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Abstract
Researching formal models that explain selected natural phenomena of interest is a central aspect of most scientific
work. A tested and confirmed model can be the key to classification, knowledge crystallization, and prediction. With
this paper we propose a new approach to rapidly draft, fit and quantify model prototypes in visualization space. We
also show that these models can provide important insights and accurate metrics about the original data. Using
our technique, which is similar to the statistical concept of de-trending, data that behaves according to the model
is de-emphasized, leaving only outliers and potential model flaws for further inspection. Moreover, we provide
several techniques to assist the user in the process of prototyping such models. We demonstrate the usability of
this approach in the context of the analysis of streaming process data from the Norwegian oil and gas industry,
and on weather data, investigating the distribution of temperatures over the course of a year.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: —Interaction techniques
G.3 [Probability and Statistics]: —Time series analysis

1. Introduction

Modeling is an essential part of scientific work. To be able to
learn from observations and to utilize the gained knowledge
for subsequent analysis, such as prediction, the modeling of
the observed phenomenon in some sort of a prototype is cru-
cial. Also, central to science is that model hypotheses are
tested, refined and validated, or possibly rejected after test-
ing. In the following, we consider a model to be a physical,
mathematical, or logical representation of a system entity, a
natural phenomenon or process, and that modeling is the act
of creating a model [Sil01]. In experiments or, as we will fo-
cus on, modern process logging, measurements and data is
gathered. Establishing a model on measured data often starts
by employing empirical / statistical tests with trial and er-
ror, finally ending up with a model prototype and the statis-
tical confidence on the model’s accuracy. When and if the
model prototypes hold up to scrutiny, one can aim to gen-
eralize these, and create a model template. The model tem-
plate can be thought of as a scale invariant model, something
that would fit to data irrespective to influencing factors, and
then used to quantify these factors. E.g., a model template of
time over height squared would, if applied to Galileo’s raw
experimental data, establish the gravity constant, along with
the statistical confidence of this value.

Considering the visualization of particle paths in a toka-
mak (fusion reactor) as another example, we first consider
that the most obvious footprint of direct data visualization
is the fact that the particles intensely rotate – an observed
phenomenon that is principally important, but not really sur-
prising. To see this in a visualization might be interesting,
but shortly after confirming the expected rotation of parti-
cles, we want to proceed and look behind this phenomenom:
is there any secondary motion characteristic to be seen? To
actually check such a hypothesis, we can aim at abstract-
ing already understood and accepted aspects of the investi-
gated phenomenon from the data visualization. This abstrac-
tion leads to three results: (a) the finding itself, which will
undergo an externalization, where the finding is pulled out
of the visualization represented in a different form, and (b)
a residual data visualization – where the finding has been
subtracted from – which then allows for studying remaining
aspects of the observed phenomenon that do not follow the
model. In the case of the tokamak example, we can think
of an abstracted visualization of the particles, e.g., by us-
ing a Poincaré map (the main feature, i.e., the rotation of
the particles, is then no longer visible, but only off-rotation
deviations of the particle paths). This clears the view and al-
lows the user to gain a more thorough understanding of com-
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plex phenomena through iterated analysis, including model-
ing and abstraction. (c) since large scale movements or den-
sities of data are subtracted after the abstraction, this enables
the further study of features which might be a magnitude
smaller than the overshadowing and perhaps obvious fea-
tures.

With this paper we aim to introduce a novel iterative
workflow of assisted modelling, abstraction and subtraction
to completely map a dataset from the originally visualized
view to an abstracted and quantified one. To achieve this
goal, we first provide a novel technique to assist a user to
sketch locally optimal models, and then how to represent
these in an abstract and quantified manner. Our technique
is mainly applicable to data that can be mapped to a 2D rep-
resentation.

The remainder of this paper is organized as follows: next
we discuss some related work. Then we elaborate on the the-
oretical part of this work in Sec. 3, before we go into detail
with respect to our technique in Sec. 4. In Sec. 5 we present
results from the application of our approach and demonstrate
its usefulness in this context.

