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Abstract 

The paper presents the characteristics of the departing passenger flow in different stations 

based on the real-record passenger flow data of Wuhan-Guangzhou high speed railway, 

from January, 2010 to December, 2015. The passenger dataset is framed for the long 

short-term memory (LSTM) model, considering the expectation input format of LSTM 

layers and the characteristics of the data. The Keras model in Python is used to fit LSTM 

model with tuning and regulating all the parameters necessary in the model. Then the 

fitted LSTM model is applied to forecast the short-term departing passenger flow of 

Wuhan-Guangzhou high speed railway. The influence of important parameters in the 

LSTM model on the prediction accuracy is analysed, and the comparison with other 

representative passenger flow forecast models is conducted. The results show that the 

LSTM model can get the valid information in a long passenger flow time series and 

achieve a better performance than other models. The passenger flow prediction errors 

valued by MAPE are 7.36%, 7.33%, 8.03%, respectively for Chenzhou station, Hengyang 

station and Shaoguan station. The parameters in the LSTM model such as the number of 

hidden units, the batch size and the input historical data length have a great influence on 

the prediction accuracy. 
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1 Introduction 

The HSR has developed significantly in China due to its efficiency in transporting large 

numbers of passengers within short travel times. The short-term forecasting of high-speed 

rail passenger flow is one of the most critical issues because passenger demand provides a 

reference for seat allocation, ticket booking and train routing. The daily-based passenger 

demand in the near future is essential for the railway revenue management. 

Short-term passenger flow prediction has a long history, and many successful models 

have been developed for this issue. These models can be generally divided into three 

categories: parametric approaches, nonparametric approaches and hybrid models.  

In general, parametric approaches are model-based methods, whose structure is 

predetermined based on certain theoretical assumptions and the model parameters can be 

computed with empirical data. A variety of parametric models have been applied on 

traffic forecasting, such as the grey forecasting model, exponential smoothing model 

(Kyungdo (1995) and Tan (2009)), Kalman filtering models((Chen (2001), Chien 

(2003),Wang(2006) and Van (2008)), state space model (Liu (2006)) and so on. The most 
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widely used parametric method is Autoregressive Moving Average (ARIMA) model, 

which assumes the traffic condition is a stationary process. ARIMA performs well and is 

effectively in modelling linear and stationary time series. A number of ARIMA based 

time series models have been proposed for traffic prediction (Moreira (2013), Williams 

(2003), Smith (2002), Williams (2001) and Chandra (2009)).However, the parametric 

approaches cannot work well on stochastic and nonlinear data, thus the nonparametric 

methods are developed to forecast the traffic flow with stochastic and nonlinear. 

In the nonparametric approaches, the parameters and the structure of the 

nonparametric approaches are uncertain. The non-parametric models used for traffic 

forecasting include support vector regression (Wu (2004), Zhang (2009), Asif (2014) and 

Zhang (2007)), neural networks (Çetiner (2010) and Tsai (2009)), Kalman filtering(Van 

Lint (2008) and Wang (2007) ), Gaussian maximum likelihood (Tang (2003)) and so on. 

SVM is an artificial intelligence method based on the structural risk minimization 

principle and has the potential to overcome the problems of nonlinearity, small samples, 

high dimension, local minima and over-fitting. Neural networks are capable of handling 

multi-dimensional data with flexible model structure, strong learning ability as well as 

adaptability. The Neural networks has been applied in many researches (Karlaftis (2011), 

and Ma (2015)).However the neural networks have drawbacks of  the potential of over 

fitting, the requirement of large train samples and the cost of long training time.  

Third, hybrid models have been proposed for a better performance in passenger 

performance. Zhang (2014) proposed a hybrid EEMD-GSVM model and applied the 

model to forecast the short-term passenger flows of three typical origin–destination pairs 

in terms of travel distances. Wei (2012) forecasted metro passenger flows with a hybrid of 

EMD and neural networks that generated higher forecasting accuracy and stability than 

the seasonal ARIMA. Zhu (2007) presented a hybrid method based on EMD and SVM for 

short-term electronic load forecasting. Li (2014) proposed an ensemble learning 

framework to appropriately combine estimation results from multiple macroscopic traffic 

flow models. Khashei (2012) proposed a new hybrid model of the autoregressive 

integrated moving average (ARIMA) and probabilistic neural network (PNN) to yield 

more accurate results than traditional ARIMA models. 

