Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

DrControl — An Interactive Course Material for
Teaching Control Engineering

Mohsen Torabzadeh-Tari, Martin Sjélund, Adrian Pop, Peter Fritzson

PELAB - Programming Environment Lab, Dept. Computer Science
Linkdping University, SE-581 83 Linkdping, Sweden
{mohsen.torabzadeh-tari, martin.sjolund}@Iiu.se
{adrian.pop, peter.fritzson}@liu.se

Abstract

In this paper we present an interactive course material
called DrControl for teaching control theory concepts
mixed together with exercises and example models in
Modelica.

The active electronic notebook, OMNotebook, is the
basis for the course material. This can be an alternative
or complement compared to the traditional teaching
method with lecturing and reading textbooks. Expe-
rience shows that using such an electronic book will
lead to more engagement from the students. OMNote-
book can contain interactive technical computations
and text, as well as graphics. Hence it is a suitable tool
for teaching, experimentation, simulation, scripting,
model documentation, storage, etc.

Keywords: DrControl, DrModelica, modeling, simula-
tion, OMNotebook, teaching, interactive, Control

1 Introduction

In this paper we introduce an electronic interactive
course material called DrControl and its use for teach-
ing control theory together with control applications in
Modelica [1] [2]. It is developed in and uses the OM-
Notebook [5] active electronic book software together
with OpenModelica for modeling and simulation.

This kind of interactive courses based on electronic
books allows experimentation and dynamic simulation
as well as execution of computer programs.

Traditional teaching methods with lecturing and
reading a textbook are often too passive and does not
engage the student. Active notebooks, however, facili-
tates the learning process, e.g. by running programs and
exercises within the book, and mixing lecturing with
exercises and with reading in the interactive book.

Electronic notebooks created using OMNotebook
can contain program code, text, links, pictures, video,

virtual and scientific visualizations, and makes it is
possible to integrate teaching material in sciences such
as physics, human biology [3], mathematics, computer
science, etc.

1.1 Structure of the Paper

Section 2 presents the OMNotebook tool, whereas Sec-
tion 3 describes the teaching goals and contents of the
DrControl electronic book. Section 4 briefly mentions
applications in teaching modeling and programming
languages, whereas Section 5 presents future work and
Section 6 gives the conclusions..

2 OMNotebook — An Active Elec-
tronic Notebook

The OpenModelica Notebook editor, OMNotebook,
provides an active electronic notebook including an
editor. The notebook it is not just a passive textbook or
html page, it is active in the sense that models inside
the book can be changed and executed.

This functionality allows the usage of interactive
hierarchical text documents where the underlying chap-
ters and sections can be represented and edited. OMNo-
tebook supports functionality for Modelica model si-
mulation [1] [2], text, images and interactive linking
between those. Furthermore, via the external interface,
program is other languages can be evaluated. One ex-
ample is OMScheme (Section 4.2) for teaching the
Scheme programming language.

The hierarchical structure of traditional documents,
e.g. books and reports, can also be applied to the note-
book which means basically that the book is divided
into sections, subsections, paragraphs, etc. This makes
the navigation in the book sections easier.

801

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

2.1 DrControl

Application of OMNotebook in control theory with the
DrControl course material aims at reinforcing the un-
derstanding through practical applications with hands-
on experience. The students gain insight into the dy-
namic phenomena of a system. Also, the problem-
solving process can be built into the material thus let-
ting the students explore the content at his or hers own
convenience.

| - = - = ¢ @

DrC ontrolwedsica esmon

Figure 1. DrControl for teaching control theory concepts.

3 Content and Learning Goals of
DrControl

One important factor in modeling and simulation is the
availability of the source code, documentation of the
source code as well as the result of the simulation in the
same document. This is important because the problem
solving process is an iterative process that requires
modification of the original mathematical model and/or
the software implementation and verification of the
simulation result against the model.

The front-page of DrControl shown in Figure 2 re-
sembles a linked table of content that can be used as a
navigation center. The content list contains topics like:

e (Getting started

e The control problem in ordinary life

o Feedback loop, see Section 3.1

e Mathematical modeling, see Section 3.2
e Transfer function, see Section 3.3

e Stability

e Example of controlling a DC-motor

e Feedforward compensation

e State-space form, see Section 3.4

e State observation, see Section 3.5

e Closed loop control system.

e Reconstructed systems, see Section 3.5

e Linear quadratic optimization, see Section 3.6

e Linearization, see Section 3.7

File Edit Cell Format Insert Window Help
T e =t - . 4, | =]

Viersion 2010-08-19 |

DrC ontrolmedeica edition

Copyright: (c) Linkoping University, PELAB, 2003-2010.
Contact: OpenModelica@ida. liv.se
OpenModelica Project web site: www.openmodelica.org

DrContral Authors: (2010 version) Mohsen Torabzadeh-Tari and Martin Sjolund

This DrControl notebook has been developed to facilitate learning Control Theory with the aid of]
Modelica language. For learning more about the Modelica language please first go through the
DrModelica notebook, an interactive and self-instructing electronic notebook.

