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Abstract 
The modeling of system requirements deals with formally 
expressing constraints and requirements that have an 
impact on the behavior of the system to enable their 
verification through real or simulated experiments. The 
need for models representing system requirements as well 
as for methods and techniques centered on model-based 
approaches able to support the modeling, evaluation, and 
validation of requirements and constraints along with 
their traceability is today greater than ever. In this 
context, this paper proposes a meta-model for modeling 
the requirements of physical systems. Furthermore, 
different approaches for integrating the modeling of 
system requirements in the Modelica language and their 
verification during the simulation are proposed and, then, 
evaluated and compared through a case study. 

Keywords Requirements, Properties, Modeling, 
Assertions, Modelica, Safety, Verification, Validation 

1. Introduction 
In the systems engineering context, although several 
research activities are focused on the system design 
phases, there is still a lack of practices and approaches 
that specifically deal with the analysis, modeling, and 
verification of requirements in an integrated framework. 
One of the main open issues concerns the support 
provided during the design for the verification and 
validation (V&V) of the system under consideration. 
Indeed, it is crucial not only to represent in detail both the 
structural and behavioral design of a system, but also to 
ensure the proper operation of the overall system and of 
each individual component to guarantee their functional 
correctness in compliance with the requirements. 
Moreover in several industrial domains such as nuclear 
plants, medical appliances, avionics, and automotive 
industry, some requirements such as safety requirements 
must be compliant to standard specifications (see IEC 

61508) and norms to allow the commercial release of a 
system. 

In order to add support for verification and validation 
during the design stage of the systems engineering 
process we formalize a set of concepts that will allow us 
to model system requirements, in [9] called properties. In 
the following we will use the term requirement, which is 
defined [9] as an expression that specifies a condition that 
must hold true at given times and places. As a rule, their 
identification and definition is neither a trivial nor a 
unique process, and can significantly depend on the 
reference domain and application context. Similarly, their 
formalization and modeling can vary with respect to the 
objectives to be reached. 

In general, the first step of a systems engineering 
process is concerned with the analysis of informal User 
Requirements (URs). These are typically problem-
oriented statements and they focus on the required 
capabilities. Thus, they need to be converted into 
solution-oriented statements. The System Requirements 
(SRs) are then derived by decomposing the URs into sets 
of basic required functionalities. SRs form the basis for 
the subsequent system functional analysis and design 
synthesis phases [8]. In particular, in the System Design 
phases, SRs are used to define both the structure and the 
behavior of the System under development. Specifically, 
in an equation-based context, the behavior of each system 
component, as well as the behavior of the entire system, is 
represented by a set of equations defined using 
component attributes (such as variables, parameters and 
constants). 

Starting from the SRs and according to the defined 
System Design (SD), additional mechanisms called 
Requirement Assertions can be defined in order to verify 
as well as to trace through the simulation the fulfillment 
of the SRs. Indeed a requirement assertion can be 
associated with a real system, subsystem, equipment or 
component, or with a model of the real system, subsystem 
or component and it defines what the system should 
guarantee, or the validity domain for the behavior of the 
system. In particular, in our context a requirement is 
represented by an assertion that is related to a specific 
physical component and which exploits the attributes of 
the component in order to verify and trace the fulfillment 
of some SRs related to a specific component. It worth to 
notice that while user and system requirements (both 

15



functional and  non-functional) are used in the analysis 
and design phases for the development of the system 
under consideration; formalized requirements as 
requirement assertions are exploited during the 
verification phases for evaluating if the system 
requirements are satisfied by a specific system design 
model. Consequently, an appropriate approach to define 
formalized requirements along with the possibility to 
retrieve information about their status is crucial for the 
overall development process. 

Few works are currently available addressing the 
modeling of requirements which was one of the goals 
addressed in ModelicaML [11] during the OPENPROD 
project [4]. Specifically, our proposal is strongly related 
to: (i) [9] in which the representation of the requirements 
is closely bound and restricted to the 
exploitation/implementation of a software library; (ii) [14, 
15] where the communication processes and evaluation 
mechanisms among requirements, in order to enable the 
propagation of assessments among them, are not properly 
dealt. Furthermore, well-known simulation environments 
exploit assertions to verify system requirements; for 
example, MathWorks Matlab/Simulink provides 
assertions and bound checking blocks as configurable 
components. However, they are able to face only a limited 
set of specific aspects (e.g. zero/nonzero signal, threshold 
values). In this context, our aim is twofold: (i) to develop 
a comprehensive approach for the definition and 
modeling of requirements of a physical system in a clear 
and well-defined way, (ii) to define a mechanism to 
enable their traceability in order to support the 
verification process through simulation. To address these 
issues, a meta-model to represent system requirements 
along with some different solutions to model them are 
described in an equation-based context. On the basis of 
this meta-model, several extensions of the Modelica 
language [3] (an object-oriented modeling language to 
describe physical systems by differential, algebraic and 
discrete equations), to model requirements in a more 
flexible way, are introduced. 

