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Abstract 

In order to improve the engineering processes and 
especially the corresponding verification and valida-
tion phases, this article deals with the modeling of 
system properties in a Modelica framework. The 
term “property” is intended here to be generic and 
refers to a system requirement or limitation as well 
as a validity domain of a model. The choice of the 
Modelica language is justified by a desire to use its 
equation-based feature to model system properties in 
an unambiguous and explicit way. Besides, choosing 
only one formalism to describe the system properties 
and the physical equations of the model should ease 
the expression of the model validity domains. 

After having introduced several theoretical con-
cepts to formally describe a system property, the de-
velopment of a dedicated library is explained and 
illustrated on an industrial example taken from the 
aeronautics domain. Some checks of system proper-
ties are thus performed by co-simulating behavioral 
and properties models. Finally, some extensions of 
the Modelica language are advocated in order to im-
prove the applicability range and efficiency of prop-
erties modeling for complex systems, and especially 
to increase the rigor of their validations by enabling 
formal proofs. 

 
Keywords: Modelling;Checking;Property;Modelica. 

1 Introduction 

The study of performance and safety is today of 
prime interest when designing complex systems. At 
each stage of the design cycle, engineers should 
check the conformance of their technical choices 
with respect to the initial specifications. In such a 
Verification & Validation (V&V) process, the mod-
eling and the verification of system properties are 
thus a key activity. They enable to validate the cho-
sen implementation of the system but they also ease 
the capitalization on the knowledge of the system. 
Formalizing the requirements allows to enhance the 
documentation of the engineering processes by keep-
ing track of design improvements, model refine-
ments, changes in the safety/operational expecta-
tions, and so on. 

The difficulty of such a V&V approach lies, how-
ever, in the fact that, if some techniques and lan-
guages exist today to handle system properties, they 
often involve specific models different from the ref-
erence engineering model (i.e. the model commonly 
used to predict the physical behavior of the system, 
that is the behavioral model). Such heterogeneity 
may lead to some errors and thus to flaws in the 
proof of safety or performance. 

The modeling and the checking of system proper-
ties concern industries in charge of the design of new 
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products (e.g. automotive, aerospace) as well as the 
ones responsible for the operation of long-life prod-
ucts and faced to retrofit due to some material obso-
lescence and changes in operational constraints (e.g. 
energy producers). The properties model and the ref-
erence engineering model should thus apply for a 
system involving several physical domains. 

For the behavioral model, the increasingly use of 
the non-proprietary Modelica language [1]-[2] in 
various industries testifies of the Modelica efficiency 
to conveniently describe multi-physics behaviors. 
Besides, thanks to its equation-based and acausal 
features, the Modelica language appears well-suited 
to build models reusable and adaptable to the differ-
ent steps of the engineering cycle. 

The objective of this article is thus to study to 
what extent the properties of a system can be mod-
eled and checked in a Modelica framework. 

A similar approach is currently ongoing, within 
the ITEA2 OpenProd project [3], by linking a Mode-
lica behavioral model to a UML properties model 
[4]. It actually implies the development of the so-
called ModelicaML UML profile [5]-[6]. However 
the work presented here has been performed within 
the ITEA2 EuroSysLib project [7] via a collabora-
tion between EDF, Dassault Aviation, Dassault 
Systèmes and DLR. It takes a different point of view 
in the sense that the modeling and the checking of 
system properties are studied in a fully Modelica-
based environment. This choice can be explained by 
a desire to reuse: 

- the equation-based feature of Modelica to 
model properties in a more formal way; 

- the same formalism as the one chosen to de-
scribe the physical equations of the models 
in order to ease the expression of their valid-
ity domains (which are actually a specific 
kind of property). 

 
Section 2 clarifies the concept of “property” with 

no reference made to the way it can be implemented 
in Modelica. It defines what is a property and sums 
up the different types of properties. It also specifies 
the users requirements regarding properties model-
ing, checking and visualization. 

Section 3 aims at formalizing the way a property 
can be modeled. Like in a formal Property Specifica-
tion Language [8], the idea is to introduce some 
theoretical concepts especially useful to express a 
property in an unambiguous and explicit form. Some 
notions like “space/time locator”, “state” and “event” 
are depicted and a list of “operators” to build several 
types of system properties is given and illustrated on 
realistic examples. 

Section 4 focuses on the technical implementa-
tion of these concepts in Modelica. The development 
of a dedicated library is explained and illustrated on 
an industrial example taken from the aeronautics 
domain. The assessment of some system properties is 
in particular made by simulation using Dymola [9]. 

Section 5 advocates the extension of the Modelica 
language in order to improve the applicability range 
and efficiency of properties modeling for the valida-
tion of complex systems. 

2 Properties modeling and checking 

As mentioned above, the following sub-sections 
are intended to set up the framework of the study. 
Independently of the way it can be implemented in 
Modelica, they are intended to clarify the concept of 
“modeling and checking properties” and to show its 
potential use in an industrial context. Notions like a 
“properties model” or a “behavioral model” are in 
particular introduced. 

2.1 What is a property? 

Definition 1: A “property” is an expression that 
specifies a condition that must hold true at given 
times and places. It results in a Boolean variable stat-
ing whether the property is satisfied or not. 

A property may thus specify: 
- an allowed operating domain the system 

must not leave for safety reasons; 
- an operational domain where, for instance, 

the system operation is optimized for per-
formance; 

- the validity domain of a model outside of 
which the corresponding behavioral equa-
tions are no longer valid; 

- … 
 

Example: Some realistic properties can be formu-
lated in a textual form such as: 

- The power plant should evolve in an allowed 
(temperature, pressure)-domain; 

- Cavitation should never happen in a pump 
component; 

- The characteristics of the pump are only 
valid for a given range [ ]21;QQ  of flow 
rates. 

