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Abstract 
A car model in Modelica has been developed to be used 
in a new setup for distributed real-time simulation where 
a moving base car simulator is connected with a real car 
in a chassis dynamometer via a 500m fiber optic 
communication link. The new co-simulator set-up can be 
used in a number of configurations where hardware in the 
loop can be interchanged with software in the loop. The 
models presented in this paper are the basic blocks chosen 
for modeling the system in the context of a distributed 
real-time simulation, estimating parameters for the 
powertrain model, the choice of numeric solver, and the 
interaction with the solver for real-time properties. 

Keywords:     Modelica, real-time, distributed, 
communications link 

1. Introduction 
Vehicles are today becoming increasingly complex 
systems. An important part of a vehicle is the powertrain 
which converts energy in a stored form (fuel) to kinetic 
energy in order to move the vehicle. Recent developments 
to cope with increasing demands on low fuel consumption 
and other environmental aspects have introduced several 
new concepts including e.g. hybrid (combined electrical 
and fuel) vehicles on the market. 

The new vehicles create new challenges. Questions 
like the following can be relevant: 
• “How do we control the charging of the batteries 

optimally?” 
• “Does an automatic gearbox change gears in the way 

the driver desires?” 
• "Does our Human Machine Interface which should 

help the driver to drive more economically achieve its 
goal?” 

One way to get answers to such questions rather 
quickly and in a cost efficient way is to use simulation 
and simulators. Simulation scenarios can be built in many 
different ways and one approach is to include hardware in 

the simulation to increase its accuracy [1]. 
With these benefits in mind cooperation was started 

between the Swedish National Road and Transport 
Research Institute (VTI), and Linköping University, 
including the Vehicular systems group at ISY and the 
PELAB group at IDA. 

The VTI Simulator III (Figure 1) hardware at VTI has 
been connected via a fiber optic link to the Vehicle 
propulsion laboratory at Linköping University. A more 
detailed description of the hardware can be found in [2]. 

Using the VTI Simulator III it is possible to do a 
driving experiment, e.g. adjust the road environment or 
change vehicle models. Since the driving experiment is a 
controlled experiment, repeatable driving scenarios can be 
achieved. It is also possible to test safety critical situations 
in a controlled and safe way.  

In the Vehicle propulsion laboratory it is possible to 
equip different cars with a chassis dynamometers setup 
where the dynamometers can be used for both accelerating 
and decelerating the vehicle. The chassis dynamometers 
are mobile and one person can fit them on a car by 
moving them around, thus enabling a fast switch between 
different cars. Connecting these facilities constitute a good 
platform for testing new powertrain solutions and also 
improve the fidelity of the VTI Simulator III by using a 
powertrain in the loop. 

Even though new cars could be equipped quickly in the 
Vehicle propulsion laboratory there is also a need for a 
model of the setup with which different ideas can be 
tested in the simulators at VTI before using a vehicle in 
the chassis dynamometers setup.  

Modelica [3], [4], is a modeling language which 
features properties such as acausal and object-oriented 
modeling. It has been demonstrated that it is possible to 
create models applicable for real-time simulation using 
Modelica [5], [6]. The goal of this work is to build upon 
an existing hardware model by splitting it into sub-
systems and porting parts of it to the Modelica language. 
The long term aim in this work is to model the complete 
setup with the car and the system in the Vehicle 
propulsion laboratory providing a flexible framework for 
testing distributed simulation scenarios and to run the 
models in real-time together with VTI Simulator III. 

This paper is organized as follows: in Section 2 we give 
an introduction to the different hardware facilities and the 
connection between them. In Section 3 we present the 
Modelica models for the different hardware parts and in 
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Section 4 we show performance tests on the models. The 
work conducted so far is then summarized in Section 5 
which also includes some future work. 

2. Hardware Facilities 
The facilities used in this study are the VTI Simulator III 
and the chassis dynamometer lab at Linköping University. 
To control the vehicle in the chassis dynamometer lab a 
pedal robot has been constructed. These physical systems 
will be described in the following sections. 

2.1 VTI Simulator III 

The Swedish National Road and Transport Research 
Institute (VTI) is an independent Swedish research 
institute. The main research areas at VTI are 
infrastructure, traffic, transportation systems. To conduct 
research within these areas one important tool is vehicle 
simulators. The history of moving base simulators at VTI 
goes back to the late 1970’s, and today VTI has three 
advanced moving base simulators. 

