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Abstract

This paper presents a graph theoretical interpretation
of the well-known O(n) algorithm for Multibody sys-
tems. It enables Modelica compilers to solve for the
unknown accelerations of a Multibody model without
the need of inverting a dense mass matrix which would
require O(n3) operations.

Keywords: MultiBody, Relaxation, Gaussian Elimi-
nation, OpenModelica

1 Introduction

Simulation has become an indispensable tool in early
development stages. Increasing computational power
leads to a demand for more detailed models. Espe-
cially in the design of Mobile Machinery, Multibody
systems are of major importance.

Currently, most Modelica compilers apply Tearing
[1] to models from Modelica.Mechanics.MultiBody
yielding a dense linear system of size proportional to
n - the number of bodies. In order to solve for the
unknown joint accelerations the system has to be in-
verted which requires O(n3) operations. Hence this
approach is only recommendable for small to medium
sized problems.

Efficient algorithms with O(n) complexity are well
known from literature [2], [4]. Unfortunately their ap-
plication for Modelica.Mechanics.MultiBody proves
to be difficult since these algorithms rely on special
knowledge about the multibody systems which is not
available in a general equation based framework like
Modelica.

It has already been pointed out in the literature [5]
that a technique called Relaxation is able to yield such

an O(n) formalism for multibody systems. However,
adaptions to the model libraries as well as a specific
model structure were required.

This paper presents a novel algorithm for general
purpose Modelica compilers. It is based on a graph
theoretical generalization of the well known O(n) al-
gorithm for multibody systems adapted to models
from Modelica.Mechanics.MultiBody.

2 Multibody systems

2.1 Kinematic Graph

Every multibody system can be represented by a kine-
matic graph whose nodes represent both bodies and in-
ertial frames and whose edges correspond to joints. If
the kinematic graph contains closed loops, appropriate
joints, so called cut-joints, are temporarily removed so
that the resulting graph only consists of trees. In a tree,
every node (body) has a unique parent, which is the
next node on the path to the root (inertial frame). All
bodies are numbered, such that every child body has
a higher number than its parent. Each joint is num-
bered according to the child body it is connected to,
thus forming pairs of bodies and joints. All remaining
cut-joints are numbered consecutively. An example is
given in Figure 1.

2.2 Equations of Motion

The equation of motion of a single body i can be writ-
ten as

Miai = pi + fi− ∑
k∈µ(i)

RT
k,ifk (1)

pi = fi,ext −hi (2)
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Figure 1: Kinematic Graph of Example System

where Mi ∈ R6×6 represents the mass matrix, ai ∈ R6

both translational and rotational acceleration of a fixed
point on body i and hi ∈ R6 all gyroscopic terms. pi

is used as an abbrevation for hi and all external forces
and torques fi,ext . fi, fk ∈R6 represent the joint reaction
forces of the joint belonging to the body i as well as all
the set of all its children µ (i). Rk,i transforms the force
and torque from i to k whereas its transpose performs
the opposite transformation.

It is assumed that every joint i has a set of joint-
coordinates qi as well as joint velocities si which fully
determine its kinematic state. Thus, the acceleration
of body i is given by

ai = Ri,hah +Jiṡi + ci (3)

where h is the index of the parent body of i. Ji de-
scribes the degrees of freedom of joint i and ci collects
all remaining terms which are neither linear in ah nor
ṡi.

From d’Alamberts Principle it can be found that

JT
i fi = τi (4)

whith τi being the motor force driving the joint.
Since equations (1)-(4) are linear with respect to the

accelerations and forces, one can merge the equations
for every element of the multibody system into one
single linear system of equations.

One of the most efficient O(n) algorithms (see [3])
to solve this linear system of equations is defined
through repeated application of

ṡi = ρ
−1
i

(
τi−JT

i MA
i
(
aλ (i)+ ci

)
−JT

i pA
i
)

(5)

ai = aλ (i)+Jiṡi + ci (6)

requiring the calculation of the following variables for
each body starting at the highest index

MA
i = Mi + ∑

k∈µ(i)
Ma

k (7)

ρi = JT
i MA

i Ji (8)

Ma
i = MA

i −MA
i Jiρ

−1
i JT

i MA
i (9)

pA
i = pi + ∑

k∈µ(i)
pa

k (10)

pa
i = pA

i +MA
i ci +MA

i Jiρ
−1
i

(
τi−JT

i pA
i
)

(11)

It can be shown that this exact algorithm can be
derived from a (sparse) Gaussian Elimination of the
linear system of equations provided all equations and
variables are ordered correctly.

In a general equation based framework, information
such as the ordering of bodies is not readily avail-
able. Thus the algorithm cannot be applied directly.
However, [5] has shown that the application of a tech-
nique called Relaxation, which is a type of Gaussian
Elimination, may also lead to an O(n) algorithm. The
suitable ordering of the equations and variables was
achieved by inserting a special relax operator into the
model equations.

