

DrControl — An Interactive Course Material for
Teaching Control Engineering

Mohsen Torabzadeh-Tari, Martin Sjölund, Adrian Pop, Peter Fritzson

PELAB – Programming Environment Lab, Dept. Computer Science
Linköping University, SE-581 83 Linköping, Sweden

{mohsen.torabzadeh-tari, martin.sjolund}@liu.se
{adrian.pop, peter.fritzson}@liu.se

Abstract
In this paper we present an interactive course material
called DrControl for teaching control theory concepts
mixed together with exercises and example models in
Modelica.

The active electronic notebook, OMNotebook, is the
basis for the course material. This can be an alternative
or complement compared to the traditional teaching
method with lecturing and reading textbooks. Expe-
rience shows that using such an electronic book will
lead to more engagement from the students. OMNote-
book can contain interactive technical computations
and text, as well as graphics. Hence it is a suitable tool
for teaching, experimentation, simulation, scripting,
model documentation, storage, etc.

Keywords: DrControl, DrModelica, modeling, simula-
tion, OMNotebook, teaching, interactive, Control

1 Introduction
In this paper we introduce an electronic interactive
course material called DrControl and its use for teach-
ing control theory together with control applications in
Modelica [1] [2]. It is developed in and uses the OM-
Notebook [5] active electronic book software together
with OpenModelica for modeling and simulation.

This kind of interactive courses based on electronic
books allows experimentation and dynamic simulation
as well as execution of computer programs.

Traditional teaching methods with lecturing and
reading a textbook are often too passive and does not
engage the student. Active notebooks, however, facili-
tates the learning process, e.g. by running programs and
exercises within the book, and mixing lecturing with
exercises and with reading in the interactive book.

Electronic notebooks created using OMNotebook
can contain program code, text, links, pictures, video,

virtual and scientific visualizations, and makes it is
possible to integrate teaching material in sciences such
as physics, human biology [3], mathematics, computer
science, etc.

1.1 Structure of the Paper

Section 2 presents the OMNotebook tool, whereas Sec-
tion 3 describes the teaching goals and contents of the
DrControl electronic book. Section 4 briefly mentions
applications in teaching modeling and programming
languages, whereas Section 5 presents future work and
Section 6 gives the conclusions..

2 OMNotebook – An Active Elec-
tronic Notebook

The OpenModelica Notebook editor, OMNotebook,
provides an active electronic notebook including an
editor. The notebook it is not just a passive textbook or
html page, it is active in the sense that models inside
the book can be changed and executed.

This functionality allows the usage of interactive
hierarchical text documents where the underlying chap-
ters and sections can be represented and edited. OMNo-
tebook supports functionality for Modelica model si-
mulation [1] [2], text, images and interactive linking
between those. Furthermore, via the external interface,
program is other languages can be evaluated. One ex-
ample is OMScheme (Section 4.2) for teaching the
Scheme programming language.

The hierarchical structure of traditional documents,
e.g. books and reports, can also be applied to the note-
book which means basically that the book is divided
into sections, subsections, paragraphs, etc. This makes
the navigation in the book sections easier.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

801

2.1 DrControl

Application of OMNotebook in control theory with the
DrControl course material aims at reinforcing the un-
derstanding through practical applications with hands-
on experience. The students gain insight into the dy-
namic phenomena of a system. Also, the problem-
solving process can be built into the material thus let-
ting the students explore the content at his or hers own
convenience.

Figure 1. DrControl for teaching control theory concepts.

3 Content and Learning Goals of
DrControl

One important factor in modeling and simulation is the
availability of the source code, documentation of the
source code as well as the result of the simulation in the
same document. This is important because the problem
solving process is an iterative process that requires
modification of the original mathematical model and/or
the software implementation and verification of the
simulation result against the model.

The front-page of DrControl shown in Figure 2 re-
sembles a linked table of content that can be used as a
navigation center. The content list contains topics like:

• Getting started

• The control problem in ordinary life

• Feedback loop, see Section 3.1

• Mathematical modeling, see Section 3.2

• Transfer function, see Section 3.3

• Stability

• Example of controlling a DC-motor

• Feedforward compensation

• State-space form, see Section 3.4

• State observation, see Section 3.5

• Closed loop control system.

• Reconstructed systems, see Section 3.5

• Linear quadratic optimization, see Section 3.6

• Linearization, see Section 3.7

Figure 2. The starting page of the DrControl tutoring
system using OMNotebook.

