

5th International Workshop on Equation-Based Object-Oriented Modeling

Languages and Tools, 19 April, 2013, University of Nottingham, UK.

Copyright is held by the author/owner(s). The proceedings are published by

Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp_home/index.en.aspx?issue=084

EOOLT 2013 website:
http://www.eoolt.org/2013/

Initialization of Equation-based Hybrid Models within

OpenModelica

Lennart A. Ochel1, Bernhard Bachmann1
1Department Mathematics and Engineering, University of Applied Sciences Bielefeld, Germany,

{lennart.ochel,bernhard.bachmann}@fh-bielefeld.de

Abstract

Modelica is a multi-domain object-oriented modeling

language designed for time-dependent systems. The time-

dependent part is usually described with “ordinary

differential equations”. In addition to that, it is possible to

express algebraic and difference equations. As a result a

Modelica model will be merged to a hybrid differential

algebraic equation system.

The initialization process is prior to each simulation

and must therefore be solved before any simulation can be

started. Modelica provides high-level features to describe

the initialization problem. This leads often into various

problems. The initialization is usually a system-level

issue. Therefore, high knowledge about the system is

necessary.

In OpenModelica two major methods are implemented

to solve the initialization problem. Both methods are

totally different and are used for different initialization

issues. Both methods will be discussed within this paper.

Keywords initialization, hybrid models, homotopy, start

value, OpenModelica

1. Introduction

Primary linguistic constructs of Modelica to specify the

initialization are initial equations and initial algorithms. It

is possible that the initialization is not unique, even if

initial conditions are fully specified. This means that the

number of unknowns (in the case of initialization) is equal

to the number of initial conditions. The non-uniqueness is

caused by nonlinearities.

As a result, the modeler is not able to control the

initialization completely, if just initial equations and

initial algorithms are used. To retain control of the

initialization, additional linguistic devices such as the

homotopy operator and variable attributes (e.g. start

values) are available in Modelica. Since homotopy is

quite an advanced feature, the modeler may prefer the use

of start values.

The influence of start values is in most

implementations rather small. They are mostly used as an

initial guess for nonlinear systems. Therefore, it is

necessary to provide start values for variables, which are

involved in these nonlinear systems. Moreover, it is

important to know about dependencies of a given model

and about suitable start values for just these variables.

This work will show how it is possible to increase the

influence of start values during initialization a lot and to

provide the modeler full control on the solution for his

initialization problem. This is done by the first major

method based on numerical algorithms and an extension

called “Start Value Homotopy”.

The second major approach is based on symbolical

transformations. It creates a complete dependence graph

for the initialization. Hence, the initial equations are

sorted and transformed to a system that can be explicitly

evaluated, except involved algebraic loops. This leads to a

much faster and more accurate solution compared to the

numeric approach.

2. Modelica Constructs for Initialization

Modelica contains several language constructs that

influence the initialization (see [1]). These constructs can

be categorized like follows:

Firstly, there are initial equations and initial algorithms

that declare additional equations and algorithms to the

time-dependent system. These special equations and

algorithms are only active during initialization and are

added to the simulation equations. In case of a hybrid

model, when-equations are only considered, if activated

using the initial() operator.

attribute Real Integer Boolean String

start X X X X
fixed X X X
min/max X X
nominal X

Table 2.1. Some available variable attributes that can

be important for the initialization process.

Secondly, Modelica provides the possibility to define

variable attributes for each variable. What attributes are

actually available depend on their type as listed above.

97

http://www.ep.liu.se/ecp_home/index.en.aspx?issue=084
http://www.eoolt.org/2013/
mailto:lennart.ochel@fh-bielefeld.de?subject=EOOLT%202013:%20Initialization%20of%20equation%20based%20hybrid-models%20within%20OpenModelica
mailto:bernhard.bachmann@fh-bielefeld.de?subject=EOOLT%202013:%20Initialization%20of%20equation%20based%20hybrid-models%20within%20OpenModelica

These attributes affect the initial solution either

primarily or secondarily. The usage of the start value

depends on the variable type (continuous/discrete) and the

fixed attribute.

