

5th International Workshop on Equation-Based Object-Oriented Modeling
Languages and Tools, 19 April, 2013, University of Nottingham, UK.
Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp_home/index.en.aspx?issue=084

EOOLT 2013 website:
http://www.eoolt.org/2013/

Using Artificial States in Modeling Dynamic Systems:
Turning Malpractice into Good Practice

Dirk Zimmer
German Aerospace Center (DLR), Institute of System Dynamics and Control, Germany

dirk.zimmer@dlr.de

Abstract
This paper analyzes the current use of artificial states in
modeling practice and proposes a new form of equations
for the purpose of modeling dynamic systems. These
balance dynamics equations are used to formulate
dynamic processes that help to find the solution of non-
linear systems of equations.
Keywords: artificial states, continuation methods,
language design.

1. Introduction
Any kind of formal modeling involves abstraction. The
modeler has to study the given system and decide which
parts are relevant and which are not. Typically a system
contains many dynamic processes where only a small
subset is of interest. For instance, in rigid body dynamics,
the modeler chooses to ignore the elasticity of the applied
material. In power-electronics with ideal switches, the
modeler chooses to ignore the complicated switching
behavior.

In an equation-based modeling language, the modeler
will then provide equations for both parts. The dynamic
processes that are regarded as relevant will be represented
by differential equations. For other processes idealizations
are provided in form of algebraic equation systems.
Optimally, the resulting set of differential-algebraic
equations has a set of state variables that precisely
matches the dynamics of interest. In real modeling
practice, this is infeasible for many cases.

In many applications, the modeler is forced to extend
the dynamics of the system significantly beyond his area
of interest. The reason for this aggravation is that
otherwise the systems of non-linear algebraic equations
resulting from the idealization of dynamic processes get
too complex to be reliably solved by a general simulation
engine. In order to avoid this, the modeler counteracts by
including more state-variables in his system than he
actually intends and thereby breaking the algebraic

equation systems down. Consequently, these state
variables are denoted as artificial since the dynamics of
them are actually of no interest. They have been
artificially introduced in order to enable a better
computational realization of the simulation code.

This method of artificial states represents common
modeling practice. It is applied in many different ways
and comes along in many disguises. In mechanics, rigid
detents get replaced by stiff spring-damper constructs. In
electrics, micro capacitances or leakage currents are used
without original intent. In bondgraphs, small-valued C or
I elements are being added. And in this paper, we present
two further examples that belong to the domains of
thermodynamics and microeconomics.

Although the use of artificial states is common
practice, it is not regarded as good practice. Instead it is
often denounced as malpractice or as method of last resort
that shall only be applied if all other potential remedies
have failed. This is because of the significant
disadvantages this method typically incorporates.

Since the artificial states mostly express dynamic
processes whose time scale is orders of magnitudes lower
than the time scale of actual interest, the system becomes
very stiff. This requires the use of complex ODE-solvers
for stiff systems, reduces simulation speed, and often
prevents real-time capability of the simulation code.
Furthermore, modeling the processes attached to artificial
states requires parameters that are mostly of no interest or
that cannot be retrieved in a meaningful way. This results
in so-called fudge parameters whose values are arbitrarily
stipulated but not based on any real data. Instead, the
determination of these parameter values represents mostly
a trade-off between the unwanted degree of stiffness and
the unwanted loss of precision: a true choice between the
devil and the deep blue sea.

Hence it is easy to understand why the use of artificial
states seems strongly objectionable. The more rewarding
question is to ask why this method is still being so
frequently applied and why the recent progress in general
M&S frameworks has not eradicated the need for this
method. Why do modelers use a method from that they
know it is bad? What forces them to use a method of last
resort? And what is to say about all the other resorts?

This paper examines these questions and it will show
that the method of artificial states is not bad per se. It is
actually quite clever, a smart thing to do in many
occasions, and, when conducted carefully, provides
valuable insight into the modeled system. What is wrong

77

about it is the way modelers are forced to apply this
method in today´s M&S frameworks. Hence, we will
suggest new constructs for modeling languages and new
computational processing schemes for simulation engines.
With these new tools at hand, the malpractice of artificial
states will be turned into good practice.

But first let us look at some examples to expose the
current dilemma.

2. Using Artificial States in Modeling
Practice

In this section, we demonstrate the practical use of
artificial states by the means of two examples. Both are
realistic examples in the sense that they demonstrate the
kind of problems that a modeler is typically confronted
with in equation-based modeling languages. Both
examples demonstrate the problems that forced the
modeler to use artificial states although being initially
reluctant.

2.1 Example 1: Energy Market Model
In the first example, principles from microeconomics are
used for the management of energy flows [10]. The idea
is the following: based on a market price each generator
produces a certain amount of power and each load
consumes a certain amount of power. The corresponding
cost curves of generators and consumers are continuous
monotonic increasing (Figure 1). The market price is then
simple determined as the intersection between the two
cost curves (Figure 2) for generators and consumers. In
this way, a market model can be used to compute the
power flow in an energy network.

Figure 1: Cost curves

So far, so simple – but when we approach more
sophisticated applications, things become a bit more
difficult. Figure 3 presents the model diagram of a
combined power generator whose outputs are electric and
thermal energy. Up to 60% of the thermal energy can be
converted into electricity.

Figure 2: Equilibrium price

To this end, the power is split from the source (red
component) into two sub-markets by the fixed split:
40% - 60%. Connected to this market are the consumers
(blue). The thermal market, however, can take energy
from the electric market but not vice versa. This is
modeled by a one-way component that acts like an
electric diode. The energy needs to be converted before
reaching its consumer, hence the conversion element. The
thermal energy can be wasted if inevitable, hence the
waste element.

Figure 3: Model diagram of a combined power

generator
The problem we get here is that we have two different
market prices: one for electric energy and one for thermal
energy. However these markets are not independent but
coupled by algebraic equations. For instance, the model of
the split component states that price at the generator is the
weighted mean of the two consumer prices.

vin = vout1 ∙ R + vout2 ∙ (1-R)

Hence we have a non-linear system with two iteration
variables, namely the two prices of the electric and
thermal market. This is certainly not exceptional and
poses often no problems at all. However, in this particular
case, it does. The cost-curves for the generator, the
consumers, and the one-way limiter as well as the waste
element all contain very flat and very steep gradients.
This makes iterative, gradient-based solvers (such as
Newton’s method) difficult to apply since the
convergence area is often very small. Finding the initial

Load 1

Load 2

Load 3

Source 2

Source 1

Power p [W]

Power p [W]

Power p [W]

Power p [W]

Power p [W]

0

0

0

0

0 Price v [$/W]

Price v [$/W]

Price v [$/W]

Price v [$/W]

Price v [$/W]

Price v [$/W]

Power p [W]

Equilibrium

Negated sum of loads
Sum of sources

0

heat

T

split

0.4

CR
ss

electricity

T

waste

$ $

oneWay

conversion

78

solution requires a very good guess and steps of time-
integration have to be small in order to stay within the
area of convergence.

In order to approach a market solution in a more robust
way, we provide a price controller. With this element, it is
possible to find the solution in robust way by approaching
steady state. Instead of having to determine the market
price v directly such that the balance equation of power

p1 + p2 + p3 = 0

holds, we make the more relaxed statement:

p1 + p2 + p3 + pc = 0

and control the price v by the lack or excess of power

represented in pc.
The corresponding controller is a very simple model

that introduces an artificial state. It may compensate for
any lack or excess of power pc. The controller increases
the market price in case of a power outflow (pc > 0) due to
a lack of power and decreases the price in case of a power
inflow (pc < 0) due to excess of power.

dv/dt ∙ T = pc

where T is an arbitrary time constant. In the diagram of

Figure 3, it is depicted as grey “$” placed in a circle. We
can use such a price controller, because we know that the
cost-functions are monotonic increasing. Any price
advance will lower the demand and increase the provision
of power and vice versa. This knowledge is not available
to a non-linear solver but can be incorporated into the
model in this way.

The incorporated disadvantages are a stiff system and
that the simulation results are polluted by the dynamics of
the price controller.

2.2 Exampe 2: Environmental Control System
The second example represents the modeling of a three-
wheel bootstrap circuit from the environmental control
system of classic aircraft architectures [7]. Here, air that is
tapped from the aircrafts turbine (bleed air) is used to
pressurize the cabin. Since the bleed air is hot (ca. 220°C)
and at high pressure (ca. 2.5bar) [6], it needs to be cooled
down and expanded before it enters the cabin. The idea is
to use the energy gained in this expansion process to
power a compressor and a fan for the ram air channel that
is being used as cooling element. With those two devices
joining the drive shaft of the expansion turbine, a more
efficient cooling device can be designed.

