
Effective Version Control of Modelica Models

Peter Harman

deltatheta UK Ltd.

The Technocentre, Puma Way, Coventry, CV1 2TT, UK

peter.harman@deltatheta.com

Abstract

This contribution introduces Converge, a specialized

Version Control System client application designed

purely for Modelica. Conventional VCS clients and

diff tools cannot inform the user what the effect of a

single edit has on the model as a whole. Converge

compares selected revisions of a model, loading the

Modelica code directly from the VCS repository.

This paper presents examples of Modelica code

where an edit that appears significant in a conven-

tional diff tool can be shown as not so, and an edit

that appears insignificant in a conventional diff tool

actually has significant changes to the resulting

model.

Successfully comparing two revisions of a model

requires resolving the types of components, includ-

ing handling inheritance, imports and redeclarations.

It requires handling of equations and component val-

ues, and flattening of the model structure.

Converge includes a complete Modelica implemen-

tation, and presents the VCS repository to the user

with a number of views, including Packages, Inherit-

ance, Dependencies, Annotations, and Components

views; and Instance and Equations views that com-

pare the instantiated model. Changes, and whether

they affect the model results, are highlighted to the

user. This will allow users to understand the devel-

opment of models over time and to solve problems

caused by changes in dependent Modelica libraries.

Keywords: software configuration management; ver-

sion control; model lifecycle management

1 Introduction

As a textual modeling language Modelica [1] allows

typical Software Configuration Management (SCM)

practices to be used, in particular version control. An

important part of version control is the “diff” func-

tionality, allowing the user to see changes between

revisions.

The goal of this paper is to introduce a new tool,

called Converge, for comparing revisions of Modeli-

ca models in order to locate sources of errors, deter-

mine which changes have potential effects on model

results, and track changes of models over time. Con-

verge connects directly to a version control reposito-

ry to access models.

The paper is structured as follows. Section 2 is an

introduction to version control systems and their use

with Modelica including the current limitations. Sec-

tion 3 describes Converge and the range of views it

provides of a model. Section 4 gives some examples

where Converge gives a more realistic view of the

changes to the model than traditional diff tools. Sec-

tion 5 describes the implementation of the software,

and Section 6 concludes.

2 Version Control Systems

Version Control Systems (VCS) store program code

along with a database of revisions, and via client ap-

plications, allow the user to access a file or set of

files for any revision. Usually this revision can be

specified as a date or a revision number. Traditional

VCS such as Subversion (SVN) [2] or CVS [3] use a

central repository. There is also a new breed of Dis-

tributed Version Control Systems (DVCS) such as

Git [4] or Mercurial [5] where each working copy

also has its own complete copy of the repository. The

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

650

style of VCS used however does not affect the bene-

fits and limitations of using VCS with Modelica.

The user normally interacts with the VCS with a

client application. These can be standalone; inte-

grated into a file explorer such as the popular Tortoi-

seSVN [6] client; or integrated into an Integrated

Development Environment such as Visual Studio

[7], Eclipse [8] or Netbeans [9]. These generally

have either a built-in diff application, or can launch

an external diff application with a pair of revisions.

Web based respository browser applications allow

viewing of the code without a client application, for

example the Trac [10] system used by the Modelica

Association [11]. These usually do not contain diff

functionality, but do allow viewing of “changesets”,

which list all files changed and a summary of the

changes. These give the user a view of the current

state, or the state for a particular revision.

2.1 Diff Tools

The output of a diff tool can be used to interpret the

possible effects of changes locally. Within one code

file, lines of code inserted, changed or removed can

be seen, which for a programming language can be

interpreted to see the change in behavior. It doesn’t

however inform the user, for example, whether de-

pendencies have changed or what the effect of a

change of import statement or variable type has on

the overall program.

In equation based languages such as Modelica or

VHDL-AMS [12] it is rarely even possible to deter-

mine locally the change in behavior because the code

is not algorithmic.

2.2 Other Limitations of VCS and Modelica

Using version control with a Modelica library is bet-

ter than not using version control. However there are

limitations to the information available to the user

from the conventional VCS client.

Loading, editing and saving a Modelica model with a

Modelica tool may not preserve exactly the same

formatting and whitespace as in the original file.

Annotations have no effect on simulation results;

however a large proportion of edits within a Modeli-

ca diagram editor will be on the annotations. Each of

these edits will be shown in a diff tool and it is cur-

rently up to the user to determine which edits are of

significance.

