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Abstract

Complex multi-disciplinary models in system dynam-
ics are typically composed of subsystems. This mod-
ular structure of the model reflects the modular struc-
ture of complex engineering systems. In industrial ap-
plications, the individual subsystems are often mod-
eled separately in different mono-disciplinary simula-
tion tools. The Functional Mock-Up Interface (FMI)
provides an interface standard for coupling physical
models from different domains and addresses prob-
lems like export and import of model components in
industrial simulation tools (FMI for Model Exchange)
and the standardization of co-simulation interfaces in
nonlinear system dynamics (FMI for Co-Simulation),
see [8]. In November 2011, the third β -version of
FMI for Model Exchange and Co-Simulation v2.0 was
released [13] that supports advanced numerical tech-
niques in co-simulation like higher order extrapolation
and interpolation of subsystem inputs, step size con-
trol including step rejection and Jacobian based lin-
early implicit stabilization techniques. Well known
industrial simulation tools for applied dynamics sup-
port Version 1.0 of this standard and plan to support
the forthcoming Version 2.0 in the near future, see the
“Tools” tab of website [8] for up-to-date information.
The renewed interest in algorithmic and numerical as-
pects of co-simulation inspired some new investiga-
tions on error estimation and stabilization techniques
in FMI for Model Exchange and Co-Simulation v2.0
compatible co-simulation environments. The present
paper extends recent results from [3] on reliable er-
ror estimation and communication step size control
in the framework of FMI for Model Exchange and
Co-Simulation v2.0. Based on a strict mathematical
analysis, we study the asymptotic behaviour of the lo-
cal error and two error estimates that may be used to

adapt the communication step size automatically to the
changing solution behaviour during time integration.
These theoretical results are illustrated by numerical
tests for a (linear) quarter car model and provide a ba-
sis for future investigations with more complex cou-
pled engineering systems.
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1 Introduction

Co-simulation is a rather general approach to the simu-
lation of coupled technical systems and coupled physi-
cal phenomena in engineering with focus on instation-
ary (time-dependent) problems. From the mathemati-
cal viewpoint, co-simulation results in a class of time
integration methods for coupled systems which are de-
scribed by time dependent ordinary differential equa-
tions (ODE) or differential algebraic equations (DAE).
In that context, we consider r ≥ 2 coupled subsystems
in nonlinear state-space form

ẋi = fi(t,xi,ui),

yi = gi(t,xi,ui),

}
i = 1, . . . ,r, t ∈ [tstart, tstop]

(1a)

with the state vectors xi, inputs ui and outputs yi. The
subsystems are coupled by input-output relations

ui = ci(y1, . . . ,yi−1,yi+1, . . . ,yr), (i = 1, . . . ,r),
(1b)

see [12]. Summarizing all components in vector form,
we get a coupled system in the more compact form

ẋ = f(t,x,u),
y = g(t,x,u), u = c(y),

(2)

with x = (xT
1 , . . . ,xT

r )
T , . . .
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The simulation time interval is split by a grid of
communication points tstart = T0 < T1 < .. . < TN =
tstop, where the data exchange between the subsystems
is restricted to these discrete points. In each communi-
cation step Tn→ Tn +Hn =: Tn+1, (n = 0, . . . ,N−1),
with communication step size Hn, the subsystems are
solved separately and independently from each other.

Since the update of the inputs u is restricted to the
time discrete communication points, these terms have
to be approximated by signal extrapolation for the cur-
rent communication step Tn→ Tn+1

ū(t)≈ u(t), t ∈ [Tn,Tn+1],

where the approximation ū(t), is based on information
u(Tn−ι), (ι = 0, . . . ,k) from k+ 1 previous communi-
cation points.

This leads to the new coupled problem for t ∈
[Tn,Tn +Hn]

˙̄x(t) = f(t, x̄, ū),
ȳ(t) = g(t, x̄, ū).

(3)

The coupled system (3) is composed of subsystems
that are solved separately from each other, where we
get the numerical solution x̄(t)≈ x(t) and ȳ(t)≈ y(t),
(t ∈ [Tn,Tn+Hn]). Typically, different time integration
methods and / or different (micro) step sizes are used in
the individual subsystems resulting in a multi-method
and / or multi-rate method for the coupled system.

