
SIGRAD 2011

Considerations toward a Dynamic Mesh Data Structure

S. Pena Serna1, A. Stork1,2 and D. W. Fellner1,2

1Fraunhofer IGD, Germany
2TU Darmstadt, Germany

Abstract
The use of 3D shapes in different domains such as in engineering, entertainment, cultural heritage or medicine, is
essential for representing 3D physical reality. Regardless of whether the 3D shapes are representing physically or
digitally born objects, meshes are a versatile and common representation for the 3D reality. Nonetheless, the mesh
generation process does not always produce qualitative results, thus incomplete, non-orientable or non-manifold
meshes frequently are the input for the domain application. The domain application itself also demands special
requirements, e.g. an engineering simulation requires a volumetric mesh either tetrahedral or hexahedral, while a
cultural heritage color enhancement uses a triangular or quadrangular mesh, or in both cases even hybrid meshes.
Moreover, the processes applied on the meshes (e.g. modeling, simulation, visualization) need to support some
operations, such as querying neighboring information or enabling dynamic changes of geometry and topology.
These operations need to be robust, hence the neighboring information can be consistently updated, during the
dynamic changes. Dealing with this mesh diversity usually requires dedicated data structures for performing in the
given domain application. This paper compiles the considerations toward designing a data structure for dynamic
meshes in a generic and robust manner, despite the type and the quality of the input mesh. These aspects enable a
flexible representation of 3D shapes toward general purpose geometry processing for dynamic meshes in 2D and
3D.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object representations

1. Introduction

The use of 3D shapes in different domains such as in en-
gineering, entertainment, cultural heritage or medicine, is
essential for representing 3D physical reality. This is true
for several 3D shape representation schemes such as point
clouds, isosurfaces, subdivision surfaces, meshes, paramet-
ric surfaces and B-reps, among others. These representation
schemes have a tight inherited relationship with the produc-
tion technique. In the case of physically born objects, for
example a laser scanner can typically generate a point cloud
suitable for triangulation, while a CT scanner can usually
generate volume data suitable for isosurfacing. On the other
hand and referring to digitally born objects, CAD systems
([Lee99]) classically model with B-reps or CSG schemes
and free-form 3D modeling systems normally work with
parametric, polygonal or subdivision surfaces. Although the
representation schemes for digitally born objects can easily
be transformed into the representation schemes of the physi-

cally born objects, the opposite case is not a straightforward
process, e.g. producing a B-rep with its corresponding ge-
ometric and topological description from a polygonal mesh
is a complex procedure. Furthermore, the application con-
text also influences the utilization of specific shape repre-
sentation schemes, for instance in engineering B-reps, para-
metric surfaces and meshes are commonly used; polygonal,
subdivision or parametric surfaces are frequently employed
in the entertainment industry; in the cultural heritage field
subdivision or polygonal surfaces and meshes are widely es-
tablished; while B-reps, parametric surfaces and meshes are
extensively exploited in the medicine sector.

Meshes are commonly used in the above mentioned do-
mains and within these domains; meshes commonly sup-
port visualization, analysis, animation, modeling and sim-
ulation processes or other dedicated domain applications.
The performance of these domain applications greatly prof-
its from the neighboring information of the mesh. For in-

83

S. Pena Serna et al. / Considerations toward a Dynamic Mesh Data Structure

stance, a curvature analysis computes the vertex curvature
for the 1-ring neighborhood ([BKP∗10]) and a non-diagonal
entry in a linear system of a simulation problem is com-
puted by means of the contribution of the elements around an
edge ([PSSSM09]). Nonetheless, the mesh generation pro-
cess ([FG00]) does not always produce qualitative results,
thus incomplete, non-orientable or non-manifold meshes fre-
quently are the input for the domain application. Represent-
ing such meshes require generic and robust methods, in or-
der to reliably compute the neighboring information. Addi-
tionally, the representation of dynamic meshes demands ef-
ficient methods for consistently updating the corresponding
changes in the topology of the mesh.

There is a trend in the computer graphics community and
especially in the geometry processing research field, focus-
ing on the analysis and processing of dynamic meshes. This
trend is enabling the discovering and the development of so-
phisticated methods and algorithms, leading to a more real-
istic reproduction of the reality, by means of either faithful
animations or novel procedures for analyzing the behavior
of the reality. Several methods and algorithms have been de-
veloped, in order to deal with dynamic meshes. Nonethe-
less, the majority of these approaches only consider the ge-
ometry of the mesh as dynamic, while the topology of the
mesh remains unchanged. This consideration is justified by
the complexity and the performance overhead that opera-
tions with dynamic topology, such as meshing, remeshing
and multiresolution generate. Nonetheless, the implementa-
tion of algorithms with only dynamic geometry causes sev-
eral artifacts and limitations, which need to be compensated,
in order to make them reliable. On the other hand, an inte-
gral processing of meshes, where geometry and topology can
dynamically be handled, can unlock the potential of current
algorithms and it will also enable the combination of many
operations, which today are considered as divergent.

