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Abstract

The steady-state initialization of large object-oriented
thermo-hydraulic networks is a difficult problem, be-
cause of the sensitivity of the convergence to the initial
guesses of the iteration variables. This paper proposes
an approach to this problem based on homotopy trans-
formation, detailing specific criteria for model simpli-
fications in this physical domain. The approach is suc-
cessfully demonstrated on large power plant test cases,
having several hundreds of iteration variables.

Keywords: Thermo-hydraulic systems, power
plants, steady-state initialization problems.

1 Introduction

Steady state initialization of large thermo-fluid net-
work is hard and often fails, even when using state-
of-the-art nonlinear solvers. This hampers the use of
object-oriented models in applications such as power
plant simulation, because of the difficulties encoun-
tered in getting a newly built model to actually sim-
ulate.

Currently, the only way to solve this problem is to
manually set good initial guesses for all the iteration
variables of the problem. This is rather inconvenient,
since the number of such variables can easily grow be-
yond a hundred or even a thousand, and also because
any tiny change to the model, or to the version of the
Modelica tool used to simulate it, can lead to a differ-
ent set of iteration variables and thus require a further
setting of intial guesses. This makes the initialization
activity tedious and very far from the concepts of mod-
ularity and object-orientation.

This paper presents an alternative approach to the
problem, based on homotopy transformation. The pro-
posed strategy is demonstrated by means of a proto-

type solver code on large-scale power plant test cases.
The paper is structured as follows: Section 2 gives

the basic of homotopy-based initialization of object-
oriented models and presents the test implementa-
tion of the solver. Section 3 introduces criteria for
the formulation of simplified models in the domain
of thermo-hydraulic networks. Section 4 illustrates
experimental results obtained large-scale models of
combined-cycle power plants, while Section 5 gives
concluding remarks.

2 Homotopy-based initialization of
object-oriented models

2.1 Problem definition

To encode initialization problems in Modelica, lan-
guage constructs such as initial equation sections are
defined. They introduce additional constraints, which,
together with all equations and algorithms that are
utilized during simulation, constitute the initialization
problem. The solution can then be used to assign all
variables, derivatives and pre-variables consistent val-
ues.

Formally, the resulting problem is an initial value
problem for a system of differential algebraic equa-
tions (DAE), 0 = F (ẋ,x,w, t). Variables x are the state
variables, w are the algebraic unknowns, and t is time.
The initialisation problem prescribed by the model in-
troduces conditions such as the steady-state condition
ẋ = 0 at some time t = t0. The differential algebraic
equation system is usually index reduced, i.e. it has in-
dex 1, which means that the following expression be
regular [

∂F
∂ ẋ

∂F
∂w

]
.

Formally, this problem usually results in a non-
linear system of algebraic equations that has to be
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solved numerically. Unfortunately, this does not al-
ways work robustly for industrial problems as the fre-
quently utilised gradient-based local algorithms such
as damped Newton Method offer local convergence
properties only (even when using so-called globaliza-
tions such as trust regions).

Several alternative methods are discussed in litera-
ture to solve the present problem more robustly. Ho-
motopy continuation is one of them and it is consid-
ered in this article to address the need for more robust
initialisation.

2.2 Established homotopy methods

Informally, using homotopy to solve nonlinear alge-
braic equation systems can be defined as follows.
First, one starts with a simple problem whose solu-
tion is known or easy to obtain and then continuously
deforms this simple problem to the difficult problem
of interest. Conceptually, this appears to be simple.
However, several details of these methods have to be
taken into account. In particular, the existence of the
homotopy path between the start and a solution, fi-
nite length, and nonexistence of singularities along the
track are not guaranteed.

In order to construct a homotopy, one needs the sys-
tem of residual equations of interest, F(x), and another
one that is easy to solve F̃ (x). Here and in the remain-
der of this section, a generic vector of unknowns x is
indicating, including the state derivatives, states, and
algebraic unknowns. The two sets of residual equa-
tions are then deformed from one to the other via a
homotopy or continuation parameter λ . A simple ex-
ample of such a deformation is a linear convex combi-
nation. In any case, the homotopy is then a system of
equations with one higher dimension and denoted by

ρ (x,λ ) = 0.

The homotopy parameter is typically restricted to
some range, e.g. [0,1], such that ρ (x,0) = F̃ (x) = 0 is
solved easily and ρ (x,1) = F(x) = 0 is the system of
interest.

