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Abstract

Modelica is being used more and more in industrial 
applications, but Modelica is still not used as much 
in biomedical applications. For a long time we have 
mostly been using Matlab/Simulink models, made by 
Mathworks, for the development of models of physio-
logical systems. Recently, we have been using a simu-
lation environment based on the Modelica language. 
In this language, we implemented a large scale model 
of interconnected physiological subsystems contai-
ning thousands of variables. Model is a richly hierar-
chically structured, easily modifiable, and “self-docu-
menting”. Modelica allows a much clearer than other 
simulation environments, to express the physiological 
nature of the modeled reality.
 Keywords: simulation; physiology; large-scale model

1 Introduction

It is simply amazing how fast the Modelica simulation 
language adopted various commercial development 
environments. Modelica is being used more and more 
in industrial applications. However, Modelica is still 
not used as much in biomedical applications. 
The vast majority of biomedical simulation applica-
tions are still done in casual, block-oriented environ-
ments. These include referencing database develop-
ment environments for biomedical models (such as 
the JSIM language - http://physiome.org/model/doku.
php or CellML language - http://www.cellml.org/). 
A frequently used environment in biology and medi-
cine is Matlab/Simulink – monographs dedicated to 
biomedicine models are usually equipped with additi-
onal software used in this environment, but so far wi-
thout the use of new acasual or non-casual Simulink 
libraries, such as [24, 28, 32]. 
However, already in 2006, Cellier and Nebot [5] poin-
ted out the benefits of Modelica, when used for clear 
implementation of physiological systems descriptions 
and interpretations. The classic McLeod‘s circulation 
system model was implemented by PHYSBE (PHYS-

iological Simulation Benchmark Experiment) [25, 
26, 27]. The difference is clearly seen, if we compare 
the Cellier model implementation [5] with the freely 
downloadable version of the PHYSBE model imple-
mentation in Simulink http://www.mathworks.com/
products/demos/simulink/physbe/. 
Haas and Burnhan, in their recently published mono-
graph, pointed out the benefits and large potential of 
the Modelica language used for modeling medically 
adaptive regulatory systems [9]. The most recent, 
Brugård [4] talks about work on the implementation 
of the SBML language (http://sbml.org/) in the Mode-
lica language. This would enable us in the future, to 
simply run models, whose structure is described in the 
SBML language, on development platforms, based on 
the Modelica language.

2 Web of physiological regulations

Thirty-nine years ago, in 1972 Guyton, Coleman and 
Granger published an article in the Annual Review of 
Physiology [9] which at a glance was entirely diffe-
rent from the usual physiological articles of that time. 
It was introduced by a large diagram on an insertion. 
Full of lines and interconnected elements, the drawing 
vaguely resembled an electrical wiring diagram at first 
sight (Fig. 1). However, instead of vacuum tubes or 
other electrical components, it showed interconnec-
ted computation blocks (multipliers, dividers, adders, 
integrators and functional blocks) that symbolized 
mathematical operations performed on physiological 
variables. In this entirely new manner, using graphi-
cally represented mathematical symbols; the authors 
described the physiological regulations of the circu-
latory system and its broader physiological relations 
and links with the other subsystems in the body – the 
kidneys, volumetric and electrolyte balance control, 
etc. Instead of an extensive set of mathematical equa-
tions, the article used a graphical representation of 
mathematical relations. This syntax allowed depicting 
relations between individual physiological variables 
graphically in the form of interconnected blocks re-
presenting mathematical operations. The whole dia-
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gram thus featured a formalized description of phys-
iological relations in the circulatory system using a 
graphically represented mathematical model. 
Guyton’s model was the first extensive mathematical 
description of the physiological functions of interco-
nnected body subsystems and launched the field of 
physiological research that is sometimes described 
as “integrative physiology” today. Just as theoretical 
physics tries to describe physical reality and explain 
the results of experimental research using formal me-
ans, “integrative physiology” strives to create a for-
malized description of the interconnection of phys-
iological controls based on experimental results and 
explain their function in the development of various 
diseases. 
From this point of view, Guyton’s model was a mi-
lestone, trying to adopt a systematic view of physio-
logical controls to capture the dynamics of relations 
between the regulation of the circulation, kidneys, the 
respiration and the volume and ionic composition of 
body fluids by means of a graphically represented ne-
twork. 
Guyton’s graphical notation was soon adopted by 

