
The 13th Scandinavian International Conference on Fluid Power, SICFP2013, June 3-5, 2013, Linköping, Sweden

Guidelines for modeling hydraulic components and model based diagnostics of

hydraulic applications

Sebastian Adén
1
, Kenny Stjernström

2

1
Linköping University, Department of Management and Engineering, Linköping, Sweden

E-mail: sebad028@student.liu.se

2
Combitech AB- Technical Information Solutions, Linköping, Sweden

E-mail: kenny.stjernstrom@combitech.se

Abstract

Model based diagnosis is a very hot topic right now in the world of system engineering, through RODON the user is

provided with the necessary tools to accomplish this. With this software one can model a hydraulic system and auto-

generate fmea (failure-mode-effect-analysis). The old fashioned way for solving this procedure is with pen and paper and

that’s a very time-demanding activity. In addition to previous attributes of traditional failure-mode-effect-analysis: The

complexity-grade is increasing fast in large machinery. Due to the origin of the paper, i.e. as a product of a master thesis; a

huge effort has been put in to understand how RODON works, and how hydraulics best should be modeled to provide the

user with as much information and accuracy as possible.

Keywords: System, modeling, auto-generated fmea, diagnostics, non-causal interface.

1 Introduction

1.1 Background to paper and objectives

This paper is a milestone in one of the authors’ master

thesis. It should be considered as a method suggestion for

auto-generating fmea of hydraulic machinery. The main

goal of the thesis is to develop an expansion of RODONs

standard component library, with aim of hydraulic and

pneumatic components. The results from this paper are the

same as the results from the thesis; up to the deadline-date

of submission for full paper to SICFP (April 14, 2013).

1.2 Introduction to paper

FMEA is a conventional tool for the investigation; how

effects of component fault modes propagating the system

[1]. Often it is used in an early state of production, to find

construction-critical areas, but as well for maintenance work

in the field. With RODON such analysis are auto-generated,

in the terms of: system behavior is simulated with activated

failure modes. With this information one can evaluate

construction-concept and also find the candidate failure

mode that’s consistent with the shown behavior.

Modeling in RODON is built on the idea that systems can be

described in terms of intensity- and flow-variables. Such

observations are often represented in bond graphs.

In autonomous diagnostics methods, were diagnosis is stated

by sensors and microcontrollers, the diagnostic engineer got

harsh requirements for constructing accurate models; off-

line diagnosis can be run on much more simplified diagnosis

models.

2 Background

The paper assumes basic knowledge of system engineering

techniques, failure-mode-effect-analysis, logic and control

theory. In some parts more, advanced theory is used, but for

overall understanding basic knowledge is enough.

Figure 1 Different areas where diagnose is a common tool,

photo: ISY, LinköpingsUniversity

399

mailto:kenny.stjernstrom@combitech.se

2.1 Diagnosis

For the uninitiated, the term diagnosis is often only

associated with medical diagnosis. But a diagnosis can also

be stated for a technical system that got a headache. In this

case the diagnose-algorithm is the doctor and the system is

the patient.

The aim of a diagnosis is to decide whether the system is in

a fault mode or not and in case of fault, identify the root

cause [4]. There are many types of diagnosis and methods

for generate them. This paper will focus on how to achieve

diagnosis study on hydraulic applications, with help of

stationary conditions. The concept is evaluated off-line. I.e.

the analysis is not automated by sensor, in the sentence of;

compare sensor readings with a threshold. If the sensor

signal exceeds the threshold level, the system is considered

faulty and the user should be warned.

Traditional diagnosis methods and the original version of

fmea are to use a set of diagnostic rules, based on

experience. A diagnostic rule could look something like: “If

the lamp is not lit when the switch is turned on, either the

switch is stuck in open position or the lamp is broken or

both components are defect”. The diagnosis method that’s

been used in this paper is of the type model-based and will

be explained in the following sections.

2.2 RODON

Combitech develop and market products and services in

model based diagnosis, on the platform of their own

software; RODON. In RODON it is possible to create

system models from existing component-libraries and from

those generate different kinds of failure-analysis, like

Failure-Mode-Effect-Analysis (FMEA) and diagnosis in

form of Decision Trees (DT). RODON can also do the

opposite; state diagnosis based on symptoms given by the

user.