Many general-purpose homotopies are defined in
literature. For example, the Newton homotopy [3] is
defined as:

ρ(x,λ ) = λF(x)+(1−λ )(x− x0), (1)

where x0 is a tentative estimate for the solution of
F(x) = 0. Other similar methods exist, such as the
fixed point homotopy and the affine homotopy. All
such methods exhibit convergence failure modes, as

Figure 1: Problematic homotopy paths

shown in Fig. 1, which render them not sufficiently
robust to alleviate the convergence issues described in
the introduction. Examples of these convergence fail-
ure modes are infinite loops without reaching λ = 1
(isolae), which occur for the Newton homotopy, and
components of the solution vector wandering off to-
ward ±∞, as observed for the fixed point and affine ho-
motopies. Furthermore, bifurcations may arise along
the continuation paths, which are non-trivial to handle
numerically for industrial problems.

Additional reasons why established homotopy
methods are not considered a feasible solution to alle-
viate the need for a more robust initialisation method
are given in [1].

2.3 Problem-specific homotopy

In the established homotopies mentioned in the previ-
ous section, two rather unrelated systems of equations
are continuously deformed into each other; the radi-
cal difference between the two systems of equation is
arguably the cause of the singular homotopy pahts.

Therefore, we propose to introduce problem-
specific homotopies, where the simplified system is
derived from the actual system of interest and close
enough to it so as to avoid that the homotopy to the
actual problem of interest be free of singularities. The
formulation of the simplified systems is introduced by
domain experts, allowing them to infuse their knowl-
edge about the physics of the problem into the way the
equation system is solved. The approach is fully com-
patible with object-orientation and declarative model-
ing.

2.4 Test implementation

In order to validate the methodology a test implemen-
tation was developed. It was based on the equation-
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based object-oriented modelling language Modelica R©

and the compiler Dymola R© in versions 7.3 and 6.1.
Using this test implementation, homotopies such as

ρ (x,λ ) = λF (x)+(1−λ ) F̃ (x)

can be formulated in a declarative way, where F (x)
is the actual problem and F̃ (x) is the simplified
one. For this purpose,a function homotopy() was
introduced, that takes two input arguments, namely
actual, the expression describing the actual problem,
and simplified, the expression corresponding to the
simple problem. The Modelica compiler then ex-
panded this function according to the above-described
homotopy. For example, the expression

homotopy(actual=a*b, simplified=c/d)

was expanded to

λ (a ·b)+(1−λ )(c/d) .

This idea has later on been included in version 3.2
of the Modelica language specification, where a built-
in homotopy() operator with the same semantics has
been introduced.

From the numerical side, the test implementation
utilised the LOCA continuation algorithms of Trili-
nos [2]. A list of the main features of the test imple-
mentation is given here.

First of all, the algorithm provided three options for
the implementation of the homotopy() function. In
order to numerically solve the simplified problem as
easily as possible, a version of the function that re-
turned the simplified argument was inlined, in or-
der to obtain the maximum structural simplification of
the corresponding system of equations. For the ho-
motopy transformation, it was expanded to the given
homotopy expression. For the dynamic simulation of
the system, after initialization, an inlined version re-
turning the actual argument was used.

The user was able to manually prescribe whether to
use homotopy initialisation or not. This is an impor-
tant feature for library development and debugging,
and may be useful for end users, too (e.g., if a local
gradient based solver converges to a mathematically
valid, but physically unreasonable solution or when a
local gradient based solver does not converge and a
user does not want to wait at the start of each simula-
tion until the software realised this).

The user was able to specify that the simplified
problem only should be solved. This feature is essen-
tial for library development, when one must analyze

the properties of the simplified model, to understand
whether it is good enough to provide a robust numeri-
cal initialization to the homotopy transformation, or if
it is necessary to proceed further in the simplification
process.

Verbose information on the homotopy was option-
ally provided, which was useful for library develop-
ment and debugging, and the homotopy traces of all
the iteration variables of the nonlinear system of equa-
tions were recorded for later visualisation and analy-
sis.

Last, but not least, the underlying solver was able
to follow homotopy traces with turning points, should
they arise during the transformation.

3 Homotopy-based initialization of
thermo-fluid network models

3.1 Basic principles

The basic idea is to formulate a simplified model
which is easier to solve without the need of accu-
rate start values, but which is on the other hand close
enough to the actual problem to avoid singularities
during the homotopy transformation. Three goals
must be pursued:

1. The simplified model should approximate the ac-
tual model around the nominal operating point
of the plant, in order to have a solution which is
close to that operating point, and thus physically
meaningful.