other authors – such as Ikeda et al. (1979) in Japan 
[13] 
and Amosov et al. (1977) in the former USSR [2].  
However, the graphical notation of the mathematical 
model using a network of interconnected blocks was 
only a graphical representation – Guyton’s model and 
later modifications (as well as the models of other 
authors that adopted Guyton’s representative notati-
on) were originally implemented in Fortran and later 
in C++. 
Today the situation is different. 
Now, there are specialized software simulation envi-
ronments available for the development, debugging 
and verification of simulation models, which allow 
creating a model in graphical form and then testing 
its behavior. One of these is the Matlab/Simulink de-
velopment environment by Mathworks, which allows 
building a simulation model gradually from individual 
components – types of software simulation elements 
that are interconnected using a computer mouse to 
form simulation networks. 
Simulink blocks are very similar to the elements 
used by Guyton for the formalized representation of 

Figure 1: Guyton’s blood circulation regulation diagram from 1972.
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physiological relations. The only difference is in their 
graphical form. This similarity inspired us to use Si-
mulink to revive Guyton’s good, classic diagram and 
transform it into a working simulation model. When 
implementing the model in Simulink, we used swit-
ches that allow us to connect and disconnect indivi-
dual subsystems and control loops while the model 
is running. We strove to keep the appearance of the 
Simulink model identical to the original graphic dia-
gram – the arrangement, wire location, variable na-
mes and block numbers are the same. 
The simulation visualization of the old diagram was 
not without difficulties – there are errors in the origi-
nal graphic diagram of the model! It does not matter 
in the hand-drawn illustration but if we try to bring 
it to life in Simulink, the model as a whole collapses 
immediately. A detailed description of the errors and 
their corrections is in [23]. 
Our Simulink implementation of Guyton’s (correc-
ted) model (Figs. 2 and 3) is available for download at 
www.physiome.cz/guyton. Also available at that ad-
dress is our Simulink implementation of a much more 
complex, later model from Guyton et al. There is also 

a very detailed description of all applied mathemati-
cal relations with an explanation.

3 Block-oriented simulation networks 
for physiology

Block-oriented simulation languages, of which Simu-
link is a typical example, allow assembling computer 
models from individual blocks with defined inputs 
and outputs. The blocks are grouped in libraries; when 
building a model, a computer mouse is used to crea-
te individual block instances, with inputs and outputs 
connected through wires that “conduct” information. 
A Simulink network can be arranged hierarchically. 
Blocks can be grouped into subsystems that commu-
nicate with their ambient environment through defined 
input and output “pins”, making “simulation chips” of 
a sort. A simulation chip hides the simulation network 
structure from the user, much like an electronic chip 
hiding the interconnection of transistors and other 
electronic elements. Then the user can be concerned 

Figure 2: The implementation of Guyton’s model in Simulink preserves the original arrangement of elements 
in Guyton’s graphic diagram.
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just with the behavior of the chip and does not have 
to bother about the internal structure and calculation 
algorithm. 
The behavior of a simulation chip can be tested by 
monitoring its outputs using virtual displays or vir-
tual oscilloscopes connected to it. This is very useful 
especially for testing the behaviour of a model and 
expressing the mutual relations of variables. 
Simulation chips can be stored in libraries and users 
can create their instances for use in their models. For 
example, we created a Physiolibrary for modelling 
physiological regulations. 
Hierarchical, block-oriented simulation tools are thus 
used advantageously in the description of the com-
plex regulation systems that we have in physiology. 
A formalized description of physiological systems is 
the subject matter of PHYSIOME, an international 
project that is a successor to the GENOME project. 
The output of the GENOME project was a detailed 
description of the human genome; the goal of the 
PHYSIOME project is a formalized description of 
physiological functions. It uses computer models as 
its methodological tool [3, 12]. 
Several block-oriented simulation tools developed 
under the PHYSIOME project have been used as a 
reference database for a formalized description of the 
structure of complex physiological models. These 
include JSIM (http://www.physiome.org/model/doku.
php) and CellML (http://www.cellml.org).

