
13 20
AVICPS

Vancouver, Canada, December 3, 2013

Proceedings of the
4th Analytic Virtual Integration of

Cyber-Physical Systems Workshop

www.analyticintegration.org

AVICPS 2013

David Broman and Gabor Karsai (Eds.)

Proceedings of the
4th Analytic Virtual Integration of

Cyber-Physical Systems Workshop

December 3, Vancouver, Canada

Editors
David Broman and Gabor Karsai

i

Copyright
The publishers will keep this document online on the Internet – or its possible replacement –
starting from the date of publication barring exceptional circumstances.
 The online availability of the document implies permanent permission for anyone to read,
to download, or to print out single copies for his/her own use and to use it unchanged for
noncommercial research and educational purposes. Subsequent transfers of copyright cannot
revoke this permission. All other uses of the document are conditional upon the consent of the
copyright owner. The publisher has taken technical and administrative measures to assure
authenticity, security and accessibility.
 According to intellectual property law, the author has the right to be mentioned when
his/her work is accessed as described above and to be protected against infringement. For
additional information about Linköping University Electronic Press and its procedures for
publication and for assurance of document integrity, please refer to its www home page:
http://www.ep.liu.se/.

Series: Linköping Electronic Conference Proceedings, No. 90
ISSN (print): 1650-3686
ISSN (online): 1650-3740
ISBN: 978-91-7519-451-6
DOI: http://dx.doi.org/10.3384/ecp13090

Copyright © the authors, 2013

ii

http://www.ep.liu.se/
http://dx.doi.org/10.3384/ecp13090

Table of Contents
Message from the Program Co-chairs
David Broman and Gabor Karsai ... v

Workshop Organization .. vii

Paper Session I. Mathematical Fundamentals
Session chair: David Broman

Some Challenges for Model-Based Simulation*
Walid Taha and Robert Cartwright .. 1

Operational Semantics for a Modular Equation Language**
Christoph Höger .. 5

Paper Session II. Model Integration
Session chair: Gabor Karsai

Verifying Consistency Between Models**
August Schwerdfeger, Hazel Shackleton, and Steve Vestal .. 13

Towards a Safe Compositional Real-Time Scheduling Theory for
Cyber-Physical Systems*
Linh Thi Xuan Phan .. 21

Paper Session III. Model Analysis
Session chair: David Broman

Early Phase Memory Leak Detection in Embedded Software Designs with
Virtual Memory Management Model*
Mabel Mary Joy, Wolfgang Mueller, and Franz Rammig .. 25

Refinement of AADL models using early-stage analysis methods*
Guillaume Brau, Jérôme Hugues, and Nicolas Navet .. 29

*) Position paper (4 pages)
**) Research paper (8 pages)

iii

iv

Message from the Program Co-chairs
We would like to welcome you to the 2013 Analytic Virtual Integration Cyber-Physical
Systems (AVICPS) workshop. The workshop is focusing on analytic techniques that enable the
early discovery of defects in CPS, before the system is integrated or its parts are built. The
principal objective is to present and discuss novel ideas and results that help to discover and
resolve problems early during the design and implementation phases. AVICPS 2013 aims at
bringing together researchers, engineers, and application developers from both industry and
academia to present their latest advances in this field. Our program is organized according to
three themes: mathematical fundamentals, model integration, and model analysis. The program
also includes time reserved for lively discussions; we hope that all attendees will benefit from
these interactions.

We received 13 submissions, from which 6 were accepted; 4 as position papers and 2 as full
research papers. Our 13 internationally known PC members came from academia and industry
and they have worked very hard to review the papers; most papers have received three reviews.
We would like to thank the program committee members for their excellent work and for their
suggestions in the selection of papers.

We would like to thank all those who submitted papers for their efforts and for the quality of
their submissions. Thank you for your active participation in AVICPS 2013. We hope you will
find this event to be productive and enjoyable, and we look forward to seeing you next year at
the next AVICPS.

David Broman, UC Berkeley, USA, and Linköping University, Sweden
Gabor Karsai, Vanderbilt University, USA

v

vi

Workshop Organization

Program Chairs

David Broman (co-chair) UC Berkeley, USA, and Linköping University, Sweden
Gabor Karsai (co-chair) Vanderbilt University, USA

Program Committee

Peter Fritzson Linköping University, Sweden
Jérôme Hugues Institute for Space and Aeronautics Engineering (ISAE), France
Russell Kegley Lockheed Martin, USA
Henrik Nilsson University of Nottingham, UK
Roman Obermaisser University of Siegen, Germany
Linh Thi Xuan Phan University of Pennsylvania, USA
Andre Platzer Carnegie Mellon, USA
Franz Rammig Univerity of Paderborn, Germany
Walid Taha Halmstad University, Sweden
Stavros Tripakis University of California, Berkeley, USA
Shige Wang GM Research, USA
Michael Whalen University of Minnesota, USA
Dirk Zimmer DLR Oberpfaffenhofen, Germany

vii

viii

Some Challenges for Model-Based Simulation

⇤ †

Walid Taha1,2 Robert Cartwright2,1
1IDE, Halmstad University, Sweden, Walid.Taha@hh.se

2Computer Science, Rice University, USA, corky@rice.edu

Abstract

Comprehensive analytical modeling and simulation of
cyber-physical systems is an integral part of the process
that brings novel designs and products to life. But the ef-
fort needed to go from analytical models to running sim-
ulation code can impede or derail this process. Our thesis
is that this process is amenable to automation, and that
automating it will accelerate the pace of innovation. This
paper reviews some basic concepts that we found interest-
ing or thought-provoking, and articulates some questions
that may help prove or disprove this thesis. While based on
ideas drawn from different disciplines, we observe that all
these questions pertain in a profound way to how we can
reason and compute with real numbers.

1. Introduction

It is widely anticipated that much of tomorrow’s innova-
tion will be in the form of cyber-physical systems, that is,
systems that include computing, communicating, and phys-
ically dynamic components. A vivid example of such a sys-
tem is a team of robots playing soccer, or a fleet of vehicles
functioning collectively as an intelligent transportation sys-
tem. Because we need to reflect on, reason and communi-
cate about designs, modeling is an integral part of conceiv-
ing and developing new products in such domains. Many
important problems defined in terms of mathematical mod-
els do not have closed solutions. As a result, simulation
must be an integral part of the innovation process. Unfor-
tunately, the formidable time and effort needed to convert
analytical models to running simulation code can impede
or even derail the process. Our thesis is that this transfor-

⇤ This manuscript is a reduced and edited revision of an invited paper
entitled “The Trouble with Real Numbers” and presented at the WS4C
workshop of INFORMATIK 2011 held in Berlin.
† This research was supported by Halmstad University, the Swedish
Knowledge Foundation (KK) Centre CERES, the Swedish Knowledge
Foundation (KK) Environment at Halmstad University, and US NSF CPS
awards number 1136099 and 1136104.

The 4th Analytic Virtual Integration of Cyber-Physical Systems Workshop
December 3, 2013, Vancouver, Canada.
Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings are available at:
http://dx.doi.org/10.3384/ecp13090

AVICPS website:
http://www.analyticintegration.org/

mation process can be more reliably and predictably au-
tomated, and that such automation can play a crucial role
in training the cadre of future innovators and making them
more productive.

Although a vast range of modeling and simulation tools
already exists, automating the mapping from models to
simulation codes remains a challenging and elusive goal.
This is the case even for seemingly elementary domains
such as rigid-body dynamics, which is a fairly simplified
type of mechanical models that can be used to develop ba-
sic models of robot dynamics [7]. While this first work suc-
ceeds in identifying some basic problems and showing how
programming language techniques such as partial evalu-
ation can play a role in addressing them, the automation
problem is larger than this. It cannot be addressed with a
handful of research papers, and success in demonstrating
this thesis may have far reaching consequences on the CPS
domain. At the same time, entering the domain of cyber
physical systems can be challenging, primarily because of
the vast diversity of technical disciplines that relate to dif-
ferent aspects of this domain. This diversity of sources is
an obstacle not just for researchers but also for education.

In an attempt to reduce the effort needed to overcome
this problem, this paper reviews basic concepts from sev-
eral related areas that we found interesting or insightful,
and articulates some questions that may assist in investi-
gating this thesis. While drawn from different disciplines,
all of these observations and questions pertain to how we
can reason and compute with reals.

Contributions: Modeling systems that involve real-valued
and time-varying quantities is somehow at odds with tra-
ditional approaches to computing. Furthermore, it is not
obvious precisely what needs to be done to integrate real
numbers with these approaches. With the aim of shedding
some light on what is missing, this paper reviews basic
concepts and puts forth some questions about

• Traditional floating-point methods, and
• Basic properties of real numbers.
• Interval arithmetic.

Software engineering in general, and in particular program-
ming languages semantics, design, implementation, and
engineering have a lot to contribute to the study of cyber-
physical systems. We hope that the observations and ques-

1

tions presented here encourage the reader to share this
view.

2. Traditional Floating-Point Methods

Traditional numerical methods and simulation technologies
have carried us a long way, allowing us to build airplanes,
space ships, and many other advanced, as well as mundane,
innovations. However, part of the difficulty in going from
analytical models to simulation codes lies in the nature of
the codes, which are built using traditional numerical meth-
ods techniques. Numerical methods for solving virtually
any type of problem are highly varied and yield qualita-
tively different results when solving the same problem. Yet
the user of these methods still has to bear the responsibility
of choosing the right method for dealing with each differ-
ent kind of model that they formulate and wish to simulate.
This is a huge distraction for a user whose concern is to
study the system that is being modeled, rather than how to
implement the solver for different components of the sys-
tem being modeled. Because it requires making a choice
between more than two options for each component, it is
a problem that has work-hour cost with an order of com-
plexity exponential in the number of components. This is
an optimistic estimate, given that testing whether a certain
method works well for a certain type of component is usu-
ally done using a certain data set, and this result does not
necessarily imply that it will work equally well for other
data sets. Even with this simplifying assumption, it is a se-
rious impediment to productivity.

An important question from the software engineering
point of view is whether there is a way to hide these imple-
mentation choices from the user in such a way that the right
one is always chosen (if it exists). A key technical chal-
lenge in approaching this question is to determine whether
or not there exists a single method (or semantics) that can
be viewed as a gold standard, and which can be used for
both statically proving or dynamically checking the cor-
rectness of any given method. Since dynamic checking will
always allow us to validate more methods than static tech-
niques (due to the reduction in the number of quantifiers in
the problem), the natural and important question to ask be-
comes whether there are also universal numerical methods

that can enable the automatic selection of the right method
for the given problem dynamically. The existence of such
methods could be most insightful if they end up being sim-
pler than many of the other prevailing methods, as it is
likely that they would be revealing of some deeper ideas
that are today only implicit in such methods.

Thus, traditional numerical codes only work correctly
if certain assumptions about their inputs are satisfied, and
these assumptions are not usually checked by the code. Fur-
thermore, these codes generally do not raise any errors to
indicate that the output that they produce is meaningless,
nor do they generally confirm the level of accuracy in the
answer that they produce. Traditional methods do involve
careful analysis of how the values in the model are rep-
resented in the computation. But this analysis is generally
done at the meta-level and not in the code. In essence, this

approach allows the programmer to bake into the imple-
mentation ad hoc assumptions about how they expect the
code to be used. We believe that it is these restrictions that
result in significant loss in usability and reusability of nu-
merical codes developed using traditional methods.

A large part of the analysis that must be carried out, and
of the problems that arise when trying to use such codes,
relate directly to the question of how real numbers are rep-
resented. Today, the vast majority of numerical codes are
based on floating-point arithmetic (FPA). Again, floating-
point technology has been very successful in that it en-
abled the development of numerous highly useful numer-
ical codes that have enabled many CPS innovations. How-
ever, it is reasonable to consider alternatives. In particular,
while FPA is well suited for hardware implementation, it
remains in essence a static data structure that can repre-
sent only a finite set of values. So, rounding must be done
with almost every arithmetic operation, which can intro-
duce enough error that it can be extremely difficult to eval-
uate simple polynomial expressions (An example in [6]).

The most noteworthy feature of floating-point numbers
is that they do not explicitly tell us how many digits (or
bits) of the result are truly valid or representative of the
real answer that such a computation should produce, if we
were computing with some idealized form of real num-
bers. When we consider this feature together with the fact
that numerical computations usually involve an extremely
large number of operations, putting aside the problem that
this feature creates for users of such codes, it is really im-
pressive that any large numeric codes can be built cor-
rectly. Clearly correctness can only be achieved with sig-
nificant meta-level reasoning. However, it remains an im-
portant question to determine how we can express the pre-
cise conditions needed to guarantee that a particular result
of numeric computation is truly valid up to a given number
of significant digits. If this is achieved, it may be possible
to consider more ambitious questions, such as how to for-
mally prove these theorems, or how to generate code guar-
anteed to be correct. In contrast to the overarching goal of
mapping models to simulation codes, the last question is
focused specifically on the issue of producing code that
implements a real arithmetic computation using floating
points correctly.

Stepping back from the questions of understanding tra-
ditional numerical techniques, it is important to note that,
from a software engineering point of view, floating-point
numbers are a somewhat curious choice for implement-
ing real numbers. Specifically, they are a completely static
data structure being used to represent values that, in gen-
eral, may need an unbounded number of digits to repre-
sents. Interestingly, much care is needed if we wish to ad-
dress this problem. For example, seemingly plausible al-
ternatives such as variable precision numbers may simulta-
neously achieve less than what we might expect, and also
bring more complexity to the problem than we started off
with. Before we consider promising alternatives to floating-
point numbers, it will be useful to recall some basic math-
ematical properties of numbers.

2

3. Basic Properties of Real Numbers

Real numbers are a concept so widely used in science and
engineering to model both abstract and concrete systems
that it is hard to imagine the world without them. Examples
of real numbers include: the distance between two points in
two- or three-dimensional space, the ratio between features
of simple geometric forms such as the circle, and the inte-
gral of 1/x between two positive values of x. Much of the
analytical component of the engineering and science disci-
plines rely heavily on this concept.

Real numbers derive both their power and their trou-
blesomeness from their ability to transcend simpler forms
of numbers, such as natural numbers, integers, and ratio-
nal (fractional) numbers. For example, none of these sets
are big enough to include numbers like ⇡ or e. It is there-
fore remarkable that scientific computing has been able to
achieve so much while using a finite representation for real
numbers, namely the floating-point representation.

Keeping in mind some basic mathematical theoretic
properties of real numbers can help us navigate the com-
plex space of alternative representations for real numbers.
A basic example of these types of properties is cardinality,
or the size of a set (See for example [1]):

• The set of different values that a floating-point number
can take is finite,

• The set of rational numbers is countably infinite, and
• The set of real numbers is uncountably infinite.

It may seem that because rational numbers closer in car-
dinality to real numbers than floating-point numbers (“at
least rational numbers are infinite”) that they could make
a more natural approximation of real numbers. But closer
inspection suggests that they make it too easy to introduce
unnecessary ad hoc decisions when trying to devise repre-
sentations of real numbers. Indeed, rational numbers can
be easily represented exactly on a computer through the
use of dynamic data-structures. The basic arithmetic oper-
ators of addition, multiplication, and division for rational
numbers can all be computed exactly on a computer. How-
ever, rational numbers are still insufficient for representing
real numbers (a fact long known in mathematics [2]). When
programming, this mathematical fact is reflected by the ab-
sence of an obvious way to compute with rational numbers
in place of real numbers. This difficulty arises when we try
to carefully explain why we cannot extend our set of op-
erators to trigonometric functions, if we limit ourselves to
rational numbers as a representation. Mathematically, the
problem can be seen as the absence of a best rational num-
ber approximation for the result of the trigonometric func-
tion. It is tempting to take a pragmatic approach and make
an ad hoc choice and choose some rational number to re-
turn when the result is not really rational, but then we be-
gin to fall in the same traps that make it easy to abuse FPA
to produce completely incorrect results. From the software
engineering point of view, such choices are baking magic
numbers into our code, which will eventually make it brittle
and hard to maintain. Thus, rational numbers do not seem

very well suited as a direct representation for real numbers,
without building significant additional machinery around
them. What is interesting here is that the consideration of
the cardinality of the sets seems to provide the clearest indi-
cation of this mismatch, which is then echoed by a need for
making ad hoc choices, when we try to build implementa-
tions. It is useful here also to be aware of the cardinality of
various types of irrational real numbers, such as algebraic
and transcendental numbers.

4. Interval Arithmetic

Interval arithmetic [5] is a powerful method for address-
ing one of the most basic problems in working with plain
floating-point numbers: We can get information about the
actual precision of the answer. Interval arithmetic uses two
floating-point numbers to bound the exact answer of a real-
valued computation from above and from below. Thus, in-
terval arithmetic provides us with an immediate warning
if rounding error has grown too large, rendering the re-
sult useless. Qualitatively, this additional information about
precision is a huge improvement over allowing results to be
silently corrupted by rounding. With this kind of informa-
tion, the programmer or user can redo the full computation
with a higher precision, and hope that this produces an an-
swer with an acceptable level of precision.

Interval arithmetic is not a plug-and-play replacement
for floating-point arithmetic. In fact, conceptually, interval
arithmetic provides us with great concrete examples of
why the floating-point way of doing business may in fact
not be the way we will ultimately want to compute with
real numbers. For example, the elementary operation of
comparison on float-point numbers will have to behave
differently when we move to intervals. How do we answer
the question of whether the interval [1, 2] is less than [1.5,
2.5]? The answer cannot be yes or no, but rather, that
the two are incomparable. As a result, it may not always
be possible to expect that numerical algorithms can work
without modification, using intervals rather than arithmetic.

It is interesting to note that a kind of abstract interpre-
tation is almost built into interval arithmetic. It is not clear
that this view has been fully developed (exceptions include
[4] and [3]). Interval arithmetic gives rise to a beautiful the-
ory that can teach us a lot about how we can compute ef-
fectively with real numbers.

A basic result of interval analysis is that performing a
computation (that consists of the basic arithmetic opera-
tors) with more information about its inputs will always
lead to a result that has no less information. Denotational
semantics experts and domain-theorists will recognize this
property as a notion of monotonicity. This property pro-
vides an elegant way to characterize well-behaved oper-
ators that we may or may not want to introduce into the
language being interpreted using the primitives of interval
arithmetic. An elegant observation from interval analysis is
that monotonicity can occasionally provide a nice method
for producing an answer with higher-precision without nec-
essarily increasing the precision of the intermediate results.
For example, because of monotonicity, we can always split

3

the input interval into two overlapping parts, compute two
results for the two parts, and merge them together. This can
often produce an improved result, especially in cases where
the computation suffers from what is often referred to as
the dependence problem. Evaluating an expression such as
x�x with x equal to [1,3] does not produce [0,0] but rather
[-2,2]. Operators such as addition have no way of know-
ing that there is a special relation between their two inputs.
Splitting the input into smaller parts, however, helps us get
closer to the most precise answer. For example, if we com-
pute the expression with x equal to [1,2] we get [-1,1], and
with x equal to [2,3] we get [-1,1], which is clearly more
precise than [-2,2].