The start value is used as an initial guess, if

fixed=false. Otherwise, the start value implicitly

generates an initial equation v=start(v) for a

continuous variable and pre(v)=start(v) for a discrete

variable.

v(start=𝑣𝑠𝑡𝑎𝑟𝑡) fixed=true fixed=false

ty
p

e
o

f
𝑣

continuous
initial equation:
𝑣 = 𝑣𝑠𝑡𝑎𝑟𝑡

initial guess
of 𝑣

discrete
initial equation:
𝑝𝑟𝑒(𝑣) = 𝑣𝑠𝑡𝑎𝑟𝑡

initial guess
of 𝑝𝑟𝑒(𝑣)

Table 2.2. Interpretation of start attribute depending

on fixed attribute and variable kind.

For this reason, it is important to know about the variable

type, if the initial condition should be described using

these attributes. In Modelica it is not necessary to

explicitly declare a variable as discrete or not. This will

be automatically detected by a Modelica tool. Due to that

reason, it is possible that a variable type is changed in a

higher hierarchical component. This can directly affect

the corresponding initial equation as introduced above

and has to be taken into account during the modeling

process.

Using the min and max attribute may restrict the

solution space. This can be utilized, for example, to

remove physical impractical solutions from the solution

space.

The nominal value can be used to setup scaling

coefficients. This is the only attribute with no default

value. If a Modelica tool detects that there is no nominal

value, it can perform some analysis to determine some

suitable nominal values by itself.

Finally, Modelica provides the homotopy operator [1]

that gives the possibility to formulate actual and

simplified expressions for equations. This concept is

utilized to improve the convergence properties of the

nonlinear iterative solver. A Modelica tool is supposed to

introduce the expression (2.1) with a homotopy parameter

𝜆 going from 0 to 1.

𝑎𝑐𝑡𝑢𝑎𝑙 ∙ 𝜆 + 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑 ∙ (1 − 𝜆) (2.1)

3. Mathematical Representation

The mathematical representation will be kept as simple as

possible in order to focus on the important aspects.

Therefore, some vectors (e.g. inputs) with no effect to the

described issues are ignored. With this limitation a hybrid

Modelica model can be represented using the following

notation described in Table 3.1.

symbol description

𝑥(𝑡) vector of all states
�̇�(𝑡) vector of all differentiated states

𝑦(𝑡) vector of all continuous algebraic variables

𝑑(𝑡) vector of all discrete variables
𝑝 vector of all parameters

Table 3.1. Used symbols for mathematical

representation.

The variables �̇� and 𝑦 are unknowns during simulation

and are combined to 𝑧(𝑡).

𝑧(𝑡) ≔ (�̇�(𝑡) 𝑦(𝑡) 𝑑(𝑡))
⊤

 (3.1)

The simulation equations can be written as given below.

𝑓1 (𝑥(𝑡), �̇�(𝑡), 𝑦(𝑡), 𝑑(𝑡), 𝑑
𝑝𝑟𝑒(𝑡), 𝑝, 𝑡) = 0

⋮

𝑓𝑛 (𝑥(𝑡), �̇�(𝑡), 𝑦(𝑡), 𝑑(𝑡), 𝑑
𝑝𝑟𝑒(𝑡), 𝑝, 𝑡) = 0

(3.2)

To efficiently evaluate 𝑧(𝑡), equations (3.2) are

transformed to explicit state space representation (3.3).

𝑧(𝑡) = 𝑔 (𝑥(𝑡), 𝑑𝑝𝑟𝑒(𝑡), 𝑝, 𝑡) (3.3)

The representation (3.3) is not always achievable in an

analytic form. But, due to the implicit function theorem

such a representation exists, if the corresponding Jacobian

is regular. A Modelica tool typically performs the

following transformation steps, in order to increase the

efficiency. This mathematical representation and the

transformation steps of a Modelica model are illustrated

using the following example.

 model MathRep

𝑥
 Real x1(start=2.0, fixed=true),

 x2(start=4);

𝑦 Real y1, y2, y3(start=-1.5);

𝑑 Real d1;

 initial equation

ℎ1 pre(d1) = -0.5 + y1;

 equation

𝑓1 0 = -y2 + sin(y3);

𝑓2 der(x1) = sqrt(x1) + time - d1;

𝑓3 0 = x1 + y2 + y3 + 1;

𝑓4 0 = x1 + y1 + x1*y1;

𝑓5

 when {initial(), sample(0.1, 0.1)}

 then

 d1 = pre(d1) - y1 + y2;

 end when;

𝑓6 der(x2) = x1 + y1;

 end MathRep;

Listing 3.1. Example model “MathRep”.

