
A Scade Suite to Modelica Interface

Daniel Schlabe, DLR Institute of Robotics and Mechatronics - Daniel.Schlabe@dlr.de
Tobias Knostmann, Esterel Technologies GmbH - Tobias.Knostmann@esterel-technologies.com

Tilman Bünte, DLR Institute of Robotics and Mechatronics - Tilman.Buente@dlr.de

Abstract

This article presents implementation and utilization
details of the currently developed interface from Scade
Suite to Modelica. By a few clicks one can generate a
Modelica block from Scade Suite models that can be
directly used and simulated in Modelica. This block
calls an external function periodically, where the C-
code generated by Scade Suite is invoked.
The main purpose of the interface is to test the gener-
ated C-code within a simulated environment which is
also known as Software in the Loop (SIL).

Keywords: Scade Suite; Modelica interface; C-code
integration; Software In the Loop

1 Introduction

1.1 Scade Suite Description

The acronym Scade stands for Safety-Critical Applica-
tion Design Environment. The term describes a Suite
of model-based software development and verification
tools as well as the modelling language itself. This
language is formally defined and proven to be fully
deterministic, hence it allows certified and qualified
code generation for safety-critical systems. The tex-
tual base of the language is an extension [3] of the syn-
chronous dataflow language Lustre [10]. The textual
language is by default hidden behind a design envi-
ronment for graphical models featuring deterministic
state machines, dataflow block diagrams and decision
diagrams.
Most importantly, this formal technology allows to
create a seamless process to leverage a large degree
of automation:

∙ model editing

∙ verification by means of simulation and formal
methods

∙ traceability

∙ documentation generation

∙ code generation

It also enables circumvention of cumbersome activi-
ties demanded by today’s critical software standards
such as DO-178B, EN50128 or IEC61508 (see [5] and
[6]).
The qualification and certification of the Scade KCG
code generator demands that the produced code is
not altered in any way. Therefore, in order to adapt
the code regarding specific calling conventions of e.g.
Modelica functions, the developer needs to keep the
KCG code unchanged and add C-code to meet the in-
terface requirements.
To automate the generation of this glue code, Scade
offers a Tcl-based [12] scripting environment that runs
in parallel to the code generation process. It offers ac-
cess via a specific application programming interface
(API) to the model structure information and the trans-
lation patterns of Scade-language based objects to C
constructs. This method is used to provide adaptors
to various real-time operating systems and other code-
wrapping targets, all of which can be adapted to the
users needs. We will describe how we use this means
to create our Modelica adaptor.

1.2 Scope of the interface

Thinking of a Scade Modelica interface one can
imagine two possible interface “directions”. The first
one is to integrate Code generated by Scade Suite
in Modelica. The second one is to generate a Scade
Suite model out of a Modelica model. The herein
developed interface deals with the first interface
direction. Certainly, the second direction is very
interesting since the generated Scade code would be
certified. But this will still need a lot of investigations
and work. Furthermore it would be restricted to a
subset of Modelica and not the whole language. See
chapter 4 for an outlook of this point.
By using the herein developed Scade-Modelica
interface it is rather possible to test the generated
C-code at a very early stage of the design process

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011 

522



by means of simulated environments, also known
as Software in the Loop (SIL). This will reduce
development time since it is not always necessary to
implement the code on the target system. Furthermore
it is possible to specify requirements beforehand by
means of Modelica model environments that contain
simple placeholders for the functions to be developed.
This will reduce iteration loops with the client who
specified the requirements and enables therefore a fast
software development.
The integration of any C-code into Modelica could
be done manually indeed. However, this requires
creating and modifying interface files like C-code
or Modelica code every time the model is changed,
which is quite inconvenient. Using the developed au-
tomatic interface one can easily integrate new C-code
into Modelica and test it in the simulated environment.

