
SIGRAD 2012
A. Kerren and S. Seipel (Editors)

Usability Analysis of Custom Visualization Tools

Mohammad A. Kuhail, Soren Lauesen, Kostas Pantazos, and Xu Shangjin

IT University of Copenhagen, Denmark

Abstract
Many visualization tools allow the implementation of custom (non-standard) visualizations, but they differ in
approach. The approaches vary from imperative to declarative programming. Moreover, some tools provide en-
vironments that assist designers in implementing visualizations. Which approach supports designers best in im-
plementing custom visualizations? What is lacking? To answer these questions, we compared the approaches of
four recent visualization tools that support custom visualizations using an example. Further, we evaluated the
approaches using the framework of the Cognitive Dimensions of Notations (CDs). Our findings favour notations
that use declarative rather than imperative programming, and environments that allow exploration rather than
dialogue-dependant ones.

Categories and Subject Descriptors (according to ACM CCS): H.3.4 [Systems and Software]: Performance evalua-
tion (efficiency and effectiveness)—H.5.2 [User Interfaces]: Evaluation/methodology—

1. Introduction

Charting tools (e.g. MS Excel) support standard visualiza-
tions such as line charts, bar charts, etc. Designers only need
to select data, and choose their visualizations based on pre-
defined templates. However, custom visualizations are tai-
lored to a specific need, and cannot be built like standard
visualizations. Further, designers might not be exactly sure
about what the desired visualization should look like. They
need to explore various avenues to implement the visualiza-
tion. It is a trial and error approach.

A visualization tool allows the user to set up a graphi-
cal presentation of data. Many visualization tools allow the
implementation of custom visualizations, but they vary in
approach. For instance, some tools [Fek04, HCL05] pro-
vide modules (e.g. visual objects, layout mechanisms) that
can be used with traditional programming languages. Other
tools [BH09] provide declarative domain specific languages
that can combine visual objects, and define their properties
to show data. Moreover, some tools [KPX13] provide devel-
opment environments that use cognitive artefacts such as in-
terface builder, direct manipulation, etc. to enhance design-
ers’ cognitive ability and ease the process of visualization
design.

How do the existing approaches support custom visualiza-
tions? To what extent are the approaches sufficiently acces-

sible to designers? What is lacking? To answer these ques-
tions, we selected four recent visualization tools: Prefuse,
Improvise, Protovis, and Uvis. We investigated the tool ap-
proaches, and compared the solutions of the tools to a cus-
tom visualization. Furthermore, we used the framework of
the Cognitive Dimensions of Notations (CDs) [Gre89], a
framework for evaluating a notional system and the environ-
ments it is manipulated in, to evaluate the tools and identify
areas that need improvement.

Our findings are in favour of notations that use declara-
tive programming rather than imperative programming, and
environments that support exploration rather than restrictive
dialogue-dependant ones.

2. Related Work

A common approach to evaluating visualization tools is to
conduct an experiment or an evaluation study that evaluates
how well several tools support tasks . Examples can be found
at [Byr99,SEH00,PGB02]. This approach provides some in-
sight about the usability of the evaluated tools, but it is task-
specific.

Broad evaluations of visualization tools exist. For in-
stance, a recent study was carried out to evaluate how vi-
sualizations are constructed from a user perspective [PL12].
While this approach is insightful, it does not give details

19



M. Kuhail, S. Lauesen, K. Pantazos & X. Shangjin / Usability Analysis of Custom Visualization Tools

Figure 1: A custom x-y graph based on table HighReading

about the specifics (e.g. functionality, utility, etc.) of the
tools. Another recent study compared the visualization and
analysis functionalities, and environments of various visu-
alization tools. However, little critique was given about the
usability of the tools [HC12]. The authors of Protovis evalu-
ated the accessibility (the effort required to create or modify
a visualization) of Protovis [BH09], Flare [Fla], and Process-
ing [Pro] using a subset of dimensions from the CDs frame-
work [BH09]. The evaluation was brief, but it shed some
light on a few aspects of the tools.

