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Abstract

This paper presents a survey on matching algorithms
which are required to translate Modelica Models.
Several implementations of matching algorithms are
benchmarked on a set of physical models from me-
chanical systems in ODE and DAE representation.
The major part of algorithms is based on the Aug-
menting Paths Method and one algorithm is based on
the Push-Relabel Method. The algorithms are imple-
mented in the programming language C and Meta-
Modelica. In addition two cheap matching algorithms
are used to jump-start the advanced matching process.
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1 Introduction

A major benefit of Equation based Object Oriented
modeling Languages (EOOL) like Modelica is the
possibility of acausal modeling. It increases the
reusability of models and simplifies the description
of physical systems. In order to simulate an acausal
model, all equations have to be transformed and sorted
yielding a causal model description. The process of
transforming equations into assignments is thus called
causalization. The main task of causalization is to
match each equation to a variable. It is one of the most
important challenges of any EOOL compiler.

Most models from EOOL give rise to very large and
sparse differential algebraic equation (DAE) systems
[19],[20],[25]. The challenge of the matching process
is therefore to transform the model into an ordinary
differential equation (ODE), so that it can be solved
through the application of standard numerical time in-
tegration algorithms.

Pantelides [21] provides an algorithm to get a

so called perfect matching, transforming the system
to block lower triangular form (BLT) providing all
necessary information to apply index reduction and
thereby transforming a DAE into an ODE. Driven
by the need of numerical stability several index re-
duction algorithms have been developed in the past
[16],[18],[19],[20],[25],[27].

There are other matching algorithms next to those
presented by Duff [4]. They can be divided into differ-
ent classes of worst case time complexities. The most
common complexities are shown in Figure 1 12.

Figure 1: Typical worst case complexities of matching
algorithms [9]

Since more powerful computers allow for larger
models with more equations, a future challenge will
be to optimize the scaling of EOOL compilers with re-
spect to model size. As shown in [11] the effort of
state of the art EOOL compilers is proportional to the

1n: Number of Equations
2τ: non zero entries in the Adjacency Matrix
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second or even the third power of the number of equa-
tions, depending on the model structure. Thus it is
worth studying how the combination of matching and
Pantelides Algorithm can be further optimized.

The next section provides a brief introduction to
matching theory and index reduction. It is followed by
an overview on selected matching algorithms based on
augmenting paths and the push relabel technique. Sec-
tion 4 discusses the possibility to combine the match-
ing algorithms with index reduction by looking at
some examples. A comparison of runtimes of all these
algorithms is presented in section 5 followed by a dis-
cussion and concluding remarks in section 6.

2 Theory of Matching and Index Re-
duction

2.1 Matching Theory

The aim of this section is to give an introduc-
tion to the general definitions of matching algo-
rithms. For further information, the reader is referred
to [5],[6],[8],[9],[2],[10]. As mentioned above and
shown in detail by Elmqvist [10] matching algorithms
are provide the information how a system of equations
can be transformed symbolically into a system of as-
signments. The mathematical idea behind this, is to
transform the system into block lower triangular (BLT)
form and to solve it by a simple forward substitution
process [5]. As Duff proposed in [5] the transforma-
tion to BLT form is split into two stages:

• Match each equation to a variable and transform
the problem description into a directed graph

• Find a traversal of the directed graph which
means to sort the equations and identify algebraic
loops

For the second step Tarjan’s Algorithm [26] is very ef-
ficient and offers time linear complexity with respect
to the number of equations [6]. To understand the first
step one has to look at the Adjacency Matrix of a sys-
tem of equations. The rows of the Adjacency Matrix
correspond to the equations whereas the columns cor-
respond to the variables of the system. The Adjacency
Matrix has an entry (=1) at row i and column j, iff
equation i contains variable j. The number of en-
tries in the Adjacency Matrix is denoted with τ . For
a nonsingular system, the matching algorithm finds an
unsymmetric permutation which produces a zero-free
main diagonal. The set of all nonzero entries on the

main diagonal is called a transversal. A set containing
the maximum number of nonzero elements is called a
maximum transversal. A simple example is shown in
Figure 2.

a)
b+ c = 0

a = 10
a+ c = 2

b)

 0 1 1
1 0 0
1 0 1

c)

 1 0 0
1 1 0
0 1 1


Figure 2: Equation System (a) with Adjacency Matrix
(b) and permuted matrix in BLT form (c) from match-
ing highlighted in boldface.

