
The Functional Mockup Interface

for Tool independent Exchange of Simulation Models

T. Blochwitz
1
, M. Otter

2
, M. Arnold

3
, C. Bausch

4
, C. Clauß

5
, H. Elmqvist

9
, A. Junghanns

6
,

J. Mauss
6
, M. Monteiro

4
, T. Neidhold

1
, D. Neumerkel

7
, H. Olsson

9
, J.-V. Peetz

8
, S. Wolf

5

Germany:
1
ITI GmbH, Dresden;

2
DLR Oberpfaffenhofen;

3
University of Halle,

4
Atego Systems GmbH, Wolfsburg;

5
Fraunhofer IIS EAS, Dresden;

6
QTronic, Berlin;

7
Daimler AG, Stuttgart;

8
Fraunhofer SCAI, St. Augustin;

Sweden:
9
Dassault Systèmes, Lund.

Abstract

The Functional Mockup Interface (FMI) is a tool

independent standard for the exchange of dynamic

models and for co-simulation. The development of

FMI was initiated and organized by Daimler AG

within the ITEA2 project MODELISAR. The prima-

ry goal is to support the exchange of simulation

models between suppliers and OEMs even if a large

variety of different tools are used. The FMI was de-

veloped in a close collaboration between simulation

tool vendors and research institutes. In this article an

overview about FMI is given and technical details

about the solution are discussed.

Keywords: Simulation; Co-Simulation, Model Ex-

change; MODELISAR; Functional Mockup Interface

(FMI); Functional Mockup Unit (FMU);

1 Introduction

One of the objectives of the development and usage

of tool independent modeling languages (e.g. Model-

ica
®
[1]1, VHDL-AMS [10]) is to ease the model ex-

change between simulation tools. However, model-

ing languages require a huge effort to support them

in a tool. It is therefore common to provide also low

level interfaces, to exchange models in a less power-

ful, but much simpler way. Another aspect of model

exchange is the protection of product know-how

which could be recovered from their physical mod-

els.

Several tools offer proprietary model interfaces, such

as:

1 Modelica® is a registered trademark of the Modelica Association.

• Matlab/Simulink
®2: S-Functions [3]

• MSC.ADAMS3: user-written subroutines [4]

• Silver: Silver-Module API [5]

• SIMPACK: user routines [6]

• SimulationX
®4: External Model Interface [7]

Currently, no tool independent standard for model

exchange (via source or binary code in a program-

ming language) is available. The same holds for the

situation in the field of co-simulation.

Vendors of Modelica tools (AMESim, Dymola,

SimulationX) and non Modelica tools (SIMPACK,

Silver, Exite), as well as research institutes worked

closely together and recently defined the Functional

Mockup Interface5. This interface covers the aspects

of model exchange [8] and of co-simulation [9]. This

development was initiated and organized by Daimler

AG with the goal to improve the exchange of simula-

tion models between suppliers and OEMs. Within

MODELISAR, Daimler has set up 14 automotive use

cases for the evaluation and improvement of FMI. In

this article, the technical details behind FMI are dis-

cussed.

Figure 1: Improving model-based design between

OEM and supplier with FMI.

2 Matlab®/Simulink® are regist. trademarks of The MathWorks Inc.
3 MSC® is a registered trademark and MSC.ADAMS is a trademark

of MSC.Software Corporation or its subsidiaries.
4 SimulationX® is a registered trademark of ITI GmbH.
5 http://www.functional-mockup-interface.org

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

105

2 The Functional Mock-Up Interface

2.1 Main Design Ideas

The FMI standard consists of two main parts:

1. FMI for Model Exchange:

The intention is that a modeling environment can

generate C-Code of a dynamic system model in

form of an input/output block that can be utilized

by other modeling and simulation environments.

Models are described by differential, algebraic

and discrete equations with time-, state- and

step-events. The models to be treated can be

large for usage in offline simulation; and it is al-

so possible to use models for online simulation

and in embedded control systems on micro-

processors.