The moving base simulators are mostly involved in 
behavioral studies where research questions such as “How 
does a driver react in this critical situation?” and “Can my 
invention detect if a driver is sleepy?” can be investigated. 

One of these advanced moving base simulators is the 
VTI Simulator III which is located in Linköping. This 
simulator is the one used in this work. A picture of the 
VTI Simulator III can be seen in Figure 1. 

 

 
Figure 1. The VTI moving base Simulator III in 
Linköping. 

The motion system in VTI Simulator III has four degrees 
of freedom where the large outer linear motion can be 
used for lateral or longitudinal motion. On this motion 
system the driver is positioned inside a dome in a car 
cabin which is a production car that has been cut in half to 
fit the dome. The car cabin is mounted on a vibration 
table able to produce higher frequency noise reproducing 
road deformations, e.g. potholes and cracks [7]. 

The driver view is presented on a 120 degrees arched 
screen where six projectors are used to produce the front 
view. Small screens are used as rear view mirrors. The 
graphics software used is developed at VTI and includes 
the environments. Sound for the driver is presented using 

the vehicle speakers complemented with a few extra 
speakers resulting in a surround sound setup. 

The software for controlling the simulation is 
developed at VTI including scenario logics, interfaces to 
hardware, graphics and sound, vehicle models and traffic 
models. The vehicle model used in most of the studies 
when car driving is of interest is a Fortran model. This 
model has been developed over several decades and its 
functionality has been tested in several studies over the 
years. Thus, the validity of the model has been confirmed 
repeatedly. The problem with the model is that it takes 
more and more time to integrate new functions and thus 
there is a desire to migrate the model to another language. 

2.2 Vehicle Propulsion Laboratory 

At the Vehicular Systems group at Linköping University, 
a new chassis dynamometer lab was built in 2011, see [8]. 
The dynamometers in this lab are mobile and can be 
adjusted to fit different vehicles sizes and different 
propulsion systems, e.g. front wheel drive or all-wheel 
drive. These dynamometers can provide both positive and 
negative torque while measuring the torque output from 
the equipped vehicle within 0.1 percent accuracy. 

When running the system, the car is attached to the 
dynamometers by removing the wheels and connecting the 
wheel hubs to the dynamometers, see Figure 2. When all 
driving wheel hubs have been connected the exhaust is 
connected to the ventilation system. At this stage it is now 
possible to start the system and place a driver in the car. 
He can now start to drive by turning the car key and 
pressing the accelerator pedal. 

 

Figure 2. Vehicle mounted at Vehicular Systems chassis 
dynamometer laboratory at LiU. 

2.3 Chassis Dynamometer Vehicle Model 

The measured torque output from the vehicle results in 
vehicle speed and acceleration. Therefore, the 
dynamometers have to simulate resistance forces equal to 
those experienced when driving on a road. 

These resistance forces come from rolling resistance, 
Froll, air resistance, Fair, and incline resistance (gravity 
when going uphill or downhill), Fclimb. Thus, the incline 
forces are not only resistance uphill but also acceleration 
downhill, since the chassis dynamometers can provide 

132



both a negative and a positive torque to the wheels. The 
acceleration, a, of the vehicle is calculated as 

 

where m is the mass of the vehicle and Ftot are the total 
forces acting on the vehicle. Fprop is calculated from the 
measured torques at the wheels using 

 

where Ti are the measured torques at the wheel hubs and 
rw is the radius of the wheel. 

The resistance forces are given as: 
 

 
 

Here cr is the rolling resistance coefficient, g is the 
gravitational constant, cd is aerodynamic resistance 
constant, Af is the vehicle front area, Áair is the density of 
the air, v is the speed of the vehicle, v0 is the relative wind 
speed and p is the incline of the road. Values for 
parameters used in this study are shown in Table 1. 

Table 1. Used values for the vehicle model parameters. 

Parameter Value 
M 1401 [kg] 

cd 0.320 [-] 

Af 2.0 [m2] 

cr 0.01 [-] 

rw 0.3 [m] 

 

Signals measured from the chassis dynamometer are then 
sent to the VTI Simulator III using the UDP protocol. The 
list of signals is presented in Table 2. 

Table 2. Data sent from the chassis dynamometers. 

