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Abstract 

Many industrial applications, e.g. in power systems, 
need to use uncertain information (e.g. coming from 
sensors). The influence of uncertain measurements 
on the behavior of the system must be assessed, for 
safety reasons for instance. Also, by combining in-
formation given by physical models and sensor 
measurements, the accuracy of the knowledge of the 
state of the system can be improved, leading to better 
plant monitoring and maintenance.  
Three well established techniques for handling un-
certainties using physical models are presented: data 
reconciliation, propagation of uncertainties and in-
terpolation techniques. Then, the requirements for 
handling these techniques in Modelica environments 
are given. They apply to the Modelica language it-
self: how to specify the uncertainty problem to be 
solved directly in the Modelica model. They also 
apply to model processing: what are the pieces of 
information that must be automatically extracted 
from the model and provided to the standard algo-
rithms that compute the uncertainties. 
Modelica language extensions in terms of two new 
pre-defined attributes, uncertain and distribu-
tion, are introduced for Real and Integer variables. 
This is needed to differentiate between certain (the 
usual kind) variables and uncertain variables which 
have associated probability distributions. An algo-

rithm for extracting from the Modelica model the 
auxiliary conditions needed by the data reconcilia-
tion algorithm is given. These new features have 
been partially implemented in the MathModelica tool 
(and soon OpenModelica). 
Keywords: data reconciliation; propagation of un-
certainties; distribution probability laws; Jacobian 
matrix; Modelica language extensions; model proc-
essing 

1 Introduction 

The major power plant projects at EDF mainly con-
cern improvements of existing plants (e.g., lifetime 
extension up to 60 years, power upgrading, reliabil-
ity improvements, etc.) as well as the construction of 
new plants (e.g., nuclear, renewable energy, etc.). In 
that context, EDF has acquired a strong background 
in the modeling and simulation of electrical and 
power plant applications for improved investigation 
and operation. 
The physical state of a plant is given by sensor 
measurements which are subject to uncertainties. 
Hence, good uncertainty assessment is necessary for 
the proper monitoring of the plant operation set 
point, and to comply with the safety margins. By 
combining information given by physical models and 
sensor measurements the accuracy of the knowledge 
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of the state of the system can be improved, leading to 
better plant monitoring and maintenance [6].  
Today, engine simulation is important at IFP to solve 
the problems of air pollution and energy depletion. 
Many aspects of engine operation are poorly under-
stood because of the problems encountered when 
attempting to measure the variables that describe the 
engine’s operation. This issue complicates both the 
engine’s control and design. Uncertainty manage-
ment with parameter sensitivity studies are promis-
ing techniques to improve the measurement quality, 
and subsequently the control and design of internal 
combustion engines in the years to come. 
In order understand the strongly non-linear behav-
iour of the physical systems under study, IFP has 
developed a new methodology based on an evolu-
tionary experimental design, kriging and statistical 
modeling concepts, that are more adequate and accu-
rate than the traditional linear regression tech-
niques [4]. 
EDF and IFP are currently developing advanced li-
braries for modeling power plants and engines in 
Modelica, and are therefore interested in reusing the-
se models for uncertainty computations. The main 
benefit will lie in the delivery of integrated environ-
ments for system modeling and uncertainty studies. 
The objective of this article is to make a proposal to 
extend the Modelica language for the handling of 
uncertainties. First, several important use cases are 
presented: data reconciliation, propagation of uncer-
tainties, kriging and response surface methodology. 
Then the basic requirements for the handling of such 
techniques with Modelica are established. Finally, a 
technical proposal for an extension of the Modelica 
language is given. 

2 Techniques for handling uncertain-
ties 

2.1 Data reconciliation 

The objective of the data reconciliation technique is 
to improve the knowledge of the physical state of a 
system using redundant physical measurements of 
the system and the physical laws that govern the be-
havior of the system. The increase of knowledge is 
obtained by reducing the uncertainty intervals of the 
variables of interest (i.e., that define the state of the 
system), or in other words by finding the reconciled 
values of the physical state which are closest to the 
true values of the physical state, which by definition 
cannot be exactly known. 

By definition, the vector of improvements ν  is de-
fined such as: 

ν+= xx̂  
where x  and x̂  denote resp. the vector of measured 
values and the vector of improved values, also called 
reconciled values. 
The data reconciliation technique can be formally 
expressed as an optimization problem, where the 
goal is to find the vector of improvements such as 
the objective function 0ξ  attains its minimum value. 