We present in this paper the considerations toward design-
ing a data structure for dynamic meshes in a generic and
robust manner, despite the type and the quality of the input
mesh. The methodology is generic enough to deal with trian-
gular and quadrilateral meshes or tetrahedral and hexahedral
meshes, or even hybrid surface or volumetric meshes. The
robustness of the methods enables the representation of in-
complete, non-orientable, non-manifold meshes or meshes
with a high genus, thus the neighboring information is al-
ways consistently computed regardless of the quality of the
input mesh. We also propose recommendations on how to
identify geometric degenerecies or topological inconsisten-
cies. Additionally, we present a possible implementation of
the methods for computing and querying the neighboring in-
formation. We believe that these methods allow for a flexible
representation of 3D shapes toward general purpose geome-
try processing for dynamic meshes in 2D and 3D.

2. Related Work

There is a substantial work in the scientific community in
developing mesh data structures, most of them dedicated to
specific domain application. We classify the proposed data
structures in data structures for static meshes and data struc-
tures for dynamic meshes, regardless the dimensionality of
the mesh.

2.1. Data Structures for Static Meshes

One of the pioneers in this area is Baumgart [Bau72],
[Bau75], who introduced the winged edge data structure.
In a later work, Muuss and Butler [MB91] described the
advantages of the radial-edge data structure for represent-
ing non-manifold geometry and the corresponding Boolean
operations for modeling. Campagna et al. [CKS98] pro-
posed a data structure for triangular meshes called directed
edges. Kettner [Ket98], [Ket99] presented a design frame-
work for combinatorial edge-based data structures of poly-
hedral surfaces and planar maps, where the half-edge data
structured was chosen and implemented (in CGAL). Levy et
al. [LCCC01] proposed the circular incident edge list (CIEL)
data structure for generating iso-surfaces in an unstructured
grid, based on the notion of oriented half-edge. Botsch et
al. [BSBK02] developed OpenMesh, an implementation of
the half-edge data structure for static polygonal meshes.
Kallmann and Thalmann [KT02] implemented a data struc-
ture for representing planar meshes in a compact manner,
by means of vertex adjacency. Allegre et al. [ABGA04] pro-
posed a hybrid shape representation, by means of combining
a skeletal implicit surfaces and a polygonal mesh, which are
assembled with an extended CSG tree. Alumbaugh and Jiao
[AJ05] developed a compact array-based representation for
surface and volume meshes, as a generalization of the half-
edge and half-face data structures respectively. Blandford et
al. [BBCK03], [BBCK05] proposed a compact representa-
tion for simplicial meshes, based on storing the link for a set
of (d – 2) simplices.

Weiler et al. [WMKE04] presented a tetrahedral strips
encoded in texture maps for rendering purposes, by means
of ray casting algorithms. Cignoni et al. [CGG∗04] devel-
oped a technique for out-of-core construction and view-
dependent visualization of large surface models, based on
a tetrahedral spatial partition of the model. De Floriani and
Hui [DFH03] presented a data structure for non-manifold
three-dimensional simplicial complexes also able to repre-
sent one- and two-dimensional top simplexes (wire-edge and
dangling faces respectively). De Floriani et al. [DFGH04]
proposed a data structure for d-dimensional non-manifold
simplicial complexes, based on encoding boundary and co-
boundary relations within an incident graph. De Floriani and
Hui [DFH05] compared different data structures for simpli-
cial complexes, concluding that the most compact data struc-
tures are adjacency-based, while almost all support optimal
retrieval of topological information. De Floriani [DFKP05]

84

S. Pena Serna et al. / Considerations toward a Dynamic Mesh Data Structure

created a survey on data structures for Level-of-Detail mod-
els of freeform geometry, including point-based, triangle-
based and tetrahedron-based data structures for regular and
irregular meshes. Lage et al. [LLLV05] developed a com-
pact half-face data structure for manifold tetrahedral meshes,
which is able to cope with scalability issues according to the
application. Hui et al. [HVDF06] proposed a decomposition
approach for representing non-manifold simplicial complex
3D shapes as a collection of tetrahedra, dangling triangles
and wire edges.

