
The 13th Scandinavian International Conference on Fluid Power, SICFP2013, June 3-5, 2013, Linköping, Sweden 

Guidelines for modeling hydraulic components and model based diagnostics of 

hydraulic applications 

Sebastian Adén
1
, Kenny Stjernström

2
  

 

1
Linköping University, Department of Management and Engineering, Linköping, Sweden 

E-mail: sebad028@student.liu.se 

 
2
Combitech AB- Technical Information Solutions, Linköping, Sweden 

E-mail: kenny.stjernstrom@combitech.se 

Abstract 

Model based diagnosis is a very hot topic right now in the world of system engineering, through RODON the user is 

provided with the necessary tools to accomplish this. With this software one can model a hydraulic system and auto-

generate fmea (failure-mode-effect-analysis). The old fashioned way for solving this procedure is with pen and paper and 

that’s a very time-demanding activity. In addition to previous attributes of traditional failure-mode-effect-analysis: The 

complexity-grade is increasing fast in large machinery. Due to the origin of the paper, i.e. as a product of a master thesis; a 

huge effort has been put in to understand how RODON works, and how hydraulics best should be modeled to provide the 

user with as much information and accuracy as possible. 
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1 Introduction 

1.1 Background to paper and objectives 

This paper is a milestone in one of the authors’ master 

thesis. It should be considered as a method suggestion for 

auto-generating fmea of hydraulic machinery. The main 

goal of the thesis is to develop an expansion of RODONs 

standard component library, with aim of hydraulic and 

pneumatic components. The results from this paper are the 

same as the results from the thesis; up to the deadline-date 

of submission for full paper to SICFP (April 14, 2013).  

1.2 Introduction to paper 

FMEA is a conventional tool for the investigation; how 

effects of component fault modes propagating the system 

[1]. Often it is used in an early state of production, to find 

construction-critical areas, but as well for maintenance work 

in the field.  With RODON such analysis are auto-generated, 

in the terms of: system behavior is simulated with activated 

failure modes. With this information one can evaluate 

construction-concept and also find the candidate failure 

mode that’s consistent with the shown behavior. 

Modeling in RODON is built on the idea that systems can be 

described in terms of intensity- and flow-variables. Such 

observations are often represented in bond graphs.  

In autonomous diagnostics methods, were diagnosis is stated 

by sensors and microcontrollers, the diagnostic engineer got 

harsh requirements for constructing accurate models; off-

line diagnosis can be run on much more simplified diagnosis 

models.    

2 Background 

The paper assumes basic knowledge of system engineering 

techniques, failure-mode-effect-analysis, logic and control 

theory. In some parts more, advanced theory is used, but for 

overall understanding basic knowledge is enough. 

 
Figure 1 Different areas where diagnose is a common tool, 

photo: ISY, LinköpingsUniversity  
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2.1 Diagnosis 

For the uninitiated, the term diagnosis is often only 

associated with medical diagnosis. But a diagnosis can also 

be stated for a technical system that got a headache. In this 

case the diagnose-algorithm is the doctor and the system is 

the patient.  

The aim of a diagnosis is to decide whether the system is in 

a fault mode or not and in case of fault, identify the root 

cause [4]. There are many types of diagnosis and methods 

for generate them. This paper will focus on how to achieve 

diagnosis study on hydraulic applications, with help of 

stationary conditions. The concept is evaluated off-line. I.e. 

the analysis is not automated by sensor, in the sentence of; 

compare sensor readings with a threshold. If the sensor 

signal exceeds the threshold level, the system is considered 

faulty and the user should be warned.  

Traditional diagnosis methods and the original version of 

fmea are to use a set of diagnostic rules, based on 

experience. A diagnostic rule could look something like: “If 

the lamp is not lit when the switch is turned on, either the 

switch is stuck in open position or the lamp is broken or 

both components are defect”. The diagnosis method that’s 

been used in this paper is of the type model-based and will 

be explained in the following sections. 