Let us trace the path of the bleed air in the
corresponding model diagram of Figure 4. The bleed air
first passes the primary heat exchanger (PHX) for cooling
and is then compressed before passing the main heat
exchanger (MHX). Before entering the turbine for
expansion, the water content needs to be extracted. Hence
the bleed air passes a condenser and later on a reheater.
These are both heat exchangers where the bleed air is

actually interacting with itself at different stages in the
circuit. Finally, after expansion, the air is sent to the
mixer where it is being used to pressurize the cabin.

Figure 4: Model diagram of an environmental control
system

In this model, we are only interested in the equilibrium
point and not in any dynamics of the system at all. In the
equilibrium point, the energy consumed by compressor
and fan will balance the energy gain of the turbine.
Furthermore all losses and gains of thermal energy in the
heat exchangers cancel each other out. In the model, this
equilibrium point is described by a set of pure algebraic
equations. Due to the nature of thermal processes many of
these equations are non-linear. The connections between
the components in Figure 4 form many loops. This
indicates that many of these algebraic equations are
tightly coupled with each other1. And indeed when we
have implemented the model in the modeling language
Modelica, there results a very difficult non-linear system
with more than 200 equations. Corresponding M&S
frameworks like Dymola [3] are able to compress the
system but even then a non-linear system remains with
more than 40 iteration variables.

Solving such a complex system of equations in a robust
manner is a very difficult task. But even when possible, a
large system with more than 40 iteration variables
significantly slows down the simulation engine as soon as
the ECS becomes part of other dynamic processes.

For these reasons, artificial states have been used to
tear the algebraic equations system apart. In total 5 state
variables were sufficient to break down the non-linear
equation system into individual non-linear equations that
can be solved one after another.

1 more technically: they represent a large block in the block
lower triangular form of the equation system.

extraction

injection

turbine

co
m

pr
e?

PH
X

M
H

X reheater

condenser

BleedAi?

RamAirI?

toMixer

RamAir?

fan

ps
eu

do
I?

79

One of the state variables represents the velocity of the
drive-shaft. A small inertia has been assigned to this shaft
and hence any difference between turbine and compressor
power does not need to be immediately balanced. Instead
the difference can be used to accelerate or decelerate the
drive shaft, as this happens in reality too. The precise
value of the inertia I is not important here since we are not
interested in the corresponding dynamics.

The inertia of the drive shaft introduces the following
differential equation:

τ = der(ω)∙I
The variable ω represents the angular velocity of the drive
shaft and is now an artificial state of the system. Its
product with the torque τ determines the lack or excess of
power that is (de-)accelerating the drive shaft.

The other four states are not mechanical inertias but
thermal inertias. Although the physical domain is
different, the applied methodology is identical.

By using artificial states, the model can be solved
robustly and is open for further extension as for instance
its inclusion into a complete aircraft energy system
model. The amount of stiffness that is added to the system
depends on the fudge parameters. However, for many
practical applications, solving the stiff system is still
faster than solving the original system simply because
there is no complicated non-linear system with over 40
iteration variables to be solved.

3. Review of the method of artificial states
Let us review the methodology that can be extracted from
the two examples. In both cases, the modeler generated a
non-linear system of equations that turned out to be very
difficult to solve. It is inappropriate to blame the
numerical solvers for this. Without any further
information no one can guarantee that any potential solver
will find the correct solution2. Demanding for a better
solver method to solve all of your problems is a pie in the
sky.

It is important to understand that these non-linear
system of equations result from a process of idealization.
In example 1, we requested for a balance between power
consumption and generation. The price had to be
determined in such a way that the balance is met. Closer
to reality is to regard the price determined by
continuously ongoing negotiation. A lack of power leads
to a higher prices and an excess of demand leads to lower
prices. The balance equation simply idealizes this
negotiation process by reducing it to an instant and letting
it take immediate effect.

Also in example 2, balance equations are a source of
idealization. The balance of power along the drive shaft
ignores the inertia of the shaft and that it takes time to
establish this balance. In many, many cases non-linear
systems of equations result from the idealization of such
balance dynamics.

2 Presuming that there is exactly one solution or that there are
multiple solutions of which any of them can be regarded as
correct.

What happens now is particularly interesting. After the
modeler has realized that he has gone too far and that his
idealizations have created non-linear systems too difficult
to solve, he reverts some of his idealization against his
original intent. In example 1, the continuous process of
negotiation has been reintroduced by a price controller. In
example 2, mechanic and thermal inertia have been added
to the system although the corresponding dynamics are of
no interest.

The modeler understands that the system cannot be
solved without some background knowledge that is
inaccessible to the solver. It is inaccessible because it got
lost in the process of idealization. For instance, the
modeler knows the effects of price advance and price
reduction and how to use that knowledge to derive a
market solution. He also knows that inertias in physical
systems help to balance the system.

But how can a modeler convey such valuable
background knowledge into a general M&S framework?
He sees no other way than to introduce artificial dynamics
in his system and hence the method of artificial states
becomes the weapon of choice. In this way, he abuses the
time-integration of the simulator as a solver for his non-
linear systems of equations.

When using artificial states, the modeler evidently
makes a distinction between
• Dynamic processes that are relevant of the system

under study.
• Dynamic processes that describe how to solve a non-

linear system of equations.
Once we have become aware of this distinction, the
problematic point about the use of artificial states
becomes evident: The modeler makes this distinction but
the M&S framework does not. It is not the modeler who
wants to mix up things. He is forced to mix up things
because the M&S frameworks do not provide adequate
means to make a proper distinction between these two
descriptions of dynamic processes.

The aim of a good modeling language should be to
grasp the modeler’s knowledge in a formal, clear and
unambiguous way. So when the modeler knows which
dynamics lead to the solution of a non-linear system of
equations, any modeling language should encourage him
to include this knowledge into his models in a proper
form. After all, this represents valuable knowledge that
can only be beneficial for the subsequent processes of
code generation and simulation.

Hence the next chapter suggests a way, how such
knowledge can be conveniently incorporated in a
modeling language. It turns out to be surprisingly simple
and intuitive.

80

4. Balance dynamics equations: Turning
implicit idealization into explicit
idealization

In the previous section, we stated that the idealization of
balance dynamics is a very frequent source of non-linear
system of equations. Let us therefore review the equations
of the price controller from Example 1 that represent
exactly one such example. First we had the desired ideal
form for the balance of power flows:

p1 + p2 + p3 = 0

In this case, the market price v has to be determined by a
non-linear system of equations. Because of this, we
relaxed the balance equation by introducing pc and
determined (or controlled) the price by means of a
differential equation:

p1 + p2 + p3 + pc = 0

dv/dt ∙ T = pc

We can derive the ideal form out of the balance dynamics
by assuming a steady-state scenario and setting the
derivative to zero. Furthermore, we assume that this
steady state is continuously maintained and hence that the
corresponding balance dynamics take instantaneous
effect. This is like stating that the time constant is
approaching zero.

This helps to understand the process of idealization and
we can see that there are two major implications behind
this idealization process:
1. The balance dynamics take place in no time; so they

are regarded as infinitely fast.
2. The balance dynamics finally reach a stable steady

state.
Since this pattern of idealization is so common in so many
applications, it seems meaningful to enable its explicit
formulation in a modeling language. To this end, a simple
operator suffices.

Most modeling languages feature an operator for the
time-derivative such as:

der(v) ∙ T = pc

In strong resemblance to this operator, we can define and
use a balance operator instead:

balance(v) = pc

The operator balance(v) simply replaces the term
der(v) ∙ T and implies the two idealizations der(v) = 0 and
T 0. The fudge parameter T has consequently gone lost.

With this operator we have introduced a new kind of
equation. We call them balance dynamics equations. They
enable us to state the implicit assumption of the idealized
algebraic equation in explicit form. In this way, you get
the best of both worlds: you can interpret them as
algebraic constraints in the simulation context but you can
also interpret them as dynamic process in the solver
context. How to precisely do that is content of the next
section.