2. The simplified model should be close enough to
the actual model that the homotopy transforma-
tion from the simplified to the actual problem
gives rise to smooth transformations of all the it-
eration variables, with no singularites, no bifurca-
tions, and possibly no turning points, even though
the latter ones can be handled by continuation al-
gorithms such as LOCA.

3. The numerical solution of the simplified model
should converge with rough (default, or nominal-
parameter based) initial guess values, either set
by default or based on parameters specifying the
nominal operating point. This avoids the need of
manually setting start values for the iteration vari-
ables of the specific system at hand, whose set
is difficult or impossible to determine a-priori by
the end user, as it is usually the result of sophisti-
cated (and often proprietary) tearing algorithms.
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3.2 Formulating the simplified model

The simplified model should be initialized at steady
state as the actual problem, in order to avoid unphys-
ical situations, so the initial equations (der(x) = 0) are
not changed. The general guideline is to approximate
a few model equations so that the implicit system of
equations corresponding to the steady-state initializa-
tion problem has the minimum number of unknowns
and is as linear as possible. Noting that a linear prob-
lem can be solved by the standard Newton algorithm
exactly in one iteration, one can expect that in general
the less nonlinear the problem is, the less sensitive to
start values the convergence will be.

Ideally, the simplified model could be obtained by
linearizing the actual model close to the initial steady
state. In practice, this is not a good idea for two rea-
sons. First of all, this strategy would require to modify
a large fraction of the model equations (all the nonlin-
ear ones). Secondly, obtaining such linearisation re-
quires to know the steady state values of all the vari-
ables, which are yet to be determined. The idea is
then instead to simplify only those few equations that
mostly contribute to the nonlinearity of the large im-
plicit system of equations of typical steady-state ini-
tialization problems.

Power plant models are essentially thermo-
hydraulic networks with non-trivial fluid models
(ideal gases with temperature-dependent cp and
vaporizing fluids, usually water), exchanging heat
by convection through heat exchanger walls. The
main sources of nonlinearities in the steady state
initialization problem are now listed.

1. Momentum balance equations: pressure-flow rate
relationships are usually quadratic and depend on
upstream properties, such as density and viscos-
ity, which in turn depend on thermal variables and
on the flow direction.

2. Energy balance equations have the form
∑ j w jh j + ∑ j Q j = 0, thus are nonlinear in the
mass flow rate - specific enthalpy products w jh j.

3. The upstream enthalpy appearing in energy bal-
ance equations of components allowing flow re-
versal depends on the direction of the flow.

4. Flow-dependent heat transfer coefficients γ in-
troduce nonlinearities in heat transfer equations
Q = γS(Tf luid −Twall).

5. Temperature-enthalpy relationships are nonlinear
in both ideal gas and water/steam models.

6. Controllers influencing flow rates through, e.g.,
valve openings, pump speeds, etc., and whose
controlled variables are instead related to energy
flows or storage, e.g., turbine power, boiler pres-
sure, introduce nonlinear couplings between hy-
draulic and thermal equations.

7. Controllers with control signal saturations intro-
duce nonlinearities in the system model.

Note that many other nonlinear equations which are
present in the model are irrelevant for the steady-state
initialization, because they only involve the dynamic
behaviour, which is by definition not considered if all
derivatives are zero. For example, the dependency on
pressure and temperature (or specific enthalpy) of the
fluid compressibility dρ

d p , which enters the left-hand-
side of dynamic mass balances, is irrelevant in the de-
termination of the steady state. Therefore, if structural
analysis is applied to the initialization problem, the
computation of those quantities will be moved after the
core implicit system of equations in the BLT transfor-
mation, and they will be computed explicitly as a func-
tion of the already computed thermodynamic states,
e.g., (p,T ) or (p,h). Consequently, it is only neces-
sary to worry about those equations and those vari-
ables which are strictly necessary to solve the steady-
state equations, where one assumes that all derivatives
are equal to zero.

3.2.1 Momentum balance equations

The most important source of nonlinearity in the
steady-state initialization problem is given by the mo-
mentum equations, which are usually quadratic in the
flow rate, due to the friction term. When low pressure
losses are modelled, the flow rate is highly sensitive
to pressure errors: a small error in the pressures dur-
ing the first Newton iterations can cause large errors in
the flow rates, which in turn cause large errors in the
energy balance equations, possibly bringing the spe-
cific enthalpies out of their validity range of the fluid
model. Furthermore, the dependence of the momen-
tum balance on the fluid properties introduces a non-
linear coupling between the hydraulic equations, de-
scribing pressure-flow relationships, and the thermal
equations, describing energy storage and heat transfer.

