
An Interface to the FTire Tire Model

Volker Beuter
Kämmerer AG

Wettergasse 18, D-35037 Marburg
v.beuter@kaemmerer-group.com

Abstract

The FTire tire model [2] is a well established model for
calculating tire forces and torques, especially if the in-
ternal dynamics of the tire and higher frequencies have
to be considered. This tire model is available for most
multi-body simulation programs like ADAMS, Sim-
Pack, RecurDyn and for MATLAB. But up to now it
was not available in the Modelica world. As the FTire
model is only available as binary libraries it could not
be ported to a pure Modelica code, but an interface to
the existing implementation had to be written. This
paper describes the implementation of FTire package
making FTire tires available in Modelica (so this pa-
per is rather about interfacing than about tire model-
ing). The interface involves much more than just a set
of Modelica wrappers to C functions: Most callable
FTire functions are impure, some having only side
effects, no return values. Some considerations have
to be taken to ensure the FTire functions are called
just often enough. Above this basic Modelica in-
terface layer there is an embedding into the Model-

ica.Mechanics.MultiBody framework with some
features beyond FTire itself like non-standard orien-
tation or common definitions for several tires.

The moreover there are some related packages for
special interests: The FTireVDL demonstrates the
compatibility of the FTire interface to the Vehicle-

Dynamics package [5] from Modelon. Users of the
Visualization package [4] from DLR-RM can ap-
ply the FTireSimVis package to animate multi-body
models with FTire wheels with the SimVis program,
exceeding the animation capabilities of Dymola.

Keywords: FTire tire model; interface; MultiBody;
visualization

1 Introduction

Part of Kämmerer’s involvement in the Eurosyslib
project [13] was the development of interfaces to ex-

isting tire models. As the FTire libraries, headers etc.
were publicly available from the Internet we decided
to start with the FTire model. In order to prevent du-
plicate implementations there was an agreement with
Modelon not to implement tire models that had already
been implemented (as pure Modelica code) into their
VehicleDynamics library.

There had been plans to implement an interface to
the RMOD-K 7 tire model by Prof. Oertel, FH Bran-
denburg, Germany as well. Mr Oertel provided use-
ful ideas concerning the anticipated problems caused
by the fact that integrating a tire model equipped with
its own integrator into a simulation environment al-
ways means co-simulation. On his suggestion we im-
plemented a two masses oscillator model, where one
oscillator is modeled in pure Modelica the other by
an external C function solving its differential equation
by means of a simple explicit Euler integrator. But
finally Mr Oertel decided to implement a Modelica in-
terface to RMOD-K 7 on its own some day. Mean-
while there was no time any more to start interfacing
to another tire model so we concentrated on the inter-
face to FTire.

2 The FTire Tire Model

The FTire tire model was developed by Prof. M.
Gipser, FH Esslingen, Germany and is now distributed
by his company COSIN scientific software, Munich
[2].

The FTire tire model is available as a stand alone
simulator and for most multi-body simulation pro-
grams.

The name "FTire" means Flexible Ring Tire Model.
A tire is conceptually considered as a flexible ring of
masses connected by springs in a certain pattern.

But this work is not intended to be an introduction
into the FTire model. For the matters concerning here,
it is only important that a tire mainly interacts with the
rest of the model by means of a 3D force and a 3D

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011 

304



torque applied to a certain point in the model and de-
pends on the motion states (position, orientation, ve-
locity and angular velocity) of the wheel center. All
the internal structure of the FTire model we can forget
here (with the exception of the meaning of some op-
tional additional outputs). We do not build the internal
structure of the FTire Flexible Ring model by means of
the Modelica.Mechanics.MultiBody package, but
use the FTire libraries as a set of black boxes to calcu-
late tire forces and some other auxiliary tasks.

It is also important to note that the Modelica inter-
face to FTire does not fit into a decomposition frame-
work of calculating a contact point first, than determin-
ing velocities and slip quantities, calculating normal
forces and finally other force components [1]. Firstly
FTire does not follow this approach; calculations are
not based on a theoretical contact point. And even if
FTire did so, it is only possible to embed calculations
as a whole.

2.1 The FTire Data Files

All the parameters describing tire road interaction in
the FTire tire model are in principle stored in two files:

• All tire parameters are stored in a tire property
file (default extension .tir).

• The road geometry and properties are stored in
a road data file (default extension .rdf). Some
road data file types also refer to further files con-
taining the road geometry.

This means most parameters concerning FTire tires
will not directly be provided in the Modelica model
but only those two files containing the parameters.

3 The COSIN Tire Interface (CTI)
and the FTire Tools

There are several options to access the FTire tire force
calculation from a third party software like Dymola in
our case. The most favorite way is the COSIN Tire In-
terface (CTI) [3]. It can be used from both FORTRAN
and C code, here we use the C versions of the routines.
The CTI is available for several operating systems, but
we are currently only concerned with the implementa-
tion for 32 Bit Windows. The CTI consists of a header
file, a small static library (which will be linked to the
dymosim executable) and a dynamic link library. The
static library calls the FTire calculation routines in the
.dll.