98

Based on a bipartite graph representation of the equation

system (see Figure 3.1) a matching algorithm assigns each

variable exactly one equation [4].

Figure 3.1. Bipartite graph representation and result

of the matching for the time-dependent system of

example model “MathRep”.

The next step is to determine a recursive evaluation order.

Due to algebraic loops the result is a block-lower-

triangular form (see (3.4)). This is done by determine the

strong components using methods like Tarjan’s algorithm

[5].

Figure 3.2. Directed graph representation and result

of the sorting for the example model “MathRep”.

 𝑦3 𝑦2 𝑦1 𝑑1 �̇�2 �̇�1

𝑓3
𝑓1
𝑓4
𝑓5
𝑓6
𝑓2

|

|

(

1 1 0 0 0 0
1 1 0 0 0 0
0 0 1 0 0 0

0 1 1 1 0 0

0 0 1 0 1 0

0 0 0 1 0 1)

(3.4)

More efficiency is gained by so-called tearing algorithms

[6], [7], which further reduce the size of algebraic loops.

The principle of the simulation is based on the concept

that at a given point in time, especially at the initial time

𝑡0, the states, left limit of discrete variables as well as all

free parameters are known. A basic principle is that

parameters are constant during simulation and set by the

user. Modelica provides via the attribute fixed the

possibility that parameters are “free” during the

initialization process. The initialization process calculates

all needed variables at 𝑡0.

The vector 𝜔(𝑡0) contains these additional unknowns

during initialization. It consists of all states 𝑥(𝑡0), all

unfixed parameters 𝑝𝑓𝑟𝑒𝑒 and the left limit of all discrete

variables 𝑑𝑝𝑟𝑒(𝑡0).

𝜔(𝑡0) ≔ (𝑥(𝑡0) 𝑝𝑓𝑟𝑒𝑒 𝑑𝑝𝑟𝑒(𝑡0))
⊤

 (3.5)

In order to describe initial conditions additional equations

are needed. Mathematically, it is helpful to define the

same number of equations than unknowns. If less or more

equations than unknowns are given, special treatments are

necessary and are described further down.

The initial conditions can be written as illustrated

below.

ℎ1 (𝑥(𝑡0), �̇�(𝑡0), 𝑦(𝑡0), 𝑑(𝑡0), 𝑑
𝑝𝑟𝑒(𝑡0), 𝑝, 𝑡0) = 0

⋮ (3.6)

ℎ𝑚 (𝑥(𝑡0), �̇�(𝑡0), 𝑦(𝑡0), 𝑑(𝑡0), 𝑑
𝑝𝑟𝑒(𝑡0), 𝑝, 𝑡0) = 0

The goal of the initialization is to determine valid values

for 𝜔(𝑡0). Example models will be discussed within the

following sections.

4. Numeric Approach

The numeric approach is the first of two major

approaches in OpenModelica to solve the initialization

problem. The basic version was already presented in [2]

and has been successfully applied in [3].

min
𝜔(𝑡0)

𝜙 (𝜔(𝑡0), 𝑧(𝑡0), 𝑝
𝑓𝑖𝑥𝑒𝑑 , 𝑡0) → 0

s.t.

𝑧(𝑡0) = 𝑔 (𝜔(𝑡0), 𝑝
𝑓𝑖𝑥𝑒𝑑 , 𝑡0)

𝜔𝑚𝑖𝑛 ≤ 𝜔(𝑡0) ≤ 𝜔
𝑚𝑎𝑥

with

𝜙(.) =∑ℎ𝑖 (𝜔(𝑡0), 𝑧(𝑡0), 𝑝
𝑓𝑖𝑥𝑒𝑑 , 𝑡0)

𝑖

2

(4.1)

The basic idea is to transform the initialization problem

into an optimization problem with an optimum that is

equal to the initial solution. This is done by interpreting

all initial equations as residual ones, which are squared

and accumulated to the objective function 𝜙. It becomes

zero if all equations are satisfied.