3. Evaluation Settings

3.1. Selection of Visualization Tools

We selected four visualization tools for evaluation: Prefuse
[HCL05], Improvise [Wea04] , Protovis [BH09], and Uvis
[LKP∗13, KPL12, KL12]. We selected the tools based on
support for custom visualizations, how recent they are,
whether they are general-purpose, and difference of ap-
proaches.

All the selected tools support the creation of custom vi-
sualizations, have been developed in the last decade, and are
general-purpose. Also the tools have different approaches to
visualization creation. We only selected a representative tool
from tools similar in approach or cognitive artefacts. For in-
stance, we excluded Flare [Fla] since it adapted its design
from Prefuse. Likewise, we excluded D3 [BOH11] as it bor-
rows a lot of its concepts (e.g. helper functions) from Proto-
vis.

Since they do not have direct cognitive support for vi-
sualization creation, we excluded programming languages,
Graphics API’s and GUI development systems such as Pro-
cessing [Pro], Java2D, and Piccolo [BGM04].

3.2. Design

We introduce the selected visualization tools, and the sup-
port they provide for visual mappings [CMS99]. Visual map-
ping is a key to visualization expressiveness and effective-
ness [SJ07]. It requires four essential elements: visual ob-
jects that show data graphically, a mechanism to bind visual

object properties to data, a mechanism that supports com-
plex arrangement of visual objects, and an environment that
helps designers implement visual mappings. We compare the
selected tools according to these four elements. Table 1 pro-
vides a summary for the comparison.

We compare the selected tools using a custom x-y graph
(Figure 1). The example shows high readings of temperature
in a given city. The readings are taken from 1 June 2011 to
1 October 2011. The dots represent the readings, and so far
it looks like a conventional chart. However, we want to cus-
tomize the colour of the dots. If the dot is showing the high-
est temperature, it is black. Otherwise, if the dot is show-
ing a temperature greater than 25, it is red. The rest of the
dots are orange. Although the example is simple, it was se-
lected because it can be made with the selected tools without
advanced knowledge. Further, it does not favour any of the
tools.

We use the CDs framework to evaluate the tool support
for custom visualizations. To effectively use the framework,
we need to understand the nature of the task of implement-
ing a custom visualization, and which cognitive dimensions
are important to look at. The task qualifies as an exploratory
task since it is a combination of incrementation (adding in-
formation without altering the structure) and modification
(changing the existing structure possibly without adding new
content), and the desired end might not be known in ad-
vance [GB98]. The cognitive dimensions that are important
to look at when designing or evaluating tool support for ex-
ploratory tasks are: abstractions, hidden dependencies, pre-
mature commitment, progressive evaluation, viscosity, vis-
ibility, and juxtaposability [GB98]. Based on that, we se-
lected the aforementioned dimensions for the evaluation.

Ideally, systems that support exploratory tasks (e.g. imple-
menting a custom visualization) should have low viscosity,
few hidden dependencies, few premature commitments, few
abstractions, and high visibility and juxtaposability [GB98].
We use this as a criterion for evaluating how well the tools
support custom visualizations.

20



M. Kuhail, S. Lauesen, K. Pantazos & X. Shangjin / Usability Analysis of Custom Visualization Tools

Prefuse Improvise Protovis
(Protoviewer)

Uvis
(Uvis Environment)

Environment
N/A • WYSIWYG

• Selection
• WYSIWYG
• Selection

• WYSIWYG
• Direct manipulation
• Error highlighting
• Inspector

V
is

ua
lo

bj
ec

ts Primitive Java Shape (Ellipse,
etc.)

Glyph (Rectangle,
Oval, etc.)

Mark (Dot, Bar,
Wedge, etc.)

Ellipse, Triangle, Box,
etc.

Specialized Graph, TreeMap, etc. BarChart, Ma-
trixView, etc. N/A

TimeScale, Spiral, etc.

Binding visual
properties to data • Class (Action) • Expression (Pro-

jections)
• Expression

(Anonymous
Functions)

• Expression (Formulas)

Complex layout • Visual objects (e.g.
Tree Map.)

• Layout class (e.g. force
directed.)