5. Handling balance dynamics equations in
a simulation environment

In the following small example, we find an algebraic
equation, a differential equation, and a balance dynamics
equation:

der(x) = z
balance(y) = p(y)-x

z = sin(y)

The balance equation now states two things: a non-linear
equations system (0 = p(y)-x) and a dynamic process how
to solve this system (der(y) = p(y)-x) based on the
modeler’s knowledge that p is a monotonic increasing
function.

Consequently, these model equations can now be
transformed in two different ways:

der(x) = z
0 = p(y)-x
z = sin(y)

x = const
der(y) = p(y)-x

z = sin(y)

The left version represents the simulation dynamics, the
dynamics of relevance for simulation; the right version
represents the solver dynamics, the dynamics needed to
solve the non-linear system of equations. This solver
dynamics is formulated as sub-simulation (a simulation
nested within the main simulation) hence the states of the
actual simulation (here: x) are held constant. There
remains the question how to take use of such a sub-
simulation.

The idea is of course that in case we fail to solve the
non-linear equation (here: 0 = p(y)-x) directly, we use the
sub-simulation on the differential equation (here: der(y) =
p(y) – x) to get to the area of local convergence. But
before we pursue this idea any further, let us highlight
another benefit of balance dynamics equations. Balance
dynamics equations do not only help solving non-linear
equations by getting to the area of local convergence but
they also provide information that helps to solve the
actual system more efficiently once you are in this area.

Whenever an iterative numerical solver is applied to a
non-linear system of equations, we need to determine a
set of suitable iteration variables. These iteration variables
are also often denoted as tearing variables since they are
used to tear the algebraic loops apart and generate
residual values instead. Choosing such iteration variables
is a difficult task where many constraints have to be
regarded [11]. This led to the choice of over 40 iteration
variables for the ECS system in example 2.

Balance dynamics equations provide an excellent
indication which variables to choose as iteration variables.
Since they are assigned to a state-variable in the
corresponding sub-simulation, this state variable must
also be a suitable iteration variable. In this way, the
number of iteration variables (and thereby the size) can be
significantly reduced. For instance, in Example 2, the
number of iteration variables can be reduced from over 40
to 5, leading to a much more efficient simulation.

This coincidence of iteration variables for the direct
solution with the state variables for sub-simulation

81

indicates that these two tasks are actually closely related.
Remember, the balance equation

balance(x) = f(x)

offers us two different ways to get to a solution. Either we
solve the equation 0 = f(x) directly or we approach the
steady state by a sub-simulation on the differential
equation der(x) = f(x). On the first look, this looks like two
separate tasks. However, let us analyze how we would
perform such a sub-simulation in practice.

After all, this is a special case: we do not perform a
usual simulation; we want to perform a simulation for the
sole purpose to approach the steady state with the time3
t → ∞. Which integration method would we choose for
that?

Since the differential equation der(x) = f(x) is supposed
to describe a stable system, an implicit method is a strong
favorite. Any explicit integration method would be
limited in its step-size in order to maintain stability and
approaching infinity with steps of finite width is an
unpromising endeavor.

Since we do not care about the precise trajectory
leading to the steady state and since the steady state
solution itself is insensitive to the local integration error,
there is no reason to choose any higher-order method.
Order 1 is completely sufficient.

So our method of choice would be to perform
Backward Euler with as large steps as possible. Hence, let
us look at one integration step of this method going from t
to t+h:

xt+h = xt + h∙der(xt+h)

or in our current example:

xt+h = xt + h∙f(xt+h)

Being an implicit method, we have to solve the system of
equations: 0 = g(xt+h) with g(xt+h) being defined as:

g(xt+h) = xt - xt+h + h∙f(xt+h)

Evidently for h → ∞, solving g(xt+h) becomes equivalent
to solving f(x) directly. Now it becomes clear how the
solver dynamics can support us to find the solution of f(x).
Instead of solving the system f(x), we can solve g(x) and
in this way, we have won one important degree of
freedom: we can choose h.

In this way, we have transformed the problem into a
numerical continuation problem [1]. In general, a
continuation problem results from transforming a function
F(x) to F’(x,λ) with λ ∈ [0,1] where F’(x,1) = F(x) and F’(x,0)
is easy to solve. Many solutions methods have been
developed for this kind of problem and they are already
applied by many M&S Frameworks, mostly to solve
initialization problems in a more robust way [9] for
instance by using homotopy [8].

3 Please note, the time t does not represent the main simulation
time here but the time of the nested sub-simulation. The
complete time-span of the sub-simulation represents only one
instant in the main simulation.

To use numerical continuation solvers not only for
initialization problems but also during simulation is also
not a completely new idea. Artificial time integration is
not uncommon to find solutions for PDEs [2]. The main
difference to classic continuation problem in our case is
that is not bounded by 1 but is free to go to infinity.
Hence we have to adapt the continuation solver. The
following paragraph sketches an algorithm that is a
variant of the simplest kind of numerical continuation: the
natural parameter continuation where h is our
continuation parameter.

In case h is too large and our guess value for xt+h is
outside the convergence area, we can choose h small
enough to be located in the convergence area again. And
with each solution of g(x), we step a little closer to the
final solution of f(x). In this way, we have found a robust
way to solve our non-linear system of equations. Figure 5
depicts the corresponding algorithm of the balance
dynamics solver.

Figure 5: Algorithm for the balance dynamics solver
This algorithm becomes part of the main simulation loop
and replaces the former direct solver for
0 = f(x). It is hence performed at each integration step of
the main simulation task. It is not necessarily slower than
the direct solver for f(x). Having a high initial value for
the sub-simulation step-size h and a good guess value for
xt+h, not many more iterations would be required than for
a direct solution of 0 = f(x). A call to the direct solver is
thus not required.

82

The difference occurs when good guess values for xt+h are
not available. In a normal setup, the integration step-size
of the main simulation loop would be reduced in order to
reobtain a good guess. Using our balance dynamics
solver, this is unlikely to be necessary. More iterations
would be needed in the solver to get the solution but the
step-size of the main simulation loop can be maintained.
And of course, finding the initial solution is also much
simpler.

Without balance dynamics equations, the modeler has
the choice of either creating a stiff system or a difficult
non-linear system of equations. In both cases, he imposes
severe limitations on the main integration step size and
thereby creates a global damage even when only a small
subsystem is actually concerned. With balance dynamics
equations and a corresponding solver, the damage is kept
local.

A final remark with respect to the algorithm in
Figure 5: please note that the step-size control of h is not
equivalent to classic step-size control in ODE solvers. It is
based solely on the matter of convergence not on the
matter of local integration error and hence can be
performed much more aggressively.

6. Small application example
To prove the feasibility of this approach, we provide a
small example. The following DAE

dx/dt = y

dy/dt = -0.1∙a – 0.4∙y
s(a) = 10∙x

requires the solution of an expression containing the non-
linear function s(a) displayed in Figure 6:

s(a) = if a < -1 then a/4 – 3/4

else if a > 1 then a/4 + 3/4
else a

with its derivative to be defined as

s(a) = if a < -1 then 1/4

else if a > 1 then 1/4
else 1

Figure 6: The piecewise linear function s(a)

The convergence area of solving s(a)=0 with respect to
Newton’s method is exactly [-1,1]. Although the
convergence area is strictly limited, the solution can
easily be found if one knows that s(a) is strictly
monotonic increasing. We can incorporate this knowledge
in form of a balance dynamics equation:

dx/dt = y
dy/dt = -0.1∙a – 0.4∙y

balance(a) = 10∙x – s(a)

This DAE is now transformed into two forms for
numerical ODE solvers.

• For the main ODE solver:

dx/dt = y
dy/dt = -0.1∙a – 0.4∙y

0 = 10∙x – s(a)

• For the continuation solver:

x = const
der(a) = 10∙x – s(a)

The main simulation is performed with Forward Euler and
a step width of 0.1s for 100s. Without the continuation
solver, the non-linear system of equations cannot be
solved when the state variable x enters the range of
[-0.1,0.1]. A step-size of smaller than 0.01s has to be
taken in order to practically ensure the solvability of the
system.

The continuation solver has been realized according to
the algorithm sketched in Figure 5 and can robustly solve
this system of equations. Figure 7 shows the simulation
result. The step-size of the main-simulation loop is not
impaired by the non-linear system anymore.

Figure 7: Simulation result showing the state x

Of course, this is a very small and simple example but it
demonstrates that the basic idea works. For more mature
implementation, we need to examine a number of
interesting questions:

-5 -4 -3 -2 -1 0 1 2 3 4 5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

a

s(
a)

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1

time [s]

x

83

• How to optimally control the step-width h of the
sub-simulation?

