SIGRAD 2012
A. Kerren and S. Seipel (Editors)

Visualization of Text Clones in Technical Documentation

Morgan Ericsson, Anna Wingkvist, and Welf Lowe!

ILinnaeus University, Sweden

Abstract

An initial study of how text clones can be detected and visualized in technical documentation, i.e., semi-structured
text that describe a product, software, or service. The goal of the visualizations is to support human experts to
assess and prioritize the clones, since certain clones can be either intentional or harmless. We study some existing
visualizations designed for source code, and provide initial and limited adaption of these. A major difficulty in this
adaptation is to manage the semi-structured technical documentation compared to structured source code.

Categories and Subject Descriptors (according to ACM CCS): 1.3.8 [Computer Graphics]: Applications—

1. Introduction to Clones and Clone Detection

Duplicated and redundant text, so called (text) clones, can be
a problem in technical documentation. Technical documen-
tation is semi-structured text that describes a product, soft-
ware, or service. We consider the text to be semi-structured,
since it generally contains markup, such as XML, but this
structure is defined by the authors of the document.

Clones increase the size of the documentation, which adds
to the cost to store, translate, print, etc. while more effort is
required to maintain the documentation, for example due to
update anomalies. An update anomaly occurs when not all
clones are changed to reflect an update to the content, e.g.,
an instruction is only changed in certain parts of the docu-
mentation. However, clones can also improve the quality of
a documentation, by increasing readability and understand-
ability. Duplicated text can help to create context and famil-
iarity, and reduce the need for cross-references. The dual na-
ture of clones is a problem to assess the quality of a docu-
mentation and there is a need to identify clones. Further, how
human experts faced with this problem can be supported by
visualizations. We ask the following question: how can visu-
alization help to (quickly) identify clones?

Roy et al. [RCKO09] introduce the foundations of clone
detection. A text fragment F is any sequence of text charac-
ters. It can be uniquely identified, e.g., by its file, starting,
and ending position. A fragment F; is a clone of another
fragment F, if they are considered similar. We can define
(different) function(s) f to determine similarity. If f(F},F>)
is true, F; and F, are clones, and F| and F, form a clone

79

pair. We assume f to define an equivalence relation. Hence,
we can classify all text fragments using f and the fragments
Fi,F,,...,F; of the same class form a so-called clone set.

Clone detection is automated extraction of similar text
fragments. Approaches are in the domain of similarity func-
tion f, which could be based on plain text sequences, their
syntactic structure, e.g., induced by XML markup, and their
meaning (the latter is undecidable in general). For a given
set of documents (files) and a given similarity function f,
we can compute the clone sets. As the clone fragments of
different clone sets may overlap or be included in each other,
post-processing is necessary to deduce the actual document
uniqueness or similarity. Moreover, to avoid noise, thresh-
olds for too small text fragments and to disregard simple
or automated text transformation, pre-processing could filter
and abstract from the original text sequences, for example
by replacing tabs and linefeeds with spaces.

Text cloning could happen when writing with haste, but
also intentionally, e.g., when similar text fragments are re-
quired in different documents, or as a result of the writing
process itself, e.g., when documents come in variants or ver-
sions. In any case, awareness of clones and understanding
of their genesis is necessary for assuring the quality of doc-
umentations. It helps fixing typos and spelling errors con-
sistently, uncovering plagiarism, understanding related doc-
ument sets and their evolution, and identifying text fragment
that may be generated automatically. Even awareness of ab-
sence of expected clones, for example a common header that
should be present in all documents, can be helpful.

M. Ericsson, A. Wingkvist & W. Lowe / Visualization of Text Clones

2. Visualization of Clones

There are plenty of research on how to visualize clones in
source code. However, it is not clear how many of these vi-
sualizations are suitable for technical documentation. It is
also not clear if the aim of these visualizations are to simply
detect clones or also help to classify them. Here, we outline
different kinds of visualizations and discuss how they can be
adapted to technical documentation and if adapted versions
provide enough information to help classify the clones. We
base our discussion on the summary by Jiang et al. [JHHO06].
They divided the visualizations on what relation they focus
on; clone pairs or clone sets and since we want to classify
clones we only focus on clone set visualizations.

