

5th International Workshop on Equation-Based Object-Oriented Modeling
Languages and Tools, 19 April, 2013, University of Nottingham, UK.

Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp_home/index.en.aspx?issue=084

EOOLT 2013 website:
http://www.eoolt.org/2013/

Modeling System Requirements in Modelica: Definition and
Comparison of Candidate Approaches

Andrea Tundis1 Lena Rogovchenko-Buffoni2 Peter Fritzson2 Alfredo Garro1
1Department of Computer Engineering, Modeling, Electronics, and System Sciences (DIMES), University of Calabria,

Italy, {garro,atundis}@dimes.unical.it
2Department of Computer and Information Science (IDA), Linköping University, Sweden,

{peter.fritzson,olena.rogovchenko}@liu.se

Abstract
The modeling of system requirements deals with formally
expressing constraints and requirements that have an
impact on the behavior of the system to enable their
verification through real or simulated experiments. The
need for models representing system requirements as well
as for methods and techniques centered on model-based
approaches able to support the modeling, evaluation, and
validation of requirements and constraints along with
their traceability is today greater than ever. In this
context, this paper proposes a meta-model for modeling
the requirements of physical systems. Furthermore,
different approaches for integrating the modeling of
system requirements in the Modelica language and their
verification during the simulation are proposed and, then,
evaluated and compared through a case study.

Keywords Requirements, Properties, Modeling,
Assertions, Modelica, Safety, Verification, Validation

1. Introduction
In the systems engineering context, although several
research activities are focused on the system design
phases, there is still a lack of practices and approaches
that specifically deal with the analysis, modeling, and
verification of requirements in an integrated framework.
One of the main open issues concerns the support
provided during the design for the verification and
validation (V&V) of the system under consideration.
Indeed, it is crucial not only to represent in detail both the
structural and behavioral design of a system, but also to
ensure the proper operation of the overall system and of
each individual component to guarantee their functional
correctness in compliance with the requirements.
Moreover in several industrial domains such as nuclear
plants, medical appliances, avionics, and automotive
industry, some requirements such as safety requirements
must be compliant to standard specifications (see IEC

61508) and norms to allow the commercial release of a
system.

In order to add support for verification and validation
during the design stage of the systems engineering
process we formalize a set of concepts that will allow us
to model system requirements, in [9] called properties. In
the following we will use the term requirement, which is
defined [9] as an expression that specifies a condition that
must hold true at given times and places. As a rule, their
identification and definition is neither a trivial nor a
unique process, and can significantly depend on the
reference domain and application context. Similarly, their
formalization and modeling can vary with respect to the
objectives to be reached.

In general, the first step of a systems engineering
process is concerned with the analysis of informal User
Requirements (URs). These are typically problem-
oriented statements and they focus on the required
capabilities. Thus, they need to be converted into
solution-oriented statements. The System Requirements
(SRs) are then derived by decomposing the URs into sets
of basic required functionalities. SRs form the basis for
the subsequent system functional analysis and design
synthesis phases [8]. In particular, in the System Design
phases, SRs are used to define both the structure and the
behavior of the System under development. Specifically,
in an equation-based context, the behavior of each system
component, as well as the behavior of the entire system, is
represented by a set of equations defined using
component attributes (such as variables, parameters and
constants).

Starting from the SRs and according to the defined
System Design (SD), additional mechanisms called
Requirement Assertions can be defined in order to verify
as well as to trace through the simulation the fulfillment
of the SRs. Indeed a requirement assertion can be
associated with a real system, subsystem, equipment or
component, or with a model of the real system, subsystem
or component and it defines what the system should
guarantee, or the validity domain for the behavior of the
system. In particular, in our context a requirement is
represented by an assertion that is related to a specific
physical component and which exploits the attributes of
the component in order to verify and trace the fulfillment
of some SRs related to a specific component. It worth to
notice that while user and system requirements (both

15

functional and non-functional) are used in the analysis
and design phases for the development of the system
under consideration; formalized requirements as
requirement assertions are exploited during the
verification phases for evaluating if the system
requirements are satisfied by a specific system design
model. Consequently, an appropriate approach to define
formalized requirements along with the possibility to
retrieve information about their status is crucial for the
overall development process.

Few works are currently available addressing the
modeling of requirements which was one of the goals
addressed in ModelicaML [11] during the OPENPROD
project [4]. Specifically, our proposal is strongly related
to: (i) [9] in which the representation of the requirements
is closely bound and restricted to the
exploitation/implementation of a software library; (ii) [14,
15] where the communication processes and evaluation
mechanisms among requirements, in order to enable the
propagation of assessments among them, are not properly
dealt. Furthermore, well-known simulation environments
exploit assertions to verify system requirements; for
example, MathWorks Matlab/Simulink provides
assertions and bound checking blocks as configurable
components. However, they are able to face only a limited
set of specific aspects (e.g. zero/nonzero signal, threshold
values). In this context, our aim is twofold: (i) to develop
a comprehensive approach for the definition and
modeling of requirements of a physical system in a clear
and well-defined way, (ii) to define a mechanism to
enable their traceability in order to support the
verification process through simulation. To address these
issues, a meta-model to represent system requirements
along with some different solutions to model them are
described in an equation-based context. On the basis of
this meta-model, several extensions of the Modelica
language [3] (an object-oriented modeling language to
describe physical systems by differential, algebraic and
discrete equations), to model requirements in a more
flexible way, are introduced.