• How to provide suitable initial guesses of this
step-width?

• When to stop sub-simulation when convergence
is not reached?

• How should the step-size control of the main-
simulation loop be controlled w.r.t to the
convergence speed of the continuation solver?

• etc…

In this test-implementation, for instance, the initial step
width h was chosen to be three times the minimum step-
width that was required for the solution of the last step
from the main simulation. This ensures that the initial
value of h is relatively close to a prior successful
continuation step while enabling a geometric increase of h
for the case the continuation solver is actually not needed.

Figure 8 plots the number of times the function s(a) is
being evaluated by the continuation solver in order to
compute a new step or to check for convergence. Each
value in the plot represents one time-step of the main
simulation loop.

Figure 8: Number of function evaluations

During the first half of the simulation, the system
oscillates with high amplitude. There are several peaks
caused by the continuation method when several sub-
steps had to be taken before convergence could be
reached. This is where a direct solution with a gradient-
based solver would have failed.

In the second half, there is no need for the continuation
method anymore and a large initial step-size and an
increasing quality of the guess value significantly reduce
the computational effort. With the exception for one extra
evaluation to check for convergence, the continuation
solver hardly generates any additional burden anymore.

Even this rudimentary test implementation shows that a
continuation solver is affordable for each time-step of the
main simulation while the robustness of the solution can
be improved. Solving at certain points might be expensive
but when not needed the overhead is small. Because of
the robust solution method, a large step-size of the main
simulation can be afforded.

7. Prospective Limits of this Solution
Method

The proposed variant for the natural parameter
continuation is of course very simple and may not be able
to solve all forms of balance dynamics. More elaborated
continuation solvers support to deal with more complex
continuation paths such as bifurcations of turning points.
(There are complete libraries for continuation solvers
such PyCont [5]). However, the need for such complex
solvers is a warning and we shall rather question
ourselves about the origin of this need.

After all, balance dynamics should be simple but
practically oriented modelers will tell us that they can
become pretty complex even stating self-contradictory
sentences such as: “the value of fudge parameters is very
significant”. Evidently, “fudge parameter tuning” can
become an obsession. Why does this happen?

One important point is that in many complex
applications, balance dynamics are layered. For instance,
in the model of an environmental control system, there are
balance dynamics resulting from physical inertia. There
might also be balance dynamics resulting from sub-
controllers. The modeler is actually interested in none of
these processes but for the working of the sub-controller,
it is important that the physical balance dynamics take
place in a shorter time span. The resulting layering is
illustrated in Figure 9:

Main ECS Control

ECS Sub-control balance dynamics

Physical balance dynamics[ms]

[s]

[min]

time scale

Figure 9: Layering of different balance dynamics

In classic modeling, the modeler is now using the fudge
parameters to impose this layering. During this process,
he typically makes a trade-off: on the one hand, he wants
to separate the different balance dynamics and keep them
in right order. On the other hand, he wants to reduce the
stiffness of the overall system. Optimizing this trade-off is
what is typically described as “fudge parameter tuning”.

Having this idea in mind, it seems now smart that
instead of having one continuation solver to solve
complex balance dynamics, we prefer nested continuation
solvers, each of them solving one layer of simple balance
dynamics. This requires that the modeler has means to
separate different balance dynamics and to layer them.
The currently proposed operator does not offer a
sufficient solution for this.

10 20 30 40 50 60 70 80 90 100
0
1

3

5

7

10

15

20

[s]

s(

a)
 e

va
lu

at
io

ns

84

8. Realization within a Modeling Language
The proposal as presented here is of course very easy to
realize in most equation-based modeling languages. It is
sufficient to add one single operator for the formulation of
balance equations just as this had been done for the
homotopy operator [8] in Modelica [4].

However, as temptingly simple as this seems, the
balance operator as presented here will prove to be only
partly sufficient. There are two major flaws involved with
this solution:
1. The last section outlined the need to layer balance

dynamics and to nest the corresponding continuation
solvers. This is not possible with this operator
notation.

2. Having available only this operator, it is not possible
to reuse existing models (or components) of dynamic
processes formulated with derivatives for the balance
dynamics. The modeler is forced to remodel all
relevant equations using the balance operator
instead.

The second point of critique is valid also for the
homotopy operator in Modelica. Typically, a modeler
first builds a stiff system that includes the balance (or
initialization) dynamics and then, in a second stage, he
separates the two dynamics from each other. It would be
favorable if the modeling of the second stage could reuse
the components of the first stage.

For these reasons, we will finally need a better solution
than the proposed operator but we can regard this
proposal as intermediate solution in order to conduct the
heavily needed research on this topic.

9. Conclusions
Since decades modelers use artificial states. Since decades
they are being told that this is bad. Since decades they do
it anyway. This is because formulating the dynamics that
lead to the balance point of a sub-system is often the only
way a modeler can explain how to solve his non-linear
system of equations. It is unfortunate that M&S
frameworks have not recognized this and provided better
means for the modeler that enable him to distinguish
between simulation dynamics and solver dynamics. This
would prevent the rightfully criticized abuse of simulation
dynamics to solve non-linear systems of equations.

For this purpose, we have proposed the concept of
balance dynamics equations. It turns out that adding a
simple operator is at least partly sufficient and a first step
to explore the concept further. Balance dynamics
equations can then be used to create code for a
corresponding solver that is much more robust.
Furthermore, the information contained in them can be
used to make a better choice of iteration (or tearing)
variables. Unwanted stiffness can be avoided and the
integration step size of the main-integration loop is not
needlessly limited. A difficult non-linear system of
equations in a subcomponent will still increase the
computational burden but the damage can be kept local.

This work so far is essentially based on theoretical
thoughts and analysis of modeling experience. It needs to
be put into practice and properly tested. Also balance
dynamics equations do not provide never-ending
salvation. They won’t solve all modeling problems, but
they have the potential to solve a big chunk of them. We
hope for the future that this or similar methodologies are
adapted by M&S Frameworks of industrial maturity.

Acknowledgements
I would like to thank Andreas Pfeiffer, Martin Otter and
Michael Sielemann from DLR for suggesting several
improvements.

References
[1] Eugene L. Allgower and Kurt Georg. Introduction to

Numerical Continuation Methods, SIAM Classics in
Applied Mathematics 45. 2003.

[2] U. Ascher, H. Huang, and K. van den Doel. Artificial Time
Integration. BIT Numerical Mathematics, 47(1): 3-25,
2007.

[3] Dymola: available at www.dymola.com
[4] The Modelica Association. Modelica® A Unified Object-

Oriented Language for Systems Modeling - Language
Specification Version 3.3, Available at www.modelica.org,
2012

[5] PyCont available at: www2.gsu.edu/~matrhc/PyCont.html
[6] Rolls Royce. The Jet Engine. Rolls Royce Plc. Derby

England. 278p. 1996.
[7] M. Sielemann, T. Giese, B. Oehler, M. Gräber,

Optimization of an Unconventional Environmental Control
System Architecture. In: SAE International Journal of
Aerospace, 4(2):1263-1275. 2011

[8] M. Sielemann et. al., Robust Initialization of Differential-
Algebraic Equations Using Homotopy. In: Proceedings of
8th International Modelica Conference. Dresden,
Germany, 2011

[9] M. Sielemann and G. Schmitz, A quantitative metric for
robustness of nonlinear algebraic equation solvers. In:
Mathematics and Computers in Simulation, 81 (12), pp
2673-2687. Elsevier, 2011.

[10] D. Zimmer and D. Schlabe, Implementation of a Modelica
Library for Energy Management based on Economic
Models. Proceedings of the 9th International Modelica
Conference , Munich, Germany (2012)

[11] D. Zimmer, Equation-Based Modeling of Variable
Structure Systems. PhD Thesis, ETH Zürich, 219 p. 2010

Biography
Dr. Dirk Zimmer received his
PhD degree from the Department
of Computer Science at the Swiss
Federal Institute of Technology
(ETH Zurich). He is currently
pursuing his research work at the
Institute of System Dynamics and
Control belonging to the German
Aerospace Center (DLR). Also,

he is lecturer at the Institute of Computer Science at the
Technical University of Munich (TUM).