Some operations may appear to be significant and

yet have no effect on the overall set of variables and

equations. Such an example is illustrated later.

3 Viewing Modelica Revisions in

Converge

Converge [13] is a standalone tool designed purely

for comparing revisions of Modelica models and

packages. In essence it is a specialized VCS client

designed purely for Modelica. Successfully compar-

ing two models requires resolving the types of com-

ponents, including handling inheritance, imports and

redeclarations. It requires handling of equations and

component values, and flattening of the model struc-

ture, and therefore has similar needs to a Modelica

modeling tool.

The aim of Converge is to successfully solve the

problem of version control of Modelica, overcoming

the limitations discussed and allowing “model life-

cycle management”. Ultimately the aim is to answer

typical questions that arise during development or

utilization of Modelica libraries:

 Does this change affect the results?

 Why does my model give different behavior

to two weeks ago?

 What are the dependencies of my model and

which have changed?

This is done by providing the user with a range of

views, both of the package structure, and of an indi-

vidual class.

3.1 Global Views

The user defines the path from which Modelica code

is loaded. Rather than just a directory or set of direc-

tories as in a modeling tool, the path can contain

multiple version control repositories. All views are a

comparison between 2 revisions, which can be se-

lected. One of these can be set as a local working

directory, so the comparison is between a working

version and a committed revision, or it can be be-

tween 2 revisions.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

651

There are two overall views, one for the path and one

for the Modelica packages.

3.1.1 Path View

The Path view shows all files available to be loaded

on the Modelica path. It is not discriminated between

the source of the files, whether they are stored in di-

rectories, in a version control repository or a Modeli-

ca archive file, the resulting tree is the same.

Figure 1: Path View showing revisions of Modelica Standard

Library

3.1.2 Packages View

The Packages view shows the hierarchy of Modelica

packages as a tree. Similar to the package browser in

a Modelica modeling tool, but the two trees side by

side show the two revisions being compared. If a

class exists in one revision but not the other this is

highlighted.

Figure 2: Packages View showing revisions of Modelica

Standard Library

3.2 Class Views

An individual Modelica class can be viewed in a

number of ways, each designed to visualize a differ-

ent aspect of the model. Like the global views, these

compare the revisions side by side.

3.2.1 Component Structure View

The Structure view shows the components declared

in the class. Any components existing in one and not

the other will be highlighted, as will differences be-

tween individual components. These differences

could be the type, dimensions, value or other modifi-

cations on the component.

3.2.2 Package Structure View

The Package view shows a tree view of classes de-

clared below the class. Any classes existing in one

and not the other will be highlighted. Differences in

attributes such as class restriction, dimensions or

replaceability will also be highlighted.

3.2.3 Inheritance View

The Inheritance view shows a tree view of classes

that the class extends from.

3.2.4 Dependencies View

The Dependencies view shows a tree view of all

classes that the class depends on. This could be via

inheritance or use as a component. By expanding the

tree the user can quickly tell if any dependencies

have changed, and changes to key attributes for each

class are also highlighted.

3.2.5 Annotations View

In most cases the user will wish to ignore annota-

tions, as these do not affect simulation results. How-

ever an Annotations view is included, which shows

the user a tree view of all the annotations attached to

the class and to components within it.

3.2.6 Instantiated Components View

The Instance view is a powerful way of comparing

revisions of a class. The class is shown as a tree of

components, both locally declared and inherited. Be-

low each component in the tree is the set of compo-

nents generated by the flattening of the component.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

652

This allows the user to visualize changes in the re-

sulting flattened model.

3.2.7 Equations View

The Equations view shows a tree with the equations

for the class, this can be expanded to see equations

from all components in the model, matching the In-

stance view for components. Equations are deter-

mined after modifications are applied but are not

simplified and connection equations are not elabo-

rated.

3.2.8 Code View

The Code view is a traditional code diff view, show-

ing the code for each revision with changed lines

highlighted.

3.3 Navigation

It is important to be able to quickly navigate through

the packages in order to locate a source of a change.

Within the global Packages view clicking on any

class opens a view of that class. Clicking on a refer-

ence to another class within any view, such as Inhe-

ritance or Dependencies views, opens a view of it.

Navigating to a different view on the same class is as

simple as selecting the tab for the required view.