- … 
 

Different categories of properties may actually be 
distinguished. A first typology may be drawn de-
pending whether the properties are associated with 

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011 

580



the system, a sub-system or a component. But, the 
properties may also be classified depending on the 
kind of expectations. Two main kinds of properties 
may however be highlighted: 

- a first kind where the properties characterize 
the expectations of the designer but also the 
limitations of the chosen system, sub-
systems and components. These properties 
are expressed independently from any be-
havioral model; 

- a second kind where the properties define 
some validity domains and are thus attached 
to specific behavioral models. These proper-
ties do not belong to the designer require-
ments. They only reflect how the designer 
represents the implementation of its system. 

From the tool and language perspective, modeling 
system and components properties and expressing 
validity domains are however essentially similar. For 
the sake of simplicity, the term of “property” will 
then be used all along the paper to refer to any re-
quirement/limitation the engineer wants to express 
on its system/sub-system/component or on its 
model/sub-model. 

2.2 Uses of properties modeling 

The modeling and the checking of properties may be 
used in an industrial context to verify and validate 
each stage of the system development cycle, in par-
ticular: 

- to enhance the documentation of the system 
regarding the description of the expected be-
havior as well as the description of the as-
sumptions made during the modeling of its 
behavior. This may in particular be useful to 
ease the capitalization and the transmission 
of knowledge; 

- to improve the engineering processes by ex-
pressing the requirements in an explicit and 
unambiguous form and by keeping track of 
any evolutions due to design improvements, 
to changes in operational expectations, to 
model refinements… 

Once the properties have been modeled, a series 
of tests can then be performed: 

- to check the coherence and the completeness 
of the requirements (e.g. by formal proofs 
and consistency checks); 

- to verify the conformance of the designed 
system with respect to the initial specifica-
tions (e.g. by simulating both the properties 
model and the behavioral model); 

- to validate the Instrumentation & Control 
(I&C) part of a process on the basis of the 

services it should provide to the physical 
process, during the specification phase, and 
after the programming phase using hard-
ware-in-the-loop; 

- to support advanced modeling approaches 
like scenarios simulating sequential changes 
of different operating modes (e.g. simulation 
of a system entering a dysfunctional mode). 

2.3 Distinction between a “behavioral equa-
tion” and a “property expression” 

Behavioral equations describe a potential implemen-
tation of the system at the design phase, or how the 
system actually works during operation. They are 
based on physical or empirical laws. 

Properties define what the system should guarantee, 
or in other words what is the validity domain of the 
system’s behavior. They can also be used to define 
the validity domain of the model used to represent 
the system’s behavior. 

Example: Let us consider a valve. A behavioral equa-

tion can be “ ( ) ( )tQktP 2/ ⋅=∆ ρ ” (where ( )tP∆  is 
the pressure loss across the valve, ρ  is the fluid 

density, k  is the pressure loss coefficient of the 
valve and ( )tQ  is the mass flow rate through the 

valve) whereas a property can be “For all t , ( )tP∆  

should be greater than minP∆ to avoid cavitation”. 

This distinction is important because behavioral 
equations and properties are fundamentally different: 

- They correspond to different objectives: be-
havioral equations describe how the system 
actually works (e.g. the dynamics of the sys-
tem) whereas properties define what the sys-
tem should do (e.g. which services it should 
provide, the prescribed operation domain….); 

- They are of different natures: behavioral 
equations define system characteristics which 
are always localized to a specific part of the 
system, whereas properties define system 
characteristics which may be global in time 
or space, in the sense that they can constrain 
variables across several periods of time and 
different locations; 

- They involve different expertise: writing 
behavioral equations requires expertise in 
physical system modeling, whereas defining 
properties requires expertise in system opera-
tion; 

- They have different lifecycles: the definition 
of properties occurs during the requirement 
phase, whereas the modeling of the system’s 
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behavior occurs during the design phase. For 
instance, properties may capture the current 
safety rules, while behavioral equations may 
describe the current behavior of the system 
under operation. The impact of the evolution 
of safety rules on the operation of the system 
may be assessed by modifying the properties 
and checking them against the current sys-
tem’s behavior. Inversely, the compliance of 
system’s modifications wrt. the current safety 
rules can be checked by comparing the modi-
fied behavioral equations wrt. the current sys-
tem’s properties. 

2.4 Requirements on properties modeling 

A property has to be: 

- in interaction with  the behavioral model of 
the system (since its satisfaction depends on 
the evolution of the system); 

- transparent wrt. the dynamic evolution of 
the system (should not influence the evolu-
tion of the system); 

- coherent with the behavioral model by not 
implying a too low level of details (properties 
should not refer to characteristics that are not 
depicted in the behavioral model); 

- readable for the sake of documentation and 
transmission of knowledge; 

- understandable to ease the interpretation of 
its potential failure. 

