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Abstract linearising the model at the required operatingpoi
Linearisation of a model using Dymola returns the

The natural frequency analysis of compleXate-space representation of the model and fresn th
powertrain models created in Modelica presentsthg natural frequencies can be calculated. The
number of problems. This paper presents the bas#iural frequencies are found when all damping in a
principles and some of the problems associated widel is removed.

carrying out this kind of analysis. As a resultli

work, a new feature in the Powertrain Dynamics .

Library has been developed to automate thede Modal frequency analysis and
methods and provide the end-user with a simple set M odelica models

of functions to perform natural frequency analysis.

Simple ex_amples are used to illustrate t_he problemg Basic Principles

and solutions and a complex powertrain model is

then analysed using the library. This section looks at the basic modal analysis
Keywords: modal analysis; natural frequencyprinciples applied to a spring mass network. The
linearization; powertrain; NVH example of a spring mass network has been chosen

so that the natural frequency of a model can be
described. An unforced spring mass network can be

1 Introduction represented by the following ordinary linear
differential equation:

Modal analysis is the study of the dynamic response

of a system at its resonance frequencies. Modal Ms+Cs+Ks=0

analysis is used in many fields for example in

structural engineering to design buildings resistan It is common to calculate the natural frequency of
earthquakes [1] and in vehicle powertrain design e above equation with the damping term set to zer

avoid poor NVH characteristics [2]. so the equation becomes:
For a vehicle, modal analysis is carried out on all )
parts of the car to determine their natural Ms +Ks=0 (1)

frequencies. Care is taken to make sure that the

natural frequencies of the parts in the car areaallThe natural frequency of the spring mass system can
distinct, separate frequencies. If the naturd®w be calculated from the roots of the above
frequencies are not suitably separated this cahttea€quation. ~ The roots are the eigenvalues and

resonance across multiple parts of the car ancba p@igenvectors of the equation..
NVH characteristic. To perform modal analysis on complex models

A new feature has been introduced in thee linearise these first which generates the state
PTDynamics library [3] [4] to perform the naturafPace representation of the model. The state space
frequency analysis of powertrain models creatégPresentation of a model is given by:
using this library. This paper highlights somettoe

problems involved with this type of analysis based x =Ax+ Bu @)
on Modelica models and discusses some of the y=Cx+Du
techniques developed to solve these. where:

To determine the natural frequencies of a modgl B, C andD are matrices
and the corresponding modal response we startUlg the vector of inputs
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y is the vector of outputs The complex norm is the sum of the squares of the
X is the vector of states real and imaginary parts all square rooted. Thgere
also a damping term that is associated with each
To rearrange our simple spring-mass system indigenvalue. In the case where the damping has been
state space form is done by transforming equafipn §et to zero, this term will be zero and will not

in to the following form: influence the natural frequencies of the model.e Th
damping term can be calculated with the following
§=—-M1Ks equation [6]:
In this simple example, there are no inputs southe 0,]A|=0
term is dropped and there are no outputs so the ¢{ = {Re(})
equation for y is not required. The model is then W 1Al #0
reduced to:
) where:
x= Ax 3) Re() is the real part of a complex number
where
x= [;] The frequency that a model with damping oscillates
and at without being driven by an outside force is
0 1 referred to as thedamped frequencyand using
a= -M'K 0] eigenvalue analysis this is calculated as :

wg = wpy1—{?

2.2 Eigenvaluesand eigenvectors

For a given matrix A the eigenvalues and, |sgiesfor complex M odelica models
eigenvectors are calculated such that:

The current analysis described above can be easily

Av = v performed on a spring mass network but it is not as
where: easy to implement this on a complex Modelica
v is the eigenvector associated with the eigenvalugnodel. A number of issues arise when trying to
A is an eigenvalue apply this process using a Modelica tool such as

Dymola.
The eigenvalue solutions, are the roots of: A complex model will contain a large number of
state variables and we would normally expect td fin
[AI —A]x=0 many states that do not have any effect on theailatu

frequency response of the physical states of the
All the eigenvalues are included in vectbithat is model. For example, states within a driver model o
referred to as the eigenvalues of A. The eigemvsctcontrol system that do not directly influence the
are combined row wise into matriw. The physical response of the system. These statesdshou

eigenvectors and eigenvalues of this equation & removed from the analysis to reduce the time
calculated so that the natural frequency can fken to do the analysis.

calculated as follows in section 2.3. Some Modelica tools are able to compile models
_ using dynamic state selection. Currently modeds th
23  Frequency and damping use dynamic states cannot be analysed and a fixed