Sander et al. [SNCH08] presented a scheme for efficient
traversal of mesh edges for rendering purposes, using ad-
jacency primitives and ordering these primitives for vertex
cache locality. Gurung and Rossignac [GR09], [GR10] de-
veloped a compact representation for tetrahedral meshes,
based on the sorted opposite table concept, which requires
4 references and 9 bits per tetrahedron. They provide a set of
wedge-based operators for querying and traversing the mesh.
Sieger and Botsch [SB11] presented the design decisions for
a polygonal mesh data structure, aiming to improve usabil-
ity, performance and memory consumption. Their work is
based on an array-based halfedge data structure. Gurung et
al. [GLLR11a] introduced a compact triangle mesh repre-
sentation, which only needs about 2 integer reference per
triangle, by means of combining the use of a quad mesh to
represent the connectivity of the triangle mesh and a spe-
cial sorting algorithm (SOT), nonetheless they need to re-
build the S table, when the connectivity changes. Gurung et
al. [GLLR11b] developed the LR (Laced Ring) data struc-
ture for representing the connectivity of manifold triangle
meshes. Its supports constant-time adjacency queries and it
is suited for meshes with fixed connectivity, as any changes
to the connectivity require a rebuilt of the data structure.
This is a characteristic, which is shared by the data struc-
tures for static meshes. These data structure requires a pre-
computation step, to encode the neighboring information
and any change in the topology of the mesh requires a com-
plete re-computation of the information.

Furthermore, the capabilities of GPU computing are en-
abling new opportunities for visualization, but most impor-
tant for computing time consuming applications. In this con-
text, Lefohn et al. [LSK∗06] developed a template library
(Glift), abstracting the random access to GPU data structures
such as stack, quadtree, or octree. However, they did not in-
vestigate the implementation and abstraction of mesh con-
nectivity structures. Lefebvre and Hoppe [LH06] proposed
GPU-based hashing structure for efficient random access of
sparse data. In order to handle 3D domains, they proposed
a hashing function for mapping the 3D domain to a 2D tex-
ture, e.g. by storing 2D pointers of the connectivity of 3D-
adjacent voxel elements, generated by the intersection of the
voxels with the surface mesh. DeCoro and Tatarchuk [DT07]
introduced the probabilistic octree data structure, similar to
adaptive octree structures, for vertex clustering in the con-
text of a mesh simplification algorithm. Hu et al. [HSH09]

created a data structure on the GPU for progressive surface
meshes, by building a static buffer for the vertices and a
dynamic buffer for the topology, although to maintain the
dynamic buffer, they also required additional static and dy-
namic data structures. GPU-based data structure are very
promising, however many of the current implementations
deal with pre-computed dynamic data for efficient visual-
ization purposes. Dynamic changes (e.g. on the topology of
the mesh) are still very expensive.

2.2. Data Structures for Dynamic Meshes

The small number of data structures dealing with dynamic
meshes, allow for a limit set of topological operation on
the mesh. Weiler [Wei85] evaluated 4 different edge-based
data structures for solid modeling operations (e.g. Euler op-
erations). Chen and Akleman [CA03] developed a set of
topological validity algorithms for different 2-manifold data
structures in the context of mesh modeling. Danovaro and
De Floriani [DDF02] proposed a compact data structure
for a half-edge multi-resolution of tetrahedral meshes, built
through full-edge collapses. De Floriani and Hui [DFH04]
presented edge collapse and vertex split update operations
for non-manifold simplicial objects and their correspond-
ing encoding for a non-manifold indexed data structure.
De Floriani et al. [DFMPS02], [DFMPS04] developed
a data structure and the algorithms for dealing with non-
manifold multi-resolution simplicial meshes. Danovaro et
al. [DDFM∗05] proposed the half-edge tree data structure
for compactly encoding Level-of-Detail tetrahedral meshes,
built through the application of half-edge collapses. To-
bler and Maierhofer [TM06] developed a surface mesh data
structure for rendering and subdivision operations, by means
of representing the rendering information as indexed face set
and separately representing the topological information for
rendering and subdivision. Attene et al. [AGFF09] proposed
a set of algorithms for converting a non-manifold tetrahe-
dral mesh to a combinatorial 3-manifold or a PL 3-manifold
by means of local modifications on the mesh. The proposed
data structures for dynamic meshes are mainly dealing with
multi-resolution problems (e.g. Level-of-Detail), however
there are limitations regarding either the type of the mesh or
the quality of the input mesh. Thus, we present the consider-
ations toward designing a data structure for dynamic meshes
in a generic and robust manner.

