

OMWeb – Virtual Web-based Remote Laboratory for Modelica in
Engineering Courses

Mohsen Torabzadeh-Tari, Zoheb Muhammed Hossain, Peter Fritzson, Thomas Richter1
PELAB – Programming Environment Lab, Dept. Computer Science

Linköping University, SE-581 83 Linköping, Sweden
{mohto, x10muhho, petfr }@ida.liu.se

1Rechenzentrum, Stuttgart University, Germany
1richter@rus.uni-stuttgart.de

Abstract
In this paper we present a web-based teaching envi-
ronment, OMWeb, useful both in engineering courses
as well as for teaching programming languages. OM-
Web can be an alternative or complementary tool to the
traditional teaching method with lecturing and reading
textbooks.

Experience shows that using such interactive plat-
forms will lead to more engagement from the students.
With such a solution the student can focus more on the
important learning goals. The student needs only to
open a web browser and start writing programs in order
to use the tool. The OMWeb server contains all the
needed software. In each interaction, the server returns
results to the user. This solution allows each student to
work at his/her own speed, at any time, and remotely,
enhancing the individual learning.

OMWeb is part of the open source platform Open-
Modelica. It can be applied to several areas in natural
science, such as physics, chemistry, biology, biome-
chanics etc., where phenomena can be illustrated by
dynamic simulations.

Keywords: OMWeb, OpenModelica, Virtual, Web-
based

1 Introduction
In this paper we introduce a learning environment for
web-based modern object-oriented equation-based
modeling and simulation. This environment, called
OMWeb, is useful both in programming language
teaching and in engineering courses. The primary ap-
plication shown in this paper is teaching the Modelica
language [1]. However, the concept can also be adapted
to other languages. In this way the student has an inter-
active common platform for learning programming
languages as well as learning through virtual experi-
ments with physical phenomena.

This kind of interactive course allows experimenta-
tion and dynamic simulation as well as execution of
computer programs. As a part of the open source plat-
form OpenModelica, [2], this makes it possible to inte-
grate applied sciences in physics, human biology [3],
mathematics, and computer science.

2 OpenModelica Platform
In 2002 an initiative was taken by the PELAB group at
Linköping University to develop an open source plat-
form for the Modelica language, to be called OpenMo-
delica [2],[3] and [10]. The OpenModelica effort has
expanded, and is in recent years also supported by the
Open Source Modelica Consortium.

The OpenModelica environment, shown in Fig. 1,
consists of several interconnected subsystems. The de-
bugger currently supports debugging of an extended
algorithmic subset of Modelica, MetaModelica.

Modelica
Compiler

Interactive
session handler

Execution

Graphical Model
Editor/Browser

Textual
Model Editor

Modelica
Debugger

DrModelica
NoteBook

Model Editor

Eclipse Plugin
Editor/Browser

OMShell

 Figure 1. Illustration of communication between different
parts of the OpenModelica platform.

The OpenModelica Notebook editor, OMNotebook
(see Section 5.3), provides an active electronic note-
book including an editor. The notebook is active in the
sense that models inside the book can be changed and
executed, it is not just a passive textbook or html page.
This is one of the first open source efforts that makes it
possible to create interactive books for educational pur-
poses in general, and more specifically for teaching and

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

153

mailto:%7D@ida.liu.se�

learning programming. Traditional teaching methods
with lecturing and reading a textbook are often too pas-
sive and don’t engage the student as much.

3 OMWeb architecture
The OMWeb architecture is composed of three de-
coupled set of entities namely the Teacher and/or Stu-
dent Client (TC and SC), the E-learning Community
Server and the Computation Client, similar to the
NumLab architecture (Section 5.1).

The three layers have been developed in different
programming languages; the clients are developed in
Java, the E-learning Community Server (ECS) is devel-
oped in Ruby On Rails and for the Computation Client
(CC) C++ is used, see Fig 2.

Figure 2. OMWeb architecture

Communication among the modules is done following
the REpresentational State Transfer (REST) architec-
ture; which uses Hyper Text Transfer Protocol, HTTP
as the carrier of messages across the network. The
HTTP has four methods for accessing and updating the
resources - GET, POST, PUT and DELETE.

Moreover, JavaScript Object Notation (JSON) is
used to format the data for communication. One reson
behind the choice of JSON format is that it is easy for
the humans to read and write as well as for the ma-
chines to parse the data.

4 OMWEb – OpenModelica Virtual
Web-based Learning Platform

In this Section the different parts of OMWeb are ex-
plained in detail.

