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Abstract

The presented work depicting the integrated modelling
of probabilistic occupant behaviour in buildings con-
sists of non-physical modelling with a physical multi-
domain impact. The human behaviour considering
occupancy, the use of lighting and the use of elec-
tric appliances in dwellings has been implemented, but
the same method can be used for other stochastic be-
haviour. The stochastic behaviour is used for simula-
tion of coupled thermal and electrical systems in the
building stock and is of high importance for the as-
sessment of smart grids and distributed energy genera-
tion. Implementing stochastic occupant behaviour in-
fluences the internal heat gains which in turn influence
the heat load of the building and the switch-on and -off
moment of e.g. an electric heat pump. This, together
with the power demand of the used electric appliances
and possible on-site generation determine the load on
the electric grid and possible instabilities. Here, the
use of deterministic profiles for use at both the build-
ing and the building district scale no longer fits.
Comparison between a determinsitic approach as

proposed in ISO 13790 and the use stochastic profiles
shows that the direct first order effect is on average
rather small: the difference in total internal gains and
its influence on the indoor temperature averages nearly
zero and the standard deviations σ are small, however
high peaks may occur. Also the difference in effect on
the electric distribution grid voltage averages nearly
zero, however here strong peaks occur which are of
most importance for the grid stability. When taking in
account the second order effect of heating by means
of electricity, much larger differences are noticed: due
to longer and more differentiated occupancy times, the
average indoor temperature rises. Furthermore, the
moment of heating differentiates compared to a deter-
minsitic approach resulting in more but smaller peak
demands towards the electricity grid.
Keywords: Stochastic modelling; Occupant be-

haviour; Grid load; Thermal building response.

1 Introduction

Since the development of dynamic building simulation
programs such as TRNSYS and ESP-r in the mid-70’s
[14, 26], the assessment of comfort and energy demand
of buildings has been subject of intensive research.
As a recast of the European legislation 2002/91/EG
obliges all members to build nearly zero-energy build-
ings by 2020, the need of detailed dynamic simulations
still increases. The recast should result in the imple-
mentation of renewable energy in the building stock,
most often resulting in an all-electrical solution with
a combination of building-integrated photovoltaic sys-
tems (BIPVs) and an electrical heat pumpwhere the to-
tal electricity consumption is. However, a problem of
simultaneity between electricity production and con-
sumption arises with the distribution grid as virtual
storage [3, 4]. This paper focuses on the modelling
of user behaviour, influencing both the fluctuations in
the electricity demand as well as the thermal demand.

2 Stochastic behaviour

The behaviour of building occupants is most often sim-
plified in current practice as deterministic schedules
of user behavior as inputs to the building simulation
model (e.g. as in ISO 13790 [12]), whereas the prob-
abilistic user behaviour plays an important role. The
combination of both stochastic and controllable local
service demand, and both stochastic and controllable
local energy conversion in different energy vectors (i.e.
heat, cold, fuel or electricity in buildings) allows to op-
erate [7] and optimize the energy distribution and con-
trol in many different ways at both the scale of a single
building and the building district .
The modelling of human behaviour is implemented

in Modelica as it is part of a bigger approach including
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thermal building simulation, simulation of thermal en-
ergy systems, electrical energy systems and distributed
generation (see Fig.1).
The presented work consists of the non-physical

modelling of probabilistic occupant behaviour in
buildings with a physical multi-domain impact on both
thermal and electrical aspects. The behaviour consid-
ering occupancy [20], the use of lighting [22] and the
use of use of appliances [17] in dwellings has been im-
plemented, but the same method can be used for other
stochastic behaviour (e.g. opening of windows by oc-
cupants). The implemented stocastic model is largely
consistent with the model of Richardson et al. [21].
The output of the model are presence and activity pro-
files of the building occupants, coupled to the usage of
electric appliances and lighting which result in (i) con-
vectiveQc and radiativeQr internal heat gains and (ii)
the real or active electric power demand P . The model
is integrated in the dynamic simulation of the thermal
response of buildings and its grid impact towards the
assessment of distributed generation at district scale.
Many researchers [10, 18, 19, 20, 21, 22, 23, 25, 30]