2. FMI for Co-Simulation:

The intention is to couple two or more simula-

tion tools in a co-simulation environment. The

data exchange between subsystems is restricted

to discrete communication points. In the time be-

tween two communication points, the subsys-

tems are solved independently from each other

by their individual solver. Master algorithms

control the data exchange between subsystems

and the synchronization of all slave simulation

solvers (slaves). The interface allows standard,

as well as advanced master algorithms, e.g. the

usage of variable communication step sizes,

higher order signal extrapolation, and error con-

trol.

Both approaches share a bulk of common parts that

are sketched in the next subsections.

2.2 Distribution

A component which implements the FMI is called

Functional Mockup Unit (FMU). It consists of one

zip-file with extension “.fmu” containing all neces-

sary components to utilize the FMU:

1. An XML-file contains the definition of all varia-

bles of the FMU that are exposed to the envi-

ronment in which the FMU shall be used, as well

as other model information. It is then possible to

run the FMU on a target system without this in-

formation, i.e., with no unnecessary overhead.

For FMI-for-Co-Simulation, all information

about the “slaves”, which is relevant for the

communication in the co-simulation environ-

ment is provided in a slave specific XML-file. In

particular, this includes a set of capability flags

to characterize the ability of the slave to support

advanced master algorithms, e.g. the usage of

variable communication step sizes, higher order

signal extrapolation, or others.

2. For the FMI-for-Model-Exchange case, all need-

ed model equations are provided with a small set

of easy to use C-functions. These C-functions

can either be provided in source and/or binary

form. Binary forms for different platforms can

be included in the same model zip-file.

For the FMI-for-Co-Simulation case, also a

small set of easy to use C-functions are provided

in source and/or binary form to initiate a com-

munication with a simulation tool, to compute a

communication time step, and to perform the da-

Figure 2: Top level part of the FMI XML schema

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

106

ta exchange at the communication points.

3. Further data can be included in the FMU zip-file,

especially a model icon (bitmap file), documen-

tation files, maps and tables needed by the mod-

el, and/or all object libraries or DLLs that are

utilized.

2.3 Description Schema

All information about a model and a co-simulation

setup that is not needed during execution is stored in

an XML-file called “modelDescription.xml”. The

benefit is that every tool can use its favorite pro-

gramming language to read this XML-file (e.g. C,

C++, C#, Java, Python) and that the overhead, both

in terms of memory and simulation efficiency, is re-

duced. As usual, the XML-file is defined by an

XML-schema file called “fmiModelDescrip-

tion.xsd”. Most information is identical for the two

FMI cases.

In Figure 2, the top-level part of the schema defi-

nition is shown. All parts are the same for the two

FMI-cases, with exception of the element “Imple-

mentation”. If present, the import tool should inter-

pret the model description as applying to co-

simulation. As a consequence, the import tool must

select the C-functions for co-simulation, otherwise

for model exchange. An important part of the “Im-

plementation” is the definition of capability flags to

define the capabilities that the co-simulation slave

supports:

Figure 3: Capability flags of FMI for Co-Simulation.

These flags are interpreted by the master to select a

co-simulation algorithm which is supported by all

connected slaves.

2.4 C-Interface

The executive part of FMI consists of two header

files that define the C-types and –interfaces. The

header file “fmiPlatformTypes.h” contains all defini-

tions that depend on the target platform:

#define fmiPlatform "standard32"

#define fmiTrue 1

#define fmiFalse 0

#define fmiUndefinedValueReference

 (fmiValueReference)(-1)

typedef void* fmiComponent;

typedef unsigned int fmiValueReference;

typedef double fmiReal ;

typedef int fmiInteger;

typedef char fmiBoolean;

typedef const char* fmiString ;

This header file must be used both by the FMU and

by the target simulator. If the target simulator has

different definitions in the header file (e.g.,

“typedef float fmiReal” instead of “typedef

double fmiReal”), then the FMU needs to be re-

compiled with the header file used by the target sim-

ulator. The header file platform, for which the model

was compiled, as well as the version number of the

header files, can be inquired in the target simulator

with FMI functions.

In this first version of FMI, the minimum amount

of different data types is defined. This is not suffi-

cient for embedded systems and will be improved in

one of the follow-up versions of FMI.

