
Robust Initialization
of Differential-Algebraic Equations Using Homotopy

Michael Sielemann1, Francesco Casella2, Martin Otter1, Christoph Clauß3, Jonas Eborn4,
Sven Erik Mattsson5, Hans Olsson5

1DLR Institute of Robotics and Mechatronics, Germany
2Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy

3Fraunhofer EAS, Dresden, Germany
4Modelon AB, Lund, Sweden

5Dassault Systèmes AB, Lund Sweden

Abstract

The new operator homotopy(..) was introduced in
Modelica 3.2 to improve the solution of difficult ini-
tialization problems. The background and motivation
for this approach is discussed and it is demonstrated
how to apply it for mechanical, electrical and fluid
systems. Furthermore, it is shown at hand of several
examples how an inappropriate formulation might
lead to ill-posed problems.

Keywords:
Initialization, DAE, homotopy, nonlinear equations

1 Introduction

A dynamic model describes how the state variables
and thus the entire system behave over time. The
state variables define the current condition of the
model and have to be initialized when simulation
starts. For this purpose, Modelica provides language
constructs to define initial conditions such as initial
equation sections (Mattsson et. al., 2002). The result-
ing constraints and all equations and algorithms that
are utilized during the simulation form the initializa-
tion problem. Based on its solution, all variables,
derivatives and pre-variables are assigned consistent
values before the simulation starts.

Mathematically, the resulting problem is an initial
value problem for a differential algebraic equation
system (DAE) with dim(f) = nx+nw equations:

 , , , , () , () ,nx nwt t t t  0 f x x w x w    .

Here, x is the vector of state variables and w is the
vector of algebraic unknowns. For simplicity of the
discussion, we assume that the DAE has no hybrid
part and is index-reduced, i.e. it has index 1, which
means that the following expression is regular:

  
   

f f

x w
.

Note, all the following results still hold for hybrid,
higher index DAEs with small adaptations.

Initialization means to provide consistent initial
values for so that the DAE is fulfilled at

the initial time t0. Since these are 2*nx+nw un-
knowns and the DAE has nx+nw unknowns, addi-
tional nx equations must be provided which are
called “initial equations” in Modelica:

0 0 0, ,x x w

 0 0 0 0, , , , dim()t nx 0 g x x w g

The most often used initial equations are:

0 x 0
that is, steady-state initialization.

The result is usually a nonlinear system of alge-
braic equations, which has to be solved numerically.
This does not always work right away for industrial
problems as the commonly employed gradient-based
local algorithms, such as the damped Newton
method, provide local convergence only (even when
using globalizations such as trust regions).

Modelica allows users to describe any model ma-
thematically, which makes it highly flexible and po-
werful for simulation of heterogeneous multi-domain
physical systems. However, this also means that no
knowledge of the mathematical character of the
problem equations can be introduced into the solver.
Instead, an algorithm has to work on a general nu-
merical problem (in contrast to domain-specific algo-
rithms for nonlinear problems).

As a result, the success to solve initialization
problems of state-of-the-art implementations of
Modelica tools depends on the choice of iteration
variables and the guess values for these variables
defined with the start attribute. Library developers
therefore typically implement approximate equations

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

75

in order to set these. They are usually formulated in
terms of parameters (of e.g. the boundary condi-
tions). At the same time, the iteration variables of the
nonlinear equation systems may change after small
topological modifications to the model. As a result it
may become difficult for a library developer to pro-
vide a robust initialization capability.

Since a model becomes useless whenever initiali-
zation fails, and the current state-of-the-art is not
fully satisfactory in this regard, we conclude that
more reliable and robust methods are needed for a
wider application of the Modelica modeling lan-
guage by practitioners.

The goal of this contribution is to provide the
solver with more information on the problem to
solve. This is performed in an object-oriented way
and seamlessly integrates with the concept of equa-
tion-based object-oriented languages.

2 Nonlinear Equation Solvers
and Homotopy

The classic gradient-based iterative algorithms to
solve nonlinear algebraic equation systems such as
damped Newton’s Method provide local conver-
gence only, see, e.g., (Dennis and Schnabel, 1996),
(Deuflhard, 2004), (Kelley, 2003). Such algorithms
may fail due to various reasons such as the residuals
not being Lipschitz continuously differentiable or
containing local minima with respect to some norm
introduced by the algorithm.

Several alternatives to these conventional meth-
ods exist. Homotopy is one of them and is consid-
ered in this contribution to meet the need for more
robust initialization.

2.1 Established Homotopy Methods

In homotopy methods for solving nonlinear algebraic
equation systems, the idea is to start with a simpli-
fied problem and continuously deform it to the diffi-
cult problem of interest. Even though this appears to
be conceptually simple, several details of these me-
thods and algorithms have to be considered. Unless
certain prerequisites are met, the existence of the
homotopy trace between the start and a solution, fi-
nite length of the path, nonexistence of singularities
along the path and other important requirements are
not guaranteed.

