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Abstract 
In this paper we present an interactive course material 
called DrControl for teaching control theory concepts 
mixed together with exercises and example models in 
Modelica.  

The active electronic notebook, OMNotebook, is the 
basis for the course material. This can be an alternative 
or complement compared to the traditional teaching 
method with lecturing and reading textbooks. Expe-
rience shows that using such an electronic book will 
lead to more engagement from the students. OMNote-
book can contain interactive technical computations 
and text, as well as graphics. Hence it is a suitable tool 
for teaching, experimentation, simulation, scripting, 
model documentation, storage, etc.  
 
Keywords: DrControl, DrModelica, modeling, simula-
tion, OMNotebook, teaching, interactive, Control   

1 Introduction 
In this paper we introduce an electronic interactive 
course material called DrControl and its use for teach-
ing control theory together with control applications in 
Modelica [1] [2]. It is developed in and uses the OM-
Notebook [5] active electronic book software together 
with OpenModelica for modeling and simulation. 

This kind of interactive courses based on electronic 
books allows experimentation and dynamic simulation 
as well as execution of computer programs.  

Traditional teaching methods with lecturing and 
reading a textbook are often too passive and does not 
engage the student. Active notebooks, however, facili-
tates the learning process, e.g. by running programs and 
exercises within the book, and mixing lecturing with 
exercises and with reading in the interactive book. 

Electronic notebooks created using OMNotebook 
can contain program code, text, links, pictures, video, 

virtual and scientific visualizations, and makes it is 
possible to integrate teaching material in sciences such 
as physics, human biology [3], mathematics, computer 
science, etc. 

1.1 Structure of the Paper 

Section 2 presents the OMNotebook tool, whereas Sec-
tion 3 describes the teaching goals and contents of the 
DrControl electronic book. Section 4 briefly mentions 
applications in teaching modeling and programming 
languages, whereas Section 5 presents future work and 
Section 6 gives the conclusions.. 

2 OMNotebook – An Active Elec-
tronic Notebook 

The OpenModelica Notebook editor, OMNotebook, 
provides an active electronic notebook including an 
editor. The notebook it is not just a passive textbook or 
html page, it is active in the sense that models inside 
the book can be changed and executed.  

This functionality allows the usage of interactive 
hierarchical text documents where the underlying chap-
ters and sections can be represented and edited. OMNo-
tebook supports functionality for Modelica model si-
mulation [1] [2], text, images and interactive linking 
between those. Furthermore, via the external interface, 
program is other languages can be evaluated. One ex-
ample is OMScheme (Section 4.2) for teaching the 
Scheme programming language. 

The hierarchical structure of traditional documents, 
e.g. books and reports, can also be applied to the note-
book which means basically that the book is divided 
into sections, subsections, paragraphs, etc. This makes 
the navigation in the book sections easier. 
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2.1 DrControl 

Application of OMNotebook in control theory with the 
DrControl course material aims at reinforcing the un-
derstanding through practical applications with hands-
on experience. The students gain insight into the dy-
namic phenomena of a system. Also, the problem-
solving process can be built into the material thus let-
ting the students explore the content at his or hers own 
convenience.  
 

               
Figure 1. DrControl for teaching control theory concepts. 

3 Content and Learning Goals of 
DrControl 

One important factor in modeling and simulation is the 
availability of the source code, documentation of the 
source code as well as the result of the simulation in the 
same document. This is important because the problem 
solving process is an iterative process that requires 
modification of the original mathematical model and/or 
the software implementation and verification of the 
simulation result against the model.  

The front-page of DrControl shown in Figure 2 re-
sembles a linked table of content that can be used as a 
navigation center. The content list contains topics like:  

• Getting started 

• The control problem in ordinary life 

• Feedback loop, see Section 3.1 

• Mathematical modeling, see Section 3.2 

• Transfer function, see Section 3.3 

• Stability 

• Example of controlling a DC-motor 

• Feedforward compensation 

• State-space form, see Section 3.4 

• State observation, see Section 3.5 

• Closed loop control system. 