Signal Unit Description 
ni [rpm] Vehicle wheel speed 

Ti [Nm] Vehicle wheel torque 

vl [km/h] Longitudinal velocity 

vv [km/h] Vertical vehicle speed 

rroad [m] Road curvature radius 

H [°] Heading, relative origin 

h [m] Elevation of road 

p [°] Incline 

dTP [m] Distance since start 

tTP [s] Time since start 

Ti [°C] Dynamometer temperature 

Sd,i [-] Dynamometer status 

S [-] System status 

 

2.4 Pedal Robot 

The driver positioned in the VTI Simulator III can control 
the vehicle by pressing the accelerator or the brake pedal. 
The signals emitted by the simulator also have to 
influence the vehicle in the chassis dynamometers lab and 
thus a pedal robot was constructed. The pedal robot 
mimics the driver input in the VTI Simulator III so that 
the vehicle will receive the driver input. The control 
parameters are the accelerator pedal position and the brake 
pressure. The pedal robot is depicted in Figure 3. 

One design choice during the construction of the pedal 
robot was to only include accelerator and brake pedals. 
Thus, only vehicles with automatic gear are considered. 
This design choice limits testing of vehicles but the effort 
needed to add manual gear change to the pedal robot was 
considered to be too time-consuming. This design choice 
limits the input signals needed by the pedal robot to 
accelerator pedal position and brake pedal pressure. 
 

 

Figure 3. Pedal robot installed in the vehicle in the chassis 
dynamometer lab. 

2.5 Network Performance 

To connect the two hardware facilities together, the VTI 
Simulator III at VTI and the chassis dynamometers at 
Linköping University, it was decided to use optical fiber. 
Since the distance between the facilities is approximately 
500 m, an optical fiber link was a viable option. The 
resulting network can thus be considered as a local 
network.  

To test the network connection a round trip time test 
was performed. Packets which resemble the packages that 
are sent from the VTI Simulator III software were sent at 
200 Hz which is the speed the VTI Simulator III kernel 
loop runs at. The result from sending one million packets 
is shown in Table 3. 
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Table 3. Statistics from the connection between facilities. 
Number of packages 1 000 000 

Minimum delay 0.20 ms 

Maximum delay 2.17 ms 

Median delay 0.22 ms 

Dropped packets none 

Spikes above 0.5 ms 18 

From Table 3 it can be seen that when sending one 
million packets no packets were lost. It can also be seen 
that there were very few delays longer than 0.5 ms. Based 
on the measured performance of the network it was 
decided to use the efficient UDP packet switching 
protocol for communication between the involved 
hardware setups and models during the tests. 

3. Modelica Models 
Modelica is a language for modeling and simulating 
complex physical and technical systems. The initiative to 
start the design of the Modelica modeling language was 
taken in 1996 in an international effort [15]. The main 
features of the language are: 
• Object oriented approach 
• Acausal equation-based modeling 
• Hybrid (continuous-time and discrete-time) modeling 

Since Modelica allows acausal modeling the model code 
is close to the physical equations describing the system 
behavior. This supports a more intuitive modeling process 
and provides a higher level of abstraction. Various 
commercial and open-source tools support the design, 
compilation and simulation of Modelica models. In the 
course of this work we have tested our models with both 
OpenModelica [10] and Dymola [11]. 

When porting the model to Modelica, an important 
question is what parts of the model to export to which 
separate subsystems. As for any large model there are 
alternative choices regarding how to split it into 
submodels. In this work the solution to this issue was 
more or less dictated by the hardware we want to model. 

Thus the model uses the same UDP network interface 
as the chassis dynamometers lab, and network packets to 
and from the VTI Simulator III will have the same format 
when using a model. The resulting model partitioning 
consists of a Modelica car model used in the VTI 
Simulator III and of another Modelica model of the 
chassis dynamometers setup. 

3.1 Powertrain Model 

The powertrain model is split into two parts, the engine 
and the gearbox. To model the engine in the Fortran car 
model in the VTI Simulator III an engine map is used. 
This engine map consists of a 12 by 12 matrix where the 
engine rotational speed and throttle are taken as input and 
the output is engine torque.  

Using such a matrix has been sufficient for many 
performed studies while still being simple. Thus, such an 

engine model is implemented in Modelica using a 
Modelica.Blocks.Tables.CombiTable2D model 
from the Modelica standard library, MSL, with 
smoothness set to Modelica.Blocks.Types. 
Smoothness.LinearSegments. Instead of using 
throttle as input to the engine map it was changed to pedal 
position resulting in 

 

Here  is the output torque from the engine,  is 
the accelerator pedal position scaled between zero to one 
and  is the engine rotational speed. 