Detailed Copyright and Acknowledgment Information

-

Getting Started Using OMNotebook

IMPORTANT: To evaluate a cell just click in the specific cell and press shift+enter, If you end
a command by semicolon (;), the value of the command will not be returned in an outpur cell.
‘When using or saving your own files it is useful 1o first change the directory (o the path where
your files are Jocated. This can be done by the cd() command. For a more extensive wtorial
explanation on how 1o use a notebook, see the notebook chapter in the OpenModelica Users
Guide. A cell containing a Modelica model, class, or function has to be evaluated before it is
possible to simulate it. To do this, click inside the cell or on the cell, and push shifi-enter, Then
you have 1o evaluate a simulate command, e.g. by typing "simulate{modelname, stanTime=0,
stopTime=25);

After simulating a class it is possible w plot or just look at the values of the variables in the class
by using the plot command. Note that Java must be installed on your compater in order to run
plot. Variable names given to the plot command refer to the most recently simulated model -
you do not need to provide the modelname as a prefix. When writing Modelica code a special
Modelicalnput cell must be used. New cells can be inserted from the format menu. A new
Modelicalnput/Command input cell can also be created by the short-cut command Curl+Shift+1,
whereas a new cell with the same text style as the one above can be created by the shon-cut
command Alt+Enter,

To open or close (loggle) the Detailed Copyright section (above), the OpenModelica command 1

Figure 2. The starting page of the DrControl tutoring
system using OMNotebook.

Each entry in this list leads to a new notebook page
where either the theory is explained with Modelica ex-
amples or an exercise with a solution is provided to
certify the background theory, see [7] for more infor-
mation and down-load of DrControl.

3.1 Feedback Loop

One of the basic concepts of control theory is using
feedback loops either for neutralizing the disturbances
from the surroundings or a desire for a smoother out-
put.

In Figure 5 a simple car model is illustrated where
the car velocity on a road is controlled, first with an
open loop control then compared to a closed loop sys-
tem with a feedback loop. The car has a mass m, ve-
locity y, and aerodynamic coefficient a. The 0 is the
road slope, which in this case can be regarded as noise.

802

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

File Edit Cell Format Insert Window Help

BT E = - » L | B < | @

Feedback

e imporant methad in designing control system is a feedback loap. It can be used 1o eliminate the
influence of noise or to decrease the output emor.

[

Example

Assume that we want 1o conrel the speed of a car on the mad. The car has a mass m, velaciry y, and
acrodynamic cocfficient oo The 0 is the road slope, which in this case can be regarded as nokse.

my = u—ay —mgsin(d)
If we want a reference speed of 20 m/s for a car with m=1500 kg, =250 Ns'm, 8=0 rad, how high should

the amplification factor be in the regulaior?
Try with u = 250,

1.1 Open Loop
loadModel (Modelica)
true
model noFeedback
import 5I = Modelica.S5Iunits;
SI.Velocity y;

noise, theta = 8 -» v(t) = 8
BY WValaritew wliadee - £ bt & v

44 output signal without

nal with naies

Figure 3. Feedback loop.

Lets look at the Modelica model for the open loop con-
trolled car:
my =u—ay —mgsin(0)

model NoFeedback
import SI = Modelica.Slunits;

Sl.Velocity y "No noise";
Sl ._Velocity yNoise "With noise";
parameter Sl_Mass m = 1500;
parameter Real alpha = 200;

parameter Sl. ngle theta = 5*3.14/180;
parameter Sl.Acceleration g = 9.82;
S1.Force u;
Sl.Velocity r =
equation
m*der(y)=u - alpha*y;
m*der(yNoise)= u - alpha*yNoise —
m*g*sin(theta);
u = 250A*r;
end NoFeedback;

20 "Reference signal";

By applying a road slope angle different that zero then
the car velocity is influenced which can be regarded as
noise in this model. The output signal in Figure 3 is
stable but an overshoot can be observed compared to
the reference signal. Naturally the overshoot is not de-
sired and the student will in the next exercise learn how
to get rid of this undesired behavior of the system.

sigass and yNoi

signa) are phomed. We have am overshoot i the conrollaw that we have chosen, Can you design am object criened

Figure 4. Open loop control example.

The closed car model with a proportional regulator is
shown below:
u=Kx*(r-y)

model WithFeedback
import SI = Modelica.Slunits;
Sl_Velocity y "Output, No noise';
Sl.Velocity yNoise "Output With noise";
parameter Sl_Mass m = 1500;
parameter Real alpha = 250;
parameter Sl_Angle theta = 5*3.14/180;
parameter Sl.Acceleration g = 9.82;
S1.Force u;
Sl .Force uNoise;
Sl._Velocity r = 20
equation
m*der(y) = u - alpha*y;
m*der(yNoise) = uNoise - alpha*yNois —
m*g*sin(theta);
u = 5000*(r - y);
uNoise = 5000*(r - yNoise);
end WithFeedback;

"Reference signal™;

By using the information about the current level of the
output signal and re-tune the regulator the output quan-
tity can be controlled towards the reference signal
smoothly and without an overshoot, as shown in Figure
5.

In the above simple example the flat modeling ap-
proach was adopted since it was the fastest one to
quickly obtain a working model. However, one could
use the object oriented approach and encapsulate the
car and regulator models in separate classes with the
Modelica connector mechanism in between.