4 From Simulink to Modelica in mo-
deling of large-scale physiological 
systems

We have been using Matlab and Simulink for years to 
create and develop models of physiological systems 
[16, 17, 23] and have also been developing the rele-
vant application Simulink library – the Physiolibrary 
(http://www.physiome.cz/simchips). 
We have also developed the relevant software tools 
that simplify the transfer of models implemented in 
Simulink over to development environments (Contro-
lWeb and Microsoft .NET), where we create tutorial 
and education simulators [18, 22]. Our development 
team gained invaluable experience in previous years 
working with the Matlab/Simulink development en-
vironment made by the renown company MathWorks. 
On the other hand, we were also attracted by the acau-
sal development environments using the Modelica 
language. 
In the Modelica language environment the essence 
of physiological regulation is much clearer than in 
Simulink causal network (see Figures 3 and 4). We 
were facing a decision whether to continue with the 
development process of physiological system models 
in Simulink (using new acasual libraries), or to make 
a radical decision and switch to the new Modelica lan-
guage platform. 
Our decision was affected by our efforts to imple-

Figure 3: Circulatory dymamics - more detailed cent-
ral structures of the Simulink implementation of Gu-
yton’s model, representing flows through aggregated 
parts of the circulatory system and the activity of the 
heart as a pump.

Figure 4: The same model structure as is shown in 
figure 3 implemented in Modelica. The structure of 
the model in Simulink corresponds to the structure of 
computational steps, while the Structure of Modelica 
model reflects the structure of the modeled physiolo-
gical reality.
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ment a large model made by Guyton’s disciples and 
followers. Their Quantitative Human Physiology 
model is an extension of a tutorial simulator called 
the Quantitative Circulatory Physiology (QCP) [1]. 
Quantitative Human Physiology (QHP) simulator 
[10], which is now distributed as “HumMod” [11], 
represents today’s most comprehensive and largest 
model of physiological functions. 

The HumMod model contains more than 4000 vari-
ables and at the present time, it probably represents 
the largest and most extensive model of physiologi-
cal regulations. It enables the user to simulate a wide 
range of pathological stages and statuses, including 
the effects of the relevant applied therapy. The authors 
developed a special block-oriented simulation system 
to represent the complex model structure. Compared 

Figure 5: All necessary files of the Quantitative Human Physiology tutorial simulator (called the HumMod 
by the authors in the last version). This simulator has been designed for the Windows operating system and 
does not require special installation. Only zip files must be unzipped into a selected folder. After you click the 
Hummod.exe icon, the translator translates the source text embedded within hundreds of directories and more 
than two thousand files and initiate its own simulator. Even though the source text of the simulator and the 
entire mathematical model on the background is offered as an open source (and in theory, the user may modify 
the model), the navigation through thousands of mathematical relations and viewing thousands of XML and 
interconnected files is rather difficult.

simulátor Hummod

fragment of XML 
source code 

Compiler and launcher 
of Hummod simulator

 Source code files of 
HumMod simulator

Running
HumMod simulator 
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with the previous QCP simulator, whose mathemati-
cal background is hidden from the user in its source 
code written in C++, the HumMod simulator uses a 
different approach. The HumMod authors decided to 
separate the simulator implementation and descrip-
tion of the model quotations, in order to make the 
structure of the model more clear and apparent for the 
larger scientific community. 
In 1985 the architect of this model, Thomas Coleman, 
had already created a special language used to write 
the model structure, as well as the element definiti-
ons into the simulator user interface. The language is 
based on modified XML notation. The model is then 
written by using XML files. A special converter/de-
coder (DESolver) converts XML files into executable 
simulator code. 
A detailed description of this language and DESolver 
converter, as well as the relevant educational tutorial, 
is freely accessible on the web page of the University 
of Mississippi (http://physiology.umc.edu/themode-
lingworkshop). The new HumMod model is written 

