

5th International Workshop on Equation-Based Object-Oriented Modeling
Languages and Tools, 19 April, 2013, University of Nottingham, UK.

Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp_home/index.en.aspx?issue=084

EOOLT 2013 website:
http://www.eoolt.org/2013/

Models for Distributed Real-Time Simulation in a
Vehicle Co-Simulator Setup

Anders Andersson1 Peter Fritzson2
1Swedish National Road and Transportation Research Institute, Sweden, anders.andersson@vti.se

2IDA, Linköping University, Sweden, peter.fritzson@liu.se

Abstract
A car model in Modelica has been developed to be used
in a new setup for distributed real-time simulation where
a moving base car simulator is connected with a real car
in a chassis dynamometer via a 500m fiber optic
communication link. The new co-simulator set-up can be
used in a number of configurations where hardware in the
loop can be interchanged with software in the loop. The
models presented in this paper are the basic blocks chosen
for modeling the system in the context of a distributed
real-time simulation, estimating parameters for the
powertrain model, the choice of numeric solver, and the
interaction with the solver for real-time properties.

Keywords: Modelica, real-time, distributed,
communications link

1. Introduction
Vehicles are today becoming increasingly complex
systems. An important part of a vehicle is the powertrain
which converts energy in a stored form (fuel) to kinetic
energy in order to move the vehicle. Recent developments
to cope with increasing demands on low fuel consumption
and other environmental aspects have introduced several
new concepts including e.g. hybrid (combined electrical
and fuel) vehicles on the market.

The new vehicles create new challenges. Questions
like the following can be relevant:
• “How do we control the charging of the batteries

optimally?”
• “Does an automatic gearbox change gears in the way

the driver desires?”
• "Does our Human Machine Interface which should

help the driver to drive more economically achieve its
goal?”

One way to get answers to such questions rather
quickly and in a cost efficient way is to use simulation
and simulators. Simulation scenarios can be built in many
different ways and one approach is to include hardware in

the simulation to increase its accuracy [1].
With these benefits in mind cooperation was started

between the Swedish National Road and Transport
Research Institute (VTI), and Linköping University,
including the Vehicular systems group at ISY and the
PELAB group at IDA.

The VTI Simulator III (Figure 1) hardware at VTI has
been connected via a fiber optic link to the Vehicle
propulsion laboratory at Linköping University. A more
detailed description of the hardware can be found in [2].

Using the VTI Simulator III it is possible to do a
driving experiment, e.g. adjust the road environment or
change vehicle models. Since the driving experiment is a
controlled experiment, repeatable driving scenarios can be
achieved. It is also possible to test safety critical situations
in a controlled and safe way.

In the Vehicle propulsion laboratory it is possible to
equip different cars with a chassis dynamometers setup
where the dynamometers can be used for both accelerating
and decelerating the vehicle. The chassis dynamometers
are mobile and one person can fit them on a car by
moving them around, thus enabling a fast switch between
different cars. Connecting these facilities constitute a good
platform for testing new powertrain solutions and also
improve the fidelity of the VTI Simulator III by using a
powertrain in the loop.

Even though new cars could be equipped quickly in the
Vehicle propulsion laboratory there is also a need for a
model of the setup with which different ideas can be
tested in the simulators at VTI before using a vehicle in
the chassis dynamometers setup.

Modelica [3], [4], is a modeling language which
features properties such as acausal and object-oriented
modeling. It has been demonstrated that it is possible to
create models applicable for real-time simulation using
Modelica [5], [6]. The goal of this work is to build upon
an existing hardware model by splitting it into sub-
systems and porting parts of it to the Modelica language.
The long term aim in this work is to model the complete
setup with the car and the system in the Vehicle
propulsion laboratory providing a flexible framework for
testing distributed simulation scenarios and to run the
models in real-time together with VTI Simulator III.

This paper is organized as follows: in Section 2 we give
an introduction to the different hardware facilities and the
connection between them. In Section 3 we present the
Modelica models for the different hardware parts and in

131

Section 4 we show performance tests on the models. The
work conducted so far is then summarized in Section 5
which also includes some future work.