• Reconstructed systems, see Section 3.5 

• Linear quadratic optimization, see Section 3.6 

• Linearization, see Section 3.7 
 

 
Figure 2. The starting page of the DrControl tutoring 
system using OMNotebook. 

Each entry in this list leads to a new notebook page 
where either the theory is explained with Modelica ex-
amples or an exercise with a solution is provided to 
certify the background theory, see [7] for more infor-
mation and down-load of DrControl.  

3.1 Feedback Loop 

One of the basic concepts of control theory is using 
feedback loops either for neutralizing the disturbances 
from the surroundings or a desire for a smoother out-
put. 

In Figure 5 a simple car model is illustrated where 
the car velocity on a road is controlled, first with an 
open loop control then compared to a closed loop sys-
tem with a feedback loop. The car has a mass m, ve-
locity y, and aerodynamic coefficient α. The θ is the 
road slope, which in this case can be regarded as noise.  
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Figure 3. Feedback loop. 

Lets look at the Modelica model for the open loop con-
trolled car:  

𝑚𝑦̇ = 𝑢 − 𝛼𝑦 −𝑚𝑔𝑠𝑖𝑛(𝜃) 
 

model NoFeedback 
  import SI = Modelica.SIunits; 
  SI.Velocity y        "No noise";  
  SI.Velocity yNoise   "With noise";  
  parameter SI.Mass m = 1500; 
  parameter Real alpha = 200; 
  parameter SI. ngle theta = 5*3.14/180;  
  parameter SI.Acceleration g = 9.82; 
  SI.Force u; 
  SI.Velocity r = 20 "Reference signal"; 
equation 
  m*der(y)=u - alpha*y;  
  m*der(yNoise)= u - alpha*yNoise – 
     m*g*sin(theta); 
  u = 250A*r; 
end NoFeedback; 

By applying a road slope angle different that zero then 
the car velocity is influenced which can be regarded as 
noise in this model. The output signal in Figure 3 is 
stable but an overshoot can be observed compared to 
the reference signal. Naturally the overshoot is not de-
sired and the student will in the next exercise learn how 
to get rid of this undesired behavior of the system.  
 

 
Figure 4. Open loop control example. 

The closed car model with a proportional regulator is 
shown below:  

𝑢 = 𝐾 ∗ (𝑟 − 𝑦) 
 

model WithFeedback 
  import SI = Modelica.SIunits; 
  SI.Velocity y       "Output, No noise";   
  SI.Velocity yNoise  "Output With noise";   
  parameter SI.Mass m = 1500; 
  parameter Real alpha = 250; 
  parameter SI.Angle theta = 5*3.14/180;  
  parameter SI.Acceleration g = 9.82; 
  SI.Force u; 
  SI.Force uNoise; 
  SI.Velocity r = 20   "Reference signal"; 
equation 
  m*der(y) = u - alpha*y;  
  m*der(yNoise) = uNoise - alpha*yNois – 
    m*g*sin(theta);  
  u = 5000*(r - y); 
  uNoise = 5000*(r - yNoise); 
end WithFeedback; 

By using the information about the current level of the 
output signal and re-tune the regulator the output quan-
tity can be controlled towards the reference signal 
smoothly and without an overshoot, as shown in Figure 
5.  

In the above simple example the flat modeling ap-
proach was adopted since it was the fastest one to 
quickly obtain a working model. However, one could 
use the object oriented approach and encapsulate the 
car and regulator models in separate classes with the 
Modelica connector mechanism in between.  
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Figure 5. Closed loop control example. 

3.2 Mathematical Modeling 

In most systems the relation between the inputs and 
outputs can be described by a linear differential equa-
tion. Tearing apart the solution of the differential equa-
tion into homogenous and particular parts is an impor-
tant technique taught to the students in engineering 
courses, also illustrated in Figure 6. 

