
SIGRAD 2011

Accounting for Uncertainty in Medical Data:
A CUDA Implementation of Normalized Convolution

S. Lindholm and J. Kronander

Department of Science and Technology, Linköping University

Abstract

The domain of medical imaging is naturally moving towards methods that can represent, and account for, local
uncertainties in the image data. Even so, fast and efficient solutions that take uncertainty into account are not
readily available even for common problems such as gradient estimation. In this work we present a CUDA imple-
mentation of Normalized Convolution, an uncertainty-aware image processing technique, well established in the
signal processing domain. Our results show that up to 100X speedups are possible, which enables full resolution
CT images to be processed at interactive processing speeds, fulfilling demands of both efficiency and interactivity
that exist in the medical domain.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

An uncertainty-aware visualization pipeline has previously
been acknowledged as a necessary development to pro-
vide reliable visualization tools in critical application ar-
eas such as medical diagnosis [Joh04, KS08]. Nevertheless,
uncertainty-aware visualizations are still the exception rather
than the norm. In visualization, uncertainty arise and prop-
agate in each step of the pipeline, having significant im-
pact on the final image [LLPY07]. A particularly pertinent
sub-domain is low-dose medical imaging. Serious concerns
about the dose levels in current clinical practice has recently
been raised [BA10] and methods to retain diagnostic im-
age quality at increasingly lower dose levels are highly re-
quested. The work in this paper comprises one step towards
the development of a fully uncertainty-aware pipeline.

Image processing frameworks for dealing with uncer-
tainty have previously been presented in the Signal Process-
ing community [Kay01], and the idea of separating values
of the signal from the certainty of the measurements has a
long history [Gra78, GK83, Knu89]. However, for achiev-
ing widespread medical use, algorithms must not only be
robust and accurate but also fast. User evaluations [LP11]
have shown that efficiency is one of the most challenging

aspects of the medical work flow. In this work we focus on
the Normalized Convolution (NC) [KW93a] framework for
which we present a CUDA based implementation. Previous
approaches using NC have been limited in practice by their
exceedingly slow runtime speeds, an effect of the local adap-
tivity of the filters. In contrast, our parallelized CUDA im-
plementation yields speedups in the order of 100X. To high-
light the usefulness of our approach, we have chosen to ex-
emplify the impact of uncertainty in medical image process-
ing by focusing on estimating gradients from noisy data.
Local image gradients are used in a multiple of common
mid-level processing tasks such as edge-detection [Can86],
shading [HKRs∗06] and transfer function design [KKH02],
and are therefore of high importance in any visualization
pipeline. The main contributions of this work are

1. Based on the existing theory of Normalized Convolution,
we present a framework for fast processing of uncertain
medical image data, including discussions on hardware
optimizations and numerical considerations.

2. Using a highly optimized CUDA implementation of
Normalized Averaging and Normalized Convolution we
achieve a 100X speedup compared to previous work.

It should be noted that although this paper focuses on

35

S. Lindholm & J. Kronander / Normalized Convolution in CUDA

Figure 1: Demonstration of the power of normalized aver-
aging for restoring an image from only 10% of the original
pixel values. Left: The original image. Middle: Image with
90% of the pixels removed. Right: The result of applying nor-
malized averaging to the lossy image (a special case of Nor-
malized Convolution with a single constant basis function).

gradient estimation to highlight the effects of uncertainty,
the method is independent with respect to the chosen
basis/estiamtion desired. Other common convolution pro-
cesses, such as curvature estimations, bilateral or anisotropic
filtering would be affected in similar manner.

2. A Motivational Example

Consider a constant image [1 1 1] on which we apply a box
filter [1 1 1]. The expected response is (1 + 1 + 1)/3 = 1
where the division by 3 is the natural filter normalization.
Now consider the case where we have a dropped sample such
that the same filter is now applied to the image [* 1 1] with a
certainty of [0 1 1]. There are two naive ways to do this. Op-
tion one is to discard the uncertainty information (effectively
interpreting * as 0) and filter the image as (0+ 1+ 1)/3 =
0.67. Option two is to discard the uncertain sample and cal-
culate a new filter normalization (1+1)/2= 1. This is called
normalized averaging, and works well for the smoothing fil-
ters as demonstrated in Figure 1 where a decent image re-
construction has been achieved even after 90% of the pixels
were dropped.