�̇�2

�̇�1

𝑦1

𝑦2

𝑦3

𝑓1

𝑓2

𝑓3

𝑓4

𝑓5

𝑓6 𝑑1

�̇�2 | 𝑓6

�̇�1 | 𝑓2

𝑦1 | 𝑓4

𝑦2 | 𝑓1

𝑦3 | 𝑓3

𝑑1 | 𝑓5

99

4.1 Under/Over-Determined Systems

Often, the modeler misses to fully describe initial

conditions to a Modelica model. For the initialization

process of such a model it is crucial to provide a

determined system. The numeric approach adds additional

initial equations by numeric model analysis. Therefore,

the Jacobian
𝜕ℎ

𝜕𝜔
(𝜔𝑠𝑡𝑎𝑟𝑡) is numerically approximated and

the maximum of the absolute values is selected for each

column. Until the initial system is determined the fixed

attribute of the variable related to the smallest values are

set to true. The heuristics is based on the fact that these

variables have the least influence on the initial system

near to the start values 𝜔𝑠𝑡𝑎𝑟𝑡. Therefore, additional initial

equations are introduced, which hopefully provide a

solvable initial system.

In some cases, Modelica models can be over-

determined, e.g. when initial equations are formulated

locally in sub-components. If the over-all initial system

consists of redundant equations, however fully determines

the solution, the current numeric approach can deal with

such systems by design [2], [3].

4.2 Scaling

Many problems are hard to solve, since the values of the

involved variables are of different magnitudes. To handle

such systems variables and equations need to be scaled. In

general the nominal attribute 𝜔𝑛𝑜𝑚 is used for scaling and

should be provided by the modeler. By this, the scaling of

the variable is straightforward like shown in (4.2).

𝜔𝑖
𝑠𝑐𝑎𝑙𝑒𝑑 ≔ (𝜔𝑖

𝑛𝑜𝑚)−1 ∙ 𝜔𝑖 (4.2)

Since the nominal attribute is not available for equations

suitable scaling coefficients have to be calculated using

differential error analysis. Therefore, each initial equation

is approximated by first order taylor expansion. The

corresponding scaling factor for each equation is

constructed as illustrated in (4.3).

ℎ(𝜔) ≈ ℎ(𝜔𝑛𝑜𝑚) +
𝜕ℎ(𝜔𝑛𝑜𝑚)

𝜕𝜔1
∙ 𝜔1

𝑛𝑜𝑚

⏟

�̂�1
ℎ𝑗

∙
𝜔1 − 𝜔1

𝑛𝑜𝑚

𝜔1
𝑛𝑜𝑚

+⋯+
𝜕ℎ(𝜔𝑛𝑜𝑚)

𝜕𝜔𝑛
∙ 𝜔𝑛

𝑛𝑜𝑚

⏟

�̂�𝑛
ℎ𝑗

∙
𝜔𝑛 − 𝜔𝑛

𝑛𝑜𝑚

𝜔𝑛
𝑛𝑜𝑚

�̃�𝑖
ℎ ≔ {

|�̂�𝑖
ℎ| 𝑖𝑓 𝜀 < |�̂�𝑖

ℎ|

1 𝑒𝑙𝑠𝑒
 𝑓𝑜𝑟 𝑖 = 1…𝑛

𝑠ℎ ≔ (𝑚𝑎𝑥{�̃�1
ℎ; … ; �̃�𝑛

ℎ})−1
ℎ𝑠𝑐𝑎𝑙𝑒𝑑 ≔ (𝑠ℎ)−1 ∙ ℎ

(4.3)

4.3 Start Value Homotopy

Start Value Homotopy is the name of an extension to the

basic numeric approach within OpenModelica. This

method uses a different objective function 𝜙.

𝜙(.) = (1 − 𝜆) ∙ 𝜙0 + 𝜆 ∙ 𝜙1

𝜆 ∈ [0; 1] ⊂ 𝑅
(4.4)

with

𝜙0(.) =∑(𝑣 − 𝑣𝑠𝑡𝑎𝑟𝑡)2

∀𝑣

𝜙1(.) =∑ℎ𝑖 (𝜔(𝑡0), 𝑧(𝑡0), 𝑝
𝑓𝑖𝑥𝑒𝑑 , 𝑡0)

𝑖

2

(4.5)

The new objective function is a combination of two sub-

objective functions 𝜙0 and 𝜙1. Both are weighted with

the homotopy parameter 𝜆 (see (4.4)). In the beginning 𝜆

is equal to zero and gets increased during the initialization

phase until it is one. As a result the initialization

algorithm considers in the beginning just 𝜙0 and in the

end 𝜙1.
Equation (4.5) shows these sub-objective functions. 𝜙1

is the same function as the objective function of the basic

approach. This is quite reasonable, since it should solve

the same problem. 𝜙0 is a much simpler function which is

based on all explicitly given start attributes.