The engine rotational speed is also limited in the model 
to prevent the engine to infinitely increase rotational 
speed. 

Looking at the gearbox inside the Fortran car model it 
is constructed using for-loops and break statements. The 
possibility to translate these parts, loops with break 
statements, which are quite nonphysical, to a Modelica 
model was investigated, but it was decided to create a new 
basic model instead. The created model uses the following 
equations between the gearbox and the wheel hubs: 

 

 

 

Here Éclutch is the rotational speed at the clutch, Éfl and Éfr 
are the rotational speeds at the wheel hubs, igear is the gear 
ratio from the gearbox and final drive, Tclutch is the torque 
at the clutch and Tfl and Tfr are the torques at the wheels. 

The clutch model’s rotational speed depends on the 
clutch position. The following equations are used for the 
clutch: 

 

 

Here  is the inertia in the engine,  is a 
modified clutch adjusted dead zones in the clutch and  is 
a first order response time. 

This model for the gearbox models a manual gear and 
the logic for automatic gear changes has to be applied. 
This would mean that instead of having clutch pedal and 
gear stick handled by a driver, physical or modeled, the 
clutch and gear signals are handled by logics with 
accelerator pedal as input from the driver. 

3.2 Estimating Powertrain Model Parameters 

In the chassis dynamometer lab there exist signals 
measuring the responses at the wheels, e.g. engine 
rotational speed and torques. To add other necessary 
signals for the parameterization of a powertrain model, an 
OBD II sensor was used. The OBD II sensor is capable of 
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logging 5 parameters at a speed of 2-4 Hz which might be 
too slow for dynamic testing, but for static tests it was 
deemed sufficient. As the two systems used for measuring 
data both save time stamps a time synchronization using 
the Network Time Protocol [12] was performed before the 
measurements. 

Starting with estimating the gear ratios, the chassis 
dynamometer setup wheel rotational speed and time 
stamps were logged. From the OBD II sensor engine 
rotational speed and time stamps were logged. For every 
gear the driver started at a low speed which was 
maintained for approximately one minute. The driver then 
increased speed to another stationary speed. This 
procedure of increasing speed was repeated two to three 
times giving a measurement of the gear ratios with both 
low and high engine rotational speeds. 

The measurements from the chassis dynamometers are 
made at a higher frequency. Thus, to achieve equal 
positions in time, linear interpolation is used to get logged 
wheel rotational speed at the same time instances as the 
engine rotational speed. A least square approximation is 
then used to estimate the gear ratios and the estimated 
ratios are shown in Table 4. 

Table 4. Measured gear ratios from car mounted in the 
chassis dynamometer lab. 

Gear Ratio 

1 16.70 

2 10.08 

3 6.79 

4 4.97 

5 3.79 

6 3.06 

In Figure 4 the relation between the engine rotational 
speed and the wheel rotational speed using measured gear 
ratio for gear one is shown. 

 

Figure 4. Comparison of engine rotational speed, blue 
curve, and vehicle wheel speeds multiplied with the gear 
ratio, red curve, at gear one. 

We continue by measuring a static engine map. In this 
setup we use the OBD II sensor to measure time, engine 
rotational speed, and accelerator pedal position. Before 
starting any measurements the engine was run at high 
load to reduce variations in temperature during the 
measurements. Measurements for each operating point 
were done during approximately 30 seconds when the 

engine torque output had stabilized. The resulting engine 
map is shown in Figure 5. 

 

Figure 5. Measured engine map from a car mounted in the 
chassis dynamometer lab. 

In the used cabin in the VTI Simulator III the red zone of 
the engine rotational speed starts at 6400 rpm with a stop 
at 7000 rpm. To take this into account the engine map is 
modified by extrapolating the engine map from 5000 rpm 
to 6400 rpm and after that linearly reduce output torque to 
7000 rpm. At 7000 rpm the output engine torque is 
independent of pedal position and the engine torque where 
the driver has released the accelerator pedal is used for 
every pedal position. In this case -35.5 Nm. 

3.3 Pedal Robot Model 

We considered the performance of the pedal robot to be 
accurate and fast enough to neglect the effects from it. 
Thus, the pedal robot has not been modeled and instead 
the pedal signals are sent directly to the chassis 
dynamometers model. 