The homotopy is constructed from a system of re-
sidual equations that is easy to solve, as well as the

one of interest, = 0. Here, a generic vector z

of unknowns is used. In the Modelica case, this vec-

tor is:

 F z

0 0 0[; ;]z x x w and the equations are F=[f; g].
The homotopy is then a system of equations with one
higher dimension and is denoted by

 , z 0ρ .

The additional dimension is the homotopy or con-
tinuation parameter λ. It is typically restricted to the
range 0 ≤ λ ≤ 1 such that is solved easily

and

 ,0 ρ z 0

 ,1 ()z F zρ is the system of interest.

At least three different homotopies are discussed
in literature. We introduce the Fixed Point Homotopy
following (Chow et. al., 1978) as

       0, 1    z z  ρ z F z .

Here, z0 is the start iterate. According to (Keller,
1978), the Newton Homotopy (or Global Homotopy)
is defined as follows:

          
 

  z F

F z    
0

0

, 1

1





   

   

ρ z F z F

F z

z

Finally, the Affine Homotopy is introduced following
(Wayburn and Seader, 1987) as

        0 0, 1      z F z z z  ρ z F

Here,  0F z denotes the Jacobian of the residual

equations at the start iterate.
The Newton Homotopy has the advantage of

scale-invariance (Wayburn and Seader, 1987). How-
ever, the simple problem may have sev-

eral solutions and infinite loops that do not cross

 ,0 0ρ z

1 may result. Such tracks are called isolae (Choi
and Book, 1991). The Fixed Point and Affine Homo-
topies only contain a single solution to the simple
problem. Therefore, starting continuation inside an
isola is impossible. The Affine Homotopy is also
scale-invariant and the Fixed Point Homotopy is not
(Wayburn and Seader, 1987).

Affine and Fixed Point Homotopies in turn may
prescribe traces, which diverge toward an infinite
value of some elements of the unknowns z. Obvi-
ously, such traces cannot be followed numerically as
the arc length is infinite and because the sign may
change.

We note that (Chow et.al., 1978) provides theo-
rems on the success of the Fixed Point Homotopy
with probability one in the sense of a Lebesgue
measure. Success means that the track is of finite
length, bounded and free of singularities (with the
exception of turning points, which are not critical).
The associated coercivity conditions on the residual
equations were successfully employed in the area of
analog circuit simulators for example. However, it is

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

76

neither possible to translate the boundedness condi-
tion on the solution of the residual equations F(z) nor
the Inner Product Condition on F(z) to general multi-
domain physical modeling as needed by a Modelica
model. The former is the case due to the existence of
unsaturated amplifier components, which arise in
several applications, and the latter due to the lack of
energy dissipation in component models to compen-
sate the effect of boundary conditions in several
physical domains other than electronics.

0 Homotopy parameter λ

Solution of
Track diverges to ±∞

Isola

1

unknown x

Regular path with turning points

Bifurcation

Figure 1: Illustration of failure modes of homotopy

In summary, the experience of the authors shows that
such established homotopy methods are not suffi-
ciently robust due to be above mentioned failure
modes. Furthermore, an implementation of the Fixed
Point Homotopy within Dymola 7, which was avail-
able since several years, did not provide indications
of increased robustness of this approach with respect
to the Newton solver in practical applications.

2.2 General Problem-Specific Homotopy

The issues in the general homotopies introduced so
far stem from continuously deforming two rather
unrelated systems of equations into each other. In the
case of the Fixed Point Homotopy the simplified
problem is the linear system z – z0.

The source of the problem is the “lack of addi-
tional information” that can be utilized for the solu-
tion. In order to improve this situation for Modelica,
a problem-specific homotopy is introduced:
 By deriving the simplified system from the ac-

tual system of interest, and
 by formulating the simplified system such that a

homotopy to the actual problem of interest be
free of singularities.

The formulation of the simplified system is problem-
specific and allows modelers to infuse their knowl-
edge about the physics of the problem into the way
the equation system is solved (cf. Introduction). The
approach is compatible with object-orientation and
declarative modeling and is understood as something

introduced by domain experts to selected key equa-
tions. The goal is the formulation:

       , 1      ρ z F z F z .

Here,  F z is the actual problem and  F z is the

simplified one. Based on a proposal by M. Otter, M.
Sielemann and F. Casella, the new built-in operator,
homotopy(..) was introduced in Modelica 3.2. It
depends on two arguments, namely actual, the
Real expression describing the actual problem, and
simplified, the Real expression corresponding to
the simplified problem. The Modelica translator can
then expand this operator according to the homotopy.
For the homotopy given above, which will be used
throughout the remaining part of this article, the ex-
pression

homotopy(expr1, expr2)

is thus expanded to

 expr1 1 expr2     .

In contrast to other language constructs, the benefit
of using this operator is that only one equation sys-
tem for any number of steps is needed for initializa-
tion, and that it is logically defined how to transform
one equation system into the other.