In Section 2 the proposed meta-model is described, in
Section 3 both its use and its possible integration in the
Modelica context are illustrated along with some notation
extensions, in Section 4 a case study for the evaluation of
the various approaches is presented and discussed
whereas in Section 5 conclusions are drawn and future
works outlined.

2. A Meta-model for representing System
Requirements as RequirementAssertions

The concepts required for modeling system requirements
are clearly identifiable and their representation can be
generalized. For this purpose we define formal meta
models [1].

Even though the notions of model and meta-model are
crucial when we talk about representation and modeling,
often these terms generate confusion, so it is necessary to
clarify the difference between them and the context for
the use of each of them.

Firstly we can define the concept of subject as the main
thing that we want to think/reason about and on which we
perform experiments. This usually belongs to the real
world. To solve a problem we construct a simplified
representation of the subject, called model, to which
different experiments can be applied, in order to answer
questions aimed at the subject. Since a model captures
only a part of the complete subject, it is possible to define
many models which represent the same subject but that
are able to capture different characteristics, aspects,
variables and parameters. In order to perform reasoning
on a model it is necessary to know exactly which
variables are available, furthermore, it is necessary to
know the structure of the model. Such information can be
expressed through meta-data by defining a higher
abstraction level called meta-model. Hence, a meta-model
is a model that defines the structure of valid models (see
Figure 1).

In the following the definition and description of the
proposed meta-model (see Figure 2) is provided. It is a
combination of two main parts: the Physical Meta-Model
(in the left-side) and the Requirement Meta-Model (on the
right-side).

Figure 1. Meta-model, model and subject abstraction
levels.

As previously stated, before defining System
Requirements, it is necessary to build a representation of
the physical model. Thus, the meta-data of the Physical
Meta-Model are used to describe and to represent one
among all the possible physical models of a specific
actual system, whereas the meta-data of the Requirement
Meta-Model are exploited to represent System
Requirements in terms of requirement assertions by
defining a possible requirement-model on a specific
physical model representation.

Starting from the Physical Meta-Model side, the main
concept is the Attribute, which represents a characteristic
(i.e. temperature, pressure, level of liquid, age) of an
entity (i.e. a system, a sub-system, a component); in the
proposed meta-model, it is defined by (i) a Name (by
which it is referred) (ii) a Type (type of value which is
expected), (iii) a Value (a possible value among all the
range of values related to a specific Type) and (iv)
(optionally) a Unit of measure. Each Attribute is
associated with one specific Variability which in turn can
be (i) Constant which means that its Value never changes,
(ii) Variable which means that its Value depends on other
attributes, (iii) Parameter which means that its Value can
be properly tuned. Moreover, each Attribute has to specify
its access level called Visibility which, according to the
meta-model, could be either Private, if accessible only
internally to the component in which it has been defined,
Protected, if accessible by the descendants, or Public, if
accessible externally.

16

An Attribute can be (i) an AtomicAttribute, which
means it cannot be further decomposed, (ii) a
ComplexAttribute, that is, composed by other attributes.

A ComputationalModel, which could be represented
through an a Algorithm, a FiniteAutomata (e.g. Timed
Automata, Hybrid Automata, etc.), a Function, an
EquationsSet (i.e. a set of Equation concepts), or by their
combination as well as by Other kinds of computational
models, defines the behavior of a
PhysicalComponentModel. An Attribute has to belong at
least to one ComputationalModel as well as a
ComputationalModel has to use at least one Attribute.
One or more PhysicalComponentModels compose a
PhysicalSystemModel, which in turn is one of the many
possible models to describe an actual system called
PhysicalSystem.

While the meta-data on the left side of the figure is
used for the description of the physical model, moving to
the right side of the meta-model, we can see the concepts
used for the modeling of System Requirements. Among
these, the main concept is the RequirementAssertion,
which is used to describe a Requirement of a system. A
RequirementAssertion can be (i) a
SimpleRequirementAssertion, that means it doesn’t
receive any input from any PhysicalComponentModel, (ii)
a ComplexRequirementAssertion, which is connected
directly to at least one Attribute and to one
PhysicalComponentModel; this means that a
ComplexRequirementAssertion is based on at least a
PhysicalComponentModel and it is able to receive one or
more input values coming from several attributes of the

physical model; moreover, a RequirementAssertion
(SimpleRequirementAssertion or
ComplexRequirementAssertion) could be defined in terms
of other RequirementAssertions whereas on a single
PhysicalComponentModel, different
RequirementAssertions can be defined.