The type fmiValueReference defines a handle

for the value of a variable: The handle is unique at

least with respect to the corresponding base type

(like fmiReal) besides alias variables that have the

same handle. All structured entities, like records or

arrays, are “flattened” in to a set of scalar values of

type fmiReal, fmiInteger etc. A fmiValueRef-

erence references one such scalar. The coding of

fmiValueReference is a “secret” of the modeling

environment that generated the model. The data ex-

change is performed using the functions fmi-

SetXXX(...) and fmiGetXXX(...). XXX stands

for one of the types Real, Integer, and Boolean. One

argument of these functions is an array of

fmiValueReference, which defines which variable

is accessed. The mapping between the FMU varia-

bles and the fmiValueReferences is stored in the

model description XML file.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

107

For simplicity, in this first version of FMI a “flat”

structure of variables is used. Still, the original hier-

archical structure of the variables can be retrieved, if

a flag is set in the XML-file that a particular conven-

tion of the variable names is used. For example, the

Modelica variable name

 “pipe[3,4].T[14]”

defines a variable which is an element of an array of

records “pipe” of vector T (“.” separates hierarchical

levels and “[...]” defines array elements).

Header-file “fmiFunctions.h” contains the proto-

types for functions that can be called from simulation

environments.

The goal is that both textual and binary represen-

tations of models are supported and that several

models using FMI might be present at link time in an

executable (e.g., model A may use a model B). For

this to be possible the names of the FMI-functions in

different models must be different unless function

pointers must be used. For simplicity and since the

function pointer approach is not desirable on embed-

ded systems, the first variant is utilized by FMI:

Macros are provided in “fmiFunctions.h” to build

the actual function names. A typical usage in an FMI

model or co-simulation slave is:

#define MODEL_IDENTIFIER MyFMU

#include "fmiFunctions.h"

< implementation of the FMI functions >

For example, a function that is defined as

 “fmiGetDerivatives”

is changed by the macros to the actual function name

 “MyFMU_fmiGetDerivatives”,

i.e., the function name is prefixed with the model or

slave name and an “_”. The “MODEL_IDENTIFIER”

is defined in the XML-file of the FMU. A simulation

environment can therefore construct the relevant

function names after inspection of the XML-file.

This can be used by (a) generating code for the actu-

al function call or (b) by dynamically loading a dy-

namic link library and explicitly importing the func-

tion symbols by providing the “real” function names

as strings.

3 FMI for Model Exchange

3.1 Mathematical Description

The goal of the Model Exchange interface is to nu-

merically solve a system of differential, algebraic

and discrete equations. In this version of the inter-

face, ordinary differential equations in state space

form with events are handled (abbreviated as “hybrid

ODE”).

This type of system is described as a piecewise

continuous system. Discontinuities can occur at time

instants t0, t1, …, tn, where ti < ti+1. These time in-

stants are called “events”. Events can be known be-

fore hand (= time event), or are defined implicitly (=

state and step events).

The “state” of a hybrid ODE is represented by a

continuous state x(t) and by a time-discrete state m(t)

that have the following properties:

• x(t) is a vector of real numbers (= time-

continuous states) and is a continuous function

of time inside each interval ti ≤ t < ti+1, where

()
0

limi it t
ε

ε
→

= + , i.e., the right limit to ti (note,

x(t) is continuous between the right limit to ti

and the left limit to ti+1 respectively).

• m(t) is a set of real, integer, logical, and string

variables (= time-discrete states) that are con-

stant inside each interval ti ≤ t < ti+1. In other

words, m(t) changes value only at events. This

means, m(t) = m(ti), for ti ≤ t < ti+1.

At every event instant ti, variables might be discon-

tinuous and therefore have two values at this time

instant, the ”left” and the ”right” limit. x(ti), m(ti) are

always defined to be the right limit at ti, whereas

x¯ (ti), m¯ (ti) are defined to be the “left” limit at ti,

e.g.: m¯ (ti) = m(ti-1). In the following figure, the two

variable types are visualized:

Figure 4: Piecewise-continuous states of an

FMU: time-continuous (x) and time-discrete (m).