2. Related Work

Extracting well defined features is a related topic often stud-
ied in the field of flow visualization. Post et al. [PVH∗03]
provides a good overview of the current state of art and how
the features are found, abstracted, and quantified. On other
phenomenons where the basic models is understood, data for
visualization can often be reduced or abstracted. Löffelmann
et al. [LKG98] use Poincaré maps as such a technique to
create abstractions of data, reducing the dimensionality, and
thus allowing the visualization of secondary features. On
data in which the model is not understood, Rheingans and
desJardins showed that inductive learning techniques, such
as self organizing maps (SOM), can construct explanatory
models for large, high-dimensional data sets [dR99, Rd00].
Their technique employs an overlay of models and data vi-
sualization, and thus creates an implicit visual comparison
of model vs. data. Models as such are used in all sorts of
scientific work – it is therefore perhaps beyond the scope of
this work to reasonably discuss the role of models in sci-
ence and visualization. Examples reach as far as into model-
based segmentation of medical data (for example research
for cardiac diagnosis [ZSBH08]) or into model-based object
recognition (such as for robot vision [CD86], for example).
These approaches show how models are used for classifica-
tion and segmentation. Often, they also utilize a difference
view, in which they show the match of a model to the data
(which here relates to our residual data visualization). By it-
eratively adopting our technique, we can find higher order
features, which are related to the field of multi-resolution
analysis and multi-scale modeling, such as wavelet-based
approaches [Wal04], for example. However, instead of fo-

cusing on a decomposition in frequency domain, we capital-
ize on partial abstraction which is feature-based and local.

The obvious step after extracting features is to put them
to good use. Liu and Stasko [LS10] investigate how internal
representations (mental models) and external visualizations
relate to each other. The authors state that such mental mod-
els are used during visual reasoning to "simulate" the behav-
ior of the corresponding visualization system [LS10]. Our
approach helps the analyst to externalize such mental mod-
els, and compare the data to it. Shrinivasan and van Wijk
and Yang et al. have investigated how to effectively sup-
port an externalization of findings in visualization. Yang
et al. [YXRW07] describe a system which allows users to
externalize findings, or nuggets, while exploring a dataset.
These nuggets are then added to a Nugget Management Sys-
tem, where clustering and meta-information, help the sense
making process. They also describe how visualization in this
nugget space prove useful as an abstraction of the origi-
nal data. Shrinivasan and van Wijk present the Knowledge
View [SvW08] in which not only the findings are exter-
nalized, but also the interaction path that lead to it. Their
user study shows favorable results with respect to external-
izing knowledge in mind maps. Shrinivasan and van Wijk
and Yang et al. have investigated how to effectively sup-
port an externalization of findings in visualization. Yang
et al. [YXRW07] describe a system which allows users to
externalize findings, or nuggets, while exploring a dataset.
These nuggets are then added to a Nugget Management Sys-
tem, where clustering and meta-information, help the sense
making process. They also describe how visualization in this
nugget space prove useful as an abstraction of the origi-
nal data. Shrinivasan and van Wijk present the Knowledge
View [SvW08] in which not only the findings are external-
ized, but also the interaction path that lead to it. Their user
study shows favorable results with respect to externalizing
knowledge in mind maps.

The visualization scheme utilized in this work, is highly
dependent on a frequency based technique that also supports
meaningful difference views. Daae Lampe and Hauser pre-
sented a technique [DH11b] that enables the continuous dis-
tribution of data, using kernel density estimates (KDE). This
technique also extends to support the continuous distribution
of data-samples that is temporally connected, in that it cre-
ates a line-kernel that connects these samples. Daae Lampe
et al. also effectively utilized these 2D KDE techniques for
difference views [DKH10] in an application that aimed to
generalize how to create multiple views that highlight the
differences in distributions between distinct categories.

3. The Basic Idea

One of the goals of this research is to effectively support
practitioners and scientists to analyze process data that is
streaming in or updated at considerable rates. We provide
an approach that allows users to rapidly prototype models
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Figure 2: A 2D version of the example in Fig. 3. The left images shows the (logarithmic) height-map after and before subtraction.
The middle image shows the quantified measures as read out from both the primary and the secondary feature (after fitting two
model prototypes). The image on the right shows the data, after abstracting the primary feature, clearly revealing the secondary
feature, even though it was almost completely hidden.

Figure 1: Our proposed workflow: visualize and observe,
sketch and fit, externalize and subtract, then iterate.

for structures which the user identifies in a visualization of
the data. These model prototypes act (1) as parts of the ex-
ternalization of the user findings and (2) as means to quan-
tify the structures for subsequent user tasks. Accordingly, we
first focus on how to identify structures which lend them-
selves to model prototyping. We see two opportunities: ei-
ther the user has a conceptual model of what to look for (an-
alytic/confirmative setting), or she/he aims at creating one
by looking at the data (explorative setting). In the first case,
it is useful to integrate the anticipated model within the vi-
sualization, to get initial information on how well the data
fits the model. In the second case, it is useful to have a visu-
alization that supports the user in interactively prototyping
the model to then subtract it from the visualization, and get
immediate feedback on how well it fits.