Although numerous passenger flows forecast models have been developed, the short-

term forecast of HSR passenger flow is still challenging because daily passenger flows are 

highly oscillated, nonlinear and non-stationary. In addition, most HSR lines in China are 

still under development, while passenger flows of opened HSR lines can be influenced by 

unstable demands such as holidays. 

Currently, deep learning has been successfully applied in many fields and achieved 

reasonable results (Srivastava (2015), Donahue (2017) and Polson (2017)). Ma (2017) 

proposed a deep convolutional neural network for large-scale traffic network speed 

prediction. Yu (2017) designed a spatiotemporal recurrent convolutional network for 

predicting network-wide traffic speeds. Meanwhile, big data has revolutionized the 

transportation industry over the past several years. These two hot topics have inspired us 

to reconsider the traditional issue of passenger flow prediction. In this paper, a HSR 

passenger flow forecasting model based on LSTM is proposed.  

The passenger flow sequence of HSR is nonlinear time series. The interaction in the 

passenger time series should be considered to forecast the short-term passenger flow. 

Most of the current passenger flow prediction model cannot take advantage of the 

effective information in the passenger flow time series. LSTM is one kind of deep neural 

network and the model is fitted based on the big data of passenger flow. LSTM can 

capture the nonlinearity and randomness of traffic flow more effectively, as well as 
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overcome the issue of back-propagated error decay through memory blocks, and thus 

shows superior capability for time series prediction with long temporal dependency. In 

this paper, daily ticket data on the Beijing- Guangzhou HSR was collected from January, 

2010 to December, 2015. The proposed LSTM passenger forecast model is applied to 

forecast the passenger flow of Beijing- Guangzhou HSR. 

The remainder of this paper is organized as follows: Section 1 provides a general 

overview of the existing approaches of traffic flow forecasting and the application. The 

long short-term memory neural network architecture is present and the passenger 

prediction model based on LSTM is introduced in section 2. In addition, the performance 

of the LSTM is evaluated, compared to other models such as Support Vector Machine 

(SVM), K-Nearest Neighbor (KNN) and Random Forest (RF). In section 4 the effect of 

parameters in the LSTM on the prediction performance is analysed. Finally, conclusion 

and future envisions are discussed in section 5. 

2 Passenger Flow Prediction model Based on LSTM  

2.1 Structure of the Memory Unit of LSTM 

Recurrent neural network (RNN) is a powerful deep neural network which can deal with 

sequence data using the internal memory. The architecture of RNN is illustrated in Figure 

1. RNN contains input layer , hidden layer S  and output layer O . U , V , W  are 

weight vectors. At the time t  the hidden layer
tS and the output 

tO can be calculated 

as Equation (1) and Equation (2).  
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...X 0X 1X
tX

O tO0O 1O

0S 1S

W

U

V

U U U

W W W

V V V

S
tS

 
Figure 1: Standard RNN architecture  

 1t t tS f UX WX    (1) 

 t tO g VS  (2) 

Thus the hidden vector tS  at time t  is determined by the input vector at time t  and 

hidden vector at the previous time 1t   while the output tO is determined by the historic 

input 1 2 1, , ...t t tX X X X  .  

In principle, RNN can map the whole historical input data to each output, relying on 

the key point that the recurrent connections allow the memory of previous input to affect 

the network’s output. However, in standard RNN architecture, the given weight vector in 

the hidden layer plays an important role on the network output, which can lead to either 

decays or blows up exponentially as it cycles around the recurrent connections in the  

networks for  too many times. This effect is often considered as the vanishing gradient 

problem. Thus, RNN is incapable of learning from long time lags, or saying long-term 

X
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dependencies (Bengio (2002)).  

To address the problem, a LSTM is proposed to work well on modelling long-term 

time series. The difference between standard LSTM architecture and the RNN architecture 

is the hidden layer, which enhance the LSTM to avoid vanishing gradient problem. LSTM 

is a special kind of RNN. By treating the hidden layer as a memory unit, LSTM network 

can get the valid information in a long passenger flow time series. The typical architecture 

of LSTM memory unit is shown in Figure 2. 


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
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Figure 2: The structure of LSTM unit cell  

There is a memory cell in the unit, denoted by C . Moreover, the LSTM memory unit 

contains three gates, namely input gate ti , forget gate tf and output gate to .The state of 

the memory cell at time t  is indicated by tc ,the input of every gate contains the 

preprocessed data tx  and the previous output of the LSTM unit, called 1th  .Based on the 

information flow in the structure of memory unit, the update of the memory cell’ state can 

be summarized as Equation (3) to Equation (8). 