 
𝑑𝑛𝑦
𝑑𝑡𝑛

+ 𝑎1
𝑑𝑛−1𝑦
𝑑𝑡𝑛−1

+ … + 𝑎𝑛𝑦

= 𝑏0
𝑑𝑚𝑢
𝑑𝑡𝑚

+ ⋯+ 𝑏𝑚−1
𝑑𝑢
𝑑𝑡

+ 𝑏𝑚𝑢 

Now let us examine a second order system: 
 

ÿ + a1ẏ + a2y = 1 
 

model NegRoots 
  Real y; 
  Real der_y; 
  parameter Real a1 = 3; 
  parameter Real a2 = 2; 
equation 
  der_y = der(y); 
  der(der_y) + a1*der_y + a2*y = 1;  
end NegRoots; 

Choosing different values for a1 and a2 leads to differ-
ent behavior as shown in Figure 7 and Figure 8. 

 
Figure 6. Mathematical modeling. 

In the first example the values of a1 and a2 are chosen 
in such way that the characteristic equation has nega-
tive real roots and thereby a stable output response, see 
Figure 7.  
 

 
Figure 7. Characteristic eq. with real negative roots. 
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The importance of the sign of the roots in the characte-
ristic equation is illustrated in Figure 7and Figure 8, 
e.g. a stable system with negative real roots and an un-
stable system with positive imaginary roots resulting in 
oscillations. 
model NegRoots 
  Real y; 
  Real der_y; 
  parameter Real a1 = -2; 
  parameter Real a2 = 10; 
equation 
  der_y = der(y); 
  der(der_y) + a1*der_y + a2*y = 1;  
end NegRoots; 

 

 
Figure 8. Characteristic eq. with positive imaginary roots. 

3.3 Transfer Function 

Students also get familiar with how a transfer function, 
polynomial fraction of the Laplace transform of output 
over the input, is derived and how it can be used to 
study the system behavior, see Figure 9 and Figure 10.  

The poles of the transfer function are the roots of 
the denominator which is the same as the roots to the 
characteristic equation. The zeros are the roots to the 
numerator of the transfer function. The inverse Laplace 
transform of G(s) is called the weight function and is 
the impulse response of the system. 

 
𝑌(𝑠) = 𝐺(𝑠)𝑈(𝑠) 

Lets now look at a simplified first order model of a 
tank system: 

𝐺(𝑠) =
1
𝐴

𝑠 + 1
𝑇

 

model Tank 
  import Modelica.Blocks.Continuous.*; 
  TransferFunction G(b = {1/A}, a =  
    {1,1/T});     
  TransferFunction GStep(b = {1/A},a = 
    {1,1/T});  
  parameter Real T = 15 "Time constant"; 
  parameter Real A = 5;  
  Real uStep = if (time > 0 or time<0) 
     then 1 else 0 "step function";  
initial equation  
  G.y = 1/A; 
equation 
  G.u= if time > 0 then 0 else 1e6; 
  GStep.u = uStep; 
end Tank; 

 

 
Figure 9. Transfer function derivation. 

For analysis of a simple tank model the step and pulse 
responses of this system are illustrated in Figure 10. In 
Modelica the transfer function is reformulated in a state 
space (differential) form. Therefore the initial condi-
tions are important for getting the right result.  

The inverse Laplace transform of G(s) is called the 
weight function and is the impulse response of the sys-
tem. In Modelica the transfer function is reformulated 
in a state space (differential) form. Therefore the initial 
conditions are important for getting the right result. 
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Figure 10. Step and pulse (weight function) response. 

3.4 State-space Formulation 

The state of a system is the amount of information 
needed for determining the future output of the system 
if the future inputs are known.  

The state space form for continuous-time dependent 
systems can be expressed as a system of first order dif-
ferential equations. We can reformulate the below 
second order differential equation 

 
ÿ + a1ẏ + a2y = bu 

by introducing new auxiliary variables 
 

�
𝑥1 = 𝑦
𝑥2 = 𝑦̇

� 

the differential equation can be re-written in a state-
space form: 
 

�𝑥̇1𝑥̇2
� = �

0 1
−𝑎2 −𝑎1

� �
𝑥1
𝑥2�+ �0

𝑏�u 

Depending of the modeled system and the type of anal-
ysis one would like to perform there could be a desire 
to shift from the state space formulation to transfer 
function representation or vice versa. 

 
Figure 11. Linear state-space form. 