This is all that is needed to access FTire tires from
Dymola in Modelica models. But there are some con-
venient programs from COSIN related to the FTire tire
model also used by this interface. The first one, the an-
imation program COSIN/graphics consists just of one
executable file and directly comes with the CTI.

The moreover there is a whole suite of additional
programs, collectively called the FTire tools. Here we
especially need the FTire/editor: In principle a .tir

file is a text file which can be edited with any text ed-
itor. But there are two reasons why it is advisable to
use FTire/editor:

• FTire/editor provides all appropriate selections.
Key words do not have to be memorized and er-
roneous inputs are reduced.

• In order to speed up simulations FTire does not
directly use the input data provided by the user,
but does some preprocessing. This preprocessed
data is binary and is appended encoded as print-
able characters at the end of the tire data file.
FTire/editor automatically executes a new pre-
processing of these data if needed. This ex-
cludes simulations based on out-dated prepro-
cessed data.

For FTire version 2010-4 the structure of the
downloadable release has been changed. Now the
FTire/tools are always included and its version fits to
the CTI version. (Earlier versions had release numbers
instead of release quarters. The version before 2010-4
was 2.11)

The functions in the CTI generally only provide ac-
cess to time dependent inputs. Most of the parameters
(in the Modelica sense, i.e. not changing during a sim-
ulation) can only be provided in a tire property or road
data file. This determined the design of the Modelica
interface to FTire: A Modelica model with FTire tires
primary refers to .tir and .rdf files. Most tire pa-
rameters have to be changed in the tire property file
by using FTire/editor. We do not write any .tir and
.rdf with data entered into a Dymola GUI.

The CTI routines serve several purposes:

• There are data reading functions for the road data
and tire property files.

• There are functions which actually do the calcu-
lation of the tire forces and torques depending
on the current tire positions, velocity, orientation
and angular velocity. In principally this is just
one function, but there are variants returning the

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011 

305



forces at the (rotating) wheel center or the (non-
rotating) hub or with a user defined road geome-
try. With this minimal set of routines tire simula-
tions can be done already. But in some situations
more routines are needed:

• A routine can apply reaction forces to the road
part. This is often needed in case the road is not
the absolute ground but some moving part, e.g. in
test rigs.

• There are routines providing time-dependent in-
puts in case they are not parameters from the tire
property files, e.g. an inflation pressure decreas-
ing during simulation.

• Moreover there are reporting routines returning
other calculated quantities than the tire forces
and torques. These outputs are either directly re-
turned or are written to special output files. These
routines can be used for debugging or visualiza-
tion purposes, but are also used for the embed-
ding into the MultiBody framework, especially
for visualization.

4 The Basic Modelica Interface to the
CTI

The lowest level of the Modelica interface to FTire is
a set of Modelica functions calling the corresponding
CTI routines – directly or indirectly – as external C
functions. There is one Modelica function for nearly
every function in the CTI. The current version has been
written for version 2010-4 of the CTI.

4.1 Calling CTI Routines as External C
Functions

Most CTI functions can be directly called from Mod-
elica as external functions. The name of each of the
Modelica interface functions is like the corresponding
CTI function, but in some cases the argument lists and
return values are modified due to Modelica require-
ments:

• The input argument providing a state is also used
as return value. This is done so that this function
need not only be used in an empty function call
but in an ordinary equation. This is useful, even if
the returned variable is just a dummy not used any
further: Being used in a real equation apparently
ensures that the function is called often enough.

(If used as an empty function call, no calls are
performed because from Dymola’s point of view
nothing depends on it.)

• Some of the function calls are formally not time
dependent (although they are to return time-
varying quantities) and Dymola does not evaluate
the function over time it seems when the original
argument list is used: The returned array is con-
stantly the zero array. By introducing a time de-
pendent variable (time itself) the function is eval-
uated as expected.

• A similar situation occurs at CTI functions where
an input in general is time dependent, but it may
also be a constant. Therefore an additional op-
tional input for the simulation time (not passed
to the CTI function) is introduced in order ensure
a time dependency to prevent Dymola from opti-
mizing away the function call.

Some of the functions here do not have a return
value. Their only purpose are their side effects, like
turning on or off verbosity. Usually they are only
needed once in the beginning of the simulation in order
to set a certain mode. A call to them ought to be made
as an empty function call in an initial algorithm

section.

4.2 C Wrapper functions around CTI rou-
tines with function pointer arguments

In some CTI functions added in the last versions there
are pointers to functions in their argument list. One
example for such a function a a tire force calculation
routine for a custom road model. Here a pointer to
a road evaluating function is one function argument.
(The road evaluation function returns among others the
height z at a given location (x,y) on the road at a time
t.)