The Adjacency Matrix can also be presented as a bi-
partite graph with one set of nodes representing equa-
tions (green) and another representing variables (yel-
low). The edges of the graph represent the nonzero
entries in the Adjacency Matrix. For the simple exam-
ple presented above in Figure 2 the bipartite graph is
shown in Figure 3.

Figure 3: Bipartite graph for the example from Figure
2

A set of matched equations and variables is called
matching or assignment block. If no additional
matches can be found, the matching is called maxi-
mum. In case of a square matrix the matching is com-
plete (perfect) if all equations are matched. In case of
a non-square matrix the matching is complete if either
all equations or all variables could be matched. A se-
quence of connected nodes is called path. If each of
the nodes on a path belong to the matching, then it is
called an alternating path relative to an assignment. If
the alternating path has an unmatched equation at one
end and an unmatched variable at the other end it is
called a augmenting path. In such a case the matching
could be increased by one if all assignments from the
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path are removed from the matching and all other as-
signments from the path are added. This procedure is
called reassignment or rematching [8].

Figure 4: Matched Bipartite graph for the ex-
ample from Figure 2 with alternating path M=
{(2,a),(3,c),(1,b)}

2.2 Index Reduction

In case of a DAE system with differential index vd > 1
[[27], Definition 2.1] no complete matching can be
found. If the system is not structurally singular an ap-
propriate symbolical index reduction algorithm must
be employed to reduce the differential index vd to at
least one.

As mentioned in [27] and [25] several symbolical
methods for index reduction are available. The graph-
theoretical algorithm from Pantelides with improve-
ments from Soares and Secchi [25] is most commonly
used.

Pantelides’ approach is to find a minimal struc-
turally singular (MSS) subsets of equations. The equa-
tions of the subset are differentiated and replaced by
their derivatives. The algebraic variables which get
derived with respect to time in the process are marked
as states and only their derivatives are considered for
the next matching cycle. With the criterion, that the
number of new equations generated through differen-
tiation must not exceed the number of variables in the
new subset, structural singular systems are detected
and the algorithm terminates with an error. Due to the
removed algebraic relations between the dynamic vari-
ables of the system and the algebraic variables marked
as states the calculated results will be unusable. Ap-
propriate algorithms to cover this issue are presented
by several authors [16],[18], [19],[20].

3 Matching Algorithms

Since Pantelides’ Algorithm does not rely on a par-
ticular matching algorithm, it is worth comparing dif-
ferent algorithms within that context. Guided by
[9],[14],[24] a set of promising matching algorithms
has been selected. While the majority of algorithms is
based on a search for augmenting paths, one algorithm
is employs a push-relabel strategy, designed for maxi-
mum flow problems [12],[14]. Since bipartite match-
ing is a special case of the maximum flow problem,
push-relabel might be well suited to solve the match-
ing problem [14].

3.1 Augmenting Paths Based Algorithms

3.1.1 DFS

The depth first search based matching algorithm (DFS)
applies a depth first search on each unmatched column
to find an augmenting path. To avoid double visits an
array of size m - the number of rows - is used. The
augmenting path can be retrieved from the stack of the
DFS. The stack is used to backtrack after visiting all
nodes and has the same size as the number of columns
n. To improve the performance, an additional array of
size n is used to keep the information of the last vis-
ited row for each column. In summary the algorithm
needs 2n+m additional space to the memory for stor-
ing the assignments. Please note, that only the Adja-
cency Matrix but not its transpose is required, since
the algorithm traverses only from columns to rows.

3.1.2 BFS

The breadth first search based matching algorithms
(BFS) use a breadth first search for each unmatched
column to find an augmenting path. The additional
space consumption of a good implementation is n+
2m. A queue of size n is needed to store the columns
to visit next as well as an array of size m to mark the
visited rows. The augmenting path is stored in an ad-
ditional array of size m, saving the parent column to
each row. Analogous to the DFS only the Adjacency
Matrix is need for BFSB.