( )0
1

0 min ξννξ
ν

⇒⋅⋅= −
x

T S  

xS  is the covariance matrix, which is symmetric by 
definition. Its diagonal elements are:  
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with 
ixw  being the half-width confidence interval of 

the measured value ix , and 96.1%95 ≈λ  corre-
sponding to a level of confidence of 95%. 
Its off-diagonal elements are: 

kiki xxikxx ssrs ⋅⋅= ,,
 

where ikxr ,  is an empirical (estimated) correlation 
coefficient. Because of the difficulty of estimating 
these coefficients, they are often set to zero by mak-
ing the assumption that the measured variables are 
uncorrelated. Then: 
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The reconciled values are constrained by the physi-
cal laws such as mass, energy and momentum bal-
ances, state functions, correlations, etc, which are 
expressed in the mathematical model of the system. 
The subset of the model equations that constrain the 
reconciled values are called the auxiliary conditions, 
and denoted )(⋅f . Hence 0)ˆ( =xf , whereas 

0)( ≠xf  in general. This is why )(xf  is called the 
vector of contradictions. 
The algorithm for computing the reconciled values is 
given in the VDI 2048 standard [5]. This standard 
considers that the probability function of each meas-
ured value follows a Gaussian distribution law that 
the measurements are performed while the system is 
in steady-state, and that the measured values are reli-
able enough so that the vector of improvements is 
small. 
As a consequence of the two last hypotheses, )(⋅f  
needs only to be static, and may be linearized around 
the measured values: 
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( ) ( ) vF
x
xfxf ⋅−=⋅

∂
∂

−= ν  

where F  is the Jacobian matrix of the auxiliary 
conditions. 
It can then be shown that the reconciled values are 
given by: 

( ) ( )xfFSFFSxx T
x

T
x ⋅⋅⋅⋅⋅−=

−1ˆ  

The covariance matrix of the reconciled values is 
given by: 

( ) x
T

x
T

xxx SFFSFFSSS ⋅⋅⋅⋅⋅⋅−=
−1

ˆ  

The uncertainties associated with the reconciled val-
ues can then be computed from the knowledge of 
this matrix: 
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The Gaussian distribution hypothesis is verified a 
posteriori by applying a 2χ  test on the reconciled 
values. This check is done globally by checking the 
following condition: 

2
%95,0 rχξ ≤  

where 2
%95,rχ  is given by a 2χ -table and r  is the 

number of auxiliary conditions. Local checks on in-
dividual variables may be performed as well. 
In practice, the actual implementation of the method 
differs slightly from its theoretical formulation in 
order to avoid the cumbersome matrix inversions. To 
that end, they are replaced by the resolution of linear 
equations. For instance, the reconciled values are 
computed using the following procedure: 

*ˆ fFSxx T
x ⋅⋅−=  

with *f  such as: 

( ) ( )xffFSF T
x =⋅⋅⋅ *  

*f  may be solved numerically using the Newton 
algorithm. 

2.2 Propagation of uncertainties  

From the knowledge of estimated sources of uncer-
tainties, it is possible to derive the uncertainties of 
variables of interest by propagating the sources of 
uncertainties through a model of the system. 
To that end, EDF R&D has developed a complete 
methodology. This methodology is divided into four 
steps, as illustrated in Figure 1. 
  

Step A: problem specification 

?end

: min/max 

 
Figure 1: Steps of the uncertainty propagation methodol-
ogy developed at EDF R&D [8].  

Step A aims at identifying the sources of uncertain-
ties x , the variables of interest y , and the model of 
the system ( )⋅h . The uncertainty study is then for-
mally expressed as: 

( )dxhy ,=  

where d  denotes the variables treated as certain (i.e. 
whose uncertainties can be neglected). 
A decision criterion must also be defined to indicate 
how the uncertainties of the variables of interest have 
to be quantified and to determine the final objective 
of the uncertainty study. The criterion can be deter-
ministic, by assessing a minimum and a maximum 
value for each variable of interest, or probabilistic 
like the probability of exceeding a given threshold, a 
quantile, or a central dispersion. 
Step B aims at quantifying the sources of uncertain-
ties. When the deterministic criterion is chosen, a 
min and a max value must be associated with each 
variable. When the probabilistic criterion is chosen, 
the sources of uncertainties are treated as the compo-
nents of a random vector X . For each individual 
component iX , the probability distribution must be 
assessed. Also, the statistical dependency between 
two components iX  and jX should be evaluated in 
the form of correlation coefficients.  
Step C is the uncertainty propagation through the 
model. When a deterministic criterion is chosen, 
finding the minimum and the maximum values of y   
is quite easy if the model is monotonous wrt. x . 
Otherwise this search may become a potentially 
complex optimization problem. To alleviate this dif-
ficulty, some optimization algorithms or simplified 
approaches based on design of experiments to esti-
mate extreme values of y  may be used. When a 
probabilistic criterion is chosen, the difficulty is to 
characterize the probability distributions of the ran-
dom vector ( )dXhY ,= . For the assessment of ex-
pectation/variance or the probability of exceeding a 
threshold, both approximation methods (e.g. quad-
ratic combination, FORM-SORM methods) and sam-
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pling methods (e.g. Monte Carlo simulations, Latin 
Hypercube simulations) can be used. For the assess-
ment of a quantile, only sampling methods can be 
applied (e.g. Wilk’s formula). Contrary to approxi-
mation methods, sampling methods make no as-
sumption on the model ( )⋅h , but may be very CPU-
time consuming. 
Step C’ is the ranking of the sources of uncertainties 
and the sensitivity analysis. Chosen indicators are 
used to rank the uncertainty sources with respect to 
their impact on the uncertainties of the system’s 
characteristics of interest. Depending on the result of 
this ranking, the modeling of the sources of uncer-
tainty can be adjusted (or some sources of uncertain-
ties can be neglected) to perform another propaga-
tion. 
An uncertainty study rarely finishes after a first 
round of steps A, B, C and C’. Step C’ actually plays 
a crucial role since ranking the results highlights the 
variables that truly determine the relevance of the 
final results. If the uncertainty laws of some input 
variables have been chosen too roughly during step 
B, it is necessary to collect additional information on 
the influential sources of uncertainty and re-apply 
the whole methodology to refine the analysis, and 
so-on until satisfaction. 
Probability distributions may be expressed in the 
form of parametric distribution laws with the help of 
a limited number of parameters θ . 
Two examples of such parametric distribution laws 
are given below [8]. 
  