Functional input arguments to functions are not sup-
ported in Modelica before version 3.2 and therefore
not available at the time of writing this article. In order
to support these CTI functions in the Modelica – FTire
interface yet, C wrapper functions have been written
for them. Such a wrapper has the same argument
list like the CTI function in question, only the argu-
ment for passing the pointer to the user function (like
the road evaluation function) is left out. The wrapper
function only calls the CTI functions with the passed
arguments and a pointer to an implementation of the
user subroutine. The wrapper function is interfaced as
an external C function in Modelica in the usual way.
By this method also the CTI functions with function

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011 

306



pointers can be supported in the interface but currently
the user functions have to be provided in C.

// wrapper around CTI function

#include "cti.h"

#include "UserRoadModel.c"

void ComputeForcesWithExtRoad(

int ti, double t, double* r,

double* a, double* v, double* w, int mode,

double* f, double* m, int* ier)

{

ctiComputeForcesWithExtRoad(

ti, t, r, a, v, w,

UserRoadModel, mode, f, m, ier);

}

In principle this is all what is needed to include
FTire tires into Modelica models. There are some test
models where motion states of the tire are calculated
and directly provided to the force calculation func-
tions, though.

Parallel processing versions of the CTI functions for
calculating tire forces are not yet supported (cf. sec-
tion 10.3).

Currently no external objects are used in interfacing
to FTire, but needed actions like reading tire and road
data files are done explicitly. Using a constructor func-
tion of an external object may be a cleaner way to do
so.

5 The FTire Wheel Model in the
MultiBody Framework

But of course this is no convenient modeling of a tire
from the user’s point of view. A wheel ought to be a
component which can be connected to other Multi-
Body components just by a connect equation to a
Frame connector. In principle this means the tire po-
sition and orientation from the Frame connector and
its time derivatives are passed to the force calculation
function. The force and torque variables of the frame
connector in turn are equalled to the returned forces
and torques. But there are some complicating factors:

5.1 Adjustment of the tire mass

When calculating tire forces FTire only considers the
share of the tire mass which is not connected rigidly
to the rim. The remaining share has to be considered
explicitly by the simulation program when calculat-
ing inertia forces. This share of mass and inertia is
reported by some CTI function. The moreover from

the user’s point of view when modeling a vehicle a
wheel with a tire ought to be handled together as sim-
ple as possible. Therefore the main component of the
FTire package is not a tire but a wheel model also
containing a wheel mass. The share of the tire mass
and inertia considered fixed to the rim (and therefore
not accounted for by FTire) is automatically added to
the user provided wheel mass.

5.2 Road Orientation

In FTire itself the orientation of the road is fixed:
Global z is pointing up, global x is pointing forward.
(This is called the FTire initial frame.) This orienta-
tion would impose a rather strict restriction on model-
ing vehicles with the FTire package. The moreover
it does not match the default orientation used in the
MultiBody package where global y is pointing up. It
was a design goal that with the FTire package the road
(and therefore the tire) can be oriented arbitrarily so
that any existing model can be equipped with FTire
tires without the need to re-orient the complete model.

A road orientation can be specified easily by two
direction vectors forward and up. (The defaults for-
ward = {1, 0, 0} and up = {0, 0, 1} mean that
the usual FTire road orientation is used; up = {0, 1,

0} means the usual MultiBody orientation.) These
direction vectors determine a rotation object from the
world to the road frame. FTire expects the tire mo-
tion states (position, orientation, velocity and angu-
lar velocity) resolved in the FTire initial frame. The
Frame connector provides the position and orientation
resolved in the world frame and the angular velocity
in the local frame (the translational velocity can be de-
rived from the position). So first the angular velocity
is resolved in the world frame by means of the orienta-
tion object of the connecting frame, then all quantities
are resolved in the FTire initial frame using the orien-
tation object from the world to the road frame. The
force calculation function returns forces and torques
resolved in the FTire initial frame. So here they are
first resolved in the world frame and then in the local
frame, because this is what has to be provided to the
connecting Frame. All these calculations and transfor-
mations are capsulated into a FTireForce model.

5.3 Tire Orientation

In other multi body programs the orientation of joints
and also tires is only determined by the orientation of
the connecting frames. But in the MultiBody pack-
age the joint axes are defined by some direction vec-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011 

307



tor(s) (resolved in the local frame). So we do not de-
fine the tire spin axis directly by the local frame (like
other multi body programs do, taking the local z-axis)
but by direction vectors spin and tire_up. (The
vector tire_up is only needed for uniquely deter-
mining the wheel orientation by providing a reference
for the rotation angle.) The defaults spin = {0, 1,

0} and tire_up = {0, 0, 1} mean that the wheel
rotates around its local y-axis. When the connector
frame is not rotated relative to the world frame the tire
can roll along the global x-axis. In case of the usual
MultiBody orientation (global y is pointing upwards,
i.e. road orientation vector up = {0, 1, 0}), spin
= {0, 0, 1} ought to be used.