The modelling of properties must then be in accor-
dance with these different axioms and an adequate 
data model has to be established in particular to 
guarantee the transparency of the properties model 
towards the behavioral model. 
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Model
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Environment
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Sub-system 1

Sub-system 2

…

 
Figure 1: Data model for modeling the system behav-
ior, the evolution of its environment and the properties 
the system must guarantee 

So as to bound the properties model with the behav-
ioral model in such a way that they remain dissoci-
ated, we suggest here to physically separate these 
two kinds of models in two kinds of files. Such a 

data model (Figure 1) thus corresponds to a model 
organized in three different parts: 

- the environmental model where the charac-
teristics and the evolution of the system envi-
ronment are specified. This part may in par-
ticular be used to set the inputs of the simula-
tion and so to specify some scenarios (e.g. in-
troduction of some component failures, simu-
lation of a series of operator intervention,…) 

- the behavioral model where the intrinsic 
characteristics and the evolution of the sys-
tem are described with behavioral equations. 
In other words, this part corresponds to the 
physical modeling of the process and its I&C 
part; 

- the properties model where the expected ser-
vices of the system and the validity domain of 
the behavioral model are depicted. 

In order to ensure the fact that the properties model 
should be only an observer of the behavioral model, 
the three parts of this data model must communicate 
with each other such that: 

- the properties model and the behavioral 
model may access the data described in the 
environmental model (the properties as well 
as the behavior of the system may actually 
change depending on the evolution of the sys-
tem environment); 

- the properties model may access the data de-
scribed in the behavioral model in order to 
evaluate whether the dynamic evolution of 
the physical process and its I&C part stay 
within the bounds of the prescribed properties 
domain, but it cannot send any data to influ-
ence the behavioral model. 

Besides, in order to ease the reading and the con-
struction of the properties model, it may be helpful to 
organize it into a hierarchy. Depending on the mod-
eler expectations, this hierarchy may be based: 

- on the architecture of the studied system; 

- on the different states of the studied system 
and its environment; 

- or on a combination of the system architec-
ture and the different states (as in Figure 1). 

A hierarchy based on the system architecture may be 
useful in particular when the architecture of the sys-
tem changes and the modeler has then to remove or 
to add some properties related to some specific sub-
systems or components. On the other hand, a hierar-
chy based on the states of the system and of its envi-
ronment may add further information on how the 
system should behave (the description of these states 
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gives in general a better insight into the different op-
erating modes). 

In practice, since a different properties model can be 
built for each operating mode, several properties 
models can be associated with the same behavioral 
model. 

An advanced data model has thus been imagined to 
enable the handling of such a situation. As shown in 
Figure 2, our suggestion is to add a statechart model 
[10] where the different states of the system and of 
its sub-systems and components are described. The 
main idea is then that the statechart model is viewed 
as a supervisor: it may access the data of the behav-
ioral model, decide in which states the system oper-
ates and select the appropriate properties model. 

 

 

Behavioural Model

Human 
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Properties Model
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Winter mode

… …
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Figure 2: Advanced data model for switching proper-
ties models and behavioral models 

 

With the same point of view, it may also be useful to 
associate several behavioral models with the same 
system. For instance, if the objective is to anticipate 
the physical behavior of the system when a fault oc-
curs and to verify whether the corresponding behav-
ior remains in a safe domain, it may be helpful to 
switch, during the simulation, between a model de-
scribing a nominal behavior and another model de-
scribing a dysfunctional behavior of the system. 

For this particular use, the advanced data model of 
Figure 2 can be adapted in such a way that the state-
chart model may: 

- access the results obtained from the assess-
ment of the properties to detect if the validity 
domain of the active behavioral model has 
been crossed; 

- activate, if needed, another behavioral model 
with an appropriate validity domain. 

In such application, let us note however that even if 
the same statechart model supervises several proper-
ties and behavioral models, the hierarchy of the 
properties may not necessarily correspond to the hi-
erarchy of the behavioral models. 

2.5 Requirements concerning the checking, the 
visualization and the analysis of a property 

The question now is to study to what extent the 
properties and the behavioral models should be cou-
pled together to check whether the properties are 
satisfied or not. 

Two kinds of checks may be imagined: a static check 
by formal proof and a dynamic check by simulation. 

Checks by formal proof can be used to verify the 
coherence: (1) between the properties themselves 
(e.g. to verify that properties are compatible between 
themselves and do not define mistakenly empty op-
erating domains); (2) between the properties and the 
behavioral model (e.g. to check that the behavioral 
equations are mathematically compatible with the 
properties). 

Complementarily, checks by simulation can be used 
to verify the properties all along a given scenario 
such as the “Virtual Verification” method suggested 
in [11]. 

Checks by formal proof require that properties and 
behavioral models are described using high level 
formal declarative languages such as Modelica. 
Checks by simulation require the definition of sce-
narios with possible occurrences of dysfunctional 
modes, injection of faults, changes because of human 
interactions, and so on. Besides, to help the analyst 
understand the reasons of properties violations, di-
agnostics tools should be provided, such as: 

- generation of alarm when a property is vio-
lated: a pop-up may appear during the simu-
lation as soon as the non-verification of a 
property is detected; 

- change of component’s visual aspect: the 
color of a component may change when its 
corresponding properties are not satisfied; 

- edition of a log file: to recap all the properties 
violations and to signal at first glance when 
and where the problems have appeared; 

- properties filtering: the analyst may need to 
make a distinction between safety properties 
and properties indicating some pre-alarms, 
optimal operating domains, constraints avoid-
ing damages, and so on. The possibility to tag 
the properties with adequate flags may, for 
instance, be considered. 

This list is however far to be exhaustive, for instance 
one can also imagine the possibility to introduce 
some indicators like the probability of a property’s 
failure. 
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3 Theoretical concepts used for 
properties modeling 

By definition and similarly to the Behavior Engi-
neering approach [12], a property can be expressed 
under the generic form: [Where][When][What]. 

