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Abstract
The conventional approach for parameter optimization of biomedical image analysis algorithms is to tweak pa-
rameters by trial-and-error. This presents a challenge: parameter space is often inadequately explored and, conse-
quently, output quality suffers. Interactive visualization can alleviate this problem but has not been widely adopted.
Moreover, few examples of the successful application of visualization for parameter optimization of image anal-
ysis algorithms have been published. To address this and to illustrate the potential usefulness of interactive vi-
sualization, we present a case study. A multidisciplinary team developing novel image segmentation software for
histopathology was observed. Within the context of our study, our hypotheses were confirmed: (1) using interactive
visualisation, participants considered larger parts of parameter space than they had previously by trial-and-error;
(2) participants gained a better understanding of their algorithm (an unknown logic error and errors in its imple-
mentation were discovered); and (3) participants achieved higher quality output. Our work is also an example of
the value of case studies in iterative design. We describe how a valuable additional requirement was revealed (the
importance of derived measures) and how our visualization method was extended to cater for this.

Categories and Subject Descriptors (according to ACM CCS): H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Visualization; I.3.8 [Computer Graphics]: Applications—Biomedicine

1. Introduction

Parameter optimization is often encountered in applied sci-
ence and engineering and presents a non-trivial challenge:
given a system with several input parameters that produces
one or more outputs, how do users find suitable parameter
values such that certain requirements hold for the outputs?
In particular, the application of segmentation algorithms to
biomedical images requires users to find parameter values
to accurately detect objects, such as cells, or higher-level
structures, such as regions of tissue. The conventional ap-
proach, which we refer to as stepwise iterative refinement, is
to find suitable values through a process of manual parame-
ter tweaking by trial-and-error. Users supply parameter val-
ues, initialize and wait for algorithms to execute. The output
is inspected, parameter values are changed, and the process
repeated until satisfactory output is produced.

A second category of approach is to find optimal parame-
ter values by using interactive visualization. Although some

promising visualization methods for parameter optimization
of image analysis algorithms have been proposed, they have
not been widely adopted. This can be partly attributed to few
examples of the application of such methods in real-world
image analysis scenarios.

To address this, the primary contribution of this paper is
a case study of a multidisciplinary team using interactive vi-
sualization to develop novel histopathology image segmen-
tation software. We hypothesized that using visualization,
as opposed to stepwise iterative refinement, our participants
would: (1) analyze larger parts of parameter space; (2) gain
a better understanding of the underlying algorithms; and
(3) achieve higher quality results. Our study provides anec-
dotal evidence in support of our hypotheses and illustrates
the potential usefulness of interactive visualization for pa-
rameter optimization purposes (albeit in a limited context).
It also serves as an example of users’ reactions to the in-
troduction of interactive visual analysis into the established
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field of biomedical image analysis. As a secondary contri-
bution, our work is an example of the role of case studies in
iterative design. We discuss how an additional requirement
was discovered and addressed. We also share preliminary re-
sults of how this changed user behavior.

2. Related Work

Many techniques exist for automating parameter optimiza-
tion. Numerical optimization methods apply mathematical
or statistical techniques to minimize (or maximize) an objec-
tive function defined over parameter space [Onw00]. Well-
known examples include linear programming and gradient
descent. Another trend is to apply artificial intelligence tech-
niques (such as genetic algorithms) to optimization [AH97].

Automated techniques usually seek to minimize a sin-
gle objective function. However, users often have multiple
conflicting requirements. Moreover, end-users of image seg-
mentation algorithms find it a daunting task to rigorously and
mathematically formalize optimization criteria. This leads to
human-in-the-loop approaches, which we describe below.

