
Robust Initialization 
of Differential-Algebraic Equations Using Homotopy 

Michael Sielemann1, Francesco Casella2, Martin Otter1, Christoph Clauß3, Jonas Eborn4, 
Sven Erik Mattsson5, Hans Olsson5 

1DLR Institute of Robotics and Mechatronics, Germany 
2Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy 

3Fraunhofer EAS, Dresden, Germany 
4Modelon AB, Lund, Sweden 

5Dassault Systèmes AB, Lund Sweden 
 

Abstract 

The new operator homotopy(..) was introduced in 
Modelica 3.2 to improve the solution of difficult ini-
tialization problems. The background and motivation 
for this approach is discussed and it is demonstrated 
how to apply it for mechanical, electrical and fluid 
systems. Furthermore, it is shown at hand of several 
examples how an inappropriate formulation might 
lead to ill-posed problems. 
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1 Introduction 

A dynamic model describes how the state variables 
and thus the entire system behave over time. The 
state variables define the current condition of the 
model and have to be initialized when simulation 
starts. For this purpose, Modelica provides language 
constructs to define initial conditions such as initial 
equation sections (Mattsson et. al., 2002). The result-
ing constraints and all equations and algorithms that 
are utilized during the simulation form the initializa-
tion problem. Based on its solution, all variables, 
derivatives and pre-variables are assigned consistent 
values before the simulation starts. 

Mathematically, the resulting problem is an initial 
value problem for a differential algebraic equation 
system (DAE) with dim(f) = nx+nw equations: 

 , , , , ( ) , ( ) ,nx nwt t t t  0 f x x w x w    . 

Here, x is the vector of state variables and w is the 
vector of algebraic unknowns. For simplicity of the 
discussion, we assume that the DAE has no hybrid 
part and is index-reduced, i.e. it has index 1, which 
means that the following expression is regular: 

  
   

f f

x w
. 

Note, all the following results still hold for hybrid, 
higher index DAEs with small adaptations. 

Initialization means to provide consistent initial 
values for so that the DAE is fulfilled at 

the initial time t0. Since these are 2*nx+nw un-
knowns and the DAE has nx+nw unknowns, addi-
tional nx equations must be provided which are 
called “initial equations” in Modelica: 

0 0 0, ,x x w

 0 0 0 0, , , , dim( )t nx 0 g x x w g  

The most often used initial equations are: 

0 x 0  
that is, steady-state initialization. 

The result is usually a nonlinear system of alge-
braic equations, which has to be solved numerically. 
This does not always work right away for industrial 
problems as the commonly employed gradient-based 
local algorithms, such as the damped Newton 
method, provide local convergence only (even when 
using globalizations such as trust regions). 

Modelica allows users to describe any model ma-
thematically, which makes it highly flexible and po-
werful for simulation of heterogeneous multi-domain 
physical systems. However, this also means that no 
knowledge of the mathematical character of the 
problem equations can be introduced into the solver. 
Instead, an algorithm has to work on a general nu-
merical problem (in contrast to domain-specific algo-
rithms for nonlinear problems). 

As a result, the success to solve initialization 
problems of state-of-the-art implementations of 
Modelica tools depends on the choice of iteration 
variables and the guess values for these variables 
defined with the start attribute. Library developers 
therefore typically implement approximate equations 
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in order to set these. They are usually formulated in 
terms of parameters (of e.g. the boundary condi-
tions). At the same time, the iteration variables of the 
nonlinear equation systems may change after small 
topological modifications to the model. As a result it 
may become difficult for a library developer to pro-
vide a robust initialization capability. 

Since a model becomes useless whenever initiali-
zation fails, and the current state-of-the-art is not 
fully satisfactory in this regard, we conclude that 
more reliable and robust methods are needed for a 
wider application of the Modelica modeling lan-
guage by practitioners. 

The goal of this contribution is to provide the 
solver with more information on the problem to 
solve. This is performed in an object-oriented way 
and seamlessly integrates with the concept of equa-
tion-based object-oriented languages. 

2 Nonlinear Equation Solvers 
and Homotopy 

The classic gradient-based iterative algorithms to 
solve nonlinear algebraic equation systems such as 
damped Newton’s Method provide local conver-
gence only, see, e.g., (Dennis and Schnabel, 1996), 
(Deuflhard, 2004), (Kelley, 2003). Such algorithms 
may fail due to various reasons such as the residuals 
not being Lipschitz continuously differentiable or 
containing local minima with respect to some norm 
introduced by the algorithm. 