803

Proceedings 8th Modelica Conference,

File Edit Cell Format Insert Window Help

T -

model withFeedback
import SI = Modelica.SIunits;
SI.Velocity v,
SI.velocity yNoise;
parameter SI.Mass m = 1588;
parameter Real alpha = 258;
parameter SI.Angle theta = 5%3.141502/180;
parameter SI.Acceleration g = 9.82;
SI.Force u;
SI.Force uNoise;
SI.velocity r=20;
equation
m*der(y)=u-alpha®y;
m*der(yNoise)=uNoise-alpha®yNoise-m*g"sin(theta);
u = 5888°(r-y);
uNoise = 5880 (r-yNoise);
end withFeedhack;

simulate(withFeedback, stopTime=18)

plot({r,y, yNoise}) // (reference signal, output signal with theta = @,
output signal with theta <= @8)

true
Plat b Mol L
15 /‘ﬁ- or
i
{
o oy
|
s||
{ @ yNoise
of |
n . 0 . 4 - & 3

™ =
Ready Ln 4, Col 49

Figure 5. Closed loop control example.

3.2 Mathematical Modeling

In most systems the relation between the inputs and
outputs can be described by a linear differential equa-
tion. Tearing apart the solution of the differential equa-
tion into homogenous and particular parts is an impor-
tant technique taught to the students in engineering
courses, also illustrated in Figure 6.

dny dn—ly
ar +a, g1 +..t+ayy

m

= b,

Uy

cee _ —_— u
dtm e T
Now let us examine a second order system:

V+a,y+ay=1

model NegRoots

Real y: ::t([v})
Real der_y; ot by
parameter Real al = 3; o
parameter Real a2 = 2; o4
equation 03
der_y = der(y); 0z b
der(der_y) + al*der_y + a2*y = 1; o
end NegRoots; .
Choosing different values for a; and a, leads to differ- : ! e ¢ °

ent behavior as shown in Figure 7 and Figure 8.

Dresden, Germany, March 20-22, 2011

File Edit Cell Format Insert Window Help

T H | = - | ~ =4 | @

Mathematical Modeling

In mast systems the relation berween the inputs and outputs can be approximated by a linear differential
equation.

ami 4" 4
)= by— {4 b
wE) + ot i) b,dl__u((3+...+ b"‘“ﬂ: wle) b ule)

4n
F_\-[r] +a g

where the coefficients a, and by are constants. The above diff il eqquation has a b B and a
panicular solution:

=yt
The homogeneous solution where u s set 1o 2ero has the ferm:
yp = Cyehet ok Cpeint
whene

A A b A Fa, =0

[

Example

Consider the following model.
al al
F\{_r) +ay o yit) +azy(t) = 1
Examine the behavior of the system for different values on a, and a,
1.1 Characteristic Equation with Negative Real Roots, h=-1,-2

model negRoots

Real y;

Real der_y;

parameter Real al = 3;

parameter Real aZ = 2;
equation

der_y = der(y);

der(der_y) + al*der_y + a2y = 1;
end negRoots;

{negRoots }
simulate(neoRools. stooTime=181

Figure 6. Mathematical modeling.

In the first example the values of a; and a, are chosen
in such way that the characteristic equation has nega-
tive real roots and thereby a stable output response, see
Figure 7.

File Edit Cell Format Insert Window Help

T e = - " v =L v @
I Example
Consider the following model.
e 4t
0 +a S0 Han(=1
Examine the behavior of the system for differvat values on o, and a;

1.1 Characteristic Equation with Negative Real Roots, h=-1,-2

model negRoots
Real y;
Real der_y;
parameter Real ai = 3;
parameter Real a2 = 2;
equation
der_y = der(y);
der(der_y) + ai‘der_y + a2y = 1;
end negRoots;
{negRoots)
simulate(negRoots, stopTime=10)
record SimulationResult
resultFile = "negRoots_res. plt*
end Simulationfesult;

Ready

Figure 7. Characteristic eg. with real negative roots.

804

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

The importance of the sign of the roots in the characte-
ristic equation is illustrated in Figure 7and Figure 8,
e.g. a stable system with negative real roots and an un-
stable system with positive imaginary roots resulting in
oscillations.

model NegRoots

Real y;

Real der_y;

parameter Real al = -2;
parameter Real a2 = 10;

equation

der_y = der(y);

der(der_y) + al*der_y + a2*y = 1;
end NegRoots;

File Edit Cell Format [nsert Window Help
W= - Ak - EEA)

v Roots with Positive Real Part, h=1+3i 1.3

1.4 Char istic Equation with T

model imgPosRoOts

Real y;

Real der_y;

parameter Real al = -2;

parameter Real a2 = 18]
equation

der_y = der(y);

der(der_y) + al*der_y + a2"y = 1;
end imgPosRoots;

{imgPosRoots }
simulate(imgPosRoots, numberOf Intervals=1888, stopTime=15.5)
record SimulationResult

resultFile = “imgPosRoots_res pitt
end Simulationfesult;
plot{y)
true

Piat by

500000
400000
300000
200000
100000 @y

]
100000
200000

o 3 10 15
time
As concluding words one can say that if the characteristic equation has negative real roots then the
homegenous solution dies ot On the other hand real positive moot leads w that the signal becomes
Ready

Figure 8. Characteristic eg. with positive imaginary roots.

3.3

Students also get familiar with how a transfer function,
polynomial fraction of the Laplace transform of output
over the input, is derived and how it can be used to
study the system behavior, see Figure 9 and Figure 10.

The poles of the transfer function are the roots of
the denominator which is the same as the roots to the
characteristic equation. The zeros are the roots to the
numerator of the transfer function. The inverse Laplace
transform of G(s) is called the weight function and is
the impulse response of the system.