An unexpected feature several recent treatments of in-
terval arithmetic is that they often resort to opening up the
interval, computing with both endpoints, and putting them
back in again. This is an example of breaking abstraction
boundaries, and can easily lead to breaking the monotonic-
ity property mentioned earlier. We may have encountered
a related problem, which is finding a simple definitions of
transcendental values and trigonometric functions that do
not involve separately computing an expected value and an
error term and then adding them together (that is, with-
out breaking the interval abstraction). It also seems that
algorithms such as an interval version of Euler’s forward
method for integration (which is needed for doing integra-
tion in the context of solving an initial value problem, for
example) are things that the authors have been told do ex-
ist, but do not quite know how they work, or whether or not
they are defined without breaking the interval abstraction.

While it may be counter-intuitive, interval arithmetic
implementations usually do not use rational bounds. In-
stead, they typically use floating point numbers. The in-
trinsic nature of this observation can be illustrated by con-
sidering the computation sin([0.9, 1.1]). If we want the re-
sult to be a pair of rational numbers, then the only “right
answer” would be the pair of rationals that are closest to
the exact answer for sin(0.9) and sin(1.1) from the out-
side. But there are not two such best approximations of real
numbers in general, and therefore, there is no ideal rational
candidate. This observation is important for realizing that
floating-point bounds are not just an implementation con-
venience for interval arithmetic, but rather a necessity. Be-
cause floating-point numbers have maximal degree of pre-
cision, the result of the above computation is well-defined,
because there is always a best floating-point approximation
to any real number.

We conclude this section with three questions. The first
question is whether demand-driven iteration or incremental
evaluation is inherent to the way we use interval arithmetic.
For example, the most basic (albeit not the only) method for
improving a result that we attain with interval arithmetic is
to repeat the computation with a higher-precision floating-
point representation for the bounds. What does this really
tell us about the idea of interval arithmetic? It could mean
that doing interval arithmetic forward is inherently itera-
tive. Would it be useful to do it backwards, that is, in a
demand-driven way?

The second question is what would constitute a well en-
gineered and conceptually clear way to build an interval
arithmetic library? Real analysis is usually not computa-
tionally effective; constructive analysis is, in a sense, effec-
tive, but not aimed at computing efficiently. How can we
build up such a library in a way that would allow us to ex-
plain clearly and easily to students how they are expected
to program with interval arithmetic? What is the right way
to approach the problem of re-computing with higher pre-
cision? It is reasonable to expect that essentially the same
question will also need to be answered for more sophisti-
cated representations of real numbers.

The third question is whether there are high-level formu-
lations for the computational problems and solution tech-
niques that arise in this domain. In particular, it seems
that important techniques such as interval arithmetic are
typically constructed in ways that isolate some underly-
ing floating-point infrastructure. While this appears per-
fectly sensible from the point of view of efficient imple-
mentation, it means that interval arithmetic is typically not
built “from the ground up”. Instead, it depends critically
on the idea that floating-point arithmetic is the most effi-
cient approach to implementing stream-based computation.
It seems plausible that this could be the case in current ar-
chitectures, but not for future ones. In particular, it is less
obvious why this approach should be the most appropri-
ate for other emerging architectures such as GPU, FPGAs,
many-core systems, or for future microprocessor designs.

Acknowledgement

Michal Konecny and Alexandre Chapoutot provided valu-
able comments on drafts of this paper.

References

[1] Richard Beals. Analysis: An Introduction. Cambridge
University Press, 2004.

[2] Georg Cantor. Über eine eigenschaft des inbegriffes aller
reellen algebraischen zahlen. Journal für die Reine und

Angewandte Mathematik, 1874.

[3] Alexandre Chapoutot. Interval slopes as a numerical abstract
domain for floating-point variables. In Static Analysis

Symposium, 2010.

[4] Eric Goubault and Sylvie Putot. Under-approximations of
computations in real numbers based on generalized affine
arithmetic. In Static Analysis Symposium, 2007.

[5] Moore, Kearfott, and Cloud. Introduction to Interval

Analysis. SIAM, 2009.

[6] Warwick Tucker. Validated Numerics: A Short Introduction

to Rigorous Computations. Princton University Press, 2011.

[7] Angela Yun Zhu, Edwin Westbrook, Jun Inoue, Alexandre
Chapoutot, Cherif Salama, Marisa Peralta, Travis Martin,
Walid Taha, Marcia O’Malley, Robert Cartwright, Aaron
Ames, and Raktim Bhattacharya. Mathematical equations as
executable models of mechanical systems. In International

Conference on Cyber-Physical Systems, 2010.

4

Operational Semantics for a Modular Equation Language

Christoph Höger
Department of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, Germany,

christoph.hoeger@tu-berlin.de

Abstract
Current equation–based object–oriented modeling lan-
guages offer great means for composition of models and
source code reuse. Composition is limited to the source
level, though: There is currently no way to compose pre-
compiled model fragments. In this work we present t(n,p), a
language which aims to overcome this deficiency. By using
automatic differentiation directly in the language seman-
tics, t(n,p)offers the ability to implement index-reduction
and causalisation of equation-terms without knowing their
source-level representation. The semantics of t(n,p)allow
for calculation of arbitrary-order partial and total deriva-
tives of pre-compiled terms.

Keywords Composition, Equation, DAE, Separate Com-
pilation, Automatic Differentiation

1. Introduction
Equation based modeling languages offer great means for
model composition and reuse. Unfortunately, this feature
vanishes during classical model instantiation. There is no
such thing as a Functional Mockup Unit ([1], a standard for
composing compiled ordinary differential equations) for a
differential algebraic equation (DAE).

The reason for this seems to be an implementation detail
in the most common implementations: Usually e.g. a Mod-
elica implementation will interpret the global model once
and afterwards compile the resulting DAE into efficient ex-
ecutable code.

This "one-time instantiation" approach has some down-
sides:

• It favors a whole-model approach for static analysis:
As there is no necessity for any interface abstraction,
errors caused by wrong composition are only detected
just prior to simulation.

• The code generation tends to scale badly in the case
of large, uniform models [5, 13], because the symbolic

The 4th Analytic Virtual Integration of Cyber-Physical Systems Workshop
December 3, 2013, Vancouver, Canada.
Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings are available at:
http://dx.doi.org/10.3384/ecp13090

AVICPS website:
http://www.analyticintegration.org/

manipulation of every equation leads to huge amounts
of generated code.

• It prevents highly dynamic structural models: If a model
computes (i.e. by a Turing-complete language) its suc-
ceeding mode, it is in general impossible to predict all
modes of operation.

One way to overcome all those limitations is to find
a way to compile equations separately into a form that
can be instantiated arbitrarily often. Yet the attempt to
do so reveals that the one-time approach is not just an
implementation detail, since simulation often depends on
the manipulation of the global system of equations. Thus,
separate compilation needs to preserve the possibility to
apply these manipulations.

As we will show, the main operation of index-reduction
–differentiation of terms– can be implemented by au-
tomatic differentiation. Additionally, our method allows
for sorting the compiled equations and solving them effi-
ciently.

The rest of this paper is organized as follows: First we
motivate the need for arbitrary-order differentiation and pa-
rameter selection of equations in a compiled setting. After-
wards we formally define t(n,p), a family of languages that
allows for arbitrary order differentiation of mathematical
terms, which we have implemented in a a general purpose
DAE library called jdae1. We prove that the evaluation of
this language indeed yields correct partial and total deriva-
tives of a function. Finally, we show how t(n,p) can be im-
plemented recursion-free.

1.1 Notation
In this paper we will use some short cuts to enhance the
readability of formulas:

First, as we are talking about continuous functions, we
will usually name them with the letters f, g, h. Domain and
codomain are written in a blackboard style, i.e. f : R→ R
means that f is a function mapping real numbers to real
numbers. Arguments are usually vectors (x̄) or scalars (v).
When the context is clear, we extend primitive operations
over continuous functions: (f + g)(v, x̄) ≡ f(v, x̄) +
g(v, x̄). For function application we use a "flat" format: If
f : Rn+1 → R, v ∈ R and x̄ ∈ Rn, then we write f(v, x̄)
to denote the application of f to the concatenation of v to
x̄.

1 https://github.com/choeger/jdae

5

2. Motivation
To understand the two most important operations on sys-
tems of differential and algebraic equations (namely index-
reduction and causalisation), we resort to the classic higher
index example, the cartesian pendulum:

x2 + y2 = 1 (1)

ẍ = Fx (2)

ÿ = Fy − 9.81 (3)

As always, x and y denote the pendulum’s coordinates
while F is the tension force. In this example, we set the
length of the pendulum and its mass to 1 to enhance read-
ability.

2.1 Index Reduction
It is well known, that the above model cannot be solved
directly by an ODE solver. The reason is obviously that
both x and y appear differentiated but only one of them
can be solved by equations 2 or 3, as one these equations is
required to solve for F .

The solution to this problem is naturally to differentiate
equation 1. By application of simple arithmetic laws the
above model also implies:

ẋx+ ẏy = 0 (4)

ẋ2 + ẍx+ ẏ2 + ÿy = 0 (5)

As one can easily see, the augmented system of equa-
tions can be solved as an ODE (by choosing either x or y
as state).

This result can be obtained by using an index-reduction
algorithm like e.g. Pantelides’ method [10], the dummy
derivative method [8] or Pryce’ method [11]. Any such
method will result in the number of times a given equation
or variable needs to be differentiated (explicitly as vectors d
and c in Pryce’ algorithm). Thus a compiled equation needs
to be able to, given an arbitrary n, compute the n-th total
derivative of itself.

2.2 Causalisation
In addition to the total derivative, it is usually necessary to
compute the partial derivatives of an equation. This is due
to the fact that most models will require to solve some al-
gebraic parts iteratively. To do so efficiently, it is a common
requirement to calculate the Jacobian of the equations.

In our example (assuming we choose x as state), we
might solve y and ẏ directly by equations 1 and 4 (as x
and ẋ are known by numerical integration), but finding a
valid solution for F , ẍ and ÿ requires the iterative solution
of equations 2, 3 and 5.

The process of finding such a partitioning of the system
is called causalisation or equation-sorting. Given an index-
1 DAE, the process is equivalent to the contraction of all
strongly connected components in the dependency graph
of equations.

This process raises an interesting problem in the setting
of compiled equations: As the causalisation is applied after
compile time, it is unknown for a given equation, which of

the occurring variables are true iteration variables (e.g. F
in the algebraic loop above) during simulation and which
become constants (e.g. y).

2.3 Automatic Differentiation
In summary, a compiled equation needs to be able to com-
pute for any order of total derivation and any subset of its
variables the value and the partial derivatives of its resid-
ual. As we do not know neither the subset of variables nor
the final degree of derivation, the only practical solution to
this requirement is automatic (or algorithmic) differentia-
tion. This technique is based on the fact that the derivation
rules for primitive operations like addition or sine are well
known (up to an arbitrary degree) and the chain rule shows
how any composition of those primitive operations can be
derived.

In this work we present a novel approach that em-
beds AD into a small term-language and prove its cor-
rectness. Our approach is hand-tailored to compute exactly
the derivatives needed by a DAE solver. For any further
reading about automatic differentiation we refer to section
7.3.

3. The term language t

In this section we define the simple term language t. We
define language syntax in form of an EBNF-grammar. t is
defined as:

τ ::= un,d
| τ ⊕ τ
| τ ⊗ τ
| φ τ
| r ∈ R

t is a rather simple language: Terms (in the following
sections abbreviated by variables τi) are either multipli-
cation (written ⊗ to distinguish multiplication-terms from
multiplication on real numbers which we will write as ×
further down), addition (written as ⊕), real values (r) and
primitive functions φ ∈ P, where P is a not further de-
fined set of n-times continuously differentiable (i.e. of class
Cn) single-argument real-valued functions. Terms describ-
ing the application of a primitive function φ on a term τ are
written as juxtaposition φ τ while parentheses (i.e. φ(r) in-
dicate the result of the actual application on real-numbers.

A notable feature of t is the availability of unknowns
un,d. Informally an unknown, written by u subscripted by
two natural numbers, e.g. un,d, represents the d-th total
derivative of the n-th variable of a system of equations.

3.1 Semantics
The operational semantics of t is given below in the form
of natural semantics. For an open interval D ⊆ R, a vector
x̄ = (x1, . . . , xp) ∈ (D → R)p of functions of class Cn

and a free variable v ∈ D, the evaluation relation ⇓ is
defined. We write (D, x̄, v) ` τ ⇓ r to denote that under
(D, x̄, v) τ evaluates to r. Intuitively, (D, x̄, v) denotes the
domain of a ideal residual computation: x̄ is the vector
of unknowns, v is the independent variable and D is the

6

interval upon which the model is well-posed (i.e. n-times
continuously differentiable).
⇓ is defined inductively by rules in form of a natural

(or big-step) semantics. Each rule contains zero or more
premises (the part above the bar) and one conclusion (the
part below). The whole rule forms an implication: If the
premises are true, the same holds for the conclusion. Mul-
tiple premises form an implicit conjunction. We also write
side-conditions as part of the premises to save some space.

(D, x̄, v) ` r ⇓ r
(REAL)

(D, x̄, v) ` τ1 ⇓ r1
(D, x̄, v) ` τ2 ⇓ r2

(D, x̄, v) ` τ1 ⊕ τ2 ⇓ r1 + r2
(ADD)

(D, x̄, v) ` τ1 ⇓ r1
(D, x̄, v) ` τ2 ⇓ r2

(D, x̄, v) ` τ1 ⊗ τ2 ⇓ r1 × r2
(MUL)

r ∈ dom(φ) (D, x̄, v) ` τ ⇓ r
(D, x̄, v) ` φ τ ⇓ φ(r)

(PRIM)

n ∈ 0 . . . p

(D, x̄, v) ` un,d ⇓ x(d)n (v)
(UNK)

Definition 1. Let f : (D → R)p × D → R be an n-times
differentiable function, then:

(D, x̄, v) ` τ f :⇔ (D, x̄, v) ` τ ⇓ f(x̄, v)

(τ computes f)

To conclude this section, we state an observation about
the well-formedness of terms of t. We call a term well
formed (under (x̄, v)) if there is an r ∈ R such that
(D, x̄, v) ` τ ⇓ r. It should be obvious that the only form
of non-reducing terms can occur due to E-PRIM-REAL or
E-UNK. For the proofs further below, we eliminate this
possibility by the following lemma (which could be easily
shown, since t is a strict language):

Lemma 1. Well formed terms always compute a function
and terms that compute a function are well-formed.

4. The t(n,p)Family
To implement automatic differentiation, we lift the simple
language t into a family of languages t(n,p).
t(n,p)is syntactically very similar to t. Again, we see ad-

dition, multiplication, primitive functions and unknowns:

τ (n,p) ::= um,d

| τ (n,p) ⊕ τ (n,p)
| τ (n,p) ⊗ τ (n,p)
| φ τ (n,p)

| A ∈ R(n+1,p+1)

The only visible difference to t is that the domain of
real values is exchanged with a domain of real-valued ma-
trices (which we abbreviate with capital latin letters). φ still
denotes real-valued functions. The intuitive explanation is
that a t(n,p)-term calculates not only a value, but also the n
total derivatives and the p partial derivatives (of every total
derivative) of a function.

Two terms of different instances of t(n,p)can only differ
in the shape of the constants. It is important to note that if a
term does not contain any constants, it is a valid t(n,p)-term
for any given concrete n and p.

4.1 Fundamental Definitions
Before we can explain the semantics of t(n,p), we need to
introduce some helper functions. First, we define a lifting
operator denp that allows us to map a t-term into a t(n,p)-
term:

dre(n,p) =

∣∣∣∣∣∣∣
r 0 · · · 0
...

...
. . .

...
0 0 · · · 0

∣∣∣∣∣∣∣
dτ1 ⊕ τ2e(n,p) = dτ1e(n,p) ⊕ dτ2e(n,p)

dτ1 ⊗ τ2e(n,p) = dτ1e(n,p) ⊗ dτ2e(n,p)

dum,de(n,p) = um,d

dφ τe(n,p) = φ dτe(n,p)

Additionally we introduce two reduction operations on
real-matrices called ∆ (for differentiation) and I (for in-
tegration). The naming will be obvious once we define the
operational semantics of t(n,p), but for now they are defined
by elimination of the first and last row respectively:

I

∣∣∣∣∣∣∣
r0,0 · · · r0,p

...
. . .

...
rn,0 · · · rn,p

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
r0,0 · · · r0,p

...
. . .

...
rn−1,0 · · · rn−1,p

∣∣∣∣∣∣∣

∆

∣∣∣∣∣∣∣
r0,0 · · · r0,p

...
. . .

...
rn,0 · · · rn,p

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
r1,0 · · · r1,p

...
. . .

...
rn,0 · · · rn,p

∣∣∣∣∣∣∣
For the definition of the semantics as well as the proof

of correctness, we will require a notion of mixed total
and partial derivation. To reduce syntactical noise we will
stick with the well-known d and ∂ notations, but omit any
fractions:

∂0f = f

∂jf =
∂f

∂xj
, i ∈ 1 . . . p

d(i)f =
dif

dvi

This notation ignores the partial derivative ∂f
∂x0

. The rea-
son for this decision is the matrix layout used further down:
It is convenient to use the same index-set for the delta oper-
ator as in the matrix. To reconcile this restriction with our

7

general mathematical model, we introduce the convention
that x0(v) = v, thus the missing partial derivative is iden-
tical to the first total derivative.

Matrix values will be abbreviated with capital latin let-
ters, so A ∈ Rn+1,p+1 in the context of t(n,p). When we
index a matrix with one number, we select the correspond-
ing row-vector, i.e.A0 is the vector containing the elements
of the first row of A.

To store partial and total derivatives, we introduce
the n, p-dimensional derivative-matrix D(n,p)(f, x̄, v) of
a function f .

D(n,p)(f, x̄, v) ∈ Rn+1,p+1

D(n,p)(f, x̄, v)(i,j) = ∂jd
(i)f(x̄, v)

In case the context is clear, we omit the x̄, v arguments
for brevity.

This definition enables the formulation of a correctness
theorem on the evaluation of t(n,p)-terms. It needs to be
based on the fundamental assumption that a term actually
computes a function. If this was not the case, the output
of the reduction might still yield values but they are hardly
meaningful in the sense of derivation.

Theorem 1 (correctness).

(D, x̄, v) ` τ f ⇒ (D, x̄, v) ` dτenp ⇓(n,p) D(n,p)(f)

(the result of computing a function is the matrix of its
derivatives)

The formal definition of ⇓(n,p) (the evaluation semantics
of t(n,p)as a binary relation between t(n,p)-terms) follows
below. As we will show, it fulfills this theorem.

We also introduce a special vector operator ? : Rp+1 ×
Rp+1 → Rp+1, which is defined as follows:

(ā ? b̄)0 = a0 × b0
(ā ? b̄)i = ai × b0 + bi × a0 i ∈ 1 . . . p

The motivation of this definition lies in the following
fact:

Lemma 2. Let g, h : (D→ R)p×D→ R be differentiable
functions with p parameters each, then:

D(0,p)(g, x̄, v) ?D(0,p)(h, x̄, v) = D(0,p)(g × h, x̄, v)

A second operator, • : ((R → R) × Rp+1) → Rp+1,
takes a differentiable function and a p+1 vector and returns
a p+ 1 vector:

(φ • ā)0 = φ(a0)

(φ • ā)i = φ′(a0)× ai i ∈ 1 . . . p

This composition operator is also motivated by an asso-
ciated corollary:

Lemma 3. Let φ : R → R, g : (D → R)p × D → R be
differentiable functions, then:

φ • D(0,p)(g, x̄, v) = D(0,p)(φ ◦ g, x̄, v)

4.2 Semantics
The operational semantics of t(n,p)is also parametric over
n and p. It is defined by the evaluation relation ⇓(n,p). Al-
though the defining rules of ⇓(n,p) might seem fairly com-
plex, the reader should notice how their structure reflects
the derivation rules for addition, multiplication and com-
position of real valued functions.

