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Abstract 

Modelica is a multi-domain object-oriented modeling 

language designed for time-dependent systems. The time-

dependent part is usually described with “ordinary 

differential equations”. In addition to that, it is possible to 

express algebraic and difference equations. As a result a 

Modelica model will be merged to a hybrid differential 

algebraic equation system. 

The initialization process is prior to each simulation 

and must therefore be solved before any simulation can be 

started. Modelica provides high-level features to describe 

the initialization problem. This leads often into various 

problems. The initialization is usually a system-level 

issue. Therefore, high knowledge about the system is 

necessary. 

In OpenModelica two major methods are implemented 

to solve the initialization problem. Both methods are 

totally different and are used for different initialization 

issues. Both methods will be discussed within this paper. 

Keywords     initialization, hybrid models, homotopy, start 

value, OpenModelica 

1. Introduction 

Primary linguistic constructs of Modelica to specify the 

initialization are initial equations and initial algorithms. It 

is possible that the initialization is not unique, even if 

initial conditions are fully specified. This means that the 

number of unknowns (in the case of initialization) is equal 

to the number of initial conditions. The non-uniqueness is 

caused by nonlinearities. 

As a result, the modeler is not able to control the 

initialization completely, if just initial equations and 

initial algorithms are used. To retain control of the 

initialization, additional linguistic devices such as the 

homotopy operator and variable attributes (e.g. start 

values) are available in Modelica. Since homotopy is 

quite an advanced feature, the modeler may prefer the use 

of start values. 

The influence of start values is in most 

implementations rather small. They are mostly used as an 

initial guess for nonlinear systems. Therefore, it is 

necessary to provide start values for variables, which are 

involved in these nonlinear systems. Moreover, it is 

important to know about dependencies of a given model 

and about suitable start values for just these variables. 

This work will show how it is possible to increase the 

influence of start values during initialization a lot and to 

provide the modeler full control on the solution for his 

initialization problem. This is done by the first major 

method based on numerical algorithms and an extension 

called “Start Value Homotopy”. 

The second major approach is based on symbolical 

transformations. It creates a complete dependence graph 

for the initialization. Hence, the initial equations are 

sorted and transformed to a system that can be explicitly 

evaluated, except involved algebraic loops. This leads to a 

much faster and more accurate solution compared to the 

numeric approach.  

2. Modelica Constructs for Initialization 

Modelica contains several language constructs that 

influence the initialization (see [1]). These constructs can 

be categorized like follows: 

Firstly, there are initial equations and initial algorithms 

that declare additional equations and algorithms to the 

time-dependent system. These special equations and 

algorithms are only active during initialization and are 

added to the simulation equations. In case of a hybrid 

model, when-equations are only considered, if activated 

using the initial() operator. 

 

attribute Real Integer Boolean String 

start X X X X 
fixed X X X  
min/max X X   
nominal X    

Table 2.1. Some available variable attributes that can 

be important for the initialization process. 

 

Secondly, Modelica provides the possibility to define 

variable attributes for each variable. What attributes are 

actually available depend on their type as listed above. 
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These attributes affect the initial solution either 

primarily or secondarily. The usage of the start value 

depends on the variable type (continuous/discrete) and the 

fixed attribute. 

The start value is used as an initial guess, if 

fixed=false. Otherwise, the start value implicitly 

generates an initial equation v=start(v) for a 

continuous variable and pre(v)=start(v) for a discrete 

variable. 

 

v(start=𝑣𝑠𝑡𝑎𝑟𝑡) fixed=true fixed=false 

ty
p

e 
o

f 
𝑣

 

continuous 
initial equation: 
𝑣 = 𝑣𝑠𝑡𝑎𝑟𝑡  

initial guess 
of 𝑣 

discrete 
initial equation: 
𝑝𝑟𝑒(𝑣) = 𝑣𝑠𝑡𝑎𝑟𝑡  

initial guess 
of 𝑝𝑟𝑒(𝑣) 

Table 2.2. Interpretation of start attribute depending 

on fixed attribute and variable kind. 