3 Implementation in Modelica Tools

The implementation of the new homotopy operator
in a Modelica tool is rather straightforward: During
the symbolic manipulation phase (BLT transforma-
tion, Pantelides algorithm etc.), the operator is
treated as a function with two arguments. When gen-
erating code, the tool has to conceptually perform
one homotopy iteration over the whole model and
not several homotopy iterations over the respective
local algebraic equation systems. The reason is that
the following structure can be present:

1 1

2 1 2

() // has homotopy operator

= (, , ,)

w f x

0 f x x w w

Here, a local non-linear equation system f2 is present.
The homotopy operator is, however, used on a vari-
able that is an “input” to the non-linear algebraic
equation system and modifies the characteristics of
it. The only useful way is to perform the homotopy
iteration over f1 and f2 together.

This approach is “conceptual”, because more ef-
ficient implementations are possible, e.g. by deter-
mining the smallest iteration loop, that contains the
equations of the first BLT block in which a homo-
topy operator is present and all equations up to the
last BLT block that describes an equation system.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

77

Various continuation algorithms have been sug-
gested in literature, which are all suitable to trace
homotopies of the type considered herein (e.g. pseu-
do arc-length algorithms). Popular examples are
Hompack (Hompack, 2010) and Alcon2 (Elib, 2010;
Deuflhard et. al. 1987).

In order to validate the methodology, a test im-
plementation was developed by M. Sielemann,
which utilizes the Dymola software (Dymola 2010)
and the Loca continuation algorithms of Trilinos
(Heroux et. al., 2005). One practical advantage of
Loca over Hompack and Alcon2 is that the sensitivi-
ties of the homotopy with respect to the continuation
parameter λ do not have to be provided. For Hom-
pack and Alcon2 this has to be provided and had to
be implemented using finite differences. The
Loca/Dymola implementation has the following fea-
tures:

 It provides three options for the treatment of the
suggested homotopy operator. Normally, it is ex-
panded to the given homotopy expression. Alter-
natively, simplified equation sets are obtained by
inlining either argument. In case of the simplified
argument, maximum structural simplifications of
the equation system result.

 The user is able to manually prescribe whether to
use homotopy initialization or not. This is an im-
portant feature for library development and de-
bugging, and may be useful for users, too (e.g. if a
local gradient based solver converges to a mathe-
matically valid, but physically unreasonable solu-
tion or when a local gradient based solver does
not converge and a user does not want to wait at
the start of each simulation until the software real-
izes this and switches to homotopy initialization).

 Verbose information on the homotopy is option-
ally provided, which is useful for library devel-
opment and debugging. In particular, the homo-
topy traces are visualized. Like this, it is possible
to reconstruct what happens during the solution of
the simplified problems and the homotopy trans-
formation.

Additionally, Dymola 7.5 Beta also supports the
homotopy operator. It was used for some of the ap-
plication examples.

4 Application Examples

In this section several examples are given how to
utilize the homotopy operator in different physical
domains in order to solve difficult initialization prob-
lems.

4.1 Mechanical Systems with Kinematic Loops

Whenever kinematic loops are part of a mechanical
system, non-linear algebraic equation systems are
present. If these equation systems are solved numeri-
cally, the user has to provide guess values for the
iteration variables in order that the system can be
initialized. The issues are first demonstrated at hand
of a simple example, the four bar mechanism, see
Figure 2:

Figure 2: Four bar mechanism
 (top: Modelica model, bottom: animation).

The four bar mechanism consists of 4 connected re-
volute joints where the rotation axes of the joints are
all parallel to each other. Since this mechanism is
over constrained (e.g., the forces perpendicular to the
kinematic loop cannot be uniquely determined), the
upper two revolute joints are replaced by spherical
joints which gives the same kinematic motion, but all
quantities can be uniquely computed. Since joint r1
shall be driven by a drive train, the angle of this
joint, “r1.phi” and its derivative are defined to be
states by selecting in the “Advanced” menu of joint
“r1” the option “stateSelect = StateSelect.always”.

This mechanical system gives rise to 9 nonlinear
algebraic equations that are transformed by Dymola
to one non-linear algebraic equation in one unknown.
This equation is the constraint that the distance be-
tween the two spherical joints is constant. Formally,
this nonlinear algebraic equation has the form:

0 = f(r1.phi, r4.phi)

where r1.phi is the “known” state and “r4.phi” is the
angle of the right lower revolute joint that is used as

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

78

iteration variable. This nonlinear equation has two
solutions that correspond to the two configurations
of the mechanism. In order to initialize this mecha-
nism, a “guess” value for variable r4.phi has to be
provided.

It is always a useful strategy to define a mecha-
nism in a reference configuration in which all gener-
alized joint coordinates are zero and where all rele-
vant kinematic quantities can be easily determined.
When the mechanism is initialized in this way, the
nonlinear equations of the initialization problem are
fulfilled. In the case of the four bar mechanism, the
selected reference configuration (in which r1.phi =
r4.phi = 0) is selected such that the left bar is di-
rected along the y-axis and the lower bar along the x-
axis, respectively (see left part of Figure 3 below).