According to the meta-model a RequirementAssertion
belongs at least to one possible RequirementModel as well
as a RequirementModel has to define at least one
RequirementAssertion; each RequirementAssertion being
characterized by:

• a Name and a possible Description in a text format by
using the natural language;

a RequirementAssertionType which specifies the type of
the role played by the RequirementAssertion; in
particular a RequirementAssertion can have (i) a
Default behavior type: it is allowed only to monitor a
PhysicalComponentModel without influencing its
evolution; (ii) a Parameterized behavior type: it is
able to alter the value of a PhysicalComponentModel
and influence its evolution (the RquirementAssertion
has both read and write capabilities);

• at least two Status in order to represent the status of
fulfillment of the requirement, which in turn is
defined in terms of a StatusType and a StatusValue.
The first concept defines the type of value that a state
can take (i.e. a Boolean type, a real type, etc.)
whereas the second one represents the value which is
related to a specific StatusType (such as True/False

Figure 2. A meta-model for modeling System Requirements.

17

for a Boolean or NotEvaluated/Satisfied/NotSatisfied
for a three valued logic, etc.). Each Status could be
associated to both a Counter counting how many
times the RequirementAssertion has gone in a specific
state and a Timestamp in order to register each
occurrence of the event. Moreover, a status can be
defined as a DefaultStatus (useful, for example, in the
initialization phase when none value is still provided
to the RequirementAssertion). A
RequirementAssertion has a StatusOfActivation, that
means it can be Enabled and Disabled in order to
decide if it takes/doesn’t take part in a specific
scenario or simulation run.

• at least one EvaluationPeriod to indicate when the
RequirementAssertion has to be evaluated according
to possible PreConditions and PostConditions that
could be based on temporal values or on values
coming from Attributes. Moreover for each
EvaluationPeriod a Metric must be associated.

• at least a Metric to describe the objective to be
verified for which the RequirementAssertion has been
defined (e.g. Mean Time To Failure for the
Reliability); each metric has to define a way which
objectively allows its evaluation in terms of Measure
(e.g. the number of failures in a period of time to
measure the Mean Time To Failure). Specifically, a
Measure can be expressed by adopting an appropriate
ComputationalModel; moreover, one or more
Patterns could be applied for representing such
ComputationalModels when a sort of recurrent
structure occurs (e.g. a threshold pattern, a derivative
pattern, a delay pattern, etc.). Furthermore, each
measure should define a RangeOfValue, within the
Value of the Attribute which is related to, in which it
is valid. Such RangeOfValue is specified by: (i) a
LowerBoundThreshold: minimum value of validity in
the range; (ii) UpperBoundThreshold: maximum
value of validity in the range; moreover, further
thresholds as LowerBoundOffSet and
UpperBoundOffSet can be exploited when the Value
of a RequirementAssertion is respectively
below/above the LowerBoundThreshold and
UpperBoundThreshold for a limited time.

RequirementAssertions can describe the state and the
intended behavior [6, 7] of PhysicalComponentModels,
i.e. the expected behavior for which components are
designed. Both Physical Meta-Model and Requirement
Meta-Model are jointly exploited to describe the overall
model (hereafter called Extended System Design – ESD)
of an actual system.

To further clarify the meta-model above described, a
simple exemplification is provided below, where some of
the above described concepts are exploited in order to
define an requirement model upon a physical model in
compliance with the proposed meta-model.

The PhysicalSystem under consideration is a Water
System whose model, i.e. one among all possible
PhysicalSystemModels, called WaterSystemModel is
simply composed by a single PhysicalComponentModel

of a Tank. The Tank is modeled through different
Attributes such as the current level of liquid levelInTank
as well as the height of the tank tankHeight (both as a
Real type and unit=“m”). Such attributes can be accessed
externally (Public Visibility), whereas other Attributes can
be used by the descendants of the Tank (Protected
Visibility). All those Attributes (both with Public and
Protected Visibility) are exploited into a
ComputationalModel which is defined through different
equations (EquationsSet) in order to model the Behavior
of the Tank.

Let us assume to define a RequirementModel on this
specific PhysicalSystemModel (the above described
WaterSystemModel), in order to verify the following
RequirementAssertion of a Tank (hereafter we refer to the
model of the Tank), whose Description is: “The level of
liquid in the tank shall never exceed 80% of the tank
height” and its Name is “LevelOfLiquidInTank”.
According to the meta-model the status of activation
(StatusOfActivation) of this RequirementAssertion is
enabled (Enabled) for all the simulation time, and its
evaluation period (EvaluationPeriod) has a duration equal
to the duration of the simulation run without further
specific PreConditions or PostConditions. The Status of
the RequirementAssertion has a StatusType set to
Boolean, consequently, the allowed status value
(StatusValue) will range between true and false (or
satisfied and notSatisfied).