In Section 2 the proposed meta-model is described, in 
Section 3 both its use and its possible integration in the 
Modelica context are illustrated along with some notation 
extensions, in Section 4 a case study for the evaluation of 
the various approaches is presented and discussed 
whereas in Section 5 conclusions are drawn and future 
works outlined. 

2. A Meta-model for representing System 
Requirements as RequirementAssertions 

The concepts required for modeling system requirements 
are clearly identifiable and their representation can be 
generalized. For this purpose we define formal meta 
models [1]. 

Even though the notions of model and meta-model are 
crucial when we talk about representation and modeling, 
often these terms generate confusion, so it is necessary to 
clarify the difference between them and the context for 
the use of each of them. 

Firstly we can define the concept of subject as the main 
thing that we want to think/reason about and on which we 
perform experiments. This usually belongs to the real 
world. To solve a problem we construct a simplified 
representation of the subject, called model, to which 
different experiments can be applied, in order to answer 
questions aimed at the subject. Since a model captures 
only a part of the complete subject, it is possible to define 
many models which represent the same subject but that 
are able to capture different characteristics, aspects, 
variables and parameters. In order to perform reasoning 
on a model it is necessary to know exactly which 
variables are available, furthermore, it is necessary to 
know the structure of the model. Such information can be 
expressed through meta-data by defining a higher 
abstraction level called meta-model. Hence, a meta-model 
is a model that defines the structure of valid models (see 
Figure 1). 

In the following the definition and description of the 
proposed meta-model (see Figure 2) is provided. It is a 
combination of two main parts: the Physical Meta-Model 
(in the left-side) and the Requirement Meta-Model (on the 
right-side). 

 

Figure 1. Meta-model, model and subject abstraction 
levels. 

As previously stated, before defining System 
Requirements, it is necessary to build a representation of 
the physical model. Thus, the meta-data of the Physical 
Meta-Model are used to describe and to represent one 
among all the possible physical models of a specific 
actual system, whereas the meta-data of the Requirement 
Meta-Model are exploited to represent System 
Requirements in terms of requirement assertions by 
defining a possible requirement-model on a specific 
physical model representation. 

Starting from the Physical Meta-Model side, the main 
concept is the Attribute, which represents a characteristic 
(i.e. temperature, pressure, level of liquid, age) of an 
entity (i.e. a system, a sub-system, a component); in the 
proposed meta-model, it is defined by (i) a Name (by 
which it is referred) (ii) a Type (type of value which is 
expected), (iii) a Value (a possible value among all the 
range of values related to a specific Type) and (iv) 
(optionally) a Unit of measure. Each Attribute is 
associated with one specific Variability which in turn can 
be (i) Constant which means that its Value never changes, 
(ii) Variable which means that its Value depends on other 
attributes, (iii) Parameter which means that its Value can 
be properly tuned. Moreover, each Attribute has to specify 
its access level called Visibility which, according to the 
meta-model, could be either Private, if accessible only 
internally to the component in which it has been defined, 
Protected, if accessible by the descendants, or Public, if 
accessible externally. 
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An Attribute can be (i) an AtomicAttribute, which 
means it cannot be further decomposed, (ii) a 
ComplexAttribute, that is, composed by other attributes.  

A ComputationalModel, which could be represented 
through an a Algorithm, a FiniteAutomata (e.g. Timed 
Automata, Hybrid Automata, etc.), a Function, an 
EquationsSet (i.e. a set of Equation concepts), or by their 
combination as well as by Other kinds of computational 
models, defines the behavior of a 
PhysicalComponentModel. An Attribute has to belong at 
least to one ComputationalModel as well as a 
ComputationalModel has to use at least one Attribute. 
One or more PhysicalComponentModels compose a 
PhysicalSystemModel, which in turn is one of the many 
possible models to describe an actual system called 
PhysicalSystem. 

While the meta-data on the left side of the figure is 
used for the description of the physical model, moving to 
the right side of the meta-model, we can see the concepts 
used for the modeling of System Requirements. Among 
these, the main concept is the RequirementAssertion, 
which is used to describe a Requirement of a system. A 
RequirementAssertion can be (i) a 
SimpleRequirementAssertion, that means it doesn’t 
receive any input from any PhysicalComponentModel, (ii) 
a ComplexRequirementAssertion, which is connected 
directly to at least one Attribute and to one 
PhysicalComponentModel; this means that a 
ComplexRequirementAssertion is based on at least a 
PhysicalComponentModel and it is able to receive one or 
more input values coming from several attributes of the 

physical model; moreover, a RequirementAssertion 
(SimpleRequirementAssertion or 
ComplexRequirementAssertion) could be defined in terms 
of other RequirementAssertions whereas on a single 
PhysicalComponentModel, different 
RequirementAssertions can be defined. 