2.2 RODON 

Combitech develop and market products and services in 

model based diagnosis, on the platform of their own 

software; RODON. In RODON it is possible to create 

system models from existing component-libraries and from 

those generate different kinds of failure-analysis, like 

Failure-Mode-Effect-Analysis (FMEA) and diagnosis in 

form of Decision Trees (DT). RODON can also do the 

opposite; state diagnosis based on symptoms given by the 

user. 

For mechatronic systems, typical in automotives, there are 

well developed experiences in terms of methods and 

component-library for how these systems best should be 

modeled in RODON and to get a FMEA that’s satisfies the 

demands from the industry. An important aspect for 

successfully find the right method of modeling a system for 

auto-generated FMEA, is to investigate on which “level of 

detail” previous work is done. Shortly; the failure-analysis 

in RODON should generate the same system-information, as 

a manual made FMEA but as a considerably less time 

consuming activity and with an increased quality. 

Today RODON is used in the automotive industry, with the 

work performed in this paper; the ambitions are that 

RODON should be able to perform diagnosis on hydraulic 

machinery as well.   

 

Figure 2 RODON's Graphical User Interface, Simple 

hydraulic system 

 

RODON provides an equation-based object orienting 

language called Rodelica [2]. The syntax is related to 

Modelica [3]. Some of the Rodelica features are: 

- It is based on interval-arithmetic, instead of sharp 

values. 

- It supports non-causal interface, i.e. the user is not 

in need of propagate calculations order. 

- Simulation routine with activated failure modes. 

- Or-statement. This operator compare a set of 

conditions during simulation and executing only 

the one that could be valid for the whole system.     

The auto-generating fmea-routine in RODON can be dived 

into some main steps: 

 

- The Composer (figure 2). Where the user creates a 

class of the system. 

- The Analyzer (figure 4), for investigation of 

implemented equation.  

- SDBView for generate fmea 

- DtGen, evaluation of decision trees. 

 

Editing and creation of a class can be constructed in a 

graphical way (drag-and-drop from a component-library) or 

in pure Rodelica-code, as for the case in figure 3. 
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Figure 3 RODON's Graphical User Interface, Rodelica 

code for pressure relief-class 

In figure 3 the Rodelica-interface for a pressure relief-valve 

is presented. Development of a component in general, 

consists basically of two steps; Instructions for nominal 

behavior and component behavior when a fault-mode is 

active. For the case in figure 3, no behavior for defect mode 

has been implemented yet.  

 

The next step in the fmea-routine is to import the model into 

the Analyzer, like in figure 4.In Analyzer-mode, the user 

can simulate the system and evaluate the implemented 

equations. But foremost; in the Analyzer-mode, the user 

have access to what RODON call AutoSim. With this tool a 

simulation-routine can be initiated and for every 

single/multiple fault, the effect can be evaluated by the 

RODON- engine. This comes in handy when a diagnostic 

engineer, wants to find out candidates to debilitating/defect 

behavior. Symptoms of this kind are implemented in 

Composer-mode on system-level. To draw a parallel to the 

situation in figure 4 (horn system); a symptom could be 

implemented based on the statement “the horn is not 

sounding, although the nominal value of switch-position is 

turned to position on”. This is realized by the following 

Rodelica code-snippet.  

//----------------------------------------------------------------------     
behavior 
//---------------------------------------------------------------------- 
 //At SystemLevel 
//Implemented condition for the case of considering    
symptom signalHornNoSound to be  true:  
    
signalHornNoSound:=(switchOnOff1.posNom==1 &  
signalHorn1.sound==0); 
 
    connect(gnd.pHarness, wireGnd.p2); 
    connect(wireGnd.p1, signalHorn1.p2); 
    connect(signalHorn1.p1, switchOnOff1.p1); 
    connect(switchOnOff1.p0, wireBattSwitch.p2); 
    connect(wireBattSwitch.p1, batterySimple1.p); 
 
 

 

 
 

Figure 4 Graphical User Interface, Analyzer-mode of a 

horn-system 

During AutoSim-routine, every combination of component-

status, for which the system generates outputs that satisfy 

the symptom-condition; RODON will store information like 

this in a special database. Concrete; RODON have found 

candidates, which can explain system behavior and state a 

diagnosis. 