Following Jackson [10], the time integration meth-
ods to solve the coupled system (3) are called modular
to underline the modular structure of the approach.

In practical applications, usually constant commu-
nication step sizes Hn := H with n = 0, . . . , N−1 are
used, since the simulation results and the behavior
of the underlying integration methods can reliably be
controlled. Further gains in efficiency and robustness
of numerical co-simulation techniques are expected
by variable communication step sizes Hn := Tn+1−Tn

that are adapted automatically to the solution behavior
(communication step size control).

2 Estimation of the local error

For a reliable communication step size control an er-
ror estimate EST for the local error of the numerical
solution is needed and is compared to user defined er-
ror bounds (tolerances), since for coupled systems (2)
without algebraic loops the global error is bounded by
a multiple of the maximum local error [3].

Richardson extrapolation is a time-consuming but
reliable way to estimate local errors in ODE and DAE

time integration and considers two (small) consecu-
tive communication steps of size Hn = Hn+1 = H from
Tn→ Tn +H =: Tn+1 and Tn+1→ Tn +2H =: Tn+2. To
get an estimate for the local error, the solution of these
two steps is compared with a second numerical solu-
tion that is computed for a (large) communication step
Tn→ Tn+2H =: Tn+2. Substantial savings of comput-
ing time result from an algorithmic modification of the
Richardson extrapolation that is tailored to the FMI co-
simulation framework. Both approaches will be stud-
ied theoretically (by an asymptotic error analysis) as
well as practically (by numerical tests for a quarter car
benchmark problem). For the theoretical analysis, we
neglect the discretization errors in the subsystems that
should be kept small in a practical implementation by
appropriate settings of error tolerances.

To keep the notation compact, we restrict the the-
oretical analysis of the local error estimates to pure
polynomial signal extrapolation in all subsystems [3].
Consider the polynomial ū(t), that interpolates the an-
alytical solution u(t) of (2) at the k+1 equidistant pre-
vious communication points Tn−ι , (ι = 0, . . . ,k). The
approximation error of this interpolating polynomial
ū(t) is for all t ∈ [Tn,Tn +H] bounded by [7]

ū(t)−u(t) =−u(k+1)(Tn)

(k+1)!

k

∏
ι=0

(t−Tn−ι)

+O(Hk+2).

(4)

In the first (small) communication step Tn→ Tn+H
(first step of the error estimation by Richardson ex-
trapolation) we have to solve system (3) starting from
x̄(Tn) = x(Tn). Linearization shows that the error in
the state and output vectors satisfy

˙̄x(t)− ẋ(t) = An(x̄(t)−x(t))+Bn(ū(t)−u(t))+

+O(Hk+2),

ȳ(t)−y(t) = Cn(x̄(t)−x(t))+Dn(ū(t)−u(t))+

+O(Hk+2),

where the system matrices An, Bn, Cn, Dn denote the
Jacobians fx, fu, gx, gu evaluated at x = x(Tn), u =
u(Tn). Up to higher order terms, the error in the state
vector is given by the solution of a linear time invariant
system for t ∈ [Tn,Tn +Hn] and may be expressed as

x̄(t)−x(t) = exp(An(t−Tn))

= 0︷ ︸︸ ︷
(x̄(Tn)−x(Tn))

+
∫ t

Tn

exp(An(t− s))Bn(ū(s)−u(s))ds

+O(Hk+3).

(5)
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With (4) and (5) and the substitution σ := (s−Tn)/H,
Hdσ = ds the error of the output vector is

ȳ(Tn+1)−y(Tn+1) =

−CnBn
u(k+1)(Tn)

(k+1)!

∫ 1

0

k

∏
ι=0

(σ + ι)dσ︸ ︷︷ ︸
=: γk

Hk+2

−Dnu(k+1)(Tn)︸ ︷︷ ︸
=: δk

Hk+1 +O(cDHk+2 +Hk+3)

with constant cD, which is set to cD = 0 if ∂g/∂u≡ 0
and cD = 1 otherwise.