use Markov properties for modelling occupancy and
the use of appliances in buildings. A Markov process
is a stochastic process {Xt, t ≥ 0} with values in a
state space E where for any s < t and any measurable
set A ⊂ E holds that P (Xt ∈ A|Xr, 0 ≤ r ≤ s) =
P (Xt ∈ A|Xs) = P (s,Xs, t, A) where the function
P (s,Xs, t, A) describes the probability that the pro-
cess is inA at t conditioned by the information that the
process is in x at time s [15]. The Markov property
depicts that the future state does not depend on how
the current state is obtained but only depends on the
present state itself. The process is characterized by the
transition probabilities A → P (s,Xs, t, A) parame-
terized by s, x and t.
Within this work, both embedded discrete time

Markov chains and semi-Markov processes are imple-
mented.

2.1 Occupancy: Embedded discrete time
Markov chains

Occupancy in buildings is typically dealed with as em-
bedded discrete time Markov chains [18, 20, 23, 30]
however also semi-Markov processes may be found
suitable [19], i.e. especially for single-person of-
fices where only two states are possible. Allthough
used only for evaluation of uccpancy, the implemented
model for embedded discrete time Markov chains is
generic and can be used and extended for all similar
Markov chains.

Figure 1: Occupant behaviour as part of the simulation
of energy networks at district scale by the K.U.Leuven
Energy Institute.

In an embedded discrete time Markov Chain, the
possible change in occupancy (i.e. a person entering
or leaving the building) is evaluated repeatingly after a
discrete time step (i.e. mostly 10 minutes) based on the
previously descried Markov property P (s,Xs, t, A).
The Markov-properties are stored in records as

record Occupance(Integer n(min=1),SI.Time period,
SI.Time s, Real[s,n+1,n+1] Twd, Twe);

where n depicts the number of different states,
period the total time span across which the Markov
process transition probabilities repeat themselves (i.e.
mostly 24 hours) and s the number of equal time steps
within the period wherefor the transition probabilities
are given.
The matrices Twd and Twe depict the transition

probabilities of the Markov process for a work day
and weekend respectively so that P (s,Xs, t, A) =
T [s,Xs + 1, A + 1]. Twd and Twe are retrieved from
Richardson et al. [20] where they are given for
dwellings with 1 to 5 inhabitants and where the pos-
sibility of correlatioin between differen inhabitants for
arrival or departure is included. At each discrete time
step, the the actual current (cumulated) transition prob-
abilities based on the knowledge of the present state
and the time of day are extracted from the R3-matrix
containing all transition probabilities and evaluated for
possible state changes.

model OccStoch(Occupance (...))
MSL.IntegerOutput occ;
MSL.HeatPort Qconv, Qrad;

end OccStoch;

The presence of inhabitants determines internal
gains from people and the possibility of opening win-
dows, whereas it is a necessary condition for the use
of many electric appliances and the use of lighting in
buildings.
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2.2 Appliances: Semi-Markov processes

Differently from the evaluation of occupancy in build-
ings, the use of appliances is generally implemented as
semi-Markov processes [19, 21, 22, 25, 30].
For the use of many domestic electric appliances,

presence of at least one of the occupants is a first neces-
sary condition, derived from the previously mentioned
embedded discrete time Markov chains.
Secondly, the activity profile of humans depends on

the moment of the day. Activity profiles are gener-
ally described as a sequence of probabilities denoting
the chance that a certain activity occurs at the time of a
day. The probabilities are depicted independently from
the current state (i.e. doing the activity or not) but de-
pending on the number of active occpants, differently
from the description of human occupancy in buildings
by transition probabilities which depend on the current
state.