Now, lets see what happens in the case of a gradient filter,
such as the central difference operator [-1 0 1]. Dropping a
sample as in the example above leads to an effective adjust-
ment of the filter from [-1 0 1] to [* 0 1]. It is easy to see
that any constant offset in the image will now affect the filter
response, which is not what was intended. It is important to
note here that calculating a new filter normalization does not
fix the problem. This is evident in Figure 2 where only 30%
of the pixels have been removed but the gradient estimation
is very poor.

In a more formal way, the operator [-1 0 1] can be in-
terpreted as a basis vector used to analyze the signal. It is
clear that getting a correct response is dependent upon its
orthogonality to the constant vector [1 1 1]. Under the influ-
ence of uncertainty, this orthogonality cannot be guaranteed.
As we shall see in the next section, normalized convolution
provides a general framework to handle this problem. See
Figure 3.

Figure 2: Demonstration of the limitations when adapting
normalized averaging for gradient estimation of lossy im-
ages (30%). Left: Original image. Middle: Lossy image.
Right: Gradient estimation using filter weight normalization.
It is evident that normalization of filter weights, which works
well for smoothing filters, fails to produce sufficient results
for gradient estimation of the lossy image.

Figure 3: Demonstration of the power of normalized con-
volution in gradient estimation of lossy images (30%). Left:
Original image. Middle: Lossy image. Right: Gradient esti-
mation using normalized convolution. Normalized convolu-
tion ensures the best possible estimations based on the given
set of uncertainties for each pixel neighborhood in the im-
age.

3. Normalized Convolution Framework

The concept of Normalized Convolution (NC) was first intro-
duced by Knutsson and Westin [KW93b,KWW93] to enable
analysis of signals with locally varying sample certainty. Un-
certainty in signal values can for example stem from known
sensor dropouts (such as overexposed pixels in a camera),
transmission errors, filtering of signal borders etc. Gener-
ally, the certainty of a signal element is modeled in the range
[0..1], where 1 corresponds to a fully known element and 0
to a missing sample. In this section we will introduce the
basic notions of normalized convolution as a local subspace
approximation of a signal using a weighted metric, where
weights are proportional to the signal certainty.

Normalized convolution have been used and extended
from the original derivation in a number of works, notable
is the thesis by Farnebäck [Far02], providing a comprehen-
sive study on the use of NC for local polynomial expan-
sions. The thesis also provides connections between NC
and weighted least squares. Mühlich and Mester [MM04]
also showed that NC can be interpreted in a statistical
signal processing framework. More recently, connections
has been found between NC and several modern filtering
paradigms [Mil], such as non-local means [BCM05], the

36

S. Lindholm & J. Kronander / Normalized Convolution in CUDA

bilateral filter [TM98] and moving least squares [LS81].
Specifically, the difference between the methods can be
shown to dependent only on the metric chosen in each lo-
cal neighborhood.

3.1. Local Subspace Approximation Through
Convolutions

In this section the basic signal processing framework used in
NC is presented. Due to the limited scope of this paper, the
reader is assumed to be familiar with basic concepts such
as biorthogonal systems, dual coordinates, the metric ten-
sor and inner product spaces (l2). More details can be found
in [Kre89, GK95].