 

For this reason, it is important to know about the variable 

type, if the initial condition should be described using 

these attributes. In Modelica it is not necessary to 

explicitly declare a variable as discrete or not. This will 

be automatically detected by a Modelica tool. Due to that 

reason, it is possible that a variable type is changed in a 

higher hierarchical component. This can directly affect 

the corresponding initial equation as introduced above 

and has to be taken into account during the modeling 

process. 

Using the min and max attribute may restrict the 

solution space. This can be utilized, for example, to 

remove physical impractical solutions from the solution 

space. 

The nominal value can be used to setup scaling 

coefficients. This is the only attribute with no default 

value. If a Modelica tool detects that there is no nominal 

value, it can perform some analysis to determine some 

suitable nominal values by itself. 

Finally, Modelica provides the homotopy operator [1] 

that gives the possibility to formulate actual and 

simplified expressions for equations. This concept is 

utilized to improve the convergence properties of the 

nonlinear iterative solver. A Modelica tool is supposed to 

introduce the expression (2.1) with a homotopy parameter 

𝜆 going from 0 to 1. 

 

𝑎𝑐𝑡𝑢𝑎𝑙 ∙ 𝜆 + 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑 ∙ (1 − 𝜆) (2.1) 

3. Mathematical Representation 

The mathematical representation will be kept as simple as 

possible in order to focus on the important aspects. 

Therefore, some vectors (e.g. inputs) with no effect to the 

described issues are ignored. With this limitation a hybrid 

Modelica model can be represented using the following 

notation described in Table 3.1. 

 

symbol description 

𝑥(𝑡)  vector of all states 
𝑥̇(𝑡)  vector of all differentiated states 

𝑦(𝑡)  vector of all continuous algebraic variables 

𝑑(𝑡)  vector of all discrete variables 
𝑝  vector of all parameters 

Table 3.1. Used symbols for mathematical 

representation. 

 

The variables 𝑥̇ and 𝑦 are unknowns during simulation 

and are combined to 𝑧(𝑡). 

 

𝑧(𝑡) ≔ (𝑥̇(𝑡) 𝑦(𝑡) 𝑑(𝑡))
⊤

 (3.1) 

 

The simulation equations can be written as given below. 

 

𝑓1 (𝑥(𝑡), 𝑥̇(𝑡), 𝑦(𝑡), 𝑑(𝑡), 𝑑
𝑝𝑟𝑒(𝑡), 𝑝, 𝑡) = 0 

⋮ 

𝑓𝑛 (𝑥(𝑡), 𝑥̇(𝑡), 𝑦(𝑡), 𝑑(𝑡), 𝑑
𝑝𝑟𝑒(𝑡), 𝑝, 𝑡) = 0 

(3.2) 

 

To efficiently evaluate 𝑧(𝑡), equations (3.2) are 

transformed to explicit state space representation (3.3). 

 

𝑧(𝑡) = 𝑔 (𝑥(𝑡), 𝑑𝑝𝑟𝑒(𝑡), 𝑝, 𝑡) (3.3) 

 

The representation (3.3) is not always achievable in an 

analytic form. But, due to the implicit function theorem 

such a representation exists, if the corresponding Jacobian 

is regular. A Modelica tool typically performs the 

following transformation steps, in order to increase the 

efficiency. This mathematical representation and the 

transformation steps of a Modelica model are illustrated 

using the following example. 

 

 model MathRep 

𝑥 
  Real x1(start=2.0, fixed=true), 

       x2(start=4); 

𝑦   Real y1, y2, y3(start=-1.5); 

𝑑   Real d1; 

 initial equation 

ℎ1   pre(d1) = -0.5 + y1; 

 equation 

𝑓1   0 = -y2 + sin(y3); 

𝑓2   der(x1) = sqrt(x1) + time - d1; 

𝑓3   0 = x1 + y2 + y3 + 1; 

𝑓4   0 = x1 + y1 + x1*y1; 

𝑓5 

  when {initial(), sample(0.1, 0.1)} 

  then 

    d1 = pre(d1) - y1 + y2; 

  end when; 

𝑓6   der(x2) = x1 + y1; 

 end MathRep; 

Listing 3.1. Example model “MathRep”. 
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Based on a bipartite graph representation of the equation 

system (see Figure 3.1) a matching algorithm assigns each 

variable exactly one equation [4].  

