SIGRAD 2012
A. Kerren and S. Seipel (Editors)

ESSAVis: A Framework to Visualize Safety Aspects in
Embedded Systems

Ragaad AlTarawneh', Jens Bauer', Patric Keller 2, Achim Ebert', and Peter Liggesmeyer2

IComputer Graphics and HCI Group, University of Kaiserslautern, Germany, {tarawneh,j_bauer, ebert} @cs.uni-kl.de
2Software Engineering:Dependability Group, University of Kaiserslautern, Germany, {pkeller, liggesmeyer} @cs.uni-kl.de

Abstract

In this paper, we present a framework, called Embedded-System Safety Aspects Visualization (ESSAVis), that is
a system prototype designed to analyze the safety aspects of embedded systems. The ESSAVis prototype provides
a 3D environment that aids in detecting infected components in the hardware of the target embedded system.
The prototype also provides an abstract representation for the failure mechanisms of the target embedded system,
including the software structure and failure path information for the underlying safety scenarios at a certain
moment in the system’s life. The results indicate clearness of our proposed method over existing techniques and
promise acceleration in performance of the failure detection process in embedded systems for critical applications.

Categories and Subject Descriptors (according to ACM CCS):

1.3.3 [Computer Graphics]: Picture/Image

Generation—B.7.2 [Design Aids]: Graphics—Simulation D.2.6 [Programming Environments]: Graphical

environments—

1. Introduction

Embedded systems are widely used in our daily activities.
Some examples of such systems are control systems in cars,
airplanes, rail-road crossings and even washing machines.
Normally, embedded systems consist of both hardware and
software components. Therefore, most of them have com-
plex structures and are not centralized in one component
but are distributed among a set of components, which repre-
sent the system parts. These components communicate with
each other via a set of hardware and software interfaces.
These features help in developing relatively complex sys-
tems since many small-embedded systems, although physi-
cally separated, can be grouped together to construct larger
systems. [LS10].

For many embedded systems, the safety and reliability
aspects are very important. Consequently, as the complex-
ity of such systems increases, the task of detecting or an-
alyzing failures of the system becomes increasingly diffi-
cult [KGF07, KLMO3]. The process of analyzing failures is
necessary, in order to trace the reasons that lead to a specific
hazard of the system’s life. Subsequently, many techniques
have been proposed to trace the failure propagation paths
amongst the set of cooperating components in the failure.

59

The Fault Tree Analysis (FTA) technique is one of the most
common modeling techniques, which helps in understanding
failure mechanisms in embedded systems. FTA emphasizes
the logical relations amongst the set of basic failures which
could lead to a specific undesired state of the system. That is
called the Top-Event (TE) state [KGF07, KLMO03].

As a descendant of this technique, the Component Fault
Tree (CFT) concept provides an extension of the FTA con-
cept by introducing additional information about the sys-
tem’s structure. CFT is used to depict the failure scenario
in complex embedded systems as a directed acyclic graph
[KLMO03, KGF07]. Usually, results of the CFT model of
complex embedded systems could be very large. Therefore,
the process of analyzing and tracing the failure paths in such
complex models becomes a tedious task. In this work, we
aim to give an overview of the set of components involved
in a given failure scenario. Moreover, we aim to provide a
mean for visually comparing the components with respect
to the system safety aspects. This work also provides an in-
sight into the ways in which components might contribute
to an undesired system failure. To achieve the above men-
tioned goals for our framework, we map extracted informa-
tion from the CFT to visual elements in our final layout. As

R. Tarawneh et al. / ESSAVis: A Framework to Visualize Safety Aspects in Embedded Systems

described above, the underlying embedded system consists
of hardware parts, originally modeled as in a CAD model,
which can be intuitively visualized in a 3D world.