Problems arise, if the simulation of the mecha-
nism shall not start in the reference configuration,
but at a user-defined angle r1.phi = phi0. Depending
on the “guess” value of “r4.phi” the numerical solver
might no longer find a solution, or if it computes a
solution, it might be the wrong configuration.

In the example of Figure 3, a guess value of
r4.phi = 45° is selected and r1.phi is changed from
r1.phi = 0°, in steps to -20°. The initial solutions
found by Dymola are shown in Figure 3:

Figure 3: Initial solutions:
 (left: r1.phi = 0°, right: r1.phi = -20°)

Starting at about 18.9° the configuration is changing
to an undesired configuration. This type of initializa-
tion is not robust, since for every change of the ini-
tial states, all guess values need to be properly
adapted, which is usually difficult (not practical) if
the system is no longer in its reference configuration.

The homotopy operator opens up a completely
new direction: In the model of the revolute joint, the
equation for the joint angle is changed to

if homotopyInitialization then
 ang
else

le = phi_offset + homotopy(phi,0);

 angle = phi_offset + phi;
end if;

where homotopyInitialization is a Boolean pa-
rameter that is set to true for r1 and set to false for
r4. Furthermore, the start value of r4.phi = 0 (the
value from the reference configuration). The mean-
ing is that independently which start value is given

for r1.phi, the mechanism is initialized in its refer-
ence configuration r1.phi = 0 (where the nonlinear
algebraic equation is identically fulfilled) and then
r1.phi is moved by the homotopy method until it
reaches its start value. In every iteration a good guess
value exists from the previous step and therefore the
nonlinear equation is solved and remains in the con-
figuration of the reference configuration. As a result,
a very robust initialization of the mechanism is ob-
tained, see Figure 4:

Figure 4: Initial solutions for
 r1.phi.start = 0°, -20°, -45°, -75°

The four bar mechanism was only introduced to
demonstrate the issues on a simple mechanism1.

The sketched initialization technique shall now be
applied on a much more involved example: A
“Delta” robot (Clavel 1990). This robot is commer-
cially available by several companies, e.g., by ABB
under the name “FlexPicker™”2. A suitable refer-
ence configuration of this robot is shown in Figure 5:

Figure 5: Delta robot in its reference configuration.

At the top, the robot consists of 3 actuated revolute
joints that each drives a parallelogram. Every paral-
lelogram consists of 4 spherical joints. In the bottom,
the three parallelograms are rigidly mounted on a
plate (in the figure visualized by a blue sphere that
marks the center of mass of the load body that is at-
tached to this point; in commercial robots, there is

1 The equation system can be solved analytically when
using an Assemblies.JointRRR joint from the
Modelica.Mechanics.MultiBody library.
2 FlexPicker is a trademark of ABB.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

79

usually an additional revolute joint here). Overall,
this robot has 3 revolute joints, 12 spherical joints
and has 6 coupled kinematic loops. The robot has 3
degrees of freedom and can be controlled by the 3
revolute joints. By construction, the load plate is al-
ways parallel to the mounting plate on top, inde-
pendently of the actual joint angles. Within its work-
space, the robot can move very fast to a desired posi-
tion. Since the motors that are mounted on the top
plate are not moved, accelerations can be up to 30 g
an

tion, this system is initialized in the following

on variables of the nonlinear equa-

s the angles to the desired
start configuration.

d speeds of 10 m/s can be reached.
Both direct kinematics (= given the joint angles,

compute the position of the load), as well as the in-
verse kinematics (= given the load position, compute
the joint angles) give rise to nonlinear algebraic equ-
ation systems. The more complicated case is the di-
rect kinematic solution. When the robot is built up
with “Joints.SphericalSpherical” joints (that each
introduces a length constraint between two spherical
joints), then Dymola transforms the system of 87
nonlinear algebraic equations down to 6 equations. If
the joint angles are given, the resulting equation sys-
tem has 16 configurations, but only the one shown in
Figure 5 is the desired one. With the homotopy ini-
tializa
way:
1. In the reference configuration, the absolute posi-

tion r[3] of the center point of the load plate, as
well as the rotation angles phi[3] from the iner-
tial frame to the load frame can be easily analyti-
cally computed (r = {0, 0, -sqrt(L2 – (r1+r2-r3)

2)},
phi = {0,0,0}). These values are provided as start
values to the load body (since Dymola selects
them as iterati
tion system).

2. The homotopy initialization of the revolute joints
is switched on. So, for given start angles, the ro-
bot always starts first in the reference configura-
tion and then move

Figure 6: Delta robot initia

Practical experience shows that within the technical
workspace of this robot, the initialization is very ro-
bust. A typical example is shown in Figure 6.

The path of the three position variables of the
load mass as function of the homotopy parameter
(computed with Loca) is shown in Figure 7. As can
be seen, the three paths are nearly linear and there-
fore even simple homotopy methods (like fixed step
methods) will work.