 
Example: The avoidance of pump cavitation can be 
expressed by: [In Pump1][for every instant when the 
pump operates][the fluid pressure at the inlet should 
be greater than a minimum value]. 

 

To meet one of the requirements which is to for-
malize the expression of the properties, the main idea 
of the following sub-sections is namely to describe 
the concepts related to the generic form of a prop-
erty. In more details, these sub-sections describe 
what are the “attributes of a property” (i.e. what refer 
to the where, when and what terms), what they imply 
(i.e. what “kinds of objects” are used) and how they 
can be built (i.e. which “operators” are used to con-
struct such attributes). 
In order to set up a clear theoretical framework, the 
following paragraphs are still voluntarily independ-
ent of any dedicated language. The implementation 
in a Modelica environment is studied in Section 4. 

3.1 Attributes of a property 

As already stated, a property may be expressed under 
the generic form [Where][When][What]. 

“Where” is a space locator that specifies which part 
of the system is concerned by the property. The 
space locator specifies a subset of “everywhere”. It 
may involve a family of components (e.g. all the 
pumps), a specific component (e.g. pump n°2), a part 
of a component (e.g. a specific segment of a pipe), a 
subset of objects that are in a given state or that are 
satisfying a given condition (e.g. all the components 
whose temperature exceeds 240°C). It may also be a 
subset or a combination of other space locators. 

“When” is a time locator to indicate at which in-
stants the property has to be satisfied. The time loca-
tor is a subset of “always”. It may involve a time 
instant referring to all the occurrences of a specific 
event (e.g. when a pump starts), a time period during 
which a given condition holds true (e.g. as long as 
the pump operates), a sliding time interval when a 
given property needs to be satisfied only most of the 
time (e.g. for no more than 3 minutes over any pe-
riod of 2 hours). It can also be a combination of sev-
eral time locators. 

“What” refers to the condition the system should 
guarantee (or the assumption the model should sat-
isfy in the case of a validity domain). It consists in an 
expression that can be evaluated and which results in 
a Boolean variable stating whether the property is 
satisfied or not. Because of the variety of properties, 
conditions can involve physical variables and/or 
states probed at specific time instants or during spe-
cific time periods. They may also imply events, or 
even a combination of these several kinds of objects 
with some space and time locators. 

3.2 Types of objects implied in the attributes of 
a property 

As shown above, a property may entirely be defined 
by the association of a space locator, a time locator 
and a condition to be satisfied. Due to the complexity 
of the systems and the different types of properties 
the designer is interested in, these attributes have to 
deal with numerous kinds of objects such as: 

- instances of models (e.g. Pump1, Sen-
sorMT018…); 

- geometric data (e.g. segment[0.2…0.8] of 
Pipe3); 

- physical variables and/or parameters of dif-
ferent physical types; 

- states of the system, sub-systems and com-
ponents (e.g. since the expected services are 
often depending on the different operating 
modes, a property may concern a component 
only when it is not in a dysfunctional state); 

- events that characterize external stimuli of 
the system (e.g. human intervention, evolu-
tion of the system’s environment) or internal 
changes of the sub-systems and their compo-
nents (e.g. fault during a valve opening); 

- combinations of instances of models, geomet-
ric details, physical variables, states and 
events built thanks to some specific opera-
tors (e.g. Pump1 and Pump2, for every in-
stant where Pump1 operates, all pumps ex-
cept Pump3…). 

The two following paragraphs define in more details 
what we mean by the notions of “state” and “event” 
which may be less naturally intuitive. The concept of 
“operator” to build adequate properties attributes is 
then studied in Section 3.3. 

3.2.1 State 

Definition 2: A “state” is a discrete variable that 
characterizes an aspect of a system, a sub-system or 
a component. It can take its values only within a fi-
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nite set of enumerated values. It is defined according 
to a specific point of view on the system. 

Example: States may correspond to different operat-
ing modes (e.g. maintenance/normal operation), op-
erating conditions (e.g. cold winter/hot summer), 
physical behaviors (e.g. pump/turbine mode)… 

A state may have one (or several) attached sub-state 
variable(s) and the same system, sub-system or com-
ponent may have multiple independent states. 

As explained above, the notion of state can also help 
to organize the properties and the behavioral models 
into a hierarchy. 

3.2.2 Event 

Definition 3: An “event” is an object that is generated 
at a given time instant to signal the occurrence of a 
fact. It carries at least two pieces of information: the 
date and the class of the event. The former indicates 
when the change has occurred while the latter de-
fines what has happened. An event has no duration 
and does not characterize what are the consequences 
of the change on the system behavior. 

Example: The starting of a motor may generate an 
event. 

In some cases, sub-classes of the event concept may 
be created to provide further information such as a 
probability distribution, a frequency of appearance, 
and so on. A distinction may also be made depending 
on the location of the change. For instance, internal 
events are related to the evolution of some variables 
in the behavioral models while external events corre-
spond to changes in the system’s environment. 

The introduction of the event concept can especially 
be used to define some simulation scenarios with 
injections of faults, control or perturbation actions. 

3.3 Operators to build property attributes 

An operator is defined here as a function that con-
structs an object as output given one or several ob-
jects as inputs. Inputs and outputs may be of the 
same type, or of different types. Operators are of 
prime importance to build space/time locators or 
even conditions: 

- when a simple observation of the variables 
available in the behavioral model is not suffi-
cient to describe what the system should 
guarantee or when the model is valid (e.g. 
when a behavioral model involves only a 
mass flow rate variable and the corresponding 
property is expressed in terms of volume flow 

rate, an operator has to be used to perform the 
unit conversion); 

- or when it is easier to express it as a function 
or a combination of other attributes. 

