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Abstract 

The Functional Mockup Interface (FMI) is a tool 

independent standard for the exchange of dynamic 

models and for co-simulation. The development of 

FMI was initiated and organized by Daimler AG 

within the ITEA2 project MODELISAR. The prima-

ry goal is to support the exchange of simulation 

models between suppliers and OEMs even if a large 

variety of different tools are used. The FMI was de-

veloped in a close collaboration between simulation 

tool vendors and research institutes. In this article an 

overview about FMI is given and technical details 

about the solution are discussed.  

Keywords: Simulation; Co-Simulation, Model Ex-

change; MODELISAR; Functional Mockup Interface 

(FMI); Functional Mockup Unit (FMU); 

1 Introduction 

One of the objectives of the development and usage 

of tool independent modeling languages (e.g. Model-

ica
®
[1]1, VHDL-AMS [10]) is to ease the model ex-

change between simulation tools. However, model-

ing languages require a huge effort to support them 

in a tool. It is therefore common to provide also low 

level interfaces, to exchange models in a less power-

ful, but much simpler way. Another aspect of model 

exchange is the protection of product know-how 

which could be recovered from their physical mod-

els. 

Several tools offer proprietary model interfaces, such 

as: 

                                                      
1 Modelica® is a registered trademark of the Modelica Association. 

• Matlab/Simulink
®2: S-Functions [3] 

• MSC.ADAMS3: user-written subroutines [4] 

• Silver: Silver-Module API [5] 

• SIMPACK: user routines [6] 

• SimulationX
®4: External Model Interface [7] 

Currently, no tool independent standard for model 

exchange (via source or binary code in a program-

ming language) is available. The same holds for the 

situation in the field of co-simulation.  

Vendors of Modelica tools (AMESim, Dymola, 

SimulationX) and non Modelica tools (SIMPACK, 

Silver, Exite), as well as research institutes worked 

closely together and recently defined the Functional 

Mockup Interface5. This interface covers the aspects 

of model exchange [8] and of co-simulation [9]. This 

development was initiated and organized by Daimler 

AG with the goal to improve the exchange of simula-

tion models between suppliers and OEMs. Within 

MODELISAR, Daimler has set up 14 automotive use 

cases for the evaluation and improvement of FMI. In 

this article, the technical details behind FMI are dis-

cussed.  

 

Figure 1: Improving model-based design between 

OEM and supplier with FMI. 

                                                      
2 Matlab®/Simulink® are regist. trademarks of The MathWorks Inc. 
3 MSC® is a registered trademark and MSC.ADAMS is a trademark 

of MSC.Software Corporation or its subsidiaries. 
4 SimulationX® is a registered trademark of ITI GmbH. 
5 http://www.functional-mockup-interface.org 
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2 The Functional Mock-Up Interface 

2.1 Main Design Ideas 

The FMI standard consists of two main parts: 

1. FMI for Model Exchange:  

The intention is that a modeling environment can 

generate C-Code of a dynamic system model in 

form of an input/output block that can be utilized 

by other modeling and simulation environments. 

Models are described by differential, algebraic 

and discrete equations with time-, state- and 

step-events. The models to be treated can be 

large for usage in offline simulation; and it is al-

so possible to use models for online simulation 

and in embedded control systems on micro-

processors. 

2. FMI for Co-Simulation:  

The intention is to couple two or more simula-

tion tools in a co-simulation environment. The 

data exchange between subsystems is restricted 

to discrete communication points. In the time be-

tween two communication points, the subsys-

tems are solved independently from each other 

by their individual solver. Master algorithms 

control the data exchange between subsystems 

and the synchronization of all slave simulation 

solvers (slaves). The interface allows standard, 

as well as advanced master algorithms, e.g. the 

usage of variable communication step sizes, 

higher order signal extrapolation, and error con-

trol. 

Both approaches share a bulk of common parts that 

are sketched in the next subsections. 

2.2 Distribution 

A component which implements the FMI is called 

Functional Mockup Unit (FMU). It consists of one 

zip-file with extension “.fmu” containing all neces-

sary components to utilize the FMU: 

1. An XML-file contains the definition of all varia-

bles of the FMU that are exposed to the envi-

ronment in which the FMU shall be used, as well 

as other model information. It is then possible to 

run the FMU on a target system without this in-

formation, i.e., with no unnecessary overhead. 