• Visual objects
(e.g. Tree, Graph,
etc.)

• Layout property
(e.g. tree map,
force directed.)

• Visual objects (e.g.
tree map, TreeNode.)

Table 1: A summary of the selected tool approaches

4. Approaches

4.1. Prefuse

Prefuse is a visualization toolkit suited for advanced visual-
izations (e.g. tree maps, sunburst, etc.). It provides modules
(e.g. functions, layout classes, etc.) suited for various visu-
alization tasks. To create visualizations, the designer writes
Java code that uses the modules.

Prefuse provides primitive geometric visual objects (e.g.
rectangles, ellipses, etc.) and specialized visual objects that
are suited for specific visualizations such as trees and graphs.
Prefuse provides many Action subclasses that bind visual
properties to data. The designer can use specialized objects
or a Layout subclass to accomplish complex arrangement of
visual objects.

Example: Figure 2 shows the specifications of a custom
x-y graph with Prefuse. First, a visualization object is cre-
ated and bound to data (lines 1-3). Prefuse uses an Axis-
Layout abstraction that supports plots (lines 4 and 5). The
to-be-visualized fields are passed in the AxisLayout con-
structor.

Actions bind visual properties to data (lines 8-10). There
are many types of actions. For instance, ColorAction can
make a colour property (e.g. border colour or background
colour) show data. The orangeColor variable makes all

visual objects orange (line 8). It sets the FILLCOLOR (back-
ground colour) of all visual objects to orange. However, the
redColor variable makes objects that conform to a con-
dition red (line 9). The condition is specified by a predicate
that checks if the temperature fields are greater than 25. This
predicate is specified at line 6. The actions are attached with
the visualization object (lines 11-15).

The axes are positioned using a RenderFactory class
(lines 17-20), and tick marks of the axes are generated using
an AxisLabelLayout class (lines 21-24). The tick marks
are associated with their corresponding axes (line 25).

Finally, ellipses are chosen as visual objects to represent
the temperature readings, and associated with the axes de-
fined previously (lines 26-28).

Summary: There are many abstractions that designers
have to know and create (e.g. AxisLayout, Render-
Factory). The separation of actions from the visualiza-
tions, predicates, and their properties can facilitate the man-
agement of code and allow reuse, but might increase the gap
between the problem and the solution (Norman’s gulf of ex-
ecution [Nor86]). A designer might be wondering "which
visual object or property does this action relate to?".

21



M. Kuhail, S. Lauesen, K. Pantazos & X. Shangjin / Usability Analysis of Custom Visualization Tools

Figure 2: Creating a custom x-y graph with Prefuse. a) binding the visualization to data, b) defining time and numeric axes,
c) defining a conditional visual mapping, d) associating the visual mappings with the visualization, e) defining tick marks and
associating them with the axes. f) defining ellipses representing the temperature readings

Figure 3: Creating a custom x-y graph with Improvise

22



M. Kuhail, S. Lauesen, K. Pantazos & X. Shangjin / Usability Analysis of Custom Visualization Tools

Figure 4: Creating a custom x-y graph with Protovis. a) defining the visualization. b) defining the numeric (temperature) and
time scales (axes). c) defining dots and visually mapping them to temperature and date fields according to the scales

4.2. Improvise

Improvise is a visualization system that mainly supports co-
ordinated visualizations. It provides primitive and special-
ized properties whose visual properties can show data us-
ing expressions. The expressions can be conditional, logical,
mathematical, etc. Improvise provides specialized objects
that support complex layouts such as trees. Designers use
a development environment to create a visualization. They
navigate from panel to panel to accomplish visual mappings.
Each panel has a distinct purpose. For instance, one panel
shows the available visual objects and their properties. An-
other panel shows the variables that can be used in expres-
sions.

Example: To define a x-y graph, the designer chooses
Plane View 2D object from the list of visual objects. To
define visual mappings for the visual object, the designer
chooses Layer.Projection from the list of properties.
He clicks "Create" to create a new projection (visual map-
ping). This leads him to a new panel (Lexicon) where he
can define expressions.

We want to define this expression for the background
colour property.