 1[ , ]t f t t ff W h x b     (3) 

 1[ , ]t i t t ii W h x b     (4) 

 '

1tanh [ , ]t c t t cc W h x b    (5) 

t tc f ct-1+it ct '  (6) 

 1[ , ]t o t t oo W h x b     (7) 

t th o tanh（ct） (8) 

ti , tf  and to  are the output of different gates,
 tc  is the new state of memory cell and 

th is the final output of the LSTM unit. fW , iW , cW , oW are coefficient matrixes, fb , ib , cb ,

ob represent the offset vectors,   is the weight of the sigmoid function, and tanh is the 

hyperbolic tangent activation function. Via the function of the different gates, LSTM 

memory units can capture the complex correlation features within time series in both short 

and long term, which is a remarkable improvement compared with RNN. 
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2.2 LSTM Network for Passenger Flow Prediction 

In the proposed LSTM model, the daily historical passenger flow data at one station can 

be viewed as a time sequence  1 2, ,..., ,...,i nP p p p p . In general the passenger flow is 

non-stationary time series with increase and periodicity trend. The non-stationary of the 

time series affects the prediction accuracy of the LSTM model. Stationary data is easier to 

model and will very likely result in more skillful forecasts. A standard way to remove a 

trend is by differencing the data. That is the observation from the previous time step (t-1) 

is subtracted from the current observation (t). This removes the trend and we are left with 

difference series or the changes to the observations from one time step to the next. 

Thus the passenger dataset should be framed for the long short-term memory (LSTM) 

model, considering the expectation input format of LSTM layers and the characteristics of 

the data. 

The passenger flow  1 2, ,..., ,...,i nP p p p p can be transformed from time series to 

stationary by two steps, one is rolling window smoothing with M order and the other step 

is the differencing process. The rolling window smoothing process can remove the 

periodicity in the time series, after which the passenger data can be denoted as 

 1 2 1, ,...,W w w w

n MP p p p   .The differencing process can remove the increase trend in the 

time series, after which the passenger data can be denoted as  1 2, ,...,D d d d

n MP p p p   . 

Below are functions calculating the rolling window smoothing and differenced series. 
1

1 1

1
( ... ) / M

t M
w

t t t t M i

i t

p p p p p
M

 

  



       (9) 

1

d w w

t t tp p p   (10) 

Like other neural networks, LSTM expect data to be within the scale of the activation 

function used by the network. The default activation function for LSTMs is the hyperbolic 

tangent (tanh), which outputs values between -1 and 1. This is the preferred range for the 

time series data. 

We can transform the dataset to the range [-1, 1] using the MinMaxScaler class. The 

function below inverts this operation. Again, we must invert the scale on forecasts to 

return the values back to the original scale so that the results can be interpreted and a 

comparable error score can be calculated. 

, 1

min( )

max( ) min( )

d D

n n
n t D D

n n

p P
x

P P






 (11) 

The LSTM model in Keras assumes that your data is divided into input (X) and output 

(Y) components. Suppose we need to predict the passenger flow  1 2, ,...out t t t nP p p p  

of time duration  1, 2,...T t t t n     using the of m historical time steps passenger 

flow  1 2, ,...in t m t m tP p p p    , we can concatenate these two series together to create 

data frame   ,in outX Y  for supervised learning. Let us denote the input of LSTM model

 1 2 1, ,... ...in j n M L FX X X X X     ,  +1 1, ,...j j j j LX x x x   , jx X , jX L .The 

output of LSTM model  1 2 1, ,... ...out j n M L FY Y Y Y Y     ,  1 1, ,...j j L j L j L FY x x x      ,
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j Lx X  and jY F .The  ,in outDataframe X Y   Should be divided into training 

datasets  ,Train TrainDatatrain X Y and test dataset  ,Test TestDatatest X Y  . The training 

dataset are used to fit the model and the test dataset is used to evaluate the performance of 

the fitted model. 

Given that the training dataset is defined as X inputs and Y outputs. Let us denote the 

input passenger time series as  1 2, ,..., mX x x x , hidden state of memory cells as 

 1 2, ,..., mH h h h and output passenger prediction time series as  1 2, ,..., mY y y y , 

LSTM works the computation as Equation (12) to Equation (13). 