We accomplish this by providing a Virtual Reality (VR)
environment that allows exploring certain safety scenar-
ios in the 3D model of the hardware components. The 3D
model is integrated with an abstract representation that de-
scribes the hierarchy of failure relations among cooperat-
ing components in the current failure scenario. We visual-
ize the abstract representation using the radial layout algo-
rithm [Ead92], because the underlying CFT model is inher-
ently depicted as a tree in most of the cases. We use the radial
layout algorithm to help in utilizing the screen space more
efficiently and for showing the hierarchical relations of the
failure among the infected components. Our work attempts
to provide an effective means of identifying and classify-
ing system artifacts like software and hardware components,
with respect to their participation in safety critical system
outages. Of particular interest in this work is the develop-
ment of visualizations, which are able to support the analysts
in answering questions like:

e What are the critical system artifacts and how do they con-
tribute to a system failure?

e How severe is their influence in terms of probability of
occurrence?

e Which artifacts influence each other and how strong are
those influences?

e Do the causes occur within SW or HW components or in
both?

Our goal is to support common analysis by providing rep-
resentations integrating different views about safety critical
embedded systems. The rest of the paper is organized as fol-
lowing: Section 2 provides a list of the related work. Sec-
tion 3 provides the background information about the appli-
cation domain. Section 4 highlights the proposed ESSAVis
framework in details. While in Section 5, we present the re-
sults of the brief evaluation for our proposed framework. Fi-
nally, we conclude the work in Section 6.

2. Related Work

The visualization step is considered as one of the most im-
portant steps increasing the cognitive level of users. This is
due to the facilities and the techniques which are offered
to support the user in getting the correct insight about the
current situation of the data only by watching or interacting
with it. As mentioned earlier, this work’s goal is the diag-
nosis of system status faster and more accurate by provid-
ing two linked-views of the CFT model and the 3D CAD
model, where they are attached to each other, in a 3D envi-
ronment. Therefore, we categorize the related work into two
categories: Sub-section 2.1 presents the related work with
regard to visualizing the FT and the CFT in general while
Sub-section 2.2 presents the related work with regard to vi-
sualizing the data into the 3D world.

60

2.1. Visualization in Safety Domain

Depicting the failure relations among the system parts is
critical to understand the failure mechanism. Many existing
tools try to visualize this by showing a tree structure of the
failure. Most of these tools visualize the fault tree in 2D rep-
resentations like ESSAREL [Sof12], UWG3 in [KLMO03],
and Cecilia OCAS in [BBC*04]. In these tools the node-link
diagram is used to show the relations between the infected
system parts. While the simple primitive shapes are used to
show the components of the Fault Tree (FT) e.g. small circles
to represent basic events and a small rectangle to show the
gate (the logical connector) between two basic events. These
tools also use color or/and the text to depict other informa-
tion such as the gate type. These kinds of tools are useful to
model the failure relations between the system parts, but they
do not provide options for analyzing the failure path or the
set of the critical parts in the underlying system. In spite of
the facility of editing and modifying the FT structure in these
tools, generally they lack the abilities of analyzing the FT it-
self and the presentation of an overall view of the current
failure mechanism. However, amongst them the ESSAREL
tool provides a textual description of some safety aspects of
the FT (like, the set of the minimal-cut-set), which is un-
readable in most of the cases due to the data size and the file
format.

There are some other tools that analyze the safety aspects
of software systems. For example PLFaultCAT [DL06] has
been used to reduce the effort needed to safely reuse the
software requirements and to customize the product-line for
software fault tree analysis (SFTA) during product-line en-
gineering. [YKL"12] a visualization system has been pro-
posed to support the engineers in identifying proper solu-
tions for the system visually. The proposed visualization in-
tegrates the fault tree and a plot which represents the cause-
effect relationship between the solutions of the system fail-
ures and the resulting risk reduction of the system. More-
over, the authors tried to associate the component fault tree
view with the plot diagram to allow maintaining helpful con-
text information about the current state of the system.

An interesting visualization system, called SViT (Safety
Visualization Technique), was proposed by [KSZ09] show-
ing the status of the digital home. SVit helps the homeowner
to know the current safety level of the home and the reasons
behind this level. It provides multiple interfaces for each de-
vice at home. It also automates the safety computation pro-
cess of the safety information for each device. This helps
homeowners to determine the required safety levels of their
homes.