2. Hardware Facilities
The facilities used in this study are the VTI Simulator III
and the chassis dynamometer lab at Linköping University.
To control the vehicle in the chassis dynamometer lab a
pedal robot has been constructed. These physical systems
will be described in the following sections.

2.1 VTI Simulator III

The Swedish National Road and Transport Research
Institute (VTI) is an independent Swedish research
institute. The main research areas at VTI are
infrastructure, traffic, transportation systems. To conduct
research within these areas one important tool is vehicle
simulators. The history of moving base simulators at VTI
goes back to the late 1970’s, and today VTI has three
advanced moving base simulators.

The moving base simulators are mostly involved in
behavioral studies where research questions such as “How
does a driver react in this critical situation?” and “Can my
invention detect if a driver is sleepy?” can be investigated.

One of these advanced moving base simulators is the
VTI Simulator III which is located in Linköping. This
simulator is the one used in this work. A picture of the
VTI Simulator III can be seen in Figure 1.

Figure 1. The VTI moving base Simulator III in
Linköping.

The motion system in VTI Simulator III has four degrees
of freedom where the large outer linear motion can be
used for lateral or longitudinal motion. On this motion
system the driver is positioned inside a dome in a car
cabin which is a production car that has been cut in half to
fit the dome. The car cabin is mounted on a vibration
table able to produce higher frequency noise reproducing
road deformations, e.g. potholes and cracks [7].

The driver view is presented on a 120 degrees arched
screen where six projectors are used to produce the front
view. Small screens are used as rear view mirrors. The
graphics software used is developed at VTI and includes
the environments. Sound for the driver is presented using

the vehicle speakers complemented with a few extra
speakers resulting in a surround sound setup.

The software for controlling the simulation is
developed at VTI including scenario logics, interfaces to
hardware, graphics and sound, vehicle models and traffic
models. The vehicle model used in most of the studies
when car driving is of interest is a Fortran model. This
model has been developed over several decades and its
functionality has been tested in several studies over the
years. Thus, the validity of the model has been confirmed
repeatedly. The problem with the model is that it takes
more and more time to integrate new functions and thus
there is a desire to migrate the model to another language.

2.2 Vehicle Propulsion Laboratory

At the Vehicular Systems group at Linköping University,
a new chassis dynamometer lab was built in 2011, see [8].
The dynamometers in this lab are mobile and can be
adjusted to fit different vehicles sizes and different
propulsion systems, e.g. front wheel drive or all-wheel
drive. These dynamometers can provide both positive and
negative torque while measuring the torque output from
the equipped vehicle within 0.1 percent accuracy.

When running the system, the car is attached to the
dynamometers by removing the wheels and connecting the
wheel hubs to the dynamometers, see Figure 2. When all
driving wheel hubs have been connected the exhaust is
connected to the ventilation system. At this stage it is now
possible to start the system and place a driver in the car.
He can now start to drive by turning the car key and
pressing the accelerator pedal.

Figure 2. Vehicle mounted at Vehicular Systems chassis
dynamometer laboratory at LiU.

2.3 Chassis Dynamometer Vehicle Model

The measured torque output from the vehicle results in
vehicle speed and acceleration. Therefore, the
dynamometers have to simulate resistance forces equal to
those experienced when driving on a road.

These resistance forces come from rolling resistance,
Froll, air resistance, Fair, and incline resistance (gravity
when going uphill or downhill), Fclimb. Thus, the incline
forces are not only resistance uphill but also acceleration
downhill, since the chassis dynamometers can provide

132

both a negative and a positive torque to the wheels. The
acceleration, a, of the vehicle is calculated as

where m is the mass of the vehicle and Ftot are the total
forces acting on the vehicle. Fprop is calculated from the
measured torques at the wheels using

where Ti are the measured torques at the wheel hubs and
rw is the radius of the wheel.

The resistance forces are given as:

Here cr is the rolling resistance coefficient, g is the
gravitational constant, cd is aerodynamic resistance
constant, Af is the vehicle front area, Áair is the density of
the air, v is the speed of the vehicle, v0 is the relative wind
speed and p is the incline of the road. Values for
parameters used in this study are shown in Table 1.

Table 1. Used values for the vehicle model parameters.