3. Memory and Performance

Data structures for static meshes usually aim to compactly
encode the topology (and neighboring information) of the
mesh, exploiting sequential dependencies and enabling a
minimal set of queries for maximizing the performance of
the dedicated domain application. Any other query, which
is not foreseen in the original design, is normally very ex-
pensive. Thus, these data structures achieve minimal mem-
ory consumption and maximal performance for the given

85

S. Pena Serna et al. / Considerations toward a Dynamic Mesh Data Structure

application. On the other hand, data structures for dynamic
meshes cannot encode the topology (and neighboring infor-
mation) with sequential dependency, since it will require a
re-build of the encoding if modifications on the topology are
performed. Hence, the memory consumption cannot always
be optimized. This implies that the data structure needs a
mechanism to rapidly update the neighboring information
and additionally to increase or decrease the number of com-
ponents without expensive memory handling (0D - vertices:
V, 1D - edges: E, 2D - faces: F, 3D - cells: C). Memory
buffers are a solution for avoiding the costly memory han-
dling for removal or addition of components, nevertheless in
order to be efficient, the accurate estimation of the number
of components is crucial. In this context, the Euler Formula
gives a very good estimation for surface meshes with genus
0:

F +V −E = 2.

Thus, for a given number of faces (F) and vertices (V), the
number of edges is:

E = F +V −2.

A similar formula holds for volume meshes with genus 0:

V +F−E =C+1.

Table 1 presents the behavior of the formula for the tetrahe-
dral (Figure 1) and hexahedral meshes (Figure 2). Hence, for
a given number of cells (C) and vertices (V), the number of
edges can by estimated by

E ≈ (2×V)+C,

and in a similar way, the number of faces can be estimated
by

F ≈V +(2×C).

This estimation is much more accurate than the typical esti-
mation for tetrahedral meshes (E ≈ 6 × C and F ≈ 4 × C)
and for hexahedral meshes (E ≈ 12 × C and F ≈ 6 × C).
If the meshes (surface or volume) contain genera, shells and
loops, an approximation can be made, based on the previous
formulas.

Table 1: Topological components of two tetrahedral (rows 1.
Sphere and 2. Gargoyle) and two hexahedral (rows 3. Hex2
and 4. Rubber) volume meshes with genus 0.

V E F C V + F − E
13 42 50 20 21

221039 1152799 1723886 792125 792126

12 20 11 2 3

9367 24354 20812 5824 5825

Figure 1: Tetrahedral meshes with with genus 0: sphere and
gargoyle.

Figure 2: Hexahedral meshes with genus 0: hex2 and rub-
ber.

4. Neighboring Information

After having the estimation regarding the number of compo-
nents, it is important to define the needed neighboring infor-
mation, in other words, the needed relationships for stream-
lining the application. For instance, a simulation process re-
quires the computation of the contribution of the cells around
an edge and the contributions of the cells around a vertex,
therefore these relationships should efficiently be queried.
These relationships can be pre-computed during the initial-
ization phase of the mesh or these can be computed on de-
mand during the querying process. The design decision is in-
fluenced by three factors: i) memory consumption, ii) query-
ing performance, and iii) updating performance. If the rela-
tionships are pre-computed, more memory is required, the
updating process is more time consuming, but the querying

86

S. Pena Serna et al. / Considerations toward a Dynamic Mesh Data Structure

process is very fast. On the other hand, if the relationships
are computed on demand, less memory is required, the up-
date process is less expensive, but the querying process is
more time consuming.

An efficient querying process (considering that sequential
dependencies cannot fully be exploited) can be achieved by
means of creating topological templates. This is motivated
by the hierarchical creation of the topological components
of the mesh (Cell, Face and Edge). For instance, when cre-
ating a tetrahedron, the tetrahedron is reponsible for creating
its triangles and at the same time, each triangle is reposible
for creating its edges. Hence, given this hierachical process,
the edges of the tetrahedron can be inferred from the edges
of the triangle by means of the topological template. Table 2
presents an example of a topological template for a tetrahe-
dron, based on the schematic indications from Figure 3.

The table presents the 4 triangles (Fi) of the tetrahedron
and the generated edges (Fei) for each triangle. The arrows
indicate the correspondence between the edges of the trian-
gles with the edges of the tetrahedron (Cei). For this partic-
ular case of the topological template of the tetrahedron, a
simple exercise was performed with the gargoyle of Figure
1 with about 800K tetrahedra, in order to compare the per-
formance difference between the pre-computing and com-
puting on demand strategies. The task aimed to traverse the
6 edges of the tetrahedra in a for loop: the pre-computation
case required about 40ms, while the computation on demand
required about 240ms, 6 times more, nonetheless the initial-
ization process and the updating process were faster. In both
cases, the topological template was used for pre-computing
and for computing on demand.

