be extended 
for n-number of inverters. 
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Fig. 1.  Parallel connected inverters in Microgrid system works in stand-alone. 
 
The Distributed Generator (DG) considered consists of a power DC renewable source, a 
three-leg inverter and an output LC filter. By assuming the renewable energy source as an 
ideal source form, the DC bus dynamics can be neglected. Each DG presents a PWM 
controller with a current and voltage loop and a PQ controller. The PQ controller must 
autonomously respond effectively to system changes without communication, only with local 
variables. Commonly, the PQ controller uses the droop curves (f vs P and V vs Q) and a filter 
with a cut-off frequency of approximately a decade smaller than a grid frequency. The task of 
the PQ controller is to imitate the governor of a synchronous generator. This artificial droop 
control scheme can be expressed as follows 
 

Pk p−= 0ωω           QkVV v−= 0   (1) 
 
Where P and Q are filtered with a low pass filter with cut-off frequency ωf, the equations of 
these filters in the Laplace domain can be expressed as: 
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Pi and Qi are instantaneous power and are calculated from the measured output voltage and 
output current as in 
 
( ) qqddi IVIVsP +=           ( ) dqqdi IVIVsQ −=   (3) 

 
2.1. A mathematical model of the each voltage source inverter 
Considering (1), (2) and working in the time domain,  

ifpf Pk +−−= ωωωω   (4) 
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ifvf QkVV +−−= ωω   (5) 
 
The inverters are modeled in a common reference frame (d-q), fig. 2. Each voltage vector has 
an angle δi with respect to the d-axes.  
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Fig. 2. Voltage vectors in reference d-q frame. 
 
The vector V can be represented as qd jVVV +=


 Where 

 

( )δcosVVd =           ( )δsinVVq =           







=

d

q

V
V

arctanδ  (6) 

 
From (4) and fig. 2 i t is shown that ωi changes in response to the real power flow and 
modifies the angle δi. Thus, from (6) it can be expressed 
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δω  Considering 22

qd VVV +=  and the expressions (4), (5) and (6) it can be 

obtained the state equation (7) which describe the behavior of each inverter. 
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2.2. Combined model of all the inverters and network model 
In previous section the mathematical model of an individual inverter on a common reference 
d-q frame was discussed. Let us consider a system with two inverters connected to a network, 
as shown in fig. 1. The state equation for two inverters is 
 

 

4187

























−−−=

−−−=

−=

−−−=

−−−=

−=

2
2

222
22222

2
2

222
22222

222222

1
1

111
11111

1
1

111
11111

111111

Q
V

Vk
VVV

Q
V

Vk
VVV

Pk

Q
V

Vk
VVV

Q
V

Vk
VVV

Pk

qfv
qfdq

dfp
qdfd

fpf

qfv
qfdq

dfp
qdfd

fpf

ω
ωω

ω
ωω

ωωωω

ω
ωω

ω
ωω

ωωωω













 (8) 

 
The network in the fig. 1 is described by the nodal admittance matrix equation 
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Considering the active and reactive power equations (3) and (9),  
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Which the above equation, combined with (8), gives the whole system equations 
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Where 

11217112161111511214112131111211 ;;;;;; fvfvfvfpfpfpf GkBkBkBkGkGk ωαωαωαωαωαωαωα ======−=

21227212262222521224212232222221 ;;;;;; fvfvfvfpfpfpf GkBkBkBkGkGk ωβωβωβωβωβωβωβ ======−=  
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3. Study of Stability for the Microgrid 
In this section it is constructed a Lyapunov function for the Microgrid system and obtained 
the respective eigenvalues for the A matrix of lineal system. 
   
3.1. Lyapunov’s method 
One of the main impediments for the application of Lyapunov's method to physical systems is 
the lack of formal procedures to construct the Lyapunov function for the differential equations 
describing the given physical system [10]. A function V(X) is called a Lyapunov function of 
the system f(X) where f(0)=0 if it fulfills the following properties [11]: 
 

i. 0)0( =V  
ii. 0)( >XV  for all X 

iii. 0)( ≤XV
dt
d along all trajectories of the system 

 
Then the point X=0 is locally stable. 
 