Parameter Value
M 1401 [kg]

cd 0.320 [-]

Af 2.0 [m2]

cr 0.01 [-]

rw 0.3 [m]

Signals measured from the chassis dynamometer are then
sent to the VTI Simulator III using the UDP protocol. The
list of signals is presented in Table 2.

Table 2. Data sent from the chassis dynamometers.

Signal Unit Description
ni [rpm] Vehicle wheel speed

Ti [Nm] Vehicle wheel torque

vl [km/h] Longitudinal velocity

vv [km/h] Vertical vehicle speed

rroad [m] Road curvature radius

H [°] Heading, relative origin

h [m] Elevation of road

p [°] Incline

dTP [m] Distance since start

tTP [s] Time since start

Ti [°C] Dynamometer temperature

Sd,i [-] Dynamometer status

S [-] System status

2.4 Pedal Robot

The driver positioned in the VTI Simulator III can control
the vehicle by pressing the accelerator or the brake pedal.
The signals emitted by the simulator also have to
influence the vehicle in the chassis dynamometers lab and
thus a pedal robot was constructed. The pedal robot
mimics the driver input in the VTI Simulator III so that
the vehicle will receive the driver input. The control
parameters are the accelerator pedal position and the brake
pressure. The pedal robot is depicted in Figure 3.

One design choice during the construction of the pedal
robot was to only include accelerator and brake pedals.
Thus, only vehicles with automatic gear are considered.
This design choice limits testing of vehicles but the effort
needed to add manual gear change to the pedal robot was
considered to be too time-consuming. This design choice
limits the input signals needed by the pedal robot to
accelerator pedal position and brake pedal pressure.

Figure 3. Pedal robot installed in the vehicle in the chassis
dynamometer lab.

2.5 Network Performance

To connect the two hardware facilities together, the VTI
Simulator III at VTI and the chassis dynamometers at
Linköping University, it was decided to use optical fiber.
Since the distance between the facilities is approximately
500 m, an optical fiber link was a viable option. The
resulting network can thus be considered as a local
network.

To test the network connection a round trip time test
was performed. Packets which resemble the packages that
are sent from the VTI Simulator III software were sent at
200 Hz which is the speed the VTI Simulator III kernel
loop runs at. The result from sending one million packets
is shown in Table 3.

133

Table 3. Statistics from the connection between facilities.
Number of packages 1 000 000

Minimum delay 0.20 ms

Maximum delay 2.17 ms

Median delay 0.22 ms

Dropped packets none

Spikes above 0.5 ms 18

From Table 3 it can be seen that when sending one
million packets no packets were lost. It can also be seen
that there were very few delays longer than 0.5 ms. Based
on the measured performance of the network it was
decided to use the efficient UDP packet switching
protocol for communication between the involved
hardware setups and models during the tests.

3. Modelica Models
Modelica is a language for modeling and simulating
complex physical and technical systems. The initiative to
start the design of the Modelica modeling language was
taken in 1996 in an international effort [15]. The main
features of the language are:
• Object oriented approach
• Acausal equation-based modeling
• Hybrid (continuous-time and discrete-time) modeling

Since Modelica allows acausal modeling the model code
is close to the physical equations describing the system
behavior. This supports a more intuitive modeling process
and provides a higher level of abstraction. Various
commercial and open-source tools support the design,
compilation and simulation of Modelica models. In the
course of this work we have tested our models with both
OpenModelica [10] and Dymola [11].

When porting the model to Modelica, an important
question is what parts of the model to export to which
separate subsystems. As for any large model there are
alternative choices regarding how to split it into
submodels. In this work the solution to this issue was
more or less dictated by the hardware we want to model.

Thus the model uses the same UDP network interface
as the chassis dynamometers lab, and network packets to
and from the VTI Simulator III will have the same format
when using a model. The resulting model partitioning
consists of a Modelica car model used in the VTI
Simulator III and of another Modelica model of the
chassis dynamometers setup.

3.1 Powertrain Model

The powertrain model is split into two parts, the engine
and the gearbox. To model the engine in the Fortran car
model in the VTI Simulator III an engine map is used.
This engine map consists of a 12 by 12 matrix where the
engine rotational speed and throttle are taken as input and
the output is engine torque.