For FMI-for-Co-Simulation, all information 

about the “slaves”, which is relevant for the 

communication in the co-simulation environ-

ment is provided in a slave specific XML-file. In 

particular, this includes a set of capability flags 

to characterize the ability of the slave to support 

advanced master algorithms, e.g. the usage of 

variable communication step sizes, higher order 

signal extrapolation, or others. 

2. For the FMI-for-Model-Exchange case, all need-

ed model equations are provided with a small set 

of easy to use C-functions. These C-functions 

can either be provided in source and/or binary 

form. Binary forms for different platforms can 

be included in the same model zip-file.  

For the FMI-for-Co-Simulation case, also a 

small set of easy to use C-functions are provided 

in source and/or binary form to initiate a com-

munication with a simulation tool, to compute a 

communication time step, and to perform the da-

Figure 2: Top level part of the FMI XML schema 
 

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011 

106



ta exchange at the communication points. 

3. Further data can be included in the FMU zip-file, 

especially a model icon (bitmap file), documen-

tation files, maps and tables needed by the mod-

el, and/or all object libraries or DLLs that are 

utilized. 

2.3 Description Schema 

All information about a model and a co-simulation 

setup that is not needed during execution is stored in 

an XML-file called “modelDescription.xml”. The 

benefit is that every tool can use its favorite pro-

gramming language to read this XML-file (e.g. C, 

C++, C#, Java, Python) and that the overhead, both 

in terms of memory and simulation efficiency, is re-

duced. As usual, the XML-file is defined by an 

XML-schema file called “fmiModelDescrip-

tion.xsd”. Most information is identical for the two 

FMI cases. 

In Figure 2, the top-level part of the schema defi-

nition is shown. All parts are the same for the two 

FMI-cases, with exception of the element “Imple-

mentation”. If present, the import tool should inter-

pret the model description as applying to co-

simulation. As a consequence, the import tool must 

select the C-functions for co-simulation, otherwise 

for model exchange. An important part of the “Im-

plementation” is the definition of capability flags to 

define the capabilities that the co-simulation slave 

supports: 

 

Figure 3: Capability flags of FMI for Co-Simulation. 

These flags are interpreted by the master to select a 

co-simulation algorithm which is supported by all 

connected slaves.  

2.4 C-Interface 

The executive part of FMI consists of two header 

files that define the C-types and –interfaces. The 

header file “fmiPlatformTypes.h” contains all defini-

tions that depend on the target platform: 

#define fmiPlatform "standard32" 

#define fmiTrue  1 

#define fmiFalse 0 

#define fmiUndefinedValueReference 

               (fmiValueReference)(-1) 

 

typedef void*        fmiComponent; 

typedef unsigned int fmiValueReference; 

typedef double       fmiReal   ; 

typedef int          fmiInteger; 

typedef char         fmiBoolean; 

typedef const char*  fmiString ; 

This header file must be used both by the FMU and 

by the target simulator. If the target simulator has 

different definitions in the header file (e.g., 

“typedef float fmiReal” instead of “typedef 

double fmiReal”), then the FMU needs to be re-

compiled with the header file used by the target sim-

ulator. The header file platform, for which the model 

was compiled, as well as the version number of the 

header files, can be inquired in the target simulator 

with FMI functions. 

In this first version of FMI, the minimum amount 

of different data types is defined. This is not suffi-

cient for embedded systems and will be improved in 

one of the follow-up versions of FMI. 

The type fmiValueReference defines a handle 

for the value of a variable: The handle is unique at 

least with respect to the corresponding base type 

(like fmiReal) besides alias variables that have the 

same handle. All structured entities, like records or 

arrays, are “flattened” in to a set of scalar values of 

type fmiReal, fmiInteger etc. A fmiValueRef-

erence references one such scalar. The coding of 

fmiValueReference is a “secret” of the modeling 

environment that generated the model. The data ex-

change is performed using the functions  fmi-

SetXXX(...) and fmiGetXXX(...). XXX stands 

for one of the types Real, Integer, and Boolean. One 

argument of these functions is an array of 

fmiValueReference, which defines which variable 

is accessed. The mapping between the FMU varia-

bles and the fmiValueReferences is stored in the 

model description XML file. 
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For simplicity, in this first version of FMI a “flat” 

structure of variables is used. Still, the original hier-

archical structure of the variables can be retrieved, if 

a flag is set in the XML-file that a particular conven-

tion of the variable names is used. For example, the 

Modelica variable name 

      “pipe[3,4].T[14]” 

defines a variable which is an element of an array of 

records “pipe” of vector T (“.” separates hierarchical 

levels and “[...]” defines array elements). 