Several alternatives to these conventional meth-
ods exist. Homotopy is one of them and is consid-
ered in this contribution to meet the need for more 
robust initialization. 

2.1 Established Homotopy Methods 

In homotopy methods for solving nonlinear algebraic 
equation systems, the idea is to start with a simpli-
fied problem and continuously deform it to the diffi-
cult problem of interest. Even though this appears to 
be conceptually simple, several details of these me-
thods and algorithms have to be considered. Unless 
certain prerequisites are met, the existence of the 
homotopy trace between the start and a solution, fi-
nite length of the path, nonexistence of singularities 
along the path and other important requirements are 
not guaranteed. 

The homotopy is constructed from a system of re-
sidual equations that is easy to solve, as well as the 

one of interest,  = 0. Here, a generic vector z 

of unknowns is used. In the Modelica case, this vec-

tor is:

 F z

0 0 0[ ; ; ]z x x w and the equations are F=[f; g]. 
The homotopy is then a system of equations with one 
higher dimension and is denoted by  

 , z 0ρ . 

The additional dimension is the homotopy or con-
tinuation parameter λ. It is typically restricted to the 
range 0 ≤ λ ≤ 1 such that  is solved easily 

and 

 ,0 ρ z 0

 ,1 ( )z F zρ  is the system of interest. 

At least three different homotopies are discussed 
in literature. We introduce the Fixed Point Homotopy 
following (Chow et. al., 1978) as 

       0, 1    z z  ρ z F z . 

Here, z0 is the start iterate. According to (Keller, 
1978), the Newton Homotopy (or Global Homotopy) 
is defined as follows: 

          
 

  z F

F z    
0

0

, 1

1





   

   

ρ z F z F

F z

z
 

Finally, the Affine Homotopy is introduced following 
(Wayburn and Seader, 1987) as 

        0 0, 1      z F z z z  ρ z F  

Here,  0F z  denotes the Jacobian of the residual 

equations at the start iterate. 
The Newton Homotopy has the advantage of 

scale-invariance (Wayburn and Seader, 1987). How-
ever, the simple problem  may have sev-

eral solutions and infinite loops that do not cross 

 ,0 0ρ z

1  may result. Such tracks are called isolae (Choi 
and Book, 1991). The Fixed Point and Affine Homo-
topies only contain a single solution to the simple 
problem. Therefore, starting continuation inside an 
isola is impossible. The Affine Homotopy is also 
scale-invariant and the Fixed Point Homotopy is not 
(Wayburn and Seader, 1987). 

Affine and Fixed Point Homotopies in turn may 
prescribe traces, which diverge toward an infinite 
value of some elements of the unknowns z. Obvi-
ously, such traces cannot be followed numerically as 
the arc length is infinite and because the sign may 
change. 

We note that (Chow et.al., 1978) provides theo-
rems on the success of the Fixed Point Homotopy 
with probability one in the sense of a Lebesgue 
measure. Success means that the track is of finite 
length, bounded and free of singularities (with the 
exception of turning points, which are not critical). 
The associated coercivity conditions on the residual 
equations were successfully employed in the area of 
analog circuit simulators for example. However, it is 
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neither possible to translate the boundedness condi-
tion on the solution of the residual equations F(z) nor 
the Inner Product Condition on F(z) to general multi-
domain physical modeling as needed by a Modelica 
model. The former is the case due to the existence of 
unsaturated amplifier components, which arise in 
several applications, and the latter due to the lack of 
energy dissipation in component models to compen-
sate the effect of boundary conditions in several 
physical domains other than electronics.  

 

0 Homotopy parameter λ

Solution of
Track diverges to ±∞

Isola

1

unknown x

Regular path with turning points

Bifurcation

 
Figure 1: Illustration of failure modes of homotopy 

In summary, the experience of the authors shows that 
such established homotopy methods are not suffi-
ciently robust due to be above mentioned failure 
modes. Furthermore, an implementation of the Fixed 
Point Homotopy within Dymola 7, which was avail-
able since several years, did not provide indications 
of increased robustness of this approach with respect 
to the Newton solver in practical applications. 

2.2 General Problem-Specific Homotopy 

The issues in the general homotopies introduced so 
far stem from continuously deforming two rather 
unrelated systems of equations into each other. In the 
case of the Fixed Point Homotopy the simplified 
problem is the linear system z – z0. 