2.2. 3D Visualization Approaches

The 3rd dimension has been utilized in many information
visualization techniques for many purposes. For example,
the hyperbolic layout has been proposed by [Lam96,L.LRP95,

R. Tarawneh et al. / ESSAVis: A Framework to Visualize Safety Aspects in Embedded Systems

Mun97, Mun98, MB95] to show the information structure in
the 3D world, while [CMOO] presented the cone tree lay-
out method as a pure 3D layout algorithm for hierarchical
structures. Another example is semNet, which can be found
in [FPF88]. These examples were based on using the ani-
mated 3D visualization and the lightening to show the depth
perception. Collins et al. [CC0O7] provided many examples
for showing the usability of the third dimension in encoding
different aspects of the data. They achieved it by isolating a
subset of a 2D graph representation to a separate layer, thus
a 2.5D would be created. In this case, they proved that the
third dimension could be used to encode some aspects of the
data instead of the relations between nodes. The third dimen-
sion in [BDS03] has been used to show the evolution of the
graph over time where each separated layer is used to repre-
sent the graph at a certain time step. Eades et al. [EF96] also
used the third dimension to depict the hierarchical nesting of
clusters in the graph using a set of transparent layers.

The current state of the art in graph visualization shows
some interest in using the 3D layout in few cases. For a gen-
eral introduction to graph visualization techniques, we refer
the reader to the work of Herman et al. [HMMOO]. In our
work, we use the third dimension to represent the hardware
components of the real model of the underlying embedded
system, linked with the abstract representation of the safety
scenario, which shows the important safety information of
the current Top-Event. Initially, the abstract representation
is laid out in a 2D plane that is integrated in a 3D world with
the 3D model of the underlying embedded system.

3. Background and Motivation

The Fault Tree Analysis (FTA) technique is a top-down ap-
proach. It supports modeling the safety scenarios of com-
plex systems [KGF07, KLMO3] in which the relations be-
tween the set of faults (basic events) leading to a specific
undesired event (Top-Event) are depicted graphically. The
basic event is defined as one of the reasons causing the
current Top-Event with a certain failure probability to oc-
cur [KLMO3]. In the Fault Tree model, sets of basic events
are represented as the tree leaves. The FTA depicts logical
relations between sets of basic events that lead to a specific
Top-Event, as shown in Figure 1. The Component Fault Tree
(CFT) technique is a safety and reliability modeling tech-
nique that supports a hierarchical decomposition of large
systems. The difference between CFT and FTA is that FTA
offers a decomposition of the system into modules, which
is a breakdown process of the system regarding the hierar-
chy of failure influences rather than the system architecture.
Whereas, CFT represents each component by an extended
fault tree that contains input and output ports besides basic
events and gates. By connecting the set of components via
set of ports, components can be integrated into a higher-level
system model [KGF07, KLMO3].

61

ystem Down 'T‘ System Down
Ausxiliary Main Auxiliary
IE\;\:\I':IHCGHUOHET Controller Down Controller CD”"‘J"ET
Down Down
Main Controllet Aux Controllgr
é Power Unit Down é Power Unit Main CPU| Auxiliary
Down Down CPU Down|
Main CPU Auxiliary
Down CPU Down

Power

Fault Tree Concept vs. Component Fault Tree

(a)

Figure 1:
Concept.

The CFT modeling technique is useful for relatively large
systems because all components can be developed indepen-
dently and then can be saved in separate files, which pro-
vides a way to integrate the components and reuse them in-
dependently. The CFT extends the tree structure of the FTA
into a Directed Acyclic Graph (DAG). This feature gives the
ability of producing compact representation for large failure
scenarios [KGF07, KLMO3]. Although the safety scenario
in our framework can be modeled as a DAG structure; cur-
rently, our prototype provides only the basic functionalities
of the system. Therefore, at the moment we model only the
tree structures as they are often used to model safety scenar-
10s in such applications. However, for future work we would
like to visualize more realistic models that can be visualized
as a DAG structure to reflect the CFT concept.

Visualizing the safety aspects of embedded systems is
comparatively a new field. As the complexity of the underly-
ing embedded system is increased the size of corresponding
fault tree is also increased, which makes it difficult to han-
dle the failure detection process. Moreover, it makes main-
tenance of the underlying system more costly and time con-
suming. The information visualization can play an important
role in speeding up the system developing process because
it eases the step of finding the important information from
both the system and the user’s perspectives. Also, it helps in
reducing the errors made by human in searching the relevant
information. For example; a study, conducted by IBM and
Industry Studies [BV10], shows that 30% of people time is
wasted on looking for the important information. Moreover,
the visualization helps in interacting with the data and au-
tomates the steps of information extracting, which helps in
detecting the relevant information more accurately. Further-
more, the visualization can provide the integration between
different parts of the complex system. Like in our case, it
helps in integrating the hardware part and the abstract safety
view, which is useful in conveying the whole story to the end
users.