Temperature > 25 ? "red": "orange"

This expression has to be built step-by-step using
combo boxes that provide the available Expression el-
ements (Figure 3). First, the designer creates the con-
ditional part of the expression by choosing Func-

tion from the Category combo box, and Other and
?(boolean,Color,Color). Improvise shows the re-
sult as a conditional expression tree with default colours as
results for the true and false expressions.

Second, the designer can manipulate the conditional state-
ment parts by clicking the tree nodes. To create a compar-
ison condition, the designer chooses Function from the
Category combo box, and Comparison and >(...)
from the Operator combo boxes. Third, to make one of
the nodes refer to the Temperature field, the designer
clicks the node and chooses Attribute from the Cat-
egory combo-box. Improvise displays the available fields,
and the designer just selects (clicks) it.

Summary: In general, visual mappings rely heavily on di-
alogues. For instance, even a simple expression takes long to
create. The environment forces the designer to use combo-
boxes that have the expression elements. It is not easy to
find the expression elements. Moreover, the longer the ex-
pression, the harder it is to read.

4.3. Protovis

Protovis is a JavaScript-based visualization toolkit that uses
a declarative domain specific language that can map data into
primitive visual objects (e.g. bar, dot, etc.) and their proper-
ties. Protovis does not provide specialized objects for visual-
izations with complex layouts, but provides a Layout prop-
erty that can arrange visual objects in various ways. Protovis

23



M. Kuhail, S. Lauesen, K. Pantazos & X. Shangjin / Usability Analysis of Custom Visualization Tools

can be extended with a development environment called Pro-
toviewer [Aka11].

Example: Figure 4 shows the specifications of a custom
x-y graph with Protovis. First, a visualization object is de-
fined (lines 1-4). Protovis uses non-visual scale classes for
creating time and numeric axes (lines 5-11). The designer
uses them to generate tick data. Rule and Label visual ob-
jects are used to draw the axes based on the tick data (lines
12-18).

Dot objects are bound to data (an array that corresponds
to the HighReading table) (lines 19-21). The Left and
Bottom properties position the Dot objects horizontally
and vertically (lines 22 and 23). The designer specified ex-
pressions for the two properties that call functions provided
by the scales that calculate the positions based on tempera-
ture and date fields. Finally, a conditional expression for the
FillStyle (background colour property) sets the colour
of dots that show the highest temperature black. Otherwise,
it sets the colour red for dots showing temperature greater
than 25 red. Otherwise, they are orange (lines 24 and 25).

Development Environment (Protoviewer): The visual-
ization can be built with the Protoviewer development envi-
ronment (Figure 5). This has several advantages. Designers
can see the resulting visualization immediately as they are
modifying the source code. Moreover, clicking a visual ob-
ject, designers can view the position values (x and y) of the
object. This can help inspecting the object.

Summary: Protovis provides non-visual scale classes that
facilitate the construction of axes. The axes are not defined
directly. Instead, primitive objects such as Label and Rule
are used for drawing the axes. This separation increases
flexibility (e.g designers might obtain a custom axis in this
way), but increases the steps of such a common task. Un-
like Prefuse actions, the declarative expressions for the Dot
visual objects are not separated from the visual properties.
This increases visibility and understandability.

4.4. Uvis

Uvis is a visualization tool that allows creating custom vi-
sualizations based on relational data. To construct a visual-
ization, the designer drags and drops visual objects (build-
ing blocks), binds their visual properties with data using
spreadsheet-like formulas, and the environment shows the
resulting visualization in a WYSIWYG fashion. To see prop-
erties of a visual object, the designer selects (clicks) the vi-
sual object, and the environment shows the visual properties
of the object in a property grid. To make a visual property
(e.g. Height) depend on data, the designer types a declar-
ative spreadsheet-like expression (formula). Uvis supports
conditional, logical, and mathematical formulas. Moreover,
a formula can refer to data fields, visual properties, and func-
tions. Uvis supports complex algorithms with specialized
objects such as tree maps.