The source of the problem is the “lack of addi-
tional information” that can be utilized for the solu-
tion. In order to improve this situation for Modelica, 
a problem-specific homotopy is introduced: 
 By deriving the simplified system from the ac-

tual system of interest, and 
 by formulating the simplified system such that a 

homotopy to the actual problem of interest be 
free of singularities. 

The formulation of the simplified system is problem-
specific and allows modelers to infuse their knowl-
edge about the physics of the problem into the way 
the equation system is solved (cf. Introduction). The 
approach is compatible with object-orientation and 
declarative modeling and is understood as something 

introduced by domain experts to selected key equa-
tions. The goal is the formulation: 

       , 1      ρ z F z F z . 

Here,  F z  is the actual problem and  F z  is the 

simplified one. Based on a proposal by M. Otter, M. 
Sielemann and F. Casella, the new built-in operator, 
homotopy(..) was introduced in Modelica 3.2. It 
depends on two arguments, namely actual, the 
Real expression describing the actual problem, and 
simplified, the Real expression corresponding to 
the simplified problem. The Modelica translator can 
then expand this operator according to the homotopy. 
For the homotopy given above, which will be used 
throughout the remaining part of this article, the ex-
pression 

homotopy(expr1, expr2) 

is thus expanded to  

 expr1 1 expr2     . 

In contrast to other language constructs, the benefit 
of using this operator is that only one equation sys-
tem for any number of steps is needed for initializa-
tion, and that it is logically defined how to transform 
one equation system into the other. 

3 Implementation in Modelica Tools 

The implementation of the new homotopy operator 
in a Modelica tool is rather straightforward: During 
the symbolic manipulation phase (BLT transforma-
tion, Pantelides algorithm etc.), the operator is 
treated as a function with two arguments. When gen-
erating code, the tool has to conceptually perform 
one homotopy iteration over the whole model and 
not several homotopy iterations over the respective 
local algebraic equation systems. The reason is that 
the following structure can be present: 

1 1

2 1 2

( ) // has homotopy operator

= ( , , , )

w f x

0 f x x w w
 

Here, a local non-linear equation system f2 is present. 
The homotopy operator is, however, used on a vari-
able that is an “input” to the non-linear algebraic 
equation system and modifies the characteristics of 
it. The only useful way is to perform the homotopy 
iteration over f1 and f2 together. 

This approach is “conceptual”, because more ef-
ficient implementations are possible, e.g. by deter-
mining the smallest iteration loop, that contains the 
equations of the first BLT block in which a homo-
topy operator is present and all equations up to the 
last BLT block that describes an equation system. 
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Various continuation algorithms have been sug-
gested in literature, which are all suitable to trace 
homotopies of the type considered herein (e.g. pseu-
do arc-length algorithms). Popular examples are 
Hompack (Hompack, 2010) and Alcon2 (Elib, 2010; 
Deuflhard et. al. 1987). 

In order to validate the methodology, a test im-
plementation was developed by M. Sielemann, 
which utilizes the Dymola software (Dymola 2010) 
and the Loca continuation algorithms of Trilinos 
(Heroux et. al., 2005). One practical advantage of 
Loca over Hompack and Alcon2 is that the sensitivi-
ties of the homotopy with respect to the continuation 
parameter λ do not have to be provided. For Hom-
pack and Alcon2 this has to be provided and had to 
be implemented using finite differences. The 
Loca/Dymola implementation has the following fea-
tures: 

 It provides three options for the treatment of the 
suggested homotopy operator. Normally, it is ex-
panded to the given homotopy expression. Alter-
natively, simplified equation sets are obtained by 
inlining either argument. In case of the simplified 
argument, maximum structural simplifications of 
the equation system result. 

 The user is able to manually prescribe whether to 
use homotopy initialization or not. This is an im-
portant feature for library development and de-
bugging, and may be useful for users, too (e.g. if a 
local gradient based solver converges to a mathe-
matically valid, but physically unreasonable solu-
tion or when a local gradient based solver does 
not converge and a user does not want to wait at 
the start of each simulation until the software real-
izes this and switches to homotopy initialization).  

 Verbose information on the homotopy is option-
ally provided, which is useful for library devel-
opment and debugging. In particular, the homo-
topy traces are visualized. Like this, it is possible 
to reconstruct what happens during the solution of 
the simplified problems and the homotopy trans-
formation. 