The fulfillment of this RequirementAssertion is
defined by a metric (Metric) based on the current level of
fluid in the Tank, which is measured (Measure) as a
percentage according to the maximum height of the tank.
Consequently, the definition of the RequirementAssertion
exploits the levelInTank and tankHeight that are both two
Public Attributes of the Tank, moreover, an internal
parameter, equal to 0.8, is used to express the percentage.
Finally, this Measure is expressed by adopting as
ComputationalModel a set of equations (EquationsSet). In
particular, in this case by a single Equation, which is
defined according to a threshold Pattern (e.g.
levelInTank<0.8*tankHeight); a fragment of the possible
Modelica (psedo) code is reported below.

requirement LevelOfLiquidInTank
 Real levelInTank(unit="m");
 Real tankHeight(unit="m");

parameter Real limit (start=0.8);
equation
 levelInTank<limit*tankHeight;
end LevelOfLiquidInTank;

In the following section some approaches for modeling
System Requirements through RequirementAssertions,
based on the presented meta-model, are proposed.

3. Extending the Modelica language for
Modeling System Requirements

In this Section different approaches for modeling system
requirements and how they can be used to verify the
intended behavior of the system and validate it through
simulation are described. All the approaches are equation-

18

based and, in particular, based upon the Modelica
language and ModelicaML (Modelica Modeling
Language).

Modelica is a language for equation-based object-
oriented mathematical modeling of physical systems (e.g.,
systems containing mechanical, electrical, electronic,
hydraulic, thermal, control, electric power components)
with acausal features, which allows defining models in a
declarative manner [3].

ModelicaML is an UML profile, which is based on the
SysML/UML profile and reuses its artifacts required for
system specification. ModelicaML reuses several
diagrams types from SysML without any extension,
extends some of them, and also provides several new
ones. ModelicaML diagrams are grouped into four
categories: Requirement, Structure, Behavior and
Simulation [13].

Although both Modelica and ModelicaML are
expressly designed for modeling systems in a coherent
framework based on an equation approach, they do not
yet provide concepts to be used in order to represent and
trace the occurrence of dysfunctional/abnormal behavior
(such as faults and failures), that is to say, an observable
deviation from the intended behavior at the system
boundary [2, 6, 7].

In this perspective, the exploitation of the meta-model
presented in the previous Section can be used to enrich
both the Modelica language and ModelicaML to provide
them with the capability of modeling system requirements
and to enable model checking. In particular, different
approaches are proposed and discussed in the following
subsections based on the two main concepts of
requirement assertion (see Section 2) and fulfill and some
variants of them.

3.1 Approach A

In this approach the formal concepts of requirement and
fulfill are defined as follows:

requirement: which is represented by a
RequirementAssertion able to validate the behavior of
a specific PhysicalComponentModel which is related
to, or to validate interactions among different
PhysicalComponentModels (according to the SRs and
the SD).

• fulfill: which expresses the entailment relationship
between PhysicalComponentModels and a
requirement, as well as among requirements.
Moreover, it provides the propagation process of an
assessment among RequirementAssertions.

An example model, which illustrates these concepts, is
shown in Figure 3. In particular, after the declaration of
the instances of both PhysicalComponentModels and
RequirementAssertions their relationship is established
according to the following five connection-rules:

1. the connections enabled through the connect
construct among PhysicalComponentModels are
defined to build the SD of the PhysicalModel;

2. the connections enabled through the connect
construct among a PhysicalComponentModel and an
RequirementAssertion are used to provide outputs
coming from PhysicalComponentModels in input to
RequirementAssertions.

3. the exploitation of the fulfill keyword is used to
define which instance of an RequirementAssertion
has to be satisfied/related from at least one specific
instance of a PhysicalComponentModel.

4. the exploitation of the fulfill keyword is used among
RequirementAssertions to enable the propagation
mechanisms of assessment among them;

5. If A1,..,An are RequirementAssertions and C1,..,Cm
are PhysicalComponentModels, then we can define
(A2,..,An,C1,..,Cm)fulfill(A1), where A1 is satisfied if
and only if C1,..,Cm satisfy A1 as well as A2,..,An
are all satisfied (fulfill follows the rule of the And
logic).

As we can see in Figure 3, the connect construct, which is
already available in the Modelica language, is used not
only among PhysicalComponentModels but also between
a RequirementAssertion and a PhysicalComponentModel.
Even though the connect construct allows to define
connections among attributes of two or more components
in an acausal way [3], in this approach some restrictions
are defined on it. As an example, the connection is only
able to provide inputs from a physical component towards
a RequirementAssertion. The reason for such a restriction
is to prevent a RequirementAssertion from providing
input to a PhysicalComponentModel and consequently
affecting its behavior.

Figure 3. A verification model based on requirement
assertion and fulfill.

3.2 Approach B

Whilst the above mentioned approach allows to model
requirements in a simple and intuitive fashion, with the
help of a minimal set of new concepts (i.e. requirement
assertion and fulfill), the addition of extra connections
between requirement assertions and components through
connect, could make the ESD overly verbose and difficult
to read from a visual representation point of view, thus
complicating the maintainability of the source code.