Internally the tire orientation is modeled by a Fixe-
dRotation component. With the default tire direction
vectors its orientation is the null rotation.

5.4 Common Tire and Road Properties

In FTire itself all tire instances in a model are com-
pletely independent, i.e. they all have their own tire
property and road data file definitions. But except for
some test rigs and special situations all wheels of a ve-
hicle will run on the same road. This road will have the
same orientation for all tires and they in turn will have
the same orientation. The moreover in many cases
there will be the same tire for all instances, i.e. the
same tire property file.

In order to prevent the need for providing these
property files and the orientation vectors four or more
times for a vehicle a common properties model using
the inner / outer mechanism has been introduced:
Each tire model accesses a common property compo-
nent as outer object. In case a top level model con-
taining an FTire wheel model does not contain such a
common properties component a default component is
used. The values from a common properties object can
be overwritten by a wheel model: In case a tire prop-
erty or road data file string is provided (i.e. it is not
empty) or direction vectors are specified (i.e. they are
not zero vectors) they are used overwriting the values
from the common properties object. In this way it is
possible to make exceptions, e.g. providing road data
and tire property file by way of the common property
object, but using a different tire property file for one
wheel in order to model a defect tire.

In case all property files and direction vectors are
directly provided at all wheels the common property
object is not used at all. When there is only one wheel
in the model (like in a tire test rig) this is the easier
method.

5.5 Road Part Model

In FTire the road does not have to be associated to the
absolute ground but tire contact may be calculated to-
wards some movable road part. The FTire interface
package supports this feature by a model RoadPart.
Like the wheel models it possesses a usual MultiBody
Frame connector. The road part model consists of a
Body component to model its mass and inertia, a road
surface visualizer object and a RoadForce component.

The RoadForce model queries the road part motion
quantities (position, velocity, orientation and angular
velocity) and provides it to the FTire kernel by means
of a CTI function. When tire forces for the associated
wheel are calculated this not done based on the motion
relative to ground but on the relative motion to its road
part. Therefore each road part needs to have a unique
ID corresponding to a wheel. (When the same road
part is to be used for more than one wheel a Body com-
ponent (and a road visualizer if needed) can be used to-
gether with one RoadForce component for each of the
wheels running on that part.) The reaction forces from
the tire contact are applied to the road part. (Because
of the tire inertia this forces do not equal the forces to
the wheel with opposite signs.)

Here again it has to be considered that FTire itself
has a fixed orientation of the road whereas the Model-
ica model using the FTire interface package may use
some other orientation. Thus the motion states of the
road part resolved in the world frame are transformed
into the FTire initial frame before passing to the FTire
kernel. Conversely the CTI function returns the reac-
tion forces also in the FTire initial frame. They are first
transformed to the world frame before applying them
to the frame connector of the RoadForce component
resolved in this frame.

6 Tire and Road Visualization

For a tire model based on the theoretical contact point
concept a simple cylinder (with some mark to indi-
cate rotation) is all what is needed for tire visualization
seen from a technical point of view. The unloaded ra-
dius and the tire width (and possibly the radius of the
wheel rim to indicate too deep penetration of the tire
into the road) is all that is needed. Everything else is
a matter of nice animations, but does not bring much
new insights into the tire behavior.

Things are different when the internal dynamics of
the tire is also considered and the tire (and possibly
also road) deformation during simulation is also avail-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011 

308



able. In this case the animation of the deformed tire is
a good plausibility check on the tire simulation.

The CTI provides tire shape information by means
of the function ctiPutNodePositions. The name
may be a bit misleading here. It does not deliver the
position of one of the internal belt elements constitut-
ing the flexible ring modeling the tire. Instead, for any
point on the tire surface uniquely characterized by an
circumferential angle (scaled to the range [0,1]) and a
value for the position along the cross section (also in
the range [0,1]) the 3D position of that point is calcu-
lated. The position is returned in several coordinate
systems. We only use the position in the FTire initial
frame.

When the ctiPutNodePositions function is eval-
uated on a regular grid over [0,1]× [0,1] this consti-
tutes a representation of the tire surface. It is impor-
tant to note that the returned positions are variables,
not just parameters. The calculated grid is a represen-
tation of the dynamic tire deformations during a sim-
ulation. Here it has to be considered that the FTire
initial frame is not necessarily the MultiBody world
frame, so the surface coordinates have to be resolved
in the world frame using the rotation object from the
world frame to the FTire initial frame.