Additionally, Dymola 7.5 Beta also supports the 
homotopy operator. It was used for some of the ap-
plication examples. 

4 Application Examples 

In this section several examples are given how to 
utilize the homotopy operator in different physical 
domains in order to solve difficult initialization prob-
lems. 

4.1 Mechanical Systems with Kinematic Loops 

Whenever kinematic loops are part of a mechanical 
system, non-linear algebraic equation systems are 
present. If these equation systems are solved numeri-
cally, the user has to provide guess values for the 
iteration variables in order that the system can be 
initialized. The issues are first demonstrated at hand 
of a simple example, the four bar mechanism, see 
Figure 2: 

 

 
Figure 2: Four bar mechanism 
                (top: Modelica model, bottom: animation). 

The four bar mechanism consists of 4 connected re-
volute joints where the rotation axes of the joints are 
all parallel to each other. Since this mechanism is 
over constrained (e.g., the forces perpendicular to the 
kinematic loop cannot be uniquely determined), the 
upper two revolute joints are replaced by spherical 
joints which gives the same kinematic motion, but all 
quantities can be uniquely computed. Since joint r1 
shall be driven by a drive train, the angle of this 
joint, “r1.phi” and its derivative are defined to be 
states by selecting in the “Advanced” menu of joint 
“r1” the option “stateSelect = StateSelect.always”. 

This mechanical system gives rise to 9 nonlinear 
algebraic equations that are transformed by Dymola 
to one non-linear algebraic equation in one unknown. 
This equation is the constraint that the distance be-
tween the two spherical joints is constant. Formally, 
this nonlinear algebraic equation has the form: 

0 = f(r1.phi, r4.phi) 

where r1.phi is the “known” state and “r4.phi” is the 
angle of the right lower revolute joint that is used as 
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iteration variable. This nonlinear equation has two 
solutions that correspond to the two configurations 
of the mechanism. In order to initialize this mecha-
nism, a “guess” value for variable r4.phi has to be 
provided. 

It is always a useful strategy to define a mecha-
nism in a reference configuration in which all gener-
alized joint coordinates are zero and where all rele-
vant kinematic quantities can be easily determined. 
When the mechanism is initialized in this way, the 
nonlinear equations of the initialization problem are 
fulfilled. In the case of the four bar mechanism, the 
selected reference configuration (in which r1.phi = 
r4.phi = 0) is selected such that the left bar is di-
rected along the y-axis and the lower bar along the x-
axis, respectively (see left part of Figure 3 below). 

Problems arise, if the simulation of the mecha-
nism shall not start in the reference configuration, 
but at a user-defined angle r1.phi = phi0. Depending 
on the “guess” value of “r4.phi” the numerical solver 
might no longer find a solution, or if it computes a 
solution, it might be the wrong configuration. 

In the example of Figure 3, a guess value of 
r4.phi = 45° is selected and r1.phi is changed from 
r1.phi = 0°, in steps to -20°. The initial solutions 
found by Dymola are shown in Figure 3: 

 
Figure 3: Initial solutions: 
                 (left: r1.phi = 0°, right: r1.phi = -20°) 

Starting at about 18.9° the configuration is changing 
to an undesired configuration. This type of initializa-
tion is not robust, since for every change of the ini-
tial states, all guess values need to be properly 
adapted, which is usually difficult (not practical) if 
the system is no longer in its reference configuration. 

The homotopy operator opens up a completely 
new direction: In the model of the revolute joint, the 
equation for the joint angle is changed to 

if homotopyInitialization then 
  ang
else 

le = phi_offset + homotopy(phi,0); 

  angle = phi_offset + phi; 
end if; 

where homotopyInitialization is a Boolean pa-
rameter that is set to true for r1 and set to false for 
r4. Furthermore, the start value of r4.phi = 0 (the 
value from the reference configuration). The mean-
ing is that independently which start value is given 

for r1.phi, the mechanism is initialized in its refer-
ence configuration r1.phi = 0 (where the nonlinear 
algebraic equation is identically fulfilled) and then 
r1.phi is moved by the homotopy method until it 
reaches its start value. In every iteration a good guess 
value exists from the previous step and therefore the 
nonlinear equation is solved and remains in the con-
figuration of the reference configuration. As a result, 
a very robust initialization of the mechanism is ob-
tained, see Figure 4: 

 
Figure 4: Initial solutions for 
                 r1.phi.start  = 0°, -20°, -45°, -75° 

The four bar mechanism was only introduced to 
demonstrate the issues on a simple mechanism1.  