Using such a matrix has been sufficient for many
performed studies while still being simple. Thus, such an

engine model is implemented in Modelica using a
Modelica.Blocks.Tables.CombiTable2D model
from the Modelica standard library, MSL, with
smoothness set to Modelica.Blocks.Types.
Smoothness.LinearSegments. Instead of using
throttle as input to the engine map it was changed to pedal
position resulting in

Here is the output torque from the engine, is
the accelerator pedal position scaled between zero to one
and is the engine rotational speed.

The engine rotational speed is also limited in the model
to prevent the engine to infinitely increase rotational
speed.

Looking at the gearbox inside the Fortran car model it
is constructed using for-loops and break statements. The
possibility to translate these parts, loops with break
statements, which are quite nonphysical, to a Modelica
model was investigated, but it was decided to create a new
basic model instead. The created model uses the following
equations between the gearbox and the wheel hubs:

Here Éclutch is the rotational speed at the clutch, Éfl and Éfr
are the rotational speeds at the wheel hubs, igear is the gear
ratio from the gearbox and final drive, Tclutch is the torque
at the clutch and Tfl and Tfr are the torques at the wheels.

The clutch model’s rotational speed depends on the
clutch position. The following equations are used for the
clutch:

Here is the inertia in the engine, is a
modified clutch adjusted dead zones in the clutch and is
a first order response time.

This model for the gearbox models a manual gear and
the logic for automatic gear changes has to be applied.
This would mean that instead of having clutch pedal and
gear stick handled by a driver, physical or modeled, the
clutch and gear signals are handled by logics with
accelerator pedal as input from the driver.

3.2 Estimating Powertrain Model Parameters

In the chassis dynamometer lab there exist signals
measuring the responses at the wheels, e.g. engine
rotational speed and torques. To add other necessary
signals for the parameterization of a powertrain model, an
OBD II sensor was used. The OBD II sensor is capable of

134

logging 5 parameters at a speed of 2-4 Hz which might be
too slow for dynamic testing, but for static tests it was
deemed sufficient. As the two systems used for measuring
data both save time stamps a time synchronization using
the Network Time Protocol [12] was performed before the
measurements.

Starting with estimating the gear ratios, the chassis
dynamometer setup wheel rotational speed and time
stamps were logged. From the OBD II sensor engine
rotational speed and time stamps were logged. For every
gear the driver started at a low speed which was
maintained for approximately one minute. The driver then
increased speed to another stationary speed. This
procedure of increasing speed was repeated two to three
times giving a measurement of the gear ratios with both
low and high engine rotational speeds.

The measurements from the chassis dynamometers are
made at a higher frequency. Thus, to achieve equal
positions in time, linear interpolation is used to get logged
wheel rotational speed at the same time instances as the
engine rotational speed. A least square approximation is
then used to estimate the gear ratios and the estimated
ratios are shown in Table 4.

Table 4. Measured gear ratios from car mounted in the
chassis dynamometer lab.

Gear Ratio

1 16.70

2 10.08

3 6.79

4 4.97

5 3.79

6 3.06

In Figure 4 the relation between the engine rotational
speed and the wheel rotational speed using measured gear
ratio for gear one is shown.

Figure 4. Comparison of engine rotational speed, blue
curve, and vehicle wheel speeds multiplied with the gear
ratio, red curve, at gear one.

We continue by measuring a static engine map. In this
setup we use the OBD II sensor to measure time, engine
rotational speed, and accelerator pedal position. Before
starting any measurements the engine was run at high
load to reduce variations in temperature during the
measurements. Measurements for each operating point
were done during approximately 30 seconds when the

engine torque output had stabilized. The resulting engine
map is shown in Figure 5.

Figure 5. Measured engine map from a car mounted in the
chassis dynamometer lab.

In the used cabin in the VTI Simulator III the red zone of
the engine rotational speed starts at 6400 rpm with a stop
at 7000 rpm. To take this into account the engine map is
modified by extrapolating the engine map from 5000 rpm
to 6400 rpm and after that linearly reduce output torque to
7000 rpm. At 7000 rpm the output engine torque is
independent of pedal position and the engine torque where
the driver has released the accelerator pedal is used for
every pedal position. In this case -35.5 Nm.