Due to the interaction between safety analysts and sys-
tems engineers, the task of analyzing the system is an itera-
tive task. We summarize this process in the following steps:
first, system engineers and safety engineers built the FT for

R. Tarawneh et al. / ESSAVis: A Framework to Visualize Safety Aspects in Embedded Systems

a specific Top-Event in a way that reflects the system design;
then the relevant information is analyzed from the safety en-
gineers’ perspective. Whereas in our case, we are interested
in showing the most critical components of the system from
both the hardware and the software perspectives; then sys-
tem engineers react to fix the infected components based on
the analyzed output from the previous step; and finally the
corresponding FT is updated accordingly as it is shown in
Figure 2.

4. The Embedded System Safety Visualization
(ESSAVis) Framework

The proposed ESSAVis framework provides a two-views
layout where the first view shows a 3D model of the hard-
ware part while the second view shows an abstract represen-
tation of the underlying safety scenario as shown in Figure 3.
To achieve this, we analyze the safety scenario that repre-
sents a critical status of the underlying embedded system.
In this work, we analyze the critical situations of a robot,
called RAVON [Pro10]. The safety scenario is modeled us-
ing the Component Fault Tree (CFT) technique. We analyze
this safety scenario to produce the required data structure we
need in computing the set of critical components for the sce-
nario. This set of critical components consists of all those
components that have a high probability to fail. For each
component, we compute the criticality based on many fac-
tors such as the number of basic events and their probabil-
ities or the number of failure paths that pass through each
component. We visualize the abstract information using the
Radial Layout algorithm [Ead92]. The main task of the ab-
stract representation is to reveal the failure relations between
the collaborating components in a specific hazard of the sys-
tem at a certain time. In this abstract representation, the set
of nodes represents components set while the set of edges
reflects logical relationships among components of the CFT
model (as shown in the left-side of the Figure 3).

ESSAVis also provides a 3D model of the hardware part
of the underlying embedded system. For example, the 3D
model of RAVON is dedicated to convey right impression
of the real physical model of hardware components. To do
this, ESSAVis parses VRML files of physical components
of RAVON and assembles them together to produce the full
model of RAVON. Then the two views are rendered in a
3D world. The ESSAVis framework synchronizes between
the two-views to let users trace the set of changes in both
views faster. For example, we highlight infected components
in both views in red color according to the underlying safety
scenario (as shown in both views of Figure 3).

4.1. The ESSAVis Pipeline

To achieve the desired goals, we developed a tool that reads
a safety scenario of the underlying system at a certain time.
Then we extract the relevant safety information to help

62

The System engineer

and the safety engineer
discuss about it

The Safety Engineer
buildsa CFT model ESSAVis Highlightsthe
infected componentsin

both representations

#
| I

The Systemis
down

e

Checkiif the

———— The System engineer fixes

the infected components

? —— i‘
[] [=]

Figure 2: The embedded systems safety analysis cycle using
ESSAVis.

Figure 3: Integrated view showing infected hardware com-
ponents (right) and the corresponding failure path in the ab-
stract layout (left).

safety engineers in defining the set of critical components.
As mentioned earlier, the criticality of components is based
on many factors, such as the number of failure paths pass-
ing through each component or the accumulated probabili-
ties of the contained basic events [KGF07]. We generate the
required safety scenario using a specialized safety-modeling
tool, called Essarel [Sof12]. The Essarel tool supports quan-
titative analysis of safety, availability, and reliability of em-
bedded systems. Also, it provides the feature of exporting
the model into an xml file, which contains a description of
the safety scenario, or into the component fault tree model
and corresponding required safety attributes. For example,
the set of minimal-cut-set in the current scenario is included
together with the information about the related set of com-
ponents and failure connections among them. This xml file
is the input of our framework, where we extract the safety
data related to each component and then arrange the set of
components to be ready for the visualization process.