This paper follows another path in which the O(n)
algorithm is derived using graph theoretical tech-
niques. To do so a graph representing the equations of
motion is built from the multibody system. The key to
an efficient O(n) algorithm lies in the ordering of the
graph. This is a problem for a Modelica compiler since
the information about the structure is lost in the com-
pilation process but is needed to achieve the efficiency
of algorithms such as [3]. By trying to generalize the
idea behind the algorithm from [3], a good ordering
for general modelica models can be found which con-
sequently leads to an efficient O(n) algorithm. This
approach is described in the following section.

3 Graphtheoretical Interpretation

3.1 Graph of a system of equations

Given a set of equations, an undirected bipartite graph
can be defined which contains two sets of nodes repre-
senting equations and variables respectively. There is
an edge between a variable and an equation if and only
if that equation depends on that variable. The graph of
the equation system belonging to the example system
has been sketched in Figure 2. Every square node rep-
resents an equation whereas every circle represents a
variable. Nodes representing eq. (1) have been named
Ii, eq. (3) is called Ai and (4) is labelled Di. In addi-
tion to the definition above, the edges carry the partial
derivative of the equation with respect to the variable.

It can be seen that the graph exhibits two legs.
The first leg contains all kinematic quantities (Ai, ai)
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Figure 2: Equation Graph of Example System

whereas the second leg comprises all kinetic quantities
(Ii, fi). The two legs are interconnected through steps
given by the inertial equations Ii (eq. 1). Equations Di

(eq. 4) and variables ṡi appear as handles to the legs,
thus forming a ladder like structure. All nodes with
the same index represent a body along with its joint
and shall be denoted as body structure. A body struc-
ture is called terminal if the body it represents does not
have any children.

3.2 Gaussian Elimination

Gaussian Elimination can be applied to a linear system
of equations Ax = b. Therefore one has to reproduce
A from the equation graph of the multibody system.
This requires the numbering of all equation and vari-
able nodes, i.e. allocating them to rows and columns
of A. The algorithm then iterates over all elements on
the main diagonal of A, which are called pivots. Mul-
tiples of the current row are added to all rows below
such that all elements below the pivot are eliminated.
Thus A is reduced to Â which has a (block) upper tri-
angular form.

Given the numbered graph, Gaussian Elimination
can be applied directly:

1. Begin at i = 1

2. Check that there is an (invertible) edge between
equation node i and variable node i (equivalent to
pivot element)

3. Create Edges between all pairs of equations
and variables connected to equation and variable
nodes i

4. Remove equation and variable nodes i along with
all adjacent edges from the graph

5. Continue at 2 with i := i+ 1 until all nodes are
removed

Figure 3 shows this process for a body structure (see
section 3.1) as found in Figure 2.
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Figure 3: Steps of Gaussian Elimination

3.3 O(n) algorithm

The numbering shown in Figure 3 leads to the efficient
O(n) algorithm from [3].

Removing the closed loop (A5, D5, f5, ṡ5) from the
graph given in Figure 2 yields two terminal body struc-
tures. These can be eliminated as shown in Figure
3 revealing new terminal body structures. This pro-
cess can be repeated until all body structures are elim-
inated.

Looking at the numbering employed in Figure 3 one
may note that
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1. Resulting pivots are chosen to be identity matri-
ces if possible

2. Each body structure is treated seperately, begin-
ning at the terminal ones

3. All nodes between the handles of the body struc-
ture are being numbered consecutively beginning
at the equation handle

4. Equation and variable handle are given the same
number although there is initially no connection
between them (zero pivot)

5. Entries in the lower triangular part of Aonly occur
due to the Di nodes as well as the Ii nodes of non
terminal body structures.

Please note that the handles nodes correspond to a suit-
able choice of tearing variables and residual equations,
as described in [1].

One may expect that the application of these rules
to the equation graph found in models from Mod-
elica.Mechanics.MultiBody may yield a numbering
which leads to an efficient O(n) algorithm for multi-
body systems for a general purpose Modelica com-
piler.

4 Application to Model-
ica.Mechanics.MultiBody

4.1 Equation Graph

Due to the object oriented nature of Model-
ica.Mechanics.MultiBody the equations are the same
as in 2.2 but are not written in such a compact form.
Equation (1) is found in the Body model. Equations
(3) and (4) are found in the different joint models. The
transformation matrices Ri,k (see Eq. (1)) are defined
through the FixedTranslation and FixedRotation mod-
els. The linear system of equations under considera-
tion is found as a strong connected component through
Tarjan’s algorithm [8] after index reduction has been
applied [7]. Moreover, most Modelica compilers ap-
ply symbolic simplifications to the equations of mo-
tion. Figure 4 shows the graph of the sample system
with which a Modelica compiler has to deal with.