2.1. Stepwise Iterative Refinement

The most frequently encountered approach is to require
users to search for optimal parameter values without addi-
tional support. Stepwise iterative refinement involves man-
ual parameter tweaking by trial-and-error. It is a drawn-out
procedure where users change parameter values and invoke
a system or algorithm to produce the corresponding output.
Output is judged qualitatively, input settings are changed,
and the process repeated until satisfactory output is pro-
duced. For example, CellProfiler is a popular biomedical im-
age analysis tool [CJL∗06]. The incorporated algorithms are
parameterized and users have to try different parameter val-
ues until they are satisfied with the quality of the output.

Stepwise iterative refinement is recognized as a bottleneck
in parameter optimization [PBCR11,TWSM∗11]: many iter-
ations of the above process are typically required and users
rely on memory recall to compare current output with pre-
vious results. Consequently, parameter space is inadequately
explored, which negatively impacts the quality of output.

2.2. Interactive Visual Analysis

Several visualization methods have been developed to ad-
dress the deficiencies of stepwise iterative refinement.

Guided navigation. Piringer et al. developed a technique for
guided parameter optimization in a system called Hyper-
MoVal [PBK10]. It shows multiple linked visualizations of
the local neighborhood of a high-dimensional focal point in
parameter space. This supports an iterative process where
the user is guided to optimal parameter values by show-
ing residual errors of estimated output of sampled parame-
ters compared to known pre-computed output. In subsequent

work, Berger et al. apply a similar approach for exploring
parameter space [BPFG11]. The user is provided with visual
guidance to potentially optimal regions in parameter space.
Again, approximations of output are shown in visualizations
of the local neighborhood of a user-selected focal point. Un-
certainties associated with predicted output are also shown.

Torsney-Weir et al. present an approach to systematically
explore the entire parameter space of a segmentation algo-
rithm [TWSM∗11]. Their system, Tuner, combines guided
exploration with several linked visualizations of parameter
space and output space. First, parameter space is sampled
sparsely and segmentation outputs are computed for these
points. Outputs are then evaluated with respect to a ground
truth image (an optimal segmentation marked up by an ex-
pert) to compute quality measures. Next, a statistical model
is used to estimate the quality of the entire parameter space.
Regions likely to yield high quality outputs are highlighted.
The user is guided to resample and investigate high-potential
regions of parameter space until parameter values that yield
suitable outputs are identified. In related work, Bergner et
al. introduce an approach for interactive exploration of pa-
rameter space for multivariate simulation models [BSN∗11].
The user is visually guided to discover regions of parameter
space that are qualitatively different. There is also assistance
for resampling regions of interest more finely.

The above methods are powerful but they require users
to understand complex mathematical and statistical no-
tions to interpret visualizations. Although there are niche
users for which this is applicable (automotive engineers,
for instance [TWSM∗11]), end-users such as biomedical re-
searchers are likely to find this challenging. The methods
also rely on the existence of objective functions, quality
measures, or ground truths, which are not always available.

Interactive exploration. A number of techniques enable
users to explore parameter space and evaluate output qual-
itatively by visual inspection. Parameter space is typically
high-dimensional, so standard multidimensional visualiza-
tion techniques can be used [WB97]. Examples include par-
allel coordinates and scatterplot matrices [Ins85, Har75]. A
number of techniques have been developed specifically for
parameter visualization, however.

Several approaches, including those above, employ mul-
tiple coordinated visualizations. In the Influence Explorer,
Tweedie et al. show histograms of input parameters and of
outputs [TSDS95]. Users specify an active range for each
histogram and data items for which one or more dimen-
sions fall outside these ranges are dimmed. In later work,
Tweedie and Spence extend the approach to prosection ma-
trices [TS98]: 2D scatterplots, each with an associated third
dimension for which users can specify an active range. Data
items with one or more dimensions outside these ranges are
hidden. With both methods, users discover relationships be-
tween parameters and outputs interactively. Dynamic query-
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ing enables them to explore different scenarios and identify
parameter combinations that meet or fail requirements.