85

	1. Introduction
	2. Using Artificial States in Modeling Practice
	2.1 Example 1: Energy Market Model
	2.2 Exampe 2: Environmental Control System

	3. Review of the method of artificial states
	4. Balance dynamics equations: Turning implicit idealization into explicit idealization
	5. Handling balance dynamics equations in a simulation environment
	6. Small application example
	7. Prospective Limits of this Solution Method
	8. Realization within a Modeling Language
	9. Conclusions

Using Artificial States in Modeling Dynamic Systems:
Turning Malpractice into Good Practice

Dirk Zimmer

German Aerospace Center (DLR), Institute of System Dynamics and Control, Germany
dirk.zimmer@dlr.de

Abstract

This paper analyzes the current use of artificial states in modeling practice and proposes a new form of equations for the purpose of modeling dynamic systems. These balance dynamics equations are used to formulate dynamic processes that help to find the solution of non-linear systems of equations.

Keywords: artificial states, continuation methods, language design.

Introduction

Any kind of formal modeling involves abstraction. The modeler has to study the given system and decide which parts are relevant and which are not. Typically a system contains many dynamic processes where only a small subset is of interest. For instance, in rigid body dynamics, the modeler chooses to ignore the elasticity of the applied material. In power-electronics with ideal switches, the modeler chooses to ignore the complicated switching behavior.

In an equation-based modeling language, the modeler will then provide equations for both parts. The dynamic processes that are regarded as relevant will be represented by differential equations. For other processes idealizations are provided in form of algebraic equation systems. Optimally, the resulting set of differential-algebraic equations has a set of state variables that precisely matches the dynamics of interest. In real modeling practice, this is infeasible for many cases.

In many applications, the modeler is forced to extend the dynamics of the system significantly beyond his area of interest. The reason for this aggravation is that otherwise the systems of non-linear algebraic equations resulting from the idealization of dynamic processes get too complex to be reliably solved by a general simulation engine. In order to avoid this, the modeler counteracts by including more state-variables in his system than he actually intends and thereby breaking the algebraic equation systems down. Consequently, these state variables are denoted as artificial since the dynamics of them are actually of no interest. They have been artificially introduced in order to enable a better computational realization of the simulation code.

This method of artificial states represents common modeling practice. It is applied in many different ways and comes along in many disguises. In mechanics, rigid detents get replaced by stiff spring-damper constructs. In electrics, micro capacitances or leakage currents are used without original intent. In bondgraphs, small-valued C or I elements are being added. And in this paper, we present two further examples that belong to the domains of thermodynamics and microeconomics.

Although the use of artificial states is common practice, it is not regarded as good practice. Instead it is often denounced as malpractice or as method of last resort that shall only be applied if all other potential remedies have failed. This is because of the significant disadvantages this method typically incorporates.

Since the artificial states mostly express dynamic processes whose time scale is orders of magnitudes lower than the time scale of actual interest, the system becomes very stiff. This requires the use of complex ODE-solvers for stiff systems, reduces simulation speed, and often prevents real-time capability of the simulation code. Furthermore, modeling the processes attached to artificial states requires parameters that are mostly of no interest or that cannot be retrieved in a meaningful way. This results in so-called fudge parameters whose values are arbitrarily stipulated but not based on any real data. Instead, the determination of these parameter values represents mostly a trade-off between the unwanted degree of stiffness and the unwanted loss of precision: a true choice between the devil and the deep blue sea.

Hence it is easy to understand why the use of artificial states seems strongly objectionable. The more rewarding question is to ask why this method is still being so frequently applied and why the recent progress in general M&S frameworks has not eradicated the need for this method. Why do modelers use a method from that they know it is bad? What forces them to use a method of last resort? And what is to say about all the other resorts?

5th International Workshop on Equation-Based Object-Oriented Modeling Languages and Tools, 19 April, 2013, University of Nottingham, UK.

Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp_home/index.en.aspx?issue=084

EOOLT 2013 website:
http://www.eoolt.org/2013/

This paper examines these questions and it will show that the method of artificial states is not bad per se. It is actually quite clever, a smart thing to do in many occasions, and, when conducted carefully, provides valuable insight into the modeled system. What is wrong about it is the way modelers are forced to apply this method in today´s M&S frameworks. Hence, we will suggest new constructs for modeling languages and new computational processing schemes for simulation engines. With these new tools at hand, the malpractice of artificial states will be turned into good practice.

But first let us look at some examples to expose the current dilemma.

[bookmark: _Toc340241761]Using Artificial States in Modeling Practice

In this section, we demonstrate the practical use of artificial states by the means of two examples. Both are realistic examples in the sense that they demonstrate the kind of problems that a modeler is typically confronted with in equation-based modeling languages. Both examples demonstrate the problems that forced the modeler to use artificial states although being initially reluctant.

Example 1: Energy Market Model

In the first example, principles from microeconomics are used for the management of energy flows [10]. The idea is the following: based on a market price each generator produces a certain amount of power and each load consumes a certain amount of power. The corresponding cost curves of generators and consumers are continuous monotonic increasing (Figure 1). The market price is then simple determined as the intersection between the two cost curves (Figure 2) for generators and consumers. In this way, a market model can be used to compute the power flow in an energy network.

[image:]

[bookmark: _Ref346114603]Figure 1: Cost curves

So far, so simple – but when we approach more sophisticated applications, things become a bit more difficult. Figure 3 presents the model diagram of a combined power generator whose outputs are electric and thermal energy. Up to 60% of the thermal energy can be converted into electricity.

[image:]

[bookmark: _Ref346114610]Figure 2: Equilibrium price

To this end, the power is split from the source (red component) into two sub-markets by the fixed split:
40% - 60%. Connected to this market are the consumers (blue). The thermal market, however, can take energy from the electric market but not vice versa. This is modeled by a one-way component that acts like an electric diode. The energy needs to be converted before reaching its consumer, hence the conversion element. The thermal energy can be wasted if inevitable, hence the waste element.

[image:]

[bookmark: _Ref346114618]Figure 3: Model diagram of a combined power generator

The problem we get here is that we have two different market prices: one for electric energy and one for thermal energy. However these markets are not independent but coupled by algebraic equations. For instance, the model of the split component states that price at the generator is the weighted mean of the two consumer prices.

vin = vout1 ∙ R + vout2 ∙ (1-R)

Hence we have a non-linear system with two iteration variables, namely the two prices of the electric and thermal market. This is certainly not exceptional and poses often no problems at all. However, in this particular case, it does. The cost-curves for the generator, the consumers, and the one-way limiter as well as the waste element all contain very flat and very steep gradients. This makes iterative, gradient-based solvers (such as Newton’s method) difficult to apply since the convergence area is often very small. Finding the initial solution requires a very good guess and steps of time-integration have to be small in order to stay within the area of convergence.

In order to approach a market solution in a more robust way, we provide a price controller. With this element, it is possible to find the solution in robust way by approaching steady state. Instead of having to determine the market price v directly such that the balance equation of power

p1 + p2 + p3 = 0

holds, we make the more relaxed statement:

p1 + p2 + p3 + pc = 0

and control the price v by the lack or excess of power represented in pc.

The corresponding controller is a very simple model that introduces an artificial state. It may compensate for any lack or excess of power pc. The controller increases the market price in case of a power outflow (pc > 0) due to a lack of power and decreases the price in case of a power inflow (pc < 0) due to excess of power.

dv/dt ∙ T = pc

where T is an arbitrary time constant. In the diagram of Figure 3, it is depicted as grey “$” placed in a circle. We can use such a price controller, because we know that the cost-functions are monotonic increasing. Any price advance will lower the demand and increase the provision of power and vice versa. This knowledge is not available to a non-linear solver but can be incorporated into the model in this way.

The incorporated disadvantages are a stiff system and that the simulation results are polluted by the dynamics of the price controller.

Exampe 2: Environmental Control System

The second example represents the modeling of a three-wheel bootstrap circuit from the environmental control system of classic aircraft architectures [7]. Here, air that is tapped from the aircrafts turbine (bleed air) is used to pressurize the cabin. Since the bleed air is hot (ca. 220°C) and at high pressure (ca. 2.5bar) [6], it needs to be cooled down and expanded before it enters the cabin. The idea is to use the energy gained in this expansion process to power a compressor and a fan for the ram air channel that is being used as cooling element. With those two devices joining the drive shaft of the expansion turbine, a more efficient cooling device can be designed.