3.3 Pedal Robot Model

We considered the performance of the pedal robot to be
accurate and fast enough to neglect the effects from it.
Thus, the pedal robot has not been modeled and instead
the pedal signals are sent directly to the chassis
dynamometers model.

3.4 Model of the Chassis Dynamometer Lab

The complete model of the chassis dynamometer lab
consists of three parts. One part handles the longitudinal
vehicle model used to calculate the vehicle speed as
described earlier in the hardware section. The second part
is the vehicle powertrain which from driver pedal input
models wheel torque and rotational speed responses as
shown. The third part is the brake dynamics. To simulate
this setup the complete model had to be extended with a
driver model. A simulation of the complete setup is shown
in Figure 6 where a calm acceleration is performed.

135

Figure 6. A simulation of the complete chassis
dynamometers lab model during a calm acceleration.

The minimum requirement of the complete model is that
it has to run at least at 100 Hz because the chassis
dynamometers send torque and rotational speed data at
this frequency. These signals are important and thus we
want the model to send these signals in the same way the
hardware would do.

The final chassis dynamometer model has 63 equations
where 40 of these are trivial equations. The final model
has 8 continuous states.

3.5 Simulator Car Model

In the VTI Simulator III simulator environment different
vehicle models can be used. One of these models is a ten
degrees of freedom Modelica car model, see [13]. The
model has been compiled from Dymola to Simulink in
Matlab 7.5 where it was further compiled to be used in an
xPC-Target 3.3 environment which is a real-time
environment. For further information about xPC-Target
see [14].

In the Modelica car model the parts regarding the
powertrain have been modified to have the same
connections as to the chassis dynamometers model. Since
the connections are the same it is possible to use the
estimated powertrain model without adjustments in both
the Modelica car model and the chassis dynamometers
model. The connections also make it possible to run the
simulator connected to the chassis dynamometers model
in the same way as if it would be connected to the
hardware in the chassis dynamometers lab.

3.6 Complete Simulator Setup
The complete simulator setup consists of several
components of hardware and Modelica models. An
overview of these components is shown in Figure 7.

Figure 7. An overview of the components in the simulator
environment. Green boxes picture hardware components
and blue boxes picture Modelica model components. Red
boxes picture components where either hardware or a
Modelica model can be used.

Here it can be seen that it is possible to combine these
components in different ways. Examples of combinations
are:
• VTI Simulator III connected to the pedal robot and

the chassis dynamometers.
• VTI Simulator III with the Modelica powertrain

model included in the 10 DOF Modelica car model.
It should be noted that the chassis dynamometers and
connected vehicle either both are in hardware or software
as it is not possible to connect a Modelica powertrain
model to the chassis dynamometers.

One component shown in Figure 7 which has not been
discussed much is the static driver. By static driver we
here mean that the driver has a predefined way of driving,
e.g. change gear from gear 1 to 2 at time 5 s. Another
typical term used for this kind of component is a drive
cycle. Thus, this Modelica model relies heavily on the
time variable and on if statements for controlling driver
output such as the accelerator pedal, the clutch pedal, the
brake pedal and the gear.

4. Results
For the models we have created there are many aspects to
investigate. Our main concern during the initial stages has
been the feasibility of real-time implementation. We
primarily consider two questions:
• How accurately different solvers simulate the model?
• Will the model manage desired time steps?

In the following sections we discuss how our models
perform with respect to these questions.

4.1 Performance of the Chassis Dynamometers
Model

We start here by looking at the first question: "How
accurately different solvers simulate the model?". As a
baseline for comparison the DASSL solver has been used
which is compared to the Euler forward solver. Since
some signals from the chassis dynamometers are sent at
100 Hz this sets the minimal required speed for the model.

Figure 8 shows the difference in acceleration when
using Euler forward or DASSL during the acceleration
maneuver shown in Figure 6. Settings used were a
tolerance of 1e-6 and 2500 intervals. Simulation
environment used was OpenModelica.

136

Figure 8. Difference in acceleration when simulations are
using Euler forward or DASSL as solvers during an
acceleration maneuver.