A few methods focus on changes in parameter values,
and corresponding outputs, during the optimization process.
Ma shows the parameter search process as a directed graph
to help users find rendering parameter settings for com-
puter graphics scenes [Ma99]. When parameter values are
changed a new scene is rendered and a thumbnail represen-
tation is connected to the previous rendering with an edge.
Callahan et al. use a similar approach for history manage-
ment in VisTrails [CFS∗06]: a visual history tree is main-
tained as users generate different visualizations of a dataset.
Both methods use the visualization of the evolution of out-
puts as an external memory aid. Search paths are shown and
existing outputs can be selected and refined further.

Some techniques emphasize the structure of parameter
or output space. Jankun-Kelly and Ma use a spreadsheet
metaphor to let users investigate the influence of rendering
parameters on computer graphics scenes [JKM00]. Pairs of
parameters define the x- and y-axes of a table and renderings
that correspond to a pair of settings are shown at the inter-
section of the two coordinates. In Design Galleries, Marks
et al. structure their visualizations on perceptually recogniz-
able differences of outputs [MAB∗97]. Parameter values are
chosen so that outcomes are perceptually distributed. Sev-
eral outputs illustrating these differences are shown to en-
able users to identify suitable regions of parameter space.
Bruckner and Möller sample parameter space and apply a
novel clustering method to identify key changes in the output
space [BM10]. Both the clusters and output are visualized.

The visualization system considered in this paper supports
interactive exploration of parameter space and was designed
to analyze relationships between input parameters and out-
puts of biomedical image analysis algorithms. The approach
does not rely on objective functions or ground truths as
they cannot be assumed to exist in our target domain. An
overview of this system is deferred to Section 3.2.

3. Parameter Optimization for Image Analysis

To compare stepwise iterative refinement with interactive vi-
sual analysis, we conducted a case study. Before it is dis-
cussed, we first describe the software systems that we used.

3.1. Proprietary Segmentation Software

Histopathology images are very high resolution scans of
microscopic-scale tissue slices (typically 80,000 × 100,000
pixels). Consequently, a user may be viewing morphological
structures at a very high zoom level. This makes it difficult
to navigate the images efficiently as context is lost. The soft-
ware we considered is being developed as part of a set of
methods to assist in (semi-) automatic navigation between
distinct regions of tissue in histopathology images. It forms

Figure 1: Segmentation of histopathology images. Detected
contiguous regions are filled with a random colour and out-
lined with a bounding box. (a) Poor quality segmentation of
a lymph node section resulting from default parameter val-
ues identified through stepwise iterative refinement: multiple
smaller parts of the three main contiguous regions are de-
tected. (b) High quality segmentation of a lymph node sec-
tion resulting from more optimal parameter values identified
by interactive visual analysis with Paramorama. (c) Poor
quality segmentation of a cervix section resulting from de-
fault parameter values: in addition to the coloured regions,
the entire image is also detected as a contiguous region.
(d) High quality segmentation of a cervix section result-
ing from more optimal parameter values identified by visual
analysis. Histopathology images often contain noise result-
ing from sectioning ((a)(i) and (c)(i)), and artifacts on the
glass slides ((c)(ii)). A subtle error in the original implemen-
tation of the algorithm, where smaller regions, such as (d)(i)
and (ii) were not combined with larger regions that contain
them, was also identified by visual analysis.

part of an ongoing initiative, independent of the present
study, to develop virtual microscope software [TJOH∗09].

The goal is for the software to accurately detect contigu-
ous regions of tissue in an image. This is achieved by several
image processing steps. For instance, a thresholding step dis-
tinguishes foreground and background based on pixel-level
intensity differences. Each processing step requires the spec-
ification of values that indicate, for instance, the amount of
thresholding to apply. As we describe in Section 4, a set of
default values had been identified for these parameters by
stepwise iterative refinement and were subsequently hard-
coded in the software. For a particular input image, the out-
put is an image where each detected region is filled with a
color and marked by a bounding box (see Figure 1(a)).
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3.2. Paramorama

We also considered a visualization prototype designed for
parameter optimization of image analysis algorithms in a
biomedical context. This technique differs dramatically from
the software described in Section 3.1 in the way that param-
eter optimization is approached by providing interactive vi-
sual support. It is an example of using visual analysis for
parameter optimization, as discussed in Section 2.2.