Transfer Function

Y(s) = G(s)U(s)

Lets now look at a simplified first order model of a
tank system:

|

G(s) =

1
S+T

model Tank
import Modelica.Blocks.Continuous.*;
TransferFunction G(b = {1/A}, a =
{1,1/7});
TransferFunction
{1,1/7}1);
parameter Real T 15 "Time constant'';
parameter Real A = 5;
Real uStep = if (time > 0 or time<0)
then 1 else 0 "step function™;
initial equation
G.y = 1/A;
equation
G.u= if time > 0 then O else 1e6;
GStep.u = uStep;
end Tank;

GStep(b = {1/A},a =

File Edit Cell Format Insert Window Help

T e = - ¥ A= <« | @

Transfer Function

It is sometimes practical 1o study the Laplace transform of the involved quantities.
¥(s) = L)) :J (t)em" dt
o

The obvious reason to why the ransformed quantities are prefemed is that the derivative of a signal wit) is
a¥(3) if the initial condition y(0) is zerm. Now by assuming the initial valse of the signal itselfl and its
derivative inhal values are all zero and then Laplace ransforming the differental equaton

[dn=t) d
—ylt) + AE) + o+ aylE) = By ——ult) + oot By —— w(t)+ bl
G + e) o+ ey (e) = By gmule) B () +bule)

leads w
(57 4 @y 5" 4 o 4 @, JH(5) = (Bs™ 4+ - +b M(5)

Now the differential equation with all iis derivative 1emms Is described wish the help of a palynomial fraction.

(lgs™ + - b) . oy
(5) = 115} = G{5)U
¥is} P s a-]U;, GlsiUs)
This polynomial fraction is called the transfer function of the system, denoded as Gis). The poles of the
wransfer function are the roots of the denominator which is the same as the roots 1o the characteristic equation.
The zemns are the roots i the numeraor of the mansfer function. The inverse Laplace mansform of Gis) ks
called the weight function and is the impulse response of the system. In Modelica the ransfer function is
reformulated in a state space (differential) form. Therefore the initial conditions are impostant for getting the
right result.

Figure 9. Transfer function derivation.

For analysis of a simple tank model the step and pulse
responses of this system are illustrated in Figure 10. In
Modelica the transfer function is reformulated in a state
space (differential) form. Therefore the initial condi-
tions are important for getting the right result.

The inverse Laplace transform of G(s) is called the
weight function and is the impulse response of the sys-
tem. In Modelica the transfer function is reformulated
in a state space (differential) form. Therefore the initial
conditions are important for getting the right result.

805

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

Flle Edit Cell Format |nsert Window Help
U - . ¥ A < | Q@

1 Example

Comslder a tank system with the following wansfer funcrion
+
Giz) = —d
b= ‘%
‘What is the wedght function? Can you plot the step response of the ank?
1.1 Tank Transfer Function
loadMode] (Madelica . Blocks)

model Tank
Modelica.Blocks . Continuous . TransferFunction G{b={1/A},
a={1,2/T},y_start({fized=true)}=1/A);
Modelica.Blocks.Continugus. TransferFunction GStep(b={1/A}, a={1,1/T});
parameter Real T = 15;
parameter Real A = 5;
Real u = if (time > 8 or time<d) then @ else Modelica.Constants.inf;
Real uStep = if (time > @ or time<@} then 1 else 8;
equation
G.u = if time > & then & else leid;
GStep.u = uStep;
end Tank;

{Tank}
sinulate(Tank, startTime=-1e-18, nunberofIntervals=568,stopTine=18);
plot({G.y,G5tep.y})

true

Plot by

14
13

1 oGy
08
06
04 ®Gsteny
02

o

a 2 4 -] a 10

Ready Ln8, Col 1

Figure 10. Step and pulse (weight function) response.

3.4

The state of a system is the amount of information
needed for determining the future output of the system
if the future inputs are known.

The state space form for continuous-time dependent
systems can be expressed as a system of first order dif-
ferential equations. We can reformulate the below
second order differential equation

State-space Formulation

y+a;y+a,y=bu

by introducing new auxiliary variables

{x1 =Yy

X2 =Yy

the differential equation can be re-written in a state-
space form:

X\ 0 1 X1 0

(J’CZ) - (—az —a1> (xz) + (b) u
Depending of the modeled system and the type of anal-
ysis one would like to perform there could be a desire

to shift from the state space formulation to transfer
function representation or vice versa.

File Edit Cell Format Insert Window Help

T E = - » “ < | @

State Space Form

A state of a system ks the amount of informarion needed for determining the furure ourpar of the system if the
future inputs are known. The state space form for continious time dependent systems can be expressed as a
system of first order differential equations.

-

Linear Differential Equations in State Space Form

Higher order differential equations can be treated more practically if transfermed 1o first order differential
equations.

) + 2 30e) + azy(e) = bulr)
By introducing new variables, x;and x;

(e} = yie)
EROES (3]

the dil ial equation can be as

; #2(8) = 9 = x2(0)
£() = 9t) = -, e+ bult) =
t = —ay 13 (8 — azuy (1) + Bul)
‘With matrix notaton the equations takes the form:
iy (0 FRTEN () LA
[..i_-(l)_}_l_—u_- —a._)‘_x__."{l}“-(bnl'lr'}
Now let
sl 0 1
A=(%)
o
B= (uJ
¢=0(0
then the higher order differentlal equation can be wrinen in a more compact form:

[i':l_\ = Ax(t) + Bult)
¥t} = cx(t)

2 Transferfunction to State Space Form

Figure 11. Linear state-space form.