Therefore, an alternative approach is a variant of the
previous one in which along with the keyword
requirement, another concept (and another keyword)
called On, which is only visible in the source code of a
RequirementAssertion, is introduced. Similar to the
extends construct, but with some restrictions on the

19

inherited elements, the On keyword enables a requirement
to be defined on specific PhysicalComponentModels.
Such a requirement will inherit the attributes on which it
will carry out the processing.

Figure 4. Modeling Requirements using the On construct.

The process to build the ESD follow the five-connection-
rules, which have been described in Section 3.1 except for
the rule number 2; in this way:

it allows to avoid the exploitation of extra connect
(between PhysicalComponentModels and
RequirementAssertions) in order to provide input
values coming from constants, parameters or
variables of physical components towards an
requirement. Indeed, such relationships are
established during the definition of the
RequirementModel through the exploitation of the On
keyword;

it allows to avoid of having too many connections into a
graphical representation, as it is in Figure 4, by also
reducing the lines of the source code of the Extended
System Design.

The concept of fulfill is that explained in the previous
section.

3.3 Approach C

Often, it is necessary to have additional mechanisms for
generating dysfunctional/abnormal behavior in a physical
component, so as to assess the consequences on the whole
system.

To this end, approach C proposes the possibility of
altering the values of the components starting from the B
approach and adding the new notions of tester
entity/component entity and the supersede keyword. The
tester entity can be seen as a specific component that is
defined on a PhysicalComponentModel and which is able
to generate outputs (e.g. signals, events or values)
according to specific functions and inject them into the
PhysicalComponentModel in order to alter its
intended/nominal behavior (expected values). The
supersede keyword enables the mechanism to create a
reference between an instance of a tester entity and an
instance of a PhysicalComponentModel. In particular, the
following rules define the semantics of the supersede
keyword and how to use it:

1. the exploitation of the supersede keyword is used to
define which specific instance of a
PhysicalComponentModel could be compromised by
which specific instance of a Tester component;

2. If T1,..,Tn are Tester components and C is a
PhysicalComponentModel, then we can define
(T1,..,Tn)supersede(C), where the operation work of
C could be influenced only by one among the
T1,..,Tn Tester components (supersede follows the
rule of the XOr logic).

RequirementAssertions can monitor the occurrence of
abnormal/dysfunctional behavior in physical components;
the fulfill relationship is exploited by the
RequirementAssertion to check the impact and the
consequently propagation of possible unexpected values
in a component on other components (see Figure 5). The
On keyword enables both RequirementAssertions and
Tester components to have access directly to the attributes
of the physical component models on which they are
defined.

Figure 5. Requirements and Tester component for the
dysfunctional behavior analysis.

4. A case study
In this Section, a case-study is first described and then
used to evaluate some of the solutions which have been
proposed in the previous Section; for this purpose, both
the ModelicaML diagrams and the Modelica code are
presented; finally, the pros and cons of each solution are
discussed.

4.1 System Description

The possible implementation of the previously presented
approaches along with the significant reduction of
programming and implementation efforts to model system
requirements as well as the increased readability, are
demonstrated through a typical case study of a Tank
System.

The Tank System is composed by four main physical
components: a Source component, a Tank component, a
LevelController component and a Sink component. The
Source component produces a flow of liquid, which is
taken in input by the Tank component. The Tank, which is
managed through the LevelController component,
provides in output a liquid flow according to the control
law defined by the LevelController. The Sink is the
component where a part of liquid is sent.

After an analysis of the URs, the following main SRs
(and many others) have been identified:

20

• System_Requirement_1: the system has to be
composed by one Source Component, one Sink
Component, at least one Tank Component and at least
one LevelCotroller Component;

• System_Requirement_2: each tank has to provide one
port called qIn in order to receive flow from another
possible Tank Component (or from the Source
component if it is the first Tank component in the
chain);

• System_Requirement_3: each tank has to be
connected to its own LevelController component;

• System_Requirement_3_1: each Tank component has
to provide a port called tSensor in order to provide
signal to the LevelController component;

• System_Requirement_4: the Source component has
to provide a flow port called qOut;

• System_Requirement_4_1: the liquid flow produced
by the Source component has to be equal three times
the initial flow after 150 seconds;

• System_Requirement_5_1: the liquid flow produced
by the Source component should be less than 10 m3/s.

• System_Requirement_5_2: the role of the
LevelController should be verified by exploiting both
the h level from the Tank component and the qOut
flow.

• System_Requirement_5_3: the validity of both the
tActuator (Out-flow) and the outFlowArea values
should be checked according to a specified function;

• System_Requirement_5_4: both the h level and the
tSensor should provide the same values;

• System_Requirement_5_5: the h level coming from
the Thank should be checked according to a specified
function.