In previous work we presented a design study for inter-
active visual optimization of parameters for biomedical im-
age analysis algorithms [PBCR11]. Our initial design was
informed by interviews and discussions with domain ex-
perts at the Broad Institute of MIT and Harvard and observa-
tions of users at a hands-on introductory workshop on image
analysis. Our technique was developed to visually analyze a
Cartesian sampling of parameter space. This has the bene-
fit of being conceptually simple: for each parameter a user
wishes to sample, they simply specify a range and the num-
ber of samples to compute. To facilitate this, we originally
implemented a sampling plugin for CellProfiler [CJL∗06].
Our approach is not tied to CellProfiler or any particular al-
gorithm, however. As we will demonstrate, users of other
tools can extend these to sample any parameters of interest
and analyze their results with our prototype. Requirements
analysis revealed that users are usually interested in sam-
pling 3–7 parameters at 3–7 intervals each [PBCR11].

As shown in Figure 2(a), we visualize sampled parameter
space as a tree, using a node-link depiction oriented left-to-
right. Every level represents a parameter and users can inter-
actively change the order to suit their analysis needs. In the
figure, the first parameter was sampled four times, shown
by four second-level nodes (the root contains all samples).
For each of these values, the second parameter was sampled
four times, and so on. Users can identify, navigate to, and se-
lect particular combinations of parameter values. When they
select regions of parameter space (subtrees in the node-link
view) thumbnails of the actual image-based output are dis-
played in the detail view (Figure 2(b)). We developed a lay-
out with the following properties [PBCR11]: each selection
is shown in a distinct region; the top-to-bottom ordering of
regions preserves the ordering of selections in the overview;
the hierarchy of each selected subtree is shown by nesting;
and within each region, the numerical order of sampled pa-
rameter values is shown left-to-right. The layout is parame-
terized and users can specify a parameter for which values
are positioned top-to-bottom to make comparisons easier.

Users are often interested in contextual information in the
form of a reference image to interpret the results of segmen-
tation algorithms. Typically, they want to compare outputs
to the original input image to determine whether correct ob-
jects, and not noise, were identified. We supply a reference
image view as shown in Figure 2(c). When users move the
cursor over any thumbnail, it is superimposed on the ref-
erence image. Our prototype provides standard interaction

capabilities such as linked views and filters. A popular fea-
ture is to tag regions of parameter space that are associated
with high- or low quality outputs. When a user tags regions,
they are marked with a green (good) or magenta (bad) back-
ground in the overview and detail view (Figure 2(a) and (b)).

4. Histopathology Case Study

The software described in Section 3.1 requires parameters to
be set to ensure accurate region detection. We hypothesized
that the visualization method implemented in Paramorama
(see Section 3.2) would enable users to: (1) consider larger
parts of parameter space; (2) better understand their algo-
rithms and the influence of parameter values; and (3) achieve
higher quality segmentation. We observed three participants
as they used Paramorama to analyze the results of the seg-
mentation software using sampled parameter values.

4.1. Method

Participants. Adam is an undergraduate research assistant
who had implemented the histopathology segmentation al-
gorithm described. Bob is an academic member of staff and
an active member of the image processing research com-
munity. He has developed several biomedical segmentation
algorithms in the past and served as Adam’s supervisor.
Charles is a practicing histopathologist with deep domain
knowledge in the analysis of histopathology images. He
has been involved in several research projects where image
analysis methods were applied in a histopathology context.
Charles served as a domain expert during the development of
the algorithm. None of the participants had prior experience
with our visualization prototype. All were initially skeptical
about the suitability of interactive visualization methods for
the analysis and optimization of segmentation results.