The sketched initialization technique shall now be 
applied on a much more involved example: A 
“Delta” robot (Clavel 1990). This robot is commer-
cially available by several companies, e.g., by ABB 
under the name “FlexPicker™”2. A suitable refer-
ence configuration of this robot is shown in Figure 5: 

 
Figure 5: Delta robot in its reference configuration. 

At the top, the robot consists of 3 actuated revolute 
joints that each drives a parallelogram. Every paral-
lelogram consists of 4 spherical joints. In the bottom, 
the three parallelograms are rigidly mounted on a 
plate (in the figure visualized by a blue sphere that 
marks the center of mass of the load body that is at-
tached to this point; in commercial robots, there is 

                                                      
1 The equation system can be solved analytically when 
using an Assemblies.JointRRR joint from the 
Modelica.Mechanics.MultiBody library. 
2 FlexPicker is a trademark of ABB. 
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usually an additional revolute joint here). Overall, 
this robot has 3 revolute joints, 12 spherical joints 
and has 6 coupled kinematic loops. The robot has 3 
degrees of freedom and can be controlled by the 3 
revolute joints. By construction, the load plate is al-
ways parallel to the mounting plate on top, inde-
pendently of the actual joint angles. Within its work-
space, the robot can move very fast to a desired posi-
tion. Since the motors that are mounted on the top 
plate are not moved, accelerations can be up to 30 g 
an

tion, this system is initialized in the following 

on variables of the nonlinear equa-

s the angles to the desired 
start configuration. 

d speeds of 10 m/s can be reached. 
Both direct kinematics (= given the joint angles, 

compute the position of the load), as well as the in-
verse kinematics (= given the load position, compute 
the joint angles) give rise to nonlinear algebraic equ-
ation systems. The more complicated case is the di-
rect kinematic solution. When the robot is built up 
with “Joints.SphericalSpherical” joints (that each 
introduces a length constraint between two spherical 
joints), then Dymola transforms the system of 87 
nonlinear algebraic equations down to 6 equations. If 
the joint angles are given, the resulting equation sys-
tem has 16 configurations, but only the one shown in 
Figure 5 is the desired one. With the homotopy ini-
tializa
way: 
1. In the reference configuration, the absolute posi-

tion r[3] of the center point of the load plate, as 
well as the rotation angles phi[3] from the iner-
tial frame to the load frame can be easily analyti-
cally computed (r = {0, 0, -sqrt(L2 – (r1+r2-r3)

2)}, 
phi = {0,0,0}). These values are provided as start 
values to the load body (since Dymola selects 
them as iterati
tion system). 

2. The homotopy initialization of the revolute joints 
is switched on. So, for given start angles, the ro-
bot always starts first in the reference configura-
tion and then move

 
Figure 6: Delta robot initia

Practical experience shows that within the technical 
workspace of this robot, the initialization is very ro-
bust. A typical example is shown in Figure 6. 

The path of the three position variables of the 
load mass as function of the homotopy parameter 
(computed with Loca) is shown in Figure 7. As can 
be seen, the three paths are nearly linear and there-
fore even simple homotopy methods (like fixed step 
methods) will work. 

 
Figure 7: Homotopy path of the absolute position 
                 variables for the initialization of Figure 6. 

4.2 Analog Electronic Circuit 

In electronic circuits, operation starts often after the 
power supply is switched on. Power supply is in 
most cases a constant operating voltage of 15V, 5V 
or others, often a split supply with +15V and -15V is 
used. After switching on power supply, an initial 
value of all variables (voltages and currents) is 
reached, especially capacitors are loaded. The state 
in which no variable is varying any more is called 
DC (direct current) operating point. Its calculation is 
often a challenge for which homotopy operators are 
useful. 

 
Figure 8: PID controller circuit with 
                 A741 operational amplifier. 

lized in configuration 
                 {45°, -45°, 30°}. 

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011 

80



Figure 8 shows a simple PID controller circuit (Ti-
etze and Schenk, 2002) using a A741 operational 
amplifier model (Horowitz and Hill, 1989) which is 
composed of 21 NPN and PNP transistors of the 
Modelica Standard Library, see Figure 9: 

 
Figure 9: Operational amplifier A741 composed of 
                 21 NPN and PNP transistors. 