An event instant ti is defined by one of the following

conditions that gives the smallest time instant:

1. At a predefined time instant ti = Tnext(ti-1) that was

defined at the previous event instant ti-1 either by

the FMU, or by the environment of the FMU due

to a discontinuous change of an input signal uj at

ti. Such an event is called time event.

2. At a time instant, where an event indicator zj(t)

changes its domain from zj > 0 to zj ≤ 0 or vice

versa (see Figure 5 below). More precisely: An

event t = ti occurs at the smallest time instant

“min t” with t > ti-1 where “(zj(t) > 0) ≠ (zj(ti-1) >

time t

t0 t1
t2

x(t)

m(t)

m
–
(t1) m(t1)

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

108

0)”. Such an event is called state event. All event

indicators are piecewise continuous and are col-

lected together in one vector of real numbers

z(t).

Figure 5: An event occurs when the event indica-

tor changes its domain from z > 0 to z ≤ 0 or vice

versa.

3. At every completed step of an integrator,

fmiCompletedIntegratorStep must be called.

An event occurs at this time instant, if indicated

by the return argument callEventUpdate. Such

an event is called step event. Step events are,

e.g., used to dynamically change the (continu-

ous) states of a model, because the previous

states are no longer suited numerically.

An event is always triggered from the environment

in which the FMU is called, so it is not triggered in-

side the FMU. A model (FMU) may have additional

variables p, u, y, v. These symbols characterize sets

of real integer, logical, and string variables, respec-

tively. The non-real variables change their values

only at events. For example, this means that uj(t) =

uj(ti), for ti ≤ t < ti+1, if uj is an integer, logical or

string variable. If uj is a real variable, it is either a

continuous function of time inside this interval or it

is constant in this interval (= time-discrete). “p” are

parameters (data that is constant during the simula-

tion), “u” are inputs (signals provided from the envi-

ronment), “y” are outputs (signals provided to the

environment that can be used as inputs to other sub-

systems), and “v” are internal variables that are not

used in connections, but are only exposed by the

model to inspect results. Typically, there are a few

inputs u and outputs y (say 10), and many internal

variables v (say 100000).

3.2 Caching of Variables

Depending on the situation, different variables need

to be computed. In order to be efficient, FMI is de-

signed so that the interface requires only the compu-

tation of variables that are needed in the present con-

text. For example, during the iteration of an integra-

tor step, only the state derivatives need to be com-

puted provided the output of a model is not connect-

ed. It might be that at the same time instant other

variables are needed. For example, if an integrator

step is completed, the event indicator functions need

to be computed as well. For efficiency it is then im-

portant that in the call to compute the event indicator

functions, the state derivatives are not newly com-

puted, if they have been computed already at the pre-

sent time instant. This means, the state derivatives

shall be reused from the previous call. This feature is

called “caching of variables”.

Caching requires that the model evaluation can

detect when the input arguments, like time or states,

have changed. This is achieved by setting them ex-

plicitly with a function call since every such function

call signals precisely a change of the corresponding

variables. A typical call sequence to compute the

derivatives

(, , ,)t=x f x u p&

as function of states, inputs, and parameters is there-

fore:

// Instantiate FMU

// ("M" is the MODEL_IDENTIFIER)

m = M_fmiInstantiateModel("m", ...);

 ...

// set parameters

M_fmiSetReal(m, id_p, np, p);

// initialize instance

M_fmiInitialize(m, ...);

 ...

// set time

M_fmiSetTime(m, time);

 ...

// set inputs

M_fmiSetReal(m, id_u, nu, u);

 ...

// set states

M_fmiSetContinuousStates(m, x, nx);

 ...

// get state derivatives

M_fmiGetDerivatives(m, der_x, nx);

To obtain the FMU outputs:

),p,u,x(fy t=

as function of states, inputs, and parameters, the en-

vironment would call:

...

// get outputs

M_fmiGetReal(m, id_y, ny, y);

...

time

t0 t1 t2

z(t
z > 0

z ≤ 0

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

109

The FMU decides internally which part of the model

code is evaluated in the present context.