Operators may be classified depending on the types 
of their inputs and outputs. From the analysis of in-
dustrial needs based on EDF and Dassault-Aviation 
use-cases, some operators have been identified as 
particularly useful, such as: 

- arithmetical operators and usual functions: 
+, -, *, π, cosinus, absolute value,…; 

- logical operators: and, or, …; 

- set operators: all, in, œ, – (creation of a set), 
» (sets union), … (sets intersection), ( )card  

(cardinal of a set), S  (complement of a set), \ 
(subtraction of a subset), …; 

- operators on time and events: for, when, 
while, always, never, delay between two 
events, duration of a time period, count of the 
number of events, events synchronization; 

- dedicated operators: >, <, ¥,  (thresholds), 
Õ, Ã (domain inclusion), D (ramp), A  (ac-
cumulation), ( )freq  (frequency). 

Among this (non-exhaustive) list, some operators 
refer to well-known concepts in mathematics or 
computer programming, while other correspond to 
operators more specific to the modeling of properties 
for physical systems. The aim of the following sec-
tions is to give a better insight into these dedicated 
operators by furnishing their mathematical descrip-
tion and illustrating their uses. Their implementation 
in Modelica will then be further discussed in Section 
4. 

3.3.1 Threshold operator 

Definition 4: The “threshold operator” defines a 
lower (or an upper) limit that a variable should not 
exceed. 

This operator may be used to build a time locator or 
a condition. 

Examples: In the case of an heat exchanger, an exter-
nal leakage may appear if the pressure and the tem-
perature both exceed given maximum values. An 
internal leakage may also occur if the number of cy-
cles is superior to a specific limit. Air bearing can be 
destructed if its rotational speed crosses a maximum 
value. If the Mach number is superior to a specific 
limit, the model of an air pipe may predict pressure 
losses with less confidence. 
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3.3.2 Domain inclusion operator 

Definition 5: The “domain inclusion operator” de-
fines a continuous and delimited area that variables 
should not go beyond. It can be seen as the generali-
zation of the threshold operator to the multi-variable 
case. 

This operator may be used to build a condition. The 
delimited area may be defined by a set of given val-
ues or an analytical expression. 

Examples: Figure 3 shows different (pressure ratio, 
reduced airflow) domains for a centrifugal compres-
sor: the green area stands for the nominal operating 
domain whereas the orange and the red ones denote 
respectively the restricted and the destructive do-
mains. 

 
Figure 3: Example of a (pressure ratio, reduced air-
flow)-map for a centrifugal compressor 

3.3.3 Operator for monitoring a rate of change 

Definition 6: The “ramp operator” ∆  can be defined 
both on intensive and extensive variables. For an 
intensive variable ( )tGi  (resp. extensible variable 

( )tGe ), it provides the evolution of ( )tGi  (resp. 

( )tGe ) per time unit during the time period [ ]10,tt  

such as: 
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Examples: In a heating system, the temperature in-
crease should not exceed 3°C per hour. The power 
should not increase more than 2% per hour. For an 
aircraft, the cabin altitude rate of change should cor-
respond to certain pressure bump duration (Figure 4). 

 
Figure 4: Example of a (cabin altitude rate of change, 
pressure bump duration)-map to ensure passenger 
comfort in an aircraft 

3.3.4 Operator for monitoring a time integration 

Definition 7: The “accumulation operator” is relevant 
for extensive variable only. For an extensive variable 

( )tGe , its accumulation during the time period 

[ ]10,tt  is defined such that: 

( ) ( ) ( ) ( )∑∫ ⋅Φ=−=
k

t

t

ekeee dtGtGtGttGA
1

0

0110 ,,  

where ( ) ∫ ⋅⋅⋅=Φ
A

eek dAgG νρ ; ρ  is the mass 

density; eg denotes the variable ( )tGe  per mass unit 

and ν  is the velocity through the surface A  of the 
control volume. 

Examples: This operator can be used to monitor the 
cumulative radioactive dose which is emitted by a 
sub-system in a power plant. It may also prevent a 
complete clogging of a cold heat exchanger by set-
ting up the condition 

 “ ∫ ⋅⋅1

0

t

t
dtwMassAirFloyAirHumidit  should be 

inferior to a given value of mass”. 

3.3.5 Operator for monitoring oscillations 

Definition 8: The “frequency operator” allows to 
quantify the time period between the occurrence of 
some identical events. 

Examples: For a regulating valve, the frequency of its 
control signal should not exceed, for instance, 1 Hz 
during more than 30 seconds in order to avoid any 
impact on the valve’s Mean Time Between Failure. 

3.4 Construction of a property 

To recap the theoretical concepts introduced above, 
we can state that a property can be formally de-
scribed as the association of three attributes (namely 
a space locator, a time locator and a condition to be 
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satisfied) which are built through specific operators 
from objects provided by the behavioral model(s). 

The following examples serve as an illustration on 
how a property expressed in a textual form may be 
reformulated in a formal manner. Through some 
combination processes, they also show how complex 
properties may be entirely described from the short 
list of formal concepts previously described. 

Examples: To avoid the Pump1 cavitation, the pres-
sure at the inlet should be greater than a minimum 
value � [In Pump1] [for all t | state = operating] 
[condition P(t) > Pmin]. 

To ensure the performance of the cooling system, at 
least two pumps should be operating � [In Cooling-
System] [Always] [condition cardinal (set (Pump | 
state = operating) ) ≥ 2]. 