Things are similar for the road shape representation:
There is a CTI function ctiEvaluateRoadHeight

calculating the current height of a location (x,y) of the
road. Again with a grid of equally spaced evaluation
points on a range [xmin,xmax]× [ymin,ymax] the road sur-
face is determined. Usually the surface of a road is
static, it is calculated only at initialization time. By a
Boolean parameter it can be specified that the road sur-
face is (possibly) time-varying and has to be evaluated
at every simulation step. Interestingly the formulations
for the surface grid values are the same except for that
in the time-varying case the simulation time variable
time is passed to the road height evaluation function,
in the default case the constant 0. Dymola infers that
in the second case all the inputs to this function are
constants or parameters and therefore it does not need
to be evaluated again during continuous integration.

There are two ways these surfaces can be visual-
ized: The model is animated in the Dymola animation
window, tire and road are visualized by surface visu-
alizers from Kämmerer’s Visualizers package. Al-
ternatively the Visualization package with the ex-
ternal viewer SimVis from DLR-RM can be used like
described in the last subsection of this section.

6.1 Kämmerer’s Visualizers package

The Modelica Standard Library (MSL) contains
visualizer models for animation of geometrical
primitives like boxes, cylinders and spheres in Dy-
mola. All these visualizers are based on the model
MB.Visualizers.Advanced.Shape (respectively
ModelicaServices.Animation.Shape in Modelica
3.1). Unfortunately this model is not able to animate
so called polylines (connected sequences of straight
lines) or surfaces. But in the Dymola distribution with
the MSL come some tiny Modelica models for visual-
izers, also for polylines and surfaces. From these ideas
a package for visualization of (possibly) time-varying
geometric primitives has been developed. In particular
it contains several visualizer models for surfaces1 and
a simplified version of the standard visualizer form
the MSL applicable in some situations.

The surface geometry is defined by a matrix of
3D positions, i.e. by an input SI.Position[3]

grid[m, n] where m and n are Integer parameters.
The color and reflectance of the surface can be pro-
vided by inputs like at the usual MSL visualizer for
geometrical primitives. (This means there is an overall
color for the surface. Different colors for a surface can
only be realized by splitting up a surface into several
sub-surfaces.)

The most simple surface model is WorldSurface

where the grid input defines the surface in world co-
ordinates. The model Surface additionally has a po-
sition input r and an orientation object R constituting
a frame. Here the surface is defined in this frame.
(Compared to the usual MSL Shape model here we
abstained from additionally defining direction vectors
defined in that frame to further orient the surface.) The
model FixedSurface has a frame connector. It uses a
protected Surface component as a sub-model where
the position and orientation inputs are simply the ones
from the enclosing FixedSurface model. The sub-
model is conditionally disabled dependent on an ani-

mation flag. This is the same approach as with the
MSL FixedShape model. But there is also a ver-
sion FixedSurface2 where there is no Surface sub-
model, but the model is extended from it, simply mod-
ifying the position and orientation inputs. In using
this method there is no possibility to switch off ani-
mation by means of an animation flag. But on the

1A similar visualizer is now available in the latest version
3.2 of the MSL with Dymola specific implementation in the
ModelicaServices package to be used in Dymola 7.5. In con-
trast Kämmerer’s Visualizers package can also be used even
with the MSL 2.2.2 and Dymola 6.1!

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011 

309



other hand if this is not needed, this prevents a dupli-
cation of model parameter and variables to two model
levels.

The polyline model family is implemented in an
analogous way. There is also an alternative Fixed-

Shape model extended from the Shape model instead
of using it as a subcomponent.

The Visualizers package is used in the FTire

package for road and tire visualization.

6.2 Tire and Road Visualization with the
Visualizers package

The road visualizer model consists of a FixedSur-

face2 component where the surface is the grid with
the calculated heights. This surface is firstly oriented
in the FTire initial frame. In order to account for the
correct road orientation the surface visualizer is con-
nected to the outside connector via a FixedRotation
component with the orientation calculated from the
road orientation vectors and zero translation.

Figure 1: Tire and road visualization using Käm-
merer’s Visualizers package

The common properties and the RoadPart models
already contain a RoadVisualizer object. There-
fore a user only has to include a road visualizer into
a model explicitly when none of these models is used,
i.e. if the road is belonging to the absolute ground and
tire property and road data files are specified at the
wheel components.

Using this dynamic tire visualization directly within
Dymola supersedes to use a separate visualization of
the tire with the COSIN/graphics program. Although
calculating the dynamic tire shape costs CPU time it is
still faster than separate animation.

6.3 Using the Visualization Package in-
stead

DLR-RM has implemented a commercial Modelica
package "Visualization" [4] for advanced visual-
ization of multi body models. It does not use the built-
in visualization capacities of a Modelica environment

Figure 2: Tire animated with FTire animation tool
COSIN/graphics

like Dymola but animates a simulation in a separate
program called SimVis. It provides a lot of additional
animation features like atmospheric effects, lights and
cameras [7]. In particular it also contains visualizer
for arbitrary, time-varying surfaces. So this package
seemed to be suitable for tire animations.