1.3 Application Areas

Typical application areas will be the aerospace and au-
tomotive industry or any other field where a safety
critical function should be integrated into a complex
system. Any developed function or controller can be
tested in a simulated environment or object using the
interface. A Modelica block can easily be generated
as long as the Scade model fulfils the restrictions de-
scribed in section 2.1. For instance, energy manage-
ment for more/all electric aircraft or hybrid/electric ve-
hicles is a topic of rising interest that becomes more
and more complex, where interactions with the system
model as well as with other management functions or
controllers can often not be neglected. Therefore it is
useful to be able to simulate the management function
together with the aircraft or vehicle model.

2 Implementation

2.1 Basic principle and restrictions

The basic principle of the developed interface is to in-
tegrate C-code into Modelica through external func-
tions. Therefore, an adaptor for code integration to
Modelica has been developed for Scade Suite. So the
KCG-code can be used without any changes. The
adaptor generates some additional interface files and
a Modelica package. This folder contains:

∙ Unchanged KCG-code

∙ Additional C-code for the interface function and
for Scade state vector (see next sections for more

details)

∙ An image

∙ Modelica package containing one package.mo
file

The additional code, the folders and the .mo files are
generated via Tcl scripts. These scripts can be easily
executed during code generation in Scade Suite.
For the current version of the interface the following
restriction applies: only Integer, Boolean and Real are
allowed as input and output signal types. That means
that for each input a separate connector will be dis-
played in Modelica. On the one hand, this eases read-
ability. But on the other hand, with more complex
models having many inputs and outputs, the Scade
block will be very large. A vector of Boolean, Integer
and Real could technically be possible, but this would
seriously affect readability since the variable would be
identified with an index instead of its original name.
For this reason, this method was not implemented in
the current version. Also, records are not supported
yet. In fact, Dymola doesn’t support records in exter-
nal C-code correctly.
Provided that the input and output signals are of the
supported types as described previously, there is no
further restriction regarding complexity or internal
states of the Scade Model. The interface will also work
for large numbers of inputs and outputs, though the re-
sulting block illustrated in Modelica will be very large
as well.

2.2 Implementation Details

The implementation details will be illustrated by way
of an example. Figure 1 displays the Scade model of a

Figure 1: Speed Controller in Scade Suite

vehicle speed controller that outputs brake and accel-
eration pedal positions using the current speed of the
vehicle and the desired speed as an input. The Model-
ica adaptor for Scade Suite will generate an additional
tab. As shown in figure 2 just three items are required:

∙ The target directory,

∙ Modelica project name = Modelica package
name,

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011 

523



∙ The Modelica version to be used.

Figure 2: Modelica Tab in Scade

The interface is tested for Modelica versions 2.2.2, 3.0
and 3.1. There were some changes in the annotation
syntax between Modelica 2.2.2 and 3.0, which the in-
terface takes into account. So if a wrong Modelica
version is chosen, important graphic elements like the
connectors will not be displayed.
The respective C-files and a Modelica Package are
now generated containing the following elements:

∙ block ScadeBlock

∙ class ScadeStateVector

∙ function ScadeStep

The basic element is the function ScadeStep, where
the C-code is integrated via external functions:

function ScadeStep

input Real vehicleSpeed ;

input Real desiredSpeed ;

input ScadeStateVector ssv;

output Real brakePedal ;

output Real accPedal ;

external "C" ScadeStep(vehicleSpeed,

desiredSpeed, ssv, brakePedal, accPedal);

annotation(Include="

#include <../SpeedControl.c>
#include <../PID_BaseClass.c>
...