Each entry in this list leads to a new notebook page
where either the theory is explained with Modelica ex-
amples or an exercise with a solution is provided to
certify the background theory, see [7] for more infor-
mation and down-load of DrControl.

3.1 Feedback Loop

One of the basic concepts of control theory is using
feedback loops either for neutralizing the disturbances
from the surroundings or a desire for a smoother out-
put.

In Figure 5 a simple car model is illustrated where
the car velocity on a road is controlled, first with an
open loop control then compared to a closed loop sys-
tem with a feedback loop. The car has a mass m, ve-
locity y, and aerodynamic coefficient α. The θ is the
road slope, which in this case can be regarded as noise.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

802

Figure 3. Feedback loop.

Lets look at the Modelica model for the open loop con-
trolled car:

𝑚�̇� = 𝑢 − 𝛼𝑦 −𝑚𝑔𝑠𝑖𝑛(𝜃)

model NoFeedback
 import SI = Modelica.SIunits;
 SI.Velocity y "No noise";
 SI.Velocity yNoise "With noise";
 parameter SI.Mass m = 1500;
 parameter Real alpha = 200;
 parameter SI. ngle theta = 5*3.14/180;
 parameter SI.Acceleration g = 9.82;
 SI.Force u;
 SI.Velocity r = 20 "Reference signal";
equation
 m*der(y)=u - alpha*y;
 m*der(yNoise)= u - alpha*yNoise –
 m*g*sin(theta);
 u = 250A*r;
end NoFeedback;

By applying a road slope angle different that zero then
the car velocity is influenced which can be regarded as
noise in this model. The output signal in Figure 3 is
stable but an overshoot can be observed compared to
the reference signal. Naturally the overshoot is not de-
sired and the student will in the next exercise learn how
to get rid of this undesired behavior of the system.

Figure 4. Open loop control example.

The closed car model with a proportional regulator is
shown below:

𝑢 = 𝐾 ∗ (𝑟 − 𝑦)

model WithFeedback
 import SI = Modelica.SIunits;
 SI.Velocity y "Output, No noise";
 SI.Velocity yNoise "Output With noise";
 parameter SI.Mass m = 1500;
 parameter Real alpha = 250;
 parameter SI.Angle theta = 5*3.14/180;
 parameter SI.Acceleration g = 9.82;
 SI.Force u;
 SI.Force uNoise;
 SI.Velocity r = 20 "Reference signal";
equation
 m*der(y) = u - alpha*y;
 m*der(yNoise) = uNoise - alpha*yNois –
 m*g*sin(theta);
 u = 5000*(r - y);
 uNoise = 5000*(r - yNoise);
end WithFeedback;

By using the information about the current level of the
output signal and re-tune the regulator the output quan-
tity can be controlled towards the reference signal
smoothly and without an overshoot, as shown in Figure
5.

In the above simple example the flat modeling ap-
proach was adopted since it was the fastest one to
quickly obtain a working model. However, one could
use the object oriented approach and encapsulate the
car and regulator models in separate classes with the
Modelica connector mechanism in between.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

803

Figure 5. Closed loop control example.

3.2 Mathematical Modeling

In most systems the relation between the inputs and
outputs can be described by a linear differential equa-
tion. Tearing apart the solution of the differential equa-
tion into homogenous and particular parts is an impor-
tant technique taught to the students in engineering
courses, also illustrated in Figure 6.

𝑑𝑛𝑦
𝑑𝑡𝑛

+ 𝑎1
𝑑𝑛−1𝑦
𝑑𝑡𝑛−1

+ … + 𝑎𝑛𝑦

= 𝑏0
𝑑𝑚𝑢
𝑑𝑡𝑚

+ ⋯+ 𝑏𝑚−1
𝑑𝑢
𝑑𝑡

+ 𝑏𝑚𝑢

Now let us examine a second order system:

ÿ + a1ẏ + a2y = 1

model NegRoots
 Real y;
 Real der_y;
 parameter Real a1 = 3;
 parameter Real a2 = 2;
equation
 der_y = der(y);
 der(der_y) + a1*der_y + a2*y = 1;
end NegRoots;

Choosing different values for a1 and a2 leads to differ-
ent behavior as shown in Figure 7 and Figure 8.

Figure 6. Mathematical modeling.