In Figure 12 a second order system is modeled, both 
with the aid of pure differential equation and also with 
the transformation to the transfer function representa-
tion. 

What is important to highlight here is that the two 
models show different results making the student aware 
of setting the initial data correctly.  
model StateSpaceHD 
  Modelica.Blocks.Continuous.StateSpace 
    stateSpace(A=[-2,1; -3,0],B=[-3;5] 
                ,C=[1,0],D=[2]); 
  Modelica.Blocks.Sources.Step  
    step(height=1.0); 
equation 
  connect(step.y, stateSpace.u[1]); 
end StateSpaceHD; 
 
model DiffEqHD 
  Real u = 1; 
  Real y; 
  Real uprim = der(u); 
  Real z = der(y); 
equation 
  der(z)+2*z+3*y = 2*der(uprim)+uprim+u; 
end DiffEqHD; 
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Figure 12. State-apace form vs. differential equation 
modeling. 

3.5 Observers and Reconstructed systems  

Often we do not have access to the internal states of a 
system and can only measure the outputs of the system 
and have to reconstruct the state of the system based on 
these measurements. This is normally done with an 
observer, e.g. Kalman filter, see Figure 13 and Figure 
14. 

 

 
Figure 13. Observer. 

Consider the second order model from section 3.4 
 

�𝑥̇ = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥

� 

Introduce now an estimation of the state variable x: 
 

𝑥�̇ = 𝐴𝑥� + 𝐵𝑢 

The difference  
𝑦 − 𝐶𝑥� 

can be used as a measure of the error in this estimation. 
With the feedback loop  

𝑢 = −𝐿𝑥� + 𝐵𝑟 

the observed system can be re-written as: 
 

�𝑥̇𝑥�̇� = �
𝐴 − 𝐵𝐿 𝐵𝐿
0 𝐴 − 𝐾𝐶

��𝑥𝑥�� + �𝐵0� r

𝑦 = (𝐶 0) �𝑥𝑥��
 

The vector K is called the observer for the system.  
 

 
Figure 14. Kalman observer. 

In real life systems the observed signals often contain 
noise. By introducing noise in the observed output sig-
nal the modeled system can be made more realistic. 
The random function is listed below: 
type Seed = Real[3]; 

function random 
  input Seed si; 
  input Real tim; 
  output Real x; 
  output Seed so; 
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algorithm 
  so[1] := abs(rem((171*si[1]*exp( 
        mod(tim-11,tim+13))),30269));  
  so[2] := abs(rem((172*si[2]*exp( 
        mod(tim-5,tim+7))),30307));  
  so[3] := abs(rem((170*si[3]*exp( 
        mod(tim-23,tim+76))),30323));  
  if so[1] < 1e-4 then 

so[1] := 1; 
  end if; 

   if so[2] < 1e-4 then 
so[2] := 1; 

  end if; 
  if so[3] < 1e-4 then 

so[3] := 1; 
  end if; 
  x := rem((so[1]/30269.0 +so[2]/30307.0 + 
     so[3]/30323.0),1.0); 
end random; 

The time input is needed to ensure that the Modelica 
compilers shouldn’t consider the above function as 
constant.  

Now the state-space model from the Modelica stan-
dard library can be re-written containing noise:  
block StateSpaceWithNoise "Linear state 
      space system with noise" 
  parameter Real A[:,size(A, 1)] =  
    {{0,1},{1,0}} ; 
  parameter Real B[size(A, 1),:] =  
    {{0},{1}}; 
  parameter Real C[:,size(A, 1)] =  
    {{1,0}}; 
  parameter Real F[size(A, 1),:] = 
    {{1},{0}}; 
  parameter Real D[size(C, 1),size(B, 2)] 
    = zeros(size(C, 1), size(B, 2)); 
  extends Modelica.Blocks.Interfaces.MIMO( 

final nin = size(B, 2), final nout = 
      size(C, 1)); 
  output Real x[size(A,1)] "State vector";  
  Real si(start ={1,2,3}); 
  Real si2(start={11,27,127}); 
  Real randomE "input noise"; 
  Real randomV "measurement noise"; 
algorithm 
  (randomE,si) := random(si,time/10); 
  (randomV,si2) := random(si2,time/10); 
equation 
  der(x) = A * x + B * u + F*{randomE}; 
  y = C * x + D * u + {randomV}; 
end StateSpaceWithNoise; 
 