Figure 7: Homotopy path of the absolute position
 variables for the initialization of Figure 6.

4.2 Analog Electronic Circuit

In electronic circuits, operation starts often after the
power supply is switched on. Power supply is in
most cases a constant operating voltage of 15V, 5V
or others, often a split supply with +15V and -15V is
used. After switching on power supply, an initial
value of all variables (voltages and currents) is
reached, especially capacitors are loaded. The state
in which no variable is varying any more is called
DC (direct current) operating point. Its calculation is
often a challenge for which homotopy operators are
useful.

Figure 8: PID controller circuit with
 A741 operational amplifier.

lized in configuration
 {45°, -45°, 30°}.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

80

Figure 8 shows a simple PID controller circuit (Ti-
etze and Schenk, 2002) using a A741 operational
amplifier model (Horowitz and Hill, 1989) which is
composed of 21 NPN and PNP transistors of the
Modelica Standard Library, see Figure 9:

Figure 9: Operational amplifier A741 composed of
 21 NPN and PNP transistors.

To compare the due power supply (VCC 15V, VEE -
15V) limited controller output with the ideal unlim-
ited behaviour, a mathematical PID controller model
is inserted in parallel. Typical simulation results with
a comparison of the two models are shown in Figure
10. Translating this circuit, results in a system of 240
nonlinear algebraic equations that is reduced by Dy-
mola to a set of 38 nonlinear algebraic equations that
have to be solved during initialization (during simu-
lation, only a system of 17 linear equations is pre-
sent). With Dymola 7.4 (and most likely also with
any other Modelica tool), initialization of this circuit
fails, i.e., the DC operating point cannot be calcu-
lated.

Figure 10: Comparison of circuit PID with the ideal
 mathematical PID controller.

A successful initialization is possible by replacing
the constant supply sources VCC and VEE by ramp
sources which start at zero, followed by a transient
simulation until all variables remain constant. In gen-
eral, this way is cumbersome and error prone since
the circuit has to be changed manually. Furthermore,
the ramping up during a simulation introduces oscil-
lations and simulation has to be long enough until
the vibrations “died out”.

The situation changes completely, if the homo-
topy operator is used by changing the constant volt-
age model according to

model ConstantVoltage_Homotopy
 import Modelica.Electrical.Analog;
 extends Analog.Interfaces.OnePort;
 parameter Modelica.SIunits.Voltage V;
equation
 v
end ConstantVoltage_Homotopy;

 = homotopy(V,0.0);

This definition starts the constant voltage at zero and
during homotopy initialization it is ramped up to the
desired voltage V. During the ramping, all deriva-
tives are zero and therefore it is a ramping along
steady-states. Simple homotopy algorithms fail in
this case. In this example, the Loca algorithm was
used to calculate the homotopy initialization. In
Figure 11 the non-trivial variation of an internal
voltage of the operational amplifier is shown with
respect to the homotopy variable λ changing from
zero to one. Due to the sharp edge at λ = 0.18, a
homotopy method with a variable step size is needed
in this case.

0 0.2 0.4 0.6 0.8 1

-15

-10

-5

0
Continuation path for uA741.q17.NPN1.vbc


Figure 11: Homotopy path for a voltage variable of
 the operational amplifier with respect to λ.

4.3 Hydraulic Networks

Hydraulic networks are typically characterized by
the simultaneous presence of components with large
and small pressure losses, by mixing points, and by
nonlinear momentum balance equations, which de-
pend on the fluid properties, e.g., the density. As a

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

81

result, the system of nonlinear equations during
steady-state initialization is typically large and
strongly nonlinear. Their numerical solution is there-
fore problematic, unless relatively accurate start val-
ues are set for the iteration variables.

Figure 12: A hydraulic network.

An example case built with the ThermoPower 3 li-
brary is shown in Figure 12. A pump with a recircu-
lation and a control valve sucks fluid from a low
pressure source. The fluid is then mixed with the
flow coming from a second intermediate pressure
source through a short pipe, and further pumped
through a long pipe (with mass and energy storage)
into a high-pressure sink. The pressure losses in the
two pipes are small, compared to the pressure losses
across the valves and pumps.

The resulting initialization problem has 13 itera-
tion variables after tearing, among which two flow
rates and four pressures. If the start values of those
six variables are not accurately set, the standard non-
linear solver in Dymola fails to converge.

This initialization problem can be made much
easier to solve by substituting the original momen-
tum balance equations in the pump and pipe models
by linear, constant-coefficient ones, which are tuned
based on nominal operating data, and then by apply-
ing the homotopy transformation to bring the model
back to its original form.

More specifically, the pressure losses in the short
and long pipes are computed by linear mflow-dp rela-
tionships, passing through the origin and through the
nominal flow and nominal pressure loss point (these
data must be provided as parameters). In the case of
the pump, the tangent to the flow-head curve at the
nominal flow rate is used instead of the original
curve. By the simple substitutions of these two equa-
tions, the hydraulic problem becomes linear (two
linear systems with five and three unknowns), while
all the enthalpies and fluid properties are calculated
by simple assignments once the flow rates are
known. As a consequence, no start value at all is
required to guarantee convergence of the simplified
problem; the homotopy transformation then solves
the original nonlinear problem without further inter-
vention by the end user.