All these problems are removed if the momen-
tum balances are substituted with linear constant-
coefficient pressure-flow rate relationships. These can
be based on nominal operating data (nominal pressure
drop, nominal flow rate), which are often already in-
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cluded among the component parameters, and are usu-
ally known in advance from overall plant design data.
Friction losses can be approximated by a linear func-
tion passing through the origin and the nominal oper-
ating point:

w =
wnom

∆pnom
∆p (2)

Static head terms can be computed using a constant
known nominal density:

∆pstatic = ρnomgH (3)

The flow characteristic of turbines can be approxi-
mated by a linear pressure-flowrate realationship:

w =
wnom

∆pnom
∆p (4)

Control valves can be represented by a simplified
equation, where the flow rate is both proportional to
the pressure difference ∆p and to the valve opening α:

w = α
wnom

∆pnom
∆p. (5)

This equation is still significantly nonlinear and might
cause problems, in particular if α is the output of a
controller (e.g., in the case of level controller for drum
boilers). In this case, it is possible to further simplify
the equation, making it linear, by removing the depen-
dency on ∆p:

w = αwnom. (6)

Pump characteristics cannot be reasonably repre-
sented by a curve passing through the origin. In this
case, it is convenient to use a linearised version of
the characteristic curve, computed around the nominal
flow rate, head, and pump rotational speed.

The simplified models are then written together with
their actual counterparts, using the homotopy() oper-
ator. A few examples from the ThermoPower library
are shown here for the sake of the example:

// Pressure loss component

pin - pout =

homotopy(smooth(1, Kf*squareReg(w,wnom*wnf))/rho,

dpnom/wnom*w) "Flow characteristics";

// Valve for incompressible fluid

w = homotopy(FlowChar(theta)*Av*sqrt(rho)*sqrtR(dp),

theta/thetanom*wnom/dpnom*dp);

// Pump

function df_dq = der(flowCharacteristic, q_flow);

head = homotopy((n/n0)^2*flowChar(q*n0/(n + n_eps)),

df_dq(q0)*(q - q0)+

(2/n0*flowChar(q0) - q0/n0*df_dq(q0))*(n - n0)

+ head0);

// Turbine

w = homotopy(Kt*partialArc*sqrt(p_in*rho_in))*

sqrtReg(1 - (1/PR)^2),

wnom/pnom*p_in);

In some cases, the structure of the system of equa-
tions corresponding to the simplified steady-state ini-
tialization is such that, with these simplifications, the
steady-state hydraulic equations are completely de-
coupled from the steady-state thermal equations. In
those cases, the BLT algorithm will split the system
of equations into two smaller subsystems. First, the
hydraulic equations alone will be solved, determining
the pressures and flow rates. Since all the involved
equations are now linear, the problem is solved easily
and without any concern about convergence and ini-
tial guess values. Subsequently, the thermal equations
will be solved, but since the flow rates are now known,
a major source of nonlinearity, i.e., the w jh j products
in energy balances, will be gone, thus making it easier
to solve the thermal equations as well.

Other cases will not be this easy. Consider for ex-
ample a Rankine cycle with a circulation boiler. Even
though the simplified flow equation for the turbine is
linear, it is apparent how the steam flow rate essen-
tially depends on the heat input, which determines how
much steam is produced. Consequently, the hydraulic
and thermal equations will be coupled in this case,
even when considering the simplified model. Anyway,
a larger part of the equations in this system will be
linear, thus easing the convergence of the nonlinear
solver. More opportunities for efficient tearing will
also be available, since a larger fraction of equations
can be symbolically turned into an explicit assignment.

3.2.2 Energy balance equations

The nonlinearity in this case stems from the w jh j prod-
ucts in the steady-state energy balances. It is not as
hard as in the case of momentum balances for small
pressure losses, but it can still give rise to significant
problems: if during iterations, the mass flow rate is
wrong by a factor of, say, two, then also enthalpy
changes will be off by the same factor, which could
cause out-of-bounds problems with the fluid property
computation routines.

The best way to get rid of this problem is to use the
nominal flow rates instead of the actual flow rates for
the simplified initialization problem; by doing so, the
energy balance equations become linear, and are thus
solved without major problems. Unfortunately, spec-
ifying all the nominal flow rates is rather impractical
for multiple-port mixing components such as storage
and storage-less mixing volumes, steam drums, steam
headers, etc. Furthermore, if all of those nominal val-
ues were not set to correct values, considerable errors
could arise in the computation of the enthalpies, that
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could hamper the convergence of the simplified prob-
lem.