model StateSpaceNoise 
  StateSpaceWithNoise stateSpace;  
  Modelica.Blocks.Sources.Exponentials 
    ref(outMax=4,riseTime=1, 
    riseTimeConst=1,fallTimeConst=0.2, 
    offset=0,startTime=-1); 
initial equation 
  stateSpace.x[1]=1; 
equation 
  connect(ref.y, stateSpace.u[1]); 
end StateSpaceNoise; 

 

Lets now look at a simple noisy pendulum model 
where the output angle is observed with a Kalman ob-
server:  

 

�𝑥̇1𝑥̇2
� = �

0 1
1 0

� �
𝑥1
𝑥2� + �1

0�u
𝑦 = 𝑥1

 

model KalmanFeedback 
  parameter Real A[:,size(A, 1)] =  
     {{0,1},{1,0}} ; 
  parameter Real B[size(A, 1),:] =  
     {{0},{1}}; 
  parameter Real C[:,size(A, 1)] =  
     {{1,0}}; 
  parameter Real[2,1] K = [2.4;3.4]; 
  parameter Real[1,2] L = [2.4,3.4]; 
  parameter Real[:,:] ABL = A-B*L; 
  parameter Real[:,:] BL = B*L; 
  parameter Real[:,:] Z = 
     zeros(size(ABL,2),size(AKC,1)); 
  parameter Real[:,:] AKC = A-K*C; 
  parameter Real[:,:] Anew = [0,1,0,0 ; - 
     1.4, -3.4, 2.4,3.4; 0,0,-2.4,1;0,0, 
     2.4,0];  
  parameter Real[:,:] Bnew = [0;1;0;0]; 
  parameter Real[:,:] Fnew = [1;0;0;0]; 
  StateSpaceNoise Kalman( 
    StateSpace.A=Anew,  
    StateSpace.B=Bnew,  
    StateSpace.C=[1,0,0,0],    
    StateSpace.F = Fnew);  
  StateSpaceNoise noKalman; 
end KalmanFeedback; 

 

 
Figure 15. Pendulum angle control with Kalman observer. 
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3.6 Linear Quadratic Optimization 
A good measure of suitable feedbacks, e.g. extra poles, 
is minimum of the input and output energy levels. Solv-
ing the minimum energy level functional leads to the 
algebraic Riccati equation, shown in Figure 16and Fig-
ure 17. 

               

Figure 16. Quadratic optimization. 

The algebraic Riccati equation is: 

𝐴𝑃 + 𝑃𝐴𝑇 + 𝑅𝑒 − 𝑃𝐶𝑇𝑅𝑣−1𝐶𝑃 = 0 
model RiccatiEq 
  parameter Real A[2,2]=[0,1; 1,0]; 
  parameter Real B[2,1]=[0; 1]; 
  parameter Real C[1,2]=[1,0]; 
  Real P[2,2](start = Pinit);  
  parameter Real Pinit[2,2] = 
    [1,1.5;1.5,1]; 
  parameter Real Q[2,2] = [1, 0; 0, 0]; 
  Real L[1,2];  
  Real L1 = L[1,1]; 
  Real L2 = L[1,2];  
equation  
  Q + P*A + transpose(A)*P -   
      P*B*transpose(B)*P = [0,0;0,0]; 
  L = transpose(B)*P; 
end RiccatiEq; 
 

 
Figure 17. Solving Riccati equation with OpenModelica. 

3.7   Linearization 

Many nonlinear problems can be handled more easily 
by linearization around an equilibrium point. Lapapu-
nov showed that if the linear approximation is stable 
then the nonlinear problem is also stable, at least 
around the equilibrium region. Thus we can investigate 
the behavior of the nonlinear system by analyzing the 
linearized approximation. 