in the XML language as well. Its structure with all de-
tails may be found at (http://HumMod.org), published 
as an open source. 
Therefore, the user can modify this model as he 
wishes. However, the model description has been 
divided into more than three thousand XML files in 
more than thousand directories, from which the spe-
cial solver creates and executes the simulator (Figure 
5). 
The entire structure of the model and following links 
and references are not easily identifiable. That is why 
the international research and development team in its 
SAPHIR project (System Approach for Physiological 
Integration of Renal, cardiac and respiratory control) 
decided to use the old Guyton models from 1972 [9] 
and the Ikeda model from 1979 [13] for the creation 
of its new and extensive model of physiological func-
tions instead of the freely available QHP model. The 
source codes of the QHP model appeared unclear or 
hard-to-understand to those involved in this project 
[31]. 

VascularCompartments QHPView
Spla

nc
hn

icV
ein

s

Equations

Figure 6: Visualization tool QHPView, created by us, simplifies viewing of the QHP/HumMod simulator 
structure, containing more than two thousand XML files, scattered in thousands of directories, where quotati-
ons and links between them may not be apparent.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011 

718



We have been able to create a special software tool 
called QHPView (Figure 6), which is able to create a 
clear and legible overview of mathematical relations 
and connections from thousands of source codes. We 
are offering this tool as an open source on the web 
page at (http://physiome.cz/HumMod). First, we tried 
to implement the QHP/HumMod model in the Simu-
link environment. 
The model contains a wide range of relations that of-
fer solutions for implicit equations. That is why the 
implementation of this block-oriented model (outputs 
from one block are used as inputs for the next blocks) 
is very difficult and as the implementation got more 
and more complex, the transparency of this model 
went down quickly. The use of new acasual Simulink 
libraries in this complex model proved to be proble-
matic and the transparency of the model improved 
only a little bit. 
Therefore, we decided to stop using the Simulink 
implementation and began to implement in Modeli-
ca language (using the Dymola environment). Very 
quickly we discovered that the implementation of a 
large and extensive model in Modelica is much more 
effective than using acasual libraries in Simulink. 
When we compared the Simulink and Modelica im-
plementations we also discovered a significant diffe-
rence. Mainly due to the fact that the new acasual lib-
raries are only acasual superstructure of Simulink and 
not an objectively oriented modeling language based 
on equatations, as the Modelica language is. 
Therefore, if we compare the development environ-
ments based on the simulation language Modelica 
with the Matlab/Simulink development environments 
made by Mathworks, we may say the following: 
• contrary to Simulink, the model implemented in 

Modelica much better reflects the essentials and 
base of the modeled reality and the simulation 
models are more clear, readable and less error 
prone; 

• the object architecture in Modelica enables the 
user to build and tweak models with an hierar-
chical structure gradually, while using reusable 
element libraries; 

• contrary to Simulink (which is the industrial stan-
dard from Mathworks), Modelica is a non pro-
prietary programming language and therefore, 
it may contain various commercial and non-co-
mmercial developing environments competing 
between each other. This language is used for 
specific problem solutions originating in various 
application fields (for commercial and non-co-

mmercial specialized libraries); 
• in Modelica it is possible to combine causal 

(mostly signals) and acasual links; and unlike in 
Simulink, it is also possible, (within interconne-
cted blocks) to create algebraic loops - Modelica 
compiler uses symbolic manipulations to resolve 
the loops automatically (when possible) and the-
refore the disconnection of algebraic loops is the 
task for the development environment and not 
for the programmer. 

The above specified reasons led us to use, as the main 
implementation tool for the model creation, the Mo-
delica language and we also gradually stopped using 
the Matlab/Simulink environment [20]. 

