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ABSTRACT

In this paper we propose an approach to tagging and parsing of historical text, using character-
based SMT methods for translating the historical spelling to a modern spelling before applying
the NLP tools. This way, existing modern taggers and parsers may be used to analyse historical
text instead of training new tools specialised in historical language, which might be hard
considering the lack of linguistically annotated historical corpora. We show that our approach
to spelling normalisation is successful even with small amounts of training data, and that
it is generalisable to several languages. For the two languages presented in this paper, the
proportion of tokens with a spelling identical to the modern gold standard spelling increases
from 64.8% to 83.9%, and from 64.6% to 92.3% respectively, which has a positive impact on
subsequent tagging and parsing using modern tools.
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1 Introduction

Historical language may be regarded as an under-resourced language, with limited access to
digitized and linguistically annotated corpora, and other NLP resources and tools. Furthermore,
it is problematic to develop NLP tools specifically aimed at processing historical text, since the
term ”historical” is a wide concept, including texts from a long period of time in which language
changes. This means that for example a tagger trained on 14th century text will probably not
perform as well on 18th century text. Hence, several taggers would need to be developed for
handling different time periods. This problem is further aggravated by the lack of spelling
conventions in historical time, meaning that orthography may vary greatly between different
authors and genres, or even in the same text written by the same author.

In this paper we propose a method for tagging and parsing of historical text using existing NLP
tools developed for modern language. Our approach makes use of standard SMT techniques for
normalising the historical spelling to a modern spelling, before applying the NLP tools. Since
the machine translation task is performed on a character level, only a small parallel corpus of
historical and modern spelling is needed for training.

We show that this method is successful for automatic annotation of historical text, even with
small amounts of training data. Furthermore, our two case studies illustrate that this method
can be generalised to several languages.

2 SMT-based Tagging and Parsing

The approach to automatic analysis of historical text presented in this paper is illustrated in
Figure 1. The input file is a historical text in its original spelling. This text is first tokenised
using standard tokenisation. The tokenised text is then normalised to a modern spelling, using
character-based SMT, as described further in Section 3. The normalised text is used as input for
tagging and parsing, which is performed by available tools for the modern language. In the last
step, the annotation is projected back to the original spelling. The final output is thus a tagged
and parsed file with the historical spelling preserved.

Figure 1: SMT-based tagging and parsing of historical text.
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3 Normalisation Using SMT

As stated in Section 1, we regard normalisation of historical text as a translation task. In
contrast to traditional translation tasks, normalisation should be performed on a lower level
addressing changes in spelling instead of the translation of words and phrases. Hence, treating
text normalisation as a case of statistical machine translation leads to a character-level approach
without lexical re-ordering. The use of phrase-based SMT in transliteration and character-level
translation between closely related languages has already been shown in (Matthews, 2007;
Vilar et al., 2007; Nakov and Tiedemann, 2012). We will follow their ideas by applying similar
techniques to historical texts.

The basic idea of character-level SMT is that phrases are modeled as character sequences instead
of word sequences. Translation models are then trained on character-aligned parallel corpora,
and language models on character N-grams. Nakov and Tiedemann (2012) have shown that
small parallel training corpora are sufficient for reasonable performance of such an approach.
Language models can be trained on larger monolingual corpora, and higher orders in terms
of N-gram size can be used to ensure fluent and grammatically correct output (Nakov and
Tiedemann, 2012).

The training data in our case is simply a set of word pairs with historical and modern spelling
respectively. In contrast to the application of character-level SMT to related language translation,
we assume a strict one-to-one correspondence between words of the historical text and its
transformation into modern spelling. This simplifies the general setup and ensures that training
examples are sufficiently short to enable efficient training procedures.

Important for the success of character-level SMT is the proper alignment of characters that will
be used to estimate the parameters of the character-based translation model. We follow the
approach of Nakov and Tiedemann (2012) and apply two different tools for this purpose, a
weighted finite state transducer implemented in the m2m-aligner (Jiampojamarn et al., 2007),
and the word alignment toolkit GIZA++ implementing the IBM models used in statistical MT.
Similar to their experiments on related languages, we would like to verify that these alignment
techniques are also effective for training spelling normalisation models for historical texts.