According to the meta-model a RequirementAssertion 
belongs at least to one possible RequirementModel as well 
as a RequirementModel has to define at least one 
RequirementAssertion; each RequirementAssertion being 
characterized by: 

• a Name and a possible Description in a text format by 
using the natural language; 

a RequirementAssertionType which specifies the type of 
the role played by the RequirementAssertion; in 
particular a RequirementAssertion can have (i) a 
Default behavior type: it is allowed only to monitor a 
PhysicalComponentModel without influencing its 
evolution; (ii) a Parameterized behavior type: it is 
able to alter the value of a PhysicalComponentModel 
and influence its evolution (the RquirementAssertion 
has both read and write capabilities); 

• at least two Status in order to represent the status of 
fulfillment of the requirement, which in turn is 
defined in terms of a StatusType and a StatusValue. 
The first concept defines the type of value that a state 
can take (i.e. a Boolean type, a real type, etc.) 
whereas the second one represents the value which is 
related to a specific StatusType (such as True/False 

Figure 2. A meta-model for modeling System Requirements. 
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for a Boolean or NotEvaluated/Satisfied/NotSatisfied 
for a three valued logic, etc.). Each Status could be 
associated to both a Counter counting how many 
times the RequirementAssertion has gone in a specific 
state and a Timestamp in order to register each 
occurrence of the event. Moreover, a status can be 
defined as a DefaultStatus (useful, for example, in the 
initialization phase when none value is still provided 
to the RequirementAssertion). A 
RequirementAssertion has a StatusOfActivation, that 
means it can be Enabled and Disabled in order to 
decide if it takes/doesn’t take part in a specific 
scenario or simulation run. 

• at least one EvaluationPeriod to indicate when the 
RequirementAssertion has to be evaluated according 
to possible PreConditions and PostConditions that 
could be based on temporal values or on values 
coming from Attributes. Moreover for each 
EvaluationPeriod a Metric must be associated. 

• at least a Metric to describe the objective to be 
verified for which the RequirementAssertion has been 
defined (e.g. Mean Time To Failure for the 
Reliability); each metric has to define a way which 
objectively allows its evaluation in terms of Measure 
(e.g. the number of failures in a period of time to 
measure the Mean Time To Failure). Specifically, a 
Measure can be expressed by adopting an appropriate 
ComputationalModel; moreover, one or more 
Patterns could be applied for representing such 
ComputationalModels when a sort of recurrent 
structure occurs (e.g. a threshold pattern, a derivative 
pattern, a delay pattern, etc.). Furthermore, each 
measure should define a RangeOfValue, within the 
Value of the Attribute which is related to, in which it 
is valid. Such RangeOfValue is specified by: (i) a 
LowerBoundThreshold: minimum value of validity in 
the range; (ii) UpperBoundThreshold: maximum 
value of validity in the range; moreover, further 
thresholds as LowerBoundOffSet and 
UpperBoundOffSet can be exploited when the Value 
of a RequirementAssertion is respectively 
below/above the LowerBoundThreshold and 
UpperBoundThreshold for a limited time. 

RequirementAssertions can describe the state and the 
intended behavior [6, 7] of PhysicalComponentModels, 
i.e. the expected behavior for which components are 
designed. Both Physical Meta-Model and Requirement 
Meta-Model are jointly exploited to describe the overall 
model (hereafter called Extended System Design – ESD) 
of an actual system. 

To further clarify the meta-model above described, a 
simple exemplification is provided below, where some of 
the above described concepts are exploited in order to 
define an requirement model upon a physical model in 
compliance with the proposed meta-model. 

The PhysicalSystem under consideration is a Water 
System whose model, i.e. one among all possible 
PhysicalSystemModels, called WaterSystemModel is 
simply composed by a single PhysicalComponentModel 

of a Tank. The Tank is modeled through different 
Attributes such as the current level of liquid levelInTank 
as well as the height of the tank tankHeight (both as a 
Real type and unit=“m”). Such attributes can be accessed 
externally (Public Visibility), whereas other Attributes can 
be used by the descendants of the Tank  (Protected 
Visibility). All those Attributes (both with Public and 
Protected Visibility) are exploited into a 
ComputationalModel which is defined through different 
equations (EquationsSet) in order to model the Behavior 
of the Tank. 