In order to investigate this a separate package
FTireSimVis (using the FTire package) has been im-
plemented. Currently it contains independent tire and
road visualizer models based on the Visualization

package and an extended wheel model using this tire
visualizer and also an extended version of the common
properties object with the road visualizer for SimVis.
In some later release of the FTire and FTireSimVis

packages there ought to be partial visualizer models
for tire and road in the base package. The tire and
road visualizers in the FTire and FTireSimVis pack-
ages will be extended from these partial visualizers.
All models in the FTire containing visualizers will de-
clare them as replaceable. The FTireSimVis ver-
sions of the models will only have to redeclare the
visualizers.

Figure 3: Tire and road animated with SimVis viewer

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011 

310



7 Embedding into the Vehicle Dy-
namics Library from Modelon

Modelon developed and maintains a commercial pack-
age VehicleDynamics, also called VDL (for vehicle
dynamics library) [5]. It provides a set of tire mod-
els completely implemented in Modelica. But it did
not include any tire models which involve interfacing
to external libraries.2 So it is quite a natural question,
if the Modelica FTire interface discussed here fits into
the VDL framework.

To answer this question a new package FTireVDL

has been created, because it is not relevant to the basic
interface and the FTire package has to stay indepen-
dent from the VDL. The FTireVDL package mirrors
the structure of sub-packages as far as needed. There
are sub-packages for several layers of vehicle parts,
like vehicle, chassis and wheel.

The implementation of the FTire wheel for the VDL
package extending from the partial wheel interface
model Conventional is quite simple: An FTire wheel
component from the basic FTire package had to be
connected to the outside connector. As the VDL
uses another connector (containing besides the usual
MultiBody frame also a rotational flange to de-
scribe the rotation) a MultiBodyMount component
had to be placed in between. Additionally most of the
summary variables could be filled by the TYDEX out-
put variables of the FTire wheel. When some quan-
tity is not available the summary variable is constantly
zero.

As the FTire wheel has its own visualization, the
tire visualizer from the VDL is not needed. Some of
its nice features, like showing contact of the tire to the
ground by changing the color of the tire or force vec-
tors (but in this case located in the wheel center, as
there is no contact point at FTire) could be added eas-
ily in some further version.

Regarding test models there are versions of the
"GettingStarted" Sedan car. To this purpose there
is a version of its chassis equipped with FTire wheels
and also a vehicle model version using this chassis in
turn; all the other components are used like in the VDL
SedanTEKBakker vehicle. (So if there, in the chas-
sis and in the GettingStarted experiment model the
components had been redeclared replaceable, no new
FTire model versions for the chassis and the vehicle
had been required and we could simple extend the ex-
periment model and do the required redeclarations.)
There is also a simple tire test rig model. Both experi-

2Meanwhile there is an interface to the Delft tire model [6].

ments are available in two versions: In one version the
required tire property and road data files are directly
provided in the wheel component. An explicit road vi-
sualizer component is used to animate the road. The
other variant uses an FTire common properties object
to specify tire and road. Here we can use the road vi-
sualizer contained in that object.

Figure 4: Sedan car from the VDL equipped with
FTire wheels

A remark on the used integrator method: Usually
FTire preferably works when the solver of the call-
ing simulation tool uses a fixed step size integrator.
This also holds for the FTire package in Dymola: We
had the best results with the RKFix4 Integrator. Sur-
prisingly when running the examples in the FTireVDL
package the simulation fails due to numerical instabil-
ities of FTire itself. (The corresponding VDL models
with one of its own tire models works fine with a fixed
step size integrator.) This phenomenon deserves fur-
ther investigation.

In contrast to the FTire package the current
FTireVDL package is not to be seen as a package ready
to use, but as a demonstration that the integration of
FTire tires into the VDL framework using Kämmerer’s
FTire is possible. As the VDL is encrypted and some
of its models are not readable on the text layer, a full
integration will only be possible in close cooperation
with Modelon. The VDL contains a road builder. It
ought to be enlarged with the facility to create road
data files.

8 The FTire Interface in other Mod-
elica Environments

The FTire package and all related packages have been
developed and tested with several Dymola releases. In
order to use them with other Modelica environments
there are several central demands to that environments.
With decreasing importance these are:

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011 

311



• Ability to call C functions by way of the exter-
nal keyword.

Without this feature no interfacing is possible at
all. If at least it is possible to call FORTRAN
subroutines the interface can be changed so that
the FORTRAN version of the CTI is used instead
of the C version.

• (At least partial) support of the Modelica.

Mechanics.MultiBody package. The FTire in-
terface packages themselves do not contain kine-
matic loops, so this is no demand to the Modelica
environment, but of course this would impose se-
vere limitations to the vehicle models to use the
tires.

Without support of the MultiBody package it is
still possible to use the primary interface func-
tions to the CTI functions. It could be possible
to build some simple vehicle models by means
of equations and to use FTire tires by directly
calling these interface functions. For some spe-
cial applications like longitudinal dynamics also
an embedding of this basic interface into the
Modelica.Mechanics.Translational pack-
age is conceivable.