5 HumMod in Modelica

The implementation of the HumMod model clearly 
shows the benefits of the model creation process when 
done in the Modelica language. If we compare the 
complex structure of the HumMod model by using 
the visualization option in QHPView (Figure 5) with 
examples of implementations done in the simulation 
language Modelica, shown in Figures 7-13, we can 
see that the acasual implementation done in Modelica 
creates a transparent and legible model structure and 

Figure 7: Structure of Hummod model. Model con-
sist of cardiovascular component (CVS), nutritient 
and metabolism component, water and osmolarity 
component, proteins component, O2, CO2 and acid-
-base regulation component, electrolyte component, 
nervous regulation component, hormone regulation 
component, status of virtual pateint component and 
setup component. All components ar connected wtih 
bus connectors. 
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therefore offers easier model modifications. 
The HumMod model implemented in Modelica is be-
ing currently modified and extended. 
Modifications and extensions of HumMod were par-
tially taken from our original model Golem [16, 17] 
and further modified according to newest findings and 
experiences. Our modifications are mainly extensions, 
which improve the usability of the model during the 
modeling of difficult disorders in acid-base, ionic, vo-
lume and osmotic homeostasis of inner environments, 
which is very important for urgent medicinal statuses. 
Our modification of the HumMod model is based 
mainly on the process of re-modeling the subsystem 
of acid-base balance, which is based in the original 
QHP on the so-called Stewart acid-base balance theo-

ry. Simply put, the so-called “modern approach“ of 
Stewart [30] and his followers (e.g. Fencl et al. [8], 
Sirker et al. [29] ) explaining disorders in the acid-
-base balance, uses mathematical relations calculating 
the concentration of hydrogen ions [H+] from partial 
pressure CO2 in plasma (pCO2), total concentration 
([Buftot]), weak (partially dissociated) acids ([HBuf]) 
and their base ([Buf-]), where: 

[Buftot]=[Buf-]+[HBuf] 
and from the difference between the concentration of 
fully dissociated cations and fully dissociated anions 
in SID (strong ion difference): 

[H+]=Function (pCO2, SID, Buftot ) 
The problem of this approach is that the precision of 
acid-base calculations in the model depends on the 

Figure 11: Structure of splanchnic circulation compo-
nent (SplanchnicCirculation class).

Figure 9: Structure of systemic circulation component 
(SystemicCirculation class).

Figure 10: Structure of systemic peripheral circulati-
on component (Peripheral class).

Figure 8: Structure of cardiovascular component 
(CVS class).
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precision of the SID calculation, that is the difference 
between the concentration of fully dissociated cations 
(that is mainly sodium and potassium) and fully di-
ssociated anions (mostly chlorides). Imprecision that 
is created during the modeling of sodium, potassium 
and chlorides intake and excretion are transferred and 
reflected by the imprecision in the modeling process 
of the acid-base status. 
Even though Hester et al. [11], significantly improved 
the modeling of reception and excretion of sodium, 
potassium and chlorides in kidneys in his HumMod 
model, if we model a long-term status (when nothing 
is happening with the virtual patient), the virtual pa-
tient (in the current model version) has a tendency to 
fall into slight and steady metabolic acidosis after one 

month of the simulated time. 
Our evaluative approach towards the modeling and 
evaluation of disorders in acid-basic balance [14, 
15, 21] is based on the modeling and evaluation of 
two flows – the creation and excretion of CO2 and 
the creation and excretion of strong acids, connec-
ted through the purification systems of each part of 
the bodily fluids. This approach, according to our 
opinion, better explains the physiological causality 
of acid-base regulations, rather than direct mode-
ling of acid-base disorders through the balancing of 
accompanying electrolytes. Besides, the fidelity and 
truthfulness of the modeling process is getting better; 
mainly in mixed (acid-base and electrolyte) disorders 
in inner environments. 
Another important modification of the HumMod, is 
the fact that the model was extended by adding the 
dependency of the potassium flow on the intake of 
glucose as a result of insulin, which enables us to 
model (besides other things), the influence of pota-
ssium solution infusions with insulin and glucoses, 
which are distributed in acute medicine for treating 
potassium depletions. 
We have been using this “balancing and evaluation” 
approach [18] towards the modeling of acid-base ba-
lance in our old “Golem” simulator [17]. The exten-
ded HumMod model serves as the base for the educa-
tional simulator „eGolem“, used in medical tutoring 
in clinical physiology of urgent statuses which is be-
ing currently developed. 
On the webpage http://physiome.cz/HumMod you 
may find the updated and current structure of our 
implementation of the HumMod model („HumMod-
-Golem edition“). In collaboration with M. Tiller we 
are preparing a detailed description of this model with 
extensive descriptions of the various physiological 
regulatory circuits.