",

uses(Modelica(version="3.0")));

end ScadeStep;

The C-code is included using absolute paths. So
the working directory doesn’t need to be the package

directory. This implies that one has to modify the
absolute paths here manually if the package is moved
or copied elsewhere.
The inputs and outputs of the Scade model are
mapped one-by-one to the Modelica function. If the
Scade model has any dynamic states one extra input
is needed for the function: the so called Scade state
vector. Since functions in Modelica are not allowed to
have any internal state, the previous state will be an
input for each call of the function. Going back to the
speed control example, the PID controller has some
internal states. The corresponding Scade state vector
is specified in Modelica as follows:

protected class ScadeStateVector

"External Scade States"

extends ExternalObject;

function constructor

output ScadeStateVector ssv;

external "C" ssv =

initScadeStateVector();

end constructor;

function destructor "Release storage of

ScadeStateVector"

input ScadeStateVector ssv;

external "C" freeScadeStateVector(ssv);

end destructor;

end ScadeStateVector;

Using external C-code generated by the Model-
ica adaptor, memory is allocated by the constructor
and freed by the destructor. The ScadeStep function
and the ScadeStateVector class are declared protected
since the user shouldn’t use them directly.
The user interface in Modelica is represented by
a Scade block (see figure 3) that can be used per
drag and drop. It just needs the sample period and a
starting time as parameters. In this Block the function

Figure 3: Scade Block in Modelica

ScadeStep will be called periodically as specified.
Furthermore the Scade state vector will be initialized
herein:

block ScadeBlock

"Scade Suite Block containing standard

interfaces generated by Scade"

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011 

524



protected

ScadeStateVector sSVector=

ScadeStateVector(); // call init

annotation (...)

public

parameter SI.Time samplePeriod(...)

"Sample period of component";

parameter SI.Time startTime=0 "First

sample time instant";

protected

output Boolean sampleTrigger "True, if

sample time instant";

output Boolean firstTrigger "Rising edge

signals first sample instant";

public

// ----------- Inputs ------------

Modelica.Blocks.Interfaces.RealInput

vehicleSpeed annotation (...);

Modelica.Blocks.Interfaces.RealInput

desiredSpeed annotation (...);

// ----------- Outputs ------------

Modelica.Blocks.Interfaces.RealOutput

brakePedal annotation (...);

Modelica.Blocks.Interfaces.RealOutput

accPedal annotation (...);

equation

...

when {sampleTrigger, initial()} then

(brakePedal ,accPedal)=ScadeStep(

vehicleSpeed, desiredSpeed, sSVector);

end when;

end ScadeBlock;

The display size of the block as well as the con-
nector locations are adapted to the specified number
of inputs and outputs in the annotations.
The next chapter will show the functionality of the
Scade block in a realistic model.

3 Automotive Example

As a realistic application example we chose the speed
control of a multibody vehicle model (see figure 4)
using the speed controller previously implemented in
Scade as already presented with figure 1 in section 2.2.
The total model is set up in the framework of the Vehi-
cleInterfaces library and uses some of the component
classes provided there [4]. As vehicle dynamics model
(chassis in figure 4) we used a multibody vehicle
model from the DLR VehicleControls library [9]. Pas-
sengers are represented by multibody models as well.

Figure 4: Total Model of the Vehicle in Dymola

The road definition complies with the OpenDRIVE
standard [11] while the used commercial OpenDRIVE
database plus visualisation was purchased from Vires
Simulationstechnologie GmbH. During the simulation
the vehicle drives along the OpenDRIVE road. Auto-
matic steering control is used for lane keeping. The
focus of our simulation, however, is on the automatic
speed control implemented (see figure 1 ) using the
Scade interface as shown in figure 5. The algorithm

Figure 5: Scade Block integrated into Driver Model

used to calculate adequate gas pedal and brake pedal
positions was adapted from a class out of the DLR
PowerTrain library [7]. The desired vehicle speed used
in the controller comes from an algorithm which com-
putes a reference speed profile for the upcoming road
section. Details can be found in [2]. The simulation re-
sults from the automatically driving vehicle using the
imported Scade speed controller were well matching
our expectations. The assessment was supported on-
line by animation using components and the external

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011 

525



viewer SimVis provided with the DLR Visualization li-
brary.