For visualizing data, we use Vrui package [Krel2], which
is a toolkit to provide a virtual reality development environ-
ment. Vrui package shields the application developing pro-
cess from the particular configuration of the VR environ-

R. Tarawneh et al. / ESSAVis: A Framework to Visualize Safety Aspects in Embedded Systems

ment. Moreover, it works in many different hardware plat-
forms. Therefore, it is possible to render the application in
many different environments such as 3D displays, Power-
Wall displays, or CAVE systems. This feature increases the
scalability and portability of our framework into different
environments, which also helps in showing the depth cue
in the 3D world more precisely. We render the 3D model
of the RAVON robot using the Vrui package as it supports
the construction of 3D world using a scene graph data struc-
ture. Then we link the safety information, generated using
the Essarel tool, with the 3D model of RAVON. This allows
us to highlight directly infected components in the hard-
ware model, which helps system engineers to identify faults
quicker than the traditional way of the textual description.
Figure 4 shows how the different toolkits in our framework
are interacting together.

Generate the
abstract
visualization of the
failure mechanism

Integrate
between the
two views in

3D world

failures in the CAD J

Visualize the
model of RAVON

Mappingthe
safety
information with
the system parts

Extract the
safety >
information

Generate the
safety Scenario

Figure 4: The ESSAVis pipeline.

4.2. The Two-Linked View

In this subsection, we describe the proposed integration
model between the two data representations. As mentioned
earlier, ESSAVis synchronizes between the abstract layout
and the hardware model in a 3D world. Initially, both repre-
sentations are visible side by side as shown in Figure 5. ES-
SAVis gives the possibility to toggle between different views
on-demand. It provides three different arranged views to link
between the two layouts. The initial one is the side-by-side
view, in which both representations are displayed next to
each other with equaled sizes for both and at the same dis-
tance from the viewer. Users can change this by selecting
the toggle view option from the ESSAVis main menu. The
available options are the big-small view option and the lay-
ered view option.

The big-small option provides the facility to users scal-
ing up of one of the representations while scaling down the
other one, as it is shown in Figure 7. This option is useful in
few cases, e.g. safety engineers, who are interested in know-
ing more about some failures in the system, can decide to

63

view the abstract view larger than the 3D model (as shown in
Figure 7) or system engineers can go for the opposite case.
While in the third view, the depth is used to show impor-
tance degree of the representation. Initially, the two-views
are arranged in the same depth value that is zero in our case
(as shown in Figure 5). However, this arrangement can be
modified by changing the view through the layered-view op-
tion. For example, if user is interested in the hardware model,
the view of hardware model pops up to a layer closer to the
viewer point and the second view will be stacked behind the
current active view in the first layer as it is shown in Fig-
ure 3. In this example case, the second layer represents the
abstract representation while the first layer represents the 3D
model of RAVON robot respectively. The user can toggle be-
tween the different views on demand. If he/she is interested
in the hardware model then this view will be the dominant
in the screen. The user then can change the visual cues of
this view accordingly, e.g. changing the transparency, size,
or orientation. The toggle view option is provided via one
of the main menu options. Currently, users can interact di-
rectly with the prototype using a pop-up menu that includes
the basic functionalities of the framework. This menu has a
set of sub-menus that are used to list the extracted informa-
tion from the current safety scenario. These submenus al-
low users to map the needed information with the actual 3D
hardware components and components in the abstract visu-
alization (as shown in Figure 6).

Figure 5: The initial integrated layout of hardware model
and the abstract representation.

The menu in the prototype is triggered by clicking the
right mouse button at any free space in the 3D world. ES-
SAVis also supports the basic interaction techniques in the
3D world, like zooming, panning or rotation. One of the op-
tions that are provided by the Vrui itself is scale bar option,
which helps user to indicate the size of the object in the 3D
scene and quickly adjusts the display’s zooming factor to a
standard ratio, like 1:10 or 50:1. The zooming ratio is be-
tween the physical space length and the navigational space
length of the object [Krel2]. As mentioned earlier, the ab-
stract visualization is used to encode relations between the
infected components in the corresponding safety scenario.
For example, in Figure 8, we show an abstract representa-

R. Tarawneh et al. / ESSAVis: A Framework to Visualize Safety Aspects in Embedded Systems

tion of a component fault tree consisting of 30 components.
The top-event node represents the main hazard in the system
that is depicted as the root of the tree, which is the central
node in the radial tree layout. The leaf nodes are those com-
ponents that have the set of basic events, which contribute in
a specific Top-Event.

a 1

Figure 6: An integrated side-by-side view showing the cor-
relation between the infected components in the hardware
model and the abstract representation.