The six visualizations of clone sets are: Metric
Graphs [UKKIO02], Hasse Diagrams [Joh94], Hyper-linked
Web [Joh96], Linked Editing [TBG04], Duplication Ag-
gregation Tree Map, and Clone Class Family Enumera-
tion [RDLO4]. Metric Graphs presents a set of metrics for
each clone set, such as %coverage or radius (maximal dis-
tance from a common ancestor). Hasse Diagrams can be
used to display a partial order based on the subset relation
between files in clone sets. With positioning in a 2D space
it shows relations between and properties of the clones, e.g.,
the degree of similarity. Hyper-linked Web can be consid-
ered a hypertext version of a Hasse diagram, where each
clone set is displayed as a document with metrics such as
size and links to super- and sub-clone sets as well as the
actual files. Linked Editing shows clones in an editor view,
where cloned parts are marked and can be edited simultane-
ously, i.e., a change can be made to all instances of a clone.

Duplication Aggregation Tree Map is modified to allow
empty space. Each directory represent a box that contains
smaller boxes (files). The size of the file boxes shows the
number of internally (width) and externally (height) cloned
lines. The size and shape of the directories mimic the amount
and ratio of internal and external clones. Clone Class Family
Enumeration groups clone sets if they contain the same set of
files. In a 2D space, the clone class families and source files
are positioned with respect to lines of cloned code, number
of source files, lines of code and how many clone class fam-
ilies the source file is a member of, respectively.

Hyper-linked Web, Linked Editing and Hasse diagrams
have interesting properties, but they are not suitable to
quickly identify clones. Metric graphs rely on various met-
rics calculated on clones and [KKI02] put forward the need
for more discussion on what metrics can be used to de-
termine related clones. Duplication Tree Map Aggregation
and Clone Class Family Enumeration provides new and im-
proved ways to show dependencies between files, however
at least Duplicate Tree Map Aggregation relies on proper-
ties of source code (package/class/directory structures, etc.).
Based on our experience with documentation, it can be dif-
ficult to apply these structure properties to documentation,

80

T =
o 0 = 5] B o
DEE#:‘:% EE o
(|
E] mE
o Ao
0 o
(a) The documents clustered by clone set families
[=
=R feeh s
00 7 L B
U=t % E LI | O
oy = El=] B E [| O
ul m B

(b) The clusters clustered by clone set with each document colored
by which of the eight parts of the documentation it belongs to

Figure 1: Visualizations of clusters of documents (square).
Each cluster represents a group of document that are part of
the same clone set family(ies). Nodes are not weighted and
edges are removed to make the grapher clearer.

since the structure is not as controlled as it is in software
where a method or a class have specific rules and purposes.

3. Experiment

We implemented a set of visualizations and applied them
to the result of clone detection. The clone detection is per-
formed on 300 documents from a real-world documenta-
tion of a telecom product that consists of about 600 docu-
ments. We define an information extractor that removes the
XML markup from the documents, normalizes whitespace
and converts all text to lower-case. We define a simple sim-
ilarity function that recognizes identical sequences of words
in sequences that are at least 100 words long. Text fragments
that are identical form clone sets and are presented using a
triple that consists of file name, line number of the first, and
last line of the fragment, e.g., (doc1,4,19). The total size of
the 300 documents is approximately 90,000 lines.

The clone detection results in more than 500 clone sets,
and approximately 25,600 lines (28%) of the documenta-
tion are clones of some other part. Compared to real-world
software systems, where it is not uncommon that 7-20% of
the source code are clones [RC08], this may seem high, but
compared to our previous results for documentation (e.g.,
[WELL10], where we find in the range of 40-50% cloned
text), this is low. On average, each clone set contains 7 doc-
ument, and the largest contains 87.

Figure 1a shows document similarity: each node is a docu-
ment grouped by similarity. Each of the four clusters depicts

M. Ericsson, A. Wingkvist & W. Lowe / Visualization of Text Clones

(a) All documents

(b) The “green” cluster from Figure 1b

(c) The four node “yellow” cluster from Figure 1b

Figure 2: Pixelmap representations of three different clone sets. Each pixel represents a line, red pixels represent clones and
green pixels represent non-clones. Each pixelmap is restricted to documents between 100-400 lines for clearer figures.