To avoid the turbine wheel erosion, no liquid water 
should enter at the inlet during more than 30 minutes 
� [In Turbine][Always][condition duration (Inlet-
Water.state = liquid) ≤ 30 minutes]. 

4 Modeling of properties in a Mode-
lica framework 

First, a Modelica library dedicated to the modeling 
of properties that has been developed during the Eu-
roSysLib project is presented and illustrated on an 
industrial use-case. Then, the current limitations of 
this library are discussed. Finally, a rationale for a 
Modelica language extension to support properties 
checking by formal proof is given. 

4.1 Modeling of properties with a dedicated 
Modelica library 

4.1.1 Purpose of the library 

The aim of the library is to make checks on parts of 
an architecture defined by a Modelica behavioral 
model. Its particular features are the following: 

- It enables checks during simulations, gets and 
stores information in case of detected defect 
for actions (e.g. stops the simulation and 
starts the next one according to specified cri-
teria); 

- It enables reuse of the properties by parame-
terizing them according to the potential uses 
of the model (e.g. mission profile, specific 
boundary or environmental conditions…), 
stores the properties in a catalog for reuse; 

- It enables dysfunctional analysis: check of 
properties must not influence model simula-
tion (e.g. potential change of time step com-

ing from properties evaluation must not lead 
to an unwanted decrease of results accuracy). 
But, properties could be used to change the 
behavior of models with defect (detected by 
properties observers). In this case models 
should be modeled with different behaviors 
which could be activated on demand (with 
currently smooth change between behaviors 
due to the change of the equation structure). 

The major particularity is that checks are not done as 
post-processing, but on the fly at run-time. 

4.1.2 Use-Case: Environmental Control System 
(ECS) 

The simple ECS used for testing properties is defined 
by two main parts: (1) the Cold Air Unit (CAU), 
made of pipes, heat exchangers, compressors and 
turbines, and which controls air characteristics pro-
vided to the cabin and bays; (2) the bleed, which 
provides air from the engines to the CAU (Figure 5). 

 

 

 

Figure 5: Cold Air Unit and Bleed of the Environ-
mental Control System 

The ECS must be compliant with many require-
ments. These requirements are classified according 
to 6 categories: 

1. threshold monitoring, which deals with 
crossing of threshold (see paragraph 3.3.1 
for examples of properties on the heat ex-
changer, air bearing and pipes); 
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2. operating domain monitoring, which 
mainly deals with conditions regarding the 
location of couple of values (or more) inside 
a defined area or inside a volume. Currently 
only requirements regarding 2D area is de-
fined here, but conditions with more than 
two dimensions could occur (see paragraph 
3.3.2 for example of allowed domains for a 
compressor); 

3. rate of change monitoring, which deals 
with conditions with derivatives (see para-
graph 3.3.3 for criteria concerning the cabin 
altitude rate of change); 

4. accumulation monitoring, which deals with 
conditions with integration (see paragraph 
3.3.4 for example of a condition to prevent 
the clogging of the exchanger); 

5. oscillation monitoring, which deals with 
conditions based on oscillation characteriza-
tions (occurrences, frequencies) (see para-
graph 3.3.5 for the example of a regulating 
valve); 

6. monitoring with space/time locators, 
which test conditions linked to location of 
components or events (see paragraph 3.4 for 
the example of a property to avoid turbine 
wheel erosion). 

4.1.3 Structure of the library 

The presented library is currently dedicated to the 
ECS use-case (with behavioral components devel-
oped by Dassault-Aviation) and properties observers. 

This use-case appears here as a library divided into 
two main parts (Figure 6): 

1. A generic part, called “PropertyObserva-
tion”. It contains: 

a. examples, especially models from DLR, 
which propose two ways (a direct link or 
a bus) for connecting the properties to 
the ECS model. 

b. the ECS model using the second type of 
properties connection since it appears as 
the most generalized and readable way 
for complex systems involving numer-
ous properties. 

2. A second part which contains use-cases. It is 
split into models and requirements: 

a. The models are here focused on an ECS 
system simulated with dry or moist air; 

b. The properties are a collection of spe-
cific properties built as generically as 

possible and classified into several types 
of properties. 

    

 
Figure 6: The two main parts of the library 

 

4.1.4 Process for properties modeling and checking 

4.1.4.1 Connecting models to properties 

When a system must be checked regarding its com-
pliance with requirements, a good process is to inte-
grate the model inside a virtual test bench by extend-
ing it. In this way the model can be checked accord-
ing to several sets of requirements. 

An expandable bus called RequirementBus is added 
to the models by drag and drop from the library. Re-
quirements or sets of requirements are then con-
nected to the RequirementBus. Parameters of the 
requirements can be adjusted according to the analy-
sis. All values which must be provided by the model 
are then automatically available on the bus. 
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Figure 7: ECS use-case 

All the necessary interfaces must then be defined one 
by one using components called Mode-
lica.Blocks.Sources.RealExpression from the Mode-
lica Standard Library. 

The component RealExpression must be linked to a 
variable in the model as in Figure 8 for the cabin 
pressure. 

 
Figure 8: Example of value of a component RealEx-
pression 

When connecting the component, a window appears 
for mapping variable selections (Figure 9). It allows 
the user to select which variable must be mapped to 
the component RealExpression. 

 
Figure 9: Window appearing for connecting RealEx-
pression to input variable within Requirements 

4.1.4.2 Hierarchical decomposition of properties 

Requirements may be complex with many elements. 
Therefore putting all requirements at the same level 
may be cumbersome. 