Normal (or Gaussian) dis-
tribution  

( )σµθ ,=  

µ  is the mean value 

σ is the standard deviation 
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Gamma distribution 

( )γλθ ,,k=  

0>λ , 0>k  

 

( ) ( ) ( )( ) ( )( ) ( )xxx
k

xf k
X γγλγλλθ 1exp, 1 ⋅−⋅−⋅−⋅⋅

Γ
= −  

where ( )⋅Γ  is the gamma function  

( ) ( ) dtttk k ⋅−⋅=Γ ∫
+∞ −

0

1 exp  

 
The choice of the correct distribution law depends on 
the application. For instance, the normal distribution 
is relevant in metrology. 
The dependency between variables may be expressed 
using the copula theory or the Pearson correlation 
coefficient [15, 16]. The latter is defined as: 

( )
ji

jXiX
XX

ji
P XXCov

σσ
ρ

⋅
=

,
,

 

where ( )ji XXCov ,  is the covariance between iX  
and jX , and iX

σ  and jX
σ  are respectively the 

standard deviations of iX  and jX . 
Several techniques may be used for propagating the 
uncertainties. 
The quadratic combination method is a probabilistic 
approach based on the Taylor decomposition of Y  
wrt. X  around the mean point 

X
µ . 

The Monte-Carlo method is a numerical integration 
method using sampling, which can be used, for ex-
ample, to determine the expectation iY

µ  and the 
standard deviation iY

σ  of each variable of interest   
iY . 

Several ranking techniques may be used, such as 
those based on the quadratic combination’s impor-
tance factor or the Pearson correlation. They aim at 
finding the influence of the inputs 

iX  on the outputs 
jY . 

2.3 Interpolation techniques  

Mathematical models of physical systems are impor-
tant tools in many fields of scientific research. But 
better knowledge of systems behavior and increas-
ingly desired accuracy lead to higher complexity of 
models, which, in this context, sometimes are not 
sufficient to meet the expectations of the experi-
menters. 
Uncertainty studies must in particular be adapted to 
handle such complex models. The following section 
describes some examples of advanced methods that 
are especially used at IFP: the kriging method, the 
experimental design theory and the Response Sur-
face Methodology (RSM). 
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2.3.1 Kriging with non-linear trend 
One of the studies at IFP using the kriging method is 
the analysis of a catalytic system for pollution con-
trol, which consists in post-treating smoke produced 
by diesel engines through NOx trap (i.e. Nitrogen-
Oxides trap [3]). 
As a surrogate of the real system, a kinetic model 
was developed to represent the physico-chemical 
phenomenon, depending on parameters (e.g. pre-
exponential factors, activation energies, adsorption 
constants) that cannot be obtained from theoretical 
considerations. Therefore, experiments are required 
to calibrate the model. A criterion is suggested for 
experimental designs adapted to kinetic parameters 
identification, when the model is highly non-linear 
and the kinetic model does not fit well experimental 
data. These differences observed between kinetic 
model and experimental data, can be represented by 
a Gaussian process realization. Gaussian process of-
ten accounts for correlated errors due to lack of fit. 
More explicitly, the model is represented by: 

( )β,xfy =  

where y  is the response vector (e.g. the NOx con-
centration), x  the experimental conditions and β  
the kinetic parameters of the model represented by 
the non-linear function f . 
Then, the first model is corrected and replaced by: 

( ) ( )xZxfy
θσ

β ,2, +=  

where ( )xZ
θσ ,2  is a centered Gaussian process with 

Gaussian covariance kernel specified by a variance 
2σ  and a vector θ  of scale parameters. 