record Activity(Integer n(min=1), SI.Time period,
SI.Time s, Real[s,n+1] Pwd, Pwe);

model ActProb(Activity[:] (...))
MSL.IntegerInput occ;
output Boolean[:] act;

end ActProb;

where n depicts the number of occupants active at
moment t derived from the stochastic occupancy pro-
file for which the stated probabilities count, period
the total time span across which the Markov process
probabilities repeat themselves (i.e. mostly 24 hours)
and s the number of equal time steps within the period
wherefor the transition probabilities are given. The
matrices Pwd and Pwe depict the probabilities of the
Markov process for a work day and weekend respec-
tively. The different probabilities are derived from
Richardson et al. [21] for the activities watching tele-
vision, cooking, doing laundry, ironing, cleaning the
house and spending time on washing and clothing. The
library of activites can be extendedwith additional data
from time-consumption surveys [28]. Currently, the
implementation only takes into account the different
profiles for working days and weekend days, but can
be easily expanded e.g. for taking into account long
days of absence or vacation.
At each discrete time step, the activity probability

is evaluated for possible use of appliances related to
the activity based on the relative use of appliances.
When the decission is taken that a certain appliance
is switched on, the length during witch the appliance

will remain on is determined once, differently from the
occupancy pattern where the possible switch is evalu-
ated for every discrete time step. This simplification of
an embedded discrete time Markov chain into a semi-
Markov process is only possible if only two states oc-
cur, i.e. off and on in this case, resulting in less sim-
ulation events and thus shorter simulation times. The
drawback of this approach is that interactions from one
occurance to another are excluded, i.e. it excludes
adaptation and intermediate states.
The data implementation happens as

record Appliance(Activity act, Real ncycle, Real cal,
Real frad, Real fconv, SI.Time lcycle, SI.Power Pcycle,
SI.Power Pstandby);

record Light(Integer n,SI.Power[n] Pcycle);

where act is the required activity of the appliance,
ncycle is the average number of cycles during a year,
cal a calibration scalar defining the relation between
the activity and the effective use of the appliance, and
lcycle is the average length of usage, where Pcycle and
Pstandby are the total power demand of the appliance
when switched on and at standby modus respectively
and where fconv and frad are the convective and radia-
tive fraction respectively of the local heat production
by the appliances.
For determination of the duratioin for which an ap-

pliance remains on, the distribution of the duration
P (t) for the use of lighting is fitted as 0.1664 ln(t) +
0.1084 with a r2 value of 0.9961 [21] and where t is
the duration in minutes. The duration probability for
the use of other appliances is set equal to the average
usage with a standard deviation of 10 percent except
for the television where a P (t) of 1+ 1.021 exp(t0.91)
is given [21].

2.3 Physical impact

As mentioned earlier, human behaviour in buildings
has a multi-physical impact. Occupants presence and
the use of electric appliances determine the internal
heat gains in a building, whereas the electric appliances
(together with possible local electric generation, e.g.
by means of a photovolaic system) determine the load
of a building on the electric distribution grid affecting
the grid voltage.
Both the occupancy of humans in the building and

the use of electric appliance result in internal gains in
a building, influencing both thermal comfort and the
related energy consumption for heating (and cooling).
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For both human presence and each different imple-
mented appliance, the internal heat production is de-
picted as a (long-wave) radiative frad (−) and con-
vective fconv (−) fraction. So far, dynamic effects
such as wasted heat (e.g. for cooking or washing) or
temperature-dependent fractions depending on the cy-
cle are not included.
The fractions of frad and fconv for different appli-

ances and humans are derived from ASHRAE Funda-
mentals [2]. When no value is available, a division of
frad = fconv = 0.5 is set.
On the electric side, all loads of the the used ap-

pliances are seen as active loads P (W ). Differently
from e.g. heat pumps or motors, where also the reac-
tive power S is of importance.

2.4 Random number generation

For the purpose of probabilistic simulation, the 4-cycle
generation algorithm for pseudo-random numbers of
Wichmann and Hill [29] is implemented combining
a long period of 2121 with a small size of state of 16
bytes. Taking into account a discrete time step of 1
minute and the number of stochastic processes in a
classic dwelling (i.e. in the order of size between 30
and 100 depending on the number of occupants and ap-
pliances) regarding building occupant behaviour, the
period of the random generator remains in the order of
size of 290 making it suitable for the mentioned mod-
elling purpose as no repitition will occur during a sim-
ulation.