In Figure 12 a second order system is modeled, both
with the aid of pure differential equation and also with
the transformation to the transfer function representa-
tion.

What is important to highlight here is that the two
models show different results making the student aware
of setting the initial data correctly.

model StateSpaceHD
Modelica.Blocks.Continuous.StateSpace
stateSpace(A=[-2,1; -3,0],B=[-3;5]
,C=[1,0],D=[2]);
Modelica.Blocks.Sources.Step
step(height=1.0);
equation
connect(step.y, stateSpace.u[1l]):
end StateSpaceHD;

model DiffFEQHD

Real u = 1;

Real y;

Real uprim = der(u);

Real z = der(y);
equation

der(z)+2*z+3*y = 2*der(uprim)+uprim+u;
end DiffEQHD;

806

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

File Edit Cell Format Insett Window Help

BTN = B L A B U | @
time ‘i

model comapreStateSpace

stateSpaceHD stateSpaceHDl;

diffEqHD diffEqHDl;
end comaprestatespace;
{comaprestateSpace}
simulate({comapreStateipace, stopTime=18, nunberofIntervals=588)
plot{{stateSpaceHD1.stateSpace.y[1], diffEqHD1.v})
true

Blat by
15
@ aAfEQHDLY
1
05 @ stateSpaceHDLstateSpace.v(1]
o
2 4 6 8
time

Why do we gex different resulis? Shouldn't both ways give the same step response?]
Yes, however since you didn't specify any initial values then the solver has guessed the initial values]

Heady Ln 4, Col 49

Figure 12. State-apace form vs. differential equation
modeling.

3.5 Observers and Reconstructed systems

Often we do not have access to the internal states of a
system and can only measure the outputs of the system
and have to reconstruct the state of the system based on
these measurements. This is normally done with an
observer, e.g. Kalman filter, see Figure 13 and Figure
14.

File Edit Cell Format Insert Window Help

T e = 2 ¥ A= Ul | @

Observer

In many simations the imemal states of a system are not accessible, rather only input and autpu are known.
In these systems then a feedback from these measuned values is desired.

Reconstruction of the States

Consider a system defined by

i=Ax +Bu
v=0Cx

Assume that A.B,C, are known and also that the quantities u and y can be messunesd. Introduce now an
estimation of the state varalble x, hased on the measured quarsities.

i=AT+Bu
The difference
¥y—=Cx

can be used as a measure of the estlamaion error. Now inroduce a feedhack hased an the cutput estimarion
ermor.

F =A%+ Bu+K(y—-C%)
The vector K is called the observer for the system. The error in the differential equation i
f=f—d=(A-KO)(E-x)=(A-KC)t
By recalling that
u=-=Li+r
then we can re-write the obsened system as
@=070" sZk) @+ ()

y=0 0(3)

11 Fyamnke
Ready

Figure 13. Observer.

Consider the second order model from section 3.4

{3’5 = Ax + Bu
y =Cx
Introduce now an estimation of the state variable x:

£ =A%+ Bu

The difference
y—CXx

can be used as a measure of the error in this estimation.

With the feedback loop
u=-—-LX+ Br

the observed system can be re-written as:

D=5 B0+ ()
= o)

The vector K is called the observer for the system.

File Edit Cell Format Insert Window Help
T e = - ¥ <~ | B Y < | @
1 Kalman Filter
Often we don't have access o the internal stiaes of 2 system and can only measure the ouspns of the system
and have to reconstruct the state of the system based on these measurements. This is normally done with an
observer. The idea with an observer is that we feedback the difference of the measured outpat with the
estimaned output. If the esdamedon s comect then the difference should be zero.
Anather difficulry is that the measured quantities aften conain dismrbance, Le. nolse.
[f=At+Bu+te
F=Ci+v

Here are e denoting a disurhance in the input signal and v is a measurement error. The quality of the
estimate can be evaluated by the difference

Kiy(t) = £2(8) = Dule))
By using this quamity as feedback we obtain the observer
&= AR + Bule) + KOAL) = €0 = Dule))

Now form the ermor as.

The differential emor is

f=(Ad-KO)+e—-Kv
The choice of K has two impacts on the system behavior. The first one is the obvious desire w put the
elgenvalues of A-KC In the ssability area which Is an indicator of how fast the emmors will die o, The
second one is the impact on the emor v which will mubtiplied with K. So the choice of K should be a rade-
off berween how fast the stae reconsmuction shauld ocour and how sensitive sysiem we want iowards the
measurement noise,

By assuming that the disurhances, e and v are white ninse signals with the covariances R, and R, then the
differential error is minimized with the following chobce of K.

K=PCTR
The observer marrix K is called the Kalman filter. The marix P ks given by
AP+ PAT + R, —-PCTR*CP =0

It shrnlel he nechans naeed rhar the covariance marrix B, s assumed o be zem. The Schur decomnasition is
Fasady

Figure 14. Kalman observer.

In real life systems the observed signals often contain
noise. By introducing noise in the observed output sig-
nal the modeled system can be made more realistic.