(D, x̄, v) ` A ⇓(n,p) A
(AD-REAL)

The evaluation of unknowns is now extended to also
evaluate derivatives accordingly:

(D, x̄, v) ` um,k ⇓(n,p) D(n,p)(d(k)xm, x̄, v)
(AD-UNK)

Addition in t(n,p)is simply defined as matrix addition:

(D, x̄, v) ` τ1 ⇓(n,p) A
(D, x̄, v) ` τ2 ⇓(n,p) B

(D, x̄, v) ` τ1 ⊕ τ2 ⇓(n,p) A+B
(AD-ADD)

Multiplication in t(n,p)is defined recursively over the
parameter n.

(D, x̄, v) ` τ1 ⇓(0,p) ā
(D, x̄, v) ` τ2 ⇓(0,p) b̄

(D, x̄, v) ` τ1 ⊗ τ2 ⇓(0,p) ā ? b̄
(AD-MULT-0)

(D, x̄, v) ` τ1 ⇓(n+1,p) A
(D, x̄, v) ` τ2 ⇓(n+1,p) B

(D, x̄, v) ` ∆(A)⊗ I(B) ⇓(n,p) C
(D, x̄, v) ` ∆(B)⊗ I(A) ⇓(n,p) D

(D, x̄, v) ` τ1 ⊗ τ2 ⇓(n+1,p)

∣∣∣∣A0 ? B0

C +D

∣∣∣∣ (AD-MULT-N)

Composition (the application of primitive functions) is
also defined recursively:

(D, x̄, v) ` τ ⇓(0,p) ā a0 ∈ dom(φ)

(D, x̄, v) ` φ τ ⇓(0,p) φ • ā
(AD-COMP-0)

The general rule also relies on the definition of multipli-
cation:

(D, x̄, v) ` τ ⇓(n+1,p) A A0,0 ∈ dom(φ)
(D, x̄, v) ` (φ′ I(A))⊗∆(A) ⇓(n,p) B

(D, x̄, v) ` φ τ ⇓(n+1,p)

∣∣∣∣φ •A0

B

∣∣∣∣
(AD-COMP-N)

It remains to show that these rules are actually meaning-
ful and compute the derivatives of a function correctly.

8

5. Correctness of t(n,p)

Recall, that theorem 1 is defined about a t-term that is
lifted into a t(n,p)-term. Thus it can be proven by structural
induction over t. To do so, we show that if the property
holds for every sub-term of a term it also holds for the term
itself.

Case 1 (τ ≡ r). By definition of lifting, we know that
drenp =

∣∣ai,j∣∣ with a0,0 = r and ai,j = 0 if (i, j) 6= (0, 0).
By definition of , it holds that f must be the constant
function f(x̄, v) = r and thus ∂jd(i)f(x̄, v) = 0 if (i, j) 6=
(0, 0).

Therefore: ai,j = D(n,p)(f, x̄, v)i,j for any x̄, v

Case 2 (τ ≡ um,k). We know by rule AD-UNK that:

(D, x̄, v) ` dum,kenp ⇓(n,p) D(n,p)(d(k)xm, x̄, v)

By definition of it follows that f(x̄, v) = d(k)xm(v).
Therefore: D(n,p)(d(k)xm, x̄, v) = D(n,p)(f, x̄, v)

Case 3 (τ ≡ τ1⊕τ2). We know by Lemma 1 and (D, x̄, v) `
τ f that both τ1 and τ2 are well-formed (and compute a
function each):

(D, x̄, v) ` τ1 g ∧ (D, x̄, v) ` τ2 h

Application of the induction hypothesis to τ1 and τ2 and
insertion into AD-ADD yields:

(D, x̄, v) ` dτ1enp ⇓(n,p) G
(D, x̄, v) ` dτ2enp ⇓(n,p) H

(D, x̄, v) ` dτ1 ⊕ τ2enp ⇓(n,p) G+H

Where G = D(n,p)(g, x̄, v)

H = D(n,p)(h, x̄, v)

Since G+H = D(n,p)(g+ h, x̄, v) and (by definition of t)
f = g + h:
G+H = D(n,p)(g + h, x̄, v) = D(n,p)(f, x̄, v)

To prove the correctness of multiplication, we need to
take two steps. First, we will show the correctness in case
of n = 0. Afterwards we apply natural induction to show
the general case.

Case 4 (τ ≡ τ1 ⊗ τ2 n = 0). As for the addition, we
notice that by Lemma 1 (D, x̄, v) ` τ1 ⊗ τ2 f implies
that:

(D, x̄, v) ` τ1 g ∧ (D, x̄, v) ` τ2 h ∧ f = g × h

Therefore, because both terms are well-formed, we can
insert the induction hypothesis into rule AD-MULT-0 and
get:

(D, x̄, v) ` dτ1e0p ⇓(0,p) D(0,p)(g, x̄, v)

(D, x̄, v) ` dτ2e0p ⇓(0,p) D(0,p)(h, x̄, v)

(D, x̄, v) ` dτ1 ⊗ τ2e0p ⇓(0,p) D(0,p)(g) ?D(0,p)(h)

And by Lemma 2 and f = g × h:
(D, x̄, v) ` dτ1 ⊗ τ2e0p ⇓(0,p) D(0,p)(f, x̄, v)

Case 5 (τ ≡ τ1 ⊗ τ2, general case). In the general case,
we make the same observation about f, g and h:

(D, x̄, v) ` τ1 g ∧ (D, x̄, v) ` τ2 h ∧ f = g × h

Additionally, we know by the application of the structural
induction hypothesis:

(D, x̄, v) ` dτ1en+1
p ⇓(n+1,p) D(n+1,p)(g, x̄, v)

(D, x̄, v) ` dτ2en+1
p ⇓(n+1,p) D(n+1,p)(h, x̄, v)

As we have seen earlier, ∆ and I map matrices from
t(n+1,p) into t(n,p):

∆(D(n+1,p)(g, x̄, v)) = D(n,p)(g′, x̄, v)

I(D(n+1,p)(g, x̄, v)) = D(n,p)(g, x̄, v)

Application of the structural induction to τ1 and τ2 yields:

(D, x̄, v) ` dτ1en+1
p ⇓(n+1,p) D(n+1,p)(g)

(D, x̄, v) ` dτ2en+1
p ⇓(n+1,p) D(n+1,p)(h)

When we set G = D(n+1,p)(g) and H = D(n+1,p)(h), the
natural induction hypothesis yields:

(D, x̄, v) ` ∆(G)⊗ I(H) ⇓(n,p) D(n,p)(g′ × h)

(D, x̄, v) ` ∆(H)⊗ I(G) ⇓(n,p) D(n,p)(h′ × g)

If we apply these results to rule AD-MULT-N we can see
that:

(D, x̄, v) ` dτ1en+1
p ⇓(n+1,p) G

(D, x̄, v) ` dτ2en+1
p ⇓(n+1,p) H

(D, x̄, v) ` ∆(G)⊗ I(H) ⇓(n,p) D(n,p)(g′ × h)
(D, x̄, v) ` ∆(H)⊗ I(G) ⇓(n,p) D(n,p)(h′ × g)

(D, x̄, v) ` dτ1 ⊗ τ2enp ⇓(n+1,p)

∣∣∣∣ H0 ? G0

D(n,p)(h× g′ + g × h′)

∣∣∣∣
Thus we can apply calculus to the derivation of products:
D(n,p)(h× g′ + g × h′) = D(n,p)((h× g)′) = D(n,p)(f ′)

A similar technique can be used to proof correctness
over composition. Again, we start with the basic case n =
0:

Case 6 (τ ≡ φ τ1 n = 0). Again, Lemma 1 provides us
with the guarantee that τ and thus τ1 is well-formed:

(D, x̄, v) ` φ τ1 f ⇒ (D, x̄, v) ` τ1 g ∧ f = φ ◦ g

Therefore, we can apply the structural hypothesis and
Lemma 3 to rule AD-COMP-0:

(D, x̄, v) ` dτ1e0p ⇓(0,p) D(0,p)(g, x̄, v)

(D, x̄, v) ` dφ τ1e0p ⇓(0,p) D(0,p)(φ ◦ g, x̄, v)

and since: D(0,p)(f) = D(0,p)(φ ◦ g)

9

Case 7 (τ ≡ φ τ1, general case). As usual we start with
our well-formedness observation:

(D, x̄, v) ` φ τ1 f ⇒ (D, x̄, v) ` τ1 g ∧ f = φ ◦ g

This allows us to apply the structural induction hypothesis:

τ1 ⇓(n+1,p) G

G = D(n+1,p)(g)

Also, by definition of ∆ and I:

∆(G) = D(n,p)(g′)

I(G) = D(n,p)(g)

If we apply our observations about ∆ and I from case 5 to
our natural induction hypothesis, we see:

(D, x̄, v) ` φ′(I(G)) ⇓(n,p) D(n,p)(φ′ ◦ g)

As we have already shown, multiplication is also correct.
Thus (by application of the chain-rule, since φ is a single-
argument function):

(D, x̄, v) ` D(n,p)(φ′ ◦ g)⊗∆(G) ⇓(n,p) D(n,p)((φ ◦ g)′)

Applying both results to AD-COMP-N, we can conclude
that:

(D, x̄, v) ` τ1 ⇓(n+1,p) G
(D, x̄, v) ` φ′ I(G)⊗∆(G) ⇓(n,p) D(n,p)((φ ◦ g)′)

(D, x̄, v) ` φ τ ⇓(n+1,p)

∣∣∣∣ φ •G0

D(n,p)((φ ◦ g)′)

∣∣∣∣
With this proof completed, we can state that a t(n,p)term

can be evaluated to yield any wanted total derivative and all
partial derivatives of a function. Naturally, the programmer
remains responsible to ensure the correctness’ premise,
the correspondence between the implied (differentiable)
function f and the given term t for the used interval D.

6. Implementation
In this section we will assume that equations have to be
solved in a concrete host language (like Java, C, Haskell
etc.) and t-terms are compiled into this host-language be-
fore lifting.

6.1 jdae
t(n,p)has been implemented in a general purpose DAE li-
brary called jdae2. jdae offers the means to implement mod-
els directly in form of Java-classes. Those classes can be
composed in any possible way to define a system of equa-
tions at runtime. jdae then also offers facility to index-
reduce and simulate the global model.

The choice fell to Java mostly because of its bytecode
access that allows for a simple implementation of the run-
time specialization. We assume that t(n,p)can be imple-
mented quite naturally in any other language like ANSI-C
or C++ as well.
2 https://github.com/choeger/jdae

6.2 Basic Operations
Lifting into t(n,p)can be implemented directly rather eas-
ily: Most languages provide the means to dynamically cre-
ate and modify a matrix of real-values at runtime (either
as an array or a list of floating point numbers). Lifting a
t-term can thus be implemented by introducing n and p
as object-level parameters into the built-in operations ad-
dition, multiplication, composition, unknown loading and
constant creation. So before one evaluates a t(n,p)term for
a given n and p in the host language, one simply passes
these arguments towards the term.

Neither addition nor constants render any problems:
Filling a matrix with zeros but for the top-most, left-most
element should be as simple to implement as matrix addi-
tion.

Loading an unknown is a slightly more complex case.
Here, the implementation carefully needs to provide the
different derivatives, depending on the context. First, one
needs to take into account that higher order derivatives
might be present implicitly in a term: If for example, one
has compiled the equation a(v)2 + b(v)2 = 1 and wants to
evaluate it as a t(1,1) term, then the implicit presence of a′

yields x̄ = (a, a′). So in that case, the result of loading a
by u1,0 should yield: ∣∣∣∣a(v) 1 0

a′(v) 0 1

∣∣∣∣
Since t(n,p)is a language for DAE-simulation, the values
of a and a′ are either already known or part of an iterative
solution process. It is only important to correctly reflect the
dependencies between different unknowns.

Implementing multiplication and composition is a dif-
ferent story, though. The definition of their semantics hints
towards a recursive implementation strategy quite directly:
If one already has to implement multiplication and com-
position as functions of n, then it is obviously not a prob-
lem to implement them recursively. So multiplication of a
t(n,p)term relies on the implementation of the multiplica-
tion of t(n−1,p) and so on.

Unfortunately, this approach is hardly efficient. Not only
may it involve a large amount of data copying between the
recursive calls, but it also avoids an elementary optimiza-
tion:

If we take a look at the multiplication, we see that every
direct application of AD-MULT-N, requires two recursive
invocations. This would yield O(2n) applications. On the
other hand, we know by the General Leibniz rule that we
should be able to compute the n-th total derivative of a
composed function by means of a sum of n elements:

(f · g)(n) =
n∑

k=0

(
n

k

)
f (k)g(n−k)

This can be achieved for t(n,p)-terms as well: It is easy to
observe that the pattern of primitive calculations (+,×)
does not change depending on the numbers being multi-
plied:

10

Every field of the resulting matrix of a multiplication is
calculated by a sum of products of the form:

(A⊗B)i,j =
∑

(q,r,s,t)∈Fi,j

aq,r × bs,t

i ∈ 0 . . . n,∈ 0 . . . p

F can be computed recursively:

F0,0 = {(0, 0, 0, 0)}
F0,j = {(0, j, 0, 0), (0, 0, 0, j)}

Fi+1,j = A ∪B
where

A = {(q + 1, r, s, t)|(q, r, s, t) ∈ Fi,j}
B = {(q, r, s+ 1, t)|(q, r, s, t) ∈ Fi,j}

We omit a proof of correctness for this iterative imple-
mentation for brevity. It should suffice to state that F0 is an
implementation of ? and the union of A and B reflects the
addition in the conclusion of AD-MULT-N. The increase of
the first and third indices are the iterative version of ∆.

If one precomputes F once for every combination of n
and p, the implementation of t(n,p)-multiplication can be
handled inside a tight loop, increasing performance and
decreasing memory usage. Note, that this precomputation
does not need to occur prior to compilation, but can as
well be done on link- or runtime. Additionally, algebraic
optimization (e.g. merging of summands with the same
factors) can be applied to the precomputed elements of F ,
finally yielding a result similar to Leibniz’ formula.

A similar approach (leading to a variant of Faà di
Bruno’s formula) can be implemented for the composition
case.

6.3 Runtime Specialization
A way to optimize the AD-operations even further is to
think of the precomputed patterns F as a form of a tiny
language that is interpreted at runtime to calculate the el-
ement of the result matrix. This view yields an interest-
ing result: As every partial derivative in the result matrix is
computed in the same way (only differing in the column),
there are essentially only two different methods for every
operation and every concrete n (namely to compute the n-
th total derivative and any given partial derivative of it).

For any concrete n, the operations remain constant for
any evaluation. So after index reduction we can create spe-
cialized methods for every required n (in fact, we can even
create some beforehand, e.g. n = 0). This kind of run-
time specialization allows us to eliminate the interpretative
overhead generated by the application of the precomputed
operations. So instead of calculating a sum e.g. by means
of a for-loop, we can directly issue a sum-expression that
contains all summands, etc.

7. Conclusion
We have shown that differential algebraic equations can be
given a compositional operational semantics. This seman-
tics can be used to compile equations (and thus models)
separately and still simulate them efficiently.

7.1 Example
The Cartesian pendulum model from section 2 can be com-
piled to t as follows (using residuals and setting x ≡
u1,0, y ≡ u2,0, F ≡ u3,0) :

u1,0 ⊗ u1,0 ⊕ u2,0 ⊗ u2,0 ⊕−1 (6)

u1,2 ⊕ u1,0 ⊗ u3,0 ⊗−1 (7)

u2,2 ⊕ (u2,0 ⊗ u3,0 ⊕−9.81)⊗−1 (8)

As we have seen, index-reduction of the model requires
us to differentiate equation 6 two times. To do so, we
simply replace it by the following t2,p equation:

du1,0 ⊗ u1,0 ⊕ u2,0 ⊗ u2,0 ⊕−1e23 (9)

Using this method, all equations of the model can be
compiled separately and instantiated according to index re-
duction, without using symbolic or numeric differentiation.

7.2 Consequences
t(n,p)allows for modular semantics of compiled models:
There is no need to fallback to symbolic differentiation at
any time for the computation of derivatives. This allows to
instantiate compiled equations in any context and greatly
reduces the size of the generated code (avoiding the scala-
bility problem of traditional implementations).

It also enhances the expressiveness of DAE modeling by
including models with fully variable structure. At the same
time it allows for a clean separation of modules during
development of models, increasing safety and reliability.

7.3 Related Work
The principle of n-th order automatic derivation in this
work is based on the multivariate automatic differentiation
by Kalman [6], which in turn is a generalization of Rall’s
numbers [12]. Kalman’s operators V,D and L inspired ∆
and I in this work. An early prototype of this work was
developed using an implementation (by the apache com-
mons project 3) of Kalman’s Derivative Structures. Also
the idea of precomputed basic operations for multiplication
and composition is based on that implementation.

Yet the fact that Kalman computes all mixed partial
derivatives induces a large inefficiency for our application
case: Inevitably, the containing Derivative Structure would
also compute ∂21∂i, ∂1∂2∂i and so on (which are all un-
needed for the semi-explicit solution of a DAE). So from
the perspective of automatic differentiation, this work is a
specialized implementation of Kalman’s technique to a cer-
tain problem-domain.

The opposite approach of the implementation of n-th
order automatic differentiation is the infinite computation
of total derivatives as Karczmarczuk demonstrated it in
[7]. The elegant, recursive style in this work inspired the
formulation of the operational semantics of t(n,p). Albeit,
Karczmarczuk does neither handle partial derivatives nor
provide an iterative implementation.

Modularity of modeling languages has been researched
e.g. by Zimmer [13] and Furic [3]. The former preferred an

3 http://commons.apache.org/math

11

after-compilation approach to "rescue" as much modularity
as possible, while the latter restricts the modeling formal-
ism itself in a way that renders most symbolic manipula-
tion needless. Both approaches differ from this work, since
t(n,p)allows to retain complete modularity without sacrific-
ing certain modeling techniques.

Another strategy is to embed a modeling language
into an established general purpose language as shown by
Giorgidze and Nilsson in [4]. This can even go so far as to
formally define a complete host language specialized for
this task, as Broman’s Modelyze [2]. Both lead to modular,
formally defined modeling semantics (either by inheriting
from an established language or by formally defining the
host language).

The main difference to our work lies in the treatment
of equations: There, they are handled as data structures
in the host language and interpreted (or JIT-compiled) for
simulation, while in our case they can be directly translated
into terms of the target language.

Finally, it should be noted that variable structure sys-
tems have been researched for a while now. In [9], Mehlhase
presents an approach for systems with finite (in fact small)
amounts of modes, where the symbolic manipulation can
be applied to each mode separately (yielding efficient simu-
lation code for every mode). In [14], Zimmer avoids compi-
lation completely and shows, how runtime index reduction
can concisely express certain simulation scenarios.