The m2m-aligner implements transducer models based on context-independent edit operations.
Furthermore, the toolkit allows to include operations over character N-grams (instead of single
characters). The transducer is trained using EM on (unaligned) parallel training data. The final
model can then be used to produce a Viterbi alignment between given pairs of character strings.

An example is shown in Figure 2, illustrating the alignment of the Icelandic historical spellings
meðr and giallda to the modern versions meður and galda. In this example, the ε symbol denotes
empty alignments, i.e. insertions and deletions. For instance, the ε symbol in the source word
meðr denotes the insertion of u in the target word meður. Likewise, the ε symbol in the target
word galda denotes the deletion of i as compared to the source word giallda. 2:1 and 1:2
alignments are also possible, as in the case of the alignment of giallda to galda, where the colon
denotes that both letters l and d in the source word correspond to the single letter d in the
target word.
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m|e|ð|ε|r| m|e|ð|u|r|
g|i|a|l|l:d|a| g|ε|a|l|d|a|

Figure 2: Character level alignment.

Similarly, GIZA++ is used to train alignment parameters on parallel training data using
EM. The toolkit supports several word alignment models which are applied in the order of
increasing complexity (see Och (2003) for more details). The final model can then be used
again to produce a Viterbi alignment over the data. Word alignment models are certainly not
developed for character-level alignment and some of their parameters are not suited for this
task. Nevertheless, Nakov and Tiedemann (2012) demonstrate the success of these techniques,
which also outperform the transducer-based approach. Therefore, we will revisit these two
approaches for our purposes.

Finally, Viterbi alignments are used to extract translations of character sequences and their
distributions are used to estimate translation model parameters in the same way as it is done
for word-level phrase-based SMT.

4 Experimental Setup

We will run our experiments on two separate data sets: one for Icelandic and one for Swedish,
as described further in Section 5 and 6 respectively.

In general, we will focus on phrase-based SMT, i.e. a decomposition of translation models
into mappings between non-overlapping character sequences. The SMT engine used is Moses
with all its standard components. We apply a phrase-based model with the common feature
functions: 2 phrase translation probabilities, 2 lexical weights, a phrase penalty feature, a
language model feature and a word penalty. The feature weights are trained using MERT
with BLEU over character-sequences as the objective function. The phrase table scores are
produced using the Moses phrase extraction and scoring methods. The maximum size of a
phrase (sequence of characters) is set to 10. Language models (10-gram models) are estimated
using SRILM (interpolated and smoothed) which are then transformed into binary versions to
be used by KenLM during decoding. Reordering is switched off during decoding (and tuning)
as we assume monotonic alignments.

Training character-based SMT models for text normalisation basically involves the following
steps (see further Section 3):

• Word Alignment

Aligning corresponding words that will serve as the parallel training data for creating
translation models.

• Character alignment

Aligning characters for the entire corpus of aligned word pairs.

• Language modeling

Training character-based language models on monolingual data in the target language.

• Parameter tuning

Tuning character-based SMT on some development data.
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Example: dömmes (historical) – döms (modern)

aligned bigrams:

dö öm mm me es s_
| | \/ | /

dö öm ms s_

mapped to character alignments:

d ö m m e s
| | |/ |/
d ö m s

Figure 3: Character-bigram alignment between a Swedish word in its historical and modern
spelling respectively.

There are various settings and approaches that can be tested for each of these steps. In our
experiments we will look at some important aspects of performing these tasks.

Interestingly, it is possible to adapt well-known alignment techniques to a lower level when
moving from word-based to character-based models as we will see in our experiments. Word
alignment can in fact be modeled in the same way as sentence alignment is modeled otherwise
and character alignment can be performed successfully using word alignment techniques.

For word alignment, we can assume a strong correlation between the length of the original
spelling and the modern spelling of the same word. Futhermore, we can assume that corre-
sponding words contain many corresponding characters as well and that there should be no
re-ordering of words in the normalised version, which leads to monotonic alignments. This is
exactly what is used in common length-based and lexical matching-based sentence alignment
algorithms. We therefore apply a standard sentence alignment tool for the word alignment
task, hunalign (Varga et al., 2005), that combines both features; length correlation and lexical
matches.