In the next (small) communication step Tn +H →
Tn +2H the input function is substituted by a polyno-
mial ¯̄u(t) that interpolates c(ȳ) at t = Tn +H and u(t)
at t = Tn−ι , (ι = 0, . . . ,k−1).

The error in the output vector ¯̄y(Tn+2) is then given
by

¯̄y(Tn+2)−y(Tn+2) =

−2γkHk+2

−
(

δk +(k+1)DnLnδk

)
Hk+1

+O(cDHk+2 +Hk+3)

(6)

with Ln = ∂c/∂y(Tn).
For error estimation by Richardson extrapolation,

we consider in time interval [Tn,Tn + 2H] a second
numerical solution for the output vector ỹ(Tn+2) and
input function ũ(t) that is defined by the interpola-
tion polynomial for data points (Tn−2ι ,u(Tn−2ι)), (ι =
0, . . . ,k). Analogously to the first step we get the error

ỹ(Tn+2)−y(Tn+2) =−γk(2H)k+2−δk(2H)k+1

+O(cDHk+2 +Hk+3).
(7)

In ODE and DAE time integration, the comparison
of the numerical results for a double-step with (small)
step size H and a single (large) step with step size 2H
allows to estimate the leading term of the local error
[9]. For modular time integration, this error estimate
is given by [11]

ESTRich :=
¯̄y(Tn+2)− ỹ(Tn+2)

(1−2k+1)
.

The comparison of (6) and (7) shows

¯̄y(Tn+2)−y(Tn+2) = ESTRich

+
(k+1)2k+1

(1−2k+1)
DnLnδkHk+1

+O(cDHk+2 +Hk+3).

Here we can see, that in the context of co-simulation,
Richardson extrapolation may give asymptotically
wrong results if DnLnδk 6= 0, i. e. , for coupled systems
with direct feed-through in at least one subsystem.
If there are no subsystems with direct feed-through
(∂g j/∂u j ≡ 0, ( j = 1, . . . ,r)), ESTRich reproduces all
components of the local error in the output variables
correctly up to higher order terms.

In the ITEA2 project MODELISAR, several modi-
fications of error estimate ESTRich were tested [15] to
reduce the large extra effort for computing ỹ. Here we
use ū(t) = ũ(t) for t ∈ [Tn,Tn +H] such that the inter-
mediate results x̄(Tn+1) and x̃(Tn+1) coincide. From
the view point of numerical efficiency, it would be fa-
vorable to use one and the same approximation ū(t) of
the input function u(t) for both numerical solutions in
the first communication step Tn → Tn +H and to re-
strict the use of different input functions to the second
communication step, i. e. , to t ∈ [Tn+1,Tn+2].

In that way, co-simulation may proceed with a large
communication step Tn → Tn + 2H of size 2H that is
temporarily interrupted at t = Tn+1 to provide input
data ȳ(Tn+1) and c(ȳ(Tn+1)) for the second numeri-
cal solution to be used for error estimation. Alterna-
tively, a small communication step Tn → Tn +H may
be completed in the classical way and the two differ-
ent numerical solutions on time interval [Tn+1,Tn+2]
are evaluated in parallel. With this second strategy, no
subsystem solver has to go backward in time and the
practical implementation might be simplified.

According to [3] the error estimate is then given by

ESTmod :=
¯̄y(Tn+2)− ȳ(Tn+2)

(1− pk)
,

where pk is given for constant (k = 0), linear (k = 1)
and quadratic (k = 2) extrapolation by

p0 = 2,

p1 = 14/5,

p2 = 32/9.

To demonstrate the estimation of the local error and
the communication step size control in co-simulation,
we use a low dimensional linear benchmark problem.
The quarter car model which goes along a road pro-
file is defined by a one-dimensional oscillator with two
mass points mc and mw for the chassis and the wheel.
Both masses are coupled by a spring-damper element
with spring constant kc and damping constant dc, see
Figure 1. Moreover, the connection between wheel
and road is represented by a spring-damper element
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with constants kw and dw. For typical parameter values
(see below), the eigenfrequency of subsystem wheel is
ten times larger than the one of subsystem chassis.