The topological templates do not only improve the query-
ing process, they also improve the initialization and updating
process, because of the built hierarchal information. Refer-
ring back to the schematic example of Figure 3, a concept
of smart edges is represented by two opposite edges, in this
case ei and ei+1. Therefore when adding a new tetrahedron
to the mesh, instead of looking for existing faces (triangles)
in the mesh, by means of querying faces around the vertices
of the tetrahedron, the existence of the smart edge is before-
hand evaluated. If the edge exists, the query is reduced to the
faces around the edge, which are much less than the faces
around the three vertices of the needed face.

In the case that the edge does not exist, the face can-
not exist either, therefore the face can directly be created.
A similar process is applied, when creating a face, but in
this case, smart vertices are the reference for querying for
the edges of the face. It is worth mentioning that depending
on the domain application, the querying process can also be
streamlined by means of using spatial data structures (e.g.
k-dimensional tree - k-d tree, binary space partitioning -
BSP, octree, bounding volume hierarchy - BVH, etc.), which
assist in finding subparts of the mesh in 3D space, avoid-
ing querying and evaluating every single component of the

mesh, for instance for efficient collision detection or mesh
Boolean operation applications.

Table 2: Topological templates for a tetrahedron, showing
the correspondence between the edges of the triangles and
the edges of the tetrahedron, given the hierarchical creation
process.

Fi Fei Fei+1 Fei+2
Vi, Vi+1, Vi+3 Vi–Vi+1 Vi+1–Vi+3 Vi+3–Vi

→Cei →Cei+3 →Cei+4

Vi+1, Vi, Vi+2 Vi+1–Vi Vi–Vi+2 Vi+2–Vi+1

Vi+2, Vi+3, Vi+1 Vi+2–Vi+3 Vi+3–Vi+1 Vi+1–Vi+2

→Cei+1 →Cei+2

Vi+3, Vi+2, Vi Vi+3–Vi+2 Vi+2–Vi Vi–Vi+3

→Cei+5

5. Mesh Modifications

The access to the neighboring information of the mesh, ei-
ther by pre-computing or by computing on demand, en-
ables efficient processes (e.g. modeling, simulation, visu-
alization) of the domain application. In the case of dy-
namic meshes, these processes generally change the geom-
etry and the topology of the mesh. There are two different
approaches, either the geometry remains constant and the
topology is changed (e.g. progressive meshes) or the geom-
etry is changed and those changes invoke modification in
the topology (e.g. mesh modeling). In either case, the typ-
ical actions on the mesh are called topological operations.
The basic operations are: i) edge-split, ii) edge-collapse, and
iii) edge-swap, and they aim to correct degeneracies on the
mesh (e.g. inverted elements – faces or cells) or to improve
the quality of the mesh (e.g. condition number for numerical
simulations).

Although the operations require several steps, the mesh
data structure only needs to support vertex or element re-
moval and vertex or element addition. For instance, edge-
split involves removing all the elements around an edge.
Edge-collapse requires removing all the elements around
one of the vertices of the edge to be collapsed (sometimes
also merging the two vertices), and therefore removing the
vertex (with its correspinding references). Edge-swap im-
plies removing the elements around the edge to be swapped.
The addition of new vertices or elements is already provided;
since these operations are used during the initialization of
data structure. Any other operation should be created on a
top layer, in order to avoid overloading the mesh data struc-
ture with multiple application-motivated operations.

If the modifications of the mesh are not carefully applied,

87

S. Pena Serna et al. / Considerations toward a Dynamic Mesh Data Structure

Figure 3: Topological components of a mesh: vertices V, edges E, faces F, and cells C (model from the AIM@SHAPE repository).

the mesh can easily become inconsistent. Thus, the data
structure should also support basic geometric and topolog-
ical tests, to warn the user if needed. For instance, to check
the internal angles of faces and dihedral angles of cells, or to
check the manifoldness of the mesh (for 2D: two faces per
edge, for 3D: two cells per face or in both cases orientation
of components). Nevertheless, the user should be able to en-
able or disable those checks, according to the needs of the
application. An additional important aspect given the con-
tinuous change in the mesh is the ability to know the bound-
ary of the mesh at any time without the need to traverse the
mesh, especially for vertices and edges.