3.1.3 MC21A

The MC21A algorithm is based on a DFS with an ad-
ditional look ahead mechanism. The look ahead mech-
anism first checks all rows of a column for an un-
matched variable before going deeper. Implementing
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the look ahead mechanism requires an additional ar-
ray of size n for the check. In total the implementation
needs 3n+m additional space.[4][7]

3.1.4 PF

The algorithm by Pothen and Fan (PF) is very much
alike MC21A. The difference lies in the usage of the
visited flag. A PF phases starts with a queue of size
n of all unmatched columns. On each column a DFS
with look ahead is applied. The flag visited is not re-
set after the search. The column is dequeued if it is
matched. The PF phases are applied until all columns
are removed from the queue. The additional space is
4n+m and again only the Adjacency Matrix is need
for PF.[23]

3.1.5 PF+

PF+ is a simple extension to PF by [9]. To decrease
the sensitiveness of the algorithm for row and column
permutations the traversal direction of the rows alter-
nates. The additional space consumption is 4n+m as
in PF.[9][14]

3.1.6 HK

The algorithm by Hopcroft and Karp (HK) is orga-
nized in phases comprising two parts. The fist part
is a BFS from all unmatched columns to assign level
numbers to the rows. The level numbers indicate the
shortest path length from a row to an unmatched col-
umn. In the second part the level numbers are used
to increase the assignments with a DFS. It is only al-
lowed to traverse columns with decreasing level num-
bers. The additional space consumption is 2n + 2m
(stack(m),queue(n),nextcol(m),levels(m)). Note, since
HK uses both BFS and DFS both the Adjacency Ma-
trix and its transposed are required.[13][3]

3.1.7 HKDW

HK modified by Duff and Wiberg (HKDW) adds a
third part to the HK phase. The third part is a DFS
in the full graph for each remaining unmatched row
to increase the matching. The flag visited is not reset
between two DFS in part three. The additional space
consumption with 2n+ 2m is similar to HK because
the additional DFS needs no further memory. [8]

3.1.8 ABMP

The algorithm by Alt et al. (ABMP) is organized
in two phases. The fist phase increases the match-
ing by a sophisticated search procedure combining
BFS and DFS. This phase is performed until the lower
bound on the shortest augmenting path length exceeds
a suitable value. Alt et al. suggest to use the bound
L =

√
τlogn/n.[9] The additional space consumption

is 2n+2m.[1]

3.2 Push Relabel Based Algorithms

Push Relabel Algorithms are developed to solve the
problem of maximum flow in networks. The idea be-
hind is not to find augmenting paths but to search and
augment together. Based on a set of rules specula-
tive augmentations are performed by unmatching and
matching.[14][24]

3.2.1 PR

A detailed description of the implemented push relabel
algorithm can be found in [14]. The algorithm uses the
same mechanism like PF+ to traverse the adjacency
list in alternating order called fairness. The push order
to select active columns for pushing is first-in-first-out
(FIFO). The additional space consumption is 2n+m
(row label(m),column label(m),queue(m)) and the Ad-
jacency Matrix as well as its transposed are need.

3.3 Heuristic Based Algorithms

Next to the systematic algorithms discussed above,
there are algorithms based on heuristics which are de-
signed to increase the performance of a matching pro-
cess. They are called cheap matching and their ben-
efits strongly depend on the structure of the problem.
Thus they are used as an initial guess or jump-start. In
[9] a comprehensive overview on cheap matching al-
gorithms is given. Based on the results from [9] two
heuristics are selected for testing. The frequently used
and the best one.

3.3.1 Cheap Matching

The cheap matching algorithm traverses all columns
and matches the first unmatched row in the adjacency
list of the column. The complexity of the algorithm is
O(n+ τ).
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3.3.2 KS Rand Cheap Matching

The cheap matching algorithm by Karp and Sipser in-
troduces a heuristic based on constructing a smaller
graph through two rules and a random matching. More
information can be found in [9].

3.4 Adaptability for Index Reduction

The matching algorithms discussed above can be clas-
sified based on their behaviour when encountering sin-
gular systems. While the simple matching algorithms
terminate as soon as a single node cannot be assigned,
the advanced algorithms terminate with a non empty
set of unassigned nodes. Some of them allow the set
to be collected in a post processing step.