Let us trace the path of the bleed air in the corresponding model diagram of Figure 4. The bleed air first passes the primary heat exchanger (PHX) for cooling and is then compressed before passing the main heat exchanger (MHX). Before entering the turbine for expansion, the water content needs to be extracted. Hence the bleed air passes a condenser and later on a reheater. These are both heat exchangers where the bleed air is actually interacting with itself at different stages in the circuit. Finally, after expansion, the air is sent to the mixer where it is being used to pressurize the cabin.

[image:]

[bookmark: _Ref346115547]

Figure 4: Model diagram of an environmental control system

In this model, we are only interested in the equilibrium point and not in any dynamics of the system at all. In the equilibrium point, the energy consumed by compressor and fan will balance the energy gain of the turbine. Furthermore all losses and gains of thermal energy in the heat exchangers cancel each other out. In the model, this equilibrium point is described by a set of pure algebraic equations. Due to the nature of thermal processes many of these equations are non-linear. The connections between the components in Figure 4 form many loops. This indicates that many of these algebraic equations are tightly coupled with each other[footnoteRef:1]. And indeed when we have implemented the model in the modeling language Modelica, there results a very difficult non-linear system with more than 200 equations. Corresponding M&S frameworks like Dymola [3] are able to compress the system but even then a non-linear system remains with more than 40 iteration variables. [1: more technically: they represent a large block in the block lower triangular form of the equation system.]

Solving such a complex system of equations in a robust manner is a very difficult task. But even when possible, a large system with more than 40 iteration variables significantly slows down the simulation engine as soon as the ECS becomes part of other dynamic processes.

For these reasons, artificial states have been used to tear the algebraic equations system apart. In total 5 state variables were sufficient to break down the non-linear equation system into individual non-linear equations that can be solved one after another.

One of the state variables represents the velocity of the drive-shaft. A small inertia has been assigned to this shaft and hence any difference between turbine and compressor power does not need to be immediately balanced. Instead the difference can be used to accelerate or decelerate the drive shaft, as this happens in reality too. The precise value of the inertia I is not important here since we are not interested in the corresponding dynamics.

The inertia of the drive shaft introduces the following differential equation:

τ = der(ω)∙I

The variable ω represents the angular velocity of the drive shaft and is now an artificial state of the system. Its product with the torque τ determines the lack or excess of power that is (de-)accelerating the drive shaft.

The other four states are not mechanical inertias but thermal inertias. Although the physical domain is different, the applied methodology is identical.

By using artificial states, the model can be solved robustly and is open for further extension as for instance its inclusion into a complete aircraft energy system model. The amount of stiffness that is added to the system depends on the fudge parameters. However, for many practical applications, solving the stiff system is still faster than solving the original system simply because there is no complicated non-linear system with over 40 iteration variables to be solved.

[bookmark: _Toc340241764]Review of the method of artificial states

Let us review the methodology that can be extracted from the two examples. In both cases, the modeler generated a non-linear system of equations that turned out to be very difficult to solve. It is inappropriate to blame the numerical solvers for this. Without any further information no one can guarantee that any potential solver will find the correct solution[footnoteRef:2]. Demanding for a better solver method to solve all of your problems is a pie in the sky. [2: Presuming that there is exactly one solution or that there are multiple solutions of which any of them can be regarded as correct.]

It is important to understand that these non-linear system of equations result from a process of idealization. In example 1, we requested for a balance between power consumption and generation. The price had to be determined in such a way that the balance is met. Closer to reality is to regard the price determined by continuously ongoing negotiation. A lack of power leads to a higher prices and an excess of demand leads to lower prices. The balance equation simply idealizes this negotiation process by reducing it to an instant and letting it take immediate effect.

Also in example 2, balance equations are a source of idealization. The balance of power along the drive shaft ignores the inertia of the shaft and that it takes time to establish this balance. In many, many cases non-linear systems of equations result from the idealization of such balance dynamics.

[bookmark: _GoBack]What happens now is particularly interesting. After the modeler has realized that he has gone too far and that his idealizations have created non-linear systems too difficult to solve, he reverts some of his idealization against his original intent. In example 1, the continuous process of negotiation has been reintroduced by a price controller. In example 2, mechanic and thermal inertia have been added to the system although the corresponding dynamics are of no interest.

The modeler understands that the system cannot be solved without some background knowledge that is inaccessible to the solver. It is inaccessible because it got lost in the process of idealization. For instance, the modeler knows the effects of price advance and price reduction and how to use that knowledge to derive a market solution. He also knows that inertias in physical systems help to balance the system.

But how can a modeler convey such valuable background knowledge into a general M&S framework? He sees no other way than to introduce artificial dynamics in his system and hence the method of artificial states becomes the weapon of choice. In this way, he abuses the time-integration of the simulator as a solver for his non-linear systems of equations.

When using artificial states, the modeler evidently makes a distinction between

Dynamic processes that are relevant of the system under study.

Dynamic processes that describe how to solve a non-linear system of equations.

Once we have become aware of this distinction, the problematic point about the use of artificial states becomes evident: The modeler makes this distinction but the M&S framework does not. It is not the modeler who wants to mix up things. He is forced to mix up things because the M&S frameworks do not provide adequate means to make a proper distinction between these two descriptions of dynamic processes.

The aim of a good modeling language should be to grasp the modeler’s knowledge in a formal, clear and unambiguous way. So when the modeler knows which dynamics lead to the solution of a non-linear system of equations, any modeling language should encourage him to include this knowledge into his models in a proper form. After all, this represents valuable knowledge that can only be beneficial for the subsequent processes of code generation and simulation.

[bookmark: _Toc340241765]Hence the next chapter suggests a way, how such knowledge can be conveniently incorporated in a modeling language. It turns out to be surprisingly simple and intuitive.

Balance dynamics equations: Turning implicit idealization into explicit idealization

In the previous section, we stated that the idealization of balance dynamics is a very frequent source of non-linear system of equations. Let us therefore review the equations of the price controller from Example 1 that represent exactly one such example. First we had the desired ideal form for the balance of power flows:

p1 + p2 + p3 = 0

In this case, the market price v has to be determined by a non-linear system of equations. Because of this, we relaxed the balance equation by introducing pc and determined (or controlled) the price by means of a differential equation:

p1 + p2 + p3 + pc = 0

dv/dt ∙ T = pc

We can derive the ideal form out of the balance dynamics by assuming a steady-state scenario and setting the derivative to zero. Furthermore, we assume that this steady state is continuously maintained and hence that the corresponding balance dynamics take instantaneous effect. This is like stating that the time constant is approaching zero.

This helps to understand the process of idealization and we can see that there are two major implications behind this idealization process:

The balance dynamics take place in no time; so they are regarded as infinitely fast.

The balance dynamics finally reach a stable steady state.

Since this pattern of idealization is so common in so many applications, it seems meaningful to enable its explicit formulation in a modeling language. To this end, a simple operator suffices.

Most modeling languages feature an operator for the time-derivative such as:

der(v) ∙ T = pc

In strong resemblance to this operator, we can define and use a balance operator instead:

balance(v) = pc

The operator balance(v) simply replaces the term
der(v) ∙ T and implies the two idealizations der(v) = 0 and T 0. The fudge parameter T has consequently gone lost.

With this operator we have introduced a new kind of equation. We call them balance dynamics equations. They enable us to state the implicit assumption of the idealized algebraic equation in explicit form. In this way, you get the best of both worlds: you can interpret them as algebraic constraints in the simulation context but you can also interpret them as dynamic process in the solver context. How to precisely do that is content of the next section.

[bookmark: _Toc340241766]Handling balance dynamics equations in a simulation environment

In the following small example, we find an algebraic equation, a differential equation, and a balance dynamics equation:

der(x) = z

balance(y) = p(y)-x

z = sin(y)

The balance equation now states two things: a non-linear equations system (0 = p(y)-x) and a dynamic process how to solve this system (der(y) = p(y)-x) based on the modeler’s knowledge that p is a monotonic increasing function.

Consequently, these model equations can now be transformed in two different ways:

		der(x) = z

0 = p(y)-x

z = sin(y)

		x = const

der(y) = p(y)-x

z = sin(y)

The left version represents the simulation dynamics, the dynamics of relevance for simulation; the right version represents the solver dynamics, the dynamics needed to solve the non-linear system of equations. This solver dynamics is formulated as sub-simulation (a simulation nested within the main simulation) hence the states of the actual simulation (here: x) are held constant. There remains the question how to take use of such a sub-simulation.