In the case of volume meshes, the faces on the boundary
are easily recognized by having only one associated cell and
this fact can be used for transferring information to its asso-
ciated edges and vertices during the initilization and update
processes. If a reference counter is associated to each ver-
tex and edge, this needs to increase when an incident face
is identified as being on the boundary and this needs to de-
crease, when an incident face is identified as not being on
the boundary (e.g. when the neighboring cell is created). By
the end of the initialization process or after the update pro-
cess, a counter of 0 means that the edge or vertex is not on
the boundary, any number above 0 indicated that the edge or
vertex is on the boundary. This information is relevant for
rapidly visualizing the changes in the mesh without perfor-
mance drawbacks. Figure 4 illustrates on the top the modi-
fication of different surface and volume meshes and on the
bottom the deformation (drag of a hole) of a tetrahedral mesh
within a simulation environment.

6. Conclusions

There are several mesh data structures for triangular meshes
and some for tetrahedral meshes. The exploration of quad-
rangular and hexahedral data structures is very limited in
the community. Many of the data structures are designed for

minimizing the memory consumption for specific domain
applications. Nevertheless, there are not enough data struc-
tures, which robustly represent 3D shapes regardless of the
quality of the given input mesh and there are very few data
structures supporting dynamic meshes. These two aspects
are an essential requirement toward general purpose geom-
etry processing in 2D and 3D. We presented in this paper
considerations in terms of memory and performance, neigh-
boring information, and mesh modifications, toward a data
structure for representing dynamic meshes in a generic and
robust manner. We will further develop our ideas, in order
to find the most appropriate tradeoff between the different
exposed aspects, as well as new strategies for improving the
performance without affecting the memory consumption and
keeping the flexibility.

7. Acknowledgements

This work is partially supported by the European
projects VISTRA (FP7-FoF-ICT-2011.7.4-285176) and 3D-
COFORM (FP7-ICT-2007.4.3-231809).

References
[ABGA04] ALLEGRE R., BARBIER A., GALIN E., AKKOUCHE

S.: A hybrid shape representation for free-form modelling. In
Proceedings of the Shape Modeling International 2004 (Wash-
ington, DC, USA, 2004), IEEE Computer Society, pp. 7–18. 2

[AGFF09] ATTENE M., GIORGI D., FERRI M., FALCIDIENO
B.: On converting sets of tetrahedra to combinatorial and pl
manifolds. Computer Aided Geometric Design 26, 8 (Novem-
ber 2009), 850–864. 3

[AJ05] ALUMBAUGH T. J., JIAO X.: Compact array-based mesh
data structures. In Proceedings of the 14th International Meshing
Roundtable (September 2005), Springer-Verlag, pp. 485–504. 2

[Bau72] BAUMGART B. G.: Winged edge polyhedron represen-
tation. Tech. rep., Stanford University, Stanford, CA, USA, Oc-
tober 1972. 2

[Bau75] BAUMGART B. G.: A polyhedron representation for

88

S. Pena Serna et al. / Considerations toward a Dynamic Mesh Data Structure

Figure 4: Modification of an original triangular, quadrangular, tetrahedral and hexahedral mesh (some models from the
AIM@SHAPE repository) on the top and a deformation of a tetrahedral mesh with a coupled simulation feedback on the
bottom.

computer vision. In Proceedings of the May 19-22, 1975, Na-
tional Computer Conference and Exposition (New York, NY,
USA, 1975), AFIPS ’75, ACM, pp. 589–596. 2

[BBCK03] BLANDFORD D. K., BLELLOCH G. E., CARDOZE
D. E., KADOW C.: Compact representations of simplicial
meshes in two and three dimensions. In Proceedings of the 12th
International Meshing Roundtable (September 2003), pp. 135–
146. 2

[BBCK05] BLANDFORD D. K., BLELLOCH G. E., CARDOZE
D. E., KADOW C.: Compact representations of simplicial
meshes in two and three dimensions. International Journal of
Computational Geometry and Applications 15, 1 (2005), 3–24. 2

[BKP∗10] BOTSCH M., KOBBELT L., PAULY M., ALLIEZ P.,
LEVY B.: Polygon Mesh Processing. AK Peters, 2010. 2

[BSBK02] BOTSCH M., STEINBERG S., BISCHOFF S.,
KOBBELT L.: Openmesh - a generic and efficient polygon mesh
data structure. OpenSG Symposium, 2002. 2

[CA03] CHEN J., AKLEMAN E.: Topologically Robust Mesh
Modeling: Concepts, Data Structures and Operations. Tech. rep.,
Texas A&M University, 2003. 3

[CGG∗04] CIGNONI P., GANOVELLI F., GOBBETTI E., MAR-
TON F., PONCHIO F., SCOPIGNO R.: Adaptive tetrapuzzles: ef-
ficient out-of-core construction and visualization of gigantic mul-
tiresolution polygonal models. ACM Transactions on Graphics
23, 3 (August 2004), 796–803. 2