• Simple Matching Algorithms

– DFSB
– BFSB
– MC21A

• Advanced Matching Algorithms

– PF
– PF+
– HK
– HKDW
– ABMP
– PR

In the original paper of Pantelides, the matching al-
gorithm MC21A by Duff was used. MC21A belongs
to the group of simple algorithms. Hence no changes
have to be made to the Pantelides Algorithms for sim-
ple matching algorithms.

In case of a simple matching algorithm the MSS
subset contains exactly one unmatched equation. The
other equations of the subset are found by a search in
the matched graph starting from the variables of the
unmatched equation. During the search, each variable
is visited only once. For all presented simple algo-
rithms the search to get the MSS subset is not an extra
step, it is found by storing the visited equations in each
phase of the algorithm.

In case of an advanced matching algorithm, a search
in the matched graph is necessary for each equation
to get the MSS subsets. Each subset has to fulfil the
criterion, that the number of new equations generated
by differentiation must not exceed the number of vari-
ables in the new subset. Hence, obtaining the MSS
subset is more costly compared to simple algorithms
as the search is an extra step.

4 Measurements on Examples

Since there is no comparison of matching algorithms
in the field of Modelica known to the author an ex-
tensive survey has been conducted. Therefore each
matching algorithm has been implemented into the
OpenModelica compiler (OMC) 3. In order to be com-
patible with both simple and advanced matching algo-
rithms the Pantelides index reduction had to be reim-
plemented modifying the interfaces and the compi-
lation process. Since there exists only little experi-
ence about the runtime efficiency and comparability of
MetaModelica [22], in which the OMC is written, an
external C implementation of freely available match-
ing algorithms [15] has been embedded as well.

The aim of this paper is to compare the computa-
tional effort of the matching algorithms with and with-
out index reduction using selected examples. In addi-
tion the influences of the programming language and
the usage of a cheap matching algorithm are investi-
gated.

All measurements were accomplished using a Win-
dows 7, 64 Bit System with Intel Core i7 860, 2.80
GHz and 8.0 GB RAM.

4.1 Examples

To do an extensive comparison of matching algorithms
scalable Modelica models are needed. Since the au-
thor is mainly concerned with multi body systems, the
following mechanical models will be used:

• chain structure Figure 5 (a)

• tree structure Figure 5 (b)

• grassland structure Figure 5 (c)

• kinematic loops 5 (d)

The models are based on the Model-
ica.Mechanics.Multibody library (MSL 3.1), the
Planar Mechanics Library from DLR4 and PyMbs
[17]. PyMbs5 is a Python based multi body tool to
generate the equations of motion from a description
similar to Modelica.Mechanics.Multibody. PyMbs
generates efficient flat Modelica code which places
very low demands on the EOOL compiler. Hence no
index reduction step is necessary and one obtaints a
benchmark for pure matching. The reason to use three

3www.openmodelica.org
4http://www.robotic.de/339
5http://sourceforge.net/projects/pymbs/
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(a) Rope (b) MultiRope (c) Wheel

(d) FourBarLinkage

Figure 5: Example Models

different descriptions is to study the influences of the
way a model is set up.

In addition to the four models, most examples from
the Modelica.Mechanics package are used for the
comparison with index reduction.

4.2 Results for Pure Matching

The results for pure matching on the rope model are
presented in Figure 6 and Figure 7. Most of the al-
gorithms show a linear relationship between effort and
model size. The represented model size is the num-
ber of equations the matching algorithm operates on.
Note, that this is the reduced size of the model. Be-
cause it was important for the benchmarks to be com-
parable with the usual modelling process all steps, for
example the detection of simple equations like a = b
and a = constant are performed before matching.

Figure 6: Results from Rope examples, MetaModelica
implementation

Figure 7: Results from Rope examples, C implemen-
tation

The PF+ algorithm is the fastest, while the simple
DFS algorithm needs the most time. The PR algorithm
is the second fastest, only beaten by PF+. While the
MetaModelica implementation suggests that the push
relabel algorithm seems to be very efficient, results
from the C implementation show a different picture
7. Here the PR scales non-linear and needs the most
time. Again, the DFS is slowest and the PF+ is the
fastest augmentation path based algorithm. Generally
speaking, the C implementation is around ten times
faster than the MetaModelica implementation, includ-
ing the time to pass the incidence Matrix (SetM) and
to return the assignments (GetAss) as shown in Fig-
ure 7. Copying the Incidence Matrix and returning the
Assignments takes twice the time needed to match the
system using the PF+ algorithm, rendering the overall
time similar to the fastest MetaModelica implemen-
tation. Figure 8 and Figure 9 show the results for
the MultiRope model. Again, PF+ is the fastest, DFS
needs most time and the C implementation is around
10 times faster.