• Ability to visualize surfaces like done in the Vi-

sualizers package. This means support of
the undocumented "magic" functions PackShape
and PackMaterial and the form numbers caus-
ing subsequent output variables having a meaning
for animation (like used in earlier versions of the
MSL, now moved to the Dymola version of the
ModelicaServices package since MSL 3.1).

If a Modelica environment at least recognizes
these functions (with some idle dummy imple-
mentation) the visualizers should not cause prob-
lems, but the models stay without tire or road vi-
sualization. If the surface visualizer model does
not even compile it can be replaced by a dummy
implementation easily.

9 Future Work Using upcoming
Modelica Features

Since about version CTI 2.9 FTire provides the feature
of using own tire or road models to incorporate into
FTire [3]. The CTI subroutines for doing so contain
pointers to functions in their argument lists. The cur-
rently used method of using C wrapper functions (cf.

section 4.2) has the drawback that the user subroutines
have to be provided as C functions too.

With the upcoming feature of using functions as in-
put argument to functions [8] it will be possible to
write these user subroutines directly as Modelica func-
tions and no C code will be needed any more.

10 Some Remarks on Modelica

But even with Modelica 3.2 there are still some issues
and limitations for further development:

10.1 No Way of passing Information from
Model to Function

Writing a function to evaluate the current height at a
position on a road is appropriate for some special solid
road geometry. But when it comes to write an elabo-
rate soft soil road model in Modelica it is quite natural
to use differential equations for doing so. This cannot
be done in a function but only in a model. On the other
hand a function has to be passed to the CTI function.
Due to the requirement that Modelica functions are al-
ways pure (i.e. functions in the mathematical sense)
there is no way of passing information from a model
to a function. So even with Modelica 3.2 it will not be
possible to use a user road model defined by a Mod-
elica model in the CTI function for force calculation
with user defined road.

10.2 Passing information for Co-Simulation

One aspect of the Modelica philosophy is that the user
ought to build physically sound models in the Model-
ica equations, perhaps provide function derivations or
inverses by means of annotations, but let the integrator
do his business in solving these equations.

This is quite ok as long as pure Modelica is con-
cerned. But this concept becomes questionable when
there is a co-simulation: FTire does not simply calcu-
late forces and torques based on the wheel center mo-
tion states as input quantities, but does its own integra-
tion (of its own internal model of the tire as a system
of elements connected by springs forming the flexible
ring).

When FTire is called from a variable step size inte-
grator it will happen that an integration step fails and
it will be repeated with some smaller time step. This
means time goes back for the force calculation func-
tion. The FTire force calculation functions provide
an input MODE for the "job control", i.e. here you can

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011 

312



inform FTire if the wheel input states are already ac-
cepted by the calling integrator or if they are not yet
accepted. Currently we are only left with the option
to call the function regardless if the the states are ac-
cepted or not. The FTire package works well with
fixed step size integrators (like it is recommend for
FTire usage anyway). But it can be expected that the
performance with variable step size integrators could
be improved if there were any means to communi-
cate such information from the calling integrator to the
FTire integrator somehow.

10.3 Multithreading

As far as we know currently no Modelica environment
supports multi-threading, i.e. the parallel execution of
parts of code and there are no means in Modelica to or-
ganize such parallelization. As long as just pure Mod-
elica is concerned it might be argued that is a matter of
the Modelica environment to see if parallelization is
possible based on the equations (possibly in the flat-
tened model). At least regarding external functions
this approach seams to be not feasible: The environ-
ment needs to know if a function is thread save (can
be parallelized without the risk of wrong results e.g.
due to overwritten memory) and on the other hand if
it is worth to parallelize the execution because it will
take considerable time.

The latest versions of the CTI also provide versions
of the force calculating functions for multi-core archi-
tectures. The forces of each tire instance are calcu-
lated by a separate thread. By this means the forces
at all tires of a vehicle are calculated in parallel. The
force calculation routine is split in two: There is one
routine to pass the wheel center states and to trigger
the force calculations in one separate thread for each
instance. A second function fetches the results of the
instances. In an algorithmic programming style for the
simulation of the complete vehicle both functions can
be used easily: In the algorithm for a single integra-
tor iteration after the (preliminary) calculation of the
wheel center states for all wheels there is first one loop
triggering the force calculation for all tires and second
another loop to fetch the results once the calculation
is finished. In contrast in the Modelica setting, where
external functions are called in some equation based
model it seems likely that the force fetching function
for the first instance is called before the calculation
triggering function for the other instances, i.e. in fact
there is no parallelization. This question needs fur-
ther investigation. Probably there will arise the need
to tell the Modelica environment (by way of some an-

notation) that such a pair of external function belongs
together, that the second one delivers the results of the
calculations triggered by the first one. 3

10.4 Automatic inner components

The common properties model also contains the road
visualizer as a sub-component. It can be turned on and
off by some Boolean parameter. Using this instance
of the road visualizer is sensible in all circumstances
except for the rare case that the road is not fixed to the
ground but to some other part (i.e. a RoadPart com-
ponent is used). Considering this the default value for
the road animation ought to be true.