Given a discrete signal s(k) and a finite filter f (l) with N
taps, we can use convolution to compute a filter response,

h = s? f (1)

which can also be interpreted as an inner product,

h(k) = 〈s(k+ l), f ∗(−l)〉 (2)

This allows us to interpret convolution as a projection. Con-
volving s(k) with a series of filters fm(l), where m = 1...M,
gives M filter responses hm(k). These filter responses can be
interpreted as the dual coordinates c̃ of the signal in the local
filter basis. For M filters of length N we get a basis matrix B
of size N×M. This gives the local metric (or metric tensor)
as

G = B∗G0B (3)

where G0 is the metric for the orthonormal cartesian coordi-
nate frame. In the trivial case, this metric is defined by the
identity matrix. From the dual dual coordinates and the met-
ric we get

c = G−1hm(k) (4)

with the coordinates c providing an expression for the local
signal relative the basis given by the filters. For example,
choosing the filters to be local polynomials {1,x,y,x2,y2}
we can approximate the Taylor expansion of a local signal
region.

We can also interpret this subspace projection operation
using a familiar least squares terminology. Consider a vec-
tor, v ∈V and a subspace U ⊆V such that v = v‖+v⊥ with
v‖ ∈ U and v⊥ 6∈ U . Least squares methods are then con-
cerned with minimizing || v− v‖ ||. If B is a base in U and
c a set of coordinates describing v‖ in B, then this is the
same as minimizing || v−Bc ||= (v−Bc)∗G0(v−Bc). In
classical linear algebra, the solution to this problem is given
by the normal equations, stating that c = (B∗G0B)−1B∗G0v.
Comparing this with Equation 4 we can identify the dual co-
ordinates c̃ as B∗G0v and the metric G as B∗G0B.

So far, nothing apart from traditional image filtering has
been introduced. All we have done is to interpret filtering

at any given point in the image as a projection of a local
patch of the image into a subspace spanned by a set of basis
vectors.

3.2. Incorporating Filter Applicability

For our problem setting, we are interested in weighting the
subspace projection (which can be seen as a least squares
estimate) by a suitable applicability function, a(l), describ-
ing the influence of neighbor pixels on the center pixel. To
achieve this, instead of convolving the signal, s(k), with the
filters directly, we first multiply them with the applicability
function to obtain a suitable localization of the filter basis.
Thus we use filters defined as

gm(l) = a(−l) f ∗m(−l) (5)

where a(l) is chosen to be a localizing function such that
a(l)> 0, such as a Gaussian function.

Convolving s(k) with gm(l) gives

hm(k) = ∑
l

s(k+ l)gm(−l) (6)

= ∑
l

s(k+ l)a(l) f ∗m(l) (7)

which describes a generalized inner product between s(k)
and f ∗m(l), where the weighting is provided by a(l). This
generalized inner product redefines the metric in the trivial
basis as

G0 = diag(a(l)) (8)

which leads to an expression of the metric in B as

G = B∗G0B (9)

= B∗diag(a(l))B (10)

It is worth to note here that the matric G is still invari-
ant as to where in the image the convolution is applied. In
other words, the metric we use for our projection is always
the same. With the introduction of uncertainty, this will no
longer hold.

3.3. Incorporating Uncertainty

Given a signal s(k) and accompanying signal certainty r(k),
we can allow the inner product to adapt to the local uncer-
tainty of the signal. Incorporating the signal certainty in the
convolution gives

hm(k) = ∑
l

s(k+ l)r(k+ l)a(l) f ∗m(l) (11)

corresponding to a weighted inner product between s(k) and
f ∗m(l), where the weights are set according to r(k + l)a(l).
This ensures that low certainty entries in the signal are given
less weight when estimating neighborhood pixel regions. As

37

S. Lindholm & J. Kronander / Normalized Convolution in CUDA

r(k) varies with position, we thus get a position dependent
metric G0(k).

G0(k) = diag(a(l)r(k+ l)) (12)

In the filter basis, B, we can write the metric as

G(k) = B∗G0(k)B (13)

= B∗diag(a(l)r(k+ l))B (14)

and the local coordinates of the filter basis is given by insert-
ing this expression into Equation (4)

c = (B∗diag(a(l)r(k+ l))B)−1hm(k) (15)

It is important to note that the metric is no longer spatially
invariant, meaning we have to recompute G−1 at each point
in the image. The spatial invariance also has the implication
that the convolution will always be non-separable, indepen-
dently of which filters that are used. Both of these things will
impact the optimizations described in Section 4.