In the first example the values of a1 and a2 are chosen
in such way that the characteristic equation has nega-
tive real roots and thereby a stable output response, see
Figure 7.

Figure 7. Characteristic eq. with real negative roots.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

804

The importance of the sign of the roots in the characte-
ristic equation is illustrated in Figure 7and Figure 8,
e.g. a stable system with negative real roots and an un-
stable system with positive imaginary roots resulting in
oscillations.
model NegRoots
 Real y;
 Real der_y;
 parameter Real a1 = -2;
 parameter Real a2 = 10;
equation
 der_y = der(y);
 der(der_y) + a1*der_y + a2*y = 1;
end NegRoots;

Figure 8. Characteristic eq. with positive imaginary roots.

3.3 Transfer Function

Students also get familiar with how a transfer function,
polynomial fraction of the Laplace transform of output
over the input, is derived and how it can be used to
study the system behavior, see Figure 9 and Figure 10.

The poles of the transfer function are the roots of
the denominator which is the same as the roots to the
characteristic equation. The zeros are the roots to the
numerator of the transfer function. The inverse Laplace
transform of G(s) is called the weight function and is
the impulse response of the system.

𝑌(𝑠) = 𝐺(𝑠)𝑈(𝑠)

Lets now look at a simplified first order model of a
tank system:

𝐺(𝑠) =
1
𝐴

𝑠 + 1
𝑇

model Tank
 import Modelica.Blocks.Continuous.*;
 TransferFunction G(b = {1/A}, a =
 {1,1/T});
 TransferFunction GStep(b = {1/A},a =
 {1,1/T});
 parameter Real T = 15 "Time constant";
 parameter Real A = 5;
 Real uStep = if (time > 0 or time<0)
 then 1 else 0 "step function";
initial equation
 G.y = 1/A;
equation
 G.u= if time > 0 then 0 else 1e6;
 GStep.u = uStep;
end Tank;

Figure 9. Transfer function derivation.

For analysis of a simple tank model the step and pulse
responses of this system are illustrated in Figure 10. In
Modelica the transfer function is reformulated in a state
space (differential) form. Therefore the initial condi-
tions are important for getting the right result.

The inverse Laplace transform of G(s) is called the
weight function and is the impulse response of the sys-
tem. In Modelica the transfer function is reformulated
in a state space (differential) form. Therefore the initial
conditions are important for getting the right result.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

805

Figure 10. Step and pulse (weight function) response.

3.4 State-space Formulation

The state of a system is the amount of information
needed for determining the future output of the system
if the future inputs are known.

The state space form for continuous-time dependent
systems can be expressed as a system of first order dif-
ferential equations. We can reformulate the below
second order differential equation

ÿ + a1ẏ + a2y = bu

by introducing new auxiliary variables

�
𝑥1 = 𝑦
𝑥2 = �̇�

�

the differential equation can be re-written in a state-
space form:

��̇�1�̇�2
� = �

0 1
−𝑎2 −𝑎1

� �
𝑥1
𝑥2�+ �0

𝑏�u

Depending of the modeled system and the type of anal-
ysis one would like to perform there could be a desire
to shift from the state space formulation to transfer
function representation or vice versa.

Figure 11. Linear state-space form.

In Figure 12 a second order system is modeled, both
with the aid of pure differential equation and also with
the transformation to the transfer function representa-
tion.

What is important to highlight here is that the two
models show different results making the student aware
of setting the initial data correctly.
model StateSpaceHD
 Modelica.Blocks.Continuous.StateSpace
 stateSpace(A=[-2,1; -3,0],B=[-3;5]
 ,C=[1,0],D=[2]);
 Modelica.Blocks.Sources.Step
 step(height=1.0);
equation
 connect(step.y, stateSpace.u[1]);
end StateSpaceHD;

model DiffEqHD
 Real u = 1;
 Real y;
 Real uprim = der(u);
 Real z = der(y);
equation
 der(z)+2*z+3*y = 2*der(uprim)+uprim+u;
end DiffEqHD;

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

806

Figure 12. State-apace form vs. differential equation
modeling.

3.5 Observers and Reconstructed systems

Often we do not have access to the internal states of a
system and can only measure the outputs of the system
and have to reconstruct the state of the system based on
these measurements. This is normally done with an
observer, e.g. Kalman filter, see Figure 13 and Figure
14.