To compare the due power supply (VCC 15V, VEE -
15V) limited controller output with the ideal unlim-
ited behaviour, a mathematical PID controller model 
is inserted in parallel. Typical simulation results with 
a comparison of the two models are shown in Figure 
10. Translating this circuit, results in a system of 240 
nonlinear algebraic equations that is reduced by Dy-
mola to a set of 38 nonlinear algebraic equations that 
have to be solved during initialization (during simu-
lation, only a system of 17 linear equations is pre-
sent). With Dymola 7.4 (and most likely also with 
any other Modelica tool), initialization of this circuit 
fails, i.e., the DC operating point cannot be calcu-
lated. 
 

 
Figure 10: Comparison of circuit PID with the ideal 
                   mathematical PID controller. 

A successful initialization is possible by replacing 
the constant supply sources VCC and VEE by ramp 
sources which start at zero, followed by a transient 
simulation until all variables remain constant. In gen-
eral, this way is cumbersome and error prone since 
the circuit has to be changed manually. Furthermore, 
the ramping up during a simulation introduces oscil-
lations and simulation has to be long enough until 
the vibrations “died out”. 

The situation changes completely, if the homo-
topy operator is used by changing the constant volt-
age model according to 

model ConstantVoltage_Homotopy  
  import Modelica.Electrical.Analog; 
  extends Analog.Interfaces.OnePort; 
  parameter Modelica.SIunits.Voltage V; 
equation  
  v
end ConstantVoltage_Homotopy; 

 = homotopy(V,0.0); 

This definition starts the constant voltage at zero and 
during homotopy initialization it is ramped up to the 
desired voltage V. During the ramping, all deriva-
tives are zero and therefore it is a ramping along 
steady-states. Simple homotopy algorithms fail in 
this case. In this example, the Loca algorithm was 
used to calculate the homotopy initialization. In 
Figure 11 the non-trivial variation of an internal 
voltage of the operational amplifier is shown with 
respect to the homotopy variable λ changing from 
zero to one. Due to the sharp edge at λ = 0.18, a 
homotopy method with a variable step size is needed 
in this case. 
 

0 0.2 0.4 0.6 0.8 1

-15

-10

-5

0
Continuation path for uA741.q17.NPN1.vbc

  
Figure 11: Homotopy path for a voltage variable of 
                   the operational amplifier with respect to λ. 

4.3 Hydraulic Networks 

Hydraulic networks are typically characterized by 
the simultaneous presence of components with large 
and small pressure losses, by mixing points, and by 
nonlinear momentum balance equations, which de-
pend on the fluid properties, e.g., the density. As a 
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result, the system of nonlinear equations during 
steady-state initialization is typically large and 
strongly nonlinear. Their numerical solution is there-
fore problematic, unless relatively accurate start val-
ues are set for the iteration variables. 

 
Figure 12: A hydraulic network. 

An example case built with the ThermoPower 3 li-
brary is shown in Figure 12. A pump with a recircu-
lation and a control valve sucks fluid from a low 
pressure source. The fluid is then mixed with the 
flow coming from a second intermediate pressure 
source through a short pipe, and further pumped 
through a long pipe (with mass and energy storage) 
into a high-pressure sink. The pressure losses in the 
two pipes are small, compared to the pressure losses 
across the valves and pumps. 

The resulting initialization problem has 13 itera-
tion variables after tearing, among which two flow 
rates and four pressures. If the start values of those 
six variables are not accurately set, the standard non-
linear solver in Dymola fails to converge. 

This initialization problem can be made much 
easier to solve by substituting the original momen-
tum balance equations in the pump and pipe models 
by linear, constant-coefficient ones, which are tuned 
based on nominal operating data, and then by apply-
ing the homotopy transformation to bring the model 
back to its original form.  

More specifically, the pressure losses in the short 
and long pipes are computed by linear mflow-dp rela-
tionships, passing through the origin and through the 
nominal flow and nominal pressure loss point (these 
data must be provided as parameters). In the case of 
the pump, the tangent to the flow-head curve at the 
nominal flow rate is used instead of the original 
curve. By the simple substitutions of these two equa-
tions, the hydraulic problem becomes linear (two 
linear systems with five and three unknowns), while 
all the enthalpies and fluid properties are calculated 
by simple assignments once the flow rates are 
known. As a consequence, no start value at all is 
required to guarantee convergence of the simplified 
problem; the homotopy transformation then solves 
the original nonlinear problem without further inter-
vention by the end user. 