For mechatronic systems, typical in automotives, there are

well developed experiences in terms of methods and

component-library for how these systems best should be

modeled in RODON and to get a FMEA that’s satisfies the

demands from the industry. An important aspect for

successfully find the right method of modeling a system for

auto-generated FMEA, is to investigate on which “level of

detail” previous work is done. Shortly; the failure-analysis

in RODON should generate the same system-information, as

a manual made FMEA but as a considerably less time

consuming activity and with an increased quality.

Today RODON is used in the automotive industry, with the

work performed in this paper; the ambitions are that

RODON should be able to perform diagnosis on hydraulic

machinery as well.

Figure 2 RODON's Graphical User Interface, Simple

hydraulic system

RODON provides an equation-based object orienting

language called Rodelica [2]. The syntax is related to

Modelica [3]. Some of the Rodelica features are:

- It is based on interval-arithmetic, instead of sharp

values.

- It supports non-causal interface, i.e. the user is not

in need of propagate calculations order.

- Simulation routine with activated failure modes.

- Or-statement. This operator compare a set of

conditions during simulation and executing only

the one that could be valid for the whole system.

The auto-generating fmea-routine in RODON can be dived

into some main steps:

- The Composer (figure 2). Where the user creates a

class of the system.

- The Analyzer (figure 4), for investigation of

implemented equation.

- SDBView for generate fmea

- DtGen, evaluation of decision trees.

Editing and creation of a class can be constructed in a

graphical way (drag-and-drop from a component-library) or

in pure Rodelica-code, as for the case in figure 3.

400

Figure 3 RODON's Graphical User Interface, Rodelica

code for pressure relief-class

In figure 3 the Rodelica-interface for a pressure relief-valve

is presented. Development of a component in general,

consists basically of two steps; Instructions for nominal

behavior and component behavior when a fault-mode is

active. For the case in figure 3, no behavior for defect mode

has been implemented yet.

The next step in the fmea-routine is to import the model into

the Analyzer, like in figure 4.In Analyzer-mode, the user

can simulate the system and evaluate the implemented

equations. But foremost; in the Analyzer-mode, the user

have access to what RODON call AutoSim. With this tool a

simulation-routine can be initiated and for every

single/multiple fault, the effect can be evaluated by the

RODON- engine. This comes in handy when a diagnostic

engineer, wants to find out candidates to debilitating/defect

behavior. Symptoms of this kind are implemented in

Composer-mode on system-level. To draw a parallel to the

situation in figure 4 (horn system); a symptom could be

implemented based on the statement “the horn is not

sounding, although the nominal value of switch-position is

turned to position on”. This is realized by the following

Rodelica code-snippet.

//--
behavior
//--
 //At SystemLevel
//Implemented condition for the case of considering
symptom signalHornNoSound to be true:

signalHornNoSound:=(switchOnOff1.posNom==1 &
signalHorn1.sound==0);

 connect(gnd.pHarness, wireGnd.p2);
 connect(wireGnd.p1, signalHorn1.p2);
 connect(signalHorn1.p1, switchOnOff1.p1);
 connect(switchOnOff1.p0, wireBattSwitch.p2);
 connect(wireBattSwitch.p1, batterySimple1.p);

Figure 4 Graphical User Interface, Analyzer-mode of a

horn-system

During AutoSim-routine, every combination of component-

status, for which the system generates outputs that satisfy

the symptom-condition; RODON will store information like

this in a special database. Concrete; RODON have found

candidates, which can explain system behavior and state a

diagnosis.

As been said before, RODON can present diagnosis in form

of Decision Trees (DT). In the case of defect horn-system,

this could look something like figure 5.

From this view a user can navigate through the remaining

candidates to find the root cause of the debilitating behavior.

401

Figure 5, Decision Tree for guided diagnostic of horn

system

2.3 Diagnosis system

Diagnosis systems are implemented in a wide area of

technical system [4]. For example:

- Electrical motors

- Industrial robots

- Automotive

The reason and argument for implementing a diagnosis

system are foremost:

- Safety

- Environment/Machine protection

- Maintenance work

With incorporate diagnosis system of an off-line approach,

an ease of maintenance work is likely the goal of

implementation. This is how RODON is used today; from

generic component models, join into large mechatronic

systems (with multiple physical domains), make statements

of possible candidate(s) which is/are consistent with

observed symptoms.