OMWeb provides a programming environment
within a web browser. This facilitates for the student to
learn and participate in courses, independent of time
and place. The availability in a standard web browser

makes it easier to get started with than if you have to
install special software packages.

The Student Client and the Computation Client are
both active entities in the system, whereas ECS is the
passive entity. In detail, the ECS never initiates a
communication, rather it only responds to occurring
events.

On the other hand the end clients are the ones who
are always polling for Solution or Result messages
from the Solution and Result Queue of the ECS as soon
as they finish POST-ing a message to the ECS. The
communication diagram in Fig 6 reflects a better illu-
stration of the message flow in the System.

4.1 Frontend: Teacher Client, TC

The TC [13] is the web frontend of the system and is
specially developed for a teacher to post his/hers exer-
cises or assignments intended for the students to solve
and get evaluated.

Fig. 3 illustrates the Graphical User Interface of this
client. The tab "Exercise Generator " has three fields
for entry; the name of the exercise, the description of
the exercise and the text area takes in the program code.

The teacher then clicks on the "Send Exercise" but-
ton; this action will first generate the JSON script of the
corresponding exercise by filling in the "value" tag of
the respective "identifier". Later, it sends the JSON
string using the HTTP POST which posts the exercise
to the ECS.

Figure 3. Teacher Client

4.2 Frontend: Student Client, SC

The SC [14] is a web frontend designed for the students
who are to solve the exercises posted by the TC, see
Fig 4.

A student first opens the web applet and clicks on
the drop down box of the client user interface that is

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

154

labeled "Fetch Exercise" to retrieve the list of exercises
posted by their teacher. The student then selects one of
the exercises from the list and the exercise is shown in
the client interface.

The exercise may contain one or more sections la-
beled as Editable and Non-editable where the students
can edit the code of the Editable section(s) only.

Later, when the student is done with solving the
program, the button labeled "Execute" is pressed, this
will first generate the JSON string for the Solution of
the exercise and then will send over the network to the
ECS using the HTTP POST method.

As soon as sending of the solution is done the SC
initiates to poll for the Result of the Solution from the
ECS.

The client continues to poll until it receives the Re-
sult JSON string from the ECS. On receiving the Result
the JSON string is parsed and the result data is shown
on the output section of the client interface.

Figure 4. Student Client

4.3 Middleware, E-learning Community Serv-
er, ECS

The ECS module works as the middleware between the
frontend client and the backend client (server) in order
to forward the requests back and forth.

The ECS is composed of three internal modules
which are used to manage the messages of the clients:
Community, Membership and Resources.

Figure 5. ECS Community

In order for the clients at both ends to communicate
with each other they are required to be first registered
to the ECS with a unique Membership ID where the
membership is granted by the administrator of the ECS.

Next, the Members are assigned to a common
Community (Fig. 5), this is required to route the mes-
sages of the same community members back and forth.

 For example let us assume that there are four fron-
tend SCs and two backend Computation Clients with
membership IDs StC_Pelab_01, StC_Rts_01,
StC_Adit_01, StC_Eslab_01 and CtC_IDA_01,
CtC_IDA02 respectively. Also assume that there are
two communities in the ECS Comm_IDA_01 and
Comm_IDA_02.

Let us also assume that client StC_Pelab_01,
StC_Rts_01 and CtC_IDA_01 are members of the
Comm_IDA_01 community and that clients
StC_Adit_01, StC_Eslab_01 and CtC_IDA_02 are
members of the Comm_IDA_02 community.

Now, the messages sent by the clients
StC_Pelab_01 and StC_Rts_01 can be processed by the
backend client CtC_IDA_01 only and messages sent by
the StC_Adit_01, StC_Eslab_01 would be processed by
the CtC_IDA_02 only.

This kind of routing guarantees that the messages
are received by the intended entities only and hence
eliminates any misrouting possibilities.

The ECS also maintains a database to store the ex-
ercises posted by the teachers using an authentic TC.
The exercises are given an unique ID in order to be
identified by the font/backend clients while generating
the Solutions and the Results, further about this is dis-
cussed in later segment.

To manage the messages from and to the clients two
separate queues are maintained. These queues are event
driven queues supplied by the Ruby On Rails architec-
ture. An event handler takes care of the specific events
generated by the incoming messages at the ECS. When

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

155

the ECS receives an incoming message from the Stu-
dent Client containing the HTTP method POST, the
event handler routes the message to the Solution Queue
and when the ECS receives an incoming message from
the Computation Client with the HTTP method POST,
it is put to the Result Queue.

Similarly, when the incoming message from the
Student Client and Computation Client is a HTTP
GET, the messages are retrieved from the Result and
Solution Queue respectively and forwarded to the
clients who initiated the GET request.