8. Future Work
As simulation performance is paramount, it is an obvious
research topic for t(n,p). Simulating a set of real-world
models and comparing the performance to existing imple-
mentations should be an interesting field of study.

It is an open question, how efficient index-reduction can
be applied in the case of structurally variable models. As
this is a non-trivial problem, any efficient solution will
probably make use of an incremental approach. But until
now it remains unclear, how such an approach might be
implemented.
t is obviously (due to the lack of recursion) not Turing-

complete. Neither is any member of t(n,p). To overcome
this limitation, one could extend t(n,p)to a Turing-complete
language e(n,p), containing all elements of t(n,p)plus the
simple lambda calculus, general recursion (e.g. via a fixed-
point operator), non-strict conditionals etc.

For any such extension of t(n,p), evaluation would be
defined as usual (i.e. in non-AD languages). Intuitively,
the automatic differentiation still "works" as in the case
of t(n,p). Yet, it remains an interesting question how one
would formulate a corresponding proof.

A second possible extension is to think in terms of mod-
eling: Here it would be interesting to see, how a model com-
putes different t(n,p)terms. For instance one could easily
define the derivation operator used in modeling languages
by operating on t(n,p)-unknowns.

Another interesting aspect of t(n,p)is that it opens the
door for a deeper use of precompiled models in the style of
FMI. Using t(n,p)it should even be possible to introduce the

concept of external equations into a language like Modelica
(i.e. equations that are completely hidden in a precompiled
library without any limitations to their usage).

References
[1] Torsten Blochwitz, M Otter, M Arnold, C Bausch, C Clauß,

H Elmqvist, A Junghanns, J Mauss, M Monteiro, T Neid-
hold, et al. The functional mockup interface for tool inde-
pendent exchange of simulation models. In Modelica’2011
Conference, March, pages 20–22, 2011.

[2] David Broman and Jeremy G. Siek. Modelyze: a gradually
typed host language for embedding equation-based mod-
eling languages. Technical Report UCB/EECS-2012-173,
EECS Department, University of California, Berkeley, Jun
2012.

[3] Sébastien Furic. Enforcing model composability in
modelica. In Proceedings of the 7th International Modelica
Conference, Como, Italy, pages 868–879, 2009.

[4] George Giorgidze and Henrik Nilsson. Mixed-level
embedding and jit compilation for an iteratively staged
dsl. In Proceedings of the 19th international conference on
Functional and constraint logic programming, WFLP’10,
pages 48–65, Berlin, Heidelberg, 2011. Springer-Verlag.

[5] Christoph Höger. Separate compilation of causalized equa-
tions -work in progress. In François E. Cellier, David Bro-
man, Peter Fritzson, and Edward A. Lee, editors, EOOLT,
volume 56 of Linköping Electronic Conference Proceed-
ings, pages 113–120. Linköping University Electronic
Press, 2011.

[6] Dan Kalman. Doubly recursive multivariate automatic
differentiation. Mathematics magazine, 75(3):187–202,
2002.

[7] Jerzy Karczmarczuk. Functional differentiation of computer
programs. In ACM SIGPLAN Notices, volume 34, pages
195–203. ACM, 1998.

[8] Sven Erik Mattsson and Gustaf Söderlind. Index reduction
in differential-algebraic equations using dummy derivatives.
SIAM Journal on Scientific Computing, 14(3):677–692,
1993.

[9] A. Mehlhase. A Python Package for Simulating Variable-
Structure Models with Dymola. In Inge Troch, editor,
Proceedings of MATHMOD 2012, Vienna, Austria, feb
2012. IFAC. submitted.

[10] Constantinos C Pantelides. The consistent initialization of
differential-algebraic systems. SIAM Journal on Scientific
and Statistical Computing, 9(2):213–231, 1988.

[11] John D Pryce. A simple structural analysis method for daes.
BIT Numerical Mathematics, 41(2):364–394, 2001.

[12] L.B. Rall. The Arithmetic of Differentiation. MRC TSR.
Defense Technical Information Center, 1984.

[13] Dirk Zimmer. Module-preserving compilation of mod-
elica models. In Proceedings of the 7th International
Modelica Conference, Como, Italy, 20-22 September 2009,
Linköping Electronic Conference Proceedings, pages 880–
889. Linköping University Electronic Press, Linköpings
universitet, 2009.

[14] Dirk Zimmer. Equation-based Modeling of Variable-
structure Systems. PhD thesis, ETH Zürich, 2010.

12

Verifying Consistency Between Models

August Schwerdfeger Hazel Shackleton Steve Vestal
Adventium Labs, USA,

{august.schwerdfeger,hazel.shackleton,steve.vestal@adventiumlabs.com}

Abstract
Numerous aircraft development programs have suffered
cost and schedule delays due in part to unplanned rework
that occurred during integration and acceptance testing.
Many of the errors that required rework can be traced
back to inconsistencies between different specifications
and models developed by or for different disciplines and
suppliers early in the development process. We describe a
novel method for specifying and verifying complex con-
sistency properties between different kinds of models. This
method makes use of a gray-box model integration frame-
work and an SMT verification tool. We report on the ap-
plication of this method to one specific challenge problem,
verifying that a logical computer system architecture spec-
ified in AADL and a solid model specified in Creo together
satisfy a particular consistency property.

Keywords model consistency, virtual integration, model
integration, SMT, verification, defect detection

1. Introduction
Several aircraft development programs have suffered from
cost and schedule overruns due to unplanned rework late
in the project. Among the reasons cited for the A380 were
problems with design configuration management between
the different suppliers [1]. For the B787, delays during soft-
ware and system integration were cited [3]. Delays in soft-
ware and system integration were also cited as a problem
for the F-35 [13]. Studies of software failures have reported
that a significant proportion of defects are associated with
interfaces between modules or between requirements and
implementation rather than a design or coding error within
a single module [11, 18, 19]. The System Architecture Vir-
tual Integration (SAVI) project being conducted by a con-
sortium of civil aircraft manufacturers and suppliers has
identified verification of model consistency as a priority
need [12]. A key goal of the SAVI program is analysis of
models in early program phases to detect defects that cur-
rently remain latent until integration or acceptance testing,
which they have estimated could save $400M in an aircraft
development program [24].

The 4th Analytic Virtual Integration of Cyber-Physical Systems Workshop
December 3, 2013, Vancouver, Canada.
Copyright 2013 Adventium Enterprises. The US Government has unlimited rights
in this work in accordance with BPA W31P4Q-05-A-0031, Task Order 32. This
material may be reproduced by or for the U.S. Government pursuant to the copyright
license under the clause at DFARS 252.227-7018. The proceedings are published by
Linköping University Electronic Press. Proceedings are available at:
http://dx.doi.org/10.3384/ecp13090

AVICPS website:
http://www.analyticintegration.org/

One approach to assure consistency between different
models is to define a Domain-Specific Language (DSL) and
then generate different kinds of models for different kinds
of analyses from a common specification. An example of
this is the SAE standard Architecture Analysis and Design
Language (AADL) for embedded computer system archi-
tectures. A variety of safety, security, performance, and be-
havioral models (and system integration and configuration
data) can be generated from a common AADL specifica-
tion. These models can then be analyzed by appropriate
back-end tools. This avoids the need to manually generate
these various models, which is what is done in the absence
of an appropriate DSL and tool set. More importantly, con-
sistency between these various models (and the integration
code and data) is built-in to the generators. All are gen-
erated from a common input AADL specification. A cor-
rectness property of the tools is that the generated models
(and integration code and data) are consistent with the input
AADL specification and with each other.

A DSL approach only works if a domain is sufficiently
bounded and understood to define such a DSL and widely
enough used to merit the investment. In contrast, vehicle
development is a multi-domain problem that involves com-
puter architecture, solid, control, fluid dynamics, electrical,
hydraulic, and many other kinds of models. In a study of
ground vehicle development, BAE identified dozens of dif-
ferent modeling languages and tools and a hundred differ-
ent developer roles [4]. The investment in legacy training,
tools, and models is enormous. It has been estimated that
the DoD has been spending billions of dollars annually on
modeling and simulation [15]. Autodesk alone reports in-
vesting about $250M annually in R&D in their tool domain
[2]. This paper deals with verifying consistency between
different models from different domains, and our approach
is based on the use of a model integration framework rather
than a new DSL.

One technology that can detect a class of inconsistencies
between models is type checking. Vehicles have been lost
due to a simple units mismatch [6]. We earlier reported
on a multi-view gray-box model integration framework
called FUSED that includes a powerful, extensible, abstract
type system [7]. In our own experience with a set of UAV
models, we found one case of units mismatch and one case
of frame-of-reference mismatch between different models.

However, type checking only detects one class of de-
fects. In this paper we report on an approach that allows us
to specify and verify consistency properties over the struc-
tures of different models. By model structure, we mean the
objects and relationships between objects declared by the
user in a model. Using the capabilities of our multi-view

13

gray-box model integration framework, we provide the sys-
tem engineer with an abstract model structure type. This is
a graph structure in which nodes and edges are typed. A
structure for almost every kind of model can be represented
in this format at some level of abstraction. The mapping
from a specific model in a specific language to a graph that
abstractly represents the structure of that model is defined
when the modeling environment is initially integrated into
the framework.

The overall goal is illustrated in Figure 1. Given two
models that provide distinct views of a cyber-physical sys-
tem that are used for different engineering purposes, the
model integration framework can provide the system en-
gineer with a gray-box view of each as an abstract struc-
ture graph. These abstract structure graphs are then im-
ported into a Satisfiability Modulo Theories (SMT) en-
vironment. The SMT specification has “subscribe” state-
ments that direct the framework to import the two model
structure abstractions as a set of SMT declarations. The de-
sired consistency property is manually specified in the stan-
dard SMT-LIB language. The class of consistency proper-
ties that we explore in this paper has the form that there ex-
ists a mapping from one model structure to another model
structure that satisfies a set of typing and connectivity as-
sertions. Intuitively, the consistency property we verified
is that the processors, buses, devices, etc. specified in the
avionics model map to corresponding solid objects with
a corresponding connection topology. However, our long-
term goal is general methods for specifying and verifying a
broad class of complex consistency properties.

Examples of previous work to define and verify con-
sistency between different models are synchronization be-
tween UML models [9], treating multiple models as ex-
tended projections of a central common model [22], consis-
tency between different views and a base architecture [5],
and traceability between models[16]. All of these share cer-
tain similarities. The mappings between models are partial,
each may contain information that does not appear in and
cannot be generated from any of the other models. Most
use annotated graph representations of the static structure
of models and define mappings between such graphs. Our
approach does not require an expert in meta-modeling or
formal languages or the integration framework to explic-
itly specify particular transformations or mappings or trace
links between models. It uses concise specifications of de-
sired properties and applies verification technology that au-
tomatically checks for the existence of a satisfying map-
ping between models. Our approach does not require an
explicit single base architecture or common central view.
It assumes models are written in existing languages (nine
were used in an earlier series of UAV demonstrations[7]).

In the remainder of this paper, we will present the two
models in our challenge problem: an AADL model of the
logical software and hardware architecture for an aircraft
mission system; and a solid model of the boards, enclo-
sures, and cables for that system. We then present the SMT-
LIB specification for a desired consistency property and a
FUSED workflow specification that orchestrates the over-
all verification task. We conclude with lessons learned from
this exercise and the results of some synthetic benchmark-
ing experiments to assess scalability.

2. Models and Workflow
The two models that are to be verified consistent with each
other are a 3D solid model specified using the commercial
Creo (formerly ProE) tool and a logical avionics architec-
ture model specified in AADL. Consistency means the two
models satisfy a consistency property that we specify in the
SMT-LIB language, which is a third model. Finally, there
is a FUSED workflow specification that composes these
three models to automate the sequence of actions neces-
sary to perform the actual verification. FUSED workflows
are themselves models, and this workflow specification is
a fourth model. All of these models have an associated
modeling environment, which is a particular modeling lan-
guage supported by a particular toolset. These four environ-
ments are integrated into the FUSED multi-view gray-box
model integration framework, which is necessary to exe-
cute a workflow automatically.

2.1 Equipment Solid Model
Solid models are three dimensional geometric models
created by specifying 2D and 3D shapes and combining
them to form more complex shapes, parts, and assemblies.
Shapes (closed regions in 3D space) can be created by
applying operations such as extrusion and rotation to 2D
shapes. More complex shapes and parts can be specified
by applying constructive solid geometry operations such as
union, intersection and difference to simpler shapes. Ge-
ometric constraints can be specified to combine parts into
assemblies and to combine parts and assemblies into in-
creasingly more complex assemblies. A variety of proper-
ties can be specified for objects in the models, such as ma-
terial and surface appearance properties. Most tools allow
user-defined properties to be associated with solid objects.

Almost all the tools of which we are aware impose a
hierarchical containment structure on the solid objects in
a model. Every shape, part, and assembly (other than the
root) is uniquely contained in one other shape, part or
assembly. A containment tree view is provided to users to
facilitate model navigation and object selection. Geometric
constraints define relationships that may cut across this tree
structure to form general graphs of relationships between
solid objects. For example, parts in different subtrees can
be aligned or mated using geometric constraints. Geometric
constraints can create relationships between almost any
pair of nodes in the containment tree structure.

There are standard exchange formats for solid models
such as STEP and IGES, but model creation is done using
a GUI unique to each tool vendor. Most commercial ven-
dors provide a variety of solid model analysis capabilities,
for example mass properties and structural analyses. Most
tools provide an API for third-party tool developers.

Figure 2 is a rendering of the solid model for the simple
avionics system used in this study. We developed our own
solid model based on data sheets that could be downloaded
from vendors of ruggedized embedded electronics modules
and associated standards. Actual production models would
contain more detail than we were able to include in our
model, a subject to which we will return in the remarks
section. (At least one vendor we talked to could supply
detailed solid models, but only for purchased equipment
under an NDA.)

14

Figure 1. The goal is to verify consistency properties between different kinds of models.

Figure 2. The 3D solid model shows enclosures, boards, and cables. Boards are inserted and cables connected by declaring
geometric constraints. Special tool plug-ins collect electrical and type data.

These assemblies would normally be located (using ad-
ditional geometric constraints) within an airframe solid
model. Given the effort involved, placing these assemblies
within an outer airframe model was not deemed significant
enough for this exercise because the consistency property
we used only applies to solid objects of particular types. We
specified types for the objects in our model using a user-
specified property, and only objects typed as devices, pro-
cessors, switches, enclosures, cables, etc. were referenced
by our consistency property.

Wiring harness design is a complex problem, e.g. rout-
ing, electromagnetics, reliability, installation, maintainabil-
ity. Special add-in tools are available for most commer-
cial solid modeling tools for the sub-domain of wiring har-
ness design and placement. These specialized wiring har-
ness add-ins capture electrical connectivity data and also
add geometric constraints to the model. There are thus re-
lationships between solid objects in the solid model that are
typed as electrical connections.

15

We did not have a wiring harness add-in tool. We man-
ually drew cabling using our own geometric constraint pat-
tern to specify connections, shown in Figure 3. We added
user-defined properties to explicitly identify electrical con-
nections between solid objects. In our experiment we used
the latter to identify electrical connection relations between
solid objects (i.e. to strongly type certain relations between
solid objects as electrical connections). In practice this
could and should be done using only data that is already
available from a wiring harness add-in without any addi-
tional user input.

2.2 Avionics Architecture Model
AADL is an SAE standard language used to model soft-
ware and hardware architectures for embedded computer
systems [20]. Software objects such as subprograms, ob-
jects, threads, processes, partitions, etc. and hardware ob-
jects such as memories, devices, processors, buses, etc. can
be connected and bound to each other. There is a sophis-
ticated typing system with extension, generic, and refine-
ment capabilities. The language has a well-defined seman-
tics and a large set of standard properties to enable a va-
riety of analyses for performance, safety, security, behav-
ior, etc. Tools also exist to generate system integration code
and data (detailed specifications for individual components
that are being integrated are usually written in some other
suitable language, e.g. C, Ada, VHDL, SimuLink). The
language includes packaging and hierarchical structuring
features for components, data types, and connections. The
standard defines textual, graphical, and tool interchange
formats for AADL specifications.

We wrote our specification using the Open Source
AADL Tool Environment (OSATE) [21]. Figure 4 shows
three of the many diagrams from the graphical representa-
tion of the model. Hierarchical relationships are indicated
in this figure by dotted lines that show which of the lower
diagrams provides internal design detail for which boxes
in the upper diagram. (In the actual tool, buttons and clicks
are used to navigate up and down the design hierarchy be-
tween diagrams.) AADL specifications, in the graphical
view, have the boxes-and-arrows look-and-feel of many
modeling languages used in the computer field (but with
well-defined semantics that enable a variety of analysis
and generation tasks to be automated).

Figure 3. Connections are declared in the solid model us-
ing a geometric constraint pattern and properties on solids.

Figure 4. Three of the several diagrams in the graphical
view of the AADL model. The dotted lines indicate where
the lower diagrams show internal detail for boxes in the
upper diagram.

The boxes that represent hardware objects have been
shaded blue in the figure. AADL is a system language, and
software and hardware objects are mixed in various places
in a complex model. For example, in our model there is
a common hardware computing platform shared by multi-
ple hosted functions. Each hosted function consists of soft-
ware subsystems together with special hardware equipment
for that particular function, such as sensors. AADL is used
to specify an integrated system in which multiple hosted
functions are integrated onto the common computing plat-
form both by binding software elements and by connect-
ing specialized hardware. The overall hardware architec-
ture is typically not contained in a single diagram. The
hardware components are scattered among multiple spec-
ifications (typically developed by multiple suppliers) plus
integration specifications developed by the system integra-
tor.

An AADL specification is analogous to a set of class
declarations. For example, a declaration of a processor
called PowerPC is actually a specification for a class of
processors. Multiple instances can be created from this dec-
laration, for example by declaring multiple components of
this class inside another declaration. A model for a specific
system instance is obtained by “instantiating” a designated
root system declaration in the AADL specification. This
produces a data structure that has a specific set of instance
objects that represent a specific system.

2.3 FUSED Models and Workflows
One way to better coordinate multidisciplinary modeling is
to use an environment that supports capture of traceabil-
ity links between different models in an environment [17].
Some engineering workflows that involve different kinds of

16

models can be automated using a black-box model integra-
tion framework [25, 10]. In a black-box model integration
framework, models are abstracted as functions from design
parameters to quality metrics that can be evaluated at de-
sign time. Model integration frameworks allow the specifi-
cation of “workflows” that automate engineering tasks that
involve multiple different kinds of models. For example, a
solid model can be “evaluated” to map choices of wingspan
to vehicle weight and moment of inertia, which can in turn
be used as input parameters of a dynamical systems model,
which can then be solved or simulated to obtain perfor-
mance metrics of interest to the engineer.

For our challenge problem, which requires a higher de-
gree of visibility into the models being integrated, we used
a prototype gray-box model integration framework called
FUSED [7]. Among the goals for FUSED are improved
specification and management of system (multimodel) con-
figurations and design trade spaces, automated inference
of traceability data from higher-level declarations of de-
pendencies between models, interoperation with multiple
model repositories and servers across multiple organiza-
tions, and more complex workflows such as combining
multiple design automation environments (e.g. trade space
visualization, multidisciplinary design optimization) with
system models that are themselves compositions of many
design models. Another example of a complex workflow is
the subject of this paper, the use of a gray-box structural ab-
straction viewpoint into models to support automated veri-
fication of complex consistency properties.