Figure 5: Creating a custom x-y graph with Protovis envi-
ronment (Protoviewer)

Figure 6: The specifications of the custom x-y graph with
Uvis

Example: Figure 6 shows the textual specification of the
custom x-y graph with Uvis and Figure 7 shows the environ-
ment where the chart was developed.

To create the time and numeric axes, the designer dragged
HTimeScale and VNumericScale visual objects from
the toolbox and dropped them on a form. The designer
moved and resized them until they looked right. The envi-
ronment sets position properties (i.e. Top, Height, etc.) ac-
cordingly. To define the range of time and numbers the scales
show, the designer typed the value of the Range property in
the property grid (lines 5 and 11 in Figure 6).

To create dots representing the temperature reading, the
designer drags and drops an Ellipse. The designer typed
formulas for the position properties (Top and Left). The
formulas call position functions provided by the scales to
calculate the positions based on temperature and date fields

24



M. Kuhail, S. Lauesen, K. Pantazos & X. Shangjin / Usability Analysis of Custom Visualization Tools

Figure 7: Uvis environment

(lines 18 and 19 in Figure 6). Finally, a conditional expres-
sion for the BackColor (background colour property) sets
the colour of ellipses (line 21 in Figure 6).

Development Environment: The environment has sev-
eral advantages. Designers can drag, drop, resize visual ob-
jects (Direct manipulation), and they can see the resulting
visualization immediately as they are updating the expres-
sions.

The inspector shows data for a bundle of visual objects.
It shows the data rows behind the visual objects (Figure 7).
Further, it shows the values of an expression and its sub-
expressions (Figure 8).

Summary: Unlike Prefuse, Protovis, and Improvise, Uvis
deals only with visible visual objects. Like Protovis, Uvis
uses declarative expressions that directly define the visual
properties, but there is no need to define variables, and the
sequence of specifying the expressions is free. Like Impro-
vise, the environment shows the available visual objects, but
it allows the designers to drag, drop, and resize them (as long
as the position and size properties do not have dynamic ex-
pressions) rather than textually setting them.

5. Cognitive Dimensions of Notations

This section evaluates how the selected tools perform in a
relevant set of cognitive dimensions. The dimensions them-
selves are not sufficient to make a judgement. Therefore,
we make the judgement based on what is desirable for ex-
ploratory tasks such as implementing a custom visualization.
For instance, exploratory tasks require high visibility. Hence,
tools that have high visibility rate high.

Figure 8: The inspector showing property Left expression
values

5.1. Abstractions

The abstractions dimension assesses the abstractions that en-
capsulate implementation details and the mechanism to man-
age them. Although abstractions can make the specifications
shorter and sometimes fit the domain better, systems that re-
quire learning many abstractions have an abstraction bar-
rier. Exploratory tasks do not tolerate many abstractions.

Prefuse is an example of a system that has an abstraction
barrier. For instance, there are many subtypes of Layout,
RenderFactory, and Action to learn. The abstractions
can be extended programmatically by Java programming,
but this requires in-depth knowledge of Java.

Protovis has fewer abstractions to learn than Prefuse, but
some programming abstractions (e.g. variables, anonymous
functions) are necessary to learn. Protovis abstractions can
be extended programmatically with JavaScript.

25



M. Kuhail, S. Lauesen, K. Pantazos & X. Shangjin / Usability Analysis of Custom Visualization Tools

Like Prefuse, Improvise has many abstractions. For in-
stance, there are many panels and expression parts (e.g. con-
ditional statements, functions, etc.) and the designers need to
be aware of their meaning, and how to manipulate them, etc.
Like Prefuse, Improvise abstractions can be extended with
Java.

Uvis formulas resemble spreadsheet expressions, but ob-
viously have more abstractions than spreadsheets. For in-
stance, a Uvis formula can refer to data fields, visual proper-
ties, etc. However, Uvis has relatively few abstractions. For
instance, there are no variables and rendering objects. Uvis
does not allow defining new abstractions.

5.2. Hidden Dependencies

The hidden dependencies dimension assesses whether de-
pendencies between entities are hidden or visible. Hidden
dependencies slow down information finding and can poten-
tially increase the risk of error. Exploratory tasks tolerate
only a few hidden dependencies.