4 FMI for Co-Simulation

Co-simulation is a simulation technique for coupled

time-continuous and time-discrete systems that ex-

ploits the modular structure of coupled problems in

all stages of the simulation process (pre-processing,

time integration, post-processing).

The data exchange between subsystems is re-

stricted to discrete communication points. In the time

between two communication points, the subsystems

are solved independently from each other by their

individual solver. Master algorithms control the data

exchange between subsystems and the synchroniza-

tion of all slave simulation solvers (slaves).

Examples for co-simulation techniques are the

distributed simulation of heterogeneous systems,

partitioning and parallelization of large systems,

multi rate integration, and hardware-in-the-loop sim-

ulations.

A simulation tool can be coupled if it is able to

communicate data during simulation at certain time

points (communication points, tCi), see Figure 6.

Figure 6: Coupleable simulation tool

4.1 Master Slave Principle

Instead of coupling the simulation tools directly, it is

assumed that all communication is handled via a

master (Figure 7).

Figure 7: Three tools are controlled by one master

The master plays an essential role in controlling the

coupled simulation. Besides distribution of commu-

nication data, the master analyses the connection

graph, chooses a suitable simulation algorithm and

controls the simulation according to that algorithm.

The slaves are the simulation tools, which are pre-

pared to simulate their subtask. The slaves are able to

communicate data, execute control commands and

return status information.

4.2 Interface

The FMI for Co-Simulation defines similar functions

like FMI for Model Exchange for creation, initializa-

tion, termination, and destruction of the slaves. In

order to allow distributed scenarios, the co-

simulation functions provide some more arguments.

E.g. the function fmiInstantiateSlave(...) pro-

vides the string argument mimeType which defines

the tool which is needed to compute the FMU in a

tool based co-simulation scenario (see section 4.3).

For data exchange, the fmiGet…/fmiSet… func-

tions of FMI for Model Exchange are used here too.

In order to allow higher order extrapola-

tion/interpolation of continuous inputs/outputs addi-

tional Get/Set functions are defined for input/output

derivatives.

The computation of a communication time step is

initiated by the call of fmiDoStep(...). The func-

tion arguments are the current communication time

instance, the communication step size, and a flag that

indicates whether the previous communication step

was accepted by the master and a new communica-

tion step is started. Depending on the internal state of

the slave and the previous call of fmiDoStep(...),

the slave has to decide which action is to be done

before the step is computed. E.g. if a communication

time step is repeated, the last taken step is to be dis-

carded.

Using this interface function, different co-

simulation algorithms are possible:

• Constant and variable communication step

sizes.

• Straightforward methods without rejecting

and repetition of communication steps.

• Sophisticated methods with iterative repeti-

tion of communication steps.

4.3 Use Cases

The FMI for Co-Simulation standard can be used to

support different usage scenarios. The simplest one

is shown in the following figure (in order to keep it

simple, only one slave is drawn).

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

110

Figure 8: Simple stand alone use case.

Master and slave are running in the same process.

The slave contains model and solver, no additional

tool is needed.

The next use case is carried out on different pro-

cesses. A complete simulation tool acts as slave. In

this case, the FMI is implemented by a simulation

tool dependent wrapper which communicates by a

(proprietary) interface with the simulation tool.

Figure 9: Slave is a simulation tool

The green and orange interfaces can be inter-process

communication technologies like COM/DCOM,

CORBA, Windows message based interfaces or sig-

nals and events. The co-simulation master does not

notice the usage of an FMI wrapper here. It still uti-

lizes only the FMI for Co-Simulation.

Figure 10 demonstrates a distributed co-

simulation scenario.

Figure 10: Distributed co-simulation scenario.

The slave (which can be a simulation tool as in Fig-

ure 9 too) and the master run on different computers.

The data exchange is handled by a communication

layer which is implemented by a special FMI wrap-

per. Neither the master nor the slave notice the tech-

nology used by the communication layer. Both uti-

lize the FMI for Co-Simulation only.