In the OpenModelica Compiler (OMC) a flag is in-
troduced for linearization: 
setCommandLineOptions({"+d=linearization"}) 

Assume that we have a non-linear two tank model 
shown below: 
 
model TwoFlatTankModel 
  Real h1(start = 2); 
  Real h2(start = 1); 
  Real F1; 
  parameter Real A1 = 2,A2 = 0.5; 
  parameter Real R1 = 2,R2 = 1; 
  input Real F; 
  output Real F2; 
equation 
  der(h1) = (F/A1) - (F1/A1); 
  der(h2) = (F1/A2) - (F2/A2); 
  F1 = R1 * sqrt(h1-h2); 
  F2 = R2 * sqrt(h2); 
end TwoFlatTankModel; 

The output C-files are now generated with the lineari-
zation flag. By running the executable with the time 
argument the linearized model is generated which can 
be simulated:   
buildModel(TwoFlatTankModel) //OMC  
system("TwoFlatTankModel.exe -l 0.0 -v  
   >log.out") 
readFile("log.out") 
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The file log.out contains now the linearized model: 
 

model Linear_TwoFlatTankModel 
  parameter Integer n = 2; // states  
  parameter Integer k = 1;  
  parameter Integer l = 1;  
  parameter Real x0[2] = {2,1}; 
  parameter Real u0[1] = {0}; 
  parameter Real A[2,2] = [-0.5,0.5;2,-3]; 
  parameter Real B[2,1] = [0.5;0]; 
  parameter Real C[1,2] = [0,0.5]; 
  parameter Real D[1,1] = [0]; 
  Real x[2](start = x0); 
  input Real u[1](start = u0); 
  output Real y[1]; 
  Real x_Ph1 = x[1]; 
  Real x_Ph2 = x[2]; 
  Real u_PF = u[1]; 
  Real y_PF2 = y[1]; 
equation 
  der(x) = A * x + B * u; 
  y = C * x + D * u; 
end Linear_TwoFlatTankModel; 

 

 
Figure 18. Linearization. 

4 Other OMNotebook Applications 
OMNotebook is also used for teaching modeling with 
Modelica (DrModelica), and programming in Scheme 
(DrScheme). 

4.1 DrModelica 

The existence of numerical algorithms and solvers are 
important aspects of equation-based environments such 
as Modelica tools. 

OMNotebook is currently being used for course ma-
terial (DrModelica) in teaching the Modelica language 
and equation-based object-oriented modeling and simu-
lation, (see Figure 19). 

It can easily be adapted to electronic books teaching 
other programming languages, such as Scheme (Sec-

tion 4.2). OMNotebook can also easily be used in other 
areas such as physics, biology chemistry, biomechanics 
etc., where phenomena can be illustrated by dynamic 
simulation within the book.  

 

 
Figure 19. Bouncing ball example with movement 
animation in OMNotebook. 

4.2 OMScheme 

With OMScheme the OMNotebook paradigm is gene-
ralized towards other programming languages than 
Modelica, e.g. the Scheme programming language, [6]. 
An implementation of the factorial function using OM-
Scheme is shown in Figure 20. 
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Figure 20. Factorial function in OMScheme. 

5 Future Work 
The inherent features of the Modelica language makes 
the next mile-stone choice quite natural, namely the 
adaption of the presented concept into other engineer-
ing courses as well, e.g. a future course material called 
DrMechanics for teaching the basics of mechanical 
systems. 

A future generation of OMNotebook is planned to 
be extended to become available through a web applet 
which would make the material available without need-
ing installation of any software. 

One thing that is intentionally left out in this paper 
is frequency domain analysis, e.g. bode diagram. This 
is partly due to the inherent properties of the Modelica 
language, which is quite time domain dominant in its 
modeling style. A work-around was shown in this pa-
per when studying the weight function and step re-
sponse in time domain. 

6 Conclusions 
The OMNotebook is one of the first open source efforts 
offering interactive electronic books for teaching and 
learning modeling and programming.  

In this paper we present its use in an active electron-
ic book called DrControl for teaching control theory 
and applications.  

The idea of active electronic books in OpenModeli-
ca has so far been employed in the two E-courses 
DrModelica and DrControl used successfully in gradu-
ate and workshop courses.  
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