Let us assume to define a RequirementModel on this 
specific PhysicalSystemModel (the above described 
WaterSystemModel), in order to verify the following 
RequirementAssertion of a Tank (hereafter we refer to the 
model of the Tank), whose Description is: “The level of 
liquid in the tank shall never exceed 80% of the tank 
height” and its Name is “LevelOfLiquidInTank”. 
According to the meta-model the status of activation 
(StatusOfActivation) of this  RequirementAssertion is 
enabled (Enabled) for all the simulation time, and its 
evaluation period (EvaluationPeriod) has a duration equal 
to the duration of the simulation run without further 
specific PreConditions or PostConditions. The Status of 
the RequirementAssertion has a StatusType set to 
Boolean, consequently, the allowed status value 
(StatusValue) will range between true and false (or 
satisfied and notSatisfied). 

The fulfillment of this  RequirementAssertion is 
defined by a metric (Metric) based on the current level of 
fluid in the Tank, which is measured (Measure) as a 
percentage according to the maximum height of the tank. 
Consequently, the definition of the  RequirementAssertion 
exploits the levelInTank and tankHeight that are both two 
Public Attributes of the Tank, moreover, an internal 
parameter, equal to 0.8, is used to express the percentage. 
Finally, this Measure is expressed by adopting as 
ComputationalModel a set of equations (EquationsSet). In 
particular, in this case by a single Equation, which is 
defined according to a threshold Pattern (e.g. 
levelInTank<0.8*tankHeight); a fragment of the possible 
Modelica (psedo) code is reported below. 

requirement LevelOfLiquidInTank 
  Real levelInTank(unit="m"); 
  Real tankHeight(unit="m"); 

parameter Real limit (start=0.8); 
equation 
  levelInTank<limit*tankHeight; 
end LevelOfLiquidInTank; 

In the following section some approaches for modeling 
System Requirements through RequirementAssertions, 
based on the presented meta-model, are proposed. 

3. Extending the Modelica language for 
Modeling System Requirements 

In this Section different approaches for modeling system 
requirements and how they can be used to verify the 
intended behavior of the system and validate it through 
simulation are described. All the approaches are equation-
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based and, in particular, based upon the Modelica 
language and ModelicaML (Modelica Modeling 
Language). 

Modelica is a language for equation-based object-
oriented mathematical modeling of physical systems (e.g., 
systems containing mechanical, electrical, electronic, 
hydraulic, thermal, control, electric power components) 
with acausal features, which allows defining models in a 
declarative manner [3]. 

ModelicaML is an UML profile, which is based on the 
SysML/UML profile and reuses its artifacts required for 
system specification. ModelicaML reuses several 
diagrams types from SysML without any extension, 
extends some of them, and also provides several new 
ones. ModelicaML diagrams are grouped into four 
categories: Requirement, Structure, Behavior and 
Simulation [13]. 

Although both Modelica and ModelicaML are 
expressly designed for modeling systems in a coherent 
framework based on an equation approach, they do not 
yet provide concepts to be used in order to represent and 
trace the occurrence of dysfunctional/abnormal behavior 
(such as faults and failures), that is to say, an observable 
deviation from the intended behavior at the system 
boundary [2, 6, 7]. 

In this perspective, the exploitation of the meta-model 
presented in the previous Section can be used to enrich 
both the Modelica language and ModelicaML to provide 
them with the capability of modeling system requirements 
and to enable model checking. In particular, different 
approaches are proposed and discussed in the following 
subsections based on the two main concepts of 
requirement assertion (see Section 2) and fulfill and some 
variants of them. 

3.1 Approach A 

In this approach the formal concepts of requirement and 
fulfill are defined as follows: 

requirement: which is represented by a 
RequirementAssertion able to validate the behavior of 
a specific PhysicalComponentModel which is related 
to, or to validate interactions among different 
PhysicalComponentModels (according to the SRs and 
the SD). 

• fulfill: which expresses the entailment relationship 
between PhysicalComponentModels and a 
requirement, as well as among requirements. 
Moreover, it provides the propagation process of an 
assessment among RequirementAssertions. 

An example model, which illustrates these concepts, is 
shown in Figure 3. In particular, after the declaration of 
the instances of both PhysicalComponentModels and 
RequirementAssertions their relationship is established 
according to the following five connection-rules: 

1. the connections enabled through the connect 
construct among PhysicalComponentModels are 
defined to build the SD of the PhysicalModel; 

2. the connections enabled through the connect 
construct among a PhysicalComponentModel and an  
RequirementAssertion are used to provide outputs 
coming from PhysicalComponentModels in input to  
RequirementAssertions. 

3. the exploitation of the fulfill keyword is used to 
define which instance of an  RequirementAssertion 
has to be satisfied/related from at least one specific 
instance of a PhysicalComponentModel. 