It is interesting to note that the homotopy paths of
the iteration variables are smooth and do not show

any kind of singularity or turning point even if the
actual steady state has a substantial mismatch with
the nominal data used to set up the simplified model.
As an example, Figure 13 shows the continuation
paths for two pressures and two flows if the valve V4
on the far right is closed by 90% at initialization,
thus reducing all flows in the circuit to a small frac-
tion of the nominal flow.

Figure 13: Homotopy paths of 4 iteration variables.

4.4 Calibration of A/C Heat Exchanger

A typical problem in air conditioning system and
component design is to calibrate a heat exchanger
model to measurement data. This is performed using
steady-state initialization in a test bench with given
boundary conditions, like the one shown in Figure
14.

Temperature: Ref Wall Air

dimensionless evaporator length, refrigerant?

Powe

Quality

r

Superheat

init
sup.h?

p_in
p_out
mdot

evaporator

Source

hm.

h
.
m

Sink

hp

p h

AirIn

mT
.

T m.

AirOut

p T

4493

13.7

mdot?

durati?

h_ref

durati?

airf low

durati?

phi_air

durati?

airtemp

durati?

p_sink

durati?

h_sink

durati?

0 1
10

30

0

1

30.0 28.4

4.8420
evapOut

p [b?h[kJ/kg]

T [°C]m [g/s]

Legend

.

Figure 14: Evaporator calibration test bench, from the
 AirConditioning library.

Heat transfer on the air side can be correlated using
the Nusselt number, Nu = kc Dhyd/F, which relates
the heat transfer coefficient kc to the hydraulic di-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

82

ameter Dhyd and the fluid thermal conductivity F.
Normally, the calibration can be performed during
initialization by solving for Nu as an unknown pa-
rameter using initial equations.

 parameter Modelica.SIunits.NusseltNumber
 Nu_air(fixed=false, start=10)
 "global Nusselt number";
initial equation
 hex.summary.Qdot_air = P_measured;

In most cases this solves perfectly fine using stan-
dard methods, and can be combined to calibrate sev-
eral parameters simultaneously, for example both
heat transfer and pressure drop. But sometimes it is
difficult to reach the desired solution, P_measured,
because it is close to the maximum cooling capacity.
The solver will then fail to converge.

Using the homotopy approach, the Nu-number
may be used as a control signal, starting at a given
value for which the steady-state initialization con-
verges, see the code below:

 parameter Modelica.SIunits.NusseltNumber
 Nu_air(fixed=false, start=10)
 "global Nusselt number";
 parameter Modelica.SIunits.NusseltNumber

arting Nusselt number"; Nu_start=10 "st
initial equation
 0 = homotopy(
actual = hex.summary.Qdot_air - P_measured,
simplified = Nu_air - Nu_start);

The path that the homotopy solver takes can be illus-
trated with a plot of Qdot_air vs. Nu, see Figure 15.
The starting value is taken in the middle of the slop-
ing curve, and the solver will then converge to the
desired solution, if one exists. This method has been
used to calibrate over large sets of data with excel-
lent results.

10 20
6E3

7E3

8E3

9E3

1E4

[W
]

Nu_air

hex.summary.Qdot_air P_measured

Figure 15: Steady-state performance of heat exchanger
as function of Nu-number on the air side. The solution
Nu_air = 19.7 is very close to maximum Qdot=9420 W.

5 Ill-posed Examples

Unfortunately, it is quite easy to formulate ill-posed
problems with the homotopy operator, so that ini-
tialization will fail. Below, a number of simple ex-
amples are given to demonstrate different kinds of
issues.

5.1 Singular Simplified System

The “simplified” problem in the homotopy formula-
tion might be formulated too simple by removing all
dependencies of a variable, as shown in the next ex-
ample:

x + 2*homotopy(y,1) = 5
2*x - homotopy(y,1) = 0

Note, the “simplified” problem is actually:

x + 2 = 5
2*x - 1 = 0

and this equation system does not have a solution
although the “actual” problem has a solution. There
are different variants of this type of problem. For
example, the “simplified” system might remove
variables that are used as iteration variables in a sys-
tem of equations and then the system is singular, al-
though a different selection of iteration variables
might make the system regular.

Since such cases can easily appear, the minimum
requirement is that a tool reports these problems dur-
ing translation. Conceptually this is easy, by per-
forming an assignment for the “simplified” problem
which would fail (with good diagnostics), if this
problem is structurally singular.

A tool might also perform a more involved treat-
ment:

1. For the tearing algorithm, select only iteration
variables, that are appearing in the “actual”
and in the “simplified” problem formulation
(does not work for the problem above).