[CKS98] CAMPAGNA S., KOBBELT L., SEIDEL H.-P.: Directed
edges - a scalable representation for triangle meshes. Journal of
Graphics Tools 3, 4 (December 1998), 1–11. 2

[DDF02] DANOVARO E., DE FLORIANI L.: Half-edge multi-
tessellation: A compact representation for multi-resolution tetra-
hedral meshes. In Proceedings of the First International Sym-
posium on 3D Data Processing Visualization and Transmission
(Washington, DC, USA, 2002), 3DPVT ’02, IEEE Computer So-
ciety, pp. 494–499. 3

[DDFM∗05] DANOVARO E., DE FLORIANI L., MAGILLO P.,
PUPPO E., SOBRERO D., SOKOLOVSKY N.: The half-edge tree:
A compact data structure for level-of-detail tetrahedral meshes.
In Proceedings of the International Conference on Shape Mod-
eling and Applications (Washington, DC, USA, 2005), SMI Š05,
IEEE Computer Society, pp. 332–337. 3

[DFGH04] DE FLORIANI L., GREENFIELDBOYCE D., HUI A.:
A data structure for non-manifold simplicial d-complexes. In
Proceedings of the 2004 Eurographics/ACM SIGGRAPH Sym-
posium on Geometry Processing (New York, NY, USA, 2004),
SGP ’04, ACM, pp. 83–92. 2

[DFH03] DE FLORIANI L., HUI A.: A scalable data structure for
three-dimensional non-manifold objects. In Proceedings of the
2003 Eurographics/ACM SIGGRAPH Symposium on Geometry
Processing (Aire-la-Ville, Switzerland, Switzerland, 2003), SGP
’03, Eurographics Association, pp. 72–82. 2

[DFH04] DE FLORIANI L., HUI A.: Update operations on 3d
simplicial decompositions of non-manifold objects. In Proceed-
ings of the ninth ACM Symposium on Solid Modeling and Appli-
cations (Aire-la-Ville, Switzerland, Switzerland, 2004), SM ’04,
Eurographics Association, pp. 169–180. 3

[DFH05] DE FLORIANI L., HUI A.: Data structures for simpli-
cial complexes: an analysis and a comparison. In Proceedings
of the third Eurographics Symposium on Geometry Processing
(Aire-la-Ville, Switzerland, Switzerland, 2005), SGP ’05, Euro-
graphics Association, pp. 119–128. 2

[DFKP05] DE FLORIANI L., KOBBELT L., PUPPO E.: A survey
on data structures for level-of-detail models. Advances in Mul-
tiresolution for Geometric Modelling 1 (2005), 57–82. 2

[DFMPS02] DE FLORIANI L., MAGILLO P., PUPPO E., SO-
BRERO D.: A multi-resolution topological representation for
non-manifold meshes. In Proceedings of the seventh ACM Sym-
posium on Solid Modeling and Applications (New York, NY,
USA, 2002), SMA ’02, ACM, pp. 159–170. 3

[DFMPS04] DE FLORIANI L., MAGILLO P., PUPPO E., SO-
BRERO D.: A multi-resolution topological representation for
non-manifold meshes. Computer-Aided Design 36, 2 (2004),
141–159. 3

[DT07] DECORO C., TATARCHUK N.: Real-time mesh simplifi-
cation using the gpu. In Proceedings of the 2007 symposium on
Interactive 3D graphics and games (New York, NY, USA, 2007),
I3D ’07, ACM, pp. 161–166. 3

[FG00] FREY P. J., GEORGE P.-L.: Mesh Generation: Applica-
tion to Finite Elements. HERMES Science, 2000. 2

[GLLR11a] GURUNG T., LANEY D., LINDSTROM P.,

89

S. Pena Serna et al. / Considerations toward a Dynamic Mesh Data Structure

ROSSIGNAC J.: Squad: Compact representation for trian-
gle meshes. Computer Graphics Forum 30, 2 (2011), 355–364.
3

[GLLR11b] GURUNG T., LUFFEL M., LINDSTROM P.,
ROSSIGNAC J.: Lr: compact connectivity representation for
triangle meshes. ACM Trans. Graph. 30, 4 (July 2011), 67. 3

[GR09] GURUNG T., ROSSIGNAC J.: Sot: compact represen-
tation for tetrahedral meshes. In Proceedings of the 2009
SIAM/ACM Joint Conference on Geometric and Physical Mod-
eling (New York, NY, USA, 2009), SPM ’09, ACM, pp. 79–88.
3