ESSAVis provides a list of options for analyzing the safety
aspect of the corresponding safety scenario. This helps in an-
swering the set of safety engineers’ questions, already men-
tioned in Section 1. For example, users can highlight in-
fected components in both representations by selecting the
component name from the submenu. The current prototype
also allows users to get information about each involved
component in the scenario such as basic events for each com-
ponent. Figure 8a shows mapping between the selected basic
events and the related components. This function is crucial in
helping safety engineers in finding the criticality of the com-
ponent according to the probability of basic events that it has.
It is worth mentioning that each basic event has a probability
value, which indicates the occurrence probability of such an
event. The current prototype provides information about the
basic event probability via a label containing the value that
is attached to the basic event name in the list. We intend to
use other visual cues to encode the probability value to help
users getting more insight about such an important metric
from one glance.

One of the important aspects about our framework is
showing of the Minimal-Cut-Set (MCS) information. The
MCS indicates the least number of Basic Events that are re-
quired to cause a top-event in the system. Showing the MCS
is a strong indicator of the infected components influence
in the current scenario. ESSAVis provides a mechanism to
show the relations between lists of MCSs in the current sce-
nario with correspondence components in the 3D hardware
model. This facility aids safety engineers in diagnosing the
critical components in the current scenario. We give users
the ability to interact directly with the list of MCSs and to
select one of the entries of the underlying scenario. Due to
user selection, the set of infected components in the current

64

(b)

Figure 7: A big-small view to integrate the different views.

scenario are highlighted in red color. This is applied on both
views, the hardware view and the abstract view, as shown
in Figure 8b. This helps system engineers to diagnose the
system status quickly; hence, it speeds up the maintenance
process of the underlying system.

Fault trees for large systems are considerably complicated
and difficult to read. Therefore, it is quite harder to achieve
in them the process of tracing the path failure between any
component and the root component. Our prototype provides
an option to show paths between the infected components
that collaborate in a Top-Event in the system based on the
current configuration. This feature provides the safety engi-
neers the ability of finding out the set of influenced compo-
nents through the selected ones. This option facilitates them
an insight of those components that might fail next according
to the current selected components. ESSAVis also provides
the facility to animate the failure path among the infected
components by selecting one component from the abstract
layout to the top-event node. As a result, the set of edges,
which contributes in the selected failure, are highlighted in
orange color. We use a simple animation for showing the
propagation of the failure path. This case is illustrated in Fig-
ure 8c. Beside the failure propagation path, edges between
the set of components are also used to show the criticality of
the path between two components. Different thickness are
used to depict the path criticality, as shown in Figure 8a.

5. Framework Evaluation

A brief evaluation was conducted for the proof of the validity
of our proposed ESSAVis solution.

e Environment settings: we carried out the evaluation ex-
periment using a Zalman stereoscopic desktop display
equipped with polarized 3D glasses. The participants in
the evaluation were from two different user groups. The
first group consisted of 6 safety experts while the second
group consisted of 3 robotics experts. A safety scenario,

R. Tarawneh et al. / ESSAVis: A Framework to Visualize Safety Aspects in Embedded Systems

(a)

()

)

©

Figure 8: (a) Abstract view for a safety-scenario in a certain moment. (b) Red colored components represent the set of infected
components by a specific MCS. (c¢) The failure path depiction between the selected component and the Top-Event and the edge

thickness indicates the path criticality.

consisted of 40 components aligned side-by-side to the
3D model of RAVON, was presented to both groups.

e Hypothesis: we assumed that the ESSAVis solution in-
creases the detection process speed of infected compo-
nents of the current scenario. The detection speed is com-
pared with the detection speed of the traditional tools like
Essarel tool.

e Tasks: the participants were asked to answer the following
questions:

— Detect the infected components in both representa-
tions; the abstract representation and the 3D model
representation of RAVON using our prototype.

— What are the basic events that are related to a specific
component.

— What is the failure path between a specific component
and the top-event node.