The displacements of the mass points are given by
ηc, ηw and the profile of the road is defined by a time
dependent function z(t). For numerical tests we use
the following parameter configuration:

mw

mc

dckc

z(t)

ηc

ηw

dwkw

Figure 1: Quarter car model.

wheel mass mw = 40kg,
chassis mass mc = 400kg,
wheel spring kw = 150000Nm−1,
chassis spring kc = 15000Nm−1,
wheel damper dw = 0Nsm−1,
chassis damper dc = 1000Nsm−1,

initial values at t = 0

ηc(0) = 0

η̇c(0) = 0

ηw(0) = 0

η̇w(0) = 0

and excitation function

z(t) :=

{
0, t < 0,
0.1, t ≥ 0

to get the system in motion. The equations of motion
are given by

mcη̈c(t) = kc(ηw(t)−ηc(t))+dc(η̇w(t)− η̇c(t)),

mwη̈w(t) = kw(z(t)−ηw(t))+dw(ż(t)− η̇w(t))

− kc(ηw(t)−ηc(t))−dc(η̇w(t)− η̇c(t)).

For co-simulation this system is split into two subsys-
tems (chassis and wheel) of the form

ẋ1 = f1(x1,u1),

y1 = g1(x1,u1),

u1 = y2,

ẋ2 = f2(x2,u2),

y2 = g2(x2,u2),

u2 = y1

with the state vectors x1 = (ηc, η̇c)
T and x2 =

(ηw, η̇w)
T , right hand sides of the subsystems f1 =

(η̇c, η̈c)
T , f2 = (η̇w, η̈w)

T , inputs u1, u2 and outputs
y1, y2. We consider a displacement-displacement
and a displacement-force coupling [5]. For the
displacement-displacement coupling the input and
output vectors are given by

u2 = y1 = x1,

u1 = y2 = x2.

In the case of displacement-force coupling, the output
of the second subsystem (wheel) is defined by the cou-
pling force of the spring-damper element between the
two masses mc and mw which is also the input of the
other subsystem (chassis):

u2 = y1 = (ηc, η̇c)
T ,

u1 = y2 = kc(ηw(t)−ηc(t))+dc(η̇w(t)− η̇c(t)).

In that case, the subsystem wheel has a direct feed-
through of its input, ∂g2/∂u2 6= 0.

Figs. 2 and 3 show the local errors for the quarter car
benchmark and illustrate that the new error estimate
ESTmod is as reliable as the classical estimate ESTRich.

3 Variable communication step sizes

The communication step size control in co-simulation
is an extension of the step size control in classical time
integration methods for ODEs [9].

In the context of co-simulation, the error estimator
EST should estimate in each consecutive communi-
cation step Tn → Tn+1 → Tn+2 all errors in the slave
outputs ¯̄yn+2 := ¯̄y(Tn+2), that result from the solution
of (3) by a numerical time integration method with ap-
proximated slave inputs ū(t), t ∈ [Tn,Tn+1] and ¯̄u(t),
t ∈ [Tn+1,Tn+2]. We consider the scalar error indicator

ERR :=

√√√√ 1
m

m

∑
j=1

(
EST j

ATOL j +RTOL j| ¯̄y j
n+2|

)2

(8)

with the vector

¯̄yn+2 := ( ¯̄yT
1,n+2, . . . , ¯̄yT

r,n+2)
T ∈ Rm,
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Figure 2: Benchmark Quarter car - co-simulation for
a coupled system (2) without feed-through: Local er-
ror (“5”) and error estimates ESTRich (“◦”), ESTmod
(“×”). Constant (k = 0, upper plot) and linear extrap-
olation (k = 1, lower plot).

that contains all outputs of the r≥ 2 subsystems at t =
Tn+2. The error indicator (8) shows whether the com-
munication step size H = Hn was sufficiently small to
meet some user defined error bounds ATOL j, RTOL j

or not. Analogously to the classical approach [9] a
communication step is accepted, if ERR ≤ 1. When
ERR > 1, then the estimated error was too large and
the communication step has to be repeated with a
smaller step size to meet the accuracy requirements.