Materials. Three tissue types were considered: biopsies from
the oesophagus of patients with Barretts’ esophagus, resec-
tions of the cervix, and excised lymph nodes. For each type,
two images were selected. The first was a “textbook” ex-
ample with one to three clean contiguous regions of tissue.
The second image, which contained more noise, was em-
blematic of what often happens in practice. Histopathology
images are high-resolution scans of thin sections of tissue
fixed to glass slides. Noise is introduced when tissue tears,
separates, and distorts during the sectioning process (see
Figure 1(a)(i) and (c)(i)), or by artifacts on the glass (Fig-
ure 1(c)(ii)). All sections had been treated with hematoxylin
and eosin stain (H&E), which is widely used in histopathol-
ogy. It colors cell nuclei blue while cytoplasm is colored
pink/purple. The study was conducted on a desktop worksta-
tion (2.4GHz CPU; 12GB RAM) running Windows 7 with a
30-inch flat panel monitor (2,560 × 1,600 pixels; 60Hz).

Procedure. An initial discussion with Adam and Bob re-
vealed the overall goal of the segmentation software being
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Figure 2: Visual analysis of parameter space with Paramorama. (a) Sampled parameter space is visualized as a tree where,
left-to-right, every level represents a parameter. (b) For selected regions in parameter space, the corresponding image-based
output is shown as thumbnails in the detail view. Users can tag results as good (green) or bad (magenta). (c) A reference image,
typically the original input image, is supplied to visually compare the results to. The visualized data is of segmentation results
for a histopathology image of lymph node tissue.

developed and the research context in which this was hap-
pening (see Section 3.1). It was a challenge to identify how
the implementation of the algorithm had been parameter-
ized. After discussions with Adam and Bob, it was decided
that some of the hard-coded values in the algorithm might
better be considered as parameters and that different values
for these might be more appropriate under different circum-
stances. Adam’s approach had been to run the algorithm on a
single input image and to identify suitable parameter values
by stepwise iterative refinement. Once identified, these val-
ues were hard-coded in the implementation of the algorithm.
Adam and Bob were confident about the robustness of these
values and were not convinced that they could be improved
on by exploring the parameter space further.

After a code-review with Adam, five parameters were
identified for closer scrutiny. These were smoothing (how
much noise reduction to apply), thresholding (the pixel in-
tensity at which to differentiate foreground and background),
dilation (how much to expand the foreground to “fill” holes),
expansion (how much to expand foreground regions before
detecting intersections), and merging (a threshold for dis-
carding or combining intersecting regions). Adam modified
his code so that it could be called with arguments to specify

the parameter values to use. He then wrote a script to per-
form Cartesian sampling of the parameter space and to call
the algorithm with all unique combinations of the sampled
parameter values. Next, suitable intervals and the number
of samples to compute over each interval were identified:
parameters were sampled four times each, yielding 1,024
unique combinations. Corresponding segmentation output
for the six input images were computed overnight.

After a training session with our prototype Adam was
given an opportunity to identify regions of parameter space
that produce high-quality segmentation results. In a second
session, Bob was given training to use our prototype and then
asked to review Adam’s results. Finally, in a third session,
the functionality and features of our prototype were demon-
strated to Charles before being given an opportunity to try it.
All participants were comfortable using Paramorama after
30 minutes of hands-on training.

4.2. Results

Adam. Our first participant required 10-30 minutes to ana-
lyze each dataset for a total analysis time of 1 hour 21 min-
utes for all six. The first two datasets, respectively, required
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25 and 32 minutes but this dropped to between 9 and 11 min-
utes for the final three datasets.