100

50

0 25 50

—

00

(a) All documents
100 . : ;

50

0 25 50 5 100

(b) The “green” cluster from Figure 1b

Figure 3: Histograms depicting the percentage of clone sets
(y-axis) that a line (x-axis) is part of. The documents are
normalized to the length of the largest document. Clones are
positioned relatively, but their length is not normalized. The
pattern in (b) is more distinct than in (a) due to the common
structure of the documents in (b).

a Clone Class Family. It illustrates where the clones exist,
which is generally not enough information to gain an under-
standing and prioritize which clones to remove. For exam-
ple, pair-wise comparison of 87 documents using a diff-tool
or further visualizations is a cumbersome task. We applied
a coloring based on which documentation purpose a docu-
ment belongs to (extracted from file name conventions), and
two clusters shows a strong correlation between purpose and
similarity (cf. 1b).

The largest cluster contains documents describing a func-
tion or command. The document similarity indicates that a
common template is used and clones are intentional. If we
consider a pixelmap (cf. Figure 2) of a subset of the doc-
uments (documents between 100 and 400 lines, to help re-
duce the image size), we find that the clones (red pixels) are
placed in the beginning of the documentation and in a band

81

across the middle that mirrors the length of the document. If
we investigate the cluster with four documents, where doc-
uments have another purpose, we can see that each of them
shares a common postscript.

To gain more structure insights than the pixel maps pro-
vide, we project the clone sets w.r.t. one document and cal-
culate a hierarchy based on textual containment; Figure 4
shows such a hierarchy (tree). Each tree shows the structure
of clones in respective document, and each direct child of
the root represents a red sequence of pixels in Figure 2 If we
project and overlay the clone sets w.r.t. several documents
and represent the tree nodes using different colors per docu-
ment (and appropriate color mixtures for nodes representing
clone sets of several documents), we can see similarity in the
clone structure between the documents. This idea is similar
to Jiang’s et al. visualization of super clones, i.e., combina-
tions of clones, using code execution structure (basic-block
graphs) to relate different source files. Since we do not have
such structure in documentation, we have to rely on simpler
methods to relate different documents. One approach is to
normalize the length of a document in order to make it com-
parable. Figure 3 shows the relative number of clone sets a
line is part of. So, if the first line of all the documents are
part of 10 of a total of 100 clone sets, the position 1 would
have a value of 10%.

4. Discussion and Conclusions

Our main finding is that even though we rely on clone de-
tection and extraction for source code, most of the visual-
izations are not a good fit for documentation. A major chal-
lenge is that documentation lacks some of the structure that
is available in code. Our initial attempts suggest that fur-
ther work is needed on both extraction and visualization of
text clones. Most of the documentation we analyze contains
text and markup, even if most of the discussion here is fo-
cused on text. We can extract certain structural properties
from the markup, such as bullet lists, headers, etc., but they
are not as well defined nor used as purposefully as structure
and (static) semantics information of a programming lan-
guage. The company that produce the documentation often
provide structure, rules, and guidelines, and these could be
used to provide additional semantic information. For exam-

M. Ericsson, A. Wingkvist & W. Lowe / Visualization of Text Clones

125_19080-CRA25056_1Uen

(1411)@(684,686) [< | ([13881)@(231,240] [[(140)@1692,697] [(1241, 244, 237)@(283,2921

[w483, 467, 457, 450,477, as2bi8:311| [1znenazrea)] | wsshetzrozra

(1265))@(284,293]

(1392))@1702.711]

[226,210, 2130012842521

‘ (1454))@18,30] ‘

(1177)@(285,293]

[ssvarneanl]

[n04, 112, 122001285.2921 [wssaneis.asn |

[woonenazor] [weinenssu]

(331,332, 349))@1(8,17]
(1105, 110, 151))@[8,13)
(148, 45])@18,12]

(1257))@118,30]

([326)@19.17]
-ussn@lg,m

Figure 4: A tree that depicts clone sets and subsets that are present in a single document. Each box shows the clone sets the
clone is part of and the line numbers in the document. The tree is built using subset containment, i.e., a parent contains the
subsets of all its children. Each red sequence in a single document in Figure 2 is a direct child of the root.

ple, our coloring of the document similarity graph, based on
purpose (file name conventions) helps to explain one of the
large clusters of clones. However, such semantic information
is based on written guidelines or convention, which might
not be used consistently. Consider, e.g., the four documents
with the same postscript; these all have the same purpose,
but there are 15 other documents with the same purpose that
are not part of the cluster.