 model forest

𝑥1 Real foxes;

𝑥2 Real rabbits;

𝑦1 Real population(start=350);

𝑦2 Real value;

𝑝 […] // used parameters

 initial equation

ℎ1 der(foxes) = 20;

ℎ2 value = 11000;

 equation

𝑓1 der(rabbits) = rabbits*g_r –

 rabbits*foxes*d_rf;

𝑓2 der(foxes) = -foxes*d_f +

 rabbits*foxes*d_rf*g_fr;

𝑓3 population = foxes+rabbits;

𝑓4 value = priceFox*foxes +

 priceRabbit*rabbits;

 end forest;

Listing 4.1. Example model “forest”.

Figure 4.1. Paths within the state space for both initial

solutions of the example model “forest”.

100

Figure 4.1 shows the iteration paths for two versions of

the example model “forest” from Listing 4.1. The

difference between both versions is the start value of

population. The solid line and the dashed line represent

the iteration paths for population(start=350) and

population(start=850), respectively. The two small

circles are exact solutions of the related nonlinear

equation system.

The population equation 𝑓3 equally involves both

states. In the beginning of the initialization process 𝜆 is

set to zero, which yields that the objective function

consists just of 𝜙0 and considers therefore only the start

value of the population. As a result both states are set to

half of that start value in the first iteration. As expected

both paths continue straight to the corresponding solution.

Figure 4.2. Homotopy path with

population(start=350).

Figure 4.3. Homotopy path with

population(start=850).

This numeric approach including the Start Value

Homotopy feature has been used as the default

initialization method since the end of 2011.

5. Symbolic Approach

This chapter describes the newly developed symbolic

approach for solving the initialization problem, which has

been investigated and implemented since the beginning of

2012. The main idea behind this approach is the use of

symbolic transformation algorithms (matching, sorting,

tearing, etc.) that have been sketched in chapter 3 and are

already available in the OpenModelica environment.

Using the dependence graph with respect to the

initialization problem the corresponding equation system

is transformed to a block-lower-triangular form. Involved

algebraic loops are further reduced by using tearing

techniques.

So far, this approach can only be used for determined

and under-determined initialization problems. In case of

an under-determined initialization problem additional

equations are added automatically, based on symbolic

model analysis (see section 5.2), until the number of

unknowns and equations match. The resulting

initialization equation system can finally be described by

(5.1) and needs to be solved for the unknowns given by

(5.2) during initialization.

0 = 𝑓1 (𝜔(𝑡0), 𝑧(𝑡0), 𝑝
𝑓𝑖𝑥𝑒𝑑 , 𝑡0)

⋮

0 = 𝑓𝑛 (𝜔(𝑡0), 𝑧(𝑡0), 𝑝
𝑓𝑖𝑥𝑒𝑑 , 𝑡0)

 (5.1)

0 = ℎ1 (𝜔(𝑡0), 𝑧(𝑡0), 𝑝
𝑓𝑖𝑥𝑒𝑑 , 𝑡0)

⋮

0 = ℎ𝑚 (𝜔(𝑡0), 𝑧(𝑡0), 𝑝
𝑓𝑖𝑥𝑒𝑑 , 𝑡0)

𝑧(𝑡0) ≔ (�̇�(𝑡0) 𝑦(𝑡0) 𝑑(𝑡0))
⊤

𝜔(𝑡0) ≔ (𝑥(𝑡0) 𝑝𝑓𝑟𝑒𝑒 𝑑𝑝𝑟𝑒(𝑡0))
⊤

(5.2)

5.1 Dependence Graph

The solution process is firstly described on the example

model “forest” that only involves fixed parameters and

continuous variables. The result of the matching

algorithm performed on the corresponding bipartite graph

is presented in Figure 5.1.

Figure 5.1. Bipartite graph representation and result

of the matching for the example model “forest”.

Tarjan’s algorithm produces the dependence graph below.