 

 
Figure 3.1. Bipartite graph representation and result 

of the matching for the time-dependent system of 

example model “MathRep”. 

 

The next step is to determine a recursive evaluation order. 

Due to algebraic loops the result is a block-lower-

triangular form (see (3.4)). This is done by determine the 

strong components using methods like Tarjan’s algorithm 

[5]. 

 

 
Figure 3.2. Directed graph representation and result 

of the sorting for the example model “MathRep”. 
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1 1 0 0 0 0
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0 1 1 1 0 0

0 0 1 0 1 0

0 0 0 1 0 1 )

 
 
 
 

 

 

(3.4) 

 

More efficiency is gained by so-called tearing algorithms 

[6], [7], which further reduce the size of algebraic loops. 

The principle of the simulation is based on the concept 

that at a given point in time, especially at the initial time 

𝑡0, the states, left limit of discrete variables as well as all 

free parameters are known. A basic principle is that 

parameters are constant during simulation and set by the 

user. Modelica provides via the attribute fixed the 

possibility that parameters are “free” during the 

initialization process. The initialization process calculates 

all needed variables at 𝑡0. 

The vector 𝜔(𝑡0) contains these additional unknowns 

during initialization. It consists of all states 𝑥(𝑡0), all 

unfixed parameters 𝑝𝑓𝑟𝑒𝑒  and the left limit of all discrete 

variables 𝑑𝑝𝑟𝑒(𝑡0).  

 

𝜔(𝑡0) ≔  (𝑥(𝑡0) 𝑝𝑓𝑟𝑒𝑒 𝑑𝑝𝑟𝑒(𝑡0))
⊤

 (3.5) 

 

In order to describe initial conditions additional equations 

are needed. Mathematically, it is helpful to define the 

same number of equations than unknowns. If less or more 

equations than unknowns are given, special treatments are 

necessary and are described further down.  

The initial conditions can be written as illustrated 

below. 

 

ℎ1 (𝑥(𝑡0), 𝑥̇(𝑡0), 𝑦(𝑡0), 𝑑(𝑡0), 𝑑
𝑝𝑟𝑒(𝑡0), 𝑝, 𝑡0) = 0 

⋮ (3.6) 

ℎ𝑚 (𝑥(𝑡0), 𝑥̇(𝑡0), 𝑦(𝑡0), 𝑑(𝑡0), 𝑑
𝑝𝑟𝑒(𝑡0), 𝑝, 𝑡0) = 0 

 

The goal of the initialization is to determine valid values 

for 𝜔(𝑡0). Example models will be discussed within the 

following sections. 

4. Numeric Approach 

The numeric approach is the first of two major 

approaches in OpenModelica to solve the initialization 

problem. The basic version was already presented in [2] 

and has been successfully applied in [3]. 

 

min
𝜔(𝑡0)

𝜙 (𝜔(𝑡0), 𝑧(𝑡0), 𝑝
𝑓𝑖𝑥𝑒𝑑 , 𝑡0) → 0 

s.t. 

𝑧(𝑡0) = 𝑔 (𝜔(𝑡0), 𝑝
𝑓𝑖𝑥𝑒𝑑 , 𝑡0) 

𝜔𝑚𝑖𝑛 ≤ 𝜔(𝑡0) ≤ 𝜔
𝑚𝑎𝑥  

with 

𝜙(. ) =∑ℎ𝑖 (𝜔(𝑡0), 𝑧(𝑡0), 𝑝
𝑓𝑖𝑥𝑒𝑑 , 𝑡0)

𝑖

2

 

(4.1) 

 

The basic idea is to transform the initialization problem 

into an optimization problem with an optimum that is 

equal to the initial solution. This is done by interpreting 

all initial equations as residual ones, which are squared 

and accumulated to the objective function 𝜙. It becomes 

zero if all equations are satisfied.  