3 Physical relevance

The stochastic behaviour of building occupants influ-
ences both the electric consumption of the used do-
mestic appliances and the heat production of the same
domestic appliances and the occupants. The results
show both similiarities (i.e. similar averages) as large
differences (i.e. large deviations) from the determin-
istic approach as in ISO 13790 [12] where a deter-
ministic scheme for simulation purposes is depicted on
the internal gains from occupants and appliances (see
Fig.2,3,4). The standard differentiates three different
time zones between 7 pm, 17 am and 23 for the inter-
nal gains.
In order to quantify the difference between a

stochastic and deterministic approach, a single-zone
reference building is modelled (see appendix A) and 5
identical models (with each the same deterministic or
different stochastic profile respectively) are coupled to
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Figure 2: Week profile of (a) the total power, (b) the in-
door operative temperatures of a building in free run
and (c) the resulting voltage in an example grid as de-
terministically described in (ISO 13790) and (Stoch)
with a stochastic profile of occupancy, lighting and
electric appliances. The minima (Stoch min) and max-
ima (Stochmax) of the results for 1 tot 5 inhabitants are
given for the same situation with the same appliances.

an electric grid (see appendix B). For quantification of
the second-order effects of heating, also an ideal heat-
ing system has been introduced (see appendix A).
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Figure 3: Standard deviations (σ,−σ) representend
by the boxes, (3σ,−3σ) representend by the bars, and
tails of difference between the stochastic and determin-
stic approach for (a) the total electric power demand,
(b) the indoor operative temperatures of a building in
free run and (c) the resulting voltage in an example
grid of the difference between a stochastic profile of
occupancy, lighting and electric appliances and as de-
scribed in ISO 13790 for 1 tot 5 inhabitants.

3.1 Thermal load

The profile of total stochastic and deterministic ther-
mal power (see Fig.2a) results in convective and radia-
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Figure 4: Standard deviations (σ,−σ) representend
by the boxes, (3σ,−3σ) representend by the bars, and
tails of difference between the stochastic and determin-
stic approach for (a) the total electric power demand,
(b) the indoor operative temperatures and (c) the re-
sulting voltage in an example grid of the difference be-
tween a stochastic profile of occupancy, lighting and
electric appliances and as described in ISO 13790 for
1 tot 5 inhabitants and a building including ideal heat-
ing.
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tive internal gains for the building and determines the
internal temperature (see Fig.2.b), the required thermal
energy for thermal comfort and the possibility of over-
heating.
Comparison between the stochastic and determinis-

tic profile of total power (see Fig.2a,3a) shows both
similarities as differences: The difference between
the determinsitic and stochastic load profiles averages
nearly zero determining that the total load is similar,
whereas also the standard deviation σ is very small in
the order of size of 0.3 kW (see Fig.3a) denoting that
also the overall or average day profile, i.e. the mo-
ment of the day internal loads occur, is similar in both
the deterministic and stochastic profile. In contrast,
high peaks e.g. resulting from cooking occur in the
stochastic profile which disappear in the deterministic
approach (resulting in the long tail in Fig.3a).
As the average internal loads are alike between the

deterministic and stochastic approach, also the ther-
mal response of an example dwelling (see appendix A)
shows small deviations (see Fig.2b,3b) with a standard
deviation σ in the order of size of 0.5 Kelvin. As the
thermal building response of a dwelling is slow due to
a relatively high thermal mass, the effect of the high
peaks in the stochastic internal gains remains small
compared to a deterministic approach.

3.2 Electric load

The profile of total stochastic and deterministic electric
power results in electric currents in the distribution grid
and determines the voltage drops (see Fig.2c).
Similar to the thermal load, as the average electric

loads are alike between the deterministic and stochas-
tic approach (see Fig.2a), also the average electric re-
sponse of an example grid (see appendix B): the volt-
age drop shows small deviations (see Fig.3c) with a
standard deviation σ in the order of size of 0.2 Volt.
In contrast to the conclusion on peak loads on the

thermal side, electric peak loads have a direct influence
on the voltage of an electric grid which disappears in
the deterministic approach (see Fig.2c,3c). Evenmore,
the effect of peak loads accumulates at grid-level: as (i)
in real life and in the stochastic approach of occupant
behaviour not all peaks occur at the same time and (ii)
a peak load not only influences the observed voltage at
the respective dwelling but also the the observed volt-
age at the adjacent dwellings between the respective
dwelling and the grid source, more and higher voltage
drops are noticed in the stochastic approach shown by
the long tail of 0.5 to 1.0 Volt in Fig.3c.
As the voltage in a low-voltage distribution grid is

not allowed to drop below 207V and the strongest volt-
age drops are caused by peak loads, the use of deter-
ministic profiles may strongly underestimates the pos-
sible problem of grid-instability.