Figure 13. Observer.

Consider the second order model from section 3.4

��̇� = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥

�

Introduce now an estimation of the state variable x:

𝑥�̇ = 𝐴𝑥� + 𝐵𝑢

The difference
𝑦 − 𝐶𝑥�

can be used as a measure of the error in this estimation.
With the feedback loop

𝑢 = −𝐿𝑥� + 𝐵𝑟

the observed system can be re-written as:

��̇�𝑥�̇� = �
𝐴 − 𝐵𝐿 𝐵𝐿
0 𝐴 − 𝐾𝐶

��𝑥𝑥�� + �𝐵0� r

𝑦 = (𝐶 0) �𝑥𝑥��

The vector K is called the observer for the system.

Figure 14. Kalman observer.

In real life systems the observed signals often contain
noise. By introducing noise in the observed output sig-
nal the modeled system can be made more realistic.
The random function is listed below:
type Seed = Real[3];

function random
 input Seed si;
 input Real tim;
 output Real x;
 output Seed so;

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

807

algorithm
 so[1] := abs(rem((171*si[1]*exp(
 mod(tim-11,tim+13))),30269));
 so[2] := abs(rem((172*si[2]*exp(
 mod(tim-5,tim+7))),30307));
 so[3] := abs(rem((170*si[3]*exp(
 mod(tim-23,tim+76))),30323));
 if so[1] < 1e-4 then

so[1] := 1;
 end if;

 if so[2] < 1e-4 then
so[2] := 1;

 end if;
 if so[3] < 1e-4 then

so[3] := 1;
 end if;
 x := rem((so[1]/30269.0 +so[2]/30307.0 +
 so[3]/30323.0),1.0);
end random;

The time input is needed to ensure that the Modelica
compilers shouldn’t consider the above function as
constant.

Now the state-space model from the Modelica stan-
dard library can be re-written containing noise:
block StateSpaceWithNoise "Linear state
 space system with noise"
 parameter Real A[:,size(A, 1)] =
 {{0,1},{1,0}} ;
 parameter Real B[size(A, 1),:] =
 {{0},{1}};
 parameter Real C[:,size(A, 1)] =
 {{1,0}};
 parameter Real F[size(A, 1),:] =
 {{1},{0}};
 parameter Real D[size(C, 1),size(B, 2)]
 = zeros(size(C, 1), size(B, 2));
 extends Modelica.Blocks.Interfaces.MIMO(

final nin = size(B, 2), final nout =
 size(C, 1));
 output Real x[size(A,1)] "State vector";
 Real si(start ={1,2,3});
 Real si2(start={11,27,127});
 Real randomE "input noise";
 Real randomV "measurement noise";
algorithm
 (randomE,si) := random(si,time/10);
 (randomV,si2) := random(si2,time/10);
equation
 der(x) = A * x + B * u + F*{randomE};
 y = C * x + D * u + {randomV};
end StateSpaceWithNoise;

model StateSpaceNoise
 StateSpaceWithNoise stateSpace;
 Modelica.Blocks.Sources.Exponentials
 ref(outMax=4,riseTime=1,
 riseTimeConst=1,fallTimeConst=0.2,
 offset=0,startTime=-1);
initial equation
 stateSpace.x[1]=1;
equation
 connect(ref.y, stateSpace.u[1]);
end StateSpaceNoise;

Lets now look at a simple noisy pendulum model
where the output angle is observed with a Kalman ob-
server:

��̇�1�̇�2
� = �

0 1
1 0

� �
𝑥1
𝑥2� + �1

0�u
𝑦 = 𝑥1

model KalmanFeedback
 parameter Real A[:,size(A, 1)] =
 {{0,1},{1,0}} ;
 parameter Real B[size(A, 1),:] =
 {{0},{1}};
 parameter Real C[:,size(A, 1)] =
 {{1,0}};
 parameter Real[2,1] K = [2.4;3.4];
 parameter Real[1,2] L = [2.4,3.4];
 parameter Real[:,:] ABL = A-B*L;
 parameter Real[:,:] BL = B*L;
 parameter Real[:,:] Z =
 zeros(size(ABL,2),size(AKC,1));
 parameter Real[:,:] AKC = A-K*C;
 parameter Real[:,:] Anew = [0,1,0,0 ; -
 1.4, -3.4, 2.4,3.4; 0,0,-2.4,1;0,0,
 2.4,0];
 parameter Real[:,:] Bnew = [0;1;0;0];
 parameter Real[:,:] Fnew = [1;0;0;0];
 StateSpaceNoise Kalman(
 StateSpace.A=Anew,
 StateSpace.B=Bnew,
 StateSpace.C=[1,0,0,0],
 StateSpace.F = Fnew);
 StateSpaceNoise noKalman;
end KalmanFeedback;