The syntactic and semantic structure of source code is also
a benefit when you want to visualize super clones, i.e. a com-
bination of (all) clone sets, because these provide a structure
that can be used to normalize the different clone sets. To
achieve the same effect on documentation/text, we need to
find ways to normalize the different file lengths and struc-
tures. So to visualize super clone information, we scale the
file length, and position the clones relative to the start of the
file. The scaling works well, if the positions of the clones
are relative to the file (e.g., pre- and postscript). But scaling
can affect the positioning of a clone, which can mask actual
patterns and create non-existing ones. The pixelmaps are an
alternative to super clone visualization. However, we still ex-
perience problems with file lengths, since patterns that are
not relative are again difficult to represent.

Since we currently only consider the text when we visu-
alize the position of the clone sets, we plan to map these
back to the XML representation and see if we can use this
information to improve the normalization of the documents.
This might affect both the super clone and pixelmap repre-
sentations. We also plan to investigate more advanced data
normalizations techniques and determine if these are appli-
cable. Another, related track is to investigate if relative posi-
tioning is exact enough, if we improve the resolution.

We will look into other types of visualizations, where we
do not focus on position within the document or clusters of
clone sets: for example graphs that focus on the order of
the clone sets within the files, and individual differences be-
tween clone sets that are present in the same range of files.
Here, the visualizations we adapt focused on source code

82

clones, but we will study other types of software and in-
formation visualizations. Even if our experiment shows that
properties of the documentation, such as types of documents,
etc. can be a risk to include when clustering documents that
are similar, we see if we can find a better set of properties, for
example author, creation date, etc. Also, we need to improve
our tools and the quality of the visualizations produced.

References

[JHHO6] JIANG Z. M., HASSAN A. E., HOLT R. C.: Visualizing
clone cohesion and coupling. In APSEC (2006), pp. 467-476. 80

[Joh94] JOHNSON J. H.: Visualizing textual redundancy in legacy
source. In Proc of the 1994 conf of the Centre for Adv Studies on
Collaborative research (1994), pp. 9-18. 80

[Joh96] JOHNSON J. H.: Navigating the textual redundancy web
in legacy source. In Proc of the 1996 conf of the Centre for Adv
Studies on Collaborative research (1996), pp. 7-16. 80

[KKI02] KamiyA T., KusumMmoToO S., INOUE K.: CCFinder:a
multilinguistic token-based code clone detection system for large
scale source code. [EEE Tran Soft Eng 28, 7 (2002), 654-670.
80

[RCO8] RoY C. K., CORDY J. R.: An empirical study of function
clones in open source software. In WCRE (2008), Hassan A. E.,
Zaidman A., Penta M. D., (Eds.), IEEE, pp. 81-90. 80

[RCK09] Roy C. K., COrRDY J. R., KOSCHKE R.: Comparison
and evaluation of code clone detection techniques and tools: A
qualitative approach. Sci. Com. Prog. 74,7 (2009), 470-495. 79

[RDL04] RIEGER M., DUCASSE S., LANZA M.: Insights into
system-wide code duplication. In Proc of the 11th Working Conf
on Reverse Eng (2004), IEEE Computer Society, pp. 100-109.
80

[TBG04] TooMIM M., BEGEL A., GRAHAM S. L.: Managing
duplicated code with linked editing. In Proc of IEEE Symp on
Visual Languages-Human Centric Comp (2004), pp. 173-180. 80

[UKKIO2] UEDA Y., KaMIYA T., Kusumorto S., INOUE K.:
Gemini: Maintenance support environment based on code clone
analysis. In Proc of the 8th Int Symp on Software Metrics (2002),
IEEE Computer Society, pp. 67-76. 80

[WELL10] WINGKVIST A., ERICSSON M., LOWE W., LINCKE
R.: A metrics-based approach to technical documentation qual-
ity. In Proc of the 7th Int Conf on the Quality of Info and Com
Tech (2010), pp. 476-481. 80