4. the exploitation of the fulfill keyword is used among  
RequirementAssertions to enable the propagation 
mechanisms of assessment among them; 

5. If A1,..,An are RequirementAssertions and C1,..,Cm 
are PhysicalComponentModels, then we can define 
(A2,..,An,C1,..,Cm)fulfill(A1), where A1 is satisfied if 
and only if C1,..,Cm satisfy A1 as well as  A2,..,An 
are all satisfied (fulfill follows the rule of the And 
logic). 

As we can see in Figure 3, the connect construct, which is 
already available in the Modelica language, is used not 
only among PhysicalComponentModels but also between 
a RequirementAssertion and a PhysicalComponentModel. 
Even though the connect construct allows to define 
connections among attributes of two or more components 
in an acausal way [3], in this approach some restrictions 
are defined on it. As an example, the connection is only 
able to provide inputs from a physical component towards 
a RequirementAssertion. The reason for such a restriction 
is to prevent a  RequirementAssertion from providing 
input to a PhysicalComponentModel and consequently 
affecting its behavior. 

 

Figure 3. A verification model based on requirement 
assertion and fulfill. 

3.2 Approach B 

Whilst the above mentioned approach allows to model 
requirements in a simple and intuitive fashion, with the 
help of a minimal set of new concepts (i.e. requirement 
assertion and fulfill), the addition of extra connections 
between requirement assertions and components through 
connect, could make the ESD overly verbose and difficult 
to read from a visual representation point of view, thus 
complicating the maintainability of the source code. 

Therefore, an alternative approach is a variant of the 
previous one in which along with the keyword 
requirement, another concept (and another keyword) 
called On, which is only visible in the source code of a 
RequirementAssertion, is introduced. Similar to the 
extends construct, but with some restrictions on the 
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inherited elements, the On keyword enables a requirement 
to be defined on specific PhysicalComponentModels. 
Such a requirement will inherit the attributes on which it 
will carry out the processing. 

 

Figure 4. Modeling Requirements using the On construct. 

The process to build the ESD follow the five-connection-
rules, which have been described in Section 3.1 except for 
the rule number 2; in this way: 

it allows to avoid the exploitation of extra connect 
(between PhysicalComponentModels and 
RequirementAssertions) in order to provide input 
values coming from constants, parameters or 
variables of physical components towards an 
requirement. Indeed, such relationships are 
established during the definition of the 
RequirementModel through the exploitation of the On 
keyword; 

it allows to avoid of having too many connections into a 
graphical representation, as it is in Figure 4, by also 
reducing the lines of the source code of the Extended 
System Design. 

The concept of fulfill is that explained in the previous 
section.  

3.3 Approach C 

Often, it is necessary to have additional mechanisms for 
generating dysfunctional/abnormal behavior in a physical 
component, so as to assess the consequences on the whole 
system. 

To this end, approach C proposes the possibility of 
altering the values of the components starting from the B 
approach and adding the new notions of tester 
entity/component entity and the supersede keyword. The 
tester entity can be seen as a specific component that is 
defined on a PhysicalComponentModel and which is able 
to generate outputs (e.g. signals, events or values) 
according to specific functions and inject them into the 
PhysicalComponentModel in order to alter its 
intended/nominal behavior (expected values). The 
supersede keyword enables the mechanism to create a 
reference between an instance of a tester entity and an 
instance of a PhysicalComponentModel. In particular, the 
following rules define the semantics of the supersede 
keyword and how to use it: 

1. the exploitation of the supersede keyword is used to 
define which specific instance of a 
PhysicalComponentModel could be compromised by 
which specific instance of a Tester component; 

2. If T1,..,Tn are Tester components and C is a 
PhysicalComponentModel, then we can define 
(T1,..,Tn)supersede(C), where the operation work of 
C could be influenced only by one among the 
T1,..,Tn Tester components (supersede follows the 
rule of the XOr logic). 

RequirementAssertions can monitor the occurrence of 
abnormal/dysfunctional behavior in physical components; 
the fulfill relationship is exploited by the 
RequirementAssertion to check the impact and the 
consequently propagation of possible unexpected values 
in a component on other components (see Figure 5). The 
On keyword enables both RequirementAssertions and 
Tester components to have access directly to the attributes 
of the physical component models on which they are 
defined. 

 

Figure 5. Requirements and Tester component for the 
dysfunctional behavior analysis. 

4. A case study 
In this Section, a case-study is first described and then 
used to evaluate some of the solutions which have been 
proposed in the previous Section; for this purpose, both 
the ModelicaML diagrams and the Modelica code are 
presented; finally, the pros and cons of each solution are 
discussed. 

4.1 System Description 

The possible implementation of the previously presented 
approaches along with the significant reduction of 
programming and implementation efforts to model system 
requirements as well as the increased readability, are 
demonstrated through a typical case study of a Tank 
System. 