Application of the O(n) algorithm requires three
steps:

1. Recover the graph structure

2. Find a suitable ordering

Figure 4: Equation Graph of Example System mod-
elled with Modelica.Mechanics.MultiBody

3. Apply Gaussian Elimination

Every step will be discussed in the following.

4.2 Tree Structured Systems

4.2.1 Recovering the graph structure

The first rule (see section 3.3) says, that if possible the
pivots shall be chosen to be identity matrices. There-
fore pairs of equations and variables have to be found
whose partial derivative is an identity matrix. This
process shall be called Natural Matching. In a first
step, every vectorial equation is tested if it can be
solved for its unmatched vectorial variables with only
using addition and subtraction. If that is the case, this
equation and variable are matched. Afterwards, all re-
maining equations and variables are expanded to their
scalar representation. All remaining scalar equations
are tested if they can be solved for their unmatched
vectorial variables with only using addition and sub-
traction. If that is the case, this equation and variable
are also matched. Then a classic matching algorithm
[6] is applied, leaving a set of variables and equations
unmatched. These are the candidates for the tearing
variables and residual equations. This procedure has
already been suggested in [9].

Since all equations in the Model-
ica.Mechanics.MultiBody library have been written
down in a manner which is most suitable for com-
putation, it happened in all our tests that the set of
candidates may be used without further modification
as tearing variables and residual equations. The tests
also showed, that mostly joint accelerations were used
as tearing variables and, depending on symbolical
simplifications, the Di equations or close neighbours
were used as residual equations.
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The result of the matching algorithm is visualized
in the graph by assigning directions to all edges. An
edge from an equation to a variable means that this
equation is used The result of the matching algorithm
is visualized in the graph by assigning directions to all
edges. An edge from an equation to a variable means
that this equation is used to calculate that variable. An
edge from a variable to an equation means that this
variable is needed in the calculation of that variable.
All tearing varibales are assumed to be known whereas
all residual equations do not have any variables that
they are solved for. The result for the example system
including the kinematic loop is shown in Figure 4.

Next, the order between the tearing variables has to
be found. Therefore the algorithm starts at a tearing
variable and follows the edges in opposite direction,
thus running down the kinematic leg. When another
tearing variable is found, it must be the predecessor
and the traversal is stopped. Thus, the predecessor
to every tearing variable can be found defining an or-
der between them which corresponds to the kinematic
graph of the mechanical system. Please note, that this
only works for tree structured systems. Otherwise a
body, and therefore a tearing variable, may have more
than one predecessor.

In a next step, the residual equation to each tearing
variable has to be found. Again, a breadth-first graph
traversal is started from every tearing variable follow-
ing each edge. The first residual equation, that is found
is assigned to the tearing variable.

4.2.2 Finding a suitable ordering

From the kinematic graph, obtained in the previous
step, the terminal pairs of tearing variables and resid-
ual equations are known. Starting at a terminal resid-
ual equation all paths to its tearing variable can be
found by following the in opposite direction. Valid
paths may also include eliminated nodes. Once all
paths have been found, decreasing numbers are as-
signed to the nodes using a breadth-first-search start-
ing at the tearing variable. Afterwards the nodes of
the residual equation and the tearing variable are num-
bered. Then all numbered nodes are eliminated from
the graph as well as the tearing variable from the kine-
matic graph. This process is repeated for the next ter-
minal tearing variable until all tearing variables are
eliminated. In a last step all remaining nodes are num-
bered. Thus, a number has been assigned to every node
allowing to apply Gaussian Elimination.

4.2.3 Applying Gaussian Elimination

Given the numbering of all nodes, the matrix A can be
constructed. Next Symbolic Gaussian Elimination is
applied to the matrix G=

[
A b

]
yielding an upper-

triangular G′, see section 3.2. The equations of the
strong connected component are then replaced by x =
G′−1b.

When performing Gaussian Elimination temporary
variables should be introduced after every elimination
step. Otherwise the symbolic expressions in the entries
of G′ may grow very fast.

4.3 Closed Loop Systems

Adapting the algorithm to cope with closed kinematic
loops is part of the ongoing work. This section shall
outline the problem and possible solutions.

Natural Matching still works reasonably well,
choosing joint accelerations and the constraint forces
of the loop as tearing variables. The search for the
predecessors of the tearing variables, however, breaks
down. Firstly because the tearing variables of the kine-
matic loop may have more than one predecessor and
secondly because they are located in the kinetic leg.

The ordering between the tearing variables then has
to be modeified such that, the tearing variables of the
loop closure joint are treated after all other tearing
variables belonging to the same kinematic loop.