Starting from the SRs above described, the SD of the
Tank System has been defined as shown in Figure 6,
whereas in the following, a fragment of the Modelica
code used to implement the Tank System is reported.

package PhysicalComponentModel
model Source;
 LiquidFlow qOut;
 parameter Real flowLevel=0.02;
equation
 qOut.lflow = if time>150 then
 3*flowLevel else flowLevel;
end Source;
model Tank
 ReadSignal tSensor;
 ActSignal tActuator;
 LiquidFlow qIn;
 LiquidFlow qOut "Connector, flow (m3/s)
 through output valve";
 parameter Real area(unit="m2")=0.5;
 parameter Real flowGain(unit="m2/s")=
 0.05;
 parameter Real minV = 0,maxV = 10;
 Real actuatorControllerV;
 Real outFlowArea(unit="m");
 Real h(start=0.0, unit="m");

equation
 der(h)=(qIn.lflow-qOut.lflow)/area;
 actuatorControllerV=flowGain*
 tActuator.act;
 qOut.lflow = LimitValue(minV, maxV,
 actuatorControllerV);
 tSensor.val=h;
 outFlowArea=-qOut.lflow/flowGain;
end Tank;
…
end PhysicalComponentModel;

Figure 6. The System Design (SD) of the Tank System.

Moreover, starting from the SD of the Tank System, the
following Requirement Assertions have been defined;
they should be represented and verified during simulation
in order to ensure the proper operation of the system. In
the next subsections some of the proposed approaches are
applied for the modeling of requirements.

4.2 Exploiting the A Approach

In this example, starting from the System Requirements
specified in the previous subsection, a set of
RequirementAssertions can be defined on the SD of the
Tank System by exploiting the Approach A; in particular:

• RequirementAssertion_1: LimitInFlow, which takes
in input the value of the qOut port of the Source
component. It is satisfied if the liquid flow produced
by the Source component is less than a specific
“maxLevel” (i.e. liquidFlow<=maxLevel, in our case
maxLevel =10).

• RequirementAssertion_2: ControlOutFlow, which
takes in input the h level from the Tank component
and the qOut flow to validate the role of the
LevelController; moreover, to be valid it must be
fulfilled by both the RequirementAssertion_3 and the
RequirementAssertion_4.

• RequirementAssertion_3: ActuateOutFlow, which
takes in input both the tActuator (Out-flow) and the
outFlowArea, checks if the outFlowArea value is
proportional at the tActuator signal.

• RequirementAssertion_4: SenseLevel, which takes in
input both the h level and the tSensor, checks if the
sensor output is equals to the h level (i.e.
lLevel=sensorOuput).

• RequirementAssertion_5: ControlLevel, which takes
in input the h level coming from the Tank component,

21

checks if hLevel<9 and hLevel>5; moreover, to fulfill
the RequirementAssertion_5, both the state of
RequirementAssertion_1 and of
RequirementAssertion_2 have to be satisfied.

Figure 7 shows an example of ModelicaML-based
notation for the different concepts. In the following, some
code fragments of the RequirementModel and, in
particular, the implementation of RequirementAssertion_1
and of RequirementAssertion_5, introducing the new
keyword requirement, are reported.

Figure 7. Approach A for modeling requirements of the
Tank System.

package RequirementModel
requirement Requirement1
 Real liquidFlow; "qOut of Source"
 parameter Real maxLevel=10;
equation
 if liquidFlow<=maxLevel then
 Status.satisfied;
 …
end Requirement1;
…
requirement Requirement5
 Real lLevel;
 parameter Real Lmin=5, Real Lmax=9;
equation
 if lLevel<Lmax and lLevel>Lmin then
 …
end Requirement5;
end RequirementModel;

In the snippet of code shown subsequently, both the
PhysicalSystemModel (or SD) and the RequirementModel
are composed.

model ExtendedSystemDesign
 //PhysicalComponentModels
 Source source;
 Tank tank1(area=1);
 …
 //RequirementComponents
 Requirement1 limitInFlow;
 …
 Requirement5 controlLevel;
equation
 //Connection among PhysicalComponents
 connect(source.qOut,tank1.qIn);
 …

 //fulfill connections
 (source)fulfill(limitInFlow);
 (tank1)fulfill(actuateOutFlow);
 (tank1)fulfill(senseLevel);
 (limitInFlow,controlOutFlow)
 fulfill(controlLevel);
 (levelController,actuateOutFlow,
 senseLevel)fulfill(controlOutFlow);
 //connection between physical
 //components and requirements
 connect(tank1.h,controlLevel.L);
 connect(tank1.h,senseLevel.lLevel);
 connect(source.qOut,limitInFlow.
 liquidFlow);
 …

end ExtendedSystemDesign;

By adopting this approach, the RequirementModel is
completely decoupled from the PhysicalSystemModel of
the system under consideration. Indeed, a requirement
model only requires input values of specific types,
regardless of the type and the number of components that
the values come from. This means that a requirement
model could be re-used to validate physical components
belonging to different SD, although the semantics of such
physical components could be completely different. The
link between the RequirementModel and
PhysicalSystemModel, occurs only in the ESD, through
the fulfill relationships which govern the assignment of a
component to a requirement, while the inputs to be sent to
the requirement are provided by the connect construct.

4.3 Exploiting the B Approach

In this example the Approach B is exploited to represent
the same Tank System including the
RequirementAssertions described in the previous
subsection. Figure 8 shows the related ModelicaML-
based notation of such a modeling approach. As we can
see, the diagram is less crowded with connections and
consequently easier to read.