The type system we are developing in FUSED combines
concepts from programming language type systems (e.g.
type constructors, multiple inheritance, interfaces, gener-
ics) and ontologies (e.g. description logics). All of this is
done with the perspective that any single FUSED type is
just one possible abstract viewpoint of some aspect or ele-
ment of a model that has a more detailed and precise mean-
ing and structure in the semantics and type system of its
own language and modeling environment.

In the exercise reported here, several types play sev-
eral roles. Both the solid modeling and the logical architec-
ture modeling languages have their own type systems (e.g.
primitive types of surfaces and shapes, types of relations
such as part-of or electrical connection). At the FUSED
level in this exercise, these domain-specific type systems
are abstracted down to sets of enumeration literals (think
of abstracting all types in a software program down to a
list of class names). At the FUSED level in this exercise,
we also use a graph type whose nodes and elements are la-
beled with these domain-specific type names. For example,
the solid model is abstractly represented as a graph whose
node labels name types of solid shapes and whose edge la-
bels name types of solid relationships. (Inheritance in the
domain-specific type systems is currently abstractly repre-
sented by allowing nodes and edges to have multiple type
labels.)

The gray-box viewpoint used in this exercise could be
graphically examined and navigated using a FUSED GUI
by the engineer (who is developing the verification work-
flow specification). The nodes of the abstract model graph
(a FUSED type of thing) represent objects statically de-
clared in the model specification (e.g. component decla-
rations but not objects that would be dynamically created
during an execution or simulation of that model – those

Figure 5. One layout for the abstract architecture view.
Hardware objects are shaded blue, connection relations are
shaded green.

might appear in a different viewpoint). The edges of the
graph represent relationships between objects that exist in
a model. The nodes and edges are labeled with the names of
domain-specific types declared in the detailed models. Fig-
ure 5 shows a graphical view of the abstract structure graph
for the AADL model used in this exercise in which hard-
ware (versus software and system) nodes have been shaded
blue and connection (versus containment) edges have been
shaded green (shading is used here in liu of displaying lists
of domain-specific type labels).

The FUSED workflow used in this exercise is shown
in Figure 6. This specification identifies the desired solid
and architecture models and their configurations, specifies
that abstract structural views are published for these two
models and used to satisfy subscriptions (dependencies on
external data) within a specified SMT model, and specifies
that the SMT model is verified within the SMT modeling
environment. The SMT model contains the specification of
the consistency property to be verified.

2.4 SMT Consistency Property
The overall “proof structure” is to verify that a particular
consistency relationship exists between two abstractions of
the two models. The abstraction steps were done conven-
tionally and without any formal definition or verification
beyond strong typing of the data structures. The consis-
tency relation is typed subgraph isomorphism. This is cap-
tured as an SMT-LIB specification and verified using an
SMT checker.

Satisfiability Modulo Theories (SMT) tools can deter-
mine whether a model, as the term “model” is used by for-
mal logicians in mathematics, exists for a specified set of
many-sorted first-order logic predicates over an available
set of theories [8]. The set of theories over which predicates
may range can vary from tool to tool, but almost all support
theories of integers, reals and arrays. SMT has been widely
applied to formally verify properties for software. In this
exercise SMT technology is applied for a novel purpose, to

17

Figure 6. The FUSED workflow specification directs that abstract structural views be published by the solid and architecture
model and provided to the SMT model, which is then executed to verify the consistency property.

formally verify a consistency property between the abstract
structures of two different kinds of models. The consis-
tency property desired is written in the SMT-LIB language
by a subject matter expert familiar with this modeling and
verification technology.

Figure 7 shows a redacted version of the consistency
property specification used in this exercise. This can be
broadly divided into two sections, the declarations for the
abstract model structures to be checked and the declara-
tions for the consistency property itself.

The declarations for the two abstract model structures
are trivial for the SMT user. FUSED was built using lan-
guage extension technology from the University of Min-
nesota [23, 14]. This makes it easy to integrate new mod-
eling environments at a FUSED site. It also makes it easy
to layer carefully defined new features on top of any mod-
eling language at the time that modeling environment is
integrated into FUSED. For example, this can allow type
specification and checking not available in the original lan-
guage (e.g. units, frames of reference). In this exercise, we
layered a “subscribe” declaration on top of the SMT-LIB
language. This new declaration allows the SMT specifier to
identify data that is to be provided from an external source
as specified by the system engineer in a FUSED workflow
specification.

The FUSED framework will automatically perform type
checking and representation conversion as required and
expand the subscribe declarations into standard SMT-LIB
declarations before invoking SMT tools. In the SMT-LIB
language, nodes and types are declared as enumeration lit-
erals that are satisfied by an assignment of unique integers
to them. Nodes are typed by a predicate over nodes and
types. Edges are a predicate over pairs of nodes and an edge
type. Nodes and edges may have multiple types, e.g. inher-
itance or casting in the original modeling language.

The second part of the specification must be manually
written. This can be divided into two subparts. The first
subpart consists of predicates that identify the nodes and
edges (by type) for which a mapping must exist and specify
type compatibility rules between nodes and edges that are
mapped from one model to the other. The second subpart is
the declaration of an array that maps nodes from one model

to another plus a declaration that says this map must be a
subgraph isomorphism where the nodes and edges satisfy
the type compatibility rules.

The predicates that identify the types of nodes and edges
that must be mapped and the type compatibility rules need
to be modified for each new pair of models, but their struc-
ture is simple. The subgraph isomorphism declarations can
probably be reused for a different pair of models with mi-
nor modifications.

The consistency relation between the two abstractions
is typed subgraph isomorphism. Although theoretically
a computationally challenging problem, graph isomor-
phism has been well-studied, and reasonably scalable al-
gorithms exist. Adding the type compatibility constraints,
pre-filtering the abstract graphs to nodes and edges having
types of interest, and seeding with known mappings (e.g.
“assert avionics leftCabinet maps to solid leftEnclosure”)
should further simplify the problem.

Our choice of SMT for this specific consistency prop-
erty could reasonably be challenged as overkill. However,
our hypothesis is that a variety of complex properties may
emerge, and the number and nature of such properties is
still a research issue. We selected SMT because it is a pow-
erful general-purpose verification technology. A research
question is whether a many-sorted first-order logic over a
few fixed theories can easily express a wide class of useful
properties.

3. Results
SMT performance was surprisingly good. Our challenge
problem required about three dozen nodes and edges to be
mapped. Verifying satisfiability or unsatisfiability required
only a few seconds.

Most SMT tools provide their own languages and sup-
port unique features. There are multiple ways to encode
a problem, especially when the set of alternatives consid-
ered include tool-specific language features. For example,
some languages support special forms of declaration for
enumerations. We conducted some preliminary synthetic
benchmarking exercises, summarized in Figure 8, that both
scaled the size of the problem and experimented with dif-
ferent formulations. There were some surprises, e.g. the

18

;; Subscribe to SMT declarations for elements of the abstract model graph type.
;; FUSED expands these to enumerations and functions for nodes, edges, and types.
(FUSED-subscribe Solid)
(FUSED-subscribe AADL)

(define-fun mapAADL ((ao AADL.Object)) Bool
;; return true if AADL.Object must have a mapping to a solid model object

))

(define-fun typeCompatible ((ao AADL.Object) (se Solid.Object)) Bool
;; return true if the avionics and solid object types are compatible

))

;; The model consistency property is true if a satisfying value for "map" exists.
(declare-fun map ()(Array AADL.Object Solid.Object))

;; The typed graph isomorphism property the map must satisfy.
;; For all avionics objects that must map to solid objects...
(assert (forall ((ao AADL.Object)) (=> (mapAADL ao)

(and
;; the map from avionics to solid model is 1-to-1
(forall ((aoB AADL.Object))

(=> (and (mapAADL aoB) (= (select map ao) (select map aoB))) (= ao aoB)))
;; if <ao,aoB> is an avionics edge that must map to a solid edge
;; then solid edge <map(ao), map(aoB)> with compatible type must exist
(let ((so (select map ao)))

(forall ((aoB AADL.Object))
(=> (and (AADL.attached ao aoB AADL.connection) (mapAADL aoB))

(Solid.attached so (select map aoB) Solid.Mate))))
;; avionics type of ao is compatible with solid type of map(ao)
(typeCompatible ao (select map ao))))))

Figure 7. A redacted SMT consistency property specification used in this exercise.

use of special enumeration declaration forms could be less
tractable than a more primitive declaration of literals plus a
series of uniqueness assertions. We hypothesize that further
experimentation in collaboration with practitioners skilled
in the art could significantly expand the size of problem
solvable. It is still an open question whether this can scale
to problems of real-world size, but even if not, SMT may
be useful to explore for consistency properties for which
efficient tailored verifiers should be developed.

For practical use, it is essential that the method pro-
vide clear and useful indicators of why two models are in-
consistent when the consistency property is unsatisfiable.
The feed-back provided by the SMT tool in our demo was
not directly useful when debugging model inconsistencies.
SMT tools will identify unsatisfiable cores in such cases,
but the output may in essence be the internal encoding,
and the core may be an arbitrarily large subset of the en-
tire specification. In our case, the tool would report that the
entire set of assertions was unsatisfiable. We know that our
SMT declarations of the abstract structure graphs are satis-
fiable in isolation. The unsatisfiabilities of interest are due
to the nonexistence of a satisfying solution for the map ar-
ray alone. It should be possible to use these properties to
obtain useful error reporting.

Fully detailed solid designs are much larger and more
complex than our model. Special-purpose add-in tools for
wiring harness design are typically used. It would be an in-
teresting future exercise to use a solid model with increased
fidelity and publish/subscribe the wiring harness electrical
analysis results view for use in consistency verification.

There are broader research questions that remain. How
can we better formalize and verify the abstraction relations
between the typed graphs and the detailed models? Can
this approach specify and verify a usefully broad range
of consistency properties that are effective in detecting de-
fects that occur in practice? (We hypothesize this exercise
could be adapted to any consistency property of the form
“there exists a mapping between typed graph abstractions
of model static structures that satisfies a set of properties.”)
Would applying these methods early in the process (for ex-
ample to preliminary design models) significantly reduce
defects that otherwise would remain latent until integration
or acceptance testing? To address these questions, we are
working to establish collaborations with developing orga-
nizations to perform studies using real-world models and
defect data.

Acknowledgments
This work was supported by US Army AMCOM, Bruce
Lewis, Army POC, bruce.a.lewis.civ@mail.mil.
DISCLAIMER: Reference herein to any specific commer-
cial, private or public products, process, or service by trade
name, trademark, manufacturer, or otherwise, does not con-
stitute or imply its endorsement, recommendation, or fa-
voring by the United States Government. The views and
opinions expressed herein are strictly those of the authors
and do not represent or reflect those of the United States
Government. The viewing of the presentation by the Gov-
ernment shall not be used as a basis of advertising.

19

Figure 8. Initial synthetic benchmark results for various problem sizes and formulations were encouraging.

References
[1] Airbus A380. online, September 2013.

http://en.wikipedia.org/wiki/A380.

[2] Autodesk Annual Report. online, April 2012.
http://investors.autodesk.com/phoenix.zhtml?c=117861&p=irol-
reportsAnnual.

[3] Boeing Reschedules Initial 787 Deliveries and First Flight.
online, September 2013.
http://www.boeing.com/news/releases/2007/q4/071010d_nr.html.

[4] Steven Bankes, Daniel Challou, David Cooper, Todd
Haynes, Hillary Holloway, Paul Pukite, Jorge Tierno, and
Christopher Wetland. META Adaptive, Reflective, Robust
Workflow (ARRoW) Phase 1b Final Report. Technical
Report TR-2742, BAE Systems, October 2011.

[5] Ajinkya Bhave, Bruce H. Krough, David Garlan, and
Bradley Schmerl. View Consistency in Architectures for
Cyber-Physical Systems. International Conference on
Cyber-Physical Systems, 2011.

[6] Mars Climate Orbiter Mishap Investigation Board. Phase I
Report, 1999.
ftp://ftp.hq.nasa.gov/pub/pao/reports/1999/MCO_report.pdf.

[7] Mark Boddy, Martin Michalowski, August Schwerdfeger,
Hazel Shackleton, and Steve Vestal. FUSED: A Tool In-
tegration Framework for Collaborative System Engineer-
ing. Analytic Virtual Integration of Cyber-Physical Systems
Workshop, 2011.

[8] David R. Cok. The SMT-LIBv2 Language and Tools: A
Tutorial, March 2013.
http://www.grammatech.com/resource/smt/SMTLIBTutorial.pdf.

[9] K. Czarnecki and S. Helsen. Feature-based survey of model
transformation approaches. IBM SYstems Journal, 2006.

[10] iSight and the SIMULEA Simulation Engine. online,
September 2013.
http://www.3ds.com/products-services/simulia/portfolio/isight-
simulia-execution-engine/latest-release/.

[11] David N. Card. Learning From Our Mistakes with Defect
Causal Analysis. IEEE Software, January 1998.

[12] Peter H. Feiler, Jorgen Hansson, Dionisio de Niz, and
Lutz Wrange. System Architecture Virtual Integration:
An Industrial Case Study. Technical Report CMU/SEI-
2009-TR-017, Software Engineering Institute, November
2009.

[13] GAO. Joint Strike Fighter Restructuring Places Program on
Firmer Footing, but Progress Still Lags. Technical Report
GAO-11-325, General Accounting Office, April 2011.

[14] Jimin Gao, Mats Heimdahl, and Eric Van Wyk. Flexible and
Extensible Notations for Modeling Languages. Proceedings
of Conference on Fundamental Approaches to Software
Engineering, 2007.

[15] Paul Gustavson, Ali Nikolai, Roy Scrudder, Curtis Blaise,
and Richard Daehler-Wilking. Discovery and Reuse of
Modeling and Simulation Assets. online, September 2013.
The M&S Journal,
http://www.msco.mil/.

[16] Simon Frederick Königs, Grischa Beier, Asmus Figge, and
Rainer Stark. Traceability in Systems Engineering – Review
of industrial practices, state-of-the-art technologies and new
research solutions. Advanced Engineering Informatics,
2012.

[17] Simon Frederick Königs, Grischa Beier, Asmus Figge, and
Rainer Stark. Traceability in Systems Engineering – Review
of industrial practices, state-of-the-art technologies and new
research solutions. Advanced Engineering Informatics,
2012.

[18] Maggie Hamill and Katerina Goseva-Popstojanova. Com-
mon Trends in Software Fault and Failure Data. Transac-
tions on Software Engineering, 1978.

[19] Robin Lutz. Analyzing Software Requirements Errors in
Safety-Critical, Embedded Systems. IEEE Requirements
Engineering, 1993.

[20] Architecture Analysis and Design Language. Technical
Report AS5506, SAE, September 2012.

[21] OSATE 2. online, September 2013.
https://wiki.sei.cmu.edu/aadl/index.php/Osate_2.

[22] Charles Simonya, Magnus Christerson, and Shane Clifford.
Intentional Software. OOPSLA, 2006.

[23] Minnesota Extensible Language Tools, September 2013.
http://melt.cs.umn.edu/index.html.

[24] Don Ward, Steve Helton, and Greg Polari. RoI Estimates
from SAVI’s Feasibility Demonstration, 2011. Systems
Engineering Conference.

[25] Scott Woyak. Simulation Driven Design: Creating an
Environment for Managing Simulation Tools, Processes,
and Data. Technical report, Phoenix Integration, March
2010.
http://www.phoenix-int.com/documents/pdf/white_papers/
simulation-driven-design.pdf.

20

Towards a Safe Compositional Real-Time Scheduling Theory
for Cyber-Physical Systems ∗

Linh Thi Xuan Phan
University of Pennsylvania

Abstract
Modern cyber-physical systems are becoming increasingly
complex and distributed. These trends are making it more
and more difficult to ensure the timing guarantees of these
systems: traditional approaches were developed for much
simpler systems and are difficult to scale. As system sizes
are growing further, designing future cyber-physical sys-
tems is going to be even more challenging.

Compositional design and compositional analysis have
emerged as an effective means to address this challenge.
Several interface models and interface computation meth-
ods have been developed, which can be used to analyze
complex systems in an efficient manner. The existing the-
ories provide a foundation for ensuring the timing guar-
antees of cyber-physical systems; however, they also have
several important limitations. This position paper discusses
open challenges in this domain, and it highlights several
research directions towards a safe and resource-efficient
compositional theory for cyber-physical systems.

1. Introduction
Cyber-physical systems (CPS) are becoming increasingly
complex and distributed at large scale. One way to scale
timing analysis to such complex systems is to develop them
in a compositional manner [39]: real-time workloads (such
as tasks) are encapsulated in components, which expose
their resource needs through resource-aware interfaces.
These components can be composed under a scheduling
algorithm or input/output interconnections to form larger
components, and their interfaces can be computed effi-
ciently via component abstraction and interface composi-
tion. Timing constraints of a component can then be guar-
anteed by ensuring that the platform satisfies the compo-
nent’s interface.

Several interface models and interface computation
techniques have been developed (see e.g., [39, 9, 16, 27,
34, 38, 21, 14, 42, 30, 6, 10, 41, 20]), which enable effi-
cient integration and isolation of independently-developed
cyber-physical components. However, these existing the-
ories face several important limitations: they ignore the
platform overhead and the correlation between scheduling
∗ This research was supported in part by the ARO grant W911NF-11-
1-0403, ONR grant N00014-13-1-0802, and NSF grants CNS-1117185,
ECCS-1135630 and CNS-1329984.

The 4th Analytic Virtual Integration of Cyber-Physical Systems Workshop
December 3, 2013, Vancouver, Canada.
Copyright is held by the author/owner(s). The proceedings are published by
Linkping University Electronic Press. Proceedings are available at:
http://dx.doi.org/10.3384/ecp13090
AVICPS website:
http://www.analyticintegration.org/

and communication, which could lead to timing violations
in practice; they assume that nodes’ clocks are closely syn-
chronized, which is difficult and expensive to accomplish
in a complex networked setting; they consider exclusively
timeliness and ignore the semantics of timed interactions
between components, or vice versa; and they focus only on
the cyber aspects, while making implicit assumptions about
the physical aspects that may not always be realizable.

Some of these assumptions are not unique to the cur-
rent compositional theories; they come from the underly-
ing schedulability and timing analysis. However, in large-
scale distributed CPS, they are much more likely to be vio-
lated and can no longer be ignored. In this paper, we discuss
these limitations in more detail, and we briefly sketch how
the current theories could be extended to overcome them.1

2. Platform overhead matters
The current compositional theories assume a somewhat
idealized platform in which all overhead is negligible. In
practice, the platform overhead – such as release delay,
preemption overhead, cache effects, context switches, and
interrupt delay – can substantially interfere with the ex-
ecution of tasks. Without considering such overhead, the
computed interfaces can underestimate the components’ re-
source needs; hence, the components can violate their tim-
ing constraints even if their interfaces are satisfied [35].