Character alignment is a bit more tricky and the relation to word alignment is less clear. In
text normalisation, we would definitely not expect a lot of distortion (which is an important
part of common word alignment models) and the vocabulary size is not comparable to that of a
word alignment task as pointed out by Nakov and Tiedemann (2012). We therefore include
the extension to bigrams as suggested by the same authors and also compare the results with
transducer-based alignments that are developed for character-level transformations.

Character-bigrams include a bit more contextual information that may help the alignment,
which otherwise mainly uses context-independent parameters. Fortunately, links between
bigrams can still easily be mapped back to single character alignments which we need for
training our translation models. See Figure 3 for an illustration of this process.

Similar to standard phrase-based SMT, we then extract mappings between character sequences
of up to seven characters which are consistent with the alignment between characters. The
standard scoring techniques are applied as in word-based models.
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Language modeling can be done in the same way as for word-based models but trained on
character sequences. We use 10-grams as suggested by Nakov and Tiedemann (2012) and
standard smoothing techniques.

Parameter tuning is the final task that needs to be performed for building the character-based
SMT model. We experiment with a standard Minimum Error Rate Training (MERT) optimized
towards BLEU over character sequences on the translation of single words. We also tried
sentence-based decoding with word-level BLEU but the normalisation accuracy was lower than
with our word-based decoding.

4.1 Evaluation

The performance of our SMT-based approach to tagging and parsing of historical text is evaluated
in three aspects: 1) normalisation accuracy, i.e. the percentage of tokens in the automatically
normalised version of the text that are identical to the manually modernised gold standard
version, 2) tagging performance before and after normalisation, and 3) parsing performance
before and after normalisation.

We will look at different alignment settings and data sizes when evaluating the normalisaton
accuracy. Furthermore, we will compare the normalisation accuracy to two baselines, hereafter
referred to as unnormalised and baseline:

1. unnormalised

The proportion of tokens in the unnormalised source text with a spelling identical to the
modern spelling.

2. baseline

The normalisation accuracy achieved when simply replacing each historical word type
with its most frequent modern version observed in the word-aligned training corpus
(leaving previously unseen tokens unchanged).

First, we will look at the case of historical Icelandic texts before moving on to a case study on
Swedish texts. Since the access to corpora and NLP tools differs between the languages, the
experiments are not entirely the same for the two languages, and the results are thus not fully
comparable between the languages. However, for both languages we show that the proposed
approach is successful for automatic annotation of historical text.

5 Case Study 1: Icelandic

For training and tuning of the Icelandic character-based SMT system, we make use of Snorri
Sturluson’s Edda (the Uppsala version DG11), an Icelandic saga available both in its 14th
century spelling and in a manually modernised version (Palsson, 2012). These versions were
automatically aligned using hunalign, and the extracted alignments were manually corrected,
resulting in a parallel corpus of 33,888 entries in total. Training and tuning sets were created
by extracting every 10th sentence to the tuning set, and the rest of the sentences to the training
set. This extraction resulted in a training set of 30,451 token pairs and a tuning set of 3,437
token pairs.

As a language model for the SMT system, we use a subset of the Tagged Icelandic Corpus
of contemporary Icelandic texts (Helgadóttir et al., 2012). In total, this subset consists of
21,613,551 tokens distributed over 12 genres, including for example newspaper text, blog text,
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parliamentary speeches and university essays. We would of course prefer to use the whole
corpus, but at the time of writing, the full corpus has not yet been made available.

Evaluation of normalisation accuracy, as well as tagging results, is performed on a subset of
Ectors saga from the 15th century (Loth, 1962). This text contains 20,811 tokens and is part
of the Icelandic Parsed Historical Corpus, IcePaHC, a manually tagged and parsed diachronic
corpus of texts spanning from 1150 to 2008 (Rögnvaldsson et al., 2012). In the IcePaHC corpus,
the old texts have been manually modernised with regard to spelling. We also have access to
the saga in its 15th century spelling, needed for evaluation purposes.