The random function is listed below:
type Seed = Real[3];

function random
input Seed si;
input Real tim;
output Real Xx;
output Seed so;

807

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

algorithm R Lets now look at a simple noisy pendulum model
sol1] r;];d?ﬁgﬂfﬁﬁlg;%],38)2(25)); where the output angle is observed with a Kalman ob-
so[2] := abs(rem((172*si[2]*exp(Server:
mod(tim-5,tim+7))),30307));
so[3] := abs(rem((170*si[3]*exp(X, 0 1\ /x; 1
mod(tim-23,tim+76))),30323)); (.) = ()(x) ()u
if so[1] < 1le-4 then X2 1 0/\X2 0
so[1] := 1; y=x
end if; model KalmanFeedback
if so[2] < le-4 then parameter Real A[:,size(A, 1)] =
so[2] := 1 {{0,1},{41,03} ;
end if; parameter Real B[size(A, 1),:] =
if 50[3] < le-4 then {{0},{1}};
so[3] := 1; parameter Real C[:,size(A, 1)] =
end_; {{1,03};

x = rem((so[1]/30269.0 +s0[2]/30307.0 +
so0[3]/30323.0),1.0);
end random;

parameter Real[2,1] K = [2.4;3.4];
parameter Real[1,2] L = [2.4,3.4];
parameter Real[:,:] ABL = A-B*L;
parameter Real[:,:] BL = B*L;

The time input is needed to ensure that the Modelica parameter Real[:.-] Z =

compilers shouldn’t consider the above function as zeros(size(ABL,2),size(AKC,1));
constant. parameter Real[:,:] AKC = A-K*C;
Now the state-space model from the Modelica stan- parameter Real[:,:] Anew = [0,1,0,0 ; -

. . . . 1.4, -3.4, 2.4,3.4; 0,0,-2.4,1;0,0,
dard library can be re-written containing noise:

2.4,0];
block StateSpaceWithNoise "Linear state parameter Real[:,:] Bnew = [0;1:050];
space system with noise" parameter Real[:,:] Fnew = [1;0;0;0];
parameter Real A[:,size(A, 1)] = StateSpaceNoise Kalman(
{{0,1},{1,0}} : StateSpace .A=Anew,
parameter Real B[size(A, 1),:] = StateSpace .B=Bnew,
{{0}.,{1}}; StateSpace.C=[1,0,0,0],
parameter Real C[:,size(A, 1)] = StateSpace.F = Fnew);
{{1,0}}; StateSpaceNoise noKalman;
parameter Real F[size(A, 1),:] = end KalmanFeedback;
{{1}.{0}};
parameter Real D[size(C, 1),size(B, 2)] T
= zeros(size(C, 1), size(B, 2)); e T I T
extends Modelica.Blocks. Interfaces_MIMO(- = - :
final nin = size(B, 2), final nout = Sl Oborer]
size(C, 1)); N oaTancter-Real ALs.sisa(h, 4] = TO.AY 5,01} 7
output Real x[size(A,1)] "State vector"; bt g R I e R
Real si(start ={1,2,3}); Paramater Real(1.2] & = (2.4,3.4];
Real si2(start={11,27,127}); et)] e
Real randomE "input noise"; poeter kvl] aix zrosalna (oL 2) R (i)
Real randomV "measurement noise"; bt i e e LER S A el B
algorithm i e i e
(randomE,si) := random(si,time/10); D el o i
(randomV,si2) := random(si2,time/10); eeataspios C714/0,6) 91 miniotpace.r = Fre)}
equation e A
der(x) = A * x + B * u + F*{randomE}; almmn stateipaeo x[2)e0;
y =C* x+ D> u+ {randomV}; {kaimanFeedoack}
end Statespacew ithNoise; simulate(KalmanFeedback, number0f Intervals=1808, stopTime=3)
plot({Kalman.stateSpace.y[1), noKalman.stateSpace.y[1]})
model StateSpaceNoise i et
StateSpaceWithNoise stateSpace; 16
Modelica.Blocks.Sources.Exponentials ﬁ ®Kaiman.statespace. 1)
ref(outMax=4,riseTime=1, 10
riseTimeConst=1, fallTimeConst=0.2, . i
offset=0,startTime=-1); g
initial equation 2
stateSpace . x[1]=1; L T R R R
equation = —
connect(ref.y, stateSpace.u[1]); . .
end StateSpaceNoise; Figure 15. Pendulum angle control with Kalman observer.

808

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

3.6 Linear Quadratic Optimization

A good measure of suitable feedbacks, e.g. extra poles,
is minimum of the input and output energy levels. Solv-
ing the minimum energy level functional leads to the
algebraic Riccati equation, shown in Figure 16and Fig-
ure 17.

File Edit Cell Format Insert Window Help

||« @

Quadratic Optimization

A reasonable compromise s find suitable poles in & control sructune

T e | = - ¥ Y

{i=Ar+Bu
| y=cx

iz 10 minimize the “energy levels” of the involved quantities, in another words decide a feedhack boop L thar]
minimize

J’“{m':(!}+ﬂn:)t
o

which can be realized by a linear state feedback as optimal control law.

ule) = =Lale) + rit) = =BT Px(e) + v (1)
The solutien of the algebraic Riccati equation gives the feedback L,
Q+ATP+PA-FPBETP =0

where the cost function © is @CTC, The Riccati algebraic equation can be solved using the eigenvectors of the
below mamix, Le. Schur's decomposidon of the elgenspace of

|
]
(% %)]
P= W Wop]
Example J
Conslder a perdulum modelled in state space form as]
(0 DB ‘
y=(1 Ok
Assuming a cost-function) as (1,0 ; 0,0)]

Figure 16. Quadratic optimization.