Figure 8. Approach B for modeling requirements of the
Tank System

As it is shown in the next code fragments illustrating the
source code of Requirement_Assertion_1 and of
Requirement_Assertion_5, both the keyword requirement
along with the On keyword are combined for the
definition of each requirement. Specifically, starting from
the Source model, Requirement1 is defined on it; this
means that Requirement1 is able to use (read-only) all the

22

Public attributes, which have been defined by the Source
model. In particular, the qOut attribute of the Source
model can be used by Requirement1 without further
referencing or connections with the Source model.

package RequirementModel
requirement Requirement1 On Source
 parameter Real maxLevel=10;
equation
 if Source.qOut<=maxLevel then
 Status.satisfied;
 else
 Status.notSatisfied;
 end if;
…
end Requirement1;
…
requirement Requirement5 On Tank
 parameter Real Lmin=5, Lmax=9;
equation
 if Tank.h<Lmax and Tank.h>Lmin then
 …
end Requirement5;
end RequirementModel;

As for the previous example a fragment of source code
combining both the PhysicalSystemModel and the
RequirementModel is presented. As we can see, no
connections which use the connect construct between a
PhysicalComponentModel and a requirement component,
are present in the source code of the ESD model.

model ExtendedSystemDesign
 //PhysicalComponentModels
 Tank tank1(area=1);
 Sink sink1;
 …
 //RequirementComponents
 Requirement1 limitInFlow;
 …
 Requirement5 controlLevel;
equation
 //Connections among PhysicalComponents
 connect(source.qOut,tank1.qIn);
 …
 //fulfill relationships
 (source)fulfill(limitInFlow);
 (tank1)fulfill(actuateOutFlow);
 (tank1)fulfill(senseLevel);
 (levelController,actuateOutFlow,
 senseLevel)fulfill(controlOutFlow);
 (limitInFlow,controlOutFlow)
 fulfill(controlLevel);
end ExtendedSystemDesign;

By adopting this approach, the RequirementModel is not
completely decoupled from the PhysicalSystemModel
(this make requirement assertions less flexible and less
reusable) as it knows Public Attributes that are defined in
the PhysicalSystemModel. On the other hand, it allows for
a more immediate exploitation making the ESD model
easier to read by hiding the details of the matching
between the PhysicalSystemModel and the
RequirementModel. Indeed, as it is shown both in Figure
9 and through the code of the ESD, only the fulfill
relationships are visible, while the connection (through

4.4 Exploiting the C Approach

The Approach C is adopted to model the previously
described requirement assertions on the Tank System.
Additionally, the possibility of modeling entities that alter
the intended behavior of components, and consequently of
the system, is taken into account by exploiting tester
entities/components.

In this section, three tester components have been
defined in order to illustrate their use:

• AlterSourceFlow and AlterSourceFlow2 on the
Source component, respectively producing the double
of the liquid in the first case and producing a negative
value of liquid in the second case.

• AlterOut on the Tank component, where the
LimitValue function has been removed from the
behavior of the tank.

In the following, some code fragments describing the
TesterModel and, specifically, the source code of the
AlterSourceFlow and of the AlterOut are reported.

package TesterModel
tester AlterSourceFlow On Source
 parameter Real flowLevel=0.04;
 …
equation
 qOut.lflow=flowLevel;
end AlterSourceFlow;
tester AlterOut On Tank
 …
equation
 actuatorControllerV=-
 flowGain*tActuator.act;
 qOut.lflow = actuatorControllerV;
 tSensor.val = h;
 outFlowArea=-qOut.lflow/flowGain;
end AlterOut;
end TesterModel;

As we can see in the source code below, the link between
PhysicalSystemModel and TesterModel is defined in the
ESD through the keyword supersede. In Figure 9 a
ModelicaML-based notation for such a modeling
approach, introducing both Requirement and Tester
components as well as physical components is depicted.

model ExtendedSystemDesign
 //PhysicalComponentModels
 Tank tank1(area=1);Source source;
 …
 //RequirementComponents
 …
 //TesterComponents
 AlterSourceFlow alterSourceFlow;
 AlterSourceFlow2 alterSourceFlow2;
 AlterOut alterOut;
equation
 //supersede relationships
 (alterSourceFlow,
 alterSourceFlow2)supersede(source);
 (alterOut)supersede(tank1);
 //fulfill relationships

the connect construct) among PhysicalComponentModels
and RequirementAssertions are not part of the ESD.

 …
end ExtendedSystemDesign;

23

It is worth noting that one possible variant of the
Approach C consists in defining the relationships between
a PhysicalComponentModel and a Tester component in
the ESD by using the construct connect, in order to avoid
the exploitation of the On keyword during the definition
of the tester components in the TesterModel. By adopting
this version (similar to the A Approach), the
PhysicalSystemModel will be completely decoupled from
both the RequirementModel and the TesterModel.

Figure 9. Approach C for modeling requirements of the
Tank System.