𝑥̇2 

𝑥̇1 

𝑦1 

𝑦2 

𝑦3 

𝑓1 

𝑓2 

𝑓3 

𝑓4 

𝑓5 

𝑓6 𝑑1 

𝑥̇2 | 𝑓6 

𝑥̇1 | 𝑓2 

𝑦1 | 𝑓4 

𝑦2 | 𝑓1 

𝑦3 | 𝑓3 

𝑑1 | 𝑓5 
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4.1 Under/Over-Determined Systems 

Often, the modeler misses to fully describe initial 

conditions to a Modelica model. For the initialization 

process of such a model it is crucial to provide a 

determined system. The numeric approach adds additional 

initial equations by numeric model analysis. Therefore, 

the Jacobian 
𝜕ℎ

𝜕𝜔
(𝜔𝑠𝑡𝑎𝑟𝑡) is numerically approximated and 

the maximum of the absolute values is selected for each 

column. Until the initial system is determined the fixed 

attribute of the variable related to the smallest values are 

set to true. The heuristics is based on the fact that these 

variables have the least influence on the initial system 

near to the start values 𝜔𝑠𝑡𝑎𝑟𝑡. Therefore, additional initial 

equations are introduced, which hopefully provide a 

solvable initial system. 

In some cases, Modelica models can be over-

determined, e.g. when initial equations are formulated 

locally in sub-components. If the over-all initial system 

consists of redundant equations, however fully determines 

the solution, the current numeric approach can deal with 

such systems by design [2], [3]. 

4.2 Scaling 

Many problems are hard to solve, since the values of the 

involved variables are of different magnitudes. To handle 

such systems variables and equations need to be scaled. In 

general the nominal attribute 𝜔𝑛𝑜𝑚 is used for scaling and 

should be provided by the modeler. By this, the scaling of 

the variable is straightforward like shown in (4.2).  

 

𝜔𝑖
𝑠𝑐𝑎𝑙𝑒𝑑 ≔ (𝜔𝑖

𝑛𝑜𝑚)−1 ∙ 𝜔𝑖  (4.2) 

 

Since the nominal attribute is not available for equations 

suitable scaling coefficients have to be calculated using 

differential error analysis. Therefore, each initial equation 

is approximated by first order taylor expansion. The 

corresponding scaling factor for each equation is 

constructed as illustrated in (4.3). 

 

ℎ(𝜔) ≈ ℎ(𝜔𝑛𝑜𝑚) +
𝜕ℎ(𝜔𝑛𝑜𝑚)

𝜕𝜔1
∙ 𝜔1

𝑛𝑜𝑚

⏟          

𝑠̂1
ℎ𝑗

∙
𝜔1 − 𝜔1

𝑛𝑜𝑚

𝜔1
𝑛𝑜𝑚  

+⋯+
𝜕ℎ(𝜔𝑛𝑜𝑚)

𝜕𝜔𝑛
∙ 𝜔𝑛

𝑛𝑜𝑚

⏟          

𝑠̂𝑛
ℎ𝑗

∙
𝜔𝑛 − 𝜔𝑛

𝑛𝑜𝑚

𝜔𝑛
𝑛𝑜𝑚

 

𝑠̃𝑖
ℎ ≔ {

|𝑠̂𝑖
ℎ| 𝑖𝑓 𝜀 < |𝑠̂𝑖

ℎ|

1 𝑒𝑙𝑠𝑒
 𝑓𝑜𝑟 𝑖 = 1…𝑛 

𝑠ℎ ≔ (𝑚𝑎𝑥{𝑠̃1
ℎ; … ; 𝑠̃𝑛

ℎ} )−1  
ℎ𝑠𝑐𝑎𝑙𝑒𝑑 ≔ (𝑠ℎ)−1 ∙ ℎ 

(4.3) 

4.3 Start Value Homotopy 

Start Value Homotopy is the name of an extension to the 

basic numeric approach within OpenModelica. This 

method uses a different objective function 𝜙. 