But it is a (generally nice) feature of the Modelica
inner / outer mechanism that it is not required to
define an inner component explicitly in a top level
model using components referencing on this model as
an outer component: An implicit component is used
in such a case. In the case of the common properties
model here a component would have to be defined ex-
plicitly just to turn off road animation when it is not
desired. To prevent this the default value for the road
animation is false.

What were useful here is some function to deter-
mine in an inner model if an instance of it is the auto-
matically created or an explicit one. With this feature
it would be possible to set the value of the road an-
imation parameter to true only if the component is
explicitly defined.

11 Conclusions

The FTire package makes the FTire tire model avail-
able for the Modelica world. There are even some fea-
tures supported like dynamic tire and road shape an-
imation not yet available at the embedding in other
multi-body programs. On the other hand there are
many issues for further improvements like supporting
custom road and tire models in a convenient way or
parallelization of the tire force calculation for several
tires. The usability in other Modelica environments
has to be tested.

The original plan to develop also interfaces to other
tire models was not addressed anymore within the Eu-
rosyslib project due to lack of time but are subject to
further work. Although any interface to the FTire tire

3Recently there have been considerations on co-simulation in a
general frame in the Modelisar project [9]. It is not yet clear if the
current CTI implementation is compatible to this FMI approach
and in case it is, if this method of co-simulation is appropriate to
interface a set of external function to Modelica.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011 

313



model does not fit into the decomposition framework
of a contact point based tire model [1] some other com-
mon framework for interfacing to other tire model is
imaginable: Any tire model providing some API will
have comparable tasks like reading data files or doing
the force calculation. So above the CTI specific in-
terface level a new tire model independent interface
level may be established branching to the CTI rou-
tines or the counter-parts of some other tire model. In
this case it ought to be possible to implement the em-
bedding into the MultiBody framework independently
from the FTire model but only accessing the tire model
intermediate interface level.

12 Acknowledgements

The FTire (FTire interface for Dymola), FTireVDL
(FTire tires in the VehicleDynamics package frame-
work) and the FTireSimVis (FTire tires and roads
visualized with the SimVis program) packages and
the used geometry visualization package Visualiz-

ers have been developed as part of the ITEA2 Eu-
rosyslib project (WP 8.5).

Earlier versions of the FTire interface package have
been intensively tested in a diploma thesis [10] on a
model of Kämmerer’s side car vehicle "mython" [11]
and at Dassault Aviation [12] with aircraft models.
The package benefitted much from the reported bugs
and suggestions for improvements.

References

[1] ANDRES, Markus, ZIMMER, Dirk and CELLIER,
François E.: Object-Oriented Decomposition of
Tire Characteristics Based on Semi-Empirical
Models. Proceedings of the 7th Modelica Con-
ference, Como, Italy, 2009

[2] The FTire homepage: www.cosin.eu/

prod_FTire

[3] The CTI reference document: www.cosin.eu/

res/cti.pdf

[4] The Visualization package product page:
www.bausch-gall.de/vi1.htm

[5] The VehicleDynamics package product
flyer: www.modelon.se/DATAUPLOAD/File/

Flyer_dymola_VDL_Car.pdf

[6] DRENTH, Edo, GÄFVERT, Magnus: Modelica
Delft-Tyre Interface. Proceedings of the 8th Mod-
elica Conference, Dresden, Germany, 2011

[7] BELLMANN, Tobias: Interactive Simulations
and Advanced Visualizazion with Modelica. Pro-
ceedings of the 7th Modelica Conference, Como,
Italy, 2009

[8] Modelica 3.2 Language Specification,
12.4.2, Modelica Association, March 2010,
www.modelica.org/documents/ Modeli-

caSpec32.pdf

[9] Functional Mock-Up Interface for Co-
Simulation. Modelisar (07006). Document
version 1.0, October 12th, 2010

[10] ZAPF, Stefan: Aufbau und Validierung des
Gesamtfahrzeug-Mehrkörpersimulationsmodells
mit einem Hochfrequenzreifenmodell im Pro-
grammsystem Dymola, diploma thesis, Amberg,
Germany, 2009.

[11] The "mython" at Kämmerer’s homepage:
www.kaemmerer-group.com/mython/

[12] THOMAS, Eric and LAPEYRE, Arnaud: DTG
121069 FTire Model-Evaluation Report (unpub-
lished), 2010

[13] www.itea2.org/public/project_leaflets/

EUROSYSLIB_profile_oct-07.pdf

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011 

314