As an example, the covariance kernel can be given 
by a kriging approach which is commonly used in 
the field of computer experiments. However, in tra-
ditional use, the trend is linear. Its estimation is ob-
tained through an analytical formula as well as its 
uncertainty. 
The first difficulty is to estimate the trend parameters 
considering its non-linear behavior. Similarly to non-
linear regression, the traditional analytical formula 
for β  is then replaced by a minimization procedure. 
In this case, the theory of kriging with non-linear 
trend can be applied as summarized below. 
The covariance kernel of the centered Gaussian pro-
cess is defined by: 

( ) ( )( ) ( )hRhxZxZCov θθσθσ
σ ⋅=+ 2

,, 22 ,  

where the Gaussian spatial correlation is used and 
expressed by: 

( ) 







−=ℜ∈∀ ∑

=

k

i
ii

k hhRh
1

2exp, θθ  

Let m  be the number of design points and 
( )Tmyyy K1=  the outputs observed at loca-

tion ( )Tmsss K1= , ℜ∈is . Using maximum 
likelihood estimation, expression of kriging predictor 
ŷ  and variance prediction ϕ  at a new location 0x  

are given by: 
( ) ( ) ( ) yRFFRFfrRFyRrxy TTTT ⋅⋅⋅⋅⋅⋅−⋅⋅−⋅⋅= −−−−− 11111

0ˆ

( ) ( )
RFRF

T rfrRFx T +−⋅⋅+⋅=
⋅⋅

−
−1

12
0 1σϕ  

where: 

uAuu T
A

⋅⋅= −1  

( ) ( )( )TmsxRsxRr −−= 0ˆ10ˆ ϑθ
K  

[ ]mi ;1∈∀ , [ ]mj ;1∈∀ , ( )jiij ssRR −=
θ̂  

( )β̂,sfF =  

( )β̂,0xff =  

and the parameters are obtained by solving recur-
sively and simultaneously the following simultane-
ous equations: 

( ) ( )( )FyRFy T −⋅⋅−= −1minˆ
β

β  

( ) ( )FyRFym T −⋅⋅−⋅= −− 11σ̂  






 ⋅= − m

R
/112ˆminargˆ σθ  

The minimization algorithm determines θ̂  through 
the modified Hooke and Jeeves method, described in 
Kowalik and Osborne [11]. For more details, see 
Lophaven et al. [12] 
Notice that the predictor ŷ  and the variance predic-
tion ϕ  depend on the estimator β̂  through F  and 
f . As a consequence, in universal kriging, kriging 

predictor and prediction variance expressions cannot 
be interpreted as conditional expectation and vari-
ance (see Helbert et al. [13]). This is due to the fact 
that only uncertainties induced by the estimation of 
trend parameters are taken into account, and not 
those created by approximating variance and correla-
tion parameters. Hence, it can underestimate the un-
certainty on the response and lead to very important 
difficulties for non-linear models. 

2.3.2 Experimental Design theory and Re-
sponse Surface Methodology 

The Response Surface Methodology (RSM) has been 
described in detail by Dejean et al. [14]. The purpose 
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is to approximate a complex process with respect to 
uncertain parameters belonging to a region of inter-
est. Engineers define a performance measure of the 
process called response y  (e.g. cumulative oil pro-
duction, field net present value, …) and some input 
variables 1x , 2x , 3x , … called factors, that are as-
sumed to influence the response (e.g. petrophysics, 
field structural map, well locations, economic fac-
tors, …). The input variables correspond to the prior 
uncertainties on the process. RSM provides tools for 
identifying the factors that are influential factors, 
such as illustrated below: 

K

K

+⋅⋅⋅+
+⋅+⋅+⋅+=

2121

3322110

xxaa
xaxaxaay

 

where 0a , 1a , … are constant coefficients obtained 
by fitting a set of numerical simulations. 
The main interest of this RSM model is its negligible 
cost to get new values of the response compared to 
CPU-time consuming simulations. This regression 
model can then be used to make predictions of the 
process over the uncertain domain and to generate 
probabilistic distribution of the response using Mon-
te Carlo sampling technique. 
A sufficient number of response values correspond-
ing to different factor values is necessary in order to 
fit this model. These values should be representative 
enough of the behavior of the response in the domain 
of variation of the factors. Thus the experimental 
design theory is applied, since, for a given objective 
and a given uncertain domain, it delivers the right set 
of model simulations to be performed in order to 
properly model the response behavior in the uncer-
tain domain. Many experimental designs are avail-
able depending on both the objective (sensitivity 
study or risk analysis study) and the acceptable CPU-
time. The selected model simulations must: 

 (a) be numerous enough so that all the coeffi-
cients ia  of the model can be estimated and  

(b) ensure good quality of the model, both in 
terms of accuracy and prediction. 

For sensitivity studies, the objective is to identify the 
uncertain parameters that influence the response. In 
that case, the RSM model does not need to be very 
accurate and classical sensitivity designs are the two-
level fractionals. 
For risk analysis purposes, the RSM model should be 
of good quality in order to deliver accurate predic-
tions. The composite designs are in that case the 
most appropriate. All those designs are well known 
and tabulated. They have the best properties with 
respect to the objective of the study, but they can still 
be too expensive or on the contrary too coarse in a 

specific context. In that case, some other designs 
such as small composite designs or optimal designs 
can be used. 
Once the RSM model has been fitted, it can be used 
to compute probabilistic distributions of the produc-
tion forecasts as a function of the main model uncer-
tainties. This is commonly called a technical risk 
analysis. 