 1t hx t hh t hh H W x W h b    (12) 

1t hy t yp W y b   (13) 

The objective of the passenger flow prediction is to minimize the difference between 

the actual passenger flow and the predicted passenger flow. The square loss function given 

by the following formula is used as the objective function, in which ty  represents the 

actual passenger flow and tp represents the predicted passenger flow. 

 
2

1

n

t t

t

e y p


   (14) 

In order to minimize training error and meanwhile avoid local minimal points, Adam 

optimizer, a modification of stochastic gradient descent (SGD) optimizer with adaptive 

learning rates, is applied for back propagation through time (BPTT). 

The prediction accuracy of short-term traffic flow can be assessed by two commonly 

used metrics, i.e., Mean Absolute Percentage Error (MAPE) which evaluates the relative 

error and Root Mean Square Error (RMSE) which evaluates the absolute error. They are 

defined by Equation (15) and Equation (16). 

, ,

1 ,

100%1 n
Prediction i Test i

i Test i

p p
MAPE

n p

 
   (15) 

 
2

, ,

1

1 n

Test i Prediction i

i

RMSE p p
n 

   (16) 

The flowchart of short-term passenger prediction based on LSTM is shown as Figure 

3. 
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Figure 3: The flowchart of short-term passenger prediction model based on LSTM 

3 Experiments and Results 

3.1 Dataset Description 

The passenger flow departing from Chenzhou station, Hengyang station and Shaoguan 

station, which locates on Wuhan-Guangzhou HSR, are taken as examples to demonstrate 

the efficiency of the LSTM based passenger prediction model. 

The passenger volume data are collected every day from the booking tickets system, 

from 1
st
 January, 2010 to 30

th
 December, 2015, 2174 days in total. Part of the original 

dataset is shown in Figure 4. There is a big difference among the number of passengers 

departing form the three stations. Thus the performance of the LSTM Model on different 

grand passenger volume can be evaluated. 

 
Figure 4: The passenger flow time series of the stations 
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The passenger volume increased during vacation, which may affect the prediction 

precision of LSTM model. Thus the passenger data of vacation are removed from the time 

series, and then 1673 days left. 

The passenger time series of each station are shown in Figure 4. The passengers series 

present an increase trend as well as a significant cyclical with a period of 7 days. The 

passenger peak days appears on Friday and Sunday while the passenger trough appears on 

Sunday. The passenger data should be transformed from time series to LSTM data, just 

follow the data process in part 2. The prepared data for LSTM is shown in Figure 5. 

 
Figure 5: The standardized passenger flow time series 

The passenger flow of Chenzhou station, Hengyang station and Shaoguan station are 

taken as examples to demonstrate the efficiency of the LSTM based passenger prediction 

model. Since the passenger volume presents a significant periodicity of 7 days, the 

objection of the model is to predict the passenger volume in the following days by means 

of the data of the previous seven days. To demonstrate the efficiency of the LSTM model 

as well as simplify the passenger prediction problem, LSTM model is just applied to 

forecast the passenger volume in the next day. 

The passenger data is divided into two parts, the first 80% of the data is used to train 

the model, and the last 20% of the data is used to test the prediction accuracy of the 

model. To validate the efficiency of the proposed LSTM network, the performance is 

compared with some conventional forecast models, include ARIMA, SVM, RF, KNN. 

Some key parameters should be determined for the short-term passenger flow 

prediction based on LSTM-RNN, including the size of input layer, the number of hidden 

layers, and the number of hidden units in each of hidden layer, the batch size and the size 

of output layer. The input historical data length is equal to the size of input layer, which is 

defined as 7 in the experiment. The number of hidden layers is assigned as 1,2,4,6,8 and 

the number of units in each hidden layer is assigned as 5,10,20,50,75,100. The size of 

output layer is 1, indicating the passenger flow in the next step will be forecasted. Grid 

search method is used to obtain the optimal parameters.  The candidate values of the 

parameters are shown in Table 1. We performed a grid search over this parameter in order 

to find the size that leads to the best results. The grid search results of the optimal model 

parameters and the prediction precision are listed in Table 2. 
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Table 1: The parameters and hyper parameters of LSTM model  