3.4. NC Optimization by Pre-computation

Computing the coefficients for every point using Equa-
tion (15) is a costly, as both a matrix inverse and several
matrix products need to be evaluated. Explicitly expressing
the computations with inner products and vector multiplica-
tions, denoting the columns of the base matrix B as bm where
m = 1..M, we can write Equation (15) as

c =

 〈a · r ·b1,b1〉 ... 〈a · r ·b1,bM〉
...

. . .
...

〈a · r ·bM ,b1〉 ... 〈a · r ·bM ,bM〉

−1〈a · r ·b1,s〉

...
〈a · r ·bm,s〉

(16)

Using the properties of the inner products, this can be rewrit-
ten as

c =

 〈a ·b1 ·b∗1 ,r〉 ... 〈a ·b1 ·b∗M ,r〉
...

. . .
...

〈a ·bM ·b∗1 ,r〉 ... 〈a ·bM ·b∗M ,r〉

−1〈a ·b1,r · s〉

...
〈a ·bm,r · s〉

(17)

Pre-computing the quantities (a ·bi ·b∗j), (a ·bi) and r · s for
all i, j = 1...M, significantly decreases the total number of
multiplications necessary for each point/pixel in the signal.
See [Far02] for more details.

4. Implementing Normalized Convolution in CUDA

This section will highlight and explain strengths and diffi-
culties of performing normalized convolution on the Nvidia
CUDA platform. In short, CUDA [Nvi09, Nvi10] is a paral-
lel computing architecture developed to provide a C, or even
C++, like interface to modern GPUs. Hierarchial layers of
computational resources and memory provide opportunities
to exploit parallel computation, coalesced access to global

memory, utilization of fast shared memory, loop unrolling
and latency hiding.

This section will begin by summarizing some of the key
optimizations that can be used to speed up any non-separable
convolution and will then proceed to difficulties related to
normalized convolution. The impact of the optimizations on
system performance is presented in Section 5.

A note on the word kernel: CUDA programs are called
kernels, so to avoid the ambiguity between filter kernels and
CUDA kernels we will henceforth simply refer to filters as
filters while a kernel always refer to a CUDA program.

4.1. Optimizing Non-separable Convolution

Non-separable filtering is typically performed on patches of
42 − 162 pixels on a version of the image that has been
padded to the nearest multiple of 16. With one thread per
pixel, this pattern allows fast coalesced reads over both im-
age dimensions, copying one image patch to the shared
memory of each available multiprocessor. Any additional
boundary padding necessary for filtering (half the size of
the filter) is typically copied as a secondary step or by ad-
ditional threads. Highest performance is typically achieved
when the patch size is as large as possible without over-
flowing the shared memory. Another important optimization
used in this work is loop unrolling which, as explained later,
is available ‘for free’ as the implementation already utilizes
template functions. The next section will discuss optimiza-
tions specific for Normalized Convolution.

4.2. Optimizing Normalized Convolution

In Section 3.1, we saw that the main mathematical differ-
ence between standard and normalized convolution is that
the subspace into which the signal is projected changes spa-
tially in the image (due to the uncertainty). What this means
in terms of computation is that we need to build, and invert,
the metric matrix at each pixel.

There is plenty of documentation available for large ma-
trix inversion using CUDA. There are, however, very few ex-
amples where matrices have be inverted on a per-thread ba-
sis (which is the case in normalized convolution). Applying
standard, serial methods for matrix inversion is often prob-
lematic as these rely on recursion, a feature not present in
the CUDA programming language.