Most Prefuse abstractions have hidden dependencies. For
example, the layout action implicitly overrides a specific vi-
sual mapping of size and position properties.

Protovis expressions can depend on variables. Such de-
pendencies can be hard to see in textual specifications. More
advanced visualizations use layout classes that position vi-
sual items implicitly (e.g. tree maps), or some operators such
as "Parent" and "Sibling" that have hidden dependencies.

In Improvise, it is hard to derive the elements of an ex-
pression, particularly, if the expression contains variables or
other sub-expressions. These can be viewed in other panels.

Uvis formulas can depend on other visual properties. The
properties can have their own formulas, and so on. When
designers change an expression, it is hard to know the impli-
cations of such a change. Furthermore, more advanced vi-
sualizations such as hierarchical visualizations use operators
(e.g. Parent) that result in hidden dependencies.

All the surveyed tools except for Uvis do not explicitly
show which particular visual property depends on which
field. The Uvis environment shows that using the inspector
(Figure 8).

5.3. Premature Commitment

The premature commitment dimension assesses whether
there are any constraints on the order in which tasks must
be accomplished. Premature commitment is harmful for ex-
ploratory tasks.

Since the specifications are program-like, Prefuse and
Protovis impose constraints on the sequence in which visu-
alizations are defined. For instance, if a property depends on
another, the independent one has to be defined first.

Improvise imposes a strict sequence on how some things
are done. Constructing the expression step-by-step is an ex-
ample of strict sequencing, and having to navigate from
panel to panel to carry out visual mappings is another one.

Uvis specifications are sequence-free. At run time, the
kernel finds out the sequence of execution. If the designer
types a formula that refers to a property that does not exist
yet, Uvis kernel flags an error, but the application still runs.

5.4. Progressive Evaluation

The progressive evaluation dimension assesses how easy it
is to evaluate and obtain feedback on an incomplete task.
Progressive evaluation is important for exploratory tasks.

In Prefuse, it is not easy for a designer to obtain visual
feedback of the specifications. The source code has to be run
in another setting to obtain feedback.

Improvise bridges that gap with an immediate visual feed-
back feature. However, the visual feedback can be over-
shadowed with many editing panels.

Protoviewer and the Uvis environment provide a separate
design panel that is updated immediately when the specifi-
cations are changed. The Uvis environment provides similar
kinds of feedback as traditional environments such as high-
lighting erroneous formula parts, error, and warning lists. In
addition, the environment shows the formula values in a sep-
arate panel that is updated when the formula changes (Fig-
ure 8).

5.5. Viscosity

The viscosity dimension assesses the cost of making small
changes. It is costly to make a small change in viscous sys-
tems. Viscosity is harmful for exploratory tasks. We consider
two types of viscosity. First, repetitive viscosity means a sin-
gle goal-related change which requires many repetitive ac-
tions. Second, knock-on viscosity means a change in one part
affects other related parts.

Prefuse is based on an object oriented language (Java.)
Hence, inheritance can reduce repetitive viscosity. For in-
stance, a change can be made in a parent class rather than
all inheriting classes. Modern development environments
can help with small knock-on changes such as changing a
variable name that is used in many places (re-factoring.)
Nevertheless, changing Prefuse specifications requires in-
depth knowledge of the language constructs and program-
ming concepts.

Like Prefuse, the Protovis language has low-repetitive
viscosity since it supports inheritance for visual objects.
Moreover, Protovis allows other changes easily, for instance,
changing the visual object type. The environment (Pro-
toviewer) does not have support for making changes.

26



M. Kuhail, S. Lauesen, K. Pantazos & X. Shangjin / Usability Analysis of Custom Visualization Tools

Designers who are experienced with Improvise might find
some things easy to change. For instance, variables that are
referred to from many expressions can be changed in one set-
ting. Otherwise, Improvise is highly viscous. For instance,
changing some specialized visual object types (e.g. Plane
View) is not possible. In general, a change in Improvise re-
quires navigating across panels.