parameters Values 

Input historical data 

length 

7 

Output size 1 

Epoch 1000 

Optimizer Adam 

Learning rate  0.0001 

Dropout 0.3 

Loss function Mean_Squared_Error 

Activation function Tanh 

hyper parameters Values 

Batch size 1,2,4,6,8,10,12,14,16 

Hidden  Unit 5,10,20,50,75,100 

Architecture Input layer→LSTM layer→LSTM layer→Dropout layer→

Fully connected layer→Output layer  

Table 2: The optimal parameters of LSTM model for different stations 

Station Batch size Hidden unit  MAPE RMSE 

Chenzhou 1 10 7.21% 759.582 

Hengyang 1 10 7.28% 800.227 

Shaoguan 1 10 7.79% 562.000 

3.2 Prediction Performance Analysis 

In this section, we use the same experimental setup and fit the model for 1000 training 

epochs. A line plot of the series of RMSE scores on the train and test sets after each 

training epoch is also created, which is shown in Figure 6. The result clearly shows a 

downward trend in RMSE over the training epochs for the experimental runs of the three 

stations. The lines for the all the train case shows a sharp decrease before 200 epochs and 

then become more horizontal, but still generally show a downward trend, although at a 

lower rate of change. The lines for the test case of Chenzhou station, Hengyang station 

and Shaoguan station show a downward trend respectively before 500 epochs, 50 epochs 

and 400 epochs, and then the lines become more horizontal.  

 
Figure 6: Diagnostic results with 1000 Epochs 

Figure 7 shows the passenger flow comparison between observation values and the 

prediction values obtained by the LSTM. The prediction results are fairly good for 

Chenzhou, Hengyang and Shaoguan station, whose MAPE are 7.26%,7.33%,8.03% 

respectively. 

In general the LSTM model is well capable of predicting the passenger volume trend. 
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The prediction accurate is high as the passenger flow shows a regular trend. However, 

when dramatic changes in the passenger flow are observed, the prediction accurate is low.  

The distribution of MAPE over the predicted values is shown in Figure 7. We could 

find that most of the MAPE are located in （0,10%）. Specifically, 52.7%, 57.5%, 57.5% 

of the MAPE is less than 5%, and 81.9%, 79.2%, 82.4% of the MAPE is less than 10%, 

respectively for Chenzhou, Hengyang and Shaoguan station. 

 

 
Figure 7: The prediction passenger flow and MAPE 

To validate the efficiency of the proposed LSTM network, the performance is 

compared with some conventional forecast approaches; include ARIMA, SVM, RF, KNN. 

Each prediction method is tested for 10 times to avoid the randomness. The experimental 

results are shown in Table 3.As we can see from Table 3, compared to other methods, the 

MAPE of LSTM are the lowest. For the RMSE, the GB method performed best for the 

passenger volume prediction at Hengyang station while the RMSE of LSTM at other 

stations is the lowest.  

Table 3: Prediction results of different models 

Model 
Chenzhou Hengyang Shaoguan 

RMSE MAPE RMSE MAPE RMSE MAPE 

LSTM 778.74 7.26% 801.46 7.33% 584.29 8.03% 

RF 861.45 8.14% 844.41 7.89% 628.60 8.96% 

GB 831.37 7.80% 801.15 7.36% 602.41 8.44% 

KNN 860. 74 8.11% 805.26 7.56% 625.07 8.51% 

SVM 796.76 7.55% 816.51 7.34% 591.31 8.21% 

For a further analysis of the prediction efficiency and the stability of different 
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prediction models, RMSE and MAPE distributions of each model is shown on a box and 

whisker plot in Figure 8. 

The red line shows the median and the box shows the 25th and 75th percentiles, or the 

middle 50% of the MAPE. The values of the red line give an idea of the average expected 

performance of a configuration whereas the box gives an idea of the range of possible best 

and worst case examples that might be expected. 

Looking at just the median RMSE scores, the results suggest that the choice of LSTM 

to predict the passenger volume is better than the other models since the median RMSE 

scores of LSTM for every station are the lowest and the average expected performance of 

LSTM is good. In terms of the stability of different prediction models, the comparison of 

the boxes suggest that the performance of the FR model is unstable since the gap between 

the 25th and 75th percentiles MAPE scores is large. The performance of LSTM model is 

relative stable while GB, KNN, SVM model is very stable. 

 

 
Figure 8: Boxplot of prediction RMSE and MAPE of different models 

To sum up the above analysis, LSTM RNN model is capable of memorizing long 

historical data and achieving higher prediction accuracy even if the model is quite simple. 