It is interesting to note that the homotopy paths of 
the iteration variables are smooth and do not show 

any kind of singularity or turning point even if the 
actual steady state has a substantial mismatch with 
the nominal data used to set up the simplified model. 
As an example, Figure 13 shows the continuation 
paths for two pressures and two flows if the valve V4 
on the far right is closed by 90% at initialization, 
thus reducing all flows in the circuit to a small frac-
tion of the nominal flow.  

 
Figure 13: Homotopy paths of 4 iteration variables. 

4.4 Calibration of A/C Heat Exchanger 

A typical problem in air conditioning system and 
component design is to calibrate a heat exchanger 
model to measurement data. This is performed using 
steady-state initialization in a test bench with given 
boundary conditions, like the one shown in Figure 
14. 
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Figure 14: Evaporator calibration test bench, from the 
                   AirConditioning library. 

Heat transfer on the air side can be correlated using 
the Nusselt number, Nu = kc Dhyd/F, which relates 
the heat transfer coefficient kc to the hydraulic di-
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ameter Dhyd and the fluid thermal conductivity F. 
Normally, the calibration can be performed during 
initialization by solving for Nu as an unknown pa-
rameter using initial equations. 

  parameter Modelica.SIunits.NusseltNumber 
    Nu_air(fixed=false, start=10)  
                  "global Nusselt number"; 
initial equation  
  hex.summary.Qdot_air = P_measured; 

In most cases this solves perfectly fine using stan-
dard methods, and can be combined to calibrate sev-
eral parameters simultaneously, for example both 
heat transfer and pressure drop. But sometimes it is 
difficult to reach the desired solution, P_measured, 
because it is close to the maximum cooling capacity. 
The solver will then fail to converge. 

Using the homotopy approach, the Nu-number 
may be used as a control signal, starting at a given 
value for which the steady-state initialization con-
verges, see the code below: 

  parameter Modelica.SIunits.NusseltNumber 
    Nu_air(fixed=false, start=10)  
    "global Nusselt number"; 
  parameter Modelica.SIunits.NusseltNumber 

arting  Nusselt number";     Nu_start=10 "st
initial equation   
  0 = homotopy( 
actual = hex.summary.Qdot_air - P_measured, 
simplified = Nu_air - Nu_start); 

The path that the homotopy solver takes can be illus-
trated with a plot of Qdot_air vs. Nu, see Figure 15. 
The starting value is taken in the middle of the slop-
ing curve, and the solver will then converge to the 
desired solution, if one exists. This method has been 
used to calibrate over large sets of data with excel-
lent results. 
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hex.summary.Qdot_air P_measured

 
Figure 15: Steady-state performance of heat exchanger 
as function of Nu-number on the air side. The solution 
Nu_air = 19.7 is very close to maximum Qdot=9420 W. 

5 Ill-posed Examples 

Unfortunately, it is quite easy to formulate ill-posed 
problems with the homotopy operator, so that ini-
tialization will fail. Below, a number of simple ex-
amples are given to demonstrate different kinds of 
issues. 

5.1 Singular Simplified System 

The “simplified” problem in the homotopy formula-
tion might be formulated too simple by removing all 
dependencies of a variable, as shown in the next ex-
ample: 

x + 2*homotopy(y,1) = 5 
2*x - homotopy(y,1) = 0 

Note, the “simplified” problem is actually: 

x + 2   = 5 
2*x - 1 = 0 

and this equation system does not have a solution 
although the “actual” problem has a solution. There 
are different variants of this type of problem. For 
example, the “simplified” system might remove 
variables that are used as iteration variables in a sys-
tem of equations and then the system is singular, al-
though a different selection of iteration variables 
might make the system regular. 

Since such cases can easily appear, the minimum 
requirement is that a tool reports these problems dur-
ing translation. Conceptually this is easy, by per-
forming an assignment for the “simplified” problem 
which would fail (with good diagnostics), if this 
problem is structurally singular.  

A tool might also perform a more involved treat-
ment: 

1. For the tearing algorithm, select only iteration 
variables, that are appearing in the “actual” 
and in the “simplified” problem formulation 
(does not work for the problem above). 