5 Comparing Model-Exchange

Approaches

As shown in section 1, there are multiple, proprietary

approaches for exchanging executable models. Here

we discuss the differences with respect to the follow-

ing properties:

1. Interface coverage:

a) Model representation as ordinary differential

equation (ODE) or differential algebraic

equation (DAE).

b) Does the API support querying Jacobian ma-

trix information?

c) Is it possible to transfer structural data via

the API? If information about algebraic de-

pendencies between outputs and inputs are

supplied, the importing tool is able to detect

and handle algebraic loops automatically.

2. Event handling: Does the API support transport-

ing event handling information between model

and simulation environment for

a) Time events?

b) State events?

c) Step events?

d) Event iteration?

3. Step-size control: Does the API support

a) Rejecting of time step by the model?

b) Variable step sizes?

4. Efficiency: Does the API support

a) efficient computing

(e.g. allowing value cashing)?

b) efficient result storage

(e.g. via alias mechanism and storing large

numbers of internal variables)?

c) efficient argument handling

(data copy required)?

5. Programming languages: Which programming

languages are supported by the API

6. Documentation: Is documentation sufficient for

a) using the APIs data types?

b) building models with this API (export)?

c) using models with this API in other simula-

tion environments (import)?

d) each models variables (inputs, outputs, states

etc.)?

7. Miscellaneous:

a) Interoperability: which platforms are sup-

ported?

b) Does changing the (version of the) simula-

tion environment require model re-

compilation?

c) Compact and flexible file format, that allows

the inclusion of additional data.

8. Status of API:

a) License?

b) Developed and maintained by only one tool

vendor?

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

111

1. Silver supports only exchanging models includ-

ing their own solvers, communicating at project-

dependent, equidistant time intervals.

2. DAE support is planned for one of the next ver-

sions.

3. Planned for one of the next FMI versions.

4. Loops are detected and can be handled using

additional user intervention on the model.

5. API supports time events, but definition is based

on real variables which could lead to inexact re-

sults.

6. Efficient and numerically robust time event han-

dling is planned for FMI Version 2.0

7. Caching mechanism is possible, but the compo-

nent itself has to observe which data have

changed since the last call.

8. API is not designed to transfer more data than

inputs, outputs, and states. Internal variables are

not published by the external model.

9. The component can be provided as binary for

one operating system and/or as source code.

10. The model source code can be part of the FMU

archive file.

11. Recompilation is only needed for major version

changes.

 Property Simulink:

S-Function

ADAMS:

user routines

Silver:

Silver API

SIMPACK:

user routines

SimulationX:

EMI
FMI for Model

Exchange

1a Representation ODE ODE Co-Sim
1
 ODE/DAE ODE ODE

2

1b Jacobian support no no no no no no
3

1c Structural data yes no no no
4

yes yes

1a Time events yes
5

no no yes

yes
5

yes
5,6

1b State events yes no no yes yes yes

2c Step events yes no no yes yes yes

2d Event iteration no no no yes yes yes

3a Discard time step no no no no yes yes

3b Variable step size yes yes no yes yes yes

4a Eff. computing no
7

no
7
 no

7
no

7
no

7
yes

4b Eff. Result storage no
8

no no no
8

no
8

yes

4c Data copy required no no no no no yes

5 API language C, C++,

Fortran

C, Fortran C, Python C, Fortran C C

6a Doc API data types yes yes yes yes yes yes

6b Doc model generation yes yes yes yes yes yes

6c Doc model use no no yes yes yes yes

6d Doc model variables no yes no no yes

7a Platform support independent
9

Windows,

Linux

Windows Windows,

UNIX

Windows independent.
9,10

7b Recompilation yes yes no yes
11

 yes no

7c Compact file format no no no no no yes

8a Legal status proprietary proprietary open proprietary open open

8b Proprietary yes yes yes yes yes no

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

112

6 Tools supporting FMI

The following tools are currently supporting the FMI

version 1.0 (for an up-to-date list see www.functional-

mockup-interface.org/tools.html):

• Dymola 7.4 (FMU export and import,

www.3ds.com/products/catia/portfolio/dymola),

• JModelica.org 1.3 (FMU import,

www.jmodelica.org),

• Silver 2.0 (FMU import,

www.qtronic.com/en/silver.html),

• SimulationX 3.4 (FMU import and export, FMU

co-simulation, www.simulationx.com, see [10])