4.4 Backend: Computation Client, CC

The CC is responsible for executing the Solutions sent
by the SC, evaluate the correctness of the program code
and send the Result back to the ECS.

As we have mentioned in the previous section, the
clients who are member of the same community can
communicate between themselves; so, the computation
client CtC01 could only fetch, execute and evaluate the
result that was sent by the Student Client StC01.

Figure 6. Sequence of message flow

The CC is developed in C++ on a Linux platform. It
adopts Sandbox technique to limit the program instance
accesses, e.g. only the Linux commands available in-
side the Sandbox. When the CC fetches a Solution
message from the Solution Queue of the ECS it carries
out several sequential tasks in order to evaluate the
program code. First, it parses the solution JSON string
and extracts the respective exercise of the solution from
the ECS. Then the core solution content is extracted

from the JSON string and is merged to the "editable"
section of the exercise; which makes it a complete pro-
gram. A file with the program's name is then created
and the generated program code is copied and pasted
into it.

Next, the type of compiler that should be used to
compile the program is extracted from the JSON string
with the respective flags and the program file is com-
piled, in our case it is the Modelica compiler. If there is
any error during the compilation, a result JSON string
is generated with the compiler error message and is
posted to the ECS Result Queue.

Otherwise, on successful compilation a Makefile is
produced which is then executed. The execution of the
Makefile creates an executable, it is then executed and
on successful execution, a .plt file is created.

The content of the .plt file is then pasted in the re-
sult JSON string and posted back to the ECS Result
Queue, eventually which is polled by the specific Stu-
dent Client.

5 Related Work
A brief survey is presented in this section covering
some existing web-based and interactive learning plat-
forms.

5.1 NumLab Architecture

At University of Stuttgart a web-based virtual envi-
ronment NumLab [7] is available for computerized ma-
thematical calculations including related subjects. The
idea is to provide a web-based teaching environment
where the students can focus on the numerical and ma-
thematical topics without having to install any software
packages.

NumLab is built according to the client-server ar-
chitecture with a Java-applet in the front-end, a mid-
dleware layer E-learning Community Server, and a
back-end client containing all the involved software
packages, [9].

For communication between the ECS server and the
other parts of the system REST, Representational State
Transfer, is used which simplifies the communication
in web-based distributed systems. The data representa-
tion and exchange format JSON, JavaScript Object No-
tation is used, [8].

5.2 Intelligent Tutoring System
There are many web-based intelligent tutoring systems
that are worth to mention. For example the ELM-ART
used for teaching the Lisp language [12] or a plugable
web-based tutoring system in [11].

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

156

5.3 DrModelica

The OMNotebook subsystem in OpenModelica is cur-
rently being used for course material (DrModelica) in
teaching the Modelica language and equation-based
object-oriented modeling and simulation, (see Fig 7).

 It can easily be adapted for use with electronic
books teaching other programming languages. OMNo-
tebook can also easily be used in other areas such as
physics, biology chemistry, biomechanics etc., where
phenomena can be illustrated by dynamic simulations
within the book.

Figure 7. Bouncing ball example with movement anima-

tion in OMNotebook

5.4 OMScheme

With OMScheme the OMNotebook paradigm is gene-
ralized towards other programming languages than
Modelica, e.g the Scheme programming language, [6].
An implementation of the factorial function using OM-
Scheme is shown in Fig 8.

Figure 8. Factorial function illustrated in OM-

Scheme

5.5 DrControl
DrControl, Fig 9, is a recently developed active elec-
tronic book course material based on OMNotebook for
teaching control theory and modeling with Modelica.

It contains explanations about basic concepts of
control theory along with Modelica exercises. Observer
models, Kalman filters, and linearization of non-linear
problems are some of the topics in the course used in
control of a pendulum, a DC motor, and a tank system
model among others.

Figure 9. DrControl for teaching control theory concepts.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

157

6 Future Work
The OMWeb platform presented in this paper is pure-
text based. Integrating the graphical connection editor,
OMEdit into OMWeb would be one of the desired next
mile-stone. Also a 3D visualization and syntax hig-
hlighting should be supported for making the environ-
ment more user friendly.

Figure 10. Bouncing Ball illustrated in OMWeb with

syntax highlighting aid and plotting.

7 Conclusions
In this work we extended the basic idea of an active
web-based teaching environment for educational pur-
poses to handle multiple programming languages.

An early prototype is being developed for handling
the Scheme and Modelica languages. OMWeb takes the
virtual remote learning environment idea further by
introducing OpenModelica platform within NumLab
and widens the applicability to a wide range of engi-
neering courses by introducing Modelica language in
those courses.