Header-file “fmiFunctions.h” contains the proto-

types for functions that can be called from simulation 

environments. 

The goal is that both textual and binary represen-

tations of models are supported and that several 

models using FMI might be present at link time in an 

executable (e.g., model A may use a model B). For 

this to be possible the names of the FMI-functions in 

different models must be different unless function 

pointers must be used. For simplicity and since the 

function pointer approach is not desirable on embed-

ded systems, the first variant is utilized by FMI: 

Macros are provided in “fmiFunctions.h” to build 

the actual function names. A typical usage in an FMI 

model or co-simulation slave is: 

#define  MODEL_IDENTIFIER MyFMU 

#include "fmiFunctions.h" 

< implementation of the FMI functions > 

For example, a function that is defined as 

      “fmiGetDerivatives” 

is changed by the macros to the actual function name 

      “MyFMU_fmiGetDerivatives”, 

i.e., the function name is prefixed with the model or 

slave name and an “_”. The “MODEL_IDENTIFIER” 

is defined in the XML-file of the FMU. A simulation 

environment can therefore construct the relevant 

function names after inspection of the XML-file. 

This can be used by (a) generating code for the actu-

al function call or (b) by dynamically loading a dy-

namic link library and explicitly importing the func-

tion symbols by providing the “real” function names 

as strings. 

3 FMI for Model Exchange 

3.1 Mathematical Description 

The goal of the Model Exchange interface is to nu-

merically solve a system of differential, algebraic 

and discrete equations. In this version of the inter-

face, ordinary differential equations in state space 

form with events are handled (abbreviated as “hybrid 

ODE”). 

This type of system is described as a piecewise 

continuous system. Discontinuities can occur at time 

instants t0, t1, …, tn, where ti < ti+1. These time in-

stants are called “events”. Events can be known be-

fore hand (= time event), or are defined implicitly (= 

state and step events).  

The “state” of a hybrid ODE is represented by a 

continuous state x(t) and by a time-discrete state m(t) 

that have the following properties: 

• x(t) is a vector of real numbers (= time-

continuous states) and is a continuous function 

of time inside each interval ti ≤ t < ti+1, where 

( )
0

limi it t
ε

ε
→

= + , i.e., the right limit to ti (note, 

x(t) is continuous between the right limit to ti 

and the left limit to ti+1 respectively). 

• m(t) is a set of real, integer, logical, and string 

variables (= time-discrete states) that are con-

stant inside each interval ti ≤ t < ti+1. In other 

words, m(t) changes value only at events. This 

means, m(t) = m(ti), for ti ≤ t < ti+1. 

At every event instant ti, variables might be discon-

tinuous and therefore have two values at this time 

instant, the ”left” and the ”right” limit. x(ti), m(ti) are 

always defined to be the right limit at ti, whereas 

x¯ (ti), m¯  (ti) are defined to be the “left” limit at ti, 

e.g.: m¯ (ti) = m(ti-1). In the following figure, the two 

variable types are visualized: 

 
Figure 4: Piecewise-continuous states of an 

FMU: time-continuous (x) and time-discrete (m). 

An event instant ti is defined by one of the following 

conditions that gives the smallest time instant: 

1. At a predefined time instant ti = Tnext(ti-1) that was 

defined at the previous event instant ti-1 either by 

the FMU, or by the environment of the FMU due 

to a discontinuous change of an input signal uj at 

ti. Such an event is called time event. 

2. At a time instant, where an event indicator zj(t) 

changes its domain from zj > 0 to zj ≤ 0 or vice 

versa (see Figure 5 below). More precisely: An 

event t = ti occurs at the smallest time instant 

“min t” with t > ti-1 where “(zj(t) > 0) ≠ (zj(ti-1) > 

time t 

t0 t1 
t2 

x(t) 

m(t) 

m
–
(t1) m(t1) 
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0)”. Such an event is called state event. All event 

indicators are piecewise continuous and are col-

lected together in one vector of real numbers 

z(t). 

 
Figure 5: An event occurs when the event indica-

tor changes its domain from z > 0 to z ≤ 0 or vice 

versa. 

3. At every completed step of an integrator, 

fmiCompletedIntegratorStep must be called. 

An event occurs at this time instant, if indicated 

by the return argument callEventUpdate. Such 

an event is called step event. Step events are, 

e.g., used to dynamically change the (continu-

ous) states of a model, because the previous 

states are no longer suited numerically. 