2. Solve simplified problem with symbolic ma-
nipulations (does not work for the problem 
above). 

3. Remove the homotopy operator from certain 
equations, until the “simplified” system is 
structurally regular. This would work in the 
example above, e.g., by removing the homo-
topy operator from the second equation. 

4. The homotopy formulation of appropriate 
equations is changed. In the example above, 
one can observe that the modeler defined with 
the second equation that “y” shall be used for 
the “actual” problem and “1” for the simpli-
fied” problem, i.e., the modeler defined “y=1” 
for the “simplified” problem. This information 
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allows to rewrite the second equation to: 
    homotopy(2*x,1) – y = 0  
which results in a regular “simplified” system. 

5.2 Singular Intermediate System 

Singular systems might also occur for a combination 
of the “simplified” and “actual” problem formula-
tion, i.e., when 0 < λ < 1. A typical example is the 
following where homotopy moves from an “initial 
state” to a “steady state” formulation (i.e., using 
Fixed Point Homotopy):  

model DoNotUse 
  Real x; 
  parameter Real x0 = 0; 
equation  
  der(x) = 1-x; 
initial equation  
  0 = homotopy(der(x), x - x0); 
end DoNotUse; 

After the initial equation is expanded to 

00 (1 ) ( )x x x        

the two equations can be solved for the unknown x 
by eliminating the derivative of x: 

 0 01

2 1

x x
x




 



 

This equation has a singularity at 5.0 , see Figure 
16. A homotopy solver will usually not be able to 
compute the solution and therefore initialization will 
fail. 

-0.5 0.5 1.0 1.5
l

-10

-5

5

10

 
Figure 16: Solution to ill-posed example for 0 0.25x   

5.3 Bifurcation of Intermediate System 

Ramping of boundary conditions is a straight-
forward way to employ homotopy. Some care has to 
be taken however when using this pattern, which is 
illustrated for a flip flop, see the simple analog elec-
tric circuit of Figure 17: 
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Figure 17: Flip-flop circuit leading to several solutions 
                  during the homotopy iteration. 

This flip flop circuit has three steady state solutions 
out of which two are stable. If a homotopy is con-
structed by ramping up the source voltage Vs, then a 
bifurcation will show up in the homotopy track. This 
bifurcation shows up at the point at which the base-
emitter junction of the transistor is triggered and the 
three steady state solutions emerge. In non-trivial 
applications, such bifurcations are numerically diffi-
cult to handle and shall thus be avoided under any 
circumstances. The following figure illustrates the 
homotopy trace that results in such a natural parame-
ter continuation strategy (also called source step-
ping). Here, a simple Ebers-Moll transistor model 
was used. 
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Figure 18: Voltages at base and collector of 
                   transistor 1 in flip-flop circuit. At λ = 0.15 
                   a bifurcation to three solutions occurs.    

6 Conclusions 

The homotopy operator introduced in to the Mode-
lica language in version 3.2 (Modelica 2010) opens 
up completely new possibilities to robustly initialize 
Modelica models. Several examples have been given 
to demonstrate the usage in different domains. Addi-
tionally, large power plant applications with up to 
671 iteration variables for steady-state initialization 
are discussed in (Casella et. al. 2011). Due to the 
successful applications, it is planned to introduce this 
operator at appropriate places in to the next version 
of the Modelica Standard Library, in order to im-
prove the initialization of Modelica user models. 

As demonstrated by several examples in section 
5, it is easy to misuse the homotopy operator result-
ing in failed initialization. As a “rule of thumb”, the 
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homotopy formulation should not change the “struc-
ture” of the equation system, i.e., it should be based 
on the simplification of terms, but not by solving a 
completely different problem (e.g. moving from a 
simplified system that is initialized at given states to 
a steady-state formulation might easily fail, see sec-
tion 5.2). Furthermore, it is always useful to inspect 
how the start-up of the “real” system works and 
mimic this “start-up” with the homotopy formula-
tion, if this is possible. 

There is still room for improving initialization. 
One issue is that still guess values might be needed 
for iteration variables (see, e.g., the Delta robot in 
section 4.1) and the iteration variables are selected 
by the tool. One remedy might be to introduce an 
additional enumeration attribute for variables, such 
as, “iterationSelect” that allows a library developer 
to directly suggest useful iteration variables with the 
enumeration values “never, avoid, default, prefer, 
always”, in a similar way as for the existing attribute 
“stateSelect” to guide the state selection.  
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