 

𝜙(. ) = (1 − 𝜆) ∙ 𝜙0 + 𝜆 ∙ 𝜙1 

𝜆 ∈ [0; 1] ⊂ 𝑅 
(4.4) 

with 

𝜙0(. ) =∑(𝑣 − 𝑣𝑠𝑡𝑎𝑟𝑡)2

∀𝑣

 

𝜙1(. ) =∑ℎ𝑖 (𝜔(𝑡0), 𝑧(𝑡0), 𝑝
𝑓𝑖𝑥𝑒𝑑 , 𝑡0)

𝑖

2

 

(4.5) 

 

The new objective function is a combination of two sub-

objective functions 𝜙0 and 𝜙1. Both are weighted with 

the homotopy parameter 𝜆 (see (4.4)). In the beginning 𝜆 

is equal to zero and gets increased during the initialization 

phase until it is one. As a result the initialization 

algorithm considers in the beginning just 𝜙0 and in the 

end 𝜙1. 
Equation (4.5) shows these sub-objective functions. 𝜙1 

is the same function as the objective function of the basic 

approach. This is quite reasonable, since it should solve 

the same problem. 𝜙0 is a much simpler function which is 

based on all explicitly given start attributes. 

 

 model forest 

𝑥1   Real foxes; 

𝑥2   Real rabbits; 

𝑦1   Real population(start=350); 

𝑦2   Real value; 

𝑝   […] // used parameters 

 initial equation 

ℎ1   der(foxes) = 20; 

ℎ2   value      = 11000; 

 equation 

𝑓1   der(rabbits) = rabbits*g_r –  

     rabbits*foxes*d_rf; 

𝑓2   der(foxes)   = -foxes*d_f +  

     rabbits*foxes*d_rf*g_fr; 

𝑓3   population   = foxes+rabbits; 

𝑓4   value        = priceFox*foxes + 

     priceRabbit*rabbits; 

 end forest; 

Listing 4.1. Example model “forest”. 

 

 
Figure 4.1. Paths within the state space for both initial 

solutions of the example model “forest”. 
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Figure 4.1 shows the iteration paths for two versions of 

the example model “forest” from Listing 4.1. The 

difference between both versions is the start value of 

population. The solid line and the dashed line represent 

the iteration paths for population(start=350) and 

population(start=850), respectively. The two small 

circles are exact solutions of the related nonlinear 

equation system. 

The population equation 𝑓3 equally involves both 

states. In the beginning of the initialization process 𝜆 is 

set to zero, which yields that the objective function 

consists just of 𝜙0 and considers therefore only the start 

value of the population. As a result both states are set to 

half of that start value in the first iteration. As expected 

both paths continue straight to the corresponding solution. 

 

 
Figure 4.2. Homotopy path with 

population(start=350). 

 

 
Figure 4.3. Homotopy path with 

population(start=850). 

 

This numeric approach including the Start Value 

Homotopy feature has been used as the default 

initialization method since the end of 2011.  

5. Symbolic Approach 

This chapter describes the newly developed symbolic 

approach for solving the initialization problem, which has 

been investigated and implemented since the beginning of 

2012. The main idea behind this approach is the use of 

symbolic transformation algorithms (matching, sorting, 

tearing, etc.) that have been sketched in chapter 3 and are 

already available in the OpenModelica environment. 

Using the dependence graph with respect to the 

initialization problem the corresponding equation system 

is transformed to a block-lower-triangular form. Involved 

algebraic loops are further reduced by using tearing 

techniques. 

So far, this approach can only be used for determined 

and under-determined initialization problems. In case of 

an under-determined initialization problem additional 

equations are added automatically, based on symbolic 

model analysis (see section 5.2), until the number of 

unknowns and equations match. The resulting 

initialization equation system can finally be described by 

(5.1) and needs to be solved for the unknowns given by 

(5.2) during initialization. 