Using the node-link visualization of parameter space (see
Figure 2(a)), subtrees were systematically selected starting
from the top and working to the bottom. Thumbnail ver-
sions of the corresponding outputs were viewed in the detail
view (Figure 2(b)). In most cases Adam tagged all displayed
thumbnails based on an initial impression formed by scan-
ning the thumbnails (“good” or “bad”). Tagging was done
in one operation by using the nested representation of the
detail view to select all outputs. Most regions of parameter
space that Adam thought yielded poor results were identi-
fied like this. Individual results of which he was uncertain
were viewed in more detail using the reference image view.
This often resulted in flicking “bad” tags to “good” (and vice
versa). We noticed that Adam devised a rule-of-thumb for
each of the six input images during his analysis. This in-
volved scanning the output to determine whether key regions
had been identified. This was often vocalized, for example:
“yes, the five major regions are correctly detected” or “too
many regions are identified, it’s picking up noise”.

Adam made a number of important discoveries. For all six
input images, more optimal parameter values that differed
from the hard-coded values were identified. Using the num-
ber of segmentations as a crude quality metric, the default
parameter values resulted in 21 regions being erroneously
segmented for Barrett’s noisy, 22 for cervix noisy, 26 for
lymph clean, and 16 for lymph noisy. Visual inspection also
revealed that the boundaries of regions detected for Barrett’s
clean and cervix clean were closer to what a human expert
would have picked. In particular, two parameters (smooth-
ing and thresholding) were discovered to have an important
influence on the quality of the outputs produced by the seg-
mentation algorithm. Figure 1 contrasts the results of ap-
plying the segmentation algorithm to two of the datasets
with the original hard-coded parameter values (Figure 1(a)
and (c)) versus the values identified with Paramorama (Fig-
ure 1(b) and (d)). Even casual visual inspection shows that
there is a vast improvement in quality for the newly identi-
fied values. Adam also came to a more general conclusion:
suitable parameter values are extremely context sensitive.
Each of the six images required a different set of param-
eter values to yield the best results. This convinced Adam
that different types of tissue and the amounts of noise in
the images require different parameter values to ensure high-
quality segmentation.

Bob. Upon reviewing Adam’s tagged results, Bob did not
perform an exhaustive analysis of parameter space, but fo-
cused on a few regions that had been mostly tagged as
“good” or as “bad”. Bob next scanned the thumbnails for
these regions in the detail view. For many results he deemed
the thumbnails sufficient to confirm his agreement with the
categories that had been assigned by Adam. Although not
as vocal about the number of regions that the algorithm had

segmented, Bob did pay attention to object count. Many re-
sults were rejected by noting, for example, “far too many ar-
tifacts”. However, there were a number of individual results
where Bob proceeded to view the segmentation results in
more detail using the reference image view (see Figure 2(c)).

By reviewing his colleague’s work, Bob identified a subtle
logic error. The algorithm detects small contiguous regions
and should progressively combine these to form larger re-
gions, provided certain criteria hold. However, in many cases
overlapping regions of dissimilar size were not being com-
bined (see Figure 1(d)(i) and (ii)). Bob concluded that either
the heuristics for deciding when to combine smaller regions
were insufficient, or the implementation was incorrect. This
sparked follow-on discussions between Adam and Bob that
confirmed the existence of a logic error. It also led to a code
review where additional implementation errors were discov-
ered. The logic and implementation errors were flagged as
high priority changes for a next release of the software.

Charles. When Charles reviewed Adam’s results, he spon-
taneously changed the order of parameters in the node-link
representation of parameter space. He explained that his aim
was to identify those parameters that have the most “strik-
ing” influence on segmentation quality, using Adam’s tags
as an indication of quality. He remarked that our prototype
made these relationships “very clear”. Using an approach
similar to that of Bob, many cases were found where Charles
disagreed with the initial tagging of the outputs. This was put
down to inexperience and a lack of in-depth domain knowl-
edge on the part of Adam. Charles recognized this as a com-
mon problem when trying to get results quickly and empha-
sized the need for more expert reviews in the future.