From this description we extract our workflow: visualize
and observe, sketch and fit, externalize and subtract, then it-

Figure 3: A(x) = N(0,1), C(x) = 0.05N(1,0.2) and B(x) =
A(x)+C(x)

erate, as shown in Fig. 1. This figure is read from top left
then right or down. The data is visualized, and by obser-
vation an interesting feature is detected. The user selects a
suitable model template and by sketching onto the visual-
ization, creates an initial model prototype. Through further
sketching and automatic fitting, the prototype is finalized.
This complete prototype is externalized to model space, and
a residual visualization is created by subtracting the model
prototype from the data visualization. At this point the pro-
cedure can be repeated by observing another feature in the
residual visualization, selecting another template to proto-
type, and so on. To explain by example, we consider a test
dataset consisting of serveral random samples adhering to
two different normal distributions. One of these distributions
are of a magnitude smaller than the other one, and thus oc-
cluded. This dataset is shown in Fig. 2 and a simplified 1D
version of the same is shown in Fig. 3.

Visualize and observe: we first draw all the data and the
middle figure of Fig. 2 is shown. In this figure we observe
only a single normal distribution, and thus decide that this
would be a suitable candidate model.

Sketch and fit: in this second step, we pick the selected can-
didate model, the normal distribution, and mark its center
near the observed center directly in the visualization. Imme-
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diatly when the model is placed, an automatic fitting will
initiate and the sketched model will be optimized to fit the
data.

Externalize and subtract: the parameters from the, now
optimized, model are extracted and displayed. In our ex-
ample case, the normal distribution model yielded a mean
µ = (0.02,0.01) and variance σ = (1.035,1.04), which is
close to the reference N([0,0], [1,1]). These parameters can
then be externalized, e.g., to a simplified table of extracted
results. After this, the density of this externalized model is
subtracted from the view, yielding the visualization to the
right in Fig. 2.

Iterate: Finally, now presented with the view where the
main feature is subtracted, we can start over again by observ-
ing the second feature as another normal distribution. After
sketching and fitting this second normal distribution, we can
extract the parameters N([1.004,1.004], [0.1989,0.2015]),
here compared to the reference N([1,1], [0.2,0.2]).

4. Interactive Model Prototyping

In this section, we explore the details related to the proposed
workflow, which are, visualization, model sketching and fit-
ting, externalization or quantification, and interactive con-
vergence.

4.1. Visualization

To support the proposed workflow we separate our visual as-
pects into three parts, the data visualization, the model pro-
totype illustration, and the residual visualization. The model
prototype illustration serves the purpose of giving a non-
occluding and condensed view of where all the previous
and the current model prototypes are located. Additionally,
the prototype illustrations act as handles for interaction. The
residual visualization serves several purposes. The first pur-
pose is to show how well the model fits the data, and the
second one is to then utilize the visual range better (through
a scale-up operation). Human perception, and thus visual-
ization, has a limited tolerance for range, e.g., there is finite
limit to how many colors we can distinguish, or a limited
range in how we can perceive brightness. By subtracting low
frequency, high amplitude, features, we can effectively and
automatically create a new and optimized range.

Streaming process data requires a direct in situ visualiza-
tion of the data, since it is constantly updated. The visual-
ization technique utilized here, is based on work by Daae
Lampe and Hauser. [DH11b], and 2D Kernel Density Esti-
mates (KDE). This technique visualizes a large set of sam-
ples, but displaying the convolved sum of kernels, one per
sample, resulting in an analytical density function, that sup-
ports meaningfull difference views [DKH10]. Additionally,
the usage of scaled kernels will create a visualization that
shows the distribution of time, independent of sampling rate.

4.2. Model Sketching and Fitting

In computer science terms, a model template would be a
class, and a model prototype would be an instance of such
a class. In the process of creating a prototype, sketching is
considered the manual input, and fitting the automatic algo-
rithm assisting the user. Model templates come with prop-
erties, that the prototype needs to instantiate, which we cat-
egorize below. We consider them to be shape, distribution,
and scale.