3 Requirements on the Modelica lan-
guage and tools 

In this section, the requirements are given independ-
ently from the existing Modelica specifications and 
tools. There are two kinds of requirements: those 
who apply to the language itself, and those who ap-
ply to the model processor. The model processor is 
defined as the tool that has the analysis and symbolic 
manipulation capabilities to produce the desired re-
sult from the Modelica model. 

3.1 Identifying the uncertain variables  

In the following paragraphs, only continuous vari-
ables will be considered. 
There are two broad kinds of variables: certain or 
uncertain. Certain variables are single valued vari-
ables, whose values are known (explicitly given as 
inputs of the model), or unknown (implicitly given 
as outputs of the model). Uncertain variables are 
random variables which represent probability distri-
butions.  
Formally, a certain variable could be seen as an un-
certain variable with a normal distribution of zero 
standard deviation (i.e. a Dirac function). It is how-
ever preferable to continue handling these two types 
of variable separately, because of the infinities asso-
ciated with Dirac functions. 
In the case of uncertainty propagation, the sources of 
uncertainty are the inputs and the variables of inter-
est are the outputs of the computation. Input means 
that the distribution law of the variable is given, and 
output means that the distribution law is computed. 
Output uncertain variables may also be called obser-
vation variables. 
In the case of data reconciliation, uncertain variables 
are considered as both inputs and outputs, the differ-
ence between the outputs and the inputs being the 
vector of improvements.  
Note that the words “input” and “output” should not 
be confused here with the semantics of the Modelica 
keywords “input” and “output”. As they indeed have 
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different meanings, other keywords will be used 
when implementing these notions in Modelica, as 
described in Section 4. 
 [R1] The Modelica language should give the possi-
bility to declare uncertain variables as inputs only or 
as outputs only (for the propagation of uncertainties), 
or as inputs/outputs (for data reconciliation). 

3.2 Assigning parametric distribution laws to 
uncertain variables  

An uncertain variable ix  may be characterized by 
the parameters of its distribution law 

,...),(
iii xxx βαθ = . 

In the frequent case of a normal distribution, these 
parameters are the mean value 

ixµ  and the standard 
deviation 

ixσ  . Then, ix  may be written as: 

ii xxi wx ±= µ  

where the half-interval 
ixw is a multiple of 

ixσ : 

ii xxw σλ ⋅=  

λ  being a function of the level of confidence. For 
instance, for a level of confidence of 95%, 

96.1%95 =λ . This expression means that there are 
95% chances that the value of ix  is in the interval 
[ ]

iiii xxxx σλµσλµ ⋅+⋅− %95%95 ; . 
 [R2] The Modelica language should give the possi-
bility to assign one parametric distribution law to 
each uncertain variable by specifying its name (e.g. 
normal distribution) and the values of its parameters 
(e.g. mean value and standard deviation, or alterna-
tively mean value, confidence level and half-interval 
in the case of a normal distribution). 

3.3 Specifying dependencies between uncertain 
variables  

 [R3] The Modelica language should give the possi-
bility to specify the dependencies between uncertain 
variables in the form of correlation matrices (covari-
ance matrices, matrices of Pearson correlation coef-
ficients, etc.). 

3.4 Handling redundant information for data 
reconciliation 

When performing data reconciliation, redundant in-
formation is fed into the model as shown in the fol-
lowing example (see Figure 2). 

1Q

2Q

4Q

3Q

 
Figure 2: Example of data reconciliation for flow meas-
urements 

In Figure 2, the hydraulic circuit is instrumented 
with four flow meters, which give respectively the 
following values and uncertainties (all quantities are 
given in kg/s): 
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Writing the mass balance equations for the system 
yields: 





+=
+=

324

321

QQQ
QQQ

 

Considering the values at the center of the uncer-
tainty intervals, it is obvious that the equations sys-
tem is not satisfied. However, the equations may be 
satisfied by carefully choosing the proper values 
within the uncertainty ranges. This is what is actually 
done when applying the data reconciliation tech-
nique, which yields: 








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±=

±=
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3.03.5ˆ
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4

3

2

1

Q

Q

Q

Q

 

Note that the uncertainty intervals have been re-
duced. 
At the present time, the Modelica language only 
handles square systems of physical equations (having 
as many unknowns as equations). The question is 
how to consider the four variables for the model: are 
they inputs or outputs? If they are all considered as 
inputs, then the system is over-constrained. If they 
are all considered as outputs, then the system is un-
der-constrained. Two of them could be considered as 
inputs, and the other two as outputs (6 possibilities) 
to obtain a square system. Note that the last alterna-
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tive is applicable to the reconciled values, all possi-
bilities being equivalent as the reconciled values sat-
isfy the auxiliary conditions. 
The most natural way is to consider the four vari-
ables as both inputs and outputs of the data recon-
ciliation algorithm, and use requirement [R1] to that 
end, so no additional requirement on the Modelica 
language is necessary. However, as the term “in-
put/output” for data reconciliation is somewhat am-
biguous, because it may be confused with the terms 
“input” and “output” for DAE simulation, the vector 
of inputs/outputs for data reconciliation will be 
called the vector of control variables (or control vec-
tor) in the rest of the paper, because it controls (de-
fines) the state of the system. 
Once the data reconciliation algorithm is completed 
and the variables are assigned their reconciled val-
ues, they can be considered as standard inputs or 
outputs to have a square system, as required for DAE 
simulation. Doing so, the same model could be used 
for data reconciliation and simulation. Data recon-
ciliation would be used to compute an improved state 
from redundant measurements, and the result would 
be readily used as the initial state of subsequent sim-
ulations.   
In the above example, all mass flow rates would be 
declared as inputs/outputs for data reconciliation, but 
only two of them (no matter which) would be de-
clared as standard input variables for simulation.  