The idea is of course that in case we fail to solve the non-linear equation (here: 0 = p(y)-x) directly, we use the sub-simulation on the differential equation (here: der(y) = p(y) – x) to get to the area of local convergence. But before we pursue this idea any further, let us highlight another benefit of balance dynamics equations. Balance dynamics equations do not only help solving non-linear equations by getting to the area of local convergence but they also provide information that helps to solve the actual system more efficiently once you are in this area.

Whenever an iterative numerical solver is applied to a non-linear system of equations, we need to determine a set of suitable iteration variables. These iteration variables are also often denoted as tearing variables since they are used to tear the algebraic loops apart and generate residual values instead. Choosing such iteration variables is a difficult task where many constraints have to be regarded [11]. This led to the choice of over 40 iteration variables for the ECS system in example 2.

Balance dynamics equations provide an excellent indication which variables to choose as iteration variables. Since they are assigned to a state-variable in the corresponding sub-simulation, this state variable must also be a suitable iteration variable. In this way, the number of iteration variables (and thereby the size) can be significantly reduced. For instance, in Example 2, the number of iteration variables can be reduced from over 40 to 5, leading to a much more efficient simulation.

This coincidence of iteration variables for the direct solution with the state variables for sub-simulation indicates that these two tasks are actually closely related. Remember, the balance equation

balance(x) = f(x)

offers us two different ways to get to a solution. Either we solve the equation 0 = f(x) directly or we approach the steady state by a sub-simulation on the differential equation der(x) = f(x). On the first look, this looks like two separate tasks. However, let us analyze how we would perform such a sub-simulation in practice.

After all, this is a special case: we do not perform a usual simulation; we want to perform a simulation for the sole purpose to approach the steady state with the time[footnoteRef:3]
t → ∞. Which integration method would we choose for that? [3: Please note, the time t does not represent the main simulation time here but the time of the nested sub-simulation. The complete time-span of the sub-simulation represents only one instant in the main simulation.]

Since the differential equation der(x) = f(x) is supposed to describe a stable system, an implicit method is a strong favorite. Any explicit integration method would be limited in its step-size in order to maintain stability and approaching infinity with steps of finite width is an unpromising endeavor.

Since we do not care about the precise trajectory leading to the steady state and since the steady state solution itself is insensitive to the local integration error, there is no reason to choose any higher-order method. Order 1 is completely sufficient.

So our method of choice would be to perform Backward Euler with as large steps as possible. Hence, let us look at one integration step of this method going from t to t+h:

xt+h = xt + h∙der(xt+h)

or in our current example:

xt+h = xt + h∙f(xt+h)

Being an implicit method, we have to solve the system of equations: 0 = g(xt+h) with g(xt+h) being defined as:

g(xt+h) = xt - xt+h + h∙f(xt+h)

Evidently for h → ∞, solving g(xt+h) becomes equivalent to solving f(x) directly. Now it becomes clear how the solver dynamics can support us to find the solution of f(x). Instead of solving the system f(x), we can solve g(x) and in this way, we have won one important degree of freedom: we can choose h.

In this way, we have transformed the problem into a numerical continuation problem [1]. In general, a continuation problem results from transforming a function F(x) to F’(x,λ) with λ [0,1] where F’(x,1) = F(x) and F’(x,0) is easy to solve. Many solutions methods have been developed for this kind of problem and they are already applied by many M&S Frameworks, mostly to solve initialization problems in a more robust way [9] for instance by using homotopy [8].

To use numerical continuation solvers not only for initialization problems but also during simulation is also not a completely new idea. Artificial time integration is not uncommon to find solutions for PDEs [2]. The main difference to classic continuation problem in our case is that is not bounded by 1 but is free to go to infinity. Hence we have to adapt the continuation solver. The following paragraph sketches an algorithm that is a variant of the simplest kind of numerical continuation: the natural parameter continuation where h is our continuation parameter.

In case h is too large and our guess value for xt+h is outside the convergence area, we can choose h small enough to be located in the convergence area again. And with each solution of g(x), we step a little closer to the final solution of f(x). In this way, we have found a robust way to solve our non-linear system of equations. Figure 5 depicts the corresponding algorithm of the balance dynamics solver.

[bookmark: _Ref346117018]Figure 5: Algorithm for the balance dynamics solver

This algorithm becomes part of the main simulation loop and replaces the former direct solver for
0 = f(x). It is hence performed at each integration step of the main simulation task. It is not necessarily slower than the direct solver for f(x). Having a high initial value for the sub-simulation step-size h and a good guess value for xt+h, not many more iterations would be required than for a direct solution of 0 = f(x). A call to the direct solver is thus not required.

The difference occurs when good guess values for xt+h are not available. In a normal setup, the integration step-size of the main simulation loop would be reduced in order to reobtain a good guess. Using our balance dynamics solver, this is unlikely to be necessary. More iterations would be needed in the solver to get the solution but the step-size of the main simulation loop can be maintained. And of course, finding the initial solution is also much simpler.

Without balance dynamics equations, the modeler has the choice of either creating a stiff system or a difficult non-linear system of equations. In both cases, he imposes severe limitations on the main integration step size and thereby creates a global damage even when only a small subsystem is actually concerned. With balance dynamics equations and a corresponding solver, the damage is kept local.

A final remark with respect to the algorithm in
Figure 5: please note that the step-size control of h is not equivalent to classic step-size control in ODE solvers. It is based solely on the matter of convergence not on the matter of local integration error and hence can be performed much more aggressively.

Small application example

To prove the feasibility of this approach, we provide a small example. The following DAE

dx/dt = y

dy/dt = -0.1∙a – 0.4∙y

s(a) = 10∙x

requires the solution of an expression containing the non-linear function s(a) displayed in Figure 6:

s(a) = 	if a < -1 then 		a/4 – 3/4

else if a > 1 then		a/4 + 3/4

else			a

with its derivative to be defined as

s(a) = 	if a < -1 then 		1/4

else if a > 1 then		1/4

else			1

[image:]

[bookmark: _Ref351383551]Figure 6: The piecewise linear function s(a)

The convergence area of solving s(a)=0 with respect to Newton’s method is exactly [-1,1]. Although the convergence area is strictly limited, the solution can easily be found if one knows that s(a) is strictly monotonic increasing. We can incorporate this knowledge in form of a balance dynamics equation:

dx/dt = y

dy/dt = -0.1∙a – 0.4∙y

balance(a) = 10∙x – s(a)

This DAE is now transformed into two forms for numerical ODE solvers.

· For the main ODE solver:

dx/dt = y

dy/dt = -0.1∙a – 0.4∙y

0 = 10∙x – s(a)

· For the continuation solver:

x = const

der(a) = 10∙x – s(a)

The main simulation is performed with Forward Euler and a step width of 0.1s for 100s. Without the continuation solver, the non-linear system of equations cannot be solved when the state variable x enters the range of
[-0.1,0.1]. A step-size of smaller than 0.01s has to be taken in order to practically ensure the solvability of the system.

The continuation solver has been realized according to the algorithm sketched in Figure 5 and can robustly solve this system of equations. Figure 7 shows the simulation result. The step-size of the main-simulation loop is not impaired by the non-linear system anymore.

[image:]

[bookmark: _Ref351383652]Figure 7: Simulation result showing the state x

Of course, this is a very small and simple example but it demonstrates that the basic idea works. For more mature implementation, we need to examine a number of interesting questions:

· How to optimally control the step-width h of the sub-simulation?

· How to provide suitable initial guesses of this step-width?

· When to stop sub-simulation when convergence is not reached?

· How should the step-size control of the main-simulation loop be controlled w.r.t to the convergence speed of the continuation solver?

· etc…

In this test-implementation, for instance, the initial step width h was chosen to be three times the minimum step-width that was required for the solution of the last step from the main simulation. This ensures that the initial value of h is relatively close to a prior successful continuation step while enabling a geometric increase of h for the case the continuation solver is actually not needed.

Figure 8 plots the number of times the function s(a) is being evaluated by the continuation solver in order to compute a new step or to check for convergence. Each value in the plot represents one time-step of the main simulation loop.

 [image:]

[bookmark: _Ref351385610]Figure 8: Number of function evaluations

During the first half of the simulation, the system oscillates with high amplitude. There are several peaks caused by the continuation method when several sub-steps had to be taken before convergence could be reached. This is where a direct solution with a gradient-based solver would have failed.

In the second half, there is no need for the continuation method anymore and a large initial step-size and an increasing quality of the guess value significantly reduce the computational effort. With the exception for one extra evaluation to check for convergence, the continuation solver hardly generates any additional burden anymore.