The algebraic Riccati equation is:

AP + PAT + R, — PCTR;1CP =0

model RiccatiEq
parameter Real A[2,2]=[0,1; 1,0];
parameter Real B[2,1]=[0; 1];
parameter Real C[1,2]=[1,0];
Real P[2,2](start = Pinit);
parameter Real Pinit[2,2] =

[1,1.5;1.5,1];

parameter Real Q[2,2] = [1, 0; 0, 0]:
Real L[1,2];
Real L1 = L[1,1];
Real L2 L[1,2];

equation
Q + P*A +

P*B*transpose(B)*P =

L = transpose(B)*P;

end RiccatiEq;

transpose(A)*P -
[0,0;0,0];

File Edit Cell Format Insert Window Help
T e = » A | B U| | @
Example
Conslder a pendulum modelled In state space form as

P
=y Ol"”\ﬂ:“‘
y=(1 O

Assuming a cost-function Q as { 1,0;0,0)

model riccatiEq
parameter Real A[2,2]=[6,1; 1,8];
parameter Real B[2,1]=[8; 1];
parameter Real C[1,2]=[1,0];
Real P[2,2](start = Pinit); ~/
has difficulty
paraseter Real Pinit[2,2] = [1,1.5;1.5,1]);
parameter Real Q[2,2] = [1, 8; &, @];
Real L[1,2];
real L1 = L[1,1];
Real L2 = L[1,2];
equation
Q + P*A + tr A)*P - PTBtr
L = transpose(B)"P;
end riccatikEq;

the starting point is good if the solver

B)'P = [8,8;8,8];

{neccatiEq}

Now apply the feedback link w the pendulum example from above
Ready

Figure 17. Solving Riccati equation with OpenModelica.

3.7 Linearization

Many nonlinear problems can be handled more easily
by linearization around an equilibrium point. Lapapu-
nov showed that if the linear approximation is stable
then the nonlinear problem is also stable, at least
around the equilibrium region. Thus we can investigate
the behavior of the nonlinear system by analyzing the
linearized approximation.

In the OpenModelica Compiler (OMC) a flag is in-
troduced for linearization:

setCommandLineOptions({"+d=linearization"})

Assume that we have a non-linear two tank model
shown below:

model TwoFlatTankModel
Real hl(start = 2);
Real h2(start 1);
Real F1;
parameter Real Al
parameter Real R1
input Real F;
output Real F2;

equation
der(hl)
der(h2)

0.5;
1;

In
N
B

I

(F/A1) - (F1/A1);
(F1/7A2) - (F2/A2);
F1 = R1 sqrt(hl-h2);
F2 = R2 * sqrt(h2);
end TwoFlatTankModel;

L IR

The output C-files are now generated with the lineari-
zation flag. By running the executable with the time
argument the linearized model is generated which can
be simulated:
buildModel (TwoFlatTankModel) //0MC
system(*"TwoFlatTankModel .exe -1 0.0 -v

>log.out')
readFile("'log.out™)

809

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

The file 1og.out contains now the linearized model:

model Linear_TwoFlatTankModel

parameter Integer n = 2; // states
parameter Integer k = 1;

parameter Integer 1 = 1;

parameter Real x0[2] = {2,1};
parameter Real uO[1] = {0};
parameter Real A[2,2] = [-0.5,0.5;2,-3];
parameter Real B[2,1] = [0.5;0];
parameter Real C[1,2] = [0,0.5];
parameter Real D[1,1] = [O];

Real x[2](start = x0);

input Real u[l](start = u0);

output Real y[1];

Real x _Phl x[1];

Real x_Ph2 = x[2];

Real u_PF = u[1];

Real y_PF2 = y[1];
equation

der(x) = A*x +B * u;

y=C*x+ D * u;
end Linear_TwoFlatTankModel;

File Edit Cell Format |nsert Window Help

| =t . r -, = ||« | @
setCommandLineOptions{{"+d=linearization”}) // omc =5
+d=linearization model.ma

/¢ setCommandl ineOptions({ "+s", "+d=lincarization”, "file.mo"})

true

model twoflattankmodel
Real hi(start=2);
Real h2(start=1);
Real F1;
parameter Real A1=2,AZ=8.5;
paramcter Real R1=2 R2=1;
input Real F;
output Real F2;
equation
der(h1) = (F/A1) - (F1/A1);
der(h2) = (F1/A2) - (F2/A2);
F1 = R1 * sqrt(hi-h2);
F2 = R2 * sqgri(h2);
end twoflattankmodel;
{rwoflattankmaodel }

buildMode]l (twoflattanksodel)

|_inittxe"}

systea("twoflattankmodel. oxe -1 9.8 -v »log.out™)
S/system("tworlatcankmodel.exe -1 8.5 -v >log.out™)

o
readFile{"log.out™)

{- vodel-.

Ready

Figure 18. Linearization.

4 Other OMNotebook Applications

OMNotebook is also used for teaching modeling with
Modelica (DrModelica), and programming in Scheme
(DrScheme).

41 DrModelica

The existence of numerical algorithms and solvers are
important aspects of equation-based environments such
as Modelica tools.