 
Figure 10: Requirements for a heat exchanger 

A simple example on the ECS heat exchanger is 
shown in Figure 10 where the properties are com-
posed of three main conditions: 

- checkCycledCondition: counts the number 
of pressure cycles seen by the heat exchanger 
and sets a warning when this number is upper 
a threshold; 

- checkMechanicalStrength: computes an 
equivalent stress within the heat exchanger 
and compares it to an allowed maximum 
stress; 

- checkIcingCondition, checkDeIcingCondi-
tion and checkHXWater: check icing and 
deicing conditions, and the amount of water 
inside the heat exchanger. Typically, if the 
mass of water is above a limit, the heat ex-
changer could be partially clogged and the 
simulation could be not valid if the behav-
ioral model is not adapted to this particular 
situation. When attaining this operating con-
dition, it is interesting to continue the simula-
tion with the properly modified behavioral 
model to analyze the consequences of being 
outside of the nominal domain (dysfunctional 
analysis). 

These requirements stand for the heat exchanger but 
all the types of properties defined in Section 3 have 
been investigated within the complete ECS use-case. 
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In fact, many other properties observers could be 
added and if we consider observers of other compo-
nents or sub-systems it seems to be cumbersome to 
put them all in the same view. Therefore the library 
has been enhanced to support hierarchical decompo-
sition of properties. In particular a component called 
UpperLevel has been introduced to transmit the re-
sult as an OR function of its inputs. 

4.1.5 Unit test for a heat exchanger 

Properties components have been tested with speci-
fied inputs to check that their behaviors were correct. 
Figure 11 shows different properties states for a heat 
exchanger. 

During simulation, the visual indicator stays green as 
long as no defect is detected (state 1). When a defect 
occurs, the edge of the indicator turns to red (state 2) 
and goes back to green as soon as the defect detec-
tion disappears. To keep the memory of a defect de-
tected during the simulation, another outside red 
square is added and remains until the end of the 
simulation (state 3). 

 

  

(a) State 1  (b) State 2 

 

(c) State 3 

Figure 11: Warning indicators of a set of properties 

For a detailed analysis, it is possible to access the 
internal warning indicators of each property as 
shown in Figure 12. 

 
Figure 12: Internal warning obtained at the lower level 
of requirements (detailed level) 

It is also possible to investigate more deeply what 
has happened by plotting all variables of interest. 

5 Formal modeling of properties with 
Modelica language extensions 

The previous section has shown that the develop-
ment of a dedicated Modelica library is efficient to 
model the main properties implied in the ECS indus-
trial use-case. Two current limitations have however 
to be mentioned. 

Firstly, even simple properties cannot be modeled as 
soon as they imply space or time locators. 

Examples : Currently the following properties cannot 
be modeled. 

� [In Turbine] [Always] [condition dura-
tion (InletWater.state = liquid) ≤ 30 minutes] 

� [In CoolingSystem] [Always] [condition cardi-
nal (set (Pump | state = operating)) ≥ 2]. 

Secondly, even if the properties library features the 
all main operators needed to model properties, it 
only supports the construction of the properties in a 
block-diagram way: many components must be con-
nected to form one simple property. This approach is 
quite in contradiction with the Modelica spirit as it 
emphasizes a graphical modeling approach over a 
formal equation modeling approach. Therefore, it 
does not comply with the fundamental requirements 
for the formal description of properties. This leads to 
several potential limitations, such as the impossibil-
ity to check properties by static proofs, or the im-
practical association of validity domains to behav-
ioural equations. 

As for the modeling of the physical behaviors, a 
formal (i.e. an equation-based) approach presents 
numerous advantages to model properties (Figure 
13). 
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model DCmotor
parameter Real R=8.0;
parameter Real L=0.001;
parameter Real kc=0.031;
parameter Real J m=0.000018;
parameter Real b m=0.0001;
Real phi, p m, w m;
Real u=10;

equation
der(phi) = -R*phi/L-kc*p m/J m+u
der(p m)  = kc*phi/L – b m*p m/J m

wm= p m/J m

end DCmotor;

State-equation for phi

State-equation for pm

Output-equation

Block-diagram modeling Formal modeling
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parameter Real RampQmax=10;
parameter Domain domainQT=

[15,2050;38,2050;15,3355;38,3355];
Real Q, T;

equation
ramp(Q)< RampQmax;
domainmonitoring(Q,T,domainQT);

end SRI;

A formal expression enhances reuse and legibility

model DCmotor
parameter Real R=8.0;
parameter Real L=0.001;
parameter Real kc=0.031;
parameter Real J m=0.000018;
parameter Real b m=0.0001;
Real phi, p m, w m;
Real u=10;

equation
der(phi) = -R*phi/L-kc*p m/J m+u
der(p m)  = kc*phi/L – b m*p m/J m

wm= p m/J m

end DCmotor;

State-equation for phi

State-equation for pm

Output-equation

State-equation for phi

State-equation for pm

Output-equation

Block-diagram modeling Formal modeling
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parameter Real RampQmax=10;
parameter Domain domainQT=

[15,2050;38,2050;15,3355;38,3355];
Real Q, T;

equation
ramp(Q)< RampQmax;
domainmonitoring(Q,T,domainQT);

end SRI;

A formal expression enhances reuse and legibility  
Figure 13: Advantage of a formal (equation-based) 
approach for behavioral and properties models 

 

A formal description allows to: 

- provide explicit and unambiguous specifica-
tion of properties and thus avoid some poten-
tial misunderstandings and mistakes; 

- enhance the legibility and so the reuse of the 
properties models; 

- improve the test coverage by automating the 
checking procedures; 

- enable some static tests (i.e. tests performed 
without any simulation) on the coherence and 
the completeness of the properties. 