The ratio between the error indicator ERR and its
optimal value 1.0 may be used to define a posteriori an
“optimal” communication step size

Hopt := αHn

(
1

ERR

)1/P

with P = k + 1 if there exist subsystems with direct
feed-through, otherwise P = k+2, a safety factor α ∈
[0.8,0.9] to reduce the risk of a rejection of the next
communication step if the current step was accepted
and k denoting the approximation order of the signal
extrapolation for slave inputs ū(t). Note, that Hopt is
always smaller than the current communication step
size Hn if the error estimate EST exceeds the given
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Figure 3: Benchmark Quarter car - co-simulation for
a coupled system (2) with feed-through: Local er-
ror (“5”) and error estimates ESTRich (“◦”), ESTmod
(“×”). Constant (k = 0, upper plot) and linear extrap-
olation (k = 1, lower plot).

tolerances (ERR > 1).
In practical applications the step size is not allowed

to increase nor to decrease too fast [9]. Therefore, pa-
rameters θmin ∈ [0.2,0.5] and θmax ∈ [1.5,5] are used
to restrict the step size change. It is clear that choosing
both parameters too small may increase the computa-
tional work. Moreover, choosing them too large can
increase the risk of rejected steps. The resulting com-
munication step size is given by

Hopt = Hn ·min{θmax,max{θmin,α · (1/ERR)1/P}}.

4 Generic implementation scheme in
FMI 2.0

The Functional Mock-up Interface (FMI) for Model
Exchange and Co-Simulation v2.0, see [2, 8], is a
standard for the coupling and exchange of models and
simulator coupling. A component implementing the
FMI is called Functional Mock-up Unit (FMU). It
consists of C-functions in source code or preprocessed
binaries (like dll or shared object) and an XML
description file, that contains all static information
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for calling the FMU [4]. The C-functions are called
to set and get values in the FMU (FMI-functions
fmiSetReal and fmiGetReal). If the FMU is used
for simulator coupling it contains the full model and a
simulator (slave). The slave is controlled by a function
fmiDoStep [13] to process one communication
step. With this FMI-function the computation of a
communication step in a slave is started with the
input parameters currentCommunicationPoint
(current communication point Tn of the
master), communicationStepSize (step
size Hn of the communication step) and
noSetFMUStatePriorToCurrentPoint. The Pa-
rameter noSetFMUStatePriorToCurrentPoint
is true (fmiTrue) if the FMI-function
fmiSetFMUState will no longer be called for
time instants prior to currentCommunicationPoint.
This is an important information for a slave, that
is able to reject communication steps, since the
FMU states have to be restored to the last accepted
communication point in that case. With the flag
noSetFMUStatePriorToCurrentPoint the slave
can use this information to flush a result buffer. For
the Richardson extrapolation based step size control
the master has to repeat the simulation from the last
accepted communication point, that means it has to
save and restore the FMU states to this point for the
computation of the reference solution to estimate the
error or if a step was rejected because the step size
was too large. fmiGetFMUState makes a copy of
the internal FMU state and returns a pointer to this
copy and fmiSetFMUState copies the content of
the previously copied FMUstate back and uses it as
current new FMU state.

A generic implementation scheme for a double
step Tn→ Tn+1→ Tn+2 with Richardson extrapolation
based communication step size control is given by:

(A) tcurr = Tn. Get slave states slavei,n, (i = 1, . . . ,r),
calling fmiGetFMUState for all r slave FMUs.

(B) Define subsystem inputs ũi(t) providing
derivatives dlũi/dt l(Tn), (l = 0, . . . ,k) by
fmiSetRealInputDerivatives.

(C) Perform large communication step
Tn → Tn + 2H = Tn+2 calling fmiDoStep
for all r slave FMUs and get outputs ỹ(Tn+2) by
fmiGetRealOutputDerivatives.

(D) Reset all slave FMUs to state slavei,n, (i =
1, . . . ,r), calling fmiSetFMUState.

(E) Define subsystem inputs ūi(t) providing
derivatives dlūi/dt l(Tn), (l = 0, . . . ,k) by
fmiSetRealInputDerivatives.

(F) Perform first small communication step Tn →
Tn + H = Tn+1 calling fmiDoStep for all
r slave FMUs and get outputs ȳ(Tn+1) by
fmiGetRealOutputDerivatives.