Like spreadsheets, simple visualizations in Uvis have low
viscosity. However, viscosity grows with size. Uvis does not
support inheritance, but designers can add properties that
have formulas that other visual objects can refer to. In such
a case, a change is only required in the designer property.
Since Uvis formulas can refer to other formulas elsewhere,
a change in one formula might affect other dependant for-
mulas. The Uvis environment shows errors that result from
such a change.

5.6. Visibility and Juxtaposability

The visibility dimension assesses the ability to view data
components easily. Juxtaposability assesses the ability to
view two similar components side by side. The two dimen-
sions are generally discussed together due to similarity. Both
dimensions are important for exploratory tasks.

What data components would a designer want to view
when implementing a custom visualization? Many can
be considered important. Examples include the currently-
designed visualization, the available visual objects and their
properties, the visual mappings, the available data, the visu-
alized data, and errors. What needs to be viewed varies from
task to task and designer to designer, but a possible solution
is to give designers the ability to show or hide components.

Even if Prefuse is integrated with a development environ-
ment, only a few components can be visible in one setting.
Traditional environments show the source code, the available
visual objects, and a list of errors in one setting. However,
the designer has to view the currently-designed visualization
in another setting.

Protoviewer shows the currently-designed visualization as
well as the specifications behind it. Furthermore, designers
can view the position property values of a single selected
visual object at a time. Protoviewer does not provide sup-
port for comparing the specifications of two similar visual
objects.

Improvise shows the currently-designed visualization, but
it can be over-shadowed by the editing panels. A panel can
only show one expression at a time, and it occupies a lot
of space. This does not allow comparing many expressions.
Further, many data crucial for the task (e.g. data fields) are
buried in combo boxes.

Uvis shows the currently-designed visualization, the
properties (and the expressions defining them) of a selected

visual object, and a list of errors. Upon selecting a visual ob-
ject, Uvis shows the data behind that particular object. Fur-
ther, to allow comparison, the data from other visual objects
from the same data source are shown as well. It is also pos-
sible to see the defining expressions of all properties of a
selected visual object. However, it is not possible to see ex-
pressions of two visual objects at the same time.

6. Conclusion

We summarize the findings of the comparative analysis and
the evaluation with CDs as follows.

• All the surveyed tools suffer from low juxtaposability
and high hidden dependencies with slightly different de-
grees.

• All the surveyed tools except for Uvis suffer from high
premature commitment and low visibility with slightly
different degrees.

• Prefuse uses a programmatic approach that relies on spe-
cialized modules. The main strength of this approach is
the breadth of visualizations it can express due to the
many modules it provides. However, there are many ab-
stractions to learn even to construct a simple example like
a custom x-y graph. Furthermore, even with a develop-
ment environment, the approach suffers from low progres-
sive feedback.

• Improvise uses an approach that is heavily dependant on
dialogues (panels). The main strength of this approach is
that the tool provides useful visual objects tailored for
some tasks. However, the functionalities are not easy to
find. For instance, the conditional expression is buried in
a combo box item called "Other".

• Protovis uses an approach that relies on primitive visual
objects and declarative expressions. The main strength of
the approach is that the properties of the visual objects are
directly specified. No middle-ware objects (e.g. Prefuse
actions) are needed to link visual properties with ex-
pressions. However, some programming abstractions (e.g.
variables) are still needed to learn the language.

• Uvis uses an approach that relies on declarative
spreadsheet-like formulas for visual mappings, and a ded-
icated environment with many features (e.g. drag-drop, vi-
sual feedback, etc.). The approach has high visibility, low
premature commitment, and relatively few abstractions to
learn. However, the approach still suffers from high vis-
cosity (especially when it is a large-sized application).