Therefore, the proposed model is effective in short-term traffic flow prediction. 

4 Analysis on the Influence of Model Parameters on Prediction 

Accuracy 

4.1 The Number of Hidden Units 

The number of hidden units in each of hidden layer affects the learning ability of the 

network. Generally, more neurons would be able to learn more structure from the problem 

at the cost of longer training time. More learning capacity also creates the problem of 

potentially over fitting the training data.  

The effect of hidden units on the prediction results is investigated by assigning the 

number of units as 5, 10,20,50,75,100. We can objectively compare the impact of 

increasing the number of neurons while keeping all other network configurations fixed. 

We will use a batch size of 1 and 1000 training epochs 

In order to alleviate the influence of random initialization for the model, we repeat 

each experiment 30 times and compare the average test RMSE performance with the 
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number of neurons, the result is shown in Figure 9. 

 
Figure 9: The distribution of prediction MAPE and RMSE of models with different 

hidden units 

From Figure 9, we can see that the MAPE and RMSE remain stable when the number 

of the number of hidden units is less than 20, and the values of which are low. As the 

number of hidden units is more than 20 and less than 75, the MAPE and RMSE rise up 

with the increase of the number of hidden units. The MAEPs and MSEs of Hengyang 

station reach to the highest as the hidden units is 100, while the MAPE of the other 

stations decrease. As the number of hidden unit is 100, the LSTM model perhaps show an 

acceleration of over fitting. 

Specially, diagnostic with1000 epochs and various neuron of Hengyang station are 

taken as an example to demonstrate the effect of the neurons on the LSTM. As the number 

of neurons is 5 and 10, both the line of train loss and test loss show horizontal. The results 

suggest a good, but not great, general performance. It shows a rapid decrease in test 

RMSE as the neurons is 10, which means the learning capacity of the network is improved 

as the number of the neurons increase from 5 to 10. 

 

Figure 10: Diagnostic results of models with different hidden units 

The diagnostic results of models with different hidden units are shown in Figure 10. 

As the number of the neurons is 20, 50, 75, diagnostic results shows a rapid decrease in 

test RMSE to about epoch 500-600. Meanwhile, the training dataset shows a continued 

decrease to the final epoch. These are significant signs of over fitting of the training 

dataset. When the number of the neurons is 100, the inflection point in the training dataset 
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seems to be happening sooner than the 20, 50, 75 neurons experiment, perhaps at epoch 

300-400. 

It can be proved that more neurons can enhance the learning ability of LSTM network. 

However, too many neurons may lead to an over fitting of the training dataset. These 

increases in the number of neurons may benefit from additional changes to slowing down 

the rate of learning, such as the use of regularization methods like dropout, decrease to the 

batch size, and decrease to the number of training epochs. 

4.2 The Batch Size 

Batch size is an important parameter in the LSTM configures, which limits the number of 

samples to be shown to the network before a weight update can be performed. Thus batch 

size controls how often to update the weights of the LSTM network. This same limitation 

is then imposed when making predictions with the fit model. 

In this section, we will explore the effect of varying the batch size. In this study the 

batch size used are 1,2,3,4,5,6,7.We will hold the number of training epochs constant at 

1000.As with training epochs, we can objectively compare the performance of the 

network given different batch sizes. Each configuration was run 10 times and summary 

statistics calculated on the final results. 

A box and whisker plot of the prediction MAPE and MSE were created to help 

graphically compare the distributions, shown in Figure 11. The green line shows the 

average performance while the box shows the variability of the performance of the LSTM 

with different batch size.  

 
Figure 11: The distribution of prediction MAPE and RMSE of models with different batch 

size 

In terms of the average performance, the median MAPE of Chenzhou station and 

Hengyang station showed an upward trend as the batch size increase from 1 to 16. The 

lowest low median MAPE are 7.36% and 7.39% as the batch size is 1, respectively for 

Chenzhou station and Hengyang station. For the Shaoguan station, the median MAPE 

fluctuates with the varying of the batch size, without obvious increase or decrease trend, 

indicating that the prediction accuracy of Shaoguan LSTM model for Shaoguan station is 

less affected by batch size. 

The variability of the performance, the batch size has an influence on the stability of 

the LSTM model, since the variability of the box varies with the batch size. However the 

trend is not clear.   