3.3 Coupled thermal-electric load

Both the influence on indoor temperature and voltage-
drops by the stochastic modelled internal gains are
first-order effects as they are directly influenced by the
bottom-upmodelled power profile. As yet described in
the introduction, new and future a (zero-energy) build-
ings results more often in an all-electrical solution with
a combination of building-integrated photovoltaic sys-
tems (BIPVs) and an electrical heat pump, a trend yet
noticeable in existing low-energy dwellings. As the
stochastic profile of both occupancy and internal heat
gains determine both the switch-on and -off conditions
for the electric heating - and thus also the electric peak
loads of the heat pump towards the grid - also a second-
order effect can be noticed. In order to visualize this
effect, an ideal heating system is implemented in the
example dwelling (see appendix A).

3.3.1 Thermal origin

Comparison between the stochastic and deterministic
profile of total power demand (see Fig.4a) shows both
similarities as differences: The difference between
the determinsitic and stochastic load profiles averages
nearly zero determining that the total load for both the
appliances ánd heating is similar. Differently from the
original total load in Fig.3a, the standard deviation σ+

and 3σ overall become high (see Fig.4a) in the order
of 1 and 2 kW respectively. The high deviations σ+

and 3σ denote that - allthough the total energy demand
remains similar- the time shift and the number of peaks
in heat load between a deterministic and stochastic pro-
file is signficant
Due to shorter intervals without heating in the

stochastic profile compared to the deterministic, a 1 to
2 K higher average operative indoor temperature is no-
ticed in the stochastic approach (see Fig.4b). The high
σ and 3σ are due to comparison between non-heated
and heated moments as the moments of heating are not
the same in the different situations.

3.3.2 Electric effect

Similar to results concerning the thermal load, as the
average electric loads are alike between the determinis-
tic and stochastic approach (see Fig.4a), also the aver-
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age electric response of an example grid (see appendix
B) by means of a voltage drop shows small deviations
(see Fig.4c).
Allthough the average response remains the same,

deviations σ and 3σ of up to 0.5 and 1.5 V repspec-
tively are found, (see Fig.4c) with a long tail in the op-
posite direction as may be noticed in Fig.3c. As men-
tioned earlier, the effect of peak loads accumulates at
grid-level. In real life and in the stochastic approach
of occupant behaviour not all peaks occur at the same
time and a peak load not only influences the observed
voltage at the respective dwelling but also the the ob-
served voltage at the adjacent dwellings between the
respective dwelling and the grid source, resulting in
high σ and 3σ. The long tail in the opposite direction as
Fig.3c is caused by the deterministic profile where - in
condtradiction to the stochastic profile - all dwellings
require heat at exactly the same moment resulting in
strong grid loads.

4 Conclusions

An integrated approach of probabilistic occupant be-
haviour in buildings with a physical multi-domain im-
pact has been modelled and presented. The human be-
haviour considering occupancy, the use of lighting and
the use of electric appliances in dwellings has been im-
plemented and is used for simulation of coupled ther-
mal and electrical systems in the building stock. Im-
plementing stochastic occupant behaviour influences
the internal heat gains which in turn influences the heat
load of the building and the switch-on and -off moment
of e.g. an electric heat pump. This, together with the
power demand of the used electric appliances and pos-
sible on-site generation determine the load on the elec-
tric grid and possible instabilities.
By means comparison for a reference building zone

and example grid, the importance of stochastic mod-
elling of occupant behaviour in dwellings at both the
building and district scale. Comparison between a de-
terminsitic approach as proposed in ISO 13790 and the
use stochastic profiles shows that the direct first order
effect is on average rather small: the difference in total
internal gains and its influence on the indoor tempera-
ture averages nearly zero and the standard deviations σ
are small, however high peaks may occur. Also the dif-
ference in effect on the electric distribution grid volt-
age averages nearly zero, however here strong peaks
occur which are of most importance for the grid sta-
bility. When taking in account the second order effect
of heating by means of electricity, much larger differ-

ences are noticed: due to longer and more differenti-
ated occupancy times, the average indoor temperature
rises. Furthermore, the moment of heating differenti-
ates compared to a determinsitic approach resulting in
more but smaller peak demands towards the electricity
grid.