 

0 = 𝑓1 (𝜔(𝑡0), 𝑧(𝑡0), 𝑝
𝑓𝑖𝑥𝑒𝑑 , 𝑡0) 

⋮ 

0 = 𝑓𝑛 (𝜔(𝑡0), 𝑧(𝑡0), 𝑝
𝑓𝑖𝑥𝑒𝑑 , 𝑡0) 

 (5.1) 

0 = ℎ1 (𝜔(𝑡0), 𝑧(𝑡0), 𝑝
𝑓𝑖𝑥𝑒𝑑 , 𝑡0) 

⋮ 

0 = ℎ𝑚 (𝜔(𝑡0), 𝑧(𝑡0), 𝑝
𝑓𝑖𝑥𝑒𝑑 , 𝑡0) 

 

𝑧(𝑡0) ≔ (𝑥̇(𝑡0) 𝑦(𝑡0) 𝑑(𝑡0))
⊤

 

𝜔(𝑡0) ≔ (𝑥(𝑡0) 𝑝𝑓𝑟𝑒𝑒 𝑑𝑝𝑟𝑒(𝑡0))
⊤

 
(5.2) 

5.1 Dependence Graph 

The solution process is firstly described on the example 

model “forest” that only involves fixed parameters and 

continuous variables. The result of the matching 

algorithm performed on the corresponding bipartite graph 

is presented in Figure 5.1. 

 

 
Figure 5.1. Bipartite graph representation and result 

of the matching for the example model “forest”. 

 

Tarjan’s algorithm produces the dependence graph below. 

 

 
Figure 5.2. Dependence graph of the initialization 

problem for the example model “forest”. 

der(foxes) 

der(rabbits) 

population 

value 

foxes 

rabbits 

𝑓1 

𝑓2 

𝑓3 

𝑓4 

ℎ1 

ℎ2 

der(foxes) | ℎ1 

der(rabbits) | 𝑓1 

population | 𝑓3 

value | ℎ2 

foxes | 𝑓2 

rabbits | 𝑓4 
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Processing the sorted equation system means that at first 

the variables 𝑣𝑎𝑙𝑢𝑒 and 𝑑𝑒𝑟(𝑓𝑜𝑥𝑒𝑠) are calculated in 

equation ℎ1 and ℎ2, respectively. Then, the variables 

𝑟𝑎𝑏𝑏𝑖𝑡𝑠 and 𝑓𝑜𝑥𝑒𝑠 are calculated simultaneously through 

the equation system 𝑓2 and 𝑓4. Finally, the variables 

𝑑𝑒𝑟(𝑟𝑎𝑏𝑏𝑖𝑡𝑠) and 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 are determined using 𝑓1 

and 𝑓3, respectively. From this evaluation order it is 

immediately clear that a starting value for the population 

will have no influence on the initialization process. This 

behavior was different when using the Start Value 

Homotopy approach. In addition, this initialization 

process is much faster than using the numeric approach. 

But, the modeler has less influence on the final result of 

the initialization. 

5.2 Under-Determined Systems 

As described in section 4.1 it is important to provide a 

determined equation system for initialization. Since it can 

happen that the initial conditions are not fully specified, 

additional equations have to be added to the initialization 

problem. The symbolic initialization approach in 

OpenModelica automatically augments these equations 

based on symbolic model analysis. Additional equations 

are determined by setting the fixed attribute to true of 

such components of 𝜔 that so far cannot be determined 

from the initial equation system. 

This information can be extracted by processing the 

sparsity pattern for the Jacobian 
𝜕ℎ

𝜕𝜔
, which can be seen as 

the collapsed dependence graph of 𝜔. If any component 

of 𝜔 cannot be calculated from the initial equation system 

the whole column is zero. This symbolic method does not 

depend on 𝜔𝑠𝑡𝑎𝑟𝑡 as well as other numerical issues 

compared to the numeric approach.  

5.3 Scaling 

Using the symbolic approach the initialization problem is 

transformed to a block-lower-triangular form. As 

motivated earlier scaling is necessary for finding accurate 

solutions even when values of variables are of different 

magnitudes. Same principles are used as described in 

section 4.2 but only applied on algebraic loops. This 

reduces enormously the number of Jacobian elements to 

be calculated.  