Shape characterizes the form of the model along the se-
quence of samples (after visualization). A linear structure
can be described by a line model, more complex forms
would follow spline curves, for example. In our case, we
are fine with a piecewise linear model template. However,
more complex models are equally possible (as long as a fit-
ting procedure, see below, is available, as well). We refer to
this central characteristic of a model as the shape construct.
Selecting a shape requires the selection of the following pa-
rameters, shape construct and control points. We will only
consider the following subset of shapes for the remainder of
this paper: the single point construct (see Fig. 2 ), and the
piecewise linear construct, wich will fit data with some cor-
relation.

Distribution determines the form of the model across
the sequence of samples. Whether it is due to noise, weak
measurements, or other natural phenomena, real world data
rarely ever line up perfectly. We therefore consider a certain
data distribution across the sequence of data samples, which
we model accordingly. The definition of the distribution we
will refer to as the distribution construct. Selecting a dis-
tribution requires the selection of the following parameters,
distribution construct and width. In the following we will
denote this width as r, a vector separating the "radius" in the
screen space coordinates u and v.

Scale, finally, is a measure of intensity. Depending on the
visualization parameters, this parameter will have different
meanings. E.g., for a box, the scale will be the average within
it, for other, it will give a more complex measure of the in-
tensity within the model.

Summing this up, we need to find a matching shape con-
struct, a matching position, select a distribution construct,
find the distribution width, and finally determine the scale,
when we aim at fitting the model prototype to the data. To
measure how well a model prototype fits the data, a prob-
lem not very different from image comparison, a correla-
tion function like sum of squared differences has proven to
be useful [GS99]. Other difference norms, such as the L1
norm, for example, also are possible and the choice of which
norm to use is usually application-dependent. After choos-
ing a squared differences norm (here L2), we investigate the
opportunities to minimize it for fitting. To simplify the func-
tion to minimize we will consider the selection of shape con-
struct and of distribution construct as selected manually by
the user (according to his or her a priori assumptions about
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the data). In the following, we denote the discrete scalar
field, which results from mapping the data to visualization
space a D(u,v), where u and v are the screen or canvas coor-
dinates, and the models scalar field (also after mapping into
visualization space) as M(u,v). To generate this scalar field
M, we first need to select the shape position p, the distri-
butions radius/extension r, and the scale/height h. Based on
these selections we have a function L(p,r,h) which when
mapped to the visualization space represents M

L(p,r,h)→ M(u,v) (1)

Defining UV as the natural numbers from zero to canvas-
width and canvas-height we get the difference measure (L2):

s = ∑
(u,v)∈UV

(D(u,v)−M(u,v))2 (2)

From eq. (1) and (2) we find that s, the sum of squared dif-
ferences, is a function s(p,r,h). From this we can extract our
target variables through the following optimization:

argmin
p∈UV, r∈R>0, h∈R>0

s(p,r,h) (3)

Optimizing this equation is not straightforward, but since
the user inherently sketches close to the desired solution, we
can avoid potential problems with locating the global opti-
mum, and only aim for the local minima.

We experienced satisfying results with the traditional
Newton’s method for this optimization problem, due to its
good convergence [NW99] in local problems. Using New-
ton’s method requires a Hessian matrix, a function that is
twice differentiable, and an initial estimate x0 that is suffi-
ciently close to the solution. Calculating the Hessian matrix
(or inverse thereof) is an computationally expensive oper-
ation, and we separate the derivatives and to minimize the
function s by individually minimizing the variables in order
of their influence of the overall model field

argmin
p∈UV

s(p), argmin
r∈R>0

s(r), argmin
h∈R>0

s(h) (4)

We look into these optimizations in Sec. 4.4 with measured
results of convergence.

4.3. Quantification and Model Prototyping

After completing a number of model prototypes in visualiza-
tion space, we transfer quantitative information back from
visualization space into model space, a technique called ex-
ternalization. Model space can be thought of as a summary
of the understood features found in the data, and thus a more
holistic approach to modeling is possible; one that also takes
model parameters into account, which haven’t dealt with in
visualization space. For example, when visualizing speed vs.
height of an object in free fall, this only can lead to model
prototypes correlating those two parameters, not (yet) con-
sidering other potentially influencing factors, such as aero-
dynamic drag, etc. As established in Sec. 4.2, the informa-

tion available is the position p, distribution extent/radius r,
and scale h. Transferring p to model-space is trivial, and so is
also r. If the selected distribution construct is box or linear,
then the transformed r is directly the radius around our shape
construct. When using other distribution constructs we must
allow for other interpretations of r, e.g., the normal distribu-
tion, where variance or σ is more informative.