References

[Aka11] AKASAKA R.: Protoviewer: a web-based visual design
environment for protovis. In ACM SIGGRAPH 2011 Posters
(New York, NY, USA, 2011), SIGGRAPH ’11, ACM, pp. 85:1–
85:1. 24

[BGM04] BEDERSON B. B., GROSJEAN J., MEYER J.: Toolkit
design for interactive structured graphics. IEEE Trans. Software
Eng. 30, 8 (2004), 535–546. 20

27



M. Kuhail, S. Lauesen, K. Pantazos & X. Shangjin / Usability Analysis of Custom Visualization Tools

[BH09] BOSTOCK M., HEER J.: Protovis: A graphical toolkit
for visualization. IEEE Trans. Vis. Comput. Graph. 15, 6 (2009),
1121–1128. 19, 20

[BOH11] BOSTOCK M., OGIEVETSKY V., HEER J.: D3 data-
driven documents. IEEE Trans. Vis. Comput. Graph. 17, 12
(2011), 2301–2309. 20

[Byr99] BYRD D.: A scrollbar-based visualization for document
navigation. In ACM DL (1999), pp. 122–129. 19

[CMS99] CARD S. K., MACKINLAY J. D., SHNEIDERMAN B.:
Readings in information visualization - using vision to think.
Academic Press, 1999. 20

[Fek04] FEKETE J.-D.: The infovis toolkit. In INFOVIS (2004),
pp. 167–174. 19

[Fla] FLARE: Data visualization for the web. http://flare.
prefuse.org/. [Online; accessed June-2012]. 20

[GB98] GREEN T., BLACKWELL A.: Cognitive dimensions of
information artefacts: a tutorial. T.R.G. Green and A.F. Blackwell
1, 2 (1998). 20

[Gre89] GREEN T. R. G.: Cognitive dimensions of notations. In
Proceedings of the fifth conference of the British Computer So-
ciety, Human-Computer Interaction Specialist Group on People
and computers V (New York, NY, USA, 1989), Cambridge Uni-
versity Press, pp. 443–460. 19

[HC12] HARGER J., CROSSNO P.: Comparison of open-source
visual analytics toolkits. In SPIEConference on Visualization and
Data Analysis (2012). 20

[HCL05] HEER J., CARD S. K., LANDAY J. A.: prefuse: a
toolkit for interactive information visualization. In CHI (2005),
pp. 421–430. 19, 20

[KL12] KUHAIL M. A., LAUESEN S.: Customizable visualiza-
tions with formula-linked building blocks. In GRAPP/IVAPP
(2012), pp. 768–771. 20

[KPL12] KUHAIL M. A., PANDAZO K., LAUESEN S.: Cus-
tomizable time-oriented visualizations. In ISVC (2) (2012),
pp. 668–677. 20

[KPX13] KOSTAS PANTAZOS MOHAMMAD A. KUHAIL S. L.,
XU S.: Constructing visualizations with a development environ-
ment. In Submitted to: VDA (2013). 19

[LKP∗13] LAUESEN S., KUHAIL M. A., PANDAZOS K., XU S.,
ANDERSEN M. B.: A drag-drop-formula tool for custom visual-
ization. 20

[Nor86] NORMAN D. A.: User Centered System Design: New
Perspectives on Human-computer Interaction. CRC Press, 1986.
21

[PGB02] PLAISANT C., GROSJEAN J., BEDERSON B. B.:
Spacetree: Supporting exploration in large node link tree, design
evolution and empirical evaluation. In INFOVIS (2002), pp. 57–
64. 19

[PL12] PANTAZOS K., LAUESEN S.: Constructing visualizations
with infovis tools - an evaluation from a user perspective. In
GRAPP/IVAPP (2012), pp. 731–736. 19

[Pro] PROCESSING:. http://processing.org/. [Online;
accessed Aug-2012]. 20

[SEH00] SUTCLIFFE A. G., ENNIS M., HU J.: Evaluating the
effectiveness of visual user interfaces for information retrieval.
Int. J. Hum.-Comput. Stud. 53, 5 (2000), 741–763. 19

[SJ07] SEARS A., JACKO J. A.: The Human-Computer In-
teraction Handbook: Fundamentals, Evolving Technologies and
Emerging Applications. CRC Press, 2007. 20

[Wea04] WEAVER C.: Building highly-coordinated visualiza-
tions in improvise. In INFOVIS (2004), pp. 159–166. 20

28

http://flare.prefuse.org/
http://flare.prefuse.org/
http://processing.org/