_ set of states needs to be applied to the modeis Th
The natural frequency is calculated from thess to be done by the user before starting the

eigenvalues as [5]: frequency analysis.
In the simple spring mass network presented so
f Zﬂ far we have not considered the possibility of the
21 relative state of the spring being selected asate st
rather than the position of the mass. Modelicadstoo
where: are able to select a set of states from a modeirand
|| is the complex norm many cases they will select relative states rattiam
f is frequency in Hertz absolute states. Whilst the natural frequencigbef
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system are unaffected by the choice of state Variabelected states. If relative states are detebtsdthe

it is preferable in this type of analysis to use ttmodel has to be modified by adding outputs that

absolute states of the system. Using the absoloteasure the positions either side of the component

states makes the interpretation of the modal respowith the relative states, see Figure 1. The model

easier as the points of interest become physitan be linearized and the resulting A matrix

points such as the driveshaft ends or pinion gemanipulated to transform the relative state in to a

rather than relative states such as the driveshedt positional state. Within the PTDynamics library a

or relative angle between pinion and crown wheelsprecise naming convention is used to enable the
Further problems are observed when componewnttomatic detection of relative and absolute states

models that utilize the standard Modelica frictiofitom the variable names.

model are included for analysis. The behaviour of By only making the transformation from relative

the slip/stick friction models is not linearized time to positional state in the linearized model we db n

expected manner and modifications to the analyaifect how the original model simulates. This ngean

have to be made around these components. that we can still use the original model to get the
To calculate the natural frequencies the dampiegstem to the desired operating point and then

terms have to be removed from the model blinnearize it. If we forced the user to only use

without the damping often models will not simulate.

This causes a problem for the initialisation of relsd spring mass

and when the model needs to be analysed under §'D—'WMD—"D_D

different operating conditions, for example, in =L o~

different gears or under different loading condaiito

where springs are compressed to different parts of Translate Model

their non-linear force curve.

pai

SELECTED CONTINUOUS TIME STATES
mass.y

3 Implementation in the Powertrain spring.s._rel
Dynamics Library

Search for relative states
The Powetrain Dynamics (PTDynamics) library is
used to create complex MultiBody models of
powertrains in a user friendly and efficient manner
A new feature has been introduced to determine the

v
Identify spring.s_rel

natural frequencies of these powertrain models. A Add ouputs

number of issues are present that make performing v

the natural frequency analysis difficult when positions
working with Modelica models (refer to Section 2.1) """"':::::::::::::D

This section describes some of the methods
implemented in to the linearization functions i
available in the PTDynamics library that are used t
overcome these issues. |

N 1 spring mass
= -
1]
. [=%
3.1 Reéativestates %j =1 I:|m=1

The natural frequencies of the model are typically
calculated for positional states (i.e. position or

Linearize the modified mode

angular position). However when a model is created Y

using Modelica, the modelling tool can choose to Retums state-space
select relative states (such as spring extensathgr

than positional states (such as the position of efd Transform the A matrix

the spring). When this is detected in a model the

relative states are converted in to positionalestat Y

before Iinearizing the model. Returns A matrix with no relative states
The first step in the analysis process is to

determine the states used in the model which i ddfigure 1: Process ta@onvert relative states

by translating the model and analysing the list @ositional states
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positional states in the model we may introduckiring the analysis process to ensure that these
slight differences in to the model due to the défe situations are avoided.
equation solutions required and we could impact the
simulation time.

When the modified model, with the added

Initial model

mass1 spring1 spring2 mass2
outputs, is linearized, the resulting state space *&*° e A T
representation includes these outputs inGhmeatrix. SELECTED CONTINUOUS TIME STATES
. . oy massl.v
This matrix relates the position outputs to thaesta mas<2.s

mass2.v

in the model. Each relative state will generate tw  sring2s el
OUtpUtS but onIy one of these OUtpUtS will be eat After relative states removed
to the relative state by thé matrix. This state is SELECTED CONTINUOUS TIME STATES

massl.v

used to replace the relative state. i

Using the spring mass model as an example we sigfange s
can see how this manipulation of the A ma'mr\—(igure 2: The initial states of the model include

should be performed. Linearizing the modifiegyingo s rel, this state is replaced with sprifigage_a.s

model gives the following: that is a state without a mass
a=00 3.2  Friction components
c= [0 0] A number of component models such as clutches and
01

brakes use the Modelica Standard Library coulomb
state names = {mass. v, spring. s rel} friction model [7] that handles the stuck and sigli
output names = {positionl, position2} modes in a clean way using state events. When thi
is linearized using the built-in Dymola functioneth
From the C matrix it is seen thapsition2 is related model is sometimes linearized as if in the slipping

to spring.s_rel as: mode regardless of the actual state of the componen
A method has been developed to adjust the model
position2 = C[2,: |x and resulting state space model to correctly adcoun
for the friction state.
where: Figure 3 shows an overview of the automatic
x are the states of the model process that is used to overcome this using the