An event is always triggered from the environment 

in which the FMU is called, so it is not triggered in-

side the FMU. A model (FMU) may have additional 

variables p, u, y, v. These symbols characterize sets 

of real integer, logical, and string variables, respec-

tively. The non-real variables change their values 

only at events. For example, this means that uj(t) = 

uj(ti), for ti ≤ t < ti+1, if uj is an integer, logical or 

string variable. If uj is a real variable, it is either a 

continuous function of time inside this interval or it 

is constant in this interval (= time-discrete). “p” are 

parameters (data that is constant during the simula-

tion), “u” are inputs (signals provided from the envi-

ronment), “y” are outputs (signals provided to the 

environment that can be used as inputs to other sub-

systems), and “v” are internal variables that are not 

used in connections, but are only exposed by the 

model to inspect results. Typically, there are a few 

inputs u and outputs y (say 10), and many internal 

variables v (say 100000). 

3.2 Caching of Variables 

Depending on the situation, different variables need 

to be computed. In order to be efficient, FMI is de-

signed so that the interface requires only the compu-

tation of variables that are needed in the present con-

text. For example, during the iteration of an integra-

tor step, only the state derivatives need to be com-

puted provided the output of a model is not connect-

ed. It might be that at the same time instant other 

variables are needed. For example, if an integrator 

step is completed, the event indicator functions need 

to be computed as well. For efficiency it is then im-

portant that in the call to compute the event indicator 

functions, the state derivatives are not newly com-

puted, if they have been computed already at the pre-

sent time instant. This means, the state derivatives 

shall be reused from the previous call. This feature is 

called “caching of variables”.  

Caching requires that the model evaluation can 

detect when the input arguments, like time or states, 

have changed. This is achieved by setting them ex-

plicitly with a function call since every such function 

call signals precisely a change of the corresponding 

variables. A typical call sequence to compute the 

derivatives  

( , , , )t=x f x u p&  

as function of states, inputs, and parameters is there-

fore: 

// Instantiate FMU  

// ("M" is the MODEL_IDENTIFIER) 

m = M_fmiInstantiateModel("m", ...); 

 ... 

// set parameters 

M_fmiSetReal(m, id_p, np, p); 

 

// initialize instance 

M_fmiInitialize(m, ...); 

 ... 

// set time 

M_fmiSetTime(m, time); 

 ... 

// set inputs 

M_fmiSetReal(m, id_u, nu, u); 

 ... 

// set states 

M_fmiSetContinuousStates(m, x, nx); 

 ... 

// get state derivatives 

M_fmiGetDerivatives(m, der_x, nx); 

 

To obtain the FMU outputs: 

 

  ),p,u,x(fy t=  

 

as function of states, inputs, and parameters, the en-

vironment would call: 

 
... 

// get outputs 

M_fmiGetReal(m, id_y, ny, y); 

... 

time 

t0 t1 t2 

z(t
z > 0 

z ≤ 0 
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The FMU decides internally which part of the model 

code is evaluated in the present context. 

4 FMI for Co-Simulation 

Co-simulation is a simulation technique for coupled 

time-continuous and time-discrete systems that ex-

ploits the modular structure of coupled problems in 

all stages of the simulation process (pre-processing, 

time integration, post-processing). 

The data exchange between subsystems is re-

stricted to discrete communication points. In the time 

between two communication points, the subsystems 

are solved independently from each other by their 

individual solver. Master algorithms control the data 

exchange between subsystems and the synchroniza-

tion of all slave simulation solvers (slaves). 

Examples for co-simulation techniques are the 

distributed simulation of heterogeneous systems, 

partitioning and parallelization of large systems, 

multi rate integration, and hardware-in-the-loop sim-

ulations. 

A simulation tool can be coupled if it is able to 

communicate data during simulation at certain time 

points (communication points, tCi), see Figure 6. 

 

 

Figure 6: Coupleable simulation tool 

4.1 Master Slave Principle 

Instead of coupling the simulation tools directly, it is 

assumed that all communication is handled via a 

master (Figure 7).  

 
Figure 7: Three tools are controlled by one master 

The master plays an essential role in controlling the 

coupled simulation. Besides distribution of commu-

nication data, the master analyses the connection 

graph, chooses a suitable simulation algorithm and 

controls the simulation according to that algorithm. 

The slaves are the simulation tools, which are pre-

pared to simulate their subtask. The slaves are able to 

communicate data, execute control commands and 

return status information. 

4.2 Interface 

The FMI for Co-Simulation defines similar functions 

like FMI for Model Exchange for creation, initializa-

tion, termination, and destruction of the slaves. In 

order to allow distributed scenarios, the co-

simulation functions provide some more arguments. 