3.5 Extracting the auxiliary conditions for data 
reconciliation 

The auxiliary conditions )(⋅f  constitute the subset 
of the model equations that constrain the control var-
iables. )(⋅f  must be extracted from the model be-
cause, as shown in Section 2.1, 0)( ≠xf  before 
data reconciliation and )(xf  must be evaluated by 
the data reconciliation algorithm, where x  is the 
control vector. 
The extraction of )(⋅f  should be fully automatic, as 
the auxiliary conditions may be scattered throughout 
the whole model, which is usually a graph of con-
nected model components.  
 [R5] The model processor should be able to extract 
the auxiliary conditions from the model. 

3.6 Computing the Jacobian matrix of the aux-
iliary conditions for data reconciliation 

The Jacobian matrix of the auxiliary conditions is 
defined as: 

x
xfF

∂
∂

=
)(

 

where )(⋅f  are the auxiliary conditions, extracted 
from the model equations, and x  is the control vec-
tor. Note that F  is not square as the number of con-
trol variables is greater than the number of auxiliary 
conditions due to the fact that data reconciliation is 
based on the use of redundant information. 
 [R6] The model processor should be able to com-
pute the Jacobian matrix of the auxiliary conditions 
wrt. the control vector. 

3.7 Performing the data reconciliation algo-
rithm 

Once the quantities x , xS , )(⋅f  and F  are known, 
it is possible to run the data reconciliation algorithm. 
Two alternatives are possible. The first is to write a 
Modelica script of the algorithm that could be com-
piled with the model. The second is to write a pro-
gram in another environment such as Python [7], that 
would have access to a Modelica functional interface 
that would provide the values of the above quantities 
upon request from the main program. 
In the above example: 
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[R7] The model processor should be able to provide 
x , xS , )(⋅f  and F to the data reconciliation algo-
rithm. 

3.8 Performing uncertainty propagation algo-
rithms 

The uncertainty propagation methodology is imple-
mented in OpenTURNS, which is an open source 
tool developed by EDF/R&D, Phimeca and 
EADS [8]. 
The knowledge of the sources x , the model )(⋅f  
and the variables of interest y  is sufficient to run the 
OpenTURNS algorithms. )(xfy =  must be evalu-
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ated upon request from OpenTURNS, and its value 
y  returned to OpenTURNS. 

Note that it is much easier to use OpenTURNS than 
the data reconciliation in a Modelica environment, as 
in the case of OpenTURNS no processing is required 
on the model other than identifying which variables 
constitute the vectors x  and y . )(⋅f  is the whole 
original model, as compared to the extracted auxil-
iary conditions for data reconciliation. 
The uncertainty propagation algorithms may thus be 
performed by coupling the Modelica environment 
with OpenTURNS, as shown in Figure 3. The cou-
pling principle is to automatically generate the inter-
face between OpenTURNS and the simulation code 
compiled from the Modelica model. This can espe-
cially be done by extending the Modelica compiler. 

 

Coupling 
(code generation 

via FMI ?) 

Environment dedicated to 
uncertainty computations 

(Open TURNS) 

Modelica model (.mo)

Modelica
extension

model SteamGenerator 
 parameter Real d; 
 uncertain x(distribution = 
”gaussian”, mean=12, …); 
equation 
… 
end SteamGenerator 

x

y 

Modelica compiler 
(OpenModelica or ???) 

Compiled model
(.exe, .dll, .fmu ???)

Wrapper 

Probabilistic laws 
(script) 

 
Figure 3: Principle for coupling OpenTURNS with a 
Modelica platform 

[R8] The model processor should be able to interface 
the model with OpenTURNS. 