PTDynamics library. First the model is translated
A transformation matrix is now created thaand the names of the selected states are analysed t
transformsx to a set of states that does not contagdetermine if there are any states that relatei¢tidn
relative states. In this example the transfornmatiand to determine what state the friction modehiati

matrix would be: the instant that the model is being linearized at.
If the friction model is in the stuck mode thetsit
T = 1 0 necessary to join the positional states in the Aima
—1C[2,1] C[2,2] that are either side of the frictional componeiip
be able to join states in the A matrix it is neeegso
Xpos = Tx (4) calculate the mass/inertia of the states beingefbin
together. This is done by adding torque inputidéo
Replacingx in (3) withx,,s from (4) gives: corresponding positional states either side of the
friction component.
Xpos = TAT 12,0, In the example shown in Figure 3, we would

detect the friction states within the clutch andrth
A drawback of this method is that it can selediates MOdify the model. In addition to adding a torque
that is only associated with a position and nBtPut €ither side of the friction model we also tée
directly with an actual mass or inertia state. FégR, add position outputs either side of the frictiond®ab

illustrates a case where this behaviour is preseifl.that we can join the states in the locked mode.
The user currently has to review the selectionsemad
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After the modified model is linearized tiige matrix which means the following equation can be used to

is used to determine the mass of the states.

Tdescribe both states that need to be joined togethe

information together with the state spaCematrix and rearranged as:

can then be used to update #hematrix by joining
the states on either side of the friction component

§=mlks+mlds + m~1F

The mass of the states is determined as follows,
the basic equation describing a spring mass systefp state space representation of this equation is:

that contains a force is:

ma = ks
where:

m is mass

s is position

v is velocity

a is acceleration

k is stiffness

d is damping vector
F is the applied force

In the example shown in Figure 3, the positional
states that the clutch is connected to are indeggnd

+dv+F

b=
pLos

Incriet

srig
= o _ i
o - _
L - f e s —
=1 clic =2
Add inputs and outputs
pusilian
N \-\-\
AL cTor fcraue i I“““““ .—"J
[EH {i‘* ) i i
| i
5 ‘ 3!
T 4
L Kr:-”i 1|'|c‘||:|J i E;.l.;: i J-rn:r.|:1J-
g\\" ™ W ™ =
" &= = Zlitzh =
Linearize the modified mode,
Y
Returns state-space

Transform the A matrix

Y

y

Returns A matrix wi

th no relative states

Figure 3: Process to handle friction components

[i] - [mglk m‘lld] [z] + [mo—l] F (9
From (2) and (5), we can determine that the state

spaceB matrixis equal to[mo_l], so the mass/inertia

for the states to be joined can be calculated.ngJsi
the example shown in Figure 3, we get the following
values when linearising the modified model.

0 1
-1 0

A4=19 o
0 0

00
00
01
0 0

state names = {il.phi,il.w,i2.phi,i2.w}
input names = {taul, tau2}

output names = {positionl, position2}

Using theB matrix we can determine the inertia of
the two bodies either side of the clutch.

To modify the A matrix we use the B matrix to
determine the rows in the A matrix that should be
combined. The C matrix is then used to determine
the columns that need to be combined. After
combining the rows and columns we can remove the
redundant rows and columns from the A matrix.

In this example we find that thé“2and 4" rows
need to be combined as well as th dnd ¥
columns which results in:

0+0 1
A=|/(=1+0)*my+0xm, (0+0)*my +0x*m,
m; +m, m; +m,
=[ 0 1]
0333 0

DOI
10.3384/ecp12076697

Proceedings of the 9" International Modelica Conference

701

September 3-5, 2012, Munich, Germany
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To include damping effects when joining states gisii
this method the columns corresponding to the ro
determined from the B matrix need to be add 17
together as well. .
There is a known limitation of the joining metho: 0
demonstrated here and used in the PTDynam I R I R
library in that the states being joined togethersmt 0 1 2
be independent states. This means that the paaitic
state must not be dependent on other positio
states. An example of a component that hz 07 _ f=—~——*’*"’f
dependent states is a planetary gear where & ,l——_ —
rotational states of the three shafts are deperaten
each other. To overcome this limitation a flexibl
shaft has to be connected between a clutch anu a o
planetary gear in a gearbox to be able to join thigure 5. Plots of locked and angular velocityirartia
states on either side of the clutch using this peth 2nd inertial in the Simple model in Figure 4.