Figure 10 show the results for the wheel example.
Here some algorithms scale non-linear in time and a
few scale linear. Still, PF+ is one of the fastest algo-
rithms and DFS needs the most time.

The results for the kinematic loop model are shown
in Figure 11. Here, the fastest algorithm is HK closely
followed by HKDW. Nonetheless, PF+ still belongs to
one of the fastest algorithms.

In summary the fastest overall algorithm in case of
pure matching is the PF+ algorithm. It scales linear in
time for all test cases and therefore seems well suited
for large scale systems.
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Figure 8: Results from MultiRope examples, Meta-
Modelica implementation

Figure 9: Results from MultiRope examples, C imple-
mentation

4.3 Results for Matching and Index Reduc-
tion

The result for the rope model is shown in Figure 12
and 13. Again PF+ is one of the fastest algorithm
and scales linear in time. Since all other models do
not show a mentionable difference their results are not
shown explicitly. Please note, that due to the lower
demands on the EOOL compiler, the OMC manages
to process models of up to 200 bodies when described
with PyMbs. The upper boundary for the MSL lies at
around 50 bodies.

In addition to the models presented above Figure
14 shows the results for the examples included in the
package Modelica.Mechanics. The results are pre-
sented with a logarithmic time axis. The grey curves

Figure 10: Results from Wheel examples, MetaMod-
elica implementation

Figure 11: Results from FourBarLinkage examples,
MetaModelica implementation

represent linear relationships between time and num-
ber of equations. The suffix Ext marks the C imple-
mentation. Because some models have roughly equal
numbers of equations, the graph looks quite scattered.
Again, PF+ is one of the fastest algorithm and scales
linear in time.

4.4 Results for Cheap Matching

The results from the usage of heuristic algorithms are
shown in Figure 15 and 16 for the cheap matching and
in Figure 17 and 15 for the KS cheap matching al-
gorithm. It can be seen that especially the BFS and
DFS MetaModelica implementations benefit from the
usage of a cheap matching algorithm. The time saved
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Figure 12: Results from Rope MSL examples, Meta-
Modelica implementation

Figure 13: Results from Rope PM examples, Meta-
Modelica implementation

for both algorithm is around 80%.

5 Conclusion

An extensive survey has been conducted by the author
to find the best suited matching algorithm for EOOL
compilers. Several real life models have been used for
testing. It was found that that the PF+ algorithm per-
formed best on almost all models.

Moreover, it has been found that the PF+ algorithm,
although it has a non-linear worst case time complex-
ity, scales linear for the models tested within this sur-
vey. This makes it ideally suited for the application in
large scale models. Unfortunately, further increase in
model size, to support that claim, was hindered due to

Figure 14: Results from Matching with Index Reduc-
tion for Modelica.Mechanics Example Models

Figure 15: Results from Rope MSL examples, Meta-
Modelica implementation

the memory consumption of the OpenModelica com-
piler. Future work will aim at increasing the manage-
able model size and rerun the benchmarks.

It could also be shown that MetaModelica seems not
to be well suited for such algorithms since the C im-
plementation is at least 10 times faster. Maybe some
further language and compiler features could decrease
the time difference to a natural C implementation. The
main difference of implementation is caused by the
storage of the Adjacency Matrix. The C implementa-
tion uses an array to store the values and an additional
array to store the column indices. In MetaModelica
the matrix is stored as an array of lists. To traverse
the lists in MetaModelica recursive function calls are
needed whereas the c implementation simply stores
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Figure 16: Results from Rope MSL examples, C im-
plementation

Figure 17: Results from Rope MSL examples, Meta-
Modelica implementation

the needed indices for the traversal in arrays.
Since the implementation is freely available in the

OpenModelica Compiler, the survey may be extend
with models from other physical domains.
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