4.3. Discussion

The above results provide anecdotal evidence to support
our hypotheses (within the context of our study). First,
participants explored larger parts of parameter space using
our visualization prototype than they had previously using
stepwise iterative refinement. All participants agreed that it
would have been prohibitively time-consuming to analyze
the number of parameter combinations they considered with
Paramorama using their conventional approach. Second, vi-
sualization helped all participants to achieve new insights
and learn more about the relationships between input pa-
rameter values and the resulting output. They were also more
confident in their understanding of the algorithm than before.
Third, using interactive visualization, participants achieved
higher quality output that differed from those produced by
hard-coded parameter values.

In our experience, our case study is a good example of the
reaction of users to the introduction of visual analysis as an
alternative to an established approach (stepwise iterative re-
finement of parameters for image analysis algorithms, in this
case). Despite initial skepticism, participants were soon able

72



A.J. Pretorius, D. Magee, D. Treanor & R.A. Ruddle / Visual Parameter Optimization

to apply the new method to great effect. As a case in point,
an important logic error and implementation errors were dis-
covered using our visualization prototype. These had pre-
viously gone undetected despite the analysis of segmenta-
tion output and the identification of what were believed to
be optimal parameter values. Also, all participants were far
less certain about the robustness of the algorithm and the
hard-coded parameters after using Paramorama than they
had been originally. This suggests that visual parameter op-
timization may be able to facilitate critical reflection better
that stepwise iterative refinement.

Visual analysis also highlighted flaws in participants’ as-
sumptions and quality control during algorithm implemen-
tation. In particular, it emphasized the gap that exists be-
tween “good” results for different stakeholders (with techni-
cal versus domain knowledge). Our prototype facilitated dis-
cussion between stakeholders that would have been difficult
without the ability to visually compare and refer to different
outputs interactively. The threefold drop in analysis time by
Adam over the six datasets suggests that there is an asso-
ciated learning effect, but once users become familiar with
visualization tools, such as Paramorama, they should be able
to analyze large parts of parameter space in shorter periods.

The case study also revealed an important shortcoming
of our approach. In terms of analysis strategy, Adam sys-
tematically considered all outputs corresponding to sampled
parameter values. However, he often referred to the num-
ber of objects detected when judging whether an individual
result is acceptable. The other two participants also men-
tioned object count while analyzing the outputs. From this
we concluded that, had a facility been available to select or
filter results based on object count, Adam would probably
not have analyzed all outputs exhaustively but would have
discarded large parts of parameter space where associated
object counts were unreasonable. We also suspect that such
a facility would have enabled Bob and Charles to target their
detailed analysis to smaller subsets of the generated output.
When we raised the issue, our participants agreed on the po-
tential advantages of augmenting our approach with derived
measures such as object count (the number of objects identi-
fied by segmentation) and area occupied (the sum of regions
occupied by detected objects). They felt that this would al-
low users with a “gut feeling” of what suitable quality in-
volves to identify high-potential parts of parameter space.

5. Follow-on Work

To investigate the role of derived measures, we extended our
prototype to show a histogram of the distribution of values
for each derived measure associated with the data (see Fig-
ure 3(a)). Inspired by the work of Tweedie et al. [TSDS95],
this metric view is linked with all other views (Figure 3(b)–
(d)): when the user selects one or more bars in a histogram
the corresponding regions of parameter space are selected in
the overview and the output shown in the detail view.

We were interested to see whether, and how, users who
had not previously used our prototype would apply this
new feature. To do so, we performed a preliminary study
with eight students majoring in biological sciences. Because
histopathology images were considered too specialist, we
used the sampling plug-in we had developed for CellProfiler
to compute segmentations for two 640 × 640 pixel photomi-
crographs of human osteosarcoma cells (cancerous bone tu-
mor) [PBCR11, Bro]. Both images had been stained with
DRAQ, which highlights cell nuclei as light gray on a dark
background. Five parameters were sampled four times each
to yield 1,024 different outputs. After training, each partici-
pant was presented with the results of one of the two images
and given 10 minutes to find a region of parameter space
where cell nuclei are most accurately detected.