Figure 15. Pendulum angle control with Kalman observer.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

808

3.6 Linear Quadratic Optimization
A good measure of suitable feedbacks, e.g. extra poles,
is minimum of the input and output energy levels. Solv-
ing the minimum energy level functional leads to the
algebraic Riccati equation, shown in Figure 16and Fig-
ure 17.

Figure 16. Quadratic optimization.

The algebraic Riccati equation is:

𝐴𝑃 + 𝑃𝐴𝑇 + 𝑅𝑒 − 𝑃𝐶𝑇𝑅𝑣−1𝐶𝑃 = 0
model RiccatiEq
 parameter Real A[2,2]=[0,1; 1,0];
 parameter Real B[2,1]=[0; 1];
 parameter Real C[1,2]=[1,0];
 Real P[2,2](start = Pinit);
 parameter Real Pinit[2,2] =
 [1,1.5;1.5,1];
 parameter Real Q[2,2] = [1, 0; 0, 0];
 Real L[1,2];
 Real L1 = L[1,1];
 Real L2 = L[1,2];
equation
 Q + P*A + transpose(A)*P -
 P*B*transpose(B)*P = [0,0;0,0];
 L = transpose(B)*P;
end RiccatiEq;

Figure 17. Solving Riccati equation with OpenModelica.

3.7 Linearization

Many nonlinear problems can be handled more easily
by linearization around an equilibrium point. Lapapu-
nov showed that if the linear approximation is stable
then the nonlinear problem is also stable, at least
around the equilibrium region. Thus we can investigate
the behavior of the nonlinear system by analyzing the
linearized approximation.

In the OpenModelica Compiler (OMC) a flag is in-
troduced for linearization:
setCommandLineOptions({"+d=linearization"})

Assume that we have a non-linear two tank model
shown below:

model TwoFlatTankModel
 Real h1(start = 2);
 Real h2(start = 1);
 Real F1;
 parameter Real A1 = 2,A2 = 0.5;
 parameter Real R1 = 2,R2 = 1;
 input Real F;
 output Real F2;
equation
 der(h1) = (F/A1) - (F1/A1);
 der(h2) = (F1/A2) - (F2/A2);
 F1 = R1 * sqrt(h1-h2);
 F2 = R2 * sqrt(h2);
end TwoFlatTankModel;

The output C-files are now generated with the lineari-
zation flag. By running the executable with the time
argument the linearized model is generated which can
be simulated:
buildModel(TwoFlatTankModel) //OMC
system("TwoFlatTankModel.exe -l 0.0 -v
 >log.out")
readFile("log.out")

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

809

The file log.out contains now the linearized model:

model Linear_TwoFlatTankModel
 parameter Integer n = 2; // states
 parameter Integer k = 1;
 parameter Integer l = 1;
 parameter Real x0[2] = {2,1};
 parameter Real u0[1] = {0};
 parameter Real A[2,2] = [-0.5,0.5;2,-3];
 parameter Real B[2,1] = [0.5;0];
 parameter Real C[1,2] = [0,0.5];
 parameter Real D[1,1] = [0];
 Real x[2](start = x0);
 input Real u[1](start = u0);
 output Real y[1];
 Real x_Ph1 = x[1];
 Real x_Ph2 = x[2];
 Real u_PF = u[1];
 Real y_PF2 = y[1];
equation
 der(x) = A * x + B * u;
 y = C * x + D * u;
end Linear_TwoFlatTankModel;

Figure 18. Linearization.

4 Other OMNotebook Applications
OMNotebook is also used for teaching modeling with
Modelica (DrModelica), and programming in Scheme
(DrScheme).

4.1 DrModelica

The existence of numerical algorithms and solvers are
important aspects of equation-based environments such
as Modelica tools.

OMNotebook is currently being used for course ma-
terial (DrModelica) in teaching the Modelica language
and equation-based object-oriented modeling and simu-
lation, (see Figure 19).