4 Proposal for a Modelica language 
extension 

This section gives a preliminary design proposal of 
Modelica language extensions for supporting uncer-
tainties. This proposal will be considered for test im-
plementation in MathModelica [10] and OpenMode-
lica [9]. 
The proposal to support requirement [R1], described 
in Section 3.1, is to introduce a new attribute for the 
built-in classes Real and Integer. This attribute 
should have an enumeration type that allows specify-
ing it as given (i.e., kind of “input”), sought (kind 
of “output”) or refine (kind of “input/output” 
whose uncertainty is refined). In order to distinguish 
it from the already established semantics for input 
and output variables in Modelica we propose the fol-
lowing naming: 

type Uncertainty = enumeration( 
 given "a known uncertainty", 

 sought "an unknown uncertainty", 

 refine "a known uncertainty to be refined" 

); 
The attribute is named uncertain, here showed for 
the Real type (as described in the Modelica language 
specification): 
type Real // Note: defined with Modelica syntax although 
predefined 
    … 
  parameter Uncertainty uncertain; 
equation 

  … 

end Real; 

Let us illustrate how this is used by an example: 
model Process 
  parameter Real p1=0.1; 
  Real v1; 

  Real v2(uncertain=Uncertainty.given); 
equation 
…  
end Process; 
To support [R2], described in Section 3.2, we pro-
pose another new attribute called distribution 
for the built-in classes Real  and Integer. 
type Real // Note: defined with Modelica syntax although 
predefined 
  … 
  parameter Distribution distribution; 
equation 
  … 
end Real; 
The following distributions are proposed (tool ven-
dors could be allowed to extend this list themselves): 
partial record Distribution  
  parameter String name; 
end Distribution; 
 
record NormalDistribution 
   extends Distribution( 
     final name="Normal"); 
   parameter Real mu,sigma; 
end NormalDistribution; 
 
record ExponentialDistribution 
  extends Distribution( 
     final name="Exponential"); 
  parameter Real lambda,gamma; 
end ExponentialDistribution; 
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record GammaDistribution 
  extends Distribution(final name="Gamma"); 
  parameter Real lambda,k,gamma; 
end GammaDistribution; 
 
record LogNormalDistribution 
  extends Distribution( 
     final name="LogNormal"); 
  parameter Real mu, sigma,gamma; 
end LogNormalDistribution; 
 
record TriangularDistribution 
  extends Distribution( 
     final name="Triangular"); 
  parameter Real a,b,m; 
end TriangularDistribution; 
 
record UniformDistribution 
  extends Distribution( 
     final name="Uniform"); 
  parameter Real a,b; 
end UniformDistribution; 
 
record BetaDistribution 
  extends Distribution( 
     final name="Beta"); 
  parameter Real r,t,a,b; 
end BetaDistribution; 
 
record PoissonDistribution  
  extends Distribution( 
     final name="Poisson"); 
  parameter Real mu; 

end PoissonDistribution; 
The rationale for introducing the distributions and 
the uncertainty properties as attributes for the built-in 
classes Real and Integer is the flexibility that they 
bring. With this approach it becomes possible, for 
instance, to change several uncertainties at once by 
using parameterization: 
model Process 
  replaceable  
   parameter Distribution d =  
                    Distribution(""); 
   parameter Uncertainty u =   
                    Uncertainty.given; 

  Real x(distribution=d, uncertain=u); 

  Real y(distribution=d, uncertain=u); 

… 

end Process; 
The requirement [R3] to support the addition of de-
pendencies between variables is performed at the top 

level of a model. It is only there that the modeler 
knows what the dependencies are, since they might 
appear due to e.g. connections of components. What 
is required is to be able to express a dependency be-
tween two uncertain variables and give a correlation 
coefficient. This coefficient can be of different kinds, 
as briefly mentioned in Section 3.3. The user has to 
select one kind of coefficients, e.g. covariance or 
Pearson. It is not possible to mix different kinds in a 
model. We propose to support R3, not by extending 
the Modelica language, but instead by allowing the 
user to introduce a set of equations at the top level 
that the tool can recognize, as follows: 
model System 
  Process p1,p3; 

  Process2 p2;  

  CovCorrelation[:] covCorrelation =  

   {CovCorrelation(p1.q,p2.q,0.1),  

    CovCorrelation(p2.q,p3.q,0.2)}; 

end System;  
The rationale for this design to support R3 is that 
there is no need for a language extension (which 
avoids to make the language more complex). A simi-
lar record definition is required for Pearson correla-
tion coefficients. 
With the above language extensions, it becomes pos-
sible for a Modelica tool to automatically fulfill re-
quirements [R4, R5 and R6]. How this is performed 
is explained in the next section. 

5 New features for model processing 

Apart from the necessary language extensions pro-
posed in previous section, the analysis of models 
with uncertainties requires some new features from a 
Modelica tool perspective. 
For data reconciliation it is required that the set of 
equations f that constrain the control variables can be 
extracted. Remember that these equations together 
with the uncertain variables typically result in an 
underdetermined system, i.e., there are more vari-
ables than equations. The method of extracting the 
equations is as follows. Given a model M with vari-
ables vector X:  
1. Perform a causality analysis by running BLT 

sorting on the complete system. This yields a se-
ries of blocks Bi (i=1 to n). 

2. Remove from M all blocks Bi that are square 
wrt. the subset of X solved in earlier blocks 
(B1…Bi-1) referenced by Bi. 
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3. Remove from M all blocks Bi that do not influ-
ence X (i.e., downstream the causality analysis 
from X). 