3.4 Model of the Chassis Dynamometer Lab 

The complete model of the chassis dynamometer lab 
consists of three parts. One part handles the longitudinal 
vehicle model used to calculate the vehicle speed as 
described earlier in the hardware section. The second part 
is the vehicle powertrain which from driver pedal input 
models wheel torque and rotational speed responses as 
shown. The third part is the brake dynamics. To simulate 
this setup the complete model had to be extended with a 
driver model. A simulation of the complete setup is shown 
in Figure 6 where a calm acceleration is performed. 
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Figure 6. A simulation of the complete chassis 
dynamometers lab model during a calm acceleration. 

The minimum requirement of the complete model is that 
it has to run at least at 100 Hz because the chassis 
dynamometers send torque and rotational speed data at 
this frequency. These signals are important and thus we 
want the model to send these signals in the same way the 
hardware would do. 

The final chassis dynamometer model has 63 equations 
where 40 of these are trivial equations. The final model 
has 8 continuous states. 

3.5 Simulator Car Model 

In the VTI Simulator III simulator environment different 
vehicle models can be used. One of these models is a ten 
degrees of freedom Modelica car model, see [13]. The 
model has been compiled from Dymola to Simulink in 
Matlab 7.5 where it was further compiled to be used in an 
xPC-Target 3.3 environment which is a real-time 
environment. For further information about xPC-Target 
see [14]. 

In the Modelica car model the parts regarding the 
powertrain have been modified to have the same 
connections as to the chassis dynamometers model. Since 
the connections are the same it is possible to use the 
estimated powertrain model without adjustments in both 
the Modelica car model and the chassis dynamometers 
model. The connections also make it possible to run the 
simulator connected to the chassis dynamometers model 
in the same way as if it would be connected to the 
hardware in the chassis dynamometers lab. 

3.6 Complete Simulator Setup 
The complete simulator setup consists of several 
components of hardware and Modelica models. An 
overview of these components is shown in Figure 7. 

 

Figure 7. An overview of the components in the simulator 
environment. Green boxes picture hardware components 
and blue boxes picture Modelica model components. Red 
boxes picture components where either hardware or a 
Modelica model can be used. 

Here it can be seen that it is possible to combine these 
components in different ways. Examples of combinations 
are: 
• VTI Simulator III connected to the pedal robot and 

the chassis dynamometers. 
• VTI Simulator III with the Modelica powertrain 

model included in the 10 DOF Modelica car model. 
It should be noted that the chassis dynamometers and 
connected vehicle either both are in hardware or software 
as it is not possible to connect a Modelica powertrain 
model to the chassis dynamometers. 

One component shown in Figure 7 which has not been 
discussed much is the static driver. By static driver we 
here mean that the driver has a predefined way of driving, 
e.g. change gear from gear 1 to 2 at time 5 s. Another 
typical term used for this kind of component is a drive 
cycle. Thus, this Modelica model relies heavily on the 
time variable and on if statements for controlling driver 
output such as the accelerator pedal, the clutch pedal, the 
brake pedal and the gear. 

4. Results 
For the models we have created there are many aspects to 
investigate. Our main concern during the initial stages has 
been the feasibility of real-time implementation. We 
primarily consider two questions: 
• How accurately different solvers simulate the model? 
• Will the model manage desired time steps? 

In the following sections we discuss how our models 
perform with respect to these questions. 

4.1 Performance of the Chassis Dynamometers 
Model 

We start here by looking at the first question:  "How 
accurately different solvers simulate the model?". As a 
baseline for comparison the DASSL solver has been used 
which is compared to the Euler forward solver. Since 
some signals from the chassis dynamometers are sent at 
100 Hz this sets the minimal required speed for the model. 

Figure 8 shows the difference in acceleration when 
using Euler forward or DASSL during the acceleration 
maneuver shown in Figure 6. Settings used were a 
tolerance of 1e-6 and 2500 intervals. Simulation 
environment used was OpenModelica. 
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Figure 8. Difference in acceleration when simulations are 
using Euler forward or DASSL as solvers during an 
acceleration maneuver. 

Here it can be seen that the difference between using 
DASSL and Euler forward is comparably small. Since the 
difference between DASSL and Euler forward is so small 
and we want to keep the setup as simple as possible Euler 
forward has been chosen for real-time simulation. 