6 From a model to the simulator

A simulation model, implemented in a sophistica-
ted development environment, cannot be used for 
education as is alone. It is the implementation of the 
formalized description of the modeled reality that 
enables testing of the behavior of the mathematic 
model during various input values and the search for 
model quotations and parameters, which within the 
established precision range, can ensure the sufficient 
compatibility of the behavior of the model with the 
modeled system (model identification). 
Even after this goal is reached, there is still a long 

Figure 12: Structure of gastrointestinal vascular resi-
stance component (GITract class).

Figure 13: Structure of component calculating influ-
ence of alpha receptors stimulation on gatrointestinal 
vascular resistance (AlphaReceptors class).
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road ahead from the identified model to the educatio-
nal or tutorial simulator. It is a very demanding deve-
lopment work, which requires the combination of ide-
as and experiences of teachers who create the script of 
the tutorial application, the creativity of art designers 
who create the multimedia components interconnec-
ted with the simulation model in the background, as 

well as the efforts of programmers who finally “sew 
up” the final masterpiece into its final shape. We have 
used a special web simulator creation technology for 
creation of educational simulators [20]. 
To automate the model debugging transfer from the 
simulation development environment (previously 
using Simulink and nowadays using Modelica) into 

Figure 15: Our new solution of creative interconne-
ction of tools and applications, used for the creation 
of simulators and tutorial programmes using simu-
lation games. The base of an e-learning program is 
still a high-quality script, created by an experienced 
pedagogue. The creation of animated figures is done 
by artists who create interactive animations in Expre-
ssion Blend. To create and test animations that will be 
controlled by the simulation model, art designers use 
the Animtester software tool, developed by us. The 
core of simulators is the simulation model, created in 
the Modelica simulation language environment. Wi-
thin the project Open Modelica Source Consortium, 
we are in the process of creating a tool which is able 
to generate the source code from Modelica to C# lan-
guage. This enables us to generate a component from 
.NET used in the final application on the Silverlight 
platform, which enables to distribute the simulator 
as a web application, running in the internet browser 
(even on computers with various operating systems). 

Figure 14: The original solution of creative interco-
nnection of tools and applications, used for the crea-
tion of simulators and tutorial programmes using si-
mulation games. The base of an e-learning program 
is a high-quality script, created by an experienced 
pedagogue. The creation of animated pictures is 
done by artists who create interactive animations in 
Adobe Flash. The core of simulators is the simula-
tion model, created with special development tools, 
designed for the creation of simulation models. For a 
long time, we have been using Matlab/Simulink made 
by Mathworks for the development of models. The 
simulator development process is a demanding pro-
gramming work. To make this task easier, we have 
developed special programmes that simplify the au-
tomatic transfer process of simulation models created 
in Matlab/Simulink over to ControlWeb or over to the 
Microsoft .NET environment. 
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the development environment where the development 
application is programmed, specialized software tools 
(developed by us) are used. We have been creating tu-
torial simulators in Microsoft .NET and Adobe Flash 
environments (Figure 14). Recently, we began using 
the Microsoft Silverlight platform (Figure 15), which 
enables distribution of simulators over the internet 
and may be executed directly into the internet brow-
ser environment (even on computers running various 
operating systems).

7 Conclusions

Nowadays, the old Comenius motto – “schola ludus,“ 
or “playful school” [6], has found a modern use in 
interactive educational programs that use simulation 
games. Connection of the multimedia environment, 
serving as an audio-visual user interface, with simula-
tion models, gives the studied problem a much more 
tangible feeling. A simulation game offers the possi-
bility to test, without any risk, the simulated object’s 
behavior. The behavior of individual physiological 
subsystems can be appreciated in a simulation game, 
both under normal conditions and in the presence of 
a disorder. 
Complex integrative simulators of human physiolo-
gy can be of large importance when teaching patho-
physiology or studying pathogenesis of varied medi-
cal conditions and syndromes using virtual patients. 
Such simulators include models of not only individual 
physiological subsystems but also of their mutual co-
nnection into more complex units. Modelica is a very 
convenient developing tool for design of those com-
plex hierarchical models. 
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