Even this rudimentary test implementation shows that a continuation solver is affordable for each time-step of the main simulation while the robustness of the solution can be improved. Solving at certain points might be expensive but when not needed the overhead is small. Because of the robust solution method, a large step-size of the main simulation can be afforded.

Prospective Limits of this Solution Method

The proposed variant for the natural parameter continuation is of course very simple and may not be able to solve all forms of balance dynamics. More elaborated continuation solvers support to deal with more complex continuation paths such as bifurcations of turning points. (There are complete libraries for continuation solvers such PyCont [5]). However, the need for such complex solvers is a warning and we shall rather question ourselves about the origin of this need.

After all, balance dynamics should be simple but practically oriented modelers will tell us that they can become pretty complex even stating self-contradictory sentences such as: “the value of fudge parameters is very significant”. Evidently, “fudge parameter tuning” can become an obsession. Why does this happen?

One important point is that in many complex applications, balance dynamics are layered. For instance, in the model of an environmental control system, there are balance dynamics resulting from physical inertia. There might also be balance dynamics resulting from sub-controllers. The modeler is actually interested in none of these processes but for the working of the sub-controller, it is important that the physical balance dynamics take place in a shorter time span. The resulting layering is illustrated in Figure 9:

[bookmark: _Ref346549389][bookmark: _Ref346549383]Figure 9: Layering of different balance dynamics

In classic modeling, the modeler is now using the fudge parameters to impose this layering. During this process, he typically makes a trade-off: on the one hand, he wants to separate the different balance dynamics and keep them in right order. On the other hand, he wants to reduce the stiffness of the overall system. Optimizing this trade-off is what is typically described as “fudge parameter tuning”.

Having this idea in mind, it seems now smart that instead of having one continuation solver to solve complex balance dynamics, we prefer nested continuation solvers, each of them solving one layer of simple balance dynamics. This requires that the modeler has means to separate different balance dynamics and to layer them. The currently proposed operator does not offer a sufficient solution for this.

Realization within a Modeling Language

The proposal as presented here is of course very easy to realize in most equation-based modeling languages. It is sufficient to add one single operator for the formulation of balance equations just as this had been done for the homotopy operator [8] in Modelica [4].

However, as temptingly simple as this seems, the balance operator as presented here will prove to be only partly sufficient. There are two major flaws involved with this solution:

1. The last section outlined the need to layer balance dynamics and to nest the corresponding continuation solvers. This is not possible with this operator notation.

1. Having available only this operator, it is not possible to reuse existing models (or components) of dynamic processes formulated with derivatives for the balance dynamics. The modeler is forced to remodel all relevant equations using the balance operator instead.

The second point of critique is valid also for the homotopy operator in Modelica. Typically, a modeler first builds a stiff system that includes the balance (or initialization) dynamics and then, in a second stage, he separates the two dynamics from each other. It would be favorable if the modeling of the second stage could reuse the components of the first stage.

For these reasons, we will finally need a better solution than the proposed operator but we can regard this proposal as intermediate solution in order to conduct the heavily needed research on this topic.

[bookmark: _Toc340241767]Conclusions

Since decades modelers use artificial states. Since decades they are being told that this is bad. Since decades they do it anyway. This is because formulating the dynamics that lead to the balance point of a sub-system is often the only way a modeler can explain how to solve his non-linear system of equations. It is unfortunate that M&S frameworks have not recognized this and provided better means for the modeler that enable him to distinguish between simulation dynamics and solver dynamics. This would prevent the rightfully criticized abuse of simulation dynamics to solve non-linear systems of equations.

[image:]For this purpose, we have proposed the concept of balance dynamics equations. It turns out that adding a simple operator is at least partly sufficient and a first step to explore the concept further. Balance dynamics equations can then be used to create code for a corresponding solver that is much more robust. Furthermore, the information contained in them can be used to make a better choice of iteration (or tearing) variables. Unwanted stiffness can be avoided and the integration step size of the main-integration loop is not needlessly limited. A difficult non-linear system of equations in a subcomponent will still increase the computational burden but the damage can be kept local.

This work so far is essentially based on theoretical thoughts and analysis of modeling experience. It needs to be put into practice and properly tested. Also balance dynamics equations do not provide never-ending salvation. They won’t solve all modeling problems, but they have the potential to solve a big chunk of them. We hope for the future that this or similar methodologies are adapted by M&S Frameworks of industrial maturity.

Acknowledgements

I would like to thank Andreas Pfeiffer, Martin Otter and Michael Sielemann from DLR for suggesting several improvements.

References

[bookmark: _Ref346548033]Eugene L. Allgower and Kurt Georg. Introduction to Numerical Continuation Methods, SIAM Classics in Applied Mathematics 45. 2003.

[bookmark: _Ref346548015]U. Ascher, H. Huang, and K. van den Doel. Artificial Time Integration. BIT Numerical Mathematics, 47(1): 3-25, 2007.

[bookmark: _Ref346545335]Dymola: available at www.dymola.com

[bookmark: _Ref346544920]The Modelica Association. Modelica® A Unified Object-Oriented Language for Systems Modeling - Language Specification Version 3.3, Available at www.modelica.org, 2012

[bookmark: _Ref346545311]PyCont available at: www2.gsu.edu/~matrhc/PyCont.html

[bookmark: _Ref346544848]Rolls Royce. The Jet Engine. Rolls Royce Plc. Derby England. 278p. 1996.

[bookmark: _Ref346544864]M. Sielemann, T. Giese, B. Oehler, M. Gräber, Optimization of an Unconventional Environmental Control System Architecture. In: SAE International Journal of Aerospace, 4(2):1263-1275. 2011

[bookmark: _Ref346544969]M. Sielemann et. al., Robust Initialization of Differential-Algebraic Equations Using Homotopy. In: Proceedings of 8th International Modelica Conference. Dresden, Germany, 2011

[bookmark: _Ref351713097]M. Sielemann and G. Schmitz, A quantitative metric for robustness of nonlinear algebraic equation solvers. In: Mathematics and Computers in Simulation, 81 (12), pp 2673-2687. Elsevier, 2011.

[bookmark: _Ref346544810]D. Zimmer and D. Schlabe, Implementation of a Modelica Library for Energy Management based on Economic Models. Proceedings of the 9th International Modelica Conference , Munich, Germany (2012)

[bookmark: _Ref351712778]D. Zimmer, Equation-Based Modeling of Variable Structure Systems. PhD Thesis, ETH Zürich, 219 p. 2010

Biography

Dr. Dirk Zimmer received his PhD degree from the Department of Computer Science at the Swiss Federal Institute of Technology (ETH Zurich). He is currently pursuing his research work at the Institute of System Dynamics and Control belonging to the German Aerospace Center (DLR). Also, he is lecturer at the Institute of Computer Science at the Technical University of Munich (TUM).

image2.emf

Price v [$/W]Power p [W]EquilibriumNegated sum of loadsSum of sources0

image3.emf

heat

T

split

0.4

CR

ss

electricity

T

waste

$ $

oneWay

conversion

image4.emf

extractioninjectionturbinecompre?PHXMHXreheatercondenserBleedAi?RamAirI?toMixerRamAir?fanpseudoI?

image5.emf

Perform Newton

Iterations on g(x

t+h

)

Converged?

Perform BE step:

t := t+h

Steady state

reached?

Decrease h

geometrically

Increase h

geometrically

Start with initial h

h cannot be

decreased

Report solution

h cannot be

increased

Report ErrorReport Error

yes

yes

no

no

No

no

yesyes

oleObject1.bin

�

�

�

Perform Newton Iterations on g(xt+h)

image6.emf

-5-4-3-2-1012345

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

a

s(a)

image7.emf

0102030405060708090100

-1

-0.5

0

0.5

1

time [s]

x

image8.emf

102030405060708090100

0

1

3

5

7

10

15

20

[s]

s(a) evaluations

image9.emf

Main ECS Control

ECS Sub-control balance dynamics

Physical balance dynamics

[ms]

[s]

[min]

time scale

oleObject2.bin

Main ECS Control

ECS Sub-control balance dynamics

Physical balance dynamics

[ms]

[s]

[min]

time scale

image10.png

image1.emf

Load 1Load 2Load 3Source 2Source 1Power p [W]Power p [W]Power p [W]Power p [W]Power p [W]00000Price v [$/W]Price v [$/W]Price v [$/W]Price v [$/W]Price v [$/W]