For tagging, we use the IceNLP tagger (Loftsson and Rögnvaldsson, 2007) trained on the
Icelandic Frequency Dictionary corpus (IFD) of approximately 500,000 tokens from the time
period 1980–1990 (Pind, 1991).

Evaluation of parsing performance was not possible, since we do not have access to a parsed gold
standard corpus in a suitable format. The IcePaHC corpus does include syntactic information,
but in an annotation scheme that is not easily mapped to the one produced by the IceNLP
parser.

5.1 Word Alignment

To train a character-based SMT system on the Edda, the historical and the modern version of
the text has to be aligned on a word level. For this purpose we use hunalign (Varga et al., 2005),
which is in fact a sentence aligner rather than a word aligner. As stated in section 4, for our
specific alignment task we can however assume monotonic alignments without re-ordering and
with a strong correlation between the length of the original spelling and the modern spelling,
which would be a suitable task for sentence alignment. We tried four different ways of using
hunalign for our word alignment task:

1. no split

Input data is one token on each line, with empty lines denoting sentence boundaries.

2. no split +realign

Same as ”no split”, but with the additional flag -realign, in which the aligner is run in
three phases, heuristically building a dictionary based on the identified sentence pairs (in
our case word pairs).

3. split

Same as ”no split”, but with whitespace separating all characters.

4. split +realign

Same as ”split”, but with the additional -realign flag, as described above.

Automatic alignment will inevitably introduce noise in the training data. Since the modern
version is stated to be a modernisation of spelling, not including syntactic normalisation, the
word alignment task is however easier than in an ordinary translation setting. To evaluate the
impact of the different alignment methods on the end result, we ran experiments based on the
GIZA++ unigram setting for character alignment, with training data automatically generated
from the four alignment methods described above, as well as with training data that had been
manually corrected. As illustrated in Table 1, splitting the words into their separate characters
has a positive effect on the alignment results. With the split +realign setting, normalisation
accuracy is 79.2% as compared to 78.8% for the no split setting.
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Approximately two thirds (64.8%) of the original tokens already had a spelling that was identical
to the modern spelling. With the simplistic baseline, replacing each historical word type with
its most frequent modern version observed in the word-aligned training data, normalisation
accuracy increases to 69.8%, which is far from the results achieved for the SMT model.

It is also worth mentioning, that the normalisation accuracy for automatically generated training
data is close to the accuracy achieved for manually corrected training data; 79.2% in the best
hunalign setting as compared to 83.9% for manually corrected data. Hence, if no word-aligned
historical-modern data is available, automatic alignment techniques may successfully be used
to automatically create such a parallel corpus.

Hunalign Model Accuracy

unnormalised 64.8%
baseline 69.8%
no split 78.8%
no split +realign 78.8%
split 79.1%
split +realign 79.2%
manual alignment 83.9%

Table 1: Normalisation accuracy with different methods for alignment of the training data.
Unnormalised = Percentage of tokens in the unnormalised text with a spelling identical to the
modern spelling. Baseline = Normalisation accuracy when replacing each historical word type
with its most frequent modern version observed in the word-aligned training corpus.

5.2 Character Alignment

As mentioned in Section 3, we have experimented on using GIZA++ and m2m aligner models
with different settings for training the character-based SMT systems. The results for different
settings on the Icelandic training corpus are summarised in Table 2.

Alignment Accuracy

unnormalised 64.8%
baseline 69.8%
giza unigram 83.9%
giza bigram 83.5%
m2m 1:1 81.0%
m2m 2:2 83.6%