Here it can be seen that the difference between using
DASSL and Euler forward is comparably small. Since the
difference between DASSL and Euler forward is so small
and we want to keep the setup as simple as possible Euler
forward has been chosen for real-time simulation.

The next concern is if it will be possible to obtain 100
Hz performance during a real-time simulation. To give an
estimate of this the profiler in OpenModelica, [15], has
been used. The results from a run with Euler forward with
a time step of 0.01 s are shown in Table 5.

Table 5. Time measurements from model simulation.

Task Time Fraction

Pre-Initialization 0.000464 1.12%

Initialization 0.000118 0.29%

Event-handling 0.000671 1.62%

Creating output file 0.030664 74.24%

Linearization 0.000000 0.00%

Time steps 0.004043 9.79%

Overhead 0.003650 8.84%

Unknown 0.00216 4.11%

Total simulation time 0.041306 100.00%

In Table 5 we can see that event handling and the time
steps take approximately 0.0047 s which means that it
should be possible to run the model in real-time using
Euler forward with a time step of 0.01 s.

5. Conclusion
The established connection between the VTI Simulator III
and the chassis dynamometer lab has been developed and
this setup shows promising results. For applications it will
be interesting to perform more detailed investigations
regarding modeling and performance issues.

In this paper we have described and presented our first
results on the technical side. A Modelica car model of
appropriate complexity has been adjusted for use in both
OpenModelica and Dymola. A chassis dynamometer
model has been developed which runs in both
OpenModelica and Dymola.

The performance profiler in OpenModelica indicates
that it is possible to run the model in real-time. This

shows that it is promising to continue this work to achieve
a real-time simulation with the VTI Simulator III together
with a Modelica model of the chassis dynamometer setup.

5.1 Future Work

One main future work is to run the parameterized models
in real-time together with the hardware. This should be
investigated using the different possible combinations of
hardware and software. Additionally, some parts of the
model should be improved. For instance, the models for
the pedal robot and the brake dynamics have been over-
simplified and can be enhanced. A model from accelerator
pedal to throttle input could also be further investigated.

Another option to investigate is the use of FMI for real-
time simulation [16]. FMI is a standard for exporting a
compiled model to C-code packaged into a so-called FMU
(Functional Mockup Unit) which can be imported for
simulation within another tool.

The chassis dynamometer model has already been
compiled to a FMU using OpenModelica. A possible
future work is to integrate this FMU with a small cross
platform application. The intention is to run the model on
a stripped Linux computer through this small cross
platform application.

Acknowledgements
The authors would like to thank Tobias Lindell and Per
Öberg for the help with measurements in the chassis
dynamometers lab. The authors would also like to thank
Lena Buffoni for valuable comments and help with the
manuscript.

Partial support for this work has been received from
SSF in the project HiPo, and from Vinnova in the project
RTSIM and in the ITEA2 project MODRIO.

References
[1] X. Hu and E. Azarnasab. From virtual to real – A

progressive simulation-based design framework. In
Discrete-Event Modeling and Simulation, CRC Press, 2010.

[2] A. Andersson, P. Nyberg, H. Sehammar, and P. Öberg.
Vehicle Powertrain Test Bench Co-Simulation with a
Moving Base Simulator Using a Pedal Robot. In SAE
World Congress, number 2013-01-0410, Detroit, USA,
2013.

[3] Modelica Association. Modelica Language Specification
3.3, www.modelica.org, May 2012.

[4] Peter Fritzson. Principles of Object Oriented Modeling and
Simulation with Modelica 2.1, 940 pages, ISBN 0-471-
471631, Wiley-IEEE Press. January 2004.

[5] Elmqvist, H., Mattsson, S., & Olsson, H. Real-time
simulation of detailed vehicle and powertrain dynamics.
SAE SP, 2004.

[6] Otter, M., Schlegel, C., & Elmqvist, H. Modeling and
realtime simulation of an automatic gearbox using
Modelica. Proceedings of ESS, 1997.

[7] A. Bolling, J. Jansson, M. Hjort, M. Lidström, et al. An
approach for realistic simulation of real road condition in a
moving base driving simulator. ASME/Journal of
Computing and Information Science in Engineering, 11(4),
2011.