The preliminary results of the evaluation show the usability
of our framework especially from the system engineers’ side
that work with the hardware model of RAVON robot. They
agreed that our given framework could help them in defining
and detecting the infected components in the current state
faster than the textual description of the failure. We discuss
the accuracy in terms of users’ groups to accomplish the task
successfully. The accuracy of system engineers’ group an-
swers was 94% with average time of 24 seconds. Also, it was
easy for them to infer those components that have the pos-
sibility of failure based on the current configuration. While
the safety group mentioned that our given prototype could
help them in detecting the relations between the infected
components beside in tracing the failure propagation paths
among the infected components. 5 out of 6 safety group par-
ticipants were able successfully to find out the set of most
critical components approximately within 18 seconds with
accuracy reached to 85%.

65

The results also indicate the need of training for both
groups to read the new representation and the 3D environ-
ment that is used for the rendering process. Beside this, we
found that some visualization aspects need to be optimized
more, especially the path tracing option as shown in Fig-
ure 8c. In this regard, participants were not able to map the
changes in the abstract view with respect to the changes
in the 3D model. So, there is a need to provide a solution
for tracing the changes between the different views of our
framework. Moreover, one limitation of the current proto-
type is performance of the rendering speed of the 3D model
of RAVON. It is comparatively large model and consists of
395 vrml files. Therefore, there is need to apply some fil-
tering techniques to such a large model for speeding up the
rendering in order to increase the response time of ESSAVis.

6. Conclusions

We presented a framework, called ESSAVis, to visualize the
failure mechanism of embedded systems. ESSAVis shows
the infected components in parts of any embedded system,
the hardware parts or the software parts. Based on a specific
safety scenario at a certain time step, it visualizes the hard-
ware components as 3D objects and highlights the infected
components in red color. For showing the failure mechanism
among the different types of components in the underlying
component fault tree, it provides an abstract visualization to
depict the failure relations among the system parts. To prove
the validity of the framework, a brief evaluation took place
using a stereoscopic desktop display to show the real 3D
impression of our work. Results show the intuitiveness and
clearness of our technique over the traditional techniques
that currently provide a textual description of the system’s
safety aspects.

R. Tarawneh et al. / ESSAVis: A Framework to Visualize Safety Aspects in Embedded Systems

As a future work, we intend to conduct a more extended
version of the evaluation by comparing performance of
our prototype with other available systems, which are
currently used to analyze the safety aspects of embedded
systems, with different scenarios and different data sizes.
As mentioned earlier, the real data is more complex than
the normal tree structures and has many different possible
scenarios that are included in our current version of the
prototype. Therefore, we intend to include those cases,
such as DAG case, in our visualization. Moreover, as we
mentioned the designing of an immersive environment
for visualizing safety aspects of embedded systems; so,
we also intend to evaluate the accuracy of the proposed
framework in different environments, like using CAVE
system, Power-Wall, and stereoscopic desktop display.

Acknowledgements: This work is part of ViERforES2
project and partially funded by IRTG 1131 (DFG) and
BMBF. Many thanks go to the Software Engineering and
Dependability Group at University of Kaiserslautern headed
by Prof. Dr.-Ing. habil. Peter Liggesmeyer for their support.
Also, we would like to thank the Robotics Research Lab
at University of Kaiserslautern for their collaboration and
support.

References

[BBC*04] BIEBER P., BouGgNOL C., CASTEL C., P. HECK-
MANN J., KEHREN C., SEGUIN C.: Safety assessment with al-
tarica - lessons learnt based on two aircraft system studies. In
18th IFIP World Computer Congress, Topical Day on New Meth-
ods for Avionics Certification (2004), p. 26. 60

[BDS03] BRANDES U., DWYER T., SCHREIBER F.: Visualiz-
ing related metabolic pathways in two and a half dimensions. In
Graph Drawing (2003), pp. 111-122. 61

[BV10] B0zzZANO M., VILLAFIORITA A.: Design and Safety
Assessment of Critical Systems. CRC Press (Taylor and Francis),
an Auerbach Book, 2010. 61

[CCO7] CoLLINS C., CARPENDALE S.: Carpendale s: Vislink:
revealing relationships amongst visualizations. IEEE Trans Vis
Comput Graph 2007 (2007). 61