4 Application Examples

The following examples are to illustrate simple cases

where a change that appears significant when com-

paring code directly causes an insignificant change

to the model results, or where a change that appears

insignificant comparing code causes a significant

change in the model results.

4.1 Editing Diagram

When building Modelica models in a Modelica envi-

ronment some of the most common operations are in

the diagram editor. Some of these have an effect on

the results of the model, such as adding or removing

components or connections, while some have no ef-

fect.

Moving a component in the diagram layer will result

in the Placement annotation for that component

changing, and the Line annotation for any rerouted

connections changing, therefore creating differences

on several lines within the model definition. This

will be viewed within a VCS client or browser as a

significant change, however within Converge it is

only shown in the Annotations and Code views.

4.2 Refactoring Inheritance

A common change to models that a library developer

may make is moving connectivity and common va-

riables from a model to a partial class, and changing

the model to extend from the partial class. This then

allows other models to inherit the same connectivity.

package Springs

model SimpleSpring

 Flange_a flange_a;

 Flange_a flange_b;

 Force f;

 Position s_rel;

 parameter Stiffness k=1000

"Spring rate";

 parameter Distance s_rel0=0 "Un-

stretched spring length";

equation

 s_rel = flange_b.s - flange_a.s;

 flange_b.f = f;

 flange_a.f = -f;

 f = c*(s_rel - s_rel0);

end SimpleSpring;

end Springs;

Code 1: Package before Inheritance Refactoring

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

653

package Springs

partial model PartialSpring

 Flange_a flange_a;

 Flange_a flange_b;

 Force f;

 Position s_rel;

equation

 s_rel = flange_b.s - flange_a.s;

 flange_b.f = f;

 flange_a.f = -f;

end PartialSpring;

model SimpleSpring

 extends PartialSpring;

 parameter Stiffness k=1000

"Spring rate";

 parameter Distance s_rel0=0 "Un-

stretched spring length";

equation

 f = c*(s_rel - s_rel0);

end SimpleSpring;

model SimpleSpringDamper

 extends PartialSpring;

 Velocity v_rel;

 parameter Stiffness k=1000

"Spring rate";

 parameter Damping d=10 "Damping

rate";

 parameter Distance s_rel0=0 "Un-

stretched spring length";

equation

 v_rel = der(s_rel);

 f = c*(s_rel - s_rel0) +

d*v_rel;

end SimpleSpringDamper;

end Springs;

Code 2: Package after Inheritance Refactoring

A change such as this will be viewed within a VCS

browser, and within the Packages, Class Structure

and Inheritance views of Converge, as a significant

change. A new class has been added, and the original

class has had components removed and an extends-

clause added.

Figure 3: Code View showing Inheritance Example

However, by using the Instance view within Con-

verge, it can be seen that the resulting set of va-

riables has not actually changed. So the user can

identify using Converge that this change should not

have an impact on the simulation results.

Figure 4: Instance View showing Inheritance Example

4.3 Changing Imports

Changing import statements in a class can change the

types of components, cause an error or have no effect

at all. Viewed in a traditional diff tool only the line

containing the import statement would be hig-

hlighted as a change.

The following two models are the same except for a

change of import statement. However the compo-

nents and equations below the “spring” component

are different.

model MySpringAndMass

 import Spring =

Springs.SimpleSpring;

 Spring spring;

 Mass mass;

 Ground ground;

equation

 connect(ground.flange,

spring.flange_a);

 connect(spring.flange_b,

mass.flange_a);

end MySpringAndMass;

Code 3: Model before Import Change

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

654

model MySpringAndMass

 import Spring =

Springs.SimpleSpringDamper;

 Spring spring;

 Mass mass;

 Ground ground;

equation

 connect(ground.flange,

spring.flange_a);

 connect(spring.flange_b,

mass.flange_a);

end MySpringAndMass;

Code 4: Model after Import Change

Using the Instance view within Converge, it can

quickly be seen what the resulting difference is be-

tween the models. Because Converge can resolve the

types of components within the model it takes ac-

count of the import statements when determining the

component tree.