We have now described how to extract positions of our ab-
straction, its distribution width and a scale, based on a given
intensity. We will look into more detail on how to apply this
information in synthetic and real life cases in the next two
sections, but we can already now see the usefulness in cases
as pure statistical measures, or quantitative readouts of mean
and variance.

4.4. Interactive Convergence

When sketching model prototypes, it is inherently hard to
accurately or optimally draw the model prototype, as this
would require the user to locate a local minimum based on
several parameters. As introduced in Sec. 4.2, this would re-
quire the user to set five parameters, p,r, and h, when she/he
is modifying a single point model construct. In this work
we suggest an assisted prototype fitting, in which the user
gets feedback on whether the first suggestion will converge
towards his/her desired solution, or not. In the interactive
mode, the user moves one point, and when it is released at its
new position, the fitting algorithm will initiate. The iterative
fitting algorithm is configured such that it will slowly con-
verge/diverge at its first steps. If the initial suggestion was
not sufficiently close to the optimal position x∗, it will di-
verge, away from the users desired target position. Instead,
we iterate the fitting only a few steps, with constant step size
instead of using Newton’s method, so that the user can click
and redirect the point before it runs away. When the user
sees that the point is converging towards the desired solu-
tion, she/he can initiate the fitting algorithm that will then
converge with the speeds that Newton’s method offers.

As discussed in Sec. 4.2, we established that we need to
compare the least squares of the model vs. the data. To initi-
ate the fitting, we first need a rasterized version of the data.
This texture is created once per frame, or when the dataset
is updated. Next, we need a rasterized version of the model,
which we create using a construct aware rasterize function,
specific for the different implemented models. To recall, we
considered the data’s rasterized texture as D(u,v) and the
models, M(u,v). Next, we need to calculate the least squares,
and then we need to sum all the calculations for u and v.
These calculations, as specified by Eq. (2), are implemented
on a shader, which first performs the least squares, and sec-
ondly performs the reduction sum. We discussed the sepa-
ration of the optimizing previously (see Eq.(4)), and as our
tests have shown good convergence, when we iterate step-
wise in our previously implied order (ie. one step with posi-
tion, one with extent, and then with height, before reiterating
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Figure 4: Torque in kN.m over depth. The figure on the left
shows the original data, containing some ROB tests we have
identified, modeled and subtracted from the residual view to
the right.

next step). If we have a point construct, we repeat the pro-
cess of calculating the sum of least squares, for our position
p in the positions:

p+Δu, p−Δu, p+Δv, p−Δv

Next, for Newton’s method we need f ′(pn) and f ′′(pn), now
let (for both u and v):

f ′(pn) =
(
sn(pn +Δ)− sn(pn −Δ)

)
/2|Δ| (5)

f ′′(pn) =
(
(sn(pn +Δ)− sn(pn)) (6)

− (sn(pn)− sn(pn −Δ))
)
/|Δ|

And thus we are able, to calculate pn+1 = pn − f ′(pn)
f ′′(pn)

, n ≥
0.

Next, we fit the extension of our distribution rn (in the
case of normal distribution, this would be σ), ending up with
rn+1, finally, before calculating the scale, or height hn of
the distribution. This we implement in a similar manner, by
calculating sn(hn), sn(hn +Δ), and sn(hn −Δ), and creating
the derivatives, using the same procedure as above, then by
Newton’s method, we calculate a new height hn+1. To extend
the above method, that was defined for point constructs, for
piecewise lines, we repeat the first step, finding pn+1 for all
pn in the piecewise line segment.

5. Case Studies

We now present two case studies, one on process data from
the Oil and Gas sector on real-time data generated un-
der drilling operations, and one analyzing the temperature
changes through several years.

Figure 5: A zoomed in view from Fig. 4 onto two rotation off
bottom tests, showing how well this data is modeled and re-
moved from the residual view. The residual view to the right
has a larger area of yellow values due to a dynamic range
color re-scale.

5.1. Process Data

We will apply our approach to a dataset that contains
116,191 time-steps in total, spanning over a period of ap-
prox. 28 hours, with a varying sample rate from 1/30Hz
to 30Hz. It is a multivariate dataset containing 25 variables
at each time-step in three major categories, measured data
from the surface, measurement while drilling (MWD) equip-
ment and derived data. MWD or down-hole measurements
are measured from MWD tools down in the well and then
transmitted to the surface via mud pulse.