The matrices that need to be inverted are M×M where M
is the number of bases. These matrices are typically small,
i.e. M < 7, but still require iterative solutions if M > 3. The
iterative matrix inversion used in this work is based on the
classic formula of scaling the adjoint matrix, Equation 18:

A−1 =
1

det(A)
∗Ad j(A) (18)

Although this method is known to be computationally ex-
pensive and suffer from numerical inaccuracies for larger

38

S. Lindholm & J. Kronander / Normalized Convolution in CUDA

matrices it was deemed sufficient for the scope of this work.
The computation of the determinant typically uses a recur-
sive scheme with one dimensionality reduction per recur-
sion. This is also true for the computation of the co-factor
matrix as it relies on computation of determinants for a range
of sub-matrices. This recursive process is performed through
template instantiation using the following syntax.

template<int M> __device__ float Determinant(...)
{ ... Determinant<M-1>(...) ... }

template<> __device__ float Determinant<3>(...);
template<> __device__ float Determinant<2>(...);
template<> __device__ float Determinant<1>(...);

This effectively instantiates a unique function per recursion
step, and thus circumvents the problem that no function may
call itself. It is important to note, however, that the manual
instantiation of M = 1 is necessary or an infinite number of
functions will be instantiated, [M,−∞]. The manual instan-
tiations of M = 2 and M = 3 are provided for optimization
purposes.

While function instantiation allows us to execute recursive
processes, it also comes with a memory cost. The determi-
nant function, for example, need to allocate a small array to
hold a sub-matrix. If the ‘recursive’ call to the next deter-
minant function is done within the scope of this allocation,
the result is that subsequent allocations will be performed
on each level of the recursive process. Now, remember that
this is performed on a per-thread basis and that the amount
of available registers and shared memory is small. The ef-
fect of this is that inversion of large matrices (M & 5) will
be significantly slowed as the shared memory is overflowed.
Exactly when this happens depend on multiple factors, in-
cluding filter and patch sizes.

4.3. Implementation

This section will provide a few additional notes on the
CUDA implementation of normalized convolution. First, the
allocation and utilization of the various memory types in
CUDA will be detailed.

__shared__ float s_data[...];
__shared__ float r_data[...];
__constant__ float precomp_abb[...];
__constant__ float precomp_ab[...];

The two shared memory buffers, s_data and r_data, are al-
located on a per-block basis and are initiated with the appro-
priate patches of the image and its uncertainty information
during kernel launch. The two constant arrays are allocated
on a per-grid basis and are initiated from the host code. pre-
comp_abb and precomp_ab hold the applicability and pre-
computed tables described in Section 3.4.

As constant memory cannot be allocated dynamically, an
upper boundary must be set for the number of bases and fil-
ter size. The simplest way to do so is to use pre-processor

macros (i.e, #define). Similar to the template situation, a
fairly straightforward way to achieve flexibility even when
using ’fixed’ values is to compile the same code multiple
times with different macro values and then select the ap-
propriate one during runtime. This is another example of a
tradeoff between speed and flexibility in CUDA.

With the maximum number of bases, maximum kernel
size and patch size denoted Km, Mm and T respectively.
Then, the two patches of shared memory requires (T + 2 ∗
Km) ∗ (T + 2 ∗Km) floats each, and the two constant arrays
Mm

2 ∗Km
2 and Mm ∗Km

2 floats respectively. In our imple-
mentation, patch size is set as a pre-processor macro but
could potentially be passed as an argument as CUDA does
support dynamic allocation of shared memory.

In the next section, the CUDA implementation is com-
pared to a C++ implementation. The C++ implementation is
to a large degree identical to the CUDA code, but use a se-
ries of for-loops to account for the lack of parallelism on the
CPU.

5. Results

To evaluate how normalized convolution performs in CUDA,
different implementation options were timed separately.
These are presented here, followed by a general discussion
in Section 6. All performance tests were performed at an im-
age resolution of 512× 512 pixels using a 2.67GHz CPU
paired with a Nvidia GTX560Ti GPU.

First, the CUDA implementation is compared to a C++
implementation. Results can be found in Figure 4. As ex-
pected, the CUDA implementation is significantly faster
over the entire parameter space. The CUDA implementation
also displays little dependency on filter size thanks to the
utilization of fast shared memory cache and registers. At the
same time, however, a steeper increase in computation time
is evident for cases with more than 4 bases. This steep per-
formance increase is likely an effect of the increased mem-
ory consumption, forcing more samples to be taken outside
of the GPUs fast local registers.