All participants used the metric view to converge on a re-
gion of parameter space where they thought the object count
was correct (see Figure 3(a)). In most cases, they started with
a low guess for object count, selected the corresponding his-
togram in the metric view, and scanned the output thumb-
nails in the detail view (Figure 3(c)). Repeating this pro-
cess, they revised the object count upward until settling for a
value. As observed during the case study (Section 4.2), par-
ticipants then considered the thumbnails in the detail view
to analyze individual outputs (Figure 3(d)). Parameter val-
ues were inspected with the node-link view (Figure 2(b)).

This is a positive result that shows an improvement on
our previous design, but there are further opportunities to ex-
plore. First, the inclusion of several derived measures could
assist users in further reducing the subset of outputs to re-
view, as with faceted search [Tun09]. Other measures, such
as the total area covered by identified objects, could be used
for this (our prototype already caters for an arbitrary number
of measures). Second, the output of an objective function
for each point in parameter space could be shown to more
closely resemble guided navigation (see Section 2.2). We
note, though, that all domain experts we interviewed were
reluctant to introduce more complex measures. A third op-
tion is to visualize the distribution of outputs per parameter
for a meaningful measure (using histograms, for example)
and to enable users to directly filter the outputs to view in
more detail using a scented widgets approach [WHA07].

6. Conclusion

The presented case study serves as an example of the poten-
tial usefulness of interactive visualization to identify suitable
parameter values for biomedical image analysis algorithms.
As hypothesized, using our visualization prototype, partic-
ipants were able to: (1) analyze larger parts of parameter
space; (2) obtain a better understanding of the underlying
algorithms; and (3) achieve higher quality results than they
had previously with stepwise iterative refinement. The study
also serves as an example of users’ reactions to the introduc-
tion of interactive visual analysis into the established field of
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Figure 3: (a) Interactive histograms that show the distribution of output for one of more derived measures were added to our
prototype after a case study revealed this as a requirement. These are linked with (b) the parameter space view, (c) the detail
view, and (d) the reference image view. The visualized data is of segmentation results for photomicrographs of osteosarcoma
cells (cancerous bone tumour).

biomedical image analysis. Despite initial skepticism, par-
ticipants discovered an unknown logic error in their algo-
rithm and errors in its implementation.

Our work also serves as an example of how case studies
can serve as an important part of iterative design. Collabo-
ration with experts revealed an important additional require-
ment: facilitating analysis of derived measures. Our prelim-
inary results suggest that interactive visualization of derived
measures further reduces user effort during parameter opti-
mization. Based on this initial work, we anticipate that users
will benefit further from methods that help them effectively
select an even smaller subset of outputs for detailed analysis.
Our prototype is available for download at [Pre].

We anticipate that the visual analysis design principles
implemented in Paramorama should generalize to different
image analysis algorithms and input images (in biomedicine
and beyond). Indeed, the case study and follow-on work dis-
cussed in this paper were based on different segmentation al-
gorithms and considered different input images (histopathol-
ogy versus photomicrographs). To investigate this and to
generalize the findings summarized above, more empirical
evidence is needed. This presents a number of challenges.

Rigorous user evaluation studies require a large partici-
pant sample size while biomedical data sets encountered in

the real world often require scarce specialist skills to inter-
pret and analyze. Moreover, our findings suggest that par-
ticipants would require sufficient time for training and we
anticipate that the value of interactive visualization meth-
ods will emerge with repeated use over extended periods of
time. This implies a longer evaluation timeline than feasible
with a typical laboratory-based investigation. Designing and
implementing user evaluation studies that meet all these re-
quirements is a significant challenge similar to those encoun-
tered by other visualisation researchers [Pla04]. In this light,
a more realistic goal may be for researchers to conduct more
longitudinal investigations, to accumulate, and to present
more anecdotal evidence, such as the present study [SP06].
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