A prominent usage of these data-streams are logging,
early detection and warning in case of incidents or analysis
to elaborate on a problem evolving or past. To give an early
warning on potential incidents, a common strategy applied
are friction tests. Increased friction can be a good indicator
on amassed cuttings in the hole. To infer friction, two dif-
ferent techniques are applied: torque based tests, and weight
based tests. When pulling the string up we can expect fric-
tion to act as a force against the movement, thus increasing
the measured weight, and similarly when moving the string
down we expect a lower weight. Rotating the drill string will
give a response torque measured on the surface. This torque
will increase with increasing friction. This test is called ro-
tation off bottom or ROB.

Fig.4 shows abstracted and residual data visualization rep-
resenting ROB. Notice how all the higher densities (repre-
senting time spent performing this ROB), are removed in
the residual view to the right. Fig.5 shows a zoomed in ver-
sion of Fig.4, where two of these tests and additionally their
quantitative parameters are shown. From this model proto-
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Figure 6: Changing torque in kN.m over depth in feet, for
a series of ROB tests. The abstracted results from Fig.4 are
shown in a graph with error bars at 1σ for both depth and
torque uncertainty. In this figure, the uncertainty for depth is
negligable.

type, one can now read out the average and mean during this
ROB. A big advantage our technique has compared to the
existing one, where the mean of all measured values dur-
ing the ROB is taken, is that our technique would show a
poor fit, if a poor ROB is performed. An example of a poor
ROB is if the samples are increasing, or decreasing during
the entire ROB period. Another poor ROB would have its
samples clustered at two distinct torques, and a mean would
then be misleadingly in middle between them. After match-
ing a total of 15 of these ROB tests in Fig.4 we go to a more
abstract view, where all the data is removed, and only the
modeled statistcs are left. Fig.6 shows 15 ROB tests, with
their standard deviations shown as error bars for both depth
and torque. This abstraction illustrates quite well a problem-
atic ROB friction that occurred at 3722 and at 3815 feet, but
was put under control at larger depths with more moderate
torque and a lower deviation (more certain measurements).

Quantifying torque is an important step in knowing how
the down-hole conditions are developing, but that is only one
step on the way of getting indications on what the friction is.
There are no accurate algorithms that exist today, that can
accurately calculate friction, even if all different conditions
are taken care of. This is the reason why we look at torque,
since it is an indication of friction even though many more
variables affect the result.

5.2. Temperature

In this section we inspect hourly temperature readings from
a single weather station, over the course of ten years, cour-
tesy of eKlima [Nor]. The top of Fig. 7, displays the curve
density estimate [DH11a] of these curves over an average
year. In this display the most prominent feature is the sea-
sonal change, with high temperatures during the summer,
and lower temperatures during the winter. Fig. 7 also fea-
tures an orange line overlaid to display the cyclic moving
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Temp.
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Figure 7: On top, the distribution of measured temperature
over the average year based on hourly data for ten years, by
using the curve density estimate [DH11a]. The orange curve
shows the cyclic moving average of the temperature over all
ten years. On the bottom, the same data is shown, but here
de-trended, by subtracting the moving average.

average of the yearly temperature for these ten years. Such
a moving average is a good representation and abstraction
for the yearly temperature, given that the data follows a
normal distribution, but might provide false information if
not [DH11a]. To investigate how well this average can ab-
stract the data, we first create a new dataset containing the
differences between the moving average and the measured
temperature. This new dataset of deviations from the moving
average, is shown as the bottom graph in Fig. 7. The higher
peaks, at approximately zero, during the summer months in
this dataset, indicate a more stable temperature, i.e., the aver-
age temperature is measured more often. To investigate how
well the normal distribution fits the de-trended data, we ap-
ply a linear normal-distributed model to it. The resulting dif-
ference view between the applied model and the de-trended
data is shown in figure 8. Now, as opposed to the previ-
ous two figures, the focus is placed on the deviations from
the normal distribution. Our attention is drawn to the high
intensity above the norm in January and December. Since
these intensities are red, they present areas where the mea-
sured value is higher represented than the normal distribu-
tion. However, since the average is placed at zero, it indicates
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Figure 8: The difference between a linear model and the de-
trended data from Fig. 7. The linear model applied has its
mean µ on y= 0, a σ= 1.85 and its upper and lower quartile
shown as grey lines. Note that due to the diffence view, the
deviations shown here are of one magnitude greater than in
Fig. 7.