A reasonable compromise, which allows to get rid
of most w jh j-type nonlinearities in typical power plant
models, is to using the nominal flow rate in the en-
ergy balance equations for both sides of heat exchang-
ers, instead of the actual flow rate. The values of the
nominal primary and secondary flow rates are usually
known for all heat exchangers in a plant, only two pa-
rameters are needed per heat exchanger, and a lot of
nonlinear equations are turned into linear equations,
since there are 2N such energy balance equations in
a heat exchanger having N discrete volumes on each
side, and there are usually many heat exchangers in a
given plant model. It is assumed that the few remain-
ing nonlinear energy balance equations (contained in
mixers, drums, steam headers, etc.) will be handled by
the nonlinear solver without major problems.

Note that this approximation effectively removes
the dependency between the flow rate and the outlet
temperature of the fluid. This might then prove prob-
lematic in all those cases where a temperature con-
troller is used to keep the outlet temperature at a given
set point, because the corresponding simplified equa-
tions might become singular or ill-conditioned. In
those cases, it is necessary to open the temperature
feedback loop in the simplified problem - see below
Sect. 3.2.6.

3.2.3 Dependence of the upstream enthalpy on the
direction of the flow in energy balances

If flow reversal is allowed, the specific enthalpy of flu-
ids entering and leaving control volumes where mass
and energy balances are formulated are calculated us-
ing the upstream discretisation scheme, e.g.:

h = i f w > 0 then hentering else hinternal (7)

The discontinuity might be smoothed out in the neigh-
bourhood of w = 0, but in any case these equations
introduce a strong nonlinearity, if not a discontinuity,
in the steady-state equations.

If the hydraulic equations of the simplified problem
are completely decoupled from the thermal equations,
then this is not a problem: the values of all flow rates
will be computed by solving the linear hydraulic equa-
tions; then, the flow rate w will no longer be an un-
known when (7) will be solved. In general, this de-
coupling cannot be performed, as discussed in the pre-
vious sub-section. Upon initialization, however, one
can assume that the flow rate will have the design di-
rection, so a simplified equation can be written under

that assumption, e.g.:

h = hentering (8)

For example, this is how the specific enthalpy at the
inlet port of a mixing volume is computed in the Ther-
moPower library:

hi = homotopy(if not allowFlowReversal

then inStream(inlet.h_outflow)

else actualStream(inlet.h_outflow),

inStream(inlet.h_outflow));

3.2.4 Flow-dependent heat transfer coefficients

Convective heat transfer is represented by equations
such as

Q = γS(Tf luid −Twall) (9)

Simpler models assume a constant heat trasfer coeffi-
cient γ , so the equation is linear. More accurate mod-
els instead compute γ as a function of Reynolds and
Prandtl numbers, which depend on the flow rate, as
well as on the density, viscosity and thermal conduc-
tivity of the fluid, and possibly also on the wall tem-
perature. All these dependencies introduce consider-
able nonlinearities, as well as coupling between the
hydraulic and thermal equations.

The obvious strategy for simplified problem formu-
lation is to use the nominal value of γ instead of the
actual one, thus making equation (9) linear, e.g.:

wall.gamma[j] = homotopy(

gamma_nom*noEvent(abs(infl.m_flow/wnom)^kw),

gamma_nom);

3.2.5 Temperature-enthalpy relationships

Temperature profiles and transferred thermal power
in heat exchangers are determined by the interplay
between heat transfer, which is driven by tempera-
ture differences, and convective transport of heat by
the fluid, which is described by enthalpy differences.
The temperature-enthalpy relationships are therefore
involved in the steady-state equations describing heat
exchangers, namely h = h(T ) for ideal gases and T =
T (p,h) for vaporizing fluids.

In the case of ideal gases, the function is approx-
imately linear over significant ranges of T , since its
derivative, the specific heat cp, does not change too
much with the temperature. This is also the case for
the vaporizing fluid, as long as the function is evalu-
ated on the correct side of the saturation curve: the cp

of liquid water does not change dramatically with tem-
perature, nor does the cp of steam, with the exception
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of the transcritical region and of a thin region just out-
side the saturation curve. On the other hand, substitut-
ing those functions with linear approximations which
are consistent with each other is not trivial and would
require substantial changes to the code of the original
fluid model.

The strategy for the homotopy is then to rely on the
fact that these functions are only mildly nonlinear, so
they should not cause major convergence issues, of
course as long as they are called in their range of va-
lidity. Therefore, the corresponding function calls are
left untouched in the simplified model.