Table 2: Normalisation accuracy for different character alignment models. Unnormalised =
Percentage of tokens with a spelling identical to the modern spelling before normalisation.
Baseline = Normalisation accuracy when replacing each historical word type with its most
frequent modern version observed in the word-aligned training corpus. Giza uses standard
word alignment models (for character unigrams and bigrams) and m2m uses the WFST with
single character edit operations (1:1) and multi-character operations (2:2).
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As previously stated, approximately two thirds (64.8%) of the original tokens already had a
spelling that was identical to the modern spelling. One could have expected this figure to be
higher, since modern Icelandic is generally seen as close in spelling to its historical variants.
However, in addition to spelling variation, Icelandic has a rich morphology that has changed
over time, which is also influencing the words in terms of string similarity. The SMT models were
able to successfully capture some of these differences, resulting in 83.9% correctly normalised
tokens in the best setting, i.e. the GIZA++ unigram setting. Using more informative bigrams
instead of unigrams surprisingly lead to a drop in normalisation accuracy from 83.9% to 83.5%.
We also tried the m2m aligner, with single character edit operations (1:1) and multi-character
operations (2:2), which was slightly less successful for our normalisation task as compared to
the GIZA++ unigram model.

5.3 Training Data

In Section 5.2, we have shown that training a character-based SMT system on a parallel corpus
of historical and modern spelling is successful for normalising historical text to a modern
spelling. So far, we have used a parallel corpus of 33,888 token pairs for training and tuning. It
might be the case that only a smaller data set is available in this form, or that such a parallel
corpus is not available at all and would need to be manually created. To see whether an
even smaller corpus would be sufficient for achieving reasonable results, we experimented on
different sizes of the parallel corpus used for training. As expected, the more training data, the
better normalisation results (in general), as presented in Figure 4. However, with only 1,000
token pairs, we already achieve 76.5% normalisation accuracy, as compared to 83.9% for the
entire corpus.
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Figure 4: Normalisation accuracy when varying the size of the alignment training data.
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5.4 Language Modeling

For the language model, we have experimented on varying the size and genres included in
the training data. A motivation for this is that we would like our normalisation approach to
be useful for any language where the modern version of the language has a Basic Language
Resource Kit, BLARK (as defined in Krauwer et al. (2004)). Such a BLARK may contain corpora
of varying sizes, sometimes including several genres and sometimes including for example
newspaper text only. We have performed experiments on varying the size of the language model
training data for Icelandic, from 1 million tokens as a minimum to including all 21,613,551
tokens of the corpus. Furthermore, we have experimented on using newspaper text only, as
compared to including all the genres of the corpus. The results are presented in Figure 5.
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Figure 5: Normalisation accuracy, when varying the size and text types included in the language
model.

As seen from the results, including a corpus of different genres in the language model shows
slightly better results than using newspaper text only. However, there is not a huge difference
between the two types of corpora. For 5 million words of newspaper text, a normalisation
accuracy of 81.2% is achieved, as compared to 84.0% for the sampled corpus. It is also worth
mentioning that whereas the newspaper corpus shows the expected increase in normalisation
accuracy when more data is added, this relation is not as clear-cut for the sampled corpus
where the addition of more data in some cases leads to a drop in normalisation accuracy. This
could be due to larger variation in the sampled training data, meaning that adding new data
sometimes distort the language model.

Also note that including only 1 million (sampled) tokens results in a normalisation accuracy
of 82.2%, which is already close to the 83.9% achieved when including the full corpus in the
language model.

5.5 Tagging

Without normalisation, the IceNLP tagger is able to correctly annotate 46.7% of the tokens in
the test text (Ectors saga). Besides the spelling variation, one reason for the rather low tagging
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accuracy could be that the manually tagged corpus is, as stated earlier, based on modernised
spelling. The modern spelling also seem to include morphological changes, meaning that the
gold standard tag is in fact not in all cases the correct tag for the token when its historical
spelling is preserved. Despite this deficiency in the gold standard corpus, tagging accuracy
increases by 10 percentage units after normalisation, to 56.6%, see further Table 3.

Accuracy

unnormalised 46.7%
baseline 49.9%
normalised 56.6%

Table 3: Accuracy for Icelandic part-of-speech tagging. Baseline = Normalisation by replacing
each historical word type with its most frequent modern version observed in the word-aligned
training corpus. Normalised = Normalisation by the Giza unigram approach.