At first glance, it may seem that this issue can be solved
by inflating the worst-case execution time (WCET) of each
task by the overhead it experiences. However, this approach
can be unsafe: including the overhead as part of the tasks’
WCETs implies that the sources of overhead are assumed
to be scheduled together with tasks, but this does not hold
for certain types of overhead, such as interrupts and task
release events. Further, it is difficult to compute a safe
bound on the overhead experienced by a task, since such
overhead accumulates with the number of tasks in the entire
system2, but the task-level details of one component is
hidden from another component in a compositional setting.

Accounting for the platform overhead on multicore pro-
cessors is even more challenging because of the complex
interactions between various platform resources. In a com-
positional setting, the overhead a component incurs, e.g.,
due to cache interference, is harder to quantify: it depends
not only on the direct interference between the compo-
nent’s own tasks but also on the indirect interference be-
tween these tasks and the interfaces of other components,
1 Interface theories for ensuring functional correctness have been studied
extensively (see e.g., [37, 32, 36]); in this paper, we focus primarily on
interface theories from the scheduling perspective.
2 This is because a task within a component may be delayed by the
interrupt processing or task release events in other components.

21

and the latter in turn depends on the actual values of the
interfaces and their implementations; consequentially, the
interface computation becomes a cyclic process, which is
often expensive and may not always converge.

In our recent work, we have proposed a new notion of
overhead-aware interfaces, as well as methods for com-
puting the interfaces that take into account platform over-
head [35, 43]. While these initial solutions are promising,
much work remains to be done to achieve a compositional
theory that is both safe and resource-efficient in practice.

3. Data-dependent components
Existing compositional theories typically assume indepen-
dent execution of tasks; in practice, however, CPS often
operate on data flows with end-to-end timing constraints.
Therefore, new interface models and interface analysis
methods that can provide end-to-end timing guarantees
for data-dependent and distributed components are nec-
essary. Although there are a number of relevant formalisms
that provide partial solutions to this problem, such as
assume-guarantee interfaces [21, 14, 42], data flow graphs
with LET semantics [30], and interfaces for network re-
source [38], none of them considers end-to-end timing con-
straints and compositional scheduling concurrently.

To meet the above needs, the component model and
composition semantics need to be extended to capture not
only resource sharing but also data communication seman-
tics and input/output connections. Ideally, the component
model should be self-sufficient for the analysis, i.e., it
should contain all the information necessary for comput-
ing the interfaces, such as local timing constraints (e.g.,
local deadlines) and activation patterns (e.g., periods or ar-
rival patterns) of tasks. However, such information about
a component is difficult to obtain, since it depends on the
local constraints assigned to other data-dependent compo-
nents and, consequently, on those components’ interfaces.
In addition, deriving a composition semantics that encap-
sulates the intricate correlation between scheduling and
communication is also non-trivial.

To illustrate the above cyclic relationship, consider an
end-to-end data flow with end-to-end deadline D that is
processed sequentially by two tasks, T1 and T2, which are
located in components C1 and C2, respectively. Then, the
deadline of T2 is inverse proportional to the deadline of T1.
Further, the arrival pattern of T2’s input data – which is
needed to compute C2’s interface – depends on the arrival
pattern of T1’s output data, which in turn depends on T1’s
deadline as well as the resource supply of C1’s interface.

One approach to tackle the above challenge is to adapt
deadline decomposition methods, coupled with synchro-
nization protocols, such as those outlined in [28]. This di-
rection offers a self-sufficient component model, and it en-
ables an efficient interface computation by directly apply-
ing existing results. However, it can also result in non-
optimal interfaces, due to the cyclic relationship between
the component model and the interfaces (discussed above).
Therefore, enhancements of the deadline decomposition
methods and synchronization protocols are required to im-
prove the analysis accuracy.

Another interesting direction is to explore parametric
interfaces, where an interface can be represented as a func-
tion of variables that denote unknown factors, such as lo-
cal timing constraints, and the interface computation can
be performed symbolically. The concrete values of the in-
terfaces can then be realized at the top-level component
based on the end-to-end constraints. Since the size of the
composed interface grows with more composition steps, it
would be useful to refine the interface, e.g., using a safe
approximation of the interface, at each composition step to
improve the analysis efficiency.

4. Clock synchronization
The current real-time scheduling theory and interface anal-
ysis methods assume a common notion of time. However,
achieving strong synchrony in a distributed system is a
known hard problem: due to clock drift and network prop-
agation delays, the local clocks of the different nodes are
always slightly different, and even frequent resynchroniza-
tion (which would have a high overhead) would not be suf-
ficient to achieve perfect synchrony.

Without perfect synchrony, the notion of a deadline be-
comes ambiguous. Since CPS interact directly with the
physical environment, deadlines are usually given in terms
of the physical time; however, when a control or data flow
passes through multiple nodes, each node’s local clock can
deviate from the physical time, which can result in jobs be-
ing scheduled too early or too late; also, nodes can disagree
whether a deadline has been missed or met.

At first glance, it may seem that timing variance due to
clock drift is too small to matter in practice; however, even
small discrepancies can cause scheduling anomalies and
thus ‘snowball’ into large anomalies. For instance, suppose
nodes A and B are expected to send messages to node C at
a certain time to trigger tasks TA and TB on C, and suppose
further that node A’s message is meant to be sent first, so
that TA is released before TB . If B’s clock is slightly faster
than A’s, then B may send its message too soon, causing
the messages to be reordered and TB to be released and
scheduled before TA; as a result, TA may miss its deadline,
even though the schedulability analysis (which assumes
perfect synchrony) may have predicted that the deadline
would be met. Worse, since C’s schedule is now different,
the timing of C’s own messages is also affected, which
may lead to further changes on other nodes. Thus, while
the original discrepancy on B is small, the resulting effect
on the system as a whole can be much larger.

One approach towards solving this problem is to extend
the system model with a bound on the clock drift and the
length of the synchronization intervals, so that it becomes
possible to reason about possible deviations from the refer-
ence time, and to make scheduling decisions accordingly.
To enable this approach, component interfaces would have
to be extended to expose information about drift and syn-
chronization, and the information would have to be carried
over when interfaces are composed and analyzed. To keep
the complexity of the analysis manageable, it may be use-
ful to 1) abstract some of the details in the interface, and/or
2) specify requirements for other subsystems that the com-

22

ponent interacts with, such as an upper bound on the ac-
ceptable clock drift. One challenge is to determine good
abstractions; another is to determine which requirements
are useful and can be satisfied.

5. The gap between real-time scheduling
theory and high-level formal models

Cyber-physical systems are traditionally modeled using
two different paradigms: high-level models of computa-
tion and real-time task/resource models. These models
capture different timing properties: The former focus on
the high-level formal specifications of timed interactions,
communications, and synchronization among a collection
of independent processes or subsystems; examples include
timed automata [4], I/O automata [29], and real-time pro-
cess algebra [26]. The latter capture implementation-level
task timing information (e.g., execution time, deadline,
priority) and details on physical resources and resource
sharing (e.g., processing speed, network bandwidth, mem-
ory, scheduling policy). Although both categories are in-
tertwined, they are typically considered in isolation. On
the one hand, verification techniques for timed concurrent
models verify temporal properties based solely on the high-
level model, without considering the platform aspects, such
as communication delay and scheduling overhead (e.g.,
synchronization is assumed to be instantaneous). On the
other hand, the task and resource models used in real-time
scheduling theory are based on the execution platforms and
the source-code of the software; unlike the high-level mod-
els, they do not take the semantics of communication into
account. Thus, even if a higher-level property (e.g., a safety
property) is proven in the higher-level model, it does not
necessarily hold in the implemented system.

Several efforts have been made to bridge this gap by
adding platform aspects to the high-level models. For in-
stance, existing work on the implementability of timed au-
tomata incorporates the platform information in the timed
automata model by explicitly modeling the execution plat-
form [3] or by modifying the timed automata semantics to
reflect the implementation platform, such as the sampling-
based [23], almost ASAP [15, 11], time-triggered [22],
and probabilistic and topological [8] semantics. Real-time
scheduling has also been combined with timed automata
in [2, 7] and with process algebra in [26, 31]. In addition,
a number of automata- and actor-oriented scheduling inter-
faces have also been developed [6, 10, 41, 20].

However, the above approaches are not only expensive
in terms of analysis complexity but also assume a very
simple model of resources – for instance, the processor
is assumed to have unit speed and be fully available. As
we move towards multicore and distributed systems, these
assumptions no longer hold: the processor is not always
fully available due to various types of platform overhead
(such as I/O, interrupts, communication), and these types
of overhead can even vary between different nodes. We
believe that it would be useful to develop new models and
analysis techniques that combine both aspects.

One direction is to establish an intermediate ‘glue layer’
that connects the two classes of models, e.g., similar to

the hierarchical heterogeneity approach for composing
high-level models of computation in Ptolemy [17], or the
functional mock-up interface for co-simulation and model
exchange [1, 12]. The glue layer could precisely capture
the assumptions (e.g., synchronization semantics) that the
higher-level model makes about the platform, and it could
be used to mechanically verify that a given platform satis-
fies these assumptions. The assumptions must be realistic
(i.e., realizable on common platforms) but should abstract
low-level details of the platform as much as possible. Since
the assumptions may be relevant to other subsystems that
the component communicates with, they should be taken
into account by the interface analysis.

6. Analyzing state-based systems
While real-time scheduling theory provides a clean system
abstraction and enables efficient analysis, it currently can-
not be applied to scheduling state-based systems. For in-
stance, a system might schedule tasks depending on the
current state of their input buffers, or it might handle data
differently based on its current buffer state (e.g., append
new data items to an input buffer if there is room, and dis-
card them otherwise). State-based scheduling is also inher-
ent in adaptive systems, which need to respond to the ex-
ternal environment. For example, a video encoder compo-
nent might send encoded video frames to a receiver com-
ponent depending on how quickly the receiver can decode
the video to avoid buffer overflows and buffer underflows.
Although it is sometimes possible to derive a stateless ap-
proximation of the system, such approximation often leads
to overly pessimistic analysis results.

A common approach to analyzing such systems is to use
state-based models, such as timed automata [4] or event
count automata [13], and to perform the analysis using
formal verification. Here, if very small time steps are used,
the resulting state space can be very large, and thus, the
analysis can become expensive; hence, it is desirable to
use large time steps wherever possible. However, large
time steps can decrease accuracy, i.e., the analysis may fail
for systems that are actually schedulable, or may succeed
only with additional resources. It seems promising to apply
abstraction refinement in these cases. Furthermore, some
systems may contain a mixture of state-based and stateless
components; to efficiently support this case, it would be
useful to have a way to interconnect components of both
types. It seems interesting to explore hybrid techniques,
along the lines of [33] and [24].

7. Beyond resource-aware interfaces
The current compositional theories focus only on the cyber
layer, such as timing and resource aspects, while making
implicit assumptions about the physical system and the en-
vironment. As a result, failures may occur in the system,
e.g., when these hidden assumptions are violated. To guar-
antee the safety and trustworthy of the system, it is critical
to extend these theories beyond cyber concerns.

We believe that it would be essential to develop a no-
tion of safety-aware interfaces to enable the compositional
analysis of safety properties for CPS. For this, the com-

23

ponent and interface models would need to be extended
to capture not only the cyber aspects but also the physi-
cal aspects and the cyber-physical interactions of compo-
nents, including e.g., the dynamics of the physical system,
the control algorithm, safety-criticality levels of tasks, and
safety goals of components under different environment
conditions. One approach is to integrate control-theoretic
multi-mode systems [25, 5] with a mixed-criticality exten-
sion of real-time multi-mode interfaces [34].

A challenge towards a safety-aware compositional the-
ory is how to detect unsafe interactions between compo-
nents, as well as to enforce their absences, during the inter-
face composition. Undesirable interactions between com-
ponents on the same cyber-physical platform can arise from
multiple dimensions, such as via shared data and variables,
via shared actuators and sensors, via computational and
communication resource sharing, and via the physical en-
vironment. For instance, an unsafe interaction between an
adaptive cruise control component and a collision avoid-
ance component in an automotive system might arise via
the physical environment when the former requests an in-
crease in speed while the latter simultaneously requests a
sharp turn, which could cause the vehicle to roll over.

New approaches for analyzing the coupling between
control, safety and resource aspects are especially needed
to detect undesirable interactions such as above. It seems
useful here to adapt results on hazard analysis and safety
assessment from the safety engineering domain (e.g., [18])
for the modeling and interface analysis. Further, as it may
not be feasible to identify all interactions statically, it would
be interesting to incorporate the idea of run-time monitor-
ing and recovery [40] to enable automatic refinements of
the interfaces and component interactions during run time.

Besides safety, there is a growing need for a security-
aware compositional theory for CPS. This is highly chal-
lenging, as it may not be possible to ‘decompose’ the im-
pact of an attack down to the component level, and it is also
difficult to predict the attack behavior (e.g., of a malicious
adversary). Existing work on compositional security [19]
might provide useful insights to address this challenge.

8. Conclusion
As cyber-physical systems continue to grow in complexity,
we believe that compositional approaches will remain to be
effective for future CPS design and analysis. We have dis-
cussed in this paper several important existing limitations
and research challenges in this research area. The list is not
exhaustive, but through it we hope to inspire future research
towards a safe, secure and resource-efficient compositional
theory for CPS that is fully realizable in practice.

References
[1] Functional Mockup Interface. http://www.fmi-standard.org.

[2] Y. Abdeddaı̈m, E. Asarin, and O. Maler. Scheduling with timed automata. TCS,
354(2):272–300, 2006.

[3] K. Altisen and S. Tripakis. Implementation of timed automata: An issue of
semantics or modeling? In FORMATS, 2005.

[4] R. Alur and D. Dill. A theory of timed automata. TCS, 126(2):183–235, 1994.

[5] R. Alur, V. Forejt, S. Moarref, and A. Trivedi. Safe schedulability of bounded-
rate multi-mode systems. In HSCC, 2013.

[6] R. Alur and G. Weiss. Rtcomposer: a framework for real-time components with
scheduling interfaces. In EMSOFT, 2008.

[7] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. Times: a
tool for schedulability analysis and code generation of real-time systems. In
FORMATS, 2004.

[8] C. Baier, N. Bertrand, P. Bouyer, T. Brihaye, and M. Größer. Probabilistic and
topological semantics for timed automata. In FSTTCS, 2007.

[9] S. Baruah and N. Fisher. Component-based design in multiprocessor real-time
systems. In ICESS, 2009.

[10] P. Bhaduri and I. Stierand. A proposal for real-time interfaces in speeds. In
DATE, 2010.

[11] P. Bouyer, K. G. Larsen, N. Markey, O. Sankur, and C. Thrane. Timed automata
can always be made implementable. In CONCUR, 2011.

[12] D. Broman, C. Brooks, L. Greenberg, E. A. Lee, M. Masin, S. Tripakis, and
M. Wetter. Determinate composition of fmus for co-simulation. In EMSOFT,
2013.

[13] S. Chakraborty, L. T. X. Phan, and P. S. Thiagarajan. Event count automata: A
state-based model for stream processing systems. In RTSS, 2005.

[14] L. de Alfaro and T. A. Henzinger. Interface theories for component-based
design. In EMSOFT, 2001.

[15] M. De Wulf, L. Doyen, and J.-F. Raskin. Almost asap semantics: From timed
models to timed implementations. In HSCC, 2004.

[16] A. Easwaran, I. Shin, and I. Lee. Optimal virtual cluster-based multiprocessor
scheduling. RTS, 43(1):25–59, 2009.

[17] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer,
S. Sachs, and Y. Xiong. Taming heterogeneity-the ptolemy approach. Proc.
IEEE, 91(1):127–144, 2003.

[18] C. Ericson et al. Hazard analysis techniques for system safety. Wiley-
Interscience, 2005.

[19] D. Garg, J. Franklin, D. Kaynar, and A. Datta. Compositional system security
with interface-confined adversaries. ENTCS, 265:49–71, 2010.

[20] M. Geilen, S. Tripakis, and M. Wiggers. The earlier the better: a theory of
timed actor interfaces. In HSCC, 2011.

[21] T. A. Henzinger and S. Matic. An interface algebra for real-time components.
In RTAS, 2006.

[22] P. Krčál, L. Mokrushin, P. Thiagarajan, and W. Yi. Timed vs. time-triggered
automata. In CONCUR, 2004.

[23] P. Krčál and R. Pelánek. On sampled semantics of timed systems. In FSTTCS,
2005.

[24] K. Lampka, S. Perathoner, and L. Thiele. Analytic real-time analysis and
timed automata: a hybrid method for analyzing embedded real-time systems.
In EMSOFT, 2009.

[25] J. Le Ny and G. J. Pappas. Sequential composition of robust controller
specifications. In ICRA, 2012.

[26] I. Lee, J.-Y. Choi, H. H. Kwak, A. Philippou, and O. Sokolsky. A family of
resource-bound real-time process algebras. In FORTE, 2001.

[27] H. Leontyev and J. H. Anderson. A hierarchical multiprocessor bandwidth
reservation scheme with timing guarantees. RTS, 43(1):60–92, Sep. 2009.

[28] J. W. S. W. Liu. Real-Time Systems. Prentice Hall PTR, 1st edition, 2000.

[29] N. Lynch, R. Segala, and F. Vaandrager. Hybrid I/O automata. Info. and Comp.,
185(1):105–157, 2003.

[30] S. Matic and T. A. Henzinger. Trading end-to-end latency for composability.
In RTSS, 2005.

[31] M. Mousavi, M. Reniers, T. Basten, and M. Chaudron. Pars: a process algebra
with resources and schedulers. In FORMATS, 2004.

[32] F. Nielson, H. R. Nielson, and C. Hankin. Principles of program analysis.
Springer, 1999.

[33] L. T. X. Phan, S. Chakraborty, P. S. Thiagarajan, and L. Thiele. Composing
functional and state-based performance models for analyzing heterogeneous
real-time systems. In RTSS, 2007.

[34] L. T. X. Phan, I. Lee, and O. Sokolsky. Compositional analysis of multi-mode
systems. In ECRTS, 2010.

[35] L. T. X. Phan, M. Xu, J. Lee, I. Lee, and O. Sokolsky. Overhead-Aware
Compositional Analysis of Real-Time Systems. In RTAS, 2013.

[36] B. C. Pierce. Types and programming languages. The MIT Press, 2002.

[37] J. A. Rowson and A. Sangiovanni-Vincentelli. Interface-based design. In DAC,
1997.

[38] R. Santos, M. Behnam, T. Nolte, P. Pedreiras, and L. Almeida. Multi-level
hierarchical scheduling in ethernet switches. In EMSOFT, 2011.

[39] I. Shin and I. Lee. Compositional Real-Time Scheduling Framework. In RTSS,
2004.

[40] O. Sokolsky, U. Sammapun, I. Lee, and J. Kim. Run-time checking of dynamic
properties. In RV, 2005.

[41] I. Stierand, P. Reinkemeier, T. Gezgin, and P. Bhaduri. Real-time scheduling
interfaces and contracts for the design of distributed embedded systems. In
SIES, 2013.

[42] E. Wandeler and L. Thiele. Interface-based design of real-time systems with
hierarchical scheduling. In RTAS, 2006.

[43] M. Xu, L. T. X. Phan, I. Lee, O. Sokolsky, S. Xi, C. Lu, and C. D. Gill.
Cache-Aware Compositional Analysis of Real-Time Multicore Virtualization
Platforms. In RTSS, 2013.