4. If there are one or more components from X that 
do not belong to any of the remaining blocks Bi, 
raise an error. 

5. Otherwise, f is the set of the equations corre-
sponding to the remaining blocks Bi. 

The result from step 5 is the set of equations that 
constrain the control variables. This approach has 
one problem that needs some attention. The blocks 
identified can both contain uncertain control vari-
ables and normal variables. In such a case, it can be 
necessary to eliminate the normal variables to reduce 
the equations to only contain control variables. Such 
eliminations can only be performed if for instance all 
inverses of used functions are available.  
The tool will also construct the Jacobian matrix of 
this function as required by the data reconciliation 
algorithm. 
The connection with OpenTURNS to be able to per-
form uncertainty propagation is straightforward. 
OpenTURNS simply requires a computational block 
that can compute the outputs given a certain input.  

6 Results 

The proposed language extensions have been imple-
mented in the OpenModelica compiler frontend, and 
the extraction algorithm for data reconciliation pre-
sented in the previous section has been implemented 
in MathModelica.  
The example in Figure 4 is used as a test case. It is 
the model of a fluid pipe system with a pump feeding 
the system and a volume collecting the output flow 
from the system.  

 
Figure 4 Example of pipe system with uncertainties 

The pipe model is defined as: 
model Pipe 
  import SI = Modelica.SIunits; 

  Port port_a; 

  Port port_b; 

  SI.VolumeFlowRate q  

"flow from port_a to port_b"; 

  SI.Pressure dp "pressure drop over pipe"; 

  parameter Real k=0.0001  

"Friction factor"; 

  parameter Real rho=1000.0  

"density (water by default)"; 
equation  
  q=port_a.q; 

  dp=port_a.p - port_b.p; 

  port_a.q + port_b.q=0; 

  dp=k/rho*q*abs(q); 

end Pipe; 
The uncertain variables are declared at the system 
level as follows (all pipes have q as uncertain vari-
able to be refined): 
model PipeSystem 
  Pipe pipe1(q.uncertain = Uncer-
tainty.refine); 

  Pipe pipe2(q.uncertain = Uncer-
tainty.refine); 

… 

end PipeSystem; 
Figure 5 shows a simulation of the pipe system when 
a ramp signal is applied to the pump. Due to the 
same friction coefficients of the pipe segments the 
flows are symmetrically distributed through the sys-
tem. 

 
Figure 5 Simulation of the pipe system with Math-
Modelica 

 
Running the extraction algorithm and thereafter  
eliminating undesired variables result in the 
following equations, which constitute f(X) (note that 
X here is {q1,q2,q3,q4}): 

 
q1−q2−q3 = 0;    (1) 
0.0001*q2*abs(q2)−0.0001*q3*abs(q3) = 0; (2) 
q2+q3−q4 = 0;                (3) 
 

In this example all undesired variables have been 
eliminated resulting in a system only containing the 
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uncertain variables that are candidates for refine-
ment. Equations 1 and 3 originate from the connect 
statements (flows are summed up to zero), and equa-
tion 2 comes from the pressure drop over the pipes. 
This example is by intent very similar to the example 
in Figure 2, so we can reuse the same measured val-
ues and uncertainty intervals. The only difference is 
that we have here three constraint equations instead 
of two. 
The data reconciliation algorithm has been run with 
Mathematica, that used the auxiliary equations f ex-
tracted by MathModelica from the original model. 
Below are the calculations for new measurements 
and confidence matrix: 
xr=x-Sx.Transpose[F].Inverse[F.Sx.Transpose[F]].fx 
{{5.22801},{2.61526},{2.61275},{5.22801}} 

Sxr=Sx-Sx.Transpose[F].Inverse[F.Sx.Transpose[F]].F.Sx 
{{0.00865708,0.00441341,0.00424367,0.00865708}, 
{0.00441341,0.00224998,0.00216344,0.00441341}, 
{0.00424367,0.00216344,0.00208023,0.00424367}, 
{0.00865708,0.00441341,0.00424367,0.00865708}} 

This results in new estimates as: 
Q1 = 5.2 ± 0.2   
Q2 = 2.6 ± 0.1 
Q3 = 2.6 ± 0.1  
Q4 = 5.2 ± 0.2 

This result differs somewhat from the original exam-
ple in Figure 2. The reason for this is the extra equa-
tion for the pressure drop, which adds another con-
straint to the system. A reasonable conclusion is that 
this reconciliation run performs a better job com-
pared to the original example, simply because it has 
more knowledge of the system in the form of one 
additional constraint.  

7 Conclusions 

Two techniques for the handling of uncertainties 
with Modelica have been presented, and the re-
quirements from a modeling language and tool per-
spective have been identified. Furthermore their sup-
port in the OpenModelica and MathModelica tools 
has been implemented in order to be able to  specify 
the uncertainties directly in the Modelica models and 
to extract automatically the necessary pieces of in-
formation for the data reconciliation algorithms. The 
extraction algorithm has been tested and verified on 
a simple Modelica model. The results seem promis-
ing for future developments and real industrial vali-
dation, which will be done in the near future in the 

scope of the OPENPROD project. The connection 
with OpenTURNS has not been implemented yet, 
but the authors foresee no major issues in this work, 
which is also planned to be done soon.  
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