— clutch.locked

inertia.w inertial.w

4.2  Full vehicle example
4 Appllcatlons A model of a front engine, rear-wheel drive vehicle
with a manual transmission was constructed using
the PTDynamics library it fully test the new

o . N ... functions and methods. The model is shown in
This simple example contains three inertias witn tI&i ure 6. The engine model is a simple mapped

flr:_s'ijt_vvo §eparated %yba CIUtCh and tme sec_orlg ine model but the transmission and driveline are
Z'r Alnertla gepa:gte ydatsprlntg ats Sthownl ”:" h 9 more detailed. Figure 7 shows the gearset model
' ramp Input 1s used to actuate the clulch apfly, within the transmission. The gearset and

gloeshfrom 0 atdO?] o1l a':j 1S'f :\'he_ res_pons_ei lfor fieline models include torsional compliance in a
clutch state and the speeds of the inertias number of the shafts but are rigidly mounted within

are shown in Flg.ure.5. . . the chassis. Overall this model has a good toasion

I th_e model is I|r_1ear|zed at t=0s, le. When_t presentation of the powertrain system and would
clutch is open we fm_d t_he n_atural frequency is BE suitable for studying driveability events such a
5.29Hz. If the model is linearized at t=2s, whee t; o tip-out
clutch is locked, the natural frequency occurs a? '
2.20Hz.

The change in frequency occurs because the total
effective inertia on the left hand side of the sgri
has changed. Without using the method to join the
states either side of the clutch the built in fuocs
report no change in the natural frequency despde E;
change in configuration of the model. £

4.1 Simple example

con

/. == S

duration=1

mou?
wotld —road. ..
constantTorgue lﬂl iiﬂi spring l\ﬂl | =
Qo—q: o e oo N\ fo—e= =) X
! — E — o= — . . . . .-
g = chich X " = Figure 6. PTDynamics vehicle example that is liizal
Figure 4. Simple model that contains a clutch and
spring
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Modelica_LinearSystems2 is used to generate the
actual plot.

Matural frequency 5.1 Hz

—— 123456
0 1
flange_a g _R
2 0
£
—
1 2 3 4 5 8
—— 123456
= 100
Lt}
=
Figure 7. Gearset used in vehicle example. ] 0
E 100 | NS RN
1 2 3 4 5 6

The chassis model doesn’t include suspension
the tyres do include a slip model based on the-weém _
known Pacejka tyre model. This required ttfdgure 8. Modal response of the vehicle model.aH3.
development of a method that relates the whéé® gnagnltuc:]e and phase Ofd the different Sttt‘;"tes are
rotation to the chassis movement. This wRPted. Each state is assigned to a positiongatbe x
necessary because the slip models are basedaX'S as determined by the Ieger]d. The numberéen t

. . . . : IeSQnds correspond to the states in Table .
velocity relationships but for this type of anafysie
need the relationships to be based on positiore
method developed assumes that the ratio between Bode-Diagram
wheel rotation and the chassis motion is a fixdio ra 1
at the instance that linearization occurs. Thaitet iy
of this method are not described in this paper. 0.017

The model was linearized and the followin 0.0001+
natural frequencies are found (in Hz): '5.1, 35,,12 1 T '””%In T "'1'[;0 o "'1'['100
266 and 343. The 5.1Hz response is the shuf
frequency of the vehicle and the modal response 400
shown in Figure 8. The x-axis of the modal respon|
plots is an integer that corresponds to the stestesl
. . : . - L
in Table 1. The magnitudes are normalised wi 4004+— T
respect to the variable with the largest displacgme 1 10 100 1000

The modal response shows that at this frequen Frequency [Hz]
wﬁcr)?e ISO\\:\?(;E{[r;Iitrgleismn?g\(/)irr]l OLJP%fChﬁaS:éS V\k/)l'tjf: tthﬁgure 9. Bode diagram with Engine torque as thmif

P X g ou P §nd differential pinion position as the output.
chassis and at relatively large displacements.

state from legend

la

magnitude

1 |
L '|

phase [deg)
T

No. State .

1 transmission.clutch.drivenPlate.flange_a.flange.phi 5 Con CI usion

2 transmission.gearset.uniformShaft10.body_a.phi

3 transmission.gearset.uniformShaft.body_a.phi A new method for determining the natural

4 driveline.rearDifferential.pinion.phi frequencies and modal responses of complex
5 driveline.rearDifferential.differentialAssembly.outputGear_2.phi Modelica models has been developed and introduced
6  chassis.motion.prismatic_x.s as a new feature in the Powertrain Dynamics library

Table 1. States of simple vehicle. Each numb&fliS feature includes automated methods to handle
corresponds to a state. The number in the legemdsthe problems with relative states and friction
Figure 8 corresponds to the number in this table. components as described in this paper in additon t
other methods to handle further problem areas such
It is also possible to generate Bode diagrams fas tyre slip models. The feature will be further
different inputs and outputs of the vehicle moddmproved to provide animation of the modal
The example shown in Figure 8 is the bode diagra@sponse of the powertrain to aid the understanding
generated when engine torque is an input to tbithe natural frequencies of the powertrain system
system and the differential pinion gear rotatioglan
is the output. The Bode plotting function in
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