(G) Evaluate ¯̄u(Tn+1) = c(ȳ(Tn+1)) and define
subsystem inputs ¯̄ui(t) providing deriva-
tives dl ¯̄ui/dt l(Tn+1), (l = 0, . . . ,k) by
fmiSetRealInputDerivatives.

(H) Perform second small communication step
Tn+1 → Tn+1 +H = Tn+2 calling fmiDoStep for
all r slave FMUs and get outputs ¯̄y(Tn+2) by
fmiGetRealOutputDerivatives.

(I) Evaluate error estimate ESTRich, error indicator
ERR and optimal communication step size Hopt.

The function fmiDoStep returns fmiOK if the com-
munication step was computed successfully until its
end. fmiDiscard is returned if the slave computed
successfully only a subinterval of the communication
step, which may occur if the communication step size
is too large and the simulation should be repeated
with a smaller one. fmiError will be returned by
fmiDoStep if the simulation of the communication
step could not be carried out at all.

The capabilities of a slave are de-
scribed in the XML file. A capability flag
canHandleVariableCommunicationStepSize
set to true indicates, that a slave is able to accept
variable communication steps, which is important to
implement a master with communication step size
control. The complete interface description can be
found in [13].

5 Numerical test for the FMI com-
patible master

For developing and testing new master algorithms,
a master prototype was implemented by Fraunhofer
IIS/EAS and Halle University [4, 6]. This master sup-
ports basic functions of FMI for Co-Simulation ver-
sion 1.0, see [14], and has implemented several so-
phisticated master algorithms like communication step
size control and the rejection of communication steps.

To use the Fraunhofer master with the given FMUs
the compiled C-code of the master has to be linked
to the slaves binaries, which may even be C-code that

Co-simulation with communication step size control in an FMI compatible master algorithm 
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Figure 4: Benchmark Quarter car, displacement-
displacement coupling. Error indicator and commu-
nication step size of the simulation with Richardson
extrapolation based step size control with the Fraun-
hofer master.

is compiled with the master. The resulting executable
consists of the master and the slaves.

For the numerical tests with the Fraunhofer master,
the quarter car benchmark with the two slaves “chas-
sis” and “wheel” is implemented in Dymola. We ap-
ply the communication step size control strategy from
Section 3 with error estimates ESTRich and ESTmod
and study the influence of the order k of signal ex-
trapolation and of the coupling strategy (displacement-
displacement vs. displacement-force). From a prac-
tical viewpoint constant (k = 0), linear (k = 1) and
quadratic (k = 2) signal extrapolation are most inter-
esting since higher order extrapolations increase the
risk of numerical instability, see also [1]. In all nu-
merical tests, the error tolerances for slave FMUs are
chosen two orders of magnitude smaller than the mas-
ter tolerances ATOL j, RTOL j in (8).

Since the current implementation of the Fraunhofer
master is limited to constant extrapolation with er-
ror estimation by Richardson extrapolation, only these
numerical results are depicted in Figure 4 for the
displacement-displacement coupling.

Extending these results, we will also consider the
numerical simulations in a MATLAB-based test envi-
ronment for the verification of the theoretical analy-
sis. The numerical test for variable communication
step sizes with error estimates ESTRich and ESTmod
for constant (k = 0) and linear (k = 1) extrapolation
is depicted for the two coupling strategies in Figures 5
and 6 within the simulation time interval t ∈ [0,4]. The
simulation results for Richardson extrapolation and its
modification are identical for k = 0, where the small
differences in Table 1 are caused by implementation
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Figure 5: Benchmark Quarter car, displacement-
displacement coupling. Number of step rejections, er-
ror indicator and communication step size of the sim-
ulation with error estimates ESTRich and ESTmod.
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Figure 6: Benchmark Quarter car, displacement-force
coupling. Number of step rejections, error indicator
and communication step size of the simulation with
error estimates ESTRich and ESTmod.
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Figure 7: Benchmark Quarter car, displacement-
displacement coupling. Global error of the simulation
with constant step sizes compared to variable steps
based on error estimates ESTRich and ESTmod.

issues, since the first (small) Richardson step is saved
and therefore the inputs at t = Tn +H have to be in-
terpolated which causes problems if in the big step
Tn→ Tn+2 only one micro step is taken.