The next concern is if it will be possible to obtain 100 
Hz performance during a real-time simulation. To give an 
estimate of this the profiler in OpenModelica, [15], has 
been used. The results from a run with Euler forward with 
a time step of 0.01 s are shown in Table 5. 

Table 5. Time measurements from model simulation. 

Task Time Fraction 

Pre-Initialization 0.000464 1.12% 

Initialization 0.000118 0.29% 

Event-handling 0.000671 1.62% 

Creating output file 0.030664 74.24% 

Linearization 0.000000 0.00% 

Time steps 0.004043 9.79% 

Overhead 0.003650 8.84% 

Unknown 0.00216 4.11% 

Total simulation time 0.041306 100.00% 

In Table 5 we can see that event handling and the time 
steps take approximately 0.0047 s which means that it 
should be possible to run the model in real-time using 
Euler forward with a time step of 0.01 s. 

5. Conclusion 
The established connection between the VTI Simulator III 
and the chassis dynamometer lab has been developed and 
this setup shows promising results. For applications it will 
be interesting to perform more detailed investigations 
regarding modeling and performance issues. 

In this paper we have described and presented our first 
results on the technical side. A Modelica car model of 
appropriate complexity has been adjusted for use in both 
OpenModelica and Dymola. A chassis dynamometer 
model has been developed which runs in both 
OpenModelica and Dymola. 

The performance profiler in OpenModelica indicates 
that it is possible to run the model in real-time. This 

shows that it is promising to continue this work to achieve 
a real-time simulation with the VTI Simulator III together 
with a Modelica model of the chassis dynamometer setup. 

5.1 Future Work 

One main future work is to run the parameterized models 
in real-time together with the hardware. This should be 
investigated using the different possible combinations of 
hardware and software. Additionally, some parts of the 
model should be improved. For instance, the models for 
the pedal robot and the brake dynamics have been over- 
simplified and can be enhanced. A model from accelerator 
pedal to throttle input could also be further investigated. 

Another option to investigate is the use of FMI for real-
time simulation [16]. FMI is a standard for exporting a 
compiled model to C-code packaged into a so-called FMU 
(Functional Mockup Unit) which can be imported for 
simulation within another tool.  

The chassis dynamometer model has already been 
compiled to a FMU using OpenModelica. A possible 
future work is to integrate this FMU with a small cross 
platform application. The intention is to run the model on 
a stripped Linux computer through this small cross 
platform application. 
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Appendix 
 

Modelica models for most of the simulated system. 
 

model ChassisDynamometerSystem 
  StaticDriver driver; 
  ChassisDynamometerVehicleModel 
   chassis_dynamometer_vehicle_model; 
  volvos40.volvos40powertrain powertrain; 
equation 
  powertrain.throttle = driver.throttle; 
  powertrain.clutch = driver.clutch; 
  powertrain.gear = driver.gear; 
  powertrain.long_vel = 
   chassis_dynamometer_vehicle_model.vl; 
  connect(powertrain.fl, 
    chassis_dynamometer_vehicle_model.fl); 
  connect(powertrain.fr, 
    chassis_dynamometer_vehicle_model.fr); 
end ChassisDynamometerSystem; 
 
 
 
model StaticDriver "driver with 
    pre-defined output" 
  output Real throttle  
   "throttle position scaled [0.0-1.0]"; 
  output Real clutch  
   "clutch positio scaled [0.0-1.0]"; 
  output Real brake "brake pressure"; 
  output Integer gear "chosen gear"; 
  output Real stw_ang  

    

"steering wheel angle"; 

protected 
  constant Real pi=Modelica.Constants.pi; 
  constant Real stwamp = (110 * pi) / 180  
    "amplitude of the swd manouvre"; 
equation 
  der(throttle) = if time < 17 then 10 *  
    (0.5 - throttle) else 10 * (0.3 –   
    throttle); 
  clutch = if abs(time - 5) < 1 then 
    1 - max(0, min(1, abs(time - 5)))  
    elseif abs(time - 10) < 1 then 
      1 - max(0, min(1, abs(time - 10))) 
    elseif abs(time - 20) < 1 then 
      1 - max(0, min(1, abs(time - 20)))  
    else 0; 
  brake = if time < 20 then 0  
    elseif time < 30 then 15000  
    elseif time < 40 then 0  
    elseif time < 55 then 15000   
    else 0; 
  gear = if time < 5 then 1  
    elseif time < 10 then 2  
    elseif time < 20 then 3   
    elseif time < 35 then 4  
    else 3; 
  stw_ang = if time < 10 then 0 
    elseif time < 10 + (1 / 0.7 * 3) / 4  
      then stwamp * sin(2 * pi * 0.7 * 
       (time - 10))  
    elseif time < 10 + (1 / 0.7 * 3) / 4 + 
      0.5 then -stwamp  
    elseif time < 10 + (1 / 0.7 * 4) / 4 +  
      0.5 then stwamp * sin(2 * pi * 0.7 * 
       (time - 10 - 0.5))  
    else 0; 
 