Figure 5.2. Dependence graph of the initialization

problem for the example model “forest”.

der(foxes)

der(rabbits)

population

value

foxes

rabbits

𝑓1

𝑓2

𝑓3

𝑓4

ℎ1

ℎ2

der(foxes) | ℎ1

der(rabbits) | 𝑓1

population | 𝑓3

value | ℎ2

foxes | 𝑓2

rabbits | 𝑓4

101

Processing the sorted equation system means that at first

the variables 𝑣𝑎𝑙𝑢𝑒 and 𝑑𝑒𝑟(𝑓𝑜𝑥𝑒𝑠) are calculated in

equation ℎ1 and ℎ2, respectively. Then, the variables

𝑟𝑎𝑏𝑏𝑖𝑡𝑠 and 𝑓𝑜𝑥𝑒𝑠 are calculated simultaneously through

the equation system 𝑓2 and 𝑓4. Finally, the variables

𝑑𝑒𝑟(𝑟𝑎𝑏𝑏𝑖𝑡𝑠) and 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 are determined using 𝑓1

and 𝑓3, respectively. From this evaluation order it is

immediately clear that a starting value for the population

will have no influence on the initialization process. This

behavior was different when using the Start Value

Homotopy approach. In addition, this initialization

process is much faster than using the numeric approach.

But, the modeler has less influence on the final result of

the initialization.

5.2 Under-Determined Systems

As described in section 4.1 it is important to provide a

determined equation system for initialization. Since it can

happen that the initial conditions are not fully specified,

additional equations have to be added to the initialization

problem. The symbolic initialization approach in

OpenModelica automatically augments these equations

based on symbolic model analysis. Additional equations

are determined by setting the fixed attribute to true of

such components of 𝜔 that so far cannot be determined

from the initial equation system.

This information can be extracted by processing the

sparsity pattern for the Jacobian
𝜕ℎ

𝜕𝜔
, which can be seen as

the collapsed dependence graph of 𝜔. If any component

of 𝜔 cannot be calculated from the initial equation system

the whole column is zero. This symbolic method does not

depend on 𝜔𝑠𝑡𝑎𝑟𝑡 as well as other numerical issues

compared to the numeric approach.

5.3 Scaling

Using the symbolic approach the initialization problem is

transformed to a block-lower-triangular form. As

motivated earlier scaling is necessary for finding accurate

solutions even when values of variables are of different

magnitudes. Same principles are used as described in

section 4.2 but only applied on algebraic loops. This

reduces enormously the number of Jacobian elements to

be calculated.

5.4 Hybrid Models

As mentioned in chapter 3, it is necessary to initialize the

continuous as well as the discrete part of a Modelica

model. Using the numerical approach the complete hybrid

equation system necessary for simulation is considered as

constraint for the optimization process. This often leads to

a high-dimensional nonlinear optimization problem

involving real and discrete variables. Such optimization

problems are numerically hard to solve. This issue can be

avoided by symbolic transformation steps, which are also

used for the simulation.

In the following, the example model “MathRep” from

Listing 3.1 will be further analyzed with respect to the

initialization apporach. This model contains two states

and one discrete variable. Therefore, 𝜔 becomes the

following:

𝜔(𝑡0) ≔ (𝑥1(𝑡0) 𝑥2(𝑡0) 𝑑1
𝑝𝑟𝑒(𝑡0))

⊤
 (5.3)

Because there are three variables that need to be

initialized, it would be necessary that there are also three

initial conditions given. The model contains just the initial

conditions ℎ1 as explicitly declared and ℎ2 (see (5.4)) as

implicitly declared. Therefore, the corresponding

dependencies from the three unknowns are analyzed and

the additional equation ℎ3 is automatically derived.

ℎ2 𝑥1 = 𝑥1
𝑠𝑡𝑎𝑟𝑡 (implicitly declared)

(5.4)
ℎ3 𝑥2 = 𝑥2

𝑠𝑡𝑎𝑟𝑡 (automatically declared)

Figure 5.3. Bipartite graph representation and result

of the matching for the initial system of example

model “MathRep”.

Adding this additional information (5.4) to the initial

equation system the bipartite graph from Figure 5.3 is

generated. Utilizing Tarjan’s algorithm the dependence

graph presented in Figure 5.4 is produced.

Due to this symbolic approach, the original high-

dimensional nonlinear optimization problem involving

real and discrete variables is to a large extent reduced to

block-lower triangular form.