[GR10] GURUNG T., ROSSIGNAC J.: SOT: compact represen-
tation for tetrahedral meshes. Technical Report GT-IC-10-01,
Georgia Institute of Technology, 2010. 3

[HSH09] HU L., SANDER P. V., HOPPE H.: Parallel view-
dependent refinement of progressive meshes. In Proceedings of
the 2009 symposium on Interactive 3D graphics and games (New
York, NY, USA, 2009), I3D ’09, ACM, pp. 169–176. 3

[HVDF06] HUI A., VACZLAVIK L., DE FLORIANI L.: A
decomposition-based representation for 3d simplicial complexes.
In Proceedings of the fourth Eurographics Symposium on Geom-
etry Processing (Aire-la-Ville, Switzerland, Switzerland, 2006),
SGP ’06, Eurographics Association, pp. 101–110. 3

[Ket98] KETTNER L.: Designing a data structure for polyhedral
surfaces. In Proceedings of the Fourteenth Annual Symposium
on Computational Geometry (New York, NY, USA, 1998), SCG
’98, ACM, pp. 146–154. 2

[Ket99] KETTNER L.: Using generic programming for designing
a data structure for polyhedral surfaces. Computational Geome-
try: Theory and Applications 13, 1 (May 1999), 65–90. 2

[KT02] KALLMANN M., THALMANN D.: Star-vertices: a com-
pact representation for planar meshes with adjacency informa-
tion. Journal of Graphics Tools 6, 1 (January 2002), 7–18. 2

[LCCC01] LÉVY B., CAUMON G., CONREAUX S., CAVIN X.:
Circular incident edge lists: a data structure for rendering com-
plex unstructured grids. In Proceedings of the Conference on
Visualization ’01 (Washington, DC, USA, 2001), VIS ’01, IEEE
Computer Society, pp. 191–198. 2

[Lee99] LEE K.: Principles of CAD / CAM / CAE Systems.
Addison-Wesley, 1999. 1

[LH06] LEFEBVRE S., HOPPE H.: Perfect spatial hashing. ACM
Trans. Graph. 25, 3 (July 2006), 579–588. 3

[LLLV05] LAGE M., LEWINER T., LOPES H., VELHO L.: Chf:
A scalable topological data structure for tetrahedral meshes. In
Proceedings of the XVIII Brazilian Symposium on Computer
Graphics and Image Processing (Washington, DC, USA, 2005),
IEEE Computer Society, pp. 349–356. 3

[LSK∗06] LEFOHN A. E., SENGUPTA S., KNISS J., STRZODKA
R., OWENS J. D.: Glift: Generic, efficient, random-access gpu
data structures. ACM Trans. Graph. 25, 1 (January 2006), 60–99.
3

[MB91] MUUSS M. J., BUTLER L. A.: Combinatorial solid ge-
ometry, boundary representations, and non-manifold geometry.
State of the Art in Computer Graphics: Visualization and Model-
ing 1 (June 1991), 185–223. 2

[PSSSM09] PENA SERNA S., SILVA J., STORK A., MARCOS
A.: Neighboring-based linear system for dynamic meshes. In
Proceedings of the 6th Workshop in Virtual Reality Interactions
and Physical Simulations (Aire-la-Ville, Switzerland, Switzer-
land, 2009), VRIPHYS ’09, Eurographics Association, pp. 95–
103. 2

[SB11] SIEGER D., BOTSCH M.: Design, implementation, and
evaluation of the surface_mesh data structure. In Proceed-
ings of the 20th International Meshing Roundtable (2011), IMR,
pp. 533–550. 3

[SNCH08] SANDER P. V., NEHAB D., CHLAMTAC E., HOPPE
H.: Efficient traversal of mesh edges using adjacency primitives.
ACM Trans. Graph. 27, 5 (December 2008), 144:1–144:9. 3

[TM06] TOBLER R. F., MAIERHOFER S.: A mesh data structure
for rendering and subdivision. In Proceedings of WSCG: Inter-
national Conference in Central Europe on Computer Graphics,
Visualization and Computer Vision (2006), pp. 157–162. 3

[Wei85] WEILER K.: Edge-based data structures for solid mod-
eling in curved-surface environments. IEEE Computer Graphics
and Applications 5, 1 (January 1985), 21–40. 3

[WMKE04] WEILER M., MALLON P. N., KRAUS M., ERTL
T.: Texture-encoded tetrahedral strips. In Proceedings of the
2004 IEEE Symposium on Volume Visualization and Graphics
(Washington, DC, USA, 2004), VV ’04, IEEE Computer Soci-
ety, pp. 71–78. 2

90