5. Conclusions and future works
The paper focused on the modeling of requirements in an
equation-based context. In particular, a reference meta-
model for representing System Requirements in terms of
RequirementAssertions has been defined. Then, three
different approaches for the modeling of System
Requirements that adhere to the proposed meta-model,
have been outlined. All of them aim to provide support
for model verification by defining extensions of the
Modelica language, and, one of them also aim to extend
such model verification by supporting the modeling of
system failures and thus allowing to analyze the behavior
of the system in presence of faults.

Finally, the exploitation of the proposed approaches in
a case study concerning a Tank System has allowed to
compare their advantages and disadvantages as well as to
appreciate their effectiveness and usability in the system
modeling phases.

This work is part of an ongoing research project
(MODRIO project – ITEA 2) [10] aiming at developing a
model-based approach for system requirements
verification and fault tree analysis through Modelica
extensions for Requirements modeling and Safety
analysis.

Ongoing research efforts are devoted to improving the
proposed approaches through both their implementation
in OpenModelica [12] and their integration in a full-
fledged Systems Engineering development process [5]
along with an extensive experimentation in the analysis of
systems in different application domains such as
automotive, railway, avionics and energy.

Acknowledgements
This work has been supported by ITEA 2 MODRIO
project. Andrea Tundis has been supported by a grant
funded in the framework of the “POR Calabria FSE
2007/2013”.

References
[1] T. Clark, P. Sammut, and J. Willans. Applied

metamodelling: a foundation for language driven
development (Second Edition), 2008.

[2] R. Cressent, V. Idasiak, F. Kratz, and P. David. Mastering
safety and reliability in a model based process. Proc. of the
Reliability and Maintainability Symposium (RAMS), Lake
Buena Vista (FL, USA), January 2011.

[3] P. Fritzson, Principles of Object-Oriented Modeling and
Simulation with Modelica 2.1, Wiley IEEE Press, 944
pages, February 2004.

[4] P. Fritzson. Integrated UML-Modelica Model-Based
Product Development for Embedded Systems in
OPENPROD. Proc. of the 1st Workshop on Hands-on
Platforms and tools for model-based engineering of
Embedded Systems (Hopes’2010), Paris, June 15, 2010.

[5] A. Garro and A. Tundis. Enhancing the RAMSAS method
for Systems Reliability Analysis through Modelica. Proc.
of the 7th Workshop on Model-Based Product Development
(MODPROD), Linköping (Sweden), 5-6 February, 2013.

[6] A. Garro and A. Tundis. Modeling and Simulation for
System Reliability Analysis: The RAMSAS Method. Proc.
of the 7th IEEE International Conference on System of
Systems Engineering (IEEE SoSE), Genova (Italy), July 16-
19 2012.

[7] L. Grunske and B. Kaiser. Automatic Generation of
Analyzable Failure Propagation Models from Component-
Level Failure Annotations. Proc. of the 5th Int. Conf. on
Quality Software (QSIC), Melbourne (Australia),
September 2005.

[8] H. P. Hoffmann. System Engineering Best Practices with
Rational Solution for Systems and Software Engineering.
February 2011. http://www.ibm.com/.

[9] A. Jardin, D. Bouskela, T. Nguyen, N. Ruel, E. Thomas, R.
Schoenig, S. Loembé and L. Chastanet. Modelling of
System Properties in a Modelica Framework. Proc. of the
8th International Modelica Conference, TU Dresden,
March 20-22, 2011.

[10] ITEA 2 Projects: MODRIO - http://www.itea2.org/.
[11] F. Liang, W. Schamai, O. Rogovchenko, S. Sadeghi, M.

Nyberg and P. Fritzson. Model-based Requirement
Verification: A Case Study. Proc. of the 9th International
Modelica Conference (Modelica'2012), Munich
(Germany), September 3-5, 2012.

[12] OpenModelica - Open Source Modelica Consortium
(OSMC) - https://www.openmodelica.org/.

[13] OpenModelica Project: ModelicaML - A UML Profile for
Modelica. www.openmodelica.org/modelicaml.

[14] W. Schamai, P. Fritzson, C.J.J. Paredis, P. Helle.
ModelicaML Value Bindings for Automated Model
Composition. Proc. of the Symposium on Theory of
Modeling and Simulation (DEV’12), Orlando, FL (USA)
March 26-29, 2012.

[15] W. Schamai, P. Helle, P. Fritzson, and C. Paredis. Virtual
Verification of System Designs against System
Requirements. Proc. of 3rd International Workshop on
Model Based Architecting and Construction of Embedded
Systems (ACES’2010), Oslo (Norway), October 4, 2010.

24

	1. Introduction
	2. A Meta-model for representing System Requirements as RequirementAssertions
	3. Extending the Modelica language for Modeling System Requirements
	3.1 Approach A
	3.2 Approach B
	3.3 Approach C

	4. A case study
	4.1 System Description
	4.2 Exploiting the A Approach
	4.3 Exploiting the B Approach
	4.4 Exploiting the C Approach

	5. Conclusions and future works