The Tank System is composed by four main physical 
components: a Source component, a Tank component, a 
LevelController component and a Sink component. The 
Source component produces a flow of liquid, which is 
taken in input by the Tank component. The Tank, which is 
managed through the LevelController component, 
provides in output a liquid flow according to the control 
law defined by the LevelController. The Sink is the 
component where a part of liquid is sent. 

After an analysis of the URs, the following main SRs 
(and many others) have been identified: 
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• System_Requirement_1: the system has to be 
composed by one Source Component, one Sink 
Component, at least one Tank Component and at least 
one LevelCotroller Component; 

• System_Requirement_2: each tank has to provide one 
port called qIn in order to receive flow from another 
possible Tank Component (or from the Source 
component if it is the first Tank component in the 
chain); 

• System_Requirement_3: each tank has to be 
connected to its own LevelController component; 

• System_Requirement_3_1: each Tank component has 
to provide a port called tSensor in order to provide 
signal to the LevelController component; 

• System_Requirement_4: the Source component has 
to provide a flow port called qOut; 

• System_Requirement_4_1: the liquid flow produced 
by the Source component has to be equal three times 
the initial flow after 150 seconds; 

• System_Requirement_5_1: the liquid flow produced 
by the Source component should be less than 10 m3/s. 

• System_Requirement_5_2: the role of the 
LevelController should be verified by exploiting both 
the h level from the Tank component and the qOut 
flow. 

• System_Requirement_5_3: the validity of both the 
tActuator (Out-flow) and the outFlowArea values 
should be checked according to a specified function; 

• System_Requirement_5_4: both the h level and the 
tSensor should provide the same values; 

• System_Requirement_5_5: the h level coming from 
the Thank should be checked according to a specified 
function. 

Starting from the SRs above described, the SD of the 
Tank System has been defined as shown in Figure 6, 
whereas in the following, a fragment of the Modelica 
code used to implement the Tank System is reported. 

package PhysicalComponentModel 
model Source; 
  LiquidFlow qOut; 
  parameter Real flowLevel=0.02; 
equation 
  qOut.lflow = if time>150 then 
  3*flowLevel else flowLevel; 
end Source; 
model Tank 
  ReadSignal tSensor; 
  ActSignal tActuator; 
  LiquidFlow qIn; 
  LiquidFlow qOut "Connector, flow (m3/s) 
  through output valve"; 
  parameter Real area(unit="m2")=0.5; 
  parameter Real flowGain(unit="m2/s")=  
  0.05; 
  parameter Real minV = 0,maxV = 10; 
  Real actuatorControllerV; 
  Real outFlowArea(unit="m"); 
  Real h(start=0.0, unit="m"); 

equation 
  der(h)=(qIn.lflow-qOut.lflow)/area; 
  actuatorControllerV=flowGain*  
  tActuator.act; 
  qOut.lflow = LimitValue(minV, maxV,  
  actuatorControllerV); 
  tSensor.val=h; 
  outFlowArea=-qOut.lflow/flowGain; 
end Tank; 
… 
end PhysicalComponentModel; 

 

Figure 6. The System Design (SD) of the Tank System. 

Moreover, starting from the SD of the Tank System, the 
following Requirement Assertions have been defined; 
they should be represented and verified during simulation 
in order to ensure the proper operation of the system. In 
the next subsections some of the proposed approaches are 
applied for the modeling of requirements. 

4.2 Exploiting the A Approach 

In this example, starting from the System Requirements 
specified in the previous subsection, a set of 
RequirementAssertions can be defined on the SD of the 
Tank System by exploiting the Approach A; in particular: 

• RequirementAssertion_1: LimitInFlow, which takes 
in input the value of the qOut port of the Source 
component. It is satisfied if the liquid flow produced 
by the Source component is less than a specific 
“maxLevel” (i.e. liquidFlow<=maxLevel, in our case 
maxLevel =10). 

• RequirementAssertion_2: ControlOutFlow, which 
takes in input the h level from the Tank component 
and the qOut flow to validate the role of the 
LevelController; moreover, to be valid it must be 
fulfilled by both the RequirementAssertion_3 and the 
RequirementAssertion_4. 

• RequirementAssertion_3: ActuateOutFlow, which 
takes in input both the tActuator (Out-flow) and the 
outFlowArea, checks if the outFlowArea value is 
proportional at the tActuator signal. 

• RequirementAssertion_4: SenseLevel, which takes in 
input both the h level and the tSensor, checks if the 
sensor output is equals to the h level (i.e. 
lLevel=sensorOuput). 

• RequirementAssertion_5: ControlLevel, which takes 
in input the h level coming from the Tank component, 
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checks if hLevel<9 and hLevel>5; moreover, to fulfill 
the RequirementAssertion_5, both the state of 
RequirementAssertion_1 and of 
RequirementAssertion_2 have to be satisfied. 