2. Solve simplified problem with symbolic ma-
nipulations (does not work for the problem
above).

3. Remove the homotopy operator from certain
equations, until the “simplified” system is
structurally regular. This would work in the
example above, e.g., by removing the homo-
topy operator from the second equation.

4. The homotopy formulation of appropriate
equations is changed. In the example above,
one can observe that the modeler defined with
the second equation that “y” shall be used for
the “actual” problem and “1” for the simpli-
fied” problem, i.e., the modeler defined “y=1”
for the “simplified” problem. This information

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

83

allows to rewrite the second equation to:
 homotopy(2*x,1) – y = 0
which results in a regular “simplified” system.

5.2 Singular Intermediate System

Singular systems might also occur for a combination
of the “simplified” and “actual” problem formula-
tion, i.e., when 0 < λ < 1. A typical example is the
following where homotopy moves from an “initial
state” to a “steady state” formulation (i.e., using
Fixed Point Homotopy):

model DoNotUse
 Real x;
 parameter Real x0 = 0;
equation
 der(x) = 1-x;
initial equation
 0 = homotopy(der(x), x - x0);
end DoNotUse;

After the initial equation is expanded to

00 (1) ()x x x      

the two equations can be solved for the unknown x
by eliminating the derivative of x:

 0 01

2 1

x x
x




 




This equation has a singularity at 5.0 , see Figure
16. A homotopy solver will usually not be able to
compute the solution and therefore initialization will
fail.

-0.5 0.5 1.0 1.5
l

-10

-5

5

10

Figure 16: Solution to ill-posed example for 0 0.25x 

5.3 Bifurcation of Intermediate System

Ramping of boundary conditions is a straight-
forward way to employ homotopy. Some care has to
be taken however when using this pattern, which is
illustrated for a flip flop, see the simple analog elec-
tric circuit of Figure 17:

R

=

1

k

rC

1

R

=

1

k

rC

2

+-

xb1 xb2

xc2xc1

Rc1 Rc2

Rb2Rb1
Vs

R

=

1

k

rC

1

R

=

1

k

rC

2

+-

xb1 xb2

xc2xc1

Rc1 Rc2

Rb2Rb1
Vs

Figure 17: Flip-flop circuit leading to several solutions
 during the homotopy iteration.

This flip flop circuit has three steady state solutions
out of which two are stable. If a homotopy is con-
structed by ramping up the source voltage Vs, then a
bifurcation will show up in the homotopy track. This
bifurcation shows up at the point at which the base-
emitter junction of the transistor is triggered and the
three steady state solutions emerge. In non-trivial
applications, such bifurcations are numerically diffi-
cult to handle and shall thus be avoided under any
circumstances. The following figure illustrates the
homotopy trace that results in such a natural parame-
ter continuation strategy (also called source step-
ping). Here, a simple Ebers-Moll transistor model
was used.

0.0 0.2 0.4 0.6 0.8 1.0
0.00
0.05
0.10
0.15
0.20

l

ub1l

0.0 0.2 0.4 0.6 0.8 1.0
0
1
2
3
4
5

l

uc1l

Figure 18: Voltages at base and collector of
 transistor 1 in flip-flop circuit. At λ = 0.15
 a bifurcation to three solutions occurs.

6 Conclusions

The homotopy operator introduced in to the Mode-
lica language in version 3.2 (Modelica 2010) opens
up completely new possibilities to robustly initialize
Modelica models. Several examples have been given
to demonstrate the usage in different domains. Addi-
tionally, large power plant applications with up to
671 iteration variables for steady-state initialization
are discussed in (Casella et. al. 2011). Due to the
successful applications, it is planned to introduce this
operator at appropriate places in to the next version
of the Modelica Standard Library, in order to im-
prove the initialization of Modelica user models.

As demonstrated by several examples in section
5, it is easy to misuse the homotopy operator result-
ing in failed initialization. As a “rule of thumb”, the

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

84

homotopy formulation should not change the “struc-
ture” of the equation system, i.e., it should be based
on the simplification of terms, but not by solving a
completely different problem (e.g. moving from a
simplified system that is initialized at given states to
a steady-state formulation might easily fail, see sec-
tion 5.2). Furthermore, it is always useful to inspect
how the start-up of the “real” system works and
mimic this “start-up” with the homotopy formula-
tion, if this is possible.

There is still room for improving initialization.
One issue is that still guess values might be needed
for iteration variables (see, e.g., the Delta robot in
section 4.1) and the iteration variables are selected
by the tool. One remedy might be to introduce an
additional enumeration attribute for variables, such
as, “iterationSelect” that allows a library developer
to directly suggest useful iteration variables with the
enumeration values “never, avoid, default, prefer,
always”, in a similar way as for the existing attribute
“stateSelect” to guide the state selection.

7 Acknowledgements
Partial financial support of DLR and Fraunhofer by
BMBF (Förderkennzeichen: 01IS07022F) for this
work within the ITEA2 project EUROSYSLIB
(www.eurosyslib.com; funding number 06020) is
highly appreciated.