[CMO00] COCKBURN A., MCKENZIE B.: An evaluation of cone
trees. In University of Sunderland (2000), Springer-Verlag,
pp. 425-436. 61

[DLO6] DEHLINGER J., LUuTZ R. R.: Plfaultcat: A product-line
software fault tree analysis tool. Automated Software Engineer-
ing 13,1 (2006), 169-193. 60

[Ead92] EADES P.: Drawing free trees. Bulletin of the Institute
for Combinatorics and its Applications, pp. 10 -36 (1992). 60,
62

[EF96] EADES P., FENG Q.-W.: Multilevel Visualization of
Clustered Graphs. In Proc. Graph Drawing, GD (Berlin, Ger-
many, 1996), no. 1190, Springer-Verlag, pp. 101-112. 61

[FPF88] FAIRCHILD K. M., POUTROCK S. E., FURNAS G. W.:
SemNet: Three-dimensional graphic representation of large
knowledge bases. In Cognitive Science and its Applications
for Human-Computer Interaction, R. Guinon, Editor. 1988,
Lawrence Erlbaum: Hillsdale NJ (1988), pp. 201-233. 61

66

[HMMOO] HERMAN I., MELANCON G., MARSHALL M. S.:
Graph visualization and navigation in information visualization:
A survey. IEEE Trans on Visualization and Computer Graphics
6,1 (2000), 24-43. 61

[KGF07] KAISER B., GRAMLICH C., FORSTER M.: State/event
fault trees: A safety analysis model for software-controlled sys-
tems. Reliability Engineering System Safety 92, 11 (2007), 1521—
1537. 59, 61, 62

[KLMO03] KAISER B., LIGGESMEYER P., MACKEL O.: A new
component concept for fault trees. Reproduction 33 (2003), 37—
46. 59, 60, 61

[Krel2] KREYLOS O.: Vrui virtual reality toolkit, July 2012.
"http://idav.ucdavis.edu/~okreylos/ResDev
/Vrui/index.html". 62, 63

[KSZ09] KUMAR P., SUBRAMANIAN N., ZHANG K.: Savit:
Technique for visualization of digital home safety. ACIS Interna-
tional Conference on Computer and Information Science (2009),
1120-1125. 60

[Lam96] LAMPING J.: The hyperbolic browser: A focus+context
technique for visualizing large hierarchies. Journal of Visual
Languages Computing 7, 1 (1996), 33-55. 60

[LRP95] LAMPING J., RAO R., PIROLLI P.: A focus+context
technique based on hyperbolic geometry for visualizing large hi-
erarchies. In Proc. of CHI ’95 (1995), ACM, pp. 401-408. 60

[LS10] LEE E. A., SESHIA S. A.: Introduction to Embedded
Systems - A Cyber-Physical Systems Approach, 1 ed. Lee and
Seshia, 2010. 59

[MB95] MUNZNER T., BURCHARD P.: Visualizing the struc-
ture of the world wide web in 3d hyperbolic space. Proc. of the
first symposium on Virtual reality modeling language VRML 95
(1995), 33-38. 60

[Mun97] MUNZNER T.: H3: laying out large directed graphs in
3d hyperbolic space. In Proc. of InfoVis 97 (Washington, DC,
USA, 1997), IEEE Computer Society, pp. 2—. 60

[Mun98] MUNZNER T.: Drawing large graphs with h3viewer
and site manager (system demonstration). In Proc. of Graph
Drawing’98, number 1547 in Lecture Notes in Computer Science
(1998), Springer-Verlag, pp. 384-393. 60

[Prol0] PROETZSCH M.: Development Process for Complex
Behavior-Based Robot Control Systems. RRLab Dissertations.
Verlag Dr. Hut, 2010. ISBN: 978-3-86853-626-3. 62

[Sof12] SOFTWARE ENGINEERING RESEARCH GROUP: DE-
PENDABILITY KAISERSLAUTERN UNIVERSITY, ESSAREL
TooL: Embedded systems sadety and reliability analyer, July
2012. "http://essarel.de/index.php
?site=backgroundtext". 60, 62

[YKL*12] YANG Y., KELLER P., LIVNAT Y., LIGGESMEYER P.,
HAGEN H.: Improving safety-critical systems by visual analysis.
Dagstuhl Follow-Up series (2012). 60