E.g. the function fmiInstantiateSlave(...) pro-

vides the string argument mimeType which defines 

the tool which is needed to compute the FMU in a 

tool based co-simulation scenario (see section 4.3). 

For data exchange, the fmiGet…/fmiSet… func-

tions of FMI for Model Exchange are used here too. 

In order to allow higher order extrapola-

tion/interpolation of continuous inputs/outputs addi-

tional Get/Set functions are defined for input/output 

derivatives. 

The computation of a communication time step is 

initiated by the call of fmiDoStep(...). The func-

tion arguments are the current communication time 

instance, the communication step size, and a flag that 

indicates whether the previous communication step 

was accepted by the master and a new communica-

tion step is started. Depending on the internal state of 

the slave and the previous call of fmiDoStep(...), 

the slave has to decide which action is to be done 

before the step is computed. E.g. if a communication 

time step is repeated, the last taken step is to be dis-

carded. 

Using this interface function, different co-

simulation algorithms are possible: 

• Constant and variable communication step 

sizes. 

• Straightforward methods without rejecting 

and repetition of communication steps. 

• Sophisticated methods with iterative repeti-

tion of communication steps. 

4.3 Use Cases 

The FMI for Co-Simulation standard can be used to 

support different usage scenarios. The simplest one 

is shown in the following figure (in order to keep it 

simple, only one slave is drawn). 
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Figure 8: Simple stand alone use case. 

Master and slave are running in the same process. 

The slave contains model and solver, no additional 

tool is needed. 

The next use case is carried out on different pro-

cesses. A complete simulation tool acts as slave. In 

this case, the FMI is implemented by a simulation 

tool dependent wrapper which communicates by a 

(proprietary) interface with the simulation tool. 

 
Figure 9: Slave is a simulation tool 

The green and orange interfaces can be inter-process 

communication technologies like COM/DCOM, 

CORBA, Windows message based interfaces or sig-

nals and events. The co-simulation master does not 

notice the usage of an FMI wrapper here. It still uti-

lizes only the FMI for Co-Simulation. 

Figure 10 demonstrates a distributed co-

simulation scenario. 

 
Figure 10: Distributed co-simulation scenario. 

 

The slave (which can be a simulation tool as in Fig-

ure 9 too) and the master run on different computers. 

The data exchange is handled by a communication 

layer which is implemented by a special FMI wrap-

per. Neither the master nor the slave notice the tech-

nology used by the communication layer. Both uti-

lize the FMI for Co-Simulation only. 

5 Comparing Model-Exchange 

Approaches 

As shown in section 1, there are multiple, proprietary 

approaches for exchanging executable models. Here 

we discuss the differences with respect to the follow-

ing properties: 

1. Interface coverage: 

a) Model representation as ordinary differential 

equation (ODE) or differential algebraic 

equation (DAE). 

b) Does the API support querying Jacobian ma-

trix information? 

c) Is it possible to transfer structural data via 

the API? If information about algebraic de-

pendencies between outputs and inputs are 

supplied, the importing tool is able to detect 

and handle algebraic loops automatically. 

2. Event handling: Does the API support transport-

ing event handling information between model 

and simulation environment for 

a) Time events? 

b) State events? 

c) Step events? 

d) Event iteration? 

3. Step-size control: Does the API support 

a) Rejecting of time step by the model? 

b) Variable step sizes? 

4. Efficiency: Does the API support 

a) efficient computing 

(e.g. allowing value cashing)? 

b) efficient result storage 

(e.g. via alias mechanism and storing large 

numbers of internal variables)? 

c) efficient argument handling  

(data copy required)? 

5. Programming languages: Which programming 

languages are supported by the API 

6. Documentation: Is documentation sufficient for 

a) using the APIs data types? 

b) building models with this API (export)? 

c) using models with this API in other simula-

tion environments (import)? 

d) each models variables (inputs, outputs, states 

etc.)? 

7. Miscellaneous: 

a) Interoperability: which platforms are sup-

ported? 

b) Does changing the (version of the) simula-

tion environment require model re-

compilation? 

c) Compact and flexible file format, that allows 

the inclusion of additional data. 

8. Status of API: 

a) License? 

b) Developed and maintained by only one tool 

vendor? 
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1. Silver supports only exchanging models includ-

ing their own solvers, communicating at project-

dependent, equidistant time intervals. 

2. DAE support is planned for one of the next ver-

sions. 