5.4 Hybrid Models 

As mentioned in chapter 3, it is necessary to initialize the 

continuous as well as the discrete part of a Modelica 

model. Using the numerical approach the complete hybrid 

equation system necessary for simulation is considered as 

constraint for the optimization process. This often leads to 

a high-dimensional nonlinear optimization problem 

involving real and discrete variables. Such optimization 

problems are numerically hard to solve. This issue can be 

avoided by symbolic transformation steps, which are also 

used for the simulation. 

In the following, the example model “MathRep” from 

Listing 3.1 will be further analyzed with respect to the 

initialization apporach. This model contains two states 

and one discrete variable. Therefore, 𝜔 becomes the 

following: 

 

𝜔(𝑡0) ≔ (𝑥1(𝑡0) 𝑥2(𝑡0) 𝑑1
𝑝𝑟𝑒(𝑡0))

⊤
 (5.3) 

 

Because there are three variables that need to be 

initialized, it would be necessary that there are also three 

initial conditions given. The model contains just the initial 

conditions ℎ1 as explicitly declared and ℎ2 (see (5.4)) as 

implicitly declared. Therefore, the corresponding 

dependencies from the three unknowns are analyzed and 

the additional equation ℎ3 is automatically derived. 

 

ℎ2 𝑥1 = 𝑥1
𝑠𝑡𝑎𝑟𝑡 (implicitly declared) 

(5.4) 
ℎ3 𝑥2 = 𝑥2

𝑠𝑡𝑎𝑟𝑡 (automatically declared) 

 

 
Figure 5.3. Bipartite graph representation and result 

of the matching for the initial system of example 

model “MathRep”. 

 

Adding this additional information (5.4) to the initial 

equation system the bipartite graph from Figure 5.3 is 

generated. Utilizing Tarjan’s algorithm the dependence 

graph presented in Figure 5.4 is produced. 

Due to this symbolic approach, the original high-

dimensional nonlinear optimization problem involving 

real and discrete variables is to a large extent reduced to 

block-lower triangular form. 

If corresponding algebraic loops still include real and 

discrete variables further techniques need to be applied in 

order to solve these equations. In some cases 

OpenModelica’s tearing heuristic [7] eliminates involved 
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discrete variables. Same applies, if the involved variables 

are of boolean or integer type.  

 

 
Figure 5.4. Directed graph representation and result 

of the sorting for the initial system of example model 

“MathRep”. 

6. Conclusions and Future Work 

This paper describes the principles implemented in the 

OpenModelica environment, which are utilized to 

initialize complex hybrid Modelica models. Two major 

methods, the numeric and symbolic approach, are 

discussed in detail and advantages and disadvantages 

have been pointed out.  

The numeric approach can deal with over-determined 

systems and has been successfully applied in [3]. 

Furthermore, this approach has been extended by the Start 

Value Homotopy method, which gives the modeler more 

control on the initialization process. 

 

 
Figure 6.1. Reduced directed graph representation of 

the initialization problem for the example model 

“MathRep”. 

 

The symbolic approach outperforms the numeric 

treatment of the initialization problem with respect to 

performance and solvability in case of large and hybrid 

systems. With the numeric approach it was so far not 

possible to initialize the bigger part of model examples in 

the Modelica Standard Library (MSL). Today, most of 

MSL examples are initialized efficiently using the 

symbolic approach. 

In case of under-determined initialization problems 

both approaches introduce additional equations, based on 

model analysis, in order to generate determined initial 

systems. 

In the future, the two approaches will be more 

enhanced within the OpenModelica environment. The 

dependence graph achieved by the symbolic approach can 

be reduced to represent only the information necessary for 

determining the initial unknown vector 𝜔 (see Figure 6.1 

in comparison to Figure 5.4). 

Up to now, the Start Value Homotopy method 

considers all explicitly given start values, which might be 

not desirable within an object-oriented Modelica drag-

and-drop environment. This should be improved by 

introducing a special Start Value Homotopy annotation 

keyword. In addition, the Start Value Homotopy feature 

as well as methods for over-determined systems will be 

further investigated in order to be integrated into the 

symbolic approach. 
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