Second, the CUDA specific effects of patch size, memory
layout and template usage were investigated. Figure 5 dis-
plays the performance impact when using template instan-
tiations instead of relying on function parameters for con-
figuring the number of bases and filter size. The template
instantiation is nearly twice as fast as a result of loop un-
rolling and compiler optimizations. Figure 6 shows the ben-
efit of utilizing shared memory in favor of the slower global
memory. Naturally, utilizing shared memory is increasingly
important the more memory that is read, such as for increas-
ing filter sizes. Figure 7 shows the impact of computational
speed when varying the patch size. As expected, larger patch
sizes results in faster computation times. One reason for this
is the increased occupancy of the various levels of compu-
tation on the GPU. Larger patch sizes also reduce the rela-

39

S. Lindholm & J. Kronander / Normalized Convolution in CUDA

ms

ms

0

5000

10000

15000

20000

25000

30000

1 base 2 bases 3 bases 4 bases 5 bases

3px

5px

7px

9px

11px

0

50

100

150

200

250

300

1 base 2 bases 3 bases 4 bases 5 bases

3px

5px

7px

9px

11px

ms

ms

0

5000

10000

15000

20000

25000

30000

1 base 2 bases 3 bases 4 bases 5 bases

3px

5px

7px

9px

11px

0

50

100

150

200

250

300

1 base 2 bases 3 bases 4 bases 5 bases

3px

5px

7px

9px

11px

Figure 4: C++ vs. CUDA. Top: C++ timings, in millisec-
onds, for varying number of bases and filter size. Bottom:
CUDA timings, in milliseconds, for varying number of bases
and filter size. The CUDA implementation is approximately
100 times faster but also displays more drastic increase in
time consumption for higher number of bases, M > 4. It
is also worth to note that the filter size has less impact in
the CUDA implementation thanks to the utilization of shared
memory.

tive size of the filter skirt area (the pixels outside the patch
but inside the filter radii). As a side note, this is a problem
with non-separable filtering in general if the dimensionality
of the images increases, as the relative area of the necessary
boundary padding for each patch increases.

Figure 8 shows normalized gradient estimation on a real
world data set where the top row contains (float left ro right);
the reference image, lossy image and the uncertainty map.
The middle row shows three types of gradient estimation on
the reference image and the bottom rows shows the same
gradient estimations on the lossy image. The three types of
gradient estimation are (from left to right); no uncertainty
compensation, re-weighted filters, and normalized convolu-
tion. The example is taken from a series of Computed To-
mography images acquired at varying levels of dosage. the
reference image was acquired at a dosage of 180mAs while
the low-dose image was acquired at 12mAs. The uncertainty
image was extracted by taking the absolute difference of the
two images. It should be noted that the scans were taken

0

5

10

15

20

25

global mem local mem

3px

5px

7px

9px

11px

ms ms

ms

0

2

4

6

8

10

12

14

16

3px 5px 7px 9px 11px

4x4

8x8

16x16

0

5

10

15

20

25

func. params templates

3px

5px

7px

9px

11px

Figure 5: Templates are used as they offer a decent trade-
off between hardware optimization and program flexibility.
Two variables are considered here; the number of bases and
the filter size. Passing these variables as function arguments
nearly doubles the computation time relative the case where
the values are ‘fixed’ as template arguments. The downside
to templates is that a large number of functions must be in-
stantiated in order to cover all combinations of values.

0

5

10

15

20

25

no templates if-clause func handle

3

5

7

9

11

0

5

10

15

20

25

global mem local mem

3

5

7

9

11

0

2

4

6

8

10

3 5 7 9 11

8x8

16x16

Figure 6: Utilization of shared memory is essential in con-
volution as any given memory position is samples multiple
times when applying a filter over a series of neighboring
pixels. The larger the filter, the more important the shared
memory becomes. The timings were performed using tem-
plate functions with a three base setup.

consecutively for the purpose of post-mortem imaging, so
no registration was necessary to align the images. This is
obviously a fabricated case, as we naturally would not have
access to the high dose image when scanning live patients or
would work directly on the high dose image in post mortem
cases. It does, however, serve the purpose of highlighting
how large of an effect uncertainty can have on gradient esti-
mation in medical imaging.