• Simulink (FMU export by Dymola 7.4

via Real-Time Workshop,

www.mathworks.com/products/simulink),

• Fraunhofer Co-Simulation Master (see [12])

The respective vendors plan to support FMI with

their following tools:

• AMESim (FMU export and import,
www.lmsintl.com/imagine-amesim-1-d-multi-

domain-system-simulation),

• EXITE, EXITE ACE (FMU export and import,

www.extessy.com),

• OpenModelica (FMU export and import;

a prototype for FMU export is available,

www.openmodelica.org),

• SIMPACK (FMU import, FMU co-simulation,

www.simpack.com),

• TISC (FMU import, www.tlk-thermo.com).

• MpCCI (FMU import and export,

www.mpcci.de)

7 Conclusions

The FMI eases the model exchange and co-

simulation between different tools. It has a high po-

tential being widely accepted in the CAE world:

• It was initiated, organized and pushed by Daim-

ler to significantly improve the exchange of sim-

ulation models between suppliers and OEMs.

• It was defined in close collaboration of different

tool vendors within the MODELISAR project.

• Industrial users were involved in the proof of

concept within MODELSAR.

• FMI can already be used with several Modelica

tools, Simulink, multi-body and other tools.

• In the ITEA2 project OPENPROD [10], FMI

extensions are currently developed with respect

to optimization applications.

Current priorities of the further development inside

MODELISAR are:

• Unification and harmonization of FMI for Model

Exchange and Co-Simulation

• Improved handling of time events.

• Improved support for FMUs in embedded

systems.

• Efficient interface to Jacobian matrices.

8 Acknowledgements

This work is supported by the German BMBF

(Förderkennzeichen: 01IS08002) and the Swedish

VINNOVA (funding number: 2008-02291) within

the ITEA2 MODELISAR project

(http://www.itea2.org/public/project_leaflets/MODE

LISAR_profile_oct-08.pdf). The authors appreciate

the partial funding of this work.

9 References

[1] Modelica Association: Modelica – A Uni-

fied Object-Oriented Language for Physi-

cal Systems Modeling. Language Specifi-
cation, Version 3.2. March 24, 2010. Down-

load:

https://www.modelica.org/documents/Modeli

caSpec32.pdf

[2] VHDL-AMS: IEEE Std 1076.1-2007. Nov.

15, 2007. VHDL-AMS web page:

http://www.vhdl.org/vhdl-ams/

[3] The Mathworks: Manual: Writing

S-Functions, 2002

[4] Using ADAMS/Solver Subroutines. Me-

chanical Dynamics, Inc., 1998.

[5] A. Junghanns: Virtual integration of Au-

tomotive Hard- and Software with Silver.

ITI-Symposium, 24.-25.11.2010, Dresden.

[6] http://www.simpack.com

[7] Blochwitz T., Kurzbach G., Neidhold T. An

External Model Interface for Modelica.

6th International Modelica Conference, Bie-

lefeld 2008.

www.modelica.org/events/modelica2008/Pro

ceedings/sessions/session5f.pdf

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

113

[8] MODELISAR Consortium: Functional

Mock-up Interface for Model Exchange.

Version 1.0, www.functional-mockup-

interface.org

[9] MODELISAR Consortium: Functional

Mock-up Interface for Co-Simulation.

Version 1.0, October 2010, www.functional-

mockup-interface.org

[10] OPENPROD - Open Model-Driven

Whole-ProductDevelopment and Simula-
tion Environment, www.openprod.org

[11] Ch. Noll, T. Blochwitz, Th. Neidhold, Ch.

Kehrer: Implementation of Modelisar

Functional Mock-up Interfaces in Simula-

tionX. 8
th
 International Modelica Confer-

ence. Dresden 2011.

[12] J. Bastian, Ch. Clauß, S. Wolf, P. Schneider:

Master for Co-Simulation Using FMI. 8
th

International Modelica Conference. Dresden

2011.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

114