137

http://www.modelica.org/

[8] P. Öberg, P. Nyberg, and L. Nielsen. A new chassis
dynamometer laboratory for vehicle research. In SAE
World Congress, number 2013-01-0402, Detroit, USA,
2013.

[9] S. Mattson, H. Elmqvist and M. Otter. Physical system
modeling with Modelica. Control Engineering Practice,
6(4), 501–510, 1998.

[10] Open Source Modelica Consortium. OpenModelica Users
Guide version 1.9.0beta, February 2013.
www.openmodelica.org.

[11] Dassault Systems. Dymola Users Guide, version 7.1,
February 2013. www.dymola.com.

[12] D. L. Mills. Internet Time Synchronization: The Network
Time Protocol, IEEE Transactions on Communications,
vol. 39, no. 10, 1991.

[13] J. G. Fernández. A Vehicle Dynamics Model for Driving
Simulators. Master’s thesis at Chalmers University of
Technology, Göteborg, Sweden, 2012.

[14] P. J. Mosterman, S. Prabhu, A. Dowd, J. Glass, T.
Erkkinen, J. Kluza, R. Shenoy. Embedded Real-Time
Control via MATLAB, Simulink, and xPC Target.

[15] M. Huhn, M. Sjölund, W. Chen, C. Schulze & P. Fritzson.
Tool Support for Modelica Real-time Models In
Proceedings of the 8th Modelica Conference, Dresden,
Germany, March 20-22, 2011.

[16] T. Blochwitz, M. Otter, & M. Arnold. The Functional
Mockup Interface for Tool independent Exchange of
Simulation Models. In Proceedings of the 8th Modelica
Conference, (pp. 105–114), 2011.

Appendix

Modelica models for most of the simulated system.

model ChassisDynamometerSystem
 StaticDriver driver;
 ChassisDynamometerVehicleModel
 chassis_dynamometer_vehicle_model;
 volvos40.volvos40powertrain powertrain;
equation
 powertrain.throttle = driver.throttle;
 powertrain.clutch = driver.clutch;
 powertrain.gear = driver.gear;
 powertrain.long_vel =
 chassis_dynamometer_vehicle_model.vl;
 connect(powertrain.fl,
 chassis_dynamometer_vehicle_model.fl);
 connect(powertrain.fr,
 chassis_dynamometer_vehicle_model.fr);
end ChassisDynamometerSystem;

model StaticDriver "driver with
 pre-defined output"
 output Real throttle
 "throttle position scaled [0.0-1.0]";
 output Real clutch
 "clutch positio scaled [0.0-1.0]";
 output Real brake "brake pressure";
 output Integer gear "chosen gear";
 output Real stw_ang

"steering wheel angle";

protected
 constant Real pi=Modelica.Constants.pi;
 constant Real stwamp = (110 * pi) / 180
 "amplitude of the swd manouvre";
equation
 der(throttle) = if time < 17 then 10 *
 (0.5 - throttle) else 10 * (0.3 –
 throttle);
 clutch = if abs(time - 5) < 1 then
 1 - max(0, min(1, abs(time - 5)))
 elseif abs(time - 10) < 1 then
 1 - max(0, min(1, abs(time - 10)))
 elseif abs(time - 20) < 1 then
 1 - max(0, min(1, abs(time - 20)))
 else 0;
 brake = if time < 20 then 0
 elseif time < 30 then 15000
 elseif time < 40 then 0
 elseif time < 55 then 15000
 else 0;
 gear = if time < 5 then 1
 elseif time < 10 then 2
 elseif time < 20 then 3
 elseif time < 35 then 4
 else 3;
 stw_ang = if time < 10 then 0
 elseif time < 10 + (1 / 0.7 * 3) / 4
 then stwamp * sin(2 * pi * 0.7 *
 (time - 10))
 elseif time < 10 + (1 / 0.7 * 3) / 4 +
 0.5 then -stwamp
 elseif time < 10 + (1 / 0.7 * 4) / 4 +
 0.5 then stwamp * sin(2 * pi * 0.7 *
 (time - 10 - 0.5))
 else 0;

end StaticDriver;