It is however essential to select reasonable start val-
ues for the gas temperatures, so that the guess values
used for the first Newton iterations are already in the
correct temperature range, as far as cp is concerned;
the precise numerical value of start attribute is not crit-
ical. As concerns the vaporizing fluid properties, start
values should be selected so that the first Newton iter-
ations compute the properties on the correct side of the
saturation curve, i.e., subcooled liquid or superheated
steam.

The user input is therefore a very rough temperature
value for the gas side (say, 400 rather than 600 or 800
K, for standard flue gas heat exchanger), and the indi-
cation of a nominal pressure and of the phase (liquid or
vapour) for the vapour size, that can be used internally
in the model to compute start values of the specific
enthalpies corresponding to well-subcooled liquid and
well-superheated steam.

Evaporating pipes are less critical from this point of
view, because in a two-phase mixture the temperature-
enthalpy relationship becomes flat, i.e. the tempera-
ture no longer depends on the enthalpy, but only on the
pressure, which usually does not change much across
the pipe length.

3.2.6 Controllers acting on flows and controlling
energy-related quantities

It is often the case that the plant model is complete
with controllers, and that the goal is to initialize the
whole controlled system in steady state. If the con-
troller is active and contains some integral action on
the error, the steady-state equations are equivalent to
the equation

y = ysp, (10)

where ysp is the value of the set point. This equation,
coupled with the rest of the plant model, implicitly de-
termines the value of the control value, e.g. a valve
opening or a pump rotational speed.

If the control variable directly influences a flow rate,
and the controlled variable is manly determined by the
energy flows, (10) introduces a strong nonlinear cou-
pling between the hydraulic equations and the thermal
equations, thus hampering the solver convergence.

Consider the following example. The last econo-
mizer stages of a heat recovery steam generator usu-
ally allow to modulate a recirculation flow in order to
control the outlet temperature of the preheated water
to the desired value. In order to change this value,
valves or pump speeds must be changed, that can also
affect the water/steam flow through the evaporator and
superheater, thus greatly influencing all the thermal
power transfer phenomena across the steam generator.
During the first iterations of the nonlinear solver, the
gas temperature near the exhaust can be quite differ-
ent from its design value: this causes the recircula-
tion flows to be also different from the design values,
thus influencing the evaporator and superheater flows,
which in turn affect the temperature of the gas heating
them. In the end, the solver might get stuck far away
from the sought after solution even when considering
the simplified equations for the physical model.

Should this happen, it usually is possible to roughly
estimate what the value of the control variable will be
in the nominal operating point of the plant. It is then
possible to remove the above-described nonlinear cou-
pling by using a simplified model of the controller that
just outputs the start value of the control variable. Of
course this means that the steady-state operating point
of the simplified model will be slightly off with re-
spect to the correct value, but this is not a problem,
as long as the operating point is physically meaning-
ful and not too far from the exact solution. The ho-
motopy transformation will then slowly introduce the
closed-loop controller action, thus smoothly bringing
the controlled variables to their set points at the end of
the homotopy transformation.

In some cases, an explicit controller model is not
included in the plant model, and the steady-state oper-
ating point is just obtained by adding equations such
as (10) for the desired outputs (inverse initialization).
In this case, those equations should use the homotopy
operator to blend the prescribed control value (simpli-
fied model) with the prescribed output value, e.g.:

0 = homotopy(valve_opening - valve_opening_nominal,

T_out - T_out_nominal);

3.2.7 Controllers with control signal saturations

It is often the case that controllers in controlled plant
models include saturations, i.e., limitations in the con-
trol variable range. If the saturation limits are wide
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enough, then they are actually irrelevant: the controller
is modulating, and the effect of the controller is equiv-
alent to the steady-state equation on the integral action.
This is in turn equivalent to (10), which implicitly de-
termines the value of the control variable, within the
saturation limits. On the other hand, if an out-of-bound
control action would be required to attain the set point,
then the saturation is engaged, equation (10) no longer
holds and is replaced by either

u = umax (11)

or
u = umin. (12)

Irrespective of the way the saturating controller
is actually implemented (e.g. with or without anti-
windup action), the above scenarios always hold, in-
dicating a strongly nonlinear behaviour of the corre-
sponding system of equations. In other words, letting
the solver figure out which controllers are in a mod-
ulating state, which are saturated high and which are
saturated low corresponds to solving a highly nonlin-
ear problem, with potentially combinatorial complex-
ity, which can cause serious convergence problems to
the solver.