Figure 7 shows an example of ModelicaML-based 
notation for the different concepts. In the following, some 
code fragments of the RequirementModel and, in 
particular, the implementation of RequirementAssertion_1 
and of RequirementAssertion_5, introducing the new 
keyword requirement, are reported. 

 

Figure 7. Approach A for modeling requirements of the 
Tank System. 

package RequirementModel 
requirement Requirement1  
  Real liquidFlow; "qOut of Source" 
  parameter Real maxLevel=10; 
equation  
  if liquidFlow<=maxLevel then 
    Status.satisfied; 
    … 
end Requirement1; 
… 
requirement Requirement5 
  Real lLevel;  
  parameter Real Lmin=5, Real Lmax=9; 
equation  
  if lLevel<Lmax and lLevel>Lmin then  
    … 
end Requirement5; 
end RequirementModel; 

In the snippet of code shown subsequently, both the 
PhysicalSystemModel (or SD) and the RequirementModel 
are composed.  

model ExtendedSystemDesign 
  //PhysicalComponentModels  
  Source source; 
  Tank tank1(area=1); 
  … 
  //RequirementComponents 
  Requirement1 limitInFlow; 
  … 
  Requirement5 controlLevel; 
equation 
  //Connection among PhysicalComponents 
  connect(source.qOut,tank1.qIn); 
  … 

  //fulfill connections 
  (source)fulfill(limitInFlow); 
  (tank1)fulfill(actuateOutFlow); 
  (tank1)fulfill(senseLevel); 
  (limitInFlow,controlOutFlow) 
  fulfill(controlLevel); 
  (levelController,actuateOutFlow, 
  senseLevel)fulfill(controlOutFlow); 
  //connection between physical 
  //components and requirements 
  connect(tank1.h,controlLevel.L); 
  connect(tank1.h,senseLevel.lLevel); 
  connect(source.qOut,limitInFlow. 
  liquidFlow); 
  … 

end ExtendedSystemDesign; 

By adopting this approach, the RequirementModel is 
completely decoupled from the PhysicalSystemModel of 
the system under consideration. Indeed, a requirement 
model only requires input values of specific types, 
regardless of the type and the number of components that 
the values come from. This means that a requirement 
model could be re-used to validate physical components 
belonging to different SD, although the semantics of such 
physical components could be completely different. The 
link between the RequirementModel and 
PhysicalSystemModel, occurs only in the ESD, through 
the fulfill relationships which govern the assignment of a 
component to a requirement, while the inputs to be sent to 
the requirement are provided by the connect construct. 

4.3 Exploiting the B Approach 

In this example the Approach B is exploited to represent 
the same Tank System including the 
RequirementAssertions described in the previous 
subsection. Figure 8 shows the related ModelicaML-
based notation of such a modeling approach. As we can 
see, the diagram is less crowded with connections and 
consequently easier to read. 

 
Figure 8. Approach B for modeling requirements of the 
Tank System 

As it is shown in the next code fragments illustrating the 
source code of Requirement_Assertion_1 and of 
Requirement_Assertion_5, both the keyword requirement 
along with the On keyword are combined for the 
definition of each requirement. Specifically, starting from 
the Source model, Requirement1 is defined on it; this 
means that Requirement1 is able to use (read-only) all the 
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Public attributes, which have been defined by the Source 
model. In particular, the qOut attribute of the Source 
model can be used by Requirement1 without further 
referencing or connections with the Source model. 

package RequirementModel 
requirement Requirement1 On Source  
  parameter Real maxLevel=10; 
equation  
  if Source.qOut<=maxLevel then 
    Status.satisfied; 
  else 
    Status.notSatisfied; 
  end if; 
… 
end Requirement1; 
… 
requirement Requirement5 On Tank  
  parameter Real Lmin=5, Lmax=9; 
equation  
  if Tank.h<Lmax and Tank.h>Lmin then 
  … 
end Requirement5; 
end RequirementModel; 

As for the previous example a fragment of source code 
combining both the PhysicalSystemModel and the 
RequirementModel is presented. As we can see, no 
connections which use the connect construct between a 
PhysicalComponentModel and a requirement component, 
are present in the source code of the ESD model. 

model ExtendedSystemDesign  
  //PhysicalComponentModels  
  Tank tank1(area=1); 
  Sink sink1; 
  … 
  //RequirementComponents 
  Requirement1 limitInFlow; 
  … 
  Requirement5 controlLevel; 
equation 
  //Connections among PhysicalComponents 
  connect(source.qOut,tank1.qIn); 
  … 
  //fulfill relationships 
  (source)fulfill(limitInFlow); 
  (tank1)fulfill(actuateOutFlow); 
  (tank1)fulfill(senseLevel); 
  (levelController,actuateOutFlow, 
  senseLevel)fulfill(controlOutFlow); 
  (limitInFlow,controlOutFlow) 
  fulfill(controlLevel); 
end ExtendedSystemDesign; 