2.4 Diagnosis model

The definition of model-based diagnosis is: the diagnosis is

based on an explicit formal model of the system. The first

research reports of the subject were published in the

beginning of the 1970s. [4].

A model that is used for diagnosis analysis is called a

diagnosis model. It is used for evaluating presence of fault,

given observation(s). In practice that means: A diagnostic

model doesn’t necessarily need to calculate the exact

physical behavior, as long as it represents the behavior of

interest for making statements regarding component health.

The simplest form of model based diagnostics is to model

the system for nominal behavior and compare with

observations. Results from such test are then evaluated

against a threshold, in diagnose theory terms; one have

created a residual, i.e. the numerical difference between

system output and model output based on the same input,

that’s ideal zero (no fault). The computation routine is

explained graphically in figure 6.

Figure 6 generating residual for diagnosis purpose

The size of absolute residual (r) -value is compared against a

threshold (J).

In the case of r is larger than the threshold, the system is

considered faulty. Due to the well-known nonlinear nature

of hydraulics as well as the diagnostic engineers possibilities

to accurate measure flow and pressure in arbitrary areas,

adequate models for online diagnosis are rather hard to

establish.

In a component-based reasoning approach (like the one in

RODON), outputs from a faulty system can not have

completely arbitrary values. It is the application engineer’s

assignment to construct components with well-defined

nominal and faulty behavior.

A simple system is shown in figure 7, it contains two adders

and three multiplies and illustrates the model-based

reasoning for evaluating of error.

Figure 7 Multiplier- and Adder circuit, photo: Kleer and

Kurien [6]

402

Inputs to the system are A, B, C, D and E, while F and G are

the outputs. X, Y and Z can be considered as probing points.

In the case of hydraulic environment, this corresponds to

pressure and flow transducers. If the system is provided with

the input of A=3, B=2, C=2, D=3, E=3, the expected output

signal should become F=12 and G= 12, i.e. for system in

nominal behavioral mode. A conflict is every value that

differs from the nominal.

Figure 8 Multiplier- and Adder circuit with inconsistent

behavior, photo: Kleer and Kurien [6]

Possible candidates to explain the behavior shown in figure

8 are: multiplier M1 or adder A1 is defect. This diagnosis-

statement is based on logic reasoning, due to output G still

acting consistent with predicted behavior. From figure 8,

one can evaluate that G is decoupled from M1 and A1, and

for the case of only single fault (defect M2 and A2 can also

explain above observations) there could not be any other

candidates than M1 or A1. For isolating one candidate and

state a minimal diagnosis, the probing points needs to taking

into account as well.

2.5 Level of detail

From above discussion about reasoning approach to

diagnosis, the natural extension of that subject is; on which

level of detail should components be developed, so they

could be used both for nominal- as well as for faulty-

behavior in a generic way. It should be noted that the main

task of a diagnosis model is not to perform a simulation.

For example: When modeling a relay, from a diagnosis

point of view. It’s not relevant that equations corresponding

to current-flow through the coil are implemented in the

model (if not the interesting symptoms expects to depend on

that specific behavior). An easier approach is to represent

the relay with a resistance and a discrete switch, the function

of the “simple-relay” is then emphasized from knowledge

according to effect flow in the resistance-element.

2.6 Simple hydraulic modeling

The interface between components in Rodelica [2] is built

on the idea that many systems can be described in terms of

flow- and intensity-variables. Such observations are often

represented in bond graphs [5]. For modeling work in

RODON, no account needs to been taken to maintain

conflict-free causality. The solver deals with this during its

simulation-routine.

Figure 9 Bond graph of a mechatronic system, photo:

bondgraph.org

For hydraulic environments these flow- and intensity

variables are directly translated to flow and pressure

respectively.

Figure 10, component-interface in RODON

403

Since Rodelica is built on interval-arithmetic, the only sharp

value that has been declared for a hydraulic environment is

tank-pressure (apart from parameters). Value-assignment for

the rest of the hydraulic circuit is done by simulation-

routine.

3 Results

In the following subsections results from the thesis to

present day will be presented.

3.1 Components

As been described; the master thesis that this paper is based

on, aims to develop a standard component-library in

RODON.