a "tail" of low temperatures dragging the average down, i.e.,
a negatively skewed distribution. A second finding here is
the anomaly placed mid September, where we find a peak
of overrepresented values at an extreme ten degrees below
the average. After closer inspection in the dataset, we found
that this represents missing values which was defaulted to
zero. As a third finding, we point to the light red areas above
the grey quartile line in the summer months. These indicate
that during these months the actual distribution has a positive
skewness, leading to a bigger "tail" towards higher tempera-
tures than the average and standard deviation would account
for.

6. Discussion, Conclusions, and Future Work

Looking at the results from our synthetic test first, we see
that not only primary features are properly detected on ras-
terized data, but also secondary features. From Fig. 2 we
measure that one unit in data space corresponds to 85 pixels,
which means that if we can detect, with this exact resolution,
close to 1/85 ≈ 0.012 units accuracy, then we have sub pixel
accuracy.

Looking at the results in table 1 we refer to the results
on the secondary feature. These results estimate the original
model with not only sub-pixel precision, but with at a tenth
of a pixel accuracy, on the variance. Further we see that the
secondary feature’s mean is estimated to a level of a third of
a pixel, also sub pixel precision. On the primary feature, we
see that the results are within pixels with regards to the refer-
ence, with the estimates a little on the high side. The primary
feature is the first one fitted in our data visualization, and
thus it includes the secondary feature in its estimate, some-
thing that can explain the pixel offset in µ. The results on
accuracy are very promising, which is very interesting con-
sidering that our approach achieves these results at O(n) (in
time complexity, as we rasterize n points once).

Name Value Reference Pixel err.
Primary µ X 0.02 0 1.7
Primary µ Y 0.01 0 0.85
Primary σ X 1.035 1 2.98
Primary σ Y 1.04 1 3.4

Secondary µ X 1.004 1 0.34
Secondary µ Y 1.004 1 0.34
Secondary σ X 0.1989 0.2 0.0936
Secondary σ Y 0.2015 0.2 0.128

Table 1: Error measurements in data space units and pixels
on standard normal distribution with secondary feature, see
Fig. 3 and Fig. 2. A rendering with 85 pixels per unit has
been used for these calculations.

An important characteristic of our approach is the high
degree of interactivity. When displaying streaming data, it is
important to have a visualization scheme that is able to han-
dle large time windows, i.e., if data is streamed one needs at
some point to either omit “old” data from the visualization,
or support a multi resolution scheme. We have implemented
visualization mappings that allow fast rendering (> 60 fps),
even if we show datasets spanning several days (> 200k
samples). The feedback on convergence (or divergence) is
also an important aspect that facilitates interactive analysis.

With this work we have demonstrated how data visual-
ization can benefit from interactive model prototyping, ex-
ternalization and subtraction so that expert users can rapidly
proceed through an in depth analysis of streaming process
data, following the visualize and observe, sketch and fit, ex-
ternalize and subtract, then iterate pattern. Subtracting iden-
tified features from the data visualization allows the user to
reveal secondary features and additionally results in an ex-
ternalized prototype giving quantification and overview.

We have shown that interactive model prototyping in vi-
sualization space can accurately quantify measured data.
Moreover, we have shown that an analyst can quickly com-
pare suggestions for formal models, by bringing them into
the visualization, perform prototyping, and get quantitative
results on how well they fit. Another important part of our
work has been to move visualizations beyond the initial dis-
covery, and to give the users a view into secondary features.
A general conclusion from our work is that application pro-
cesses usually do not stop after discoveries in visualization
and that is therefore important for visualization research to
more intensely think about what has to follow visualization,
e.g., externalization, quantification and ultimately action.

In future work, we plan to look further into different re-
construction techniques, and also different distributions. An
interesting aspect would be to investigate the support for dis-
tributions with rotations or shear, by enabling support for a
full covariance matrix, instead of the vector r. Another plan
is to extend the piecewise linear model to support higher-

50



O. Daae Lampe & H. Hauser / Interactive Model Prototyping in Visualization Space

order templates, like spline curves. It would interesting to
consider an extension to multivariate fields, or even to three
dimensional fields, using 3D rasterizing functions.
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