Figure 5: Code View showing Import Example

Figure 6: Instance View showing Import Example

4.4 Redeclarations

A redeclaration of a component is a small change to

the Modelica code that can have a significant change

to the flattened model. The spring and mass example

from above can be restated as a redeclaration as fol-

lows.

model MySpringAndMass

 replaceable Springs.SimpleSpring

spring constrainedby

Springs.PartialSpring;

 Mass mass;

 Ground ground;

equation

 connect(ground.flange,

spring.flange_a);

 connect(spring.flange_b,

mass.flange_a);

end MySpringAndMass;

Code 5: Spring mass model with replaceable spring

model MySystem

 MySpringAndMass springMass;

end MySystem;

Code 6: Model before redeclaration

model MySystem

 MySpringAndMass spring-

Mass(redeclare

Springs.SimpleSpringDamper spring);

end MySystem;

Code 7: Model after redeclaration

Figure 7: Code View showing Redeclaration Example

Figure 8: Instance View showing Redeclaration Example

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

655

5 Implementation

The ability to load, analyze and navigate the struc-

ture of Modelica models, including their instantiated

form, is provided by the Modelica SDK [14].

The Modelica Specification [15] defines the mapping

between a Modelica package hierarchy and a filesys-

tem. For the general case this is only applicable to a

directory structure or a Modelica archive file. The

Modelica SDK has an interface that represents this

mapping. This defines the methods required to

access a hierarchy of Modelica files. Within Con-

verge, implementations of this interface are provided

that communicate directly with the VCS system, al-

lowing Modelica models to be loaded for a specified

revision without performing a “checkout” operation.

5.1 Status and Limitations

Currently Converge works with Subversion (SVN)

repositories. This is being expanded to include a

range of version control systems.

Converge is based on a Modelica implementation

designed for Modelica 3.x. Libraries containing ex-

perimental language features, especially those that

change the general syntax or class look-up process,

may not give the expected results.

Differences between connections and overcon-

strained Connections.branch/.root statements are

shown in the tool. Connection equations are not gen-

erated, including Stream equations and overcon-

strained branches.

5.2 Issues

It should be stressed here that the analysis of whether

a change to a model potentially affects the results has

to make the assumption that a change to an annota-

tion has no such effect. Since the introduction of the

Embedded Systems section to the specification this

is no longer the case, as the mapping to the target

system is defined as an annotation.

5.3 Future

Although Converge is not attempting to compile or

simulate models, it can still detect sources of errors.

Examples of these are changes of names or removal

of classes or components that result in failure to find

a class or component, or some cases of incompatible

types or dimensions. If such an error occurs in the

working version but not in the “head” revision within

the VCS then a warning could be issued to the user.

6 Conclusions

In this paper, we have introduced a tool, Converge,

for comparison of revisions of Modelica packages

within a version control system. This will allow us-

ers to understand the development of models over

time and to solve problems caused by changes in

dependent Modelica libraries.

References

[1] Modelica, http://www.modelica.org

[2] Collins-Sussman, B., The Subversion

Project: Building a Better CVS, Linux Jour-

nal, Volume 2002 Issue 94, February 2002

[3] Morse, T., CVS, Linux Journal, Volume

1996 Issue 21, Jan. 1996

[4] GIT - Fast Version Control System,

http://git-scm.com

[5] O’Sullivan, B., Distributed revision control

with Mercurial, Mercurial Project 2007

[6] TortoiseSVN, http://tortoisesvn.org

[7] Visual Studio,

http://www.microsoft.com/visualstudio/

[8] Eclipse, http://eclipse.org

[9] Netbeans, http://netbeans.org

[10] Trac, http://trac.edgewall.org

[11] Modelica Association Trac Instance,

http://trac.modelica.org

[12] Christen, E., Bakalar, K., VHDL-AMS, a

hardware description language for analog and

mixed-signal applications, Circuits and Sys-

tems II: Analog and Digital Signal

Processing, Volume 26 Issue 10, 1999

[13] Converge,

http://www.deltatheta.com/products/converg

e/

[14] Harman P., Tiller M. Building Modelica

Tools using the Modelica SDK, Modelica

2009

[15] Modelica Language Specification, Version

3.2, Modelica Association 2010

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

656

http://www.modelica.org/
http://git-scm.com/
http://tortoisesvn.org/
http://www.microsoft.com/visualstudio/
http://eclipse.org/
http://netbeans.org/
http://trac.edgewall.org/
http://trac.modelica.org/
http://www.deltatheta.com/products/converge/
http://www.deltatheta.com/products/converge/