Figure 6: Visualisation in SimVis

4 Conclusion and way forward

A first version of an interface from Scade Suite to
Modelica has been presented in this paper. The in-
terface will be adapted to future versions of Modelica
and Scade Suite if needed. One planned enhancement
is the removal of absolute paths for including C-code.
This can be replaced by URIs introduced in Modelica
version 3.1. It is also possible to use the Functional
Mock-Up Interface (FMI) instead of external functions
for future versions.
Another very interesting thought is to generate Scade-
Models directly out of Modelica. This would enable
the automatic generation of certified code from a Mod-
elica model. Certainly it can be expected that some
restrictions will apply to the Modelica model. This
opposite interface direction can be a challenging task
for future investigations.

5 Acknowledgements

This work has received funding from the European
Union’s Seventh Framework Programme (FP7/2007-
2013) for the Clean Sky Joint Technology Initiative
under grant agreement n∘ CSJU-GAN-SGO-2008-001
[8].

References

[1] Bellmann, Tobias (2009) Interactive Simula-
tions and advanced Visualization with Modelica.

In: Proceedings of the 7th International Model-
ica Conference. Linköping University Electronic
Press. Modelica Conference, 20.-22. Sept. 2009,
Como, Italien. ISBN 978-91-7393-513-5. ISSN
1650-3740

[2] Bünte, Tilman; Chrisofakis, Emanuel (2011) A
Driver Model for Virtual Drivetrain Endurance
Testing. In: Proceedings of the 8th Interna-
tional Modelica Conference. Linköping Univer-
sity Electronic Press. Modelica Conference, 20.-
22. March 2011, Dresden, Germany.

[3] Colaço, JeanLouis; Pagano, Bruno; Pouzet,
Marc (2005) A Conservative Extension of Syn-
chronous Dataflow with State Machines. In: EM-
SOFT’05 Sept. 9-22 2005, Jersey City, New Jer-
sey, USA.

[4] Dempsey, Mike. An introduction to the Vehi-
cleInterfaces package. Tutorial at Modelica con-
ference 2006, Vienna, 2006.

[5] Fornari, Xavier. Understanding How Scade
Suite KCG Generates Safe C Code. 2010.
White Paper of Esterel Technologies. [online]:
http://www.esterel-technologies.com/
technology/WhitePapers/

[6] Pagano, Bruno; Andrieu, Olivier; Moniot,
Thomas; Canou, Benjamin; Chailloux, Em-
manuel; Wang, Philippe; Manoury, Pascal; Co-
laço, Jean-Louis. Experience Report: Using Ob-
jective Caml to develop safety-critical embedded
tools in a certification framework. In: Proceed-
ings of the 14th ACM SIGPLAN international
Conference on Functional Programming. Edin-
burgh, Scotland, August 31 - September 02, 2009

[7] Tobolar, Jakub; Otter, Martin; Bünte, Tilman.
Modelling of Vehicle Powertrains with the Mod-
elica PowerTrain Library. In: Systemanalyse in
der Kfz-Antriebstechnik IV, Seiten 204-216. Dy-
namisches Gesamtsystemverhalten von Fahrzeu-
gantrieben, Augsburg, 2007.

[8] Clean Sky project homepage [online]:
http://www.cleansky.eu

[9] EUROSYSLIB Project Profile 2007 [online]:
http://www.itea2.org/public/project_leaflets/
EUROSYSLIB_profile_oct-07.pdf

[10] The synchronous dataflow program-
ming language LUSTRE (1991) [online]:

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011 

526



http://citeseer.ist.psu.edu/viewdoc/
summary?doi=10.1.1.34.5059

[11] OpenDRIVE project [online]
http://www.opendrive.org

[12] Tool command language (Tcl). [online]:
www.tcl.tk or http://citeseer.ist.psu.edu/viewdoc/
summary?doi=10.1.1.38.8230

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011 

527