5 Acknowledgements

The authors gratefully acknowledge the K.U.Leuven
Energy Institute (EI) for funding this research through
granting the project entitled Optimized energy net-
works for buildings.

A Building model

A high-order lumped capacitance model for predict-
ing the unsteady building response is developed within
Modelica [5, 27]. Solar radiation absorbed by the exte-
rior surface is implemented based on the incident solar
irradiation as found by the calculations in the External
package depending on time, inclination and orienta-
tion s and the short-wave absorption coefficient of the
surface. Long wave radiation between the surface and
environment is determined based on the retrieved sky
temperature. The convective gains and the resulting
change in air temperature of a thermal zone are mod-
elled as a thermal circuit based on convective heat ex-
change with the walls and ventilation. Similar to the
model for a wall, a thermal circuit formulation for the
direct radiant exchange between surfaces can be de-
rived. The heat exchange by long-wave radiation is
simplified bymeans of a delta-star transformation [13]
and definition of a radiant star node. The diffuse solar
gains are divided based on the surface and emissivity
of all surfaces. For direct solar gains, a factor for each
surface can be given as parameter of the zone, to which
direct solar gains will be divided. The star node formu-
lation of both convective and radiative heat exchange
in a thermal zone allows a straight-forward formula-
tion for the influence of internal gains by adding them
in the heat balance of radiant star node and air node of
the zone of interest. Comparative literature [16] shows
that the made simplifications remain a high accuracy.
The thermal model of a window is similar to the

model of an exterior wall but includes the absorption
of solar irradiation by the different glass panes and the
transmission to the adjacent indoor zone. The prop-
erties for absorption by and transmission through the
glazing are taken into account depending on the angle
of incidence of solar irradiation and are based on the
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output of the WINDOW 4.0 software [8] as validated
by Arasteh [1] and Furler [9]. The transmitted dif-
fuse short-wave solar radiation is treated to strike all
room surfaces weighted to their surface and emissivity,
whereas the direct short-wave solar gains are modeled
to fall mainly on the floor. However, only small differ-
ences would arise when making different assumptions
on the distribution of the transmitted energy [16].
A meteo model is implemented in the simulation

environment and data are derived from Meteonorm
6.1 for Uccle, Belgium. The zenith angle of an in-
clined surface is calculated internally [11] whereby the
anisotropic sky domemodel presented by Skartveit and
Olseth [24, 6] is implemented.
The ideal heating system consists of an unlimited

convective power controlled by a set point of 21 de-
grees Celcius for the operative temperature when oc-
cupancy occurs.
The reference building zone measures 36 m2 by 3

m representing the dayzone of an average house. The
construction consists of a highly-insulated cavity wall
with 20 cm of mineral wool and a large south-facing
double-pane window. For the stochastic determina-
tion of user behaviour, 1 to 5 occupans have been im-
plemented respectively, an array of 16 bulbs has been
taken into account and 10 electric appliances (i.e. a
hob, a micro wave, two TV’s, a vacuum cleaner, a hifi,
an iron, a pc, a dishwasher and a washingmachine) are
modelled.

B Grid model

The example grid for modelling grid voltage drops
used within this work consists of a simplified grid
based on the Modelica Standard Library 3.1, consist-
ing of a constant voltage source of 230 V and lossy
RC-lines. The RC-lines have each a capacitance of 0.1
mF/m, a resistance of 0.05mΩ/m and have a length
of 100 m. Here, 5 dwellings are coupled in parallel
to the grid. The power demand of the dwelling deter-
mines the electric current influencing the grid voltage
at both the dwelling and the neighbouring dwellings.
Note that the implemented model only serves to in-

terpret the importance and impact of stochastich mod-
elling of occupancy behaviour in coupled thermal and
electric systems in buildings. Within the same project
of the K.U.Leuven Energy Institute mentioned in the
acknowledgements, a detailed grid model is devel-
oped.
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