6. Conclusions

In this work we have taken one step towards an uncer-
tainty aware pipeline for medical imaging. Normalized con-

40

S. Lindholm & J. Kronander / Normalized Convolution in CUDA

Figure 8: Noise reduction in gradient computation on low-dose Compute Tomography (ldCT) images. Top row: High dose im-
age (reference), low-dose image, difference image depicting noise in the [0,1] range. The middle and bottom rows show gradient
computation on the reference and low-dose image respectively. Left: Uncertainty has been discarded. Center: Using normalized
averaging. Right: Using Normalized convolution. Normalized convolution clearly provides a better approximation of the gra-
dients under the presence of uncertainty. The images were generated using a symmetric Gaussian applicability function with
σ

2 = 2 and a filter size of 11×11 pixels. The CT data resolution is 512×512 pixels.

volution, an established uncertainty aware image processing
technique, has been implemented in the CUDA program-
ming language to meet the high efficiency demands of the
medical domain. We have demonstrated the importance of
maintaining an uncertainty aware pipeline by showing the
effect uncertain samples can have on gradient estimation.

However great potential CUDA has for speeding up com-
putation of normalized convolution, it is not without limi-
tations. As expected, computation time and storage require-

ments grow drastically with increased number of bases. This
is, to a large degree, dependent on the chosen scheme to
solve the linear system. Since the primary focus for this work
was gradient estimation, it was deemed sufficient to use the
scaled adjoint matrix and solve the system by using the in-
verse. For larger systems, however, more efficient and nu-
merically robust approaches would be necessary. Memory
consumption in particular will become a major concern as
the number of bases grows and local/shared memory is over-

41

S. Lindholm & J. Kronander / Normalized Convolution in CUDA

0

5

10

15

20

25

global mem local mem

3px

5px

7px

9px

11px

0

5

10

15

20

25

no templates if-clause func. handle

3px

5px

7px

9px

11px

ms ms

ms

0

2

4

6

8

10

12

14

16

3px 5px 7px 9px 11px

4x4

8x8

16x16

Figure 7: The effect on CUDA performance when varying
the patch size. While the patch size should be as large as pos-
sible it is limited by the memory consumption of the threads
it triggers. The timings were performed using template func-
tions with a three base setup.

flowed. We did experience numerical errors in the matrix in-
version process when dealing with larger matrices which fur-
ther indicates that finding the inverse by the adjoint is only
valid solution when dealing with low number of bases. Fu-
ture work will naturally go towards alternative solutions to
solve higher dimensional linear systems under the constraint
of limited fast memory.

Acknowledgements

The authors would like to thank Hans Knutsson of the De-
partment of Biomedical Engineering, Linköping University
and Claes Lundström of the Department of Science and
Technology, Linköping University.

References

[BA10] BRINK J. A., AMIS JR E. S.: Image Wisely: a campaign
to increase awareness about adult radiation protection. Radiology
257, 3 (2010), 601–602. 1

[BCM05] BUADES A., COLL B., MOREL J. M.: A review of
image denoising algorithms, with a new one. Simul 4 (2005),
490–530. 2

[Can86] CANNY J.: A computational approach to edge detection.
IEEE transactions on pattern analysis and machine intelligence
(1986). 1

[Far02] FARNEBCK G.: Polynomial Expansion for Orientation
and Motion Estimation. PhD thesis, Linkping University, Swe-
den, SE-581 83 Linkoping, Sweden, 2002. Dissertation No 790,
ISBN 91-7373-475-6. 2, 4

[GK83] GRANLUND G. H., KNUTSSON H.: Contrast of Struc-
tured and Homogenous Representations. In Physical and Biolog-
ical Processing of Images, Braddick O. J., Sleigh A. C., (Eds.).
Springer Verlag, Berlin, 1983, pp. 282–303. 1