By adopting this approach, the RequirementModel is not 
completely decoupled from the PhysicalSystemModel 
(this make requirement assertions less flexible and less 
reusable) as it knows Public Attributes that are defined in 
the PhysicalSystemModel. On the other hand, it allows for 
a more immediate exploitation making the ESD model 
easier to read by hiding the details of the matching 
between the PhysicalSystemModel and the 
RequirementModel. Indeed, as it is shown both in Figure 
9 and through the code of the ESD, only the fulfill 
relationships are visible, while the connection (through 

4.4 Exploiting the C Approach 

The Approach C is adopted to model the previously 
described requirement assertions on the Tank System. 
Additionally, the possibility of modeling entities that alter 
the intended behavior of components, and consequently of 
the system, is taken into account by exploiting tester 
entities/components. 

In this section, three tester components have been 
defined in order to illustrate their use: 

• AlterSourceFlow and AlterSourceFlow2 on the 
Source component, respectively producing the double 
of the liquid in the first case and producing a negative 
value of liquid in the second case. 

•  AlterOut on the Tank component, where the 
LimitValue function has been removed from the 
behavior of the tank. 

In the following, some code fragments describing the 
TesterModel and, specifically, the source code of the 
AlterSourceFlow and of the AlterOut are reported. 

package TesterModel 
tester AlterSourceFlow On Source 
  parameter Real flowLevel=0.04; 
  … 
equation 
  qOut.lflow=flowLevel; 
end AlterSourceFlow; 
tester AlterOut On Tank 
  … 
equation 
  actuatorControllerV=- 
  flowGain*tActuator.act; 
  qOut.lflow = actuatorControllerV; 
  tSensor.val = h; 
  outFlowArea=-qOut.lflow/flowGain; 
end AlterOut; 
end TesterModel; 

As we can see in the source code below, the link between 
PhysicalSystemModel and TesterModel is defined in the 
ESD through the keyword supersede. In Figure 9 a 
ModelicaML-based notation for such a modeling 
approach, introducing both Requirement and Tester 
components as well as physical components is depicted. 

model ExtendedSystemDesign 
  //PhysicalComponentModels 
  Tank tank1(area=1);Source source; 
  … 
  //RequirementComponents 
  … 
  //TesterComponents 
  AlterSourceFlow alterSourceFlow; 
  AlterSourceFlow2 alterSourceFlow2; 
  AlterOut alterOut; 
equation 
  //supersede relationships 
  (alterSourceFlow, 
  alterSourceFlow2)supersede(source); 
  (alterOut)supersede(tank1); 
  //fulfill relationships 

the connect construct) among PhysicalComponentModels 
and RequirementAssertions are not part of the ESD. 

  … 
end ExtendedSystemDesign; 
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It is worth noting that one possible variant of the 
Approach C consists in defining the relationships between 
a PhysicalComponentModel and a Tester component in 
the ESD by using the construct connect, in order to avoid 
the exploitation of the On keyword during the definition 
of the tester components in the TesterModel. By adopting 
this version (similar to the A Approach), the 
PhysicalSystemModel will be completely decoupled from 
both the RequirementModel and the TesterModel. 

 
Figure 9. Approach C for modeling requirements of the 
Tank System. 

5. Conclusions and future works 
The paper focused on the modeling of requirements in an 
equation-based context. In particular, a reference meta-
model for representing System Requirements in terms of 
RequirementAssertions has been defined. Then, three 
different approaches for the modeling of System 
Requirements that adhere to the proposed meta-model, 
have been outlined. All of them aim to provide support 
for model verification by defining extensions of the 
Modelica language, and, one of them also aim to extend 
such model verification by supporting the modeling of 
system failures and thus allowing to analyze the behavior 
of the system in presence of faults. 

Finally, the exploitation of the proposed approaches in 
a case study concerning a Tank System has allowed to 
compare their advantages and disadvantages as well as to 
appreciate their effectiveness and usability in the system 
modeling phases. 

This work is part of an ongoing research project 
(MODRIO project – ITEA 2) [10] aiming at developing a 
model-based approach for system requirements 
verification and fault tree analysis through Modelica 
extensions for Requirements modeling and Safety 
analysis. 

Ongoing research efforts are devoted to improving the 
proposed approaches through both their implementation 
in OpenModelica [12] and their integration in a full-
fledged Systems Engineering development process [5] 
along with an extensive experimentation in the analysis of 
systems in different application domains such as 
automotive, railway, avionics and energy. 
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