If corresponding algebraic loops still include real and

discrete variables further techniques need to be applied in

order to solve these equations. In some cases

OpenModelica’s tearing heuristic [7] eliminates involved

�̇�2

�̇�1

𝑦1

𝑦2

𝑦3

𝑓1

𝑓2

𝑓3

𝑓4

𝑓5

𝑓6 𝑑1

𝑥1

𝑥2

𝑑1
𝑝𝑟𝑒

ℎ1

ℎ2

ℎ3

102

discrete variables. Same applies, if the involved variables

are of boolean or integer type.

Figure 5.4. Directed graph representation and result

of the sorting for the initial system of example model

“MathRep”.

6. Conclusions and Future Work

This paper describes the principles implemented in the

OpenModelica environment, which are utilized to

initialize complex hybrid Modelica models. Two major

methods, the numeric and symbolic approach, are

discussed in detail and advantages and disadvantages

have been pointed out.

The numeric approach can deal with over-determined

systems and has been successfully applied in [3].

Furthermore, this approach has been extended by the Start

Value Homotopy method, which gives the modeler more

control on the initialization process.

Figure 6.1. Reduced directed graph representation of

the initialization problem for the example model

“MathRep”.

The symbolic approach outperforms the numeric

treatment of the initialization problem with respect to

performance and solvability in case of large and hybrid

systems. With the numeric approach it was so far not

possible to initialize the bigger part of model examples in

the Modelica Standard Library (MSL). Today, most of

MSL examples are initialized efficiently using the

symbolic approach.

In case of under-determined initialization problems

both approaches introduce additional equations, based on

model analysis, in order to generate determined initial

systems.

In the future, the two approaches will be more

enhanced within the OpenModelica environment. The

dependence graph achieved by the symbolic approach can

be reduced to represent only the information necessary for

determining the initial unknown vector 𝜔 (see Figure 6.1

in comparison to Figure 5.4).

Up to now, the Start Value Homotopy method

considers all explicitly given start values, which might be

not desirable within an object-oriented Modelica drag-

and-drop environment. This should be improved by

introducing a special Start Value Homotopy annotation

keyword. In addition, the Start Value Homotopy feature

as well as methods for over-determined systems will be

further investigated in order to be integrated into the

symbolic approach.

References

[1] Modelica Association, Modelica® - A Unified Object-

Oriented Language for Systems Modeling - Language

Specification - Version 3.3, 2012

[2] Bernhard Bachmann, et.al., Robust Initialization of

Differential Algebraic Equations. Modelica’2006

Proceedings - Volume 2, pp. 607, 2006.

[3] Francesco Casella, et.al., Overdetermined Steady-State

Initialization Problems in Object-Oriented Fluid System

Models. Modelica’2008 Proceedings - Volume 1, pp. 311,

2008.

[4] Jens Frenkel, et.al., Survey of appropriate matching

algorithms for large scale systems of differential algebraic

equations. Modelica'2012 Proceedings, 2012.

[5] Robert Tarjan, Depth-first search and linear graph

algorithms. SIAM Journal on Computing, Vol. 1, No. 2,

1972.

[6] Hilding Elmqvist and Martin Otter, Methods for Tearing

Systems of Equations in Object-Oriented Modeling.

Proceedings of the Conference on Modeling and

Simulation, eds. Guasch and Huber, pp. 326-332., 1994.

[7] Emanuele Carpanzano, Order reduction of General

Nonlinear DAE Systems by Automatic Tearing,

Mathematical and Computer Modeling of Dynamical

Systems. Vol. 6 No. 2, pp. 145-168, 2000.

�̇�2 | 𝑓2

�̇�1 | 𝑓2

𝑦1 | 𝑓4

𝑦2 | 𝑓1

𝑦3 | 𝑓3

𝑑1 | 𝑓5

𝑥1 | ℎ2 𝑥2 | ℎ3

𝑑1
𝑝𝑟𝑒

 | ℎ1

𝑦1 | 𝑓4

𝑥1 | ℎ2 𝑥2 | ℎ3

𝑑1
𝑝𝑟𝑒

 | ℎ1

103

	1. Introduction
	2. Modelica Constructs for Initialization
	3. Mathematical Representation
	4. Numeric Approach
	4.1 Under/Over-Determined Systems
	4.2 Scaling
	4.3 Start Value Homotopy

	5. Symbolic Approach
	5.1 Dependence Graph
	5.2 Under-Determined Systems
	5.3 Scaling
	5.4 Hybrid Models

	6. Conclusions and Future Work