Hydraulic components can rather rough be divided into

following classes:

- Hydraulic machines (pumps and motors)

- Actuators

- Directional valves

- Pressure-control valves

- Flow-control valves

- Check-valves

- Pipes

For which objects can be instantiated. With different

attributes e.g.:

- Proportional control

- Servo control

- Linear/non-linear characteristics

3.2 Hydraulic modeling in RODON

In the world of interval arithmetic and diagnostic approach;

programming of component-classes can become quite

confusing at first glance. Since one not normally propagates

calculation order in RODON, the function-structure differs

from a conventional simulation-program (e.g.

MATLAB/Simulink). The easiest way of illustrate above

statement is to look in to the Rodelica-code of a throttle

valve.

model Throttel

/** Hydromechanical connectors*/

connector Flange=HydFlange;

Flange p1, p2;

parameter FrictionCoeff kFriction = 1;

FailureMode fm (max = 1, mapping = "ok, blocked");

// ---

behavior

//--

 // Constraints valid for all modes:

 // Volume flow balance:

 p1.Vdot + p2.Vdot = 0;

 // Definition of pressure drop:

 deltaP = p1.p - p2.p;

 // Basic constraints for nominal case:

 if (fm == 0)

 {

 deltaP = kFriction * p1.Vdot;

 }

// Constraints for failure mode "blocked":

 if (fm == 1)

 { // No volume flow through pin 1:

 p1.Vdot = 0;

 }

end Throttel;

404

In the Rodelica-code for a throttle; no propagation is taken

place for input/output signal, nor which of the ports that

acting input/output. Depending of components, more or less

sophisticated failure-modes have been implemented. A

failure-mode can be considered as a state-machine;

whenever a fault is present, the component should act in a

predefined way.

As a first approach in component-modeling of hydraulics;

only trivial failure modes are implemented, e.g. clog (as in

the case of throttle-model) or pressure drain to atmosphere.

Verbal defined functions:

- If the clog- failure mode is active, then set flow

through component to zero

- If component suffer from leakage to atmosphere,

then set component pressure to atmosphere

pressure.

Due to diagnosis purpose, modeling can be done with

different abstraction-level (2.5 level of detail). Consider a

load holding-valve like the one in figure 11.

Figure 11 Schematic view of a conventional load holding-

valve, photo: used with permission from Volvo CE

A Newtonian force balance of the component in figure 11

exhibit at least four well-defined forces. These are all

relevant for simulation purpose, due to the study of

dynamic/static behavior. Suppose now that the purpose of

modeling is to investigate the health of the load holding-

valve; an abstraction of component-function becomes:

- Depending on flow direction; No effect-losses on

the high-pressure side, i.e. free flow. On the low-

pressure side, a small pressure build up is

propagated, i.e. component acting like a throttle. If

a local or global fault is active, then the behavior

will change.

An implementation of an abstracted load holding-valve in

RODON is presented in figure 12. One demand in the

master thesis is that all components should be constructed in

a generic way; when the component classes are created,

additional features are implemented as well. For the case of

the load holding-valve in figure 12, an extra port (p3) has

been added. Due to this one can e.g. let the valve function

depend on a pilot valve or some other external components.

For diagnosis this is very important; Consider the load

holding-valve in figure 11, internal failure modes could be

{always open, spring broken}. But system behavior will

also be affected if a pilot valve suffer from leakage or stucks

in closed postion, the effects of these modes are spread to

load holding-valve through port p3. In this case the pilot

valve should be considered as an information port, i.e. the

simplest way for modeling a pilot valve is to assign it

carateristics of a discrete switch.

Figure 12 Schematic representation of a load holding-valve

In summary the discussion according to the load holding-

valve ends up in the following Rodelica-code:

model LoadHoldingValve

/** Hydromechanical connectors*/

connector Flange=HydFlange;

/**Connector prepared for connection with pilot valve*/

connector actPos= Discrete;

405

/**Declare connector for pilotvalve*/

actPos p3;

 FailureMode fm (max = 0, mapping = "ok,
stucksClosed, stucksOpen");

 Discrete modeNom (min=0, max=1, mapping =
"closed, open");

 Discrete modeAct (min=0, max=1, mapping = "closed,
open");

/**user defined parameters*/

 parameter Interval fricNom;

 parameter Interval fric2;

 parameter Interval fricLeak;

 parameter Interval fric1;