- associate validity domains to behavioural e-
quations, and perform various checks on 
them. 

Examples: For a model where the two properties “[In 
Pump1][Always][condition P(t) > Pmin]” (to avoid 
pump cavitation) and “[Always][condition P(t) < 
Pmax]” (to guarantee the flow direction of radioactive 
leaks) should be satisfied, a first check should ensure 
that there is no contradiction between the numerical 
values of Pmin and Pmax. 
In another model, if the two following properties 
“ [For 0 °C < T < 15 °C][condition …]” and “[For 
22 °C < T < 38 °C][condition …]” should be ful-
filled, one may wonder if there is some incomplete-
ness in the requirements and what should happen 
when the temperature is between 15 °C and 22 °C. 

Hence modeling the properties with an equation-
based approach will give the possibility to perform 
formal transformations and verifications on both the 
properties and behavioral models. This will contrib-
ute greatly to improve system validation by increas-
ing the coverage and the rigor of the verifications.  

The use of Modelica for that purpose may only be 
done by introducing natively in the language the 
concepts of space/time locators and dedicated opera-
tors. 

6 Conclusions 

In order to improve the V&V process, this article 
deals with the modeling and checking of system 
properties. The study is made within a fully Mode-
lica-based framework and encompasses with the 
term “property” the modelling of any require-
ment/limitation the engineer wants to express on its 
system/subsystem/component or on its model/sub-
model. 
Imagined as complementary to the ModelicaML ap-
proach, modelling system properties directly in 
Modelica is justified here as a desire to: (1) use an 
equation-based language to express the properties in 
an unambiguous way; (2) choose a formalism closed 
to the one used for expressing the physical equations 
in order to ease the formulation of the validity do-
mains of the models. 
After having introduced some theoretical concepts to 
formally describe a property, some requirements 
have been listed on how the properties and the be-
havioural models should communicate to check vir-
tually whether the properties are satisfied or not. 
The development of a Modelica library dedicated to 
the modelling of properties has then been explained 
and illustrated on an industrial example taken from 
the aeronautics domain. Even if several operators 
have been especially built to cover the most types of 
properties, two current limitations have however to 
be raised: (1) even simple properties cannot be mod-
eled as soon as they imply some space or time loca-
tors; (2) the properties are actually modeled in a 
block-diagram way which is inconsistent with the 
ambition of performing formal proofs. 
Further work has then to be investigated to make up 
for these aspects and concrete proposals should be 
made to introduce natively in the Modelica language 
the concepts of space/time locators and dedicated 
operators. 

Acknowledgements 

This work was partially supported by the pan-
European ITEA2 program and the French govern-
ment through the EuroSysLib project. 

References 

[1] Information available on the Modelica Asso-
ciation web site: http://www.modelica.org 

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011 

591



[2] P. Fritzson, Principles of Object-Oriented 
Modeling and Simulation with Modelica 2.1, 
Wiley IEE Press, 944 pages, February 2004. 

[3] Information available on the OpenProd web 
site: http://www.ida.liu.se/~pelab/OpenProd/ 

[4] Information available on the official UML 
web site: http://www.uml.org 

[5] W. Schamai, P. Fritzson, C. Paredis, A. Pop, 
Towards Unified System Modeling and 
Simulation with ModelicaML: Modeling of 
Executable Behavior Using Graphical Nota-
tions, in Proceedings of the 7th Modelica 
Conference, Como, Italy, September 20-22, 
2009. 

[6] W. Schamai, Modelica Modeling Language 
(ModelicaML): A UML Profile for Modelica, 
technical report in Computer and Informa-
tion Science, n° 2009:5, Linköping Univer-
sity Electronic Press, 49 pages, 2009. 

[7] Information available on the EuroSysLib 
web site: http://www.eurosyslib.com 

[8] Property Specification Language – Refer-
ence Manual, Accellera technical report, 
USA, June 2004. 

[9] Dymola software, Dassault Systèmes, infor-
mation available at: http://www.dymola.com 

[10] D. Harel, Statecharts: A visual formalism for 
complex systems, in Science of Computer 
Programming, 8(3):231-274, June 1987. 

[11] W. Schamai, P. Helle, P. Fritzson, C. Pare-
dis, Virtual Verification of Systems Design 
against System Requirements – A Method 
Proposal, in Proceedings of the 3rd Interna-
tional Workshop on Model Based Architec-
turing and Construction of Embedded Sys-
tems (ACES 2010), in conjunction with 
MODELS 2010, Oslo, Norway, October 4, 
2010. 

[12] T. Myers, P. Fritzson, R.G. Dromey, Seam-
lessly Integrating Software & Hardware 
Modelling for Large-Scale Systems, in Pro-
ceedings of the 2nd International Workshop 
on Equation-Based Object-Oriented Model-
ing Languages and Tools (EOOLT 2008), 
Paphos, Cyprus, July 8, 2008. 

[13] Eurosyslib sWP7.1 DGT116083B Dysfunc-
tional Use Cases and User Requirements, 
2010. 

[14] EuroSysLib sWP7.1 DGT124618 Properties 
Evaluation Report, 2010. 

[15] EuroSysLib sWP7.1 Properties Modeling, 
2010. 

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011 

592