model ChassisDynamometerVehicleModel
 "Vehicle model used in the Chassis
 Dynamometer setup at LiU"
 package Interfaces =
Modelica.Mechanics.Rotational.Interfaces;
 Interfaces.Flange_a fl "mechanical
 connection to front left wheel";
 Interfaces.Flange_a fr "mechanical
 connection to front right wheel";
 Interfaces.Flange_b rl "mechanical
 connection to rear left wheel";
 Interfaces.Flange_b rr "mechanical
 connection to rear right wheel";
 Modelica.SIunits.Acceleration a(start =
 0) "vehicle acceleration";
 Modelica.SIunits.Velocity v(start = 0)
 "vehicle speed";
 output Real[4] n "wheel rotational
 speeds";
 output Real[4] M "wheel torque";
 output Real vl "vehicle longitudinal
 speed";
 output Real vv "vehicle lateral speed";
 output Real rroad "road curvature
 radius";
 output Real H "vehicle heading";
 output Real h "elevation of road";
 output Real p "incline";

138

http://www.openmodelica.org/
http://www.dymola.com/

 output Real d_TP "distance since start";
 output Modelica.SIunits.Time t_TP "time
 since start";
 output Modelica.SIunits.Temperature[4] T
 "dynamometer temperature";
protected
 package SI = Modelica.SIunits;
 constant SI.Mass m = 1401 "vehicle
 mass";
 constant SI.CoefficientOfFriction c_d =
 0.32
 "aerodynamic resistance coefficient";
 constant SI.Area A_f = 2.0 "vehicle
 front area";
 constant SI.CoefficientOfFriction c_r =
 0.001 "rolling friction coefficient";
 constant SI.Length r_w = 0.3 "wheel
 radius";
 constant SI.Acceleration g =
 Modelica.Constants.g_n "gravitational
 constant";
 constant SI.Density rho_air = 1.202 "air
 density at an altitude of 200m";
 Real Ftot "total amount of forces acting
 on the vehicle";
 Real Fprop "propulsion forces";
 Real Froll "rolling resistance forces";
 Real Fair "air resistance forces";
 Real Fclimb "vehicle incline forces";
equation
 a = der(v);
 Ftot = m * a;
 Ftot = Fprop - Froll - Fair - Fclimb;
 Fprop = -(fl.tau + fr.tau + rl.tau +
 rr.tau) / r_w;
 Froll = c_r * m * g;
 Fair = (c_d * A_f * rho_air * v * v)/2;
 Fclimb = 0.0;
 der(fl.phi) = v / r_w;
 der(fr.phi) = v / r_w;
 der(rl.phi) = v / r_w;
 der(rr.phi) = v / r_w;
 //Output
 n[1] = v / r_w;
 n[2] = v / r_w;
 n[3] = v / r_w;
 n[4] = v / r_w;
 M[1] = fl.tau;
 M[2] = fr.tau;
 M[3] = rl.tau;
 M[4] = rr.tau;
 vl = v;
 vv = 0.0 "dummy value";
 rroad = 0.0 "dummy value";
 H = 0.0 "dummy value";
 h = 0.0 "dummy value";
 p = 0.0 "dummy value";
 der(d_TP) = v;
 t_TP = time;
 T[1] = 300.0 "dummy value";
 T[2] = 300.0 "dummy value";
 T[3] = 300.0 "dummy value";
 T[4] = 300.0 "dummy value";
end ChassisDynamometerVehicleModel;

139

	Models for Distributed Real-Time Simulation in a Vehicle Co-Simulator Setup
	1. Introduction
	2. Hardware Facilities
	2.1 VTI Simulator III
	2.2 Vehicle Propulsion Laboratory
	2.3 Chassis Dynamometer Vehicle Model
	2.4 Pedal Robot
	2.5 Network Performance

	3. Modelica Models
	3.1 Powertrain Model
	3.2 Estimating Powertrain Model Parameters
	3.3 Pedal Robot Model
	3.4 Model of the Chassis Dynamometer Lab
	3.5 Simulator Car Model
	3.6 Complete Simulator Setup

	4. Results
	4.1 Performance of the Chassis Dynamometers Model

	5. Conclusion
	5.1 Future Work