References

Allgower E.L., Georg K. (2003): Introduction to nu-
merical continuation methods. SIAM Classics in
Applied Mathematics.

Casella F., Sielemann M., Savoldelli L. (2011): Steady-
state initialization of object-oriented thermo-fluid
models by homotopy methods. Modelica’2011 Con-
ference, Dresden, March 20-22.

Choi S.H., Book N.L. (1991): Unreachable roots for
global homotopy continuation methods. AIChE
Journal 37, pp. 1093-1095.

Chow S.N., Mallet-Paret J., Yorke J.A. (1978): Finding
Zeroes of Maps: Homotopy Methods That are
Constructive With Probability One. Mathematics of
Computation 32, pp. 887-899.

Clavel R. (1990): Device for the Movement and Posi-
tioning of an Element in Space. US Patent No.
4,976,582, December 11, 1990. Download:
http://v3.espacenet.com/publicationDetails/biblio?CC
=US&NR=4976582&KC=&FT=E

Elib (2010): http://elib.zib.de/pub/elib/codelib/alcon2/.
Accessed November 2010.

Dennis J.E., Schnabel R.B. (1996): Numerical methods
for unconstrained optimization and nonlinear
equations. SIAM Classics in Applied Mathematics.

Deuflhard P., Fiedler B., Kunkel P. (1987): Efficient nu-
merical path following beyond critical points.
SIAM Journal on Numerical Analysis, Society for In-
dustrial and Applied Mathematics, 24, 912-927.

Deuflhard P. (2004): Newton Methods for Nonlinear
Problems. Affine Invariance and Adaptive Algo-
rithms. Springer.

Dymola (2010): Dymola 7.4.
http://www.3ds.com/products/catia/portfolio/dymola

Heroux M.A., Bartlett R.A., Howle V.E., Hoekstra R.J.,
Hu J.J., Kolda T.G., Lehoucq R.B., Long K.R., Paw-
lowski R.P., Phipps E.T., Salinger A.G., Thornquist
H.K., Tuminaro R.S., Willenbring J.M., Williams A.,
Stanley K.S. (2005): An overview of the Trilinos
project. ACM Transactions on Mathematical Soft-
ware, 31, 397-423.

Hompack (2010): http://www.netlib.org/hompack/. Ac-
cessed November 2010.

Horowitz P., Hill W. (1989): The Art of Electronics.
Cambridge University Press, page 189.

Keller H. (1978): Global homotopies and Newton meth-
ods. C. de Boor and G. Golub, eds., Academic Press,
New York, pp. 73-94.

Kelley C.T. (2003): Solving nonlinear equations with
Newton's method. SIAM.

Mattsson S.E., Elmqvist H., Otter M., Olsson H. (2002):
Initialization of Hybrid Differential-Algebraic
Equations in Modelica 2.0. Proceedings of the Sec-
ond International Modelica Conference, Munich,
Germany, pp. 9-15. Download:
https://www.modelica.org/events/Conference2002/pa
pers/p02_Mattsson.pdf

Modelica (2010): Modelica – A Unified Object-
Oriented Language for Physical Systems Model-
ing. Language Specification, Version 3.2. March 24.
Download:
https://www.modelica.org/documents/ModelicaSpec3
2.pdf

Tietze U., Schenk C. (2002): Halbleiterschaltungstech-
nik. Springer, 12th edition, page 1150.

Watson L.T., Billups S.C., Morgan A. P. (1987): Algo-
rithm 652: HOMPACK, A suite of codes for glob-
ally convergent homotopy algorithms. ACM Trans-
actions on Mathematical Software, 13, 281-310.

Wayburn T., Seader J. (1987): Homotopy continuation
methods for computer-aided process design. Com-
puters & Chemical Engineering 11, pp. 7-25.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

85

http://www.eurosyslib.com/
http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=4976582&KC=&FT=E
http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=4976582&KC=&FT=E
http://elib.zib.de/pub/elib/codelib/alcon2/
http://www.3ds.com/products/catia/portfolio/dymola
http://www.netlib.org/hompack/
https://www.modelica.org/events/Conference2002/papers/p02_Mattsson.pdf
https://www.modelica.org/events/Conference2002/papers/p02_Mattsson.pdf
https://www.modelica.org/documents/ModelicaSpec32.pdf
https://www.modelica.org/documents/ModelicaSpec32.pdf

	1 Introduction
	2 Nonlinear Equation Solversand Homotopy
	2.1 Established Homotopy Methods
	2.2 General Problem-Specific Homotopy

	3 Implementation in Modelica Tools
	4 Application Examples
	4.2 Analog Electronic Circuit
	4.3 Hydraulic Networks
	4.4 Calibration of A/C Heat Exchanger

	5 Ill-posed Examples
	5.1 Singular Simplified System
	5.2 Singular Intermediate System
	5.3 Bifurcation of Intermediate System

	6 Conclusions
	7 Acknowledgements