6 Case Study 2: Swedish

For training, tuning and evaluation in the Swedish setting, we use a corpus of court records
and church documents from the period 1527–1812. These texts are available in both their
original and their modernised spelling (see further Pettersson et al. (2012) for more details on
the corpus). For training we extracted 28,237 token pairs, whereas the tuning set consists of
2,590 (non-overlapping) token pairs and the test set includes 33,544 (non-overlapping) token
pairs, equally distributed over the texts in the corpus. The test set is the same subset of the
corpus as is used in Pettersson et al. (2012).

As a language model, we make use of the Stockholm-Umeå Corpus, SUC, a balanced corpus
consisting of approximately one million tokens extracted from a number of different text types
representative of the Swedish language in the 1990s (Ejerhed and Källgren, 1997).

For tagging, we use HunPOS (Halácsy et al., 2007), a free and open source reimplementation
of the HMM-based TnT-tagger by Brants (2000). In our experiments, we use HunPOS with a
Swedish model based on the SUC corpus.

For parsing, we use MaltParser version 1.6, a data-driven dependency parser developed by Nivre
et al. (2006a). In our experiments, the parser is run with a pre-trained model1 for parsing
contemporary Swedish text, based on the Talbanken section of the Swedish Treebank (Nivre
et al., 2006b).

6.1 Character Alignment

We have experimented on using GIZA++ and m2m aligner models with different settings for
training the character-based Swedish SMT systems, as presented in Table 4. Similar to the
results achieved for Icelandic, the best-performing setting is to train a GIZA++ unigram model,
which outperforms the more informative bigram model as well as the m2m aligner models. In
the GIZA++ unigram setting, the percentage of tokens with a spelling identical to the gold
standard spelling increases from 64.6% for the original spelling, to 92.3% after normalisation.
It is interesting to note that the baseline method of simply replacing each historical word
type with its most frequent modern version observed in the word-aligned training corpus also

1http://maltparser.org/mco/swedish_parser/swemalt.html
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has a large positive effect on normalisation accuracy, increasing the number of tokens with a
modern spelling from 64.6% to 86.1%. For Icelandic this effect was considerably less significant,
increasing the number of tokens with a modern spelling from 64.8% to 69.8%. One reason for
the larger impact on Swedish might be that training and test sets are extracted from the same
historical corpus (though non-overlapping), whereas for Icelandic the training set is extracted
from one text and the test set from another text.

Alignment Accuracy

unnormalised 64.6%
baseline 86.1%
giza unigram 92.3%
giza bigram 91.8%
m2m 1:1 91.4%
m2m 2:2 89.7%

Table 4: Normalisation accuracy for different character alignment models. Unnormalised =
Percentage of tokens with a spelling identical to the modern spelling before normalisation.
Baseline = Normalisation accuracy when replacing each historical word type with its most
frequent modern version observed in the word-aligned training corpus. Giza uses standard
word alignment models (for character unigrams and bigrams), and m2m uses the WFST with
single character edit operations (1:1) and multi-character operations (2:2).

6.2 Tagging and Parsing

For the Swedish setting, we do not have access to a linguistically annotated gold standard for
evaluating tagging and parsing performance. However, in the test corpus described in Section
6, all the verbs and their complements have been manually annotated as such. Therefore, we
decided to indirectly evaluate the performance of a tagger based on precision and recall for verb
identification before and after normalisation of the input text. Similarly, parsing performance is
indirectly evaluated based on the proportion of correctly detected verb complements.

Tagging The results presented in Table 5 show that normalisation has a large positive impact
on precision and recall measures for verb identification. Without normalisation, an F-score of
70.4% is achieved for this task, as compared to 83.5% for the baseline approach to normalisation
and 88.7% for the SMT approach to normalisation. The largest increase is in recall, where
89.8% of the verbs are identified after normalisation, as compared to 64.2% for the original
spelling. Precision also increases substantially, from 77.9% to 87.7%.