It is proposed to construct the Lyapunov function by using the set of representative variables 
for each generator. By following this principle, firstly it is chosen the square frequency 
variables (X1 and X4) divided into the working frequency to obtain “per unit” values and 
secondly it is used the dq vol tage of each generator divided by the module of voltage; this 
method is repeated for every generator of the Microgrid. Finally, every term of the obtained 
Lyapunov function are multiplied by a different constant. These constants must be chosen to 
fulfill the iii property. 
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The above equation fulfills (i) and (ii) properties as can be seen by inspection. Condition (iii) 
can be shown as 
 

0)()()()()()(
6

6
5

5
4

4
3

3
2

2
1

1

≤
∂

∂
++

∂
∂

+
∂

∂
+

∂
∂

+
∂

∂
+

∂
∂ X

X
XVX

X
XVX

X
XVX

X
XVX

X
XVX

X
XV          (13) 

 
Hence, 
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Then the Lyapunov function (12) and the mathematical model (11) are simulated in 
MATLAB/Simulink for reaching the best values of every constant and the region where the 
Lyapunov function is valid and the system is stable. A first study it is  used A=C; B=E and 
C=F. 
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3.2. Eigenvalues of lineal system 
Considering the system of the figure 1 and the nonlineal model in (11) and applying Taylor's 
series around the operating point at this model, it can be obtained the state-space equations of 
the small-signal model. This is acceptable if variations around the operating point are 
assumed to be small; therefore, the small signal lineal model is [ ] [ ][ ]XAX ~~ = .  
 
Finally the systems with parameters presented on Table I,  t he initial active and reactive 
output powers zero, and initial vectors V1 y V2 in phase, the A matrix values are 
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And the respective eigenvalues are ;5.37;7.377.35;9.26;8.10;0 654321 −=−=−=−=−== λλλλλλ  
According to [8] only the nonzero eigenvalues are important for the stability studies. The 
system has five negative real eigenvalues, and then it is a stable point. 
 
Table I. System parameters. 

Variable Value unit 
Line transmission (Z3) 0.5+3i Ω 

Local load (Z1) 13+6i Ω 
Local load (Z2) 25+13i Ω 

Cut-off freq. of measuring filter (ωf) 37.7 rd/s 
Frequency droop coefficient (kp) 0.0005 rd/s/W 
Frequency droop coefficient (kv) 0.0005 V/VAR 

Nominal frequency 377 rd/s 
 
4. Simulation Results 
The methodology used is as follows; firstly of all the Microgrid system is implemented be 
means of the power electronics toolbox of Matlab/SIMULINK, the system parameters for 
simulation are shown in table I. Secondly, the simulated values of every state variable in the 
operating point are used to find the A matrix values and its eigenvalues. This eigenvalues are 
used to determinate the stability of the system. After that, it is utilized the set of equation (11) 
to verified the model and then the values of the state variables and its derivatives are used to 
evaluate the Lyapunov function. Finally it is studied the Lyapunov function and it is 
determined the region of stability of the system. 
 
The fig 3 shows the PQ power simulation by means of the Power electronic toolbox. This was 
repeated with a different line inductor values (from 8mH to 0.5mH with step of 0.5mH). For 
each simulation the values of state variables at the operating point were saved and these were 
used to study the small signal stability. 
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Fig. 3. Simulation results of a DG Microgrid system by means of Power Electronics tools 
 
The fig 4 s hows the PQ power simulation by means of nonlineal model of the Microgrid 
systems obtained in 2.2. It can be seen the same behavior in both transient and steady state 
values. As explained previously, the line inductance was varied for the nonlineal model. The 
values of state variables were used to validate the Lyapunov function. 
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Fig. 4. Simulation results of a DG Microgrid system by means of Nonlineal model. 
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Fig. 5. Study of stability by means of Lyapunov function and root locus plot. 
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Fig 5 s hows the study of stability by using the Lyapunov function and the root locus plot. 
They can be seen how the stability is affected when the line inductance decrease. The 
transient stability analysis by a Lyapunov method evaluate all variations starting in around a 
stable point that converge to it, therefore it can determine the lowest value of V(X) on the 

surface 0)( =XV  and by this way the region of asymptotic stability is determined. The small 
signal stability analysis by a root locus plot shows how the roots are moved when the line 
inductor decreases, but cannot give an “a priori” region of asymptotic stability. 
 
5. Conclusions 
In this paper, a nonlinear state-space model of a Microgrid is presented. The model includes 
the most important dynamics. This modeling method is able to be extended to n-generators. 
The model has been analyzed by means of both stability studies Lyapunov function and root 
locus plot. A general methodology to find a valid Lyapunov function for non linear stability 
analysis has been presented. Using that Lyapunov function the region of asymptotic stability 
can be determined. These tools will allow the design of Microgrid systems with loads, 
generators and storage systems assuring the global stability of the system.  
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