OMNotebook is currently being used for course ma-
terial (DrModelica) in teaching the Modelica language
and equation-based object-oriented modeling and simu-
lation, (see Figure 19).

It can easily be adapted to electronic books teaching
other programming languages, such as Scheme (Sec-

tion 4.2). OMNotebook can also easily be used in other
areas such as physics, biology chemistry, biomechanics
etc., where phenomena can be illustrated by dynamic
simulation within the book.

He fde (ol Fomst buwt ide el

Bouncing Ball |

(welacity, == preivelacisyili

vl lan
wnd DounaingBail;

o

absmulet 1, staeetisesi, =10l ;
[dora]

PLSE(halgn)

Pratby Opanbtedalica

T
4 .l'f

/ \\ f, \
\/

13

Figure 19. Bouncing ball example with movement
animation in OMNotebook.

4.2 OMScheme

With OMScheme the OMNotebook paradigm is gene-
ralized towards other programming languages than
Modelica, e.g. the Scheme programming language, [6].
An implementation of the factorial function using OM-
Scheme is shown in Figure 20.

810

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

98 OMiotebook OMéchemear == i

File Edit Cell Format Insert Window Help
dE = - v “ v ©
Factorial Function
There exists many ways for calculating the factorial function, defined by
! = n*(n-1)*(n-2)...3*2%1
The Enear recursion process for sohing the factorial uses the fact that the factorial of

the numberrn. 15 n tines the factonal of (n-1) . Thas is dhustrated for the number §
below:

(define (factorial n)
(4f (=n 1)
1
(* n (factorial (- n 1)))}) [

{factorial 5)
120

| Ready Ln b, Col14

Figure 20. Factorial function in OMScheme.

5 Future Work

The inherent features of the Modelica language makes
the next mile-stone choice quite natural, namely the
adaption of the presented concept into other engineer-
ing courses as well, e.g. a future course material called
DrMechanics for teaching the basics of mechanical
systems.

A future generation of OMNotebook is planned to
be extended to become available through a web applet
which would make the material available without need-
ing installation of any software.

One thing that is intentionally left out in this paper
is frequency domain analysis, e.g. bode diagram. This
is partly due to the inherent properties of the Modelica
language, which is quite time domain dominant in its
modeling style. A work-around was shown in this pa-
per when studying the weight function and step re-
sponse in time domain.

6 Conclusions

The OMNotebook is one of the first open source efforts
offering interactive electronic books for teaching and
learning modeling and programming.

In this paper we present its use in an active electron-
ic book called DrControl for teaching control theory
and applications.

The idea of active electronic books in OpenModeli-
ca has so far been employed in the two E-courses
DrModelica and DrControl used successfully in gradu-
ate and workshop courses.

7 Acknowledgements

This work has been supported by EU project Lila and
Vinnova in the ITEA2 OPENPROD project. The Open
Source Modelica Consortium supports the OpenMode-
lica work.

References

[1] Peter Fritzson. Principles of Object-Oriented
Modeling and Simulation with Modelica 2.1, 940
pages, Wiley-IEEE Press, 2004.

[2] Modelica Association. The Modelica Language
Specification ~ Version 3.2, May 2010.
http://www.modelica.org.

[3] Anders Sandholm, Peter Fritzson, Varun Arora,
Scott Delp, Goran Petersson, and Jessica Rose.
The Gait E-Book - Development of Effective Par-
ticipatory Learning using Simulation and Active
Electronic Books. In Proceedings of the 11th Me-
diterranean Conference on Medical and Biologi-
cal Engineering and Computing (Medicon'2007),
Ljubljana, Slovenia, June 26 - 30, 2007.

[4] Eva-Lena Lengquist Sandelin, Susanna Monemar,
Peter Fritzson, Peter Bunus. DrModelica — A
Web-based Teaching Environment for Modelica,
In Proc. of the 44th Scandinavian Conference on
Simulation and Modeling (SIMS2003), Vésteras,
Sweden, 2003

[5] Anders Fernstrom, Ingemar Axelsson, Peter
Fritzson, Anders Sandholm, Adrian Pop. OMNo-
tebook — Interactive WYSIWYG Book Software
for Teaching Programming. In Proc. of the Work-
shop on Developing Computer Science Education
— How Can It Be Done?. Linkdping University,
Dept. Computer & Inf. Science, Linkdping, Swe-
den, March 10, 2006

[6] Mohsen Torabzadeh-Tari, Peter Fritzson, Adrian
Pop, Martin Sjélund, Generalization of an Active
Electronic Notebook for Teaching Multiple Pro-
gramming Languages IEEE EDUCON Education
Engineering 2010 — The Future of Global Learn-
ing Engineering Education, Madrid, Spain, 2010

[7]1 http://www.openmodelica.org [accessed 2011-02-
03]

811

http://www.modelica.org/�
http://www.openmodelica.org/�

	1 Introduction
	1.1 Structure of the Paper

	2 OMNotebook – An Active Electronic Notebook
	2.1 DrControl

	3 Content and Learning Goals of DrControl
	3.1 Feedback Loop
	3.2 Mathematical Modeling
	3.3 Transfer Function
	3.4 State-space Formulation
	3.5 Observers and Reconstructed systems
	3.6 Linear Quadratic Optimization
	3.7 Linearization

	4 Other OMNotebook Applications
	4.1 DrModelica
	4.2 OMScheme

	5 Future Work
	6 Conclusions
	7 Acknowledgements