Parsing MaltParser produces dependency trees labeled with grammatical functions, which
can be used to identify different types of complements. In this setup, we define exact matches
as cases where the detected verb complement is identical to the corresponding gold standard
complement. Likewise, we define partial matches as cases where the detected verb complement
has a non-empty overlap with the corresponding gold standard complement. Consider for
example the gold standard analysis effterfrågat [om sinss manss dödh] (asked [about her
husband’s death]). A system output where the head noun of the complement is missing, will
still be regarded as partially correct: effterfrågat [om sinss manss] (asked [about her husband’s]).
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Precision Recall F-score

unnormalised 77.9% 64.2% 70.4%
baseline 84.0% 83.0% 83.5%
normalised 87.7% 89.8% 88.7%

Table 5: Precision and recall measures for verb identification based on tagging. Baseline =
Normalisation by replacing each historical word type with its most frequent modern version
observed in the word-aligned training corpus. Normalised = Normalisation by the Giza unigram
approach.

As shown in Table 6, the proportion of correctly identified verb complements (exact and partial
matches) increases from 32.9% for the original historical spelling to 42.6% after baseline
normalisation, and 46.2% after SMT normalisation.

Exact Match Partial Match Exact or Partial Match

unnormalised 23.8% 9.1% 32.9%
baseline 30.2% 12.4% 42.6%
normalised 33.2% 13.0% 46.2%

Table 6: Precision and recall measures for verb complement detection based on parsing.
Baseline = Normalisation by replacing each historical word type with its most frequent modern
version observed in the word-aligned training corpus. Normalised = Normalisation by the Giza
unigram approach.

7 Previous Studies

There are several approaches to spelling modernisation of historical text that have been de-
scribed in previous studies. One of the earlier examples is the VARD tool (VARiant Detector),
which is based on dictionary lookup, mapping 16th to 19th century English spelling to mod-
ern spelling. Evaluation was performed on a set of 17th century texts, and compared to the
performance of modern spell checkers. Between a third and a half of all tokens were correctly
normalised by both VARD and MS Word, whereas approximately one third of the tokens were
correctly normalised only when using VARD. The comparison between VARD and Aspell showed
similar results (Rayson et al., 2005).

Pettersson et al. (2012) tried a rule-based letter transformation approach, where a set of 29
hand-crafted normalisation rules was produced on the basis of a 17th century court records
text. The resulting rule set was applied to a gold standard corpus of 33,544 tokens from
the period 1527–1812, i.e. the same test corpus as is used in our Swedish case study. The
normalisation had a positive effect on texts from all centuries covered in the corpus. On average,
approximately 73% of the tokens were correctly normalised using this method.

A data-driven approach based on Levenshtein similarity was presented by (Bollmann et al.,
2011) for normalisation of Early New High German. Normalisation rules were automatically
derived by means of the Levenshtein edit distance, based on a word-aligned parallel corpus
consisting of the Martin Luther bible in its 1545 edition and its 1892 version, respectively. Using
this normalisation technique, the proportion of words with a spelling identical to the modern
spelling increased from 65% in the original text to 91% in the normalised text.
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8 Conclusion

In this paper, we have shown that using character-based SMT techniques for normalising
historical text to a modern spelling, is successful when applying modern taggers and parsers to
analyse historical text. In the Swedish case study, the proportion of tokens in the historical text
that are identical to the modern spelling increases from 64.6% to 92.3% in the best setting. This
results in an increase in F-score for verb identification (based on tagging) from 70.4% before
normalisation to 88.7% after normalisation. Accordingly, the proportion of correctly identified
verb complements (based on parsing) increases to the same extent.

Furthermore, we have shown that it is possible to achieve good results without (or with little)
manual efforts, since only a small amount of training data is needed to achieve reasonable
results. With only 1,000 tokens available in a historical and a modern spelling, a normalisation
accuracy of 76.5% is achieved for Icelandic, as compared to 83.9% in the best setting. If no
word-aligned training data at all is available, automatic sentence alignment methods may
successfully be used for automatically creating training data, as shown in section 5.1.

The data-driven nature of our approach makes it language-independent, and we believe that
our method is generally applicable to languages for which there is a corpus of modern text
available, as well as a small data set of historical texts with both historical and modern spelling.
So far, we have evaluated our approach for Swedish and Icelandic. In the future, we would like
to extend our experiments to texts from other languages, time periods and genres. It would
also be interesting to explore ways of normalising not only spelling, but also morphological and
syntactic differences in the historical texts.
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