Doing so is however not necessary in general, since
the status of the controllers in the nominal operating
point is usually well known. In case it is known in
advance that the controller will be modulating, then
the saturation limits can be removed in the simplified
model, thus making the model linear. In case it is
known in advance that the control output will be sat-
urated at the maximum or minimum limits, then the
saturation equation is replaced with an equation stat-
ing that the control output is fixed at the maximum or
minimum value.

Note that this functionality can be merged with
the functionality described in the previous subsection.
Summing up, the simplified model should either re-
move the saturation limits from the output, or hold the
output at a fixed value, which might be a specific nom-
inal value, the maximum, or the minimum, depending
on the situation.

3.3 Solving the simplified model

It is apparent that all the above-described simplifica-
tion strategies reduce the couplings between equations
and the nonlinear effects, compared to the actual ini-
tialization problem. In order to take full advantage of
these simplifications and ensure the highest chance of
convergence, it is recommended that the tool applies

structural analysis and optimization (BLT transforma-
tion, tearing, etc.) to the simplified initialization prob-
lem, obtained by replacing all instances of the homo-
topy() operator with their simplified argument.

When this is done, then the iteration variables of the
initialization problem, i.e, the tearing variables, typi-
cally belong to these categories:

• Gas-side temperature distributions in heat ex-
changers

• Wall temperatures distributions in heat exchang-
ers

• Water/steam side enthalpy distributions in heat
exchangers

• Steam drum pressures

• A few other flow rates and pressures

The first two sets will need very rough start values
(say 400, 600 or 800 K, depending on the heat ex-
changer); there will be no need at all to provide es-
timates of the actual temperature distributions within
heat exchangers. The third set also requires very rough
start values (subcooled liquid or superheated steam,
depending on the case). Therefore, appropriate start
values can be set for all these variables in the model,
based on a a couple of numerical parameters in the heat
exchanger component, whose precise value is not at all
critical for convergence. Steam drum start values can
be easily supplied based on nominal operating point
data. If the flow rates belong to heat exchanger compo-
nents, a nominal value is already available, since it is
required to perform the energy balance equation sim-
plification, so it can also be used to set the start value.

In some cases, there might still be a very few re-
maining iteration variables that don’t have any mean-
ingful start value, causing the solver to fail. These can
be fixed on a case by case basis, or by adding suitable
start and/or nominal parameters to the corresponding
library model. Ideally, required start values should be
inferred from parameters of the component which give
information about the nominal operating point, with-
out the need of extra ad-hoc input by the end-user.

3.4 Steady-state initialization far from the
nominal operating point

The simplified problem has been designed to approx-
imate the actual problem at the nominal operating
point. What if one wants to initialize the plant at a
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different operating point, e.g. 40% load, instead of the
nominal 100% load?

One idea in this case is to use the homotopy() oper-
ator to parameterize the signal sources that define the
operating point. For example, if the load set-point is
generated by a step or ramp source, one might write
homotopy(40, 100) as the offset value. This means
that the simplified initialization problem is actually
solved with an offset of 100%, i.e., at full load; dur-
ing the homotopy transformation, while the problem
is brought to its actual form, the load is also progres-
sively reduced to 40%, thus eventually converging to
the required steady state.

It has been verified in a number of test cases (see
next Section) that this additional mismatch between
simplified and actual model does not lead to any sin-
gularity of the solution during the homotopy transfor-
mation, and guarantees successful convergence of the
actual initialization problem.

Should this not be the case, two homotopy trans-
formations should be performed in sequence: first the
simplified problem at nominal load should be trans-
formed to the actual model, also at nominal load; then,
the load set point should be reduced, therefore realis-
ing a quasi-static change of the operating point from
full load to partial load, which should pose no prob-
lems. Unfortunately this is not possible with the cur-
rent definition of the homotopy() operator, which only
allows for a single, system-wide transformation.

4 Experimental results

The general ideas illustrated in the previous sections
has been implemented in the version 3 of the Ther-
moPower library [4]. The library has then been used
to build a series of test cases of increasing complex-
ity, culminating in the complete model of a combined-
cycle power plant, whose heat recovery steam genera-
tor (HRSG) includes 15 different heat exchangers. A
few extra parameters for nominal values required by
the simplified model had to be added to the formerly
developed heat exchanger models; however, they are
a very small fraction of the number of parameters al-
ready needed to set up those models and, as noted in
the previous section, their numerical values need not
be precise by any means. Furthermore, and more im-
portant, these parameters are set once and for all in a
given plant model and need not be changed on a case-
by-case basis depending on the choice of start values
of the Modelica tool.