3. Planned for one of the next FMI versions. 

4. Loops are detected and can be handled using 

additional user intervention on the model. 

5. API supports time events, but definition is based 

on real variables which could lead to inexact re-

sults. 

6. Efficient and numerically robust time event han-

dling is planned for FMI Version 2.0 

7. Caching mechanism is possible, but the compo-

nent itself has to observe which data have 

changed since the last call. 

8. API is not designed to transfer more data than 

inputs, outputs, and states. Internal variables are 

not published by the external model. 

9. The component can be provided as binary for 

one operating system and/or as source code. 

10. The model source code can be part of the FMU 

archive file. 

11. Recompilation is only needed for major version 

changes. 

 Property Simulink: 

S-Function 

ADAMS: 

user routines 

Silver: 

Silver API 

SIMPACK: 

user routines 

SimulationX: 

EMI 
FMI for Model 

Exchange 

1a Representation ODE ODE Co-Sim
1
 ODE/DAE ODE ODE

2 

1b Jacobian support no no no no no no
3 

1c Structural data yes no no no
4 

yes yes 

1a Time events yes
5 

no no yes
 

yes
5 

yes
5,6 

1b State events yes no no yes yes yes 

2c Step events yes no no yes yes yes 

2d Event iteration no no no yes yes yes 

3a Discard time step no no no no yes yes 

3b Variable step size yes yes no yes yes yes 

4a Eff. computing no
7 

no
7
 no

7 
no

7 
no

7 
yes 

4b Eff. Result storage no
8 

no no no
8 

no
8 

yes 

4c Data copy required no no no no no yes 

5 API language C, C++, 

Fortran 

C, Fortran C, Python C, Fortran C C 

6a Doc API data types yes yes yes yes yes yes 

6b Doc model generation yes yes yes yes yes yes 

6c Doc model use no no yes yes yes yes 

6d Doc model variables no  yes no no yes 

7a Platform support independent
9 

Windows, 

Linux 

Windows Windows, 

UNIX 

Windows independent.
9,10 

7b Recompilation  yes yes no yes
11

 yes no 

7c Compact file format no no no no no yes 

8a Legal status proprietary proprietary open proprietary open open 

8b Proprietary yes yes yes yes yes no 
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6 Tools supporting FMI 

The following tools are currently supporting the FMI 

version 1.0 (for an up-to-date list see www.functional-

mockup-interface.org/tools.html): 

• Dymola 7.4 (FMU export and import, 

www.3ds.com/products/catia/portfolio/dymola), 

• JModelica.org 1.3 (FMU import, 

www.jmodelica.org), 

• Silver 2.0 (FMU import, 

www.qtronic.com/en/silver.html), 

• SimulationX 3.4 (FMU import and export, FMU 

co-simulation, www.simulationx.com, see [10]) 

• Simulink (FMU export by Dymola 7.4 

via Real-Time Workshop, 

www.mathworks.com/products/simulink), 

• Fraunhofer Co-Simulation Master (see [12]) 

The respective vendors plan to support FMI with 

their following tools: 

• AMESim (FMU export and import, 
www.lmsintl.com/imagine-amesim-1-d-multi-

domain-system-simulation), 

• EXITE, EXITE ACE (FMU export and import, 

www.extessy.com), 

• OpenModelica (FMU export and import; 

a prototype for FMU export is available, 

www.openmodelica.org), 

• SIMPACK (FMU import, FMU co-simulation, 

www.simpack.com), 

• TISC (FMU import, www.tlk-thermo.com). 

• MpCCI (FMU import and export, 

www.mpcci.de) 

7 Conclusions 

The FMI eases the model exchange and co-

simulation between different tools. It has a high po-

tential being widely accepted in the CAE world: 

• It was initiated, organized and pushed by Daim-

ler to significantly improve the exchange of sim-

ulation models between suppliers and OEMs. 

• It was defined in close collaboration of different 

tool vendors within the MODELISAR project. 

• Industrial users were involved in the proof of 

concept within MODELSAR. 

• FMI can already be used with several Modelica 

tools, Simulink, multi-body and other tools. 

• In the ITEA2 project OPENPROD [10], FMI 

extensions are currently developed with respect 

to optimization applications. 

Current priorities of the further development inside 

MODELISAR are: 

• Unification and harmonization of FMI for Model 

Exchange and Co-Simulation 

• Improved handling of time events. 

• Improved support for FMUs in embedded 

systems. 

• Efficient interface to Jacobian matrices. 
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