So far, the search for the predecessors has been ex-
tended so that it finds every tearing variable which is
a parent in the kinematic graph. It leads to a dramatic
increase in effort for both the search as well as the as-
sembly of the kinematic graph. Tests have shown that
the whole algorithm suceeds for some models, includ-
ing the sample model, but it fails for others. Failing
is mainly caused because the search for predecessors
sometimes returns unexpected results.

5 Numerical Tests

The described algorithm has been implemented into
the OpenModelica Compiler. It has been tested on
multibody systems with tree structure only.

The following models have been used for testing:

1. Planar Pendulum - A sequence of n submodels
consisting of a revolute joint, a body and a fixed-
Translation

2. Split Pendulum - Same as Planar Pendulum but
with a short extra branch of constant length
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3. Alternating Pendulum - Same as Planar Pendu-
lum, but with alternating axes of rotation

4. Multi Pendulum - Each body is followed by two
more pendulum bodies with a limited recursion
depth (see Figure 5

Figure 5: Multi Pendulum

Figures 6, 7, 8 and 9 show the required operation
counts needed to calculate the whole model (including
the accelerations) for the four test cases. As can be
seen each curve exhibits a linear dependence on the
number of bodies and therefore the number of degrees
of freedom.

For comparison, the results when using tearing [1]
which is (O(n3)) have also been included. One may
see that for planar systems the O(n) algorithm pro-
duces much lower operation counts as the number of
bodies grow. In the 3D case, however, the tearing
algorithm outperforms the proposed O(n) algorithm.
Investigations have shown that this is partly due to
the limited symbolic simplification capabilities of the
OpenModelica Compiler.

6 Discussion

6.1 Applicability

The algorithm has been tested on several different
multibody models. It relies on the structural properties
of the linear system as discussed in the earlier sections.
Due to the fact that Tarjan’s Algorithm [6] decomposes
the system into seperate strong connected components,
the use of force elements does not influence the algo-
rithm as long as their value does not depend on accel-
erations or forces in the system. Hence, Accounting
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Figure 6: Results - Pendulum
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Figure 7: Results - Split Pendulum

for dry friction (tangential force depending on the nor-
mal force) for example, might cause the algorithm to
fail.

Structural singularities are found during compile
time, since during symbolic Gaussian Elimination
each pivot is checked if it is non-zero. Problems like
numerical cancellation or division by zero are not de-
tected by the compiler and have to be reported as errors
at runtime.

Due to the problems which may be encountered on
some models, the algorithm should not be enabled by
default. Instead it provides an interesting alternative
for users who try to tune their models for faster execu-
tion times, as it would be the case in real time applica-
tions, for example.
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Figure 8: Results - Alternating Pendulum (3D)
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Figure 9: Results - Multi Pendulum

6.2 O(n) or Tearing?

If Gaussian Elimination fails during compile time,
the current implementation switches back to Tearing.
However, the question arises which strong connected
components should the proposed O(n) algorithm be
applied to. The current (presumably non-efficient) im-
plementation is controlled by a compiler flag. If it is
set, the O(n) algorithm is applied to every strong con-
nected component. Should it fail, Tearing is applied
istead. A possible improvement could be, to control
that either by an annotation or by comparing the oper-
ation count.

6.3 Efficiency

The investigations suggest that this algorithm indeed
achieves O(n) performance and the results show that
it is often more efficient than Tearing. However, there
is still much potential for optimization. The most
promising optimization would be to exploit symme-
try. This could be achieved by looking for common
sub expressions.

The current version of the Model-
ica.Mechanics.MultiBody library however, is not
suited for exploiting symmetry since all transla-
tional variables are written with respect to the world
frame. Thus, for equation (1) and (3) the relationship
Ri, j = RT

j,i does not hold. Preliminary tests have
shown a 20% decrease in operation count, without the
usage of a common sub expression search, when the
symmetry is established by writing all translational
variables with respect to the local frame_a.

7 Outlook

Next steps include adaptions to make the algorithm
work reliably on models with kinematic loops. It is
also worth extending the module which performs sym-
bolic simplification by analyzing the assignments be-
fore code generation. This may also be combined with
trying to exploit symmetry in order to lower the num-
ber of operations.

Lastly, it would be interesting to see if that algo-
rithm may also be applied successfully to models from
other domains, like electrical networks or chemical
processes.

8 Conclusion

In this paper a special O(n) algorithm for calculating
the joint accelerations of a multibody system has been
adapted. With the novel graph theoretic interpretation,
general purpose Modelica compilers are able to solve
models from Modelica.Mechanics.MultiBody with a
computational effort proportional to number of bodies
n compared to the usual O(n3) algorithms based on
the mass matrix. A working implementation for the
OpenModelica Compiler has shown a linear relation-
ship between the operation count and degrees of free-
dom. When comparing the results to the tearing algo-
rithm, it became apparent that it outperforms the pro-
posed algorithm for non-planar models. This is partly
due to the limited symbolic simplification carried out
by the OpenModelica Compiler.
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