The global error of the numerical solution with
step size control is very well controlled to a mean
value of 10−4, see Figure 7, which corresponds to
the predefined error bounds ATOL j = RTOL j = 10−4

for displacement-displacement coupling (in the case
of displacement-force coupling we use ATOL j =
RTOL j = 10−3). In the transient phase t ∈ [0,0.5] very
small communication steps are chosen and at later sim-
ulation time, the algorithm uses larger communication
steps than in the beginning, since the subsystems be-
have slower and the distance between two communica-
tion points for an update of the subsystem inputs is in-
creased. In time intervals, where the larger mass of the
chassis has a strong influence on the wheel by chang-
ing the direction of motion, this is also triggered by
the communication step size control resulting in a re-
duction of the step size such that the error bounds are
met (see slow oscillation of the communication step
size and also the rejected steps in Figure 5, where the
communication steps are repeated with smaller step
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size). In the transient phase, we can see that the er-
ror is greater than the pre-defined error bound of 10−4.
In this phase smaller steps should be taken, which is
triggered correctly by the step size control algorithm.
If we compare the simulation results with communi-
cation step size control with ESTRich and ESTmod to
the simulation with constant communication step size
H = 10−3 (with a micro tolerance in the subsystems
of 10−6) in Figure 7 and Table 1, we can see, that
the global error for constant extrapolation is decreas-
ing during the simulation because the step size is not
adapted to the solution behaviour. The accuracy is
raised, if higher order extrapolations are used. We
can also compare the computing times and see that
the master algorithm with communication step size
control is much faster resulting in a high efficiency
(nearly the same mean global error in the simulation
time interval compared to constant step sizes with con-
stant extrapolation), even with Richardson extrapola-
tion, where in every communication step the simula-
tion is performed at least twice. Using the modifica-
tion ESTmod or a higher order of extrapolation (k≥ 1)
further improves the simulation results and the com-
puting time. This is a nice example for the advan-
tage of controlling the step size compared to the brute
force approach of using always constant communica-
tion step sizes.

Furthermore, we observe in Table 1 if we use a mi-
cro tolerance of 10−8 in the subsystems for the simu-
lation with constant step sizes H = 10−3 that the com-
putation time is growing. Moreover, the accuracy of
the simulation is improved, since the influence of the
discretization error of the solution of the subsystems
is reduced. The simulation with step size control with
micTOL=1e-6 on the other hand is robust and reliable
and controls the error of the simulation results to the
predefined tolerance of macTOL=1e-4, even if the in-
fluence of the discretization error of the subsystems is
not neglected.

6 Conclusions

We have discussed the error estimation in co-
simulation by classical Richardson extrapolation and
by a modified algorithm for a reliable communication
step size control based on an extension of the step size
control of classical time integration. The local error of
the simulation is estimated very well by these strate-
gies.

The communication step size control was applied to
a benchmark problem from vehicle dynamics which

Table 1: Benchmark Quarter car - Simulation results
for the displacement-displacement coupling.

k error time [s] steps rej
H = 1ms, 0 8.922E-004 33.335 4000 0
micTOL=1e-6 1 4.094E-004 29.295 4000 0

2 4.138E-004 31.022 4000 0
H = 1ms, 0 5.301E-004 51.280 4000 0
micTOL=1e-8 1 6.049E-005 43.364 4000 0

2 1.967E-005 43.073 4000 0
Rich. EP, 0 1.050E-003 28.361 1610 18
micTOL=1e-6, 1 3.197E-004 10.379 402 20
macTOL=1e-4 2 3.180E-004 7.050 210 20
Mod. Rich. EP, 0 1.061E-003 19.712 1612 19
micTOL=1e-6, 1 3.317E-004 7.057 413 16
macTOL=1e-4 2 2.735E-004 4.835 218 17

was implemented in a master prototype that is com-
patible to FMI for Co-Simulation v1.0. We have seen
that communication step size control is possible, reli-
able and can improve the performance of the master
algorithm significantly, especially the computing time
and accuracy.
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