24

Early Phase Memory Leak Detection in Embedded Software
Designs with Virtual Memory Management Model

Mabel Mary Joy1 Wolfgang Müller2 Franz J. Rammig3

1,2C-Lab, University of Paderborn, Germany, {mabeljoy,wolfgang}@c-lab.de
3Heinz Nixdorf Institute, University of Paderborn, Germany, franz@uni-paderborn.de

Abstract
Virtual platforms are gaining significant importance in
early design tests of embedded software as it helps to re-
design or optimize the system well advance in time and
keeps flaws minimal in the production stage. As embedded
system’s size gets smaller, expensive resources like mem-
ory are limited. Hence memory needs to be managed effi-
ciently and optimally. Memory leak is a serious issue that
leads to wastage of expensive memory. We propose a novel
approach to detect memory leaks in early design stages of
soft real-time systems with no garbage collection. Our ap-
proach utilizes a virtual platform modeled in SystemC at
an abstract level using Transaction Level Modeling. The
software under test is run on top of this model. Potential
memory leaks in the software are detected by applying a
novel hybrid method combining both static and dynamic
approaches. In early design stages where a real execution
environment and complete executable software are unavail-
able, a simulation environment and a virtual platform are
necessary. Virtual platforms provide flexibility to change
the target architecture to be tested. Our proposed approach
runs on the virtual platform we implement. This makes our
approach faster and provides early results.

Keywords memory leak, soft real time system, virtual
prototype, memory modelling

1. Introduction
With increasing design complexity, the early design tests
of software become a crucial factor in electronic systems
design. It helps to redesign or optimize the system at early
design stages. This keeps flaws minimal in the production
stage of embedded systems.

As embedded systems size gets smaller and smaller,
memory becomes a crucial resource which needs to be
managed efficiently and optimally. Inefficient memory
management leads to severe memory problems which may

The 4th Analytic Virtual Integration of Cyber-Physical Systems Workshop
December 3, 2013, Vancouver, Canada.
Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings are available at:
http://dx.doi.org/10.3384/ecp13090

AVICPS website:
http://www.analyticintegration.org/

result in system failures. Such flaws if detected early will
lead to better designs with better performance.

Memory leak is the main memory related problem in
soft real time systems and are considered as "hidden" prob-
lems that are hard to detect [23]. A memory leak is a mem-
ory location which is not freed after its use by the program,
and hence unavailable for other components to re-use, as it
is still reserved. A program causing leak allocate more and
more memory over time leading the system to eventually
run out of memory and fail. However, the code at the point
of failure often has nothing to do with the leak and hence
they are hard to detect. In soft real-time systems, where
dynamic memory management is common, memory leaks
have higher probability, especially for non-garbage collect-
ing environments. Manual detection of leaks is tedious as
they are hidden and hard to reproduce without any imme-
diate symptoms. Hence an automated approach detecting
leaks that is efficient and fast is needed.

Today, embedded systems software development is
mainly conducted by virtual system prototypes, in com-
bination with simulation-based approaches at different ab-
straction and refinement levels [20]. Memory leak, which
is an important aspect to be tested at early design stages,
could be effectively analyzed with virtual platforms. In
this paper we introduce a novel approach to detect mem-
ory leaks with the help of virtual platforms. Existing ap-
proaches for memory leak detection are carried out at
source code level or at actual run time [9], [12], whereas
our approach is carried out at simulated abstract levels
which makes early design tests feasible and are much faster
than actual runs. We focus on memory leak detection in
soft real-time systems with non-garbage collecting envi-
ronments.

The remaining part of this paper is structured as follows.
Section 2 describes related work in memory leak detection.
Section 3 explains our approach for leak detection. Sec-
tion 4 summarizes the paper and mentions the key chal-
lenges and future extensions of our work.

2. Related Work
In literature various methodologies are available to detect
memory leaks, which could be classified into two main
categories: static and dynamic.

25

http://dx.doi.org/10.3384/ecp13090
http://www.analyticintegration.org/

2.1 Static Methods
Static methods assume the availability of source code or
any other static form of the target software. These methods
involve leak detection without actual execution. They have
the advantage that they do not necessitate the availability
of the execution environment and are much faster.

Approaches using Shape Graph [7], pointer analysis
[25], escape analysis [30], shape analysis [11], contradic-
tion analysis [24], liveness analysis [27], ownership model
[14,15], procedural summaries [6], bi-abductive inferences
[18], and value flow [4,28] are some of the prominent ones.
LCLInt is a static leak detection tool which annotates the
source code with formal specifications [9].

Although these approaches have above mentioned ad-
vantages, there are certain disadvantages too. These meth-
ods detect leaks to a certain extent, and are not capable of
detecting all kinds of leaks, especially the ones that arise
during actual run time such as leaks due to dynamic ref-
erences [17]. Static methods are useful only to a certain
extent and do not provide enough accuracy or guarantee
to prevent crashes arising from memory anomalies during
execution.

2.2 Dynamic Methods
Most of the memory anomalies appear in dynamic scenar-
ios. Dynamic methods involve the actual execution of the
tasks, and hence are much more accurate than the static
methods in detecting leaks. Reference counting, reachabil-
ity analysis and liveness are some of the prominent meth-
ods used [1, 2].

Purify [12], Cork [17], Leakbot [19], Sleigh [1] are the
most prominent state-of-the-art dynamic approaches. Other
approaches include Hound [22] and SWAT [13]. [31] intro-
duces object ownership profiling at runtime to detect leaks.
Leakpoint [5] is yet another dynamic approach to pinpoint
the leak and its location. Leakpruning [2], Plug [21], and
Leaksurvivor [29] are other approaches to minimize the
damage caused by leaks at runtime. [26] is a leak detec-
tion approach for android systems via PCB hooking. Apart
from these there are several leak detection tools available
commercially and non-commercially such as mtrace and
valgrind [8].

A major limitation of these approaches and tools are that
they require the program tested to be actually executed,
which mandates the execution environment and its depen-
dencies. Leak detection at execution also implies more
overhead and this affects the overall performance.

The approach we propose is a hybrid approach which
combines the advantages of both static and dynamic method-
ologies.

3. Virtual Memory Modeling
3.1 Simulation Framework
Early design tests are important in scenarios where soft-
ware is developed in modules independently and integrated
later. Hence a final test is possible only after all the mod-
ules are ready. Moreover, the real target environment may
not be available at hand or it may be too expensive to afford

just for testing. Hence there should be some sort of early
design environments available to test these modules inde-
pendent of the availability of the whole project. The simula-
tion environment gains importance here. Simulations have
the advantage that they are fast, re-usable and could be
customized for each individual case and at the same time
not expensive as the real hardware or the platform. It pro-
vides almost the same accuracy in terms of performance
and other tests and is flexible and portable.

In order to efficiently explore the design space, design-
ers need models of the embedded software running in its
execution environment, providing rapid and early feed-
back about effects of design decisions, such as the cho-
sen scheduling strategy. Models at higher levels of abstrac-
tion with fast simulation speeds with enough accuracy are
needed [20]. Moreover each design targets a different archi-
tecture, and hence simulation environment provides flexi-
bility to adapt different architecture without great changes
to the execution environment.

The ARTOS (Abstract Real-Time Operating System)
is a simulation framework developed by C-LAB , in or-
der to simulate and analyze the schedulabilty of real time
tasks [32]. This framework currently estimates the perfor-
mance in terms of time consumed for the tasks and thereby
determines the failures or design alternatives, which could
improve the time. In this framework there is already a plat-
form with various APIs to abstract the software and to run
it for determining the run time of the tasks [32]. Currently
ARTOS does not consider the memory transactions of the
simulated software. Therefore we propose to integrate our
memory model into ARTOS, and thereby provide a com-
mon platform to carry out timing analysis and detect mem-
ory leaks simultaneously.

3.2 Memory Management Model
We follow an abstract implementation of memory manage-
ment, where transactions involving memory requests and
allocations are of major focus. The memory model is basi-
cally a transaction level model, where the emphasis is given
to the transactions occurring between memory requesting
object and the memory object allocated. We implement the
model using TLM library in SystemC [3, 10]. Transaction-
level modeling (TLM) is a high-level approach for model-
ing digital systems where details of communication among
modules are separated from the details of the implemen-
tation of functional units or of the communication archi-
tecture. Communication mechanisms are modeled as chan-
nels and are presented to modules using SystemC interface
classes. Transaction requests take place by calling interface
functions of these channel models which encapsulate low-
level details of the information exchange [3]. This makes it
easier for the system-level designer to conduct experiments
on the required abstraction level, without the need to con-
sider other dependencies required for the actual execution
and behavioral correctness. Our model in TLM will ini-
tially include the basic request-allocate process and later a
paging/segmentation model. The available memory in our
model is considered as fixed-sized blocks for the respective
target architecture.

26

Systemc with TLM library

Virtual memory management
model

Software to be tested
Memory

leak
detection
approach

Figure 1: Virtual memory model for leak detection

A memory arbiter would be responsible for servicing
the requests arriving from the tested software. The requests
generated by the design under test is encapsulated and
abstracted and passed to the memory arbiter. The arbiter
checks for the available memory in the free memory area.
The best-fit algorithm is used to allocate the most suitable
sized memory block [23]. The acknowledgement and the
allocated block with size and address are passed back to
the requested entity. If there is no available free memory,
the request is not served, and a request denial is sent back
instead of acknowledgement by the arbiter. All these trans-
actions are finally SystemC calls. An overview of our ap-
proach is shown in Figure 1.

3.3 Memory Leak Detection
Our approach of leak detection follows a hybrid model. The
software under test undergoes static analysis before it is ex-
ecuted on the virtual model. The static analysis involves an
automated control flow graph generation technique adopted
from our previous work [16] as shown in Figure 2. The
source code of the software to be tested is first disassem-
bled. A graph based approach with automated labeling of
basic blocks of the program is developed and the graph is
then compacted for efficient detection of leaks.

Memory request-allocate paths are plotted on the graph
with the help of disassembled code analysis. Each of such
paths is checked for the corresponding free method for any
allocate method. A one-to-one mapping is generated from
the graph for allocate and free methods. If such a mapping
is missing for any allocate function, a leak is notified and
the corresponding location and object is marked.

Source code for target ARM7

Disassembled code

Graphical representa-
tion of instruction flow

Graph reduction with marks of
importance control flow maintained

Figure 2: Control flow graph generation technique

Next step is the dynamic analysis, where the software
to test is run at an abstract level on the virtual memory
model. The memory request calls (e.g. malloc), are encap-
sulated, and such function calls are redirected to the respec-
tive calls to the arbiter in the memory model. The arbiter
according to the availability of the memory responds with
an acknowledgement or request denial message back to the
requested object. A memory control block is generated for
each block of memory in the model. The memory control
block is responsible to keep track of used and free memory
blocks. After each allocation process in the model, the sta-
tus of simulated memory in the virtual model is tested with
the help of all memory control blocks. In liveness analysis
method [2] the object requesting memory is checked if it
still exists, otherwise the memory allocated is reclaimed.
Similarly the methods of reference counting [1] is applied,
where in the pointer references are tracked down to check
if any unused memory is producing a leak. The reachabil-
ity [2] approach is applied to check if any of the still live
memory requesting and allocated objects are reachable via
any pointer references at the end of the execution; and if un-
reachable it is considered a leak. At the end of each execu-
tion, the memory allocation pattern in the model is verified
and the probability of various leaks reported through the
above three methods are analyzed with various number of
executions. The leak and the probability of leak occurrence
are generated for further optimizations in the software.

Currently we consider C and C++ programs as our test
cases along with gcc compiler. The target architecture we
consider is ARM9, with virtual ARM integrator CP devel-
opment board.

4. Conclusion and Future work
Memory leaks are serious problems in resource constrained
embedded environments and need to be fixed at early stages
of design, especially in non-garbage collecting environ-
ments. A fast and efficient leak detection system at early
stages of development is required. We proposed a novel
hybrid memory leak detection method in a simulation envi-
ronment that can support different target architectures. The
memory model is implemented at an abstract level using
Transaction Level Modeling. The software under test is run
at an abstract level on top of this model. Our proposed ap-
proach is aimed to be faster, since the analysis is done on
top of a virtual platform with simulation. The main chal-
lenges include the optimization of simulation time, and we
aim to make the simulation as fast as possible, along with
precision. Our approach is intended for non-garbage col-
lecting environments as the probability of leaks are higher
in such environments.

The future work on this methodology includes the ex-
tension of the memory model to detect other memory prob-
lems such as fragmentation and corruptions. Moreover we
need to have support for other languages and compilers, to
make our model more generic. Another extension in this
direction would be to incorporate this model to the ARTOS
framework, so that users can have both memory and pro-
cess related checks under one common framework.

27

References
[1] Michael D. Bond and Kathryn S. McKinley. Bell: bit-

encoding online memory leak detection. SIGPLAN Not.,
41(11):61–72, October 2006.

[2] Michael D. Bond and Kathryn S. McKinley. Leak pruning.
SIGARCH Computer Architecture News, 37(1):277–288,
March 2009.

[3] L. Cai and D. Gajski. Transaction level modeling: an
overview. In Hardware/Software Codesign and System
Synthesis, 2003. First IEEE/ACM/IFIP International Con-
ference on, pages 19–24, 2003.

[4] Sigmund Cherem, Lonnie Princehouse, and Radu Rugina.
Practical memory leak detection using guarded value-flow
analysis. SIGPLAN Not., 42(6):480–491, June 2007.

[5] James Clause and Alessandro Orso. Leakpoint: pinpointing
the causes of memory leaks. In Proceedings of the
32nd ACM/IEEE International Conference on Software
Engineering - Volume 1, ICSE ’10, pages 515–524, New
York, NY, USA, 2010. ACM.

[6] Dino Distefano and Ivana FilipoviÄĞ. Memory leaks
detection in java by bi-abductive inference. In DavidS.
Rosenblum and Gabriele Taentzer, editors, Fundamental
Approaches to Software Engineering, volume 6013 of
Lecture Notes in Computer Science, pages 278–292.
Springer Berlin Heidelberg, 2010.

[7] Nurit Dor, Michael Rodeh, and Mooly Sagiv. Checking
cleanness in linked lists. In Jens Palsberg, editor, Static
Analysis, volume 1824 of Lecture Notes in Computer
Science, pages 115–134. Springer Berlin Heidelberg, 2000.

[8] Cal Erickson. Memory leak detection in embedded systems.
Linux Journal, August 2002.

[9] David Evans, John Guttag, James Horning, and Yang Meng
Tan. Lclint: a tool for using specifications to check code.
SIGSOFT Softw. Eng. Notes, 19(5):87–96, December 1994.

[10] Thorsten Grotker. System Design with SystemC. Kluwer
Academic Publishers, Norwell, MA, USA, 2002.

[11] Brian Hackett and Radu Rugina. Region-based shape
analysis with tracked locations. SIGPLAN Not., 40(1):310–
323, January 2005.

[12] Reed Hastings and Bob Joyce. Purify: Fast detection of
memory leaks and access errors. In In Proc. of the Winter
1992 USENIX Conference, pages 125–138, 1991.

[13] Matthias Hauswirth and Trishul M. Chilimbi. Low-
overhead memory leak detection using adaptive statistical
profiling. SIGPLAN Not., 39(11):156–164, October 2004.

[14] David L. Heine and Monica S. Lam. A practical flow-
sensitive and context-sensitive c and c++ memory leak
detector. SIGPLAN Not., 38(5):168–181, May 2003.

[15] David L. Heine and Monica S. Lam. Static detection of
leaks in polymorphic containers. In Proceedings of the 28th
international conference on Software engineering, ICSE
’06, pages 252–261, New York, NY, USA, 2006. ACM.

[16] M.M. Joy, M. Becker, W. Mueller, and E. Mathews. Auto-
mated source code annotation for timing analysis of embed-
ded software. In Advanced Computing and Communications
(ADCOM), 2012 18th Annual International Conference on,
pages 12–18, 2012.

[17] Maria Jump and Kathryn S. McKinley. Cork: dynamic
memory leak detection for garbage-collected languages.
SIGPLAN Not., 42(1):31–38, January 2007.

[18] Yungbum Jung and Kwangkeun Yi. Practical memory leak
detector based on parameterized procedural summaries. In
Proceedings of the 7th international symposium on Memory
management, ISMM ’08, pages 131–140, New York, NY,
USA, 2008. ACM.

[19] Nick Mitchell and Gary Sevitsky. Leakbot: An automated

and lightweight tool for diagnosing memory leaks in
large java applications. In Luca Cardelli, editor, ECOOP
2003 âĂŞ Object-Oriented Programming, volume 2743
of Lecture Notes in Computer Science, pages 351–377.
Springer Berlin Heidelberg, 2003.

[20] W. Mueller, M. Becker, A. Elfeky, and A. DiPasquale.
Virtual prototyping of cyber-physical systems. In Design
Automation Conference (ASP-DAC), 2012 17th Asia and
South Pacific, pages 219–226, 2012.

[21] Gene Novark, Emery D. Berger, and Benjamin G. Zorn.
Plug: Automatically tolerating memory leaks in c and c++
applications. Technical report, Technical Report UM-CS-
2008-009, University of Massachusetts, 2008.

[22] Gene Novark, Emery D. Berger, and Benjamin G. Zorn.
Efficiently and precisely locating memory leaks and bloat.
SIGPLAN Not., 44(6):397–407, June 2009.

[23] Gary J. Nutt. Operating systems - a modern perspective (3.
ed.). Addison-Wesley-Longman, 2004.

[24] Maksim Orlovich and Radu Rugina. Memory leak analysis
by contradiction. In Proceedings of the 13th international
conference on Static Analysis, SAS’06, pages 405–424,
Berlin, Heidelberg, 2006. Springer-Verlag.

[25] Berhard Scholz, Johann Blieberger, and Thomas Fahringer.
Symbolic pointer analysis for detecting memory leaks.
SIGPLAN Not., 34(11):104–113, November 1999.

[26] Jooyoung Seo, Byoungju Choi, and Suengwan Yang. A
profiling method by pcb hooking and its application for
memory fault detection in embedded system operational
test. Inf. Softw. Technol., 53(1):106–119, January 2011.

[27] Ran Shaham, Elliot K. Kolodner, and Shmuel Sagiv. Au-
tomatic removal of array memory leaks in java. In Pro-
ceedings of the 9th International Conference on Compiler
Construction, CC ’00, pages 50–66, London, UK, UK,
2000. Springer-Verlag.

[28] Yulei Sui, Ding Ye, and Jingling Xue. Static memory
leak detection using full-sparse value-flow analysis. In
Proceedings of the 2012 International Symposium on
Software Testing and Analysis, ISSTA 2012, pages 254–
264, New York, NY, USA, 2012. ACM.

[29] Yan Tang, Yan Tang, Qi Gao, Qi Gao, Feng Qin, and Feng
Qin. Leaksurvivor: towards safely tolerating memory leaks
for garbage-collected languages. In USENIX 2008 Annual
Technical Conference on Annual Technical Conference,
ATC’08, pages 307–320, Berkeley, CA, USA, 2008.
USENIX Association.

[30] Yichen Xie and Alex Aiken. Context- and path-sensitive
memory leak detection. In In Proceedings of ESEC/FSE
2005, pages 115–125. ACM Press, 2005.