For the simpler cases, homotopy was actually not

necessary to solve the initialization problem, but as the
complexity increased, more and more cases fail to ini-
tialize when the built-in solver of Dymola is used, be-
cause of initial guesses which are not accurate enough.
All the simplified models converged without problems
(as long as the nominal parameter gives a correct or-
der of magnitude for all the iteration variables) and the
homotopy paths of all the iteration variables proved to
be smooth and devoid of turning points or worse sin-
gularities.

The three largest and hardest-to-solve cases are
briefly documented here. The model describes a com-
plete combined-cycle power plant. The three levels of
pressure HRSG includes 15 heat exchangers, each one
discretized by finite volumes and with flow-dependent
heat transfer coefficients. The steam turbine system
includes a condenser model and a pumping system
model, so the water/steam cycle is closed. The tur-
bines operate in sliding pressure; control loops are
included to control the steam drum levels, the super-
heater outlet temperatures, the economizer outlet tem-
perature, and the combined electrical power output of
the gas and steam turbines. Three variants have been
considered:

1. reference plant model, initialized at 100% load;

2. reference plant model, initialized at 60% load;

3. detailed plant model, with two parallel HRSGs,
common steam collector and steam turbine sys-
tem, also initialized at 100% load;

The initialization problem of case 1. has 345 iter-
ation variables. During the homotopy transformation,
no variable shows bifurcations or turning points. Most
variables change by less than 5% between λ = 0 and
λ = 1. The outputs of the superheaters and reheaters
temperature controllers (which are fixed to the start
value at λ = 0 and work in closed loop at λ = 1) show
the biggest variations, but change smoothly and with-
out singularities during the homotopy transformation.

The computation of the transformation took 8 steps
and 40 seconds using the test implementation, running
on a 2.26 GHz P9300 Intel processor. For the sake of
the example, Fig. 2 shows some representative plots
of iteration variables during the transformation.

Case 2 has the same number of iteration variables,
but now the homotopy transformation also involves
bringing down the load from the nominal 100% value
to 60%, so it is a bit more involved, because the val-
ues of the initial steady state significantly differ from
the nominal values. This time, the transformation re-
quired 37 steps and took 100 seconds to compute. Fig.
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Figure 2: Homotopy paths for 100% load initialization

Figure 3: Homotopy paths for 60% load initialization

3 shows the plots of the same iteration variables con-
sidered in the previous case: it is apparent how the
change in the values is now substantial, since it in-
volves a large change in the operating point, but the
transformation is nevertheless smooth and without sin-
gularities.

Case 3, which includes two HRSG models in par-
allel, has 673 iteration variables. The transformation
took 7 steps and 170 seconds of CPU time to be per-
formed. The plots of the iteration variables are similar
to those shown in Figure 2 as expected, since also in
this case the system is initialized at 100% load.

As a final consideration, note that the experimen-
tal code uses a brute-force numerical approach to
compute the Jacobian, which can be computed in a
much more efficient way by exploiting its sparsity
pattern. Furthermore, not much time has been de-
voted to the optimal setting of the continuation solver.

A production-quality implementation is therefore ex-
pected to be substantially faster to perform the trans-
formation shown above.

5 Conclusions and outlook

A strategy for robust and reliable steady-state initial-
ization of large thermo-hydraulic system has been pre-
sented in this paper. The basic idea is to simplify a few
selected equations in order to form a simplified ini-
tialization problem that is easily solved, without need
of setting accurate start values for the iteration vari-
ables; subsequently, smoothly transform this problem
into the actual problem of interest, getting its initial-
ization by continuity.

The proposed strategy has been demonstrated by
means of a test implementation of the homotopy()

operator, applied to large models of combined-cycle
power plants with up to 671 iteration variables. All the
examined test cases were solved successfully and the
homotopy paths of all the iteration variables did not
show singular behaviour of any sort, thus confirming
the validity of the selection criteria for the simplified
model.

By adding a few more parameters to the model, indi-
cating nominal values (without need of particular ac-
curacy), the proposed method completely eliminated
the need by the end user of setting start values on the
particular problem at hand, in order to ensure conver-
gence. The authors thus argue that they have demon-
strated a truly modular and object-oriented approach
to reliable steady-state initialization for large thermo-
hydraulic networks.

The availability of built-in, fast and numerically
well-behaved homotopy methods in Modelica tools
would make this approach a lot more user-friendly
than using the prototype implementation employed for
this study, which was only meant to demonstrate the
soundness of the proposed approach from the point of
view of the mathematical modelling involved.
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