//--

behavior

//--

 deltaP = p1.p - p2.p;

 p2.Vdot + p1.Vdot = 0;

 or

 {

 {

 //Behavior is not propagated from pilot valve

 p3=0;

 modeNom = 0;

 }

 {

 //Behavior is propagated from pilot valve

 p3> 0;

 modeNom = 1;

 }

 }

 if (modeAct==0)

 {

 p1.Vdot * fric2 = deltaP;

 }

 if (modeAct==1)

 {

 //Nominal behavior

 if(p3==1){

 p1.Vdot * fric1 = deltaP;

 }

 // Leakage over pilotValve

 if(p3==2){

 p1.Vdot * fricLeak = deltaP;

 }

 // PilotValve stuck in closed position

 if(p3==3){

 //only leakage flow over loadholding valve

 p2.Vdot= 0;

 }

 }

 // nominal case:

 if (fm==0)

 {

 modeAct = modeNom;

 }

end LoadHoldingValve;

406

3.3 Effects due to failure

Throughout the standard library that has been developed in

the thesis, a certain level of abstraction has been used. In

this section some of the component will be used for

modeling the working hydraulics in a wheel loader and auto-

generated decision trees for guided diagnostics will also be

presented.

Figure 13 Volvo Wheel loader, photo: used with permission

from Volvo CE

The working hydraulics of the tilting function in a wheel

loader is represented in figure 14.

Figure 14, Tilt function in a wheel loader, modeled in

RODON

Assume the diagnostics engineer got interest in finding all

candidates that can explain performance problems within the

tilting cylinder.

A symptom-variable is implemented, as explained in section

(2.2), in this case:

 lowTransmissionPower (Boolean)

 tiltFunctionOutOfService (Boolean)

Conditions to satisfy the symptoms -->

 lowTransmissionPower:=(tiltFunction.p1.Vdot>0 &
tiltFunction.p1.p< 1.42) | (tiltFunction.p2.Vdot>0 &
tiltFunction.p2.p< 1.95);

 tiltFunctionOutOfService := (pWM1.PWMposNom ==
0 & pWM2.PWMposNom == 0 & tiltFunction.isMoving
!= 0) |

 (pWM1.PWMposNom
== 1 & pWM2.PWMposNom == 0 &
tiltFunction.isMoving != 2) |

 (pWM1.PWMposNom
== 0 & pWM2.PWMposNom == 1 &
tiltFunction.isMoving != 1);

Based on the symptoms in the Rodelica Code; stated above,

a decision tree has been computed (figure 15). The decision

tree contains all the possible failure modes that can explain

the faulty behavior; also it shows a guided diagnostic to ease

maintenance work. Within the decision tree, the thought is

to do the suggested tests. The final goal is to find the

candidate on component level that can explain the

debilitating behavior on system level.

407

Figure 15, an auto generated Decision Tree for defect tilt-

function

4 Conclusions

By the work of this paper; a component-library has been

developed, for diagnostics use. It has been shown that the

root cause for debilitating behavior can be found, through a

model based diagnostic approach. By the end of the thesis,

the expectations are that more sophisticated symptoms could

be diagnosed; as well as more attributes should be

implemented in the beta models, so that the decision trees

will be more informative. Such additives could be an ECU.

This work can be considered as a method evaluation, with

the ultimate goal to find an artificial intelligence method for

locate arbitrary failure modes in hydraulic machinery.

References

[1] National Aeronautics and Space Administration

(NASA), 2007, NASA Systems Engineering Handbook,

Tech.Rep,

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/200

80008301_2008008500.pdf

[2] Peter Bunus, Olle Isaksson, Beate Frey, Burkhard

Munker (2009), RODON- A Model-Based Diagnosis

Approach for the DX Diagnostic Competition, Uptime

Solutions AB.

[3] The Modelica Association (2007). Modelica- a unified

object-oriented language for physical systems modeling

[4] Mattias Nyberg, Erik Frisk, 2012, Model Based

Diagnosis of Technical Processes

[5] Lamb, J.D., Woodall, D.R. Asher, G.M (1997c), Bond

graphs ii: Causality and singularity

[6] Johan de Kleer and James Kurien (2003).

Fundamentals of Model-Based Diagnosis. In

Proceedings of IFAC SafeProcess, Washington USA,

June 2003

408

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080008301_2008008500.pdf
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080008301_2008008500.pdf