It can easily be adapted to electronic books teaching
other programming languages, such as Scheme (Sec-

tion 4.2). OMNotebook can also easily be used in other
areas such as physics, biology chemistry, biomechanics
etc., where phenomena can be illustrated by dynamic
simulation within the book.

Figure 19. Bouncing ball example with movement
animation in OMNotebook.

4.2 OMScheme

With OMScheme the OMNotebook paradigm is gene-
ralized towards other programming languages than
Modelica, e.g. the Scheme programming language, [6].
An implementation of the factorial function using OM-
Scheme is shown in Figure 20.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

810

Figure 20. Factorial function in OMScheme.

5 Future Work
The inherent features of the Modelica language makes
the next mile-stone choice quite natural, namely the
adaption of the presented concept into other engineer-
ing courses as well, e.g. a future course material called
DrMechanics for teaching the basics of mechanical
systems.

A future generation of OMNotebook is planned to
be extended to become available through a web applet
which would make the material available without need-
ing installation of any software.

One thing that is intentionally left out in this paper
is frequency domain analysis, e.g. bode diagram. This
is partly due to the inherent properties of the Modelica
language, which is quite time domain dominant in its
modeling style. A work-around was shown in this pa-
per when studying the weight function and step re-
sponse in time domain.

6 Conclusions
The OMNotebook is one of the first open source efforts
offering interactive electronic books for teaching and
learning modeling and programming.

In this paper we present its use in an active electron-
ic book called DrControl for teaching control theory
and applications.

The idea of active electronic books in OpenModeli-
ca has so far been employed in the two E-courses
DrModelica and DrControl used successfully in gradu-
ate and workshop courses.

7 Acknowledgements
This work has been supported by EU project Lila and
Vinnova in the ITEA2 OPENPROD project. The Open
Source Modelica Consortium supports the OpenMode-
lica work.

References
[1] Peter Fritzson. Principles of Object-Oriented

Modeling and Simulation with Modelica 2.1, 940
pages, Wiley-IEEE Press, 2004.

[2] Modelica Association. The Modelica Language
Specification Version 3.2, May 2010.
http://www.modelica.org.

[3] Anders Sandholm, Peter Fritzson, Varun Arora,
Scott Delp, Göran Petersson, and Jessica Rose.
The Gait E-Book - Development of Effective Par-
ticipatory Learning using Simulation and Active
Electronic Books. In Proceedings of the 11th Me-
diterranean Conference on Medical and Biologi-
cal Engineering and Computing (Medicon'2007),
Ljubljana, Slovenia, June 26 - 30, 2007.

[4] Eva-Lena Lengquist Sandelin, Susanna Monemar,
Peter Fritzson, Peter Bunus. DrModelica – A
Web-based Teaching Environment for Modelica,
In Proc. of the 44th Scandinavian Conference on
Simulation and Modeling (SIMS2003), Västerås,
Sweden, 2003

[5] Anders Fernström, Ingemar Axelsson, Peter
Fritzson, Anders Sandholm, Adrian Pop. OMNo-
tebook – Interactive WYSIWYG Book Software
for Teaching Programming. In Proc. of the Work-
shop on Developing Computer Science Education
– How Can It Be Done?. Linköping University,
Dept. Computer & Inf. Science, Linköping, Swe-
den, March 10, 2006

[6] Mohsen Torabzadeh-Tari, Peter Fritzson, Adrian
Pop, Martin Sjölund, Generalization of an Active
Electronic Notebook for Teaching Multiple Pro-
gramming Languages IEEE EDUCON Education
Engineering 2010 – The Future of Global Learn-
ing Engineering Education, Madrid, Spain, 2010

[7] http://www.openmodelica.org [accessed 2011-02-
03]

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

811

http://www.modelica.org/�
http://www.openmodelica.org/�

	1 Introduction
	1.1 Structure of the Paper

	2 OMNotebook – An Active Electronic Notebook
	2.1 DrControl

	3 Content and Learning Goals of DrControl
	3.1 Feedback Loop
	3.2 Mathematical Modeling
	3.3 Transfer Function
	3.4 State-space Formulation
	3.5 Observers and Reconstructed systems
	3.6 Linear Quadratic Optimization
	3.7 Linearization

	4 Other OMNotebook Applications
	4.1 DrModelica
	4.2 OMScheme

	5 Future Work
	6 Conclusions
	7 Acknowledgements