[GK95] GRANLUND G. H., KNUTSSON H.: Signal Processing
for Computer Vision. Kluwer Academic Publishers, 1995. ISBN
0-7923-9530-1. 3

[Gra78] GRANLUND G. H.: In search of a general picture pro-
cessing operator. Computer Graphics and Image Processing 8, 2
(1978), 155–173. 1

[HKRs∗06] HADWIGER M., KNISS J. M., REZK-SALAMA C.,
WEISKOPF D., ENGEL K.: Real-time Volume Graphics. A. K.
Peters, Ltd., Natick, MA, USA, 2006. 1

[Joh04] JOHNSON C.: Top Scientific Visualization Research
Problems. IEEE Computer Graphics and Applications 24, 4
(2004), 13–17. 1

[Kay01] KAY S. M.: Fundamentals o Statistical Signal Process-
ing, Volume 1. Prentice Hall, 2001, 2001. 1

[KKH02] KNISS J., KINDLMANN G., HANSEN C.: Multidimen-
sional transfer functions for interactive volume rendering. IEEE
Transactions on Visualization and Computer Graphics 8 (July
2002), 270–285. 1

[Knu89] KNUTSSON H.: Representing local structure using ten-
sors. In The 6th Scandinavian Conference on Image Analysis
(Oulu, Finland, June 1989), -, pp. 244–251. Report LiTH-ISY-I-
1019, Computer Vision Laboratory, Linköping University, Swe-
den, 1989. 1

[Kre89] KREYSIG E.: Introductory Functional Analysis with Ap-
plications. Wiley, 1989. 3

[KS08] KIRBY R. M., SILVA C. T.: The need for verifiable vi-
sualization. IEEE Comput. Graph. Appl. 28 (September 2008),
78–83. 1

[KW93a] KNUTSSON H., WESTIN C. F.: Normalized and dif-
ferential convolution. Proceedings of IEEE Conference on Com-
puter Vision and Pattern Recognition, x (1993), 515–523. 1

[KW93b] KNUTSSON H., WESTIN C.-F.: Normalized and dif-
ferential convolution. In Computer Vision and Pattern Recogni-
tion, 1993. Proceedings CVPR ’93., 1993 IEEE Computer Soci-
ety Conference on (jun. 1993), IEEE, pp. 515 –523. 2

[KWW93] KNUTSSON H., WESTIN C.-F., WESTELIUS C.-J.:
Filtering of Uncertain Irregularly Sampled Multidimensional
Data. In Twenty-seventh Asilomar Conf. on Signals, Systems &
Computers (Pacific Grove, California, USA, November 1993),
IEEE, pp. 1301–1309. 2

[LLPY07] LUNDSTRÖM C., LJUNG P., PERSSON A., YNNER-
MAN A.: Uncertainty visualization in medical volume rendering
using probabilistic animation. IEEE transactions on visualization
and computer graphics 13, 6 (2007), 1648–1655. 1

[LP11] LUNDSTRÖM C., PERSSON A.: Characterizing visual an-
alytics in diagnostic imaging. International Workshop on Visual
Analytics (2011). 1

[LS81] LANCASTER P., SALKAUSKAS K.: Surfaces Generated
by Moving Least Squares Methods. Mathematics of Computation
37, 155 (1981), 141–158. 3

[Mil] MILANFAR P.: A tour of modern image filtering. To appear
in IEEE Signal Processing Magazine. 2

[MM04] MÜHLICH M., MESTER R.: A statistical extension of
normalized convolution and its usage for image interpolation.
Proceedings of European Confereance on Signal Processing,
(EuraSip) (2004). 2

[Nvi09] NVIDIA CORPORATION: NVIDIA CUDA C Program-
ming Best Practices Guide CUDA Toolkit 2.3. 4

[Nvi10] NVIDIA CORPORATION: Nvidia CUDA Programming
Guide Version 2.3. 4

[TM98] TOMASI C., MANDUCHI R.: Bilateral filtering for gray
and color images. Computer Vision, IEEE International Confer-
ence on 0 (1998), 839. 3

42