end StaticDriver; 
 
 
model ChassisDynamometerVehicleModel 
  "Vehicle model used in the Chassis  
   Dynamometer setup at LiU" 
  package Interfaces = 
Modelica.Mechanics.Rotational.Interfaces; 
  Interfaces.Flange_a fl "mechanical 
    connection to front left wheel"; 
  Interfaces.Flange_a fr "mechanical  
    connection to front right wheel"; 
  Interfaces.Flange_b rl "mechanical  
    connection to rear left wheel"; 
  Interfaces.Flange_b rr "mechanical  
    connection to rear right wheel"; 
  Modelica.SIunits.Acceleration a(start = 
    0) "vehicle acceleration"; 
  Modelica.SIunits.Velocity v(start = 0) 
   "vehicle speed"; 
  output Real[4] n "wheel rotational 
    speeds"; 
  output Real[4] M "wheel torque"; 
  output Real vl "vehicle longitudinal  
    speed"; 
  output Real vv "vehicle lateral speed"; 
  output Real rroad "road curvature  
    radius"; 
  output Real H "vehicle heading"; 
  output Real h "elevation of road"; 
  output Real p "incline"; 
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  output Real d_TP "distance since start"; 
  output Modelica.SIunits.Time t_TP "time  
    since start"; 
  output Modelica.SIunits.Temperature[4] T  
    "dynamometer temperature"; 
protected 
  package SI = Modelica.SIunits; 
  constant SI.Mass m = 1401 "vehicle 
    mass"; 
  constant SI.CoefficientOfFriction c_d = 
    0.32 
    "aerodynamic resistance coefficient"; 
  constant SI.Area A_f = 2.0 "vehicle  
    front area"; 
  constant SI.CoefficientOfFriction c_r = 
     0.001 "rolling friction coefficient"; 
  constant SI.Length r_w = 0.3 "wheel  
    radius"; 
  constant SI.Acceleration g =  
    Modelica.Constants.g_n "gravitational  
      constant"; 
  constant SI.Density rho_air = 1.202 "air  
    density at an altitude of 200m"; 
  Real Ftot "total amount of forces acting  
    on the vehicle"; 
  Real Fprop "propulsion forces"; 
  Real Froll "rolling resistance forces"; 
  Real Fair "air resistance forces"; 
  Real Fclimb "vehicle incline forces"; 
equation 
  a = der(v); 
  Ftot = m * a; 
  Ftot = Fprop - Froll - Fair - Fclimb; 
  Fprop = -(fl.tau + fr.tau + rl.tau +  
    rr.tau) / r_w; 
  Froll = c_r * m * g; 
  Fair = (c_d * A_f * rho_air * v * v)/2; 
  Fclimb = 0.0; 
  der(fl.phi) = v / r_w; 
  der(fr.phi) = v / r_w; 
  der(rl.phi) = v / r_w; 
  der(rr.phi) = v / r_w; 
  //Output 
  n[1] = v / r_w; 
  n[2] = v / r_w; 
  n[3] = v / r_w; 
  n[4] = v / r_w; 
  M[1] = fl.tau; 
  M[2] = fr.tau; 
  M[3] = rl.tau; 
  M[4] = rr.tau; 
  vl = v; 
  vv = 0.0 "dummy value"; 
  rroad = 0.0 "dummy value"; 
  H = 0.0 "dummy value"; 
  h = 0.0 "dummy value"; 
  p = 0.0 "dummy value"; 
  der(d_TP) = v; 
  t_TP = time; 
  T[1] = 300.0 "dummy value"; 
  T[2] = 300.0 "dummy value"; 
  T[3] = 300.0 "dummy value"; 
  T[4] = 300.0 "dummy value"; 
end ChassisDynamometerVehicleModel; 
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