The benefits and opportunities offered by a web-
based solution is natural to access a vast amount of
knowledge and information but also the ability for the
student to work at his or hers own speed which en-
hances the learning process. Furthermore, the student
activity is encouraged more by the interactivity and
ease-of-use within an easy-to-use web-based interface

8 Acknowledgements
This work has been supported by EU project Lila and
Vinnova in the ITEA2 OPENPROD project. The Open
Source Modelica Consortium supports the OpenMode-
lica work.

References
[1] Modelica Association. The Modelica Language

Specification Version 3.1, May 2009.
www.modelica.org

[2] Peter Fritzson et al OpenModelica Users Guide
and OpenModelica System Documentation,
www.ida.liu.se/projects/OpenModelica, 2009.

[3] Anders Sandholm, Peter Fritzson, Varun Arora,
Scott Delp, Göran Petersson, and Jessica Rose.
The Gait E-Book - Development of Effective Par-
ticipatory Learning using Simulation and Active
Electronic Books. In Proceedings of the 11th Me-
diterranean Conference on Medical and Biologi-
cal Engineering and Computing (Medicon'2007),
Ljubljana, Slovenia, June 26 - 30, 2007.

[4] Bernhard Bachmann, Peter Aronsson, and Peter
Fritzson. “Robust Initialization of Differential
Algebraic Equations” In Proc. of (Modelica ’06),
Vienna, Austria, 2006.

[5] Mohsen Torabzadeh-Tari, Peter Fritzson, Adrian
Pop, and Martin Sjölund. Generalization of an
Active Electronic Notebook for Learning Mul-
tiple Programming Languages, IEEE EDUCON
Education Engineering 2010 – The Future of
Global Learning Engineering Education, Madrid,
Spain, 2010

[6] Anders Fernström, Ingemar Axelsson, Peter
Fritzson, Anders Sandholm, Adrian Pop. OMNo-
tebook – Interactive WYSIWYG Book Software
for Teaching Programming. In Proc. of the Work-
shop on Developing Computer Science Education
– How Can It Be Done?. Linköping University,
Dept. Computer & Inf. Science, Linköping, Swe-
den, March 10, 2006

[7] Bankolé Adjibadji, Stephan Rudolf , and Thomas
Richter. Numerische Mathematik im Browser:
Das Virtuelle Programmierlabor ViP, Stuttgart
University, Rechenzentrum, Feb 2010
http://isblab.rus.uni-
stuttgart.de:7070/numlab/exercises

[8] Douglas Crockford. Introducing JSON, URL:
http://json.org. Retrieved March 25, 2010

[9] Heiko Bernloehr. E-learning Community Server,
URL: http://freeit.de/ecsa/index.html, Retrieved
March 25, 2010

[10] Peter Fritzson, Peter Aronsson, Håkan Lundvall,
Kaj Nyström, Adrian Pop, Levon Saldamli, and

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

158

http://isblab.rus.uni-stuttgart.de:7070/numlab/exercises�
http://isblab.rus.uni-stuttgart.de:7070/numlab/exercises�
http://json.org/�
http://freeit.de/ecsa/index.html�

David Broman. The OpenModelica Modeling,
Simulation, and Software Development Environ-
ment. In Simulation News Europe, 44/45, De-
cember 2005. See also:
http://www.openmodelica.org.

[11] Ang Yang, Kinshuk, Ashok Patel, A Plug-able
Web-based Intelligent Tutoring System, Confe-
rence on Information Systems ECIS 2002,
Gdansk, Poland

[12] Gerhard Weber, Peter Brusilovsky, ELM-ART:
An Adaptive Versatile System for Web-based In-
struction, International Journal of Artificial Intel-
ligence in Education, 2001, Vol 12, pp 351-384

[13] http://omweb.ida.liu.se/TeacherClient

[14] http://omweb.ida.liu.se/StudentClient

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

159

http://www.openmodelica.org/�

	1 Introduction
	2 OpenModelica Platform
	3 OMWeb architecture
	4 OMWEb – OpenModelica Virtual Web-based Learning Platform
	4.1 Frontend: Teacher Client, TC
	4.2 Frontend: Student Client, SC
	4.3 Middleware, E-learning Community Server, ECS
	4.4 Backend: Computation Client, CC

	5 Related Work
	5.1 NumLab Architecture
	5.2 Intelligent Tutoring System
	5.3 DrModelica
	5.4 OMScheme
	5.5 DrControl

	6 Future Work
	7 Conclusions
	8 Acknowledgements