[31] Guoqing Xu, Michael D. Bond, Feng Qin, and Atanas
Rountev. Leakchaser: helping programmers narrow down
causes of memory leaks. SIGPLAN Not., 46(6):270–282,
June 2011.

[32] Henning Zabel, Wolfgang Müller, and A. Gerstlauer.
Accurate rtos modelling and analysis with systemc, January
2009.

28

Refinement of AADL models using early-stage analysis methods

Guillaume Brau1 Jérôme Hugues2 Nicolas Navet1
1University of Luxembourg, Laboratory of Advanced Software Systems,
6 rue Richard Coudenhove-Kalergi, L-1359 Luxembourg, Luxembourg

{guillaume.brau, nicolas.navet}@uni.lu
2Université de Toulouse – ISAE, 10 avenue E. Belin, 31055 Toulouse, France

jerome.hugues@isae.fr

Abstract
Model-Driven Engineering (MDE) is a relevant approach
to support the engineering of distributed embedded systems
with performance and dependability constraints. MDE in-
volves models definitions and transformations to cover
most of the system life-cycle: design, implementation and
Verification & Validation activities towards system quali-
fication. Still, few works evaluate the early integration of
performance evaluation based on architectural models. In
this paper, we investigate the early-stage use of analysis in
AADL modeling. Precisely, we exemplify on an avionics
case study how to dimension the data flows for an appli-
cation distributed over an AFDX network. Based on the
insight from this study, we suggest a simple framework
and associated techniques to efficiently support analysis
activities in the early-stage design phases.

Keywords AADL, ARINC653, AFDX, analysis combi-
nation, WCTT evaluation, Network Calculus.

For more details and experimental results, an extended
version of this paper is available as a technical report [1].

1. Introduction
Context of the paper. Distributed Real-time Embedded
(DRE) systems are present in safety-critical domains such
as transportation, telecommunications, health services,
military or space. These systems have to meet both the
functional and non-functional requirements. Hence, DRE
systems encompass specific technologies to realize the re-
quired service with the expected performance metrics (e.g.
time, security or safety) through dedicated networks, pro-
cessors or real-time operating systems. In addition, the en-
gineering process has to address efficiently system model-
ing and evaluation of all metrics.

The 4th Analytic Virtual Integration of Cyber-Physical Systems Workshop
December 3, 2013, Vancouver, Canada.
Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings are available at:
http://dx.doi.org/10.3384/ecp13090

AVICPS website:
http://www.analyticintegration.org/

Definition of the problem. Many experiments indicate
that the distance between the activities steps in a classical
V-cycle is detrimental and usually slows down the devel-
opment process [2]. In practice, a significant part of errors
is injected at early-stage of the engineering process, while
being detected during later integration phases. As a conse-
quence, regressions and rework activities have an important
weight on the overall project costs.

We believe that this problem can be lifted considering
models with sufficient power of expression to guide the
conception phases (e.g. using interface or behavioral mod-
els on which one can both reason and iterate) and support-
ing early-stage analysis. This “integrate, then build” ap-
proach, also known as virtual integration is promising to
support the design of complex systems.

Contributions and objectives. In this paper, we use the
Architecture Analysis & Design Language (AADL) [3] as
the pivot to capture the system architecture and derive its
performances. AADL is an Architecture Description Lan-
guage (ADL) suitable to describe systems, capturing the
functional and non-functional concerns together with the
operational platform. As the AADL provides modeling el-
ements with a precise syntax and well-defined semantics,
it is possible to : 1) perform analysis and 2) derive imple-
mentations thanks to code generation [4].

The focus of this paper is twofold. First, taking a specific
example coming from the avionics, we show how to accu-
rately seize important parameters in the AADL model. As
the system that is modeled includes technologies not sup-
ported within the core language, we build on and extend
the work in [5] in order to include in the AADL model the
networking elements and capture the overall DRE system.

Secondly, based on lessons learned during the modeling
experience, we propose to jointly use AADL models and
analysis methods so as to gradually refine and verify the
model. We investigate and examplify this strategy on the
avionics case study. Taking as example the network com-
munications and the expressed timing constraints, we show
that using complementary analysis methods allows to de-
duce missing parameters while maintaining the consistency
of the model (i.e. chosen parameters guarantee that non-
functional constraints are met).

29

http://dx.doi.org/10.3384/ecp13090
http://www.analyticintegration.org/

The paper is organized as follows: we first introduce
the avionics case study and give elements to model it with
AADL (Section 2). In Section 3, we underline relationships
between modeling concerns, and, using analysis, we ex-
plain how to solve those dependencies for some important
communication parameters. Finally, in Section 4, we draw
conclusions from this case study and discuss future work.

2. Modeling avionics systems with AADL
In this section we describe how to jointly capture with
AADL the functional description of an avionics system, its
temporal constraints and the target execution platform.

2.1 The Flight Management System
The avionics system to model, coming from Lauer et al. [6],
is part of an aircraft’s Flight Management System (FMS).
It interacts with the crew and provides static and dynamic
information about the flight plan (i.e. the predefined path
between departure and arrival points) : current location,
remaining distance and estimated arrival time.

Functional description. The system is made up of five
main functions as depicted in Figure 1. The Keyboard and
cursor control Unit (KU) reads data inputted by the pilot
(or copilot) through the keyboards while the Multi Func-
tional Display (MFD) refreshes the displays consecutively.
From the KU function, crew requests are forwarded to
the Flight Manager (FM) function which computes the re-
sponse about the flight plan and returns it to the MFD. For
this, it requests static data to the Navigation Data Base
(NDB) function and also relies on dynamic data from the
Air Data Inertial Reference Unit (ADIRU), computed based
on sensors measurements.

Temporal constraints. In the avionics context, the sys-
tem has to conserve a predictable behavior. Several tempo-
ral constraints may be expressed upon different "locations".
Typically, temporal constraints concern : 1) response times
which are the delays needed to carry out the functions, 2)
traversal times refering to communication delays between
functions and 3) latencies along functional chains that en-
compass a succession of response times and traversal times.

Execution and communication platform. The functions
are executed in an Integrated Modular Avionics (IMA) en-
vironment. In particular, this execution and communication
platform supports two standards, used in the case study,
that defines the use of the shared hardware and software
resources in a deterministic way.

The ARINC653 [7] standard defines management of the
functions hosted by a same hardware/software platform (re-
ferred as an execution module in the following). In this en-
vironment, each function is located in a different partition
with a strict access to processing and memory resources.

The ARINC664 [8] standard defines a determinis-
tic communication network called Avionics Full Duplex-
Switched Ethernet (AFDX). AFDX implements the core
concept of Virtual Link (VL) which is an unidirectional
logical connection from one sender to one or several re-
ceiver(s). Each VL has a limited bandwidth according to

Crew

KU MFD

FM

ADIRU NDB

Sensors

req disp

wpInfowpId

query

answerspeed

pres

Figure 1. The Flight Management System functional ar-
chitecture depicts the functions and the data exchanged as
well as the interactions with the actors.

its Bandwidth Allocation Gap (BAG in the following) –
the minimum time elapsed between two frames sending –
and a maximal allowed packet size (smax in the remainder).

2.2 Modeling the FMS in AADL
The Architecture Analysis & Design Language (AADL) [9]
is an international standard by the Society of Automotive
Engineers (SAE), defining the basics of an architecture de-
scription language dedicated to the design of DRE sys-
tems. AADL is component-centric and allows to specify
both software and hardware parts of a system. See [3] for a
complete presentation of AADL.

The full model of the FMS uses AADLv2 core speci-
fications and the ARINC653 Annex. The model is made
up of AADL components that describe the ARINC653 ex-
ecution modules hosting the avionics functions and the
AFDX network that supports the data exchanges. The full
AADLv2 textual model – that spans over 770 SLOCs –
is part of the AADLib project and is available at http:
//www.openaadl.org.

The model follows the initial specifications and AADL
guidelines for ARINC653 systems : a module is a distinct
system (containing a global memory and a processor)
that hosts partitions (each is a process) bound to separate
memory segments and virtual processors (repre-
senting spatial and temporal partitioning). thread com-
ponents contained in partitions realize the avionics func-
tions. Thanks to annex guidelines, we can model precisely
the ARINC653 components and associated parameters.

AADL does not provide specific guidelines for mod-
eling AFDX networks. The AADL concept of virtual
bus defines a connection supported in a bus. We use this
concept to define AFDX virtual links. Switches are repre-
sented by device components bound to the virtual links.
A dedicated property set has been defined to model param-
eters attached to virtual links, end systems and switches.

30

http://www.openaadl.org
http://www.openaadl.org

3. Analysis as part of the design process
We discussed how AADL allows to capture both the FMS
functional and non-functional aspects as well as the IMA
platform description. From this model, we may now con-
sider further analysis of the full architecture. The current
design could be used to validate a given architecture. Yet,
the most challenging part is actually guiding the designer in
finding a suitable definition of the architecture parameters
in order to respect the constraints expressed in the model.

3.1 Discussion : there are dependencies between
modeling concerns

Figure 2 summarizes the three traits caught in the archi-
tecture model : the functions to realize, the hardware and
software platform hosting the functions and the constraints
to comply with. It implies that the architecture model com-
ponents and the attached properties have to integrate and
solve the dependencies between these views.

Figure 2. The architecture model captures jointly the sys-
tem functional, non-functional and platform concerns and
has to integrate the dependencies between these aspects.

For instance, let us consider the design of virtual links
in AFDX networks. The virtual links characterization (plat-
form view) depends on :

• the data flows needed to realize the functions (func-
tional view) and their features, e.g the number (n) of
messages sent by a function and their size (m),

• the constraints expressed onto the data flows (non-
functional view), e.g a communication between two
specific tasks can be subject to timing constraints (noted
LC in the sequel).

Moreover, finding a suitable design for the virtual links in
AFDX networks can be a difficult problem because of the
interferences between VLs definitions. For further informa-
tion, the issue is addressed in a more comprehensive setting
in [10].

Proposed approach. We believe it is possible to deal with
the dependencies between the modeling concerns by ex-
ecuting relevant analysis methods onto the model under
construction. In the sequel, we show how to define pro-
gressively the VLs parameters taking into account infor-
mation in the model such as the constraints expressed upon
the communications. From an evaluation perspective, it im-
plies : 1) isolating model input parameters that can be com-
bined to 2) propose a feasible solution which is 3) later as-
sessed. Some parameters are mandatory, while others can
be assumed. This is discussed in the following paragraphs.

3.2 Example : integration of the Bandwidth
Allocation Gap (BAG) parameter into an
incomplete AADL model

Let us consider a partially completed AADL model. This
initial model contains basic information : the functions
hosted in the modules and their properties as well as the
data exchanges between them. We also know the con-
straints of the system expressed onto the communications.

At this stage, dimensioning the BAG, which has a direct
impact on the respect of timing constraints and the network
load, may be a difficult task because the design space can
be huge. Indeed, as this parameter ought to respect the
formula BAG= 2k [ms] with k integer in range 0 to 7
(see [8]), if we take as assumption that one VL is dedicated
to one data flow, then there are solbag = 8f conceivable
solutions, with f the number of flows.

To overcome this problem and complete the model, we
execute the process pictured on Figure 3. We propose to:

1. use a pivotal Worst-Case Traversal Time evaluation
(WCTT in the following) in order to identify the set
of suitable BAGs,

2. use a complementary analysis method, relying on Net-
work Calculus (NC in the following), to improve the
results of the main WCTT evaluation.

WCTT evaluation. The Worst-Case Traversal Time anal-
ysis aims to assess the delay experienced by each data
flow in the AFDX network. Without too much details, the
WCTT evaluation gives the formula of an upper-bounded
delay (Dwctt

T) suffered by a frame as a function of sev-
eral parameters. Hence, it is possible to compare the delay
against the expressed constraint (Dwctt

T ≤ Lc) and to cal-
culate the suitable set of BAGs [1]. The WCTT evaluation
gives a set of suitable BAGs for each VL (BAGwctt

vli
). Of

course, the accuracy of the BAGs sets depends on the pre-
cision of the model and of the assumptions. In addition, at
the first stage, there is no NC feedback, i.e. Dsw_vli = 0.

Figure 3. The BAG refinement process includes AADL
models (blue-headed shapes), analysis methods (portrayed
by green rectangles) and assumptions models (purple-
headed shapes).

31

NC analysis. Network Calculus (NC) is an algebra for
computing accurately the end-to-end delay of a data flow
in the AFDX network. In the scope of this paper, this anal-
ysis is performed using RTaW-Pegase, which is a commer-
cial product implementing a state-of-the-art network calcu-
lus AFDX timing analysis [11]. In our case, the NC anal-
ysis computes complementary information (Dnc

sw_vli) and
allows to refine results of the main WCTT evaluation.

Model refinement. We can see through the modeling and
analysis flow (figure 3) that, as long as the required anal-
ysis inputs are present, the model is enhanced. The model
refinements are done in line with : 1) the model evolution
(m1, m2, m3), 2) the analysis methods outputs (BAGwctt

and Dnc
sw) and 3) the feasible assumptions (as1, as2).

The first execution of the pivotal analysis method takes
as input the data of the incomplete model (m1) and the de-
duced assumptions (as1). The first coarse-grained WCTT
evaluation reduces the space of BAGs solutions for the VLs
(BAGwctt1

vli
) attached to the data flows in order to verify the

latency constraints (Lm1

C_vli).
Thanks to the first WCTT computation, the initial model

(m1) is enriched with a crucial missing parameter : the
BAG (m2). We are then able to perform the complementary
NC analysis that aims to evaluate the upper delay suffered
in the switches for each VL (Dnc1

sw_vli). To execute the com-
plementary analysis, the assumption model (as2) contains
additional information about the network topology and the
VLs routes. The NC computed latency is passed as a re-
finement parameter to the WCTT method so as to precise
the BAGs sets. Taking into account the calculated Dnc1

sw_vli
reduces the set of eligible BAGs (BAGwctt_nc1

vli
) : solutions

that do not meet the initial Lm1

C_vli constraints are discarded.
At the third iteration, the model (m3) contains the re-

fined BAGs (BAGwctt_nc1
vli

). It is then necessary to cal-
culate the delay suffered in the switches for each VL
(Dnc2

sw_vli) and refine the BAGs sets (BAGwctt_nc2
vli

). In our
example, a new combined execution of WCTT and NC
shows that a fixed-point is reached : the model m3 cannot
be refined anymore against the Bandwidth Allocation Gap
if the input parameters and assumptions stay stable.

4. Conclusions and perspectives
Our first contribution (Section 2) dealt with the architec-
tural description of an avionics system with AADL, com-
bining the functional, non-functional and platform con-
cerns. We extended existing patterns dedicated to AR-
INC653 systems to also model AFDX networks.

We then addressed (Section 3) the definition and evalu-
ation of the AADL model components and their properties.
We showed that dealing with the architecture description
amounts to solve the dependencies between the AADL
model concerns. Starting from an incomplete AADL model,
we implemented a process combining two analysis meth-
ods to evaluate and refine the Bandwidth Allocation Gap
parameter. This process combines early and in-depth anal-
ysis to help the designer to narrow the design space.

We believe it is necessary to formalize the use of anal-
ysis methods along with modeling languages in order to

tackle the early system architecture definition and evalua-
tion. In a previous work, we defined REAL [12] – Require-
ment Enforcement and Analysis Language. It allows one to
define a set of predicates, and check whether a system sat-
isfies them. We plan to extend REAL to define a library of
predicates for tools. Such predicates would 1) define condi-
tions under which a given analysis becomes feasible and 2)
detect and exploit relationships between analysis methods.
This would guide the designer to trigger relevant analysis
as early as possible in the design flow.

The definition of those predicates, in the context of the
FMS, is currently under implementation.

References
[1] G. Brau, J. Hugues, and N. Navet. Refinement of AADL

models using early-stage analysis methods. Technical Re-
port TR-LASSY-13-06, LASSY, University of Luxembourg,
2013. Available at http://orbilu.uni.lu/.

[2] D. Redman, D. Ward, J. Chilenski, and G. Pollari. Virtual
Integration for Improved System Design. In Proceedings
of The First Analytic Virtual Integration of Cyber-Physical
Systems Workshop, San Diego, California, USA, Nov. 2010.

[3] P. H. Feiler and D. P. Gluch. Model-Based Engineering with
AADL: An Introduction to the SAE Architecture Analysis
& Design Language. Addison-Wesley Professional, 1st
edition, 2012.

[4] G. Lasnier, B. Zalila, L. Pautet, and J. Hugues. Ocarina : An
Environment for AADL Models Analysis and Automatic
Code Generation for High Integrity Applications. In Pro-
ceedings of the 14th Ada-Europe International Conference,
Brest, France, June 8-12 2009.

[5] J. Delange, L. Pautet, A. Plantec, M. Kerboeuf, F. Singhoff,
and F. Kordon. Validate, simulate, and implement AR-
INC653 systems using the AADL. In SIGAda annual
international conference on Ada and related technologies,
SIGAda ’09, pages 31–44, New York, NY, USA, 2009.

[6] M. Lauer. Une méthode globale pour la vérification
d’exigences temps réel - Application à l’Avionique Mod-
ulaire Intégrée. Thèse de doctorat, Institut National Poly-
technique de Toulouse, Toulouse, France, juin 2012.

[7] Aeronautical Radio Incorporated. ARINC Report 653P0
Avionics Application Software Standard Interface, Part 0,
Overview of ARINC 653.

[8] Aeronautical Radio Incorporated. ARINC Report 664P7-
1 Aircraft Data Network, Part 7, Avionics Full-Duplex
Switched Ethernet Network.

[9] SAE/AS2-C. Architecture Analysis & Design Language V2
(AS5506A), January 2009.

[10] A. Al Sheikh, O. Brun, M. Chéramy, and P.-E. Hladik.
Optimal design of virtual links in AFDX networks. Real-
Time Systems, 49(3):308–336, 2013.

[11] M. Boyer, J. Migge, and M. Fumey. PEGASE - A Robust
and Efficient Tool for Worst-Case Network Traversal Time
Evaluation on AFDX. In SAE AeroTech Congress &
Exhibition, Toulouse, France, October 18-21 2011.

[12] O. Gilles and J. Hugues. Expressing and enforcing user-
defined constraints of AADL models. In Proceedings of the
5th UML& AADL Workshop, Oxford, UK, 2010.

32

http://orbilu.uni.lu/

13 20
AVICPS

Vancouver, Canada, December 3, 2013

Proceedings of the
4th Analytic Virtual Integration of

Cyber-Physical Systems Workshop

www.analyticintegration.org

AVICPS 2013

David Broman and Gabor Karsai (Eds.)

Series:'Linköping'Electronic'Conference'Proceedings,'No.'90''
ISSN'(print):'1650B3686'
ISSN'(online):'1650B3740'
ISBN:'978B91B7519B451B6''
DOI:'hKp://dx.doi.org/10.3384/ecp13090''
'

	cover-a4
	blankpage
	Title pages
	Copyright
	Table of Contents
	Message from the Program Co-chairs
	Workshop Organization
	Program Chairs
	Program Committee

	ecp13090001
	ecp13090002
	ecp13090003
	ecp13090004
	ecp13090005
	ecp13090006
	Title pages.pdf
	Copyright
	Table of Contents
	Message from the Program Co-chairs
	Workshop Organization
	Program Chairs
	Program Committee