Tuning the batch size in a neural network is a tradeoff of average performance and 

variability of that performance. The ideal result should have a low mean error with low 

variability, meaning that it is generally good and reproducible. And the batch size should 

be decided according to the Data characteristics. 
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4.3 The Input Historical Data Length 

The excellent performance of LSTM for short term traffic flow prediction mainly benefits 

from the memory ability of LSTM. For purpose of verifying the ability of LSTM to 

memorize long historical data, the performances of each model with different historical 

data length are compared. The input historical data length ranges from 7 to 35 with the 

interval of 7.Note that the input historical data length is always equal to the input size of 

each model. The five models’ MAPE and RMSE are illustrated in Figure 12.  

 
Figure 12: The distribution of prediction MAPE and RMSE of models with different input 

historical data length 

There is a general trend of decreasing RMSE and MAPE as the number of historical 

data length increases from 3 to 7. As the historical data length increases from 3 to 7, the 

RMSE and MAPE for the passenger prediction at Chenzhou and Hengyang station rise up. 

For the passenger prediction at Shaoguan station, RMSE and MAPE increase as the 

historical data length increases from 7 to 21 and decrease as the historical data length 

increases from 21 to 35.  The experiment results suggest a network configuration with 

historical data length of 7 having the best performance, the MAPE of which are 7.39%, 

7.38%, 8.21%, Respectively for Chenzhou, Hengyang, Shaoguan station. It means that for 

one day prediction interval, the passenger flow in the past 7 days has a great impact on the 

current passenger flow, corresponding with the significant periodicity of 7 days presented 

by the passenger flow. 

Specially, Diagnostic with1000 Epochs and various historical data length of Hengyang 

station are taken as an example to demonstrate the effect of the input of historical data 

length on the LSTM, and the result is shown in Figure 13. 

 
Figure 13: Diagnostic Results of models with different input historical data length 
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As the historical data length is 3, 7, 14, 21, both the lines of train loss and test loss 

show decrease trend and then keep horizontal, and the performance of these model seems 

to be reasonable. It shows a rapid decrease in test RMSE as the historical data length is 7 

and the final RMSE score is 0.0222.  

As the historical data length increases to 28 and 35, diagnostic results shows a rapid 

decrease in test RMSE to about epoch 500 and then rise up slightly until to the final epoch 

1000. Meanwhile, the training dataset shows a continued decrease to the final epoch. 

There is a potential possibility of over fitting the training dataset.  

To sum up, the performance of LSTM is effected by the input size of the data. LSTM 

can learning and memorize the complex interaction in the passenger time series and then 

predict the following passenger volume. For the passenger prediction in the experiment, 

the LSTM model is not well capable of getting the characteristics of the passenger time 

series as the input historical data length is too short. Meanwhile, as the input historical 

length is long, the limited learning ability cannot get the enough valid information 

contained in the data. In addition, and the longer the sequence data is, the more 

Interference noise information it contains, may lead a low prediction precision. Therefore, 

it is proper to model long-term dependencies and determine the optimal size of input data 

dynamically for the desirable results of short-term traffic flow prediction. 

5 Conclusions 

The paper analysis on the passenger flow characteristic of Wuhan-Guangzhou High Speed 

rail and proposes a passenger flow prediction method based on LSTM deep neural 

network. The results showed that: 

(1) The LSTM passenger prediction model can cope with the correlation within long-

term passenger time series and predict the trend of passenger flow accurately. The average 

prediction error MAPE of Chenzhou, Hengyang and Shaoguan stations are 7.36%, 7.33% 

and 8.03%, respectively. LSTM model is more effective and reliable than the other 

models, including RF, SVM, KNN, and GB models, while the stability of LSTM model is 

poor. 

(2) The number of hidden units in each of hidden layer has a great influence on the 

prediction accuracy. While the number of hidden units is low, a slight increase of the 

hidden units of LSTM model can improve the convergence speed and prediction accuracy. 

As the number of hidden units in the LSTM model increase to a high level, the LSTM 

model may show an over-fitting state. In the experiment, the LSTM work show a better 

performance as the number of hidden units is set as 5 or 10. 

 (3) The input historical data length and the batch size have a great influence on the 

prediction accuracy of the LSTM model. When the historical data length is 7 and the 

batch size is 1, the passenger prediction accuracy is higher, which means the passenger 

flow in the past 7 days has a great influence on the following passenger flow.  
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