 

As been said before, RODON can present diagnosis in form 

of Decision Trees (DT). In the case of defect horn-system, 

this could look something like figure 5. 

From this view a user can navigate through the remaining 

candidates to find the root cause of the debilitating behavior.  
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Figure 5, Decision Tree for guided diagnostic of horn 

system  

     

2.3 Diagnosis system 

Diagnosis systems are implemented in a wide area of 

technical system [4]. For example:  

- Electrical motors  

- Industrial robots 

- Automotive 

The reason and argument for implementing a diagnosis 

system are foremost: 

- Safety 

- Environment/Machine protection   

- Maintenance work 

With incorporate diagnosis system of an off-line approach, 

an ease of maintenance work is likely the goal of 

implementation.  This is how RODON is used today; from 

generic component models, join into large mechatronic 

systems (with multiple physical domains), make statements 

of possible candidate(s) which is/are consistent with 

observed symptoms.  

 

 

2.4 Diagnosis model 

The definition of model-based diagnosis is: the diagnosis is 

based on an explicit formal model of the system. The first 

research reports of the subject were published in the 

beginning of the 1970s. [4]. 

A model that is used for diagnosis analysis is called a 

diagnosis model. It is used for evaluating presence of fault, 

given observation(s). In practice that means: A diagnostic 

model doesn’t necessarily need to calculate the exact 

physical behavior, as long as it represents the behavior of 

interest for making statements regarding component health. 

The simplest form of model based diagnostics is to model 

the system for nominal behavior and compare with 

observations. Results from such test are then evaluated 

against a threshold, in diagnose theory terms; one have 

created a residual, i.e. the numerical difference between 

system output and model output based on the same input, 

that’s ideal zero (no fault). The computation routine is 

explained graphically in figure 6.     

 

Figure 6 generating residual for diagnosis purpose 

 

The size of absolute residual (r) -value is compared against a 

threshold (J). 

 

In the case of r is larger than the threshold, the system is 

considered faulty. Due to the well-known nonlinear nature 

of hydraulics as well as the diagnostic engineers possibilities 

to accurate measure flow and pressure in arbitrary areas, 

adequate models for online diagnosis are rather hard to 

establish. 

In a component-based reasoning approach (like the one in 

RODON), outputs from a faulty system can not have 

completely arbitrary values. It is the application engineer’s 

assignment to construct components with well-defined 

nominal and faulty behavior. 

A simple system is shown in figure 7, it contains two adders 

and three multiplies and illustrates the model-based 

reasoning for evaluating of error. 

 
Figure 7 Multiplier- and Adder circuit, photo: Kleer and 

Kurien   [6] 
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Inputs to the system are A, B, C, D and E, while F and G are 

the outputs. X, Y and Z can be considered as probing points. 

In the case of hydraulic environment, this corresponds to 

pressure and flow transducers. If the system is provided with 

the input of A=3, B=2, C=2, D=3, E=3, the expected output 

signal should become F=12 and G= 12, i.e. for system in 

nominal behavioral mode. A conflict is every value that 

differs from the nominal. 

 

Figure 8 Multiplier- and Adder circuit with inconsistent 

behavior, photo:  Kleer and Kurien   [6] 

Possible candidates to explain the behavior shown in figure 

8 are: multiplier M1 or adder A1 is defect. This diagnosis-

statement is based on logic reasoning, due to output G still 

acting consistent with predicted behavior. From figure 8, 

one can evaluate that G is decoupled from M1 and A1, and 

for the case of only single fault (defect M2 and A2 can also 

explain above observations) there could not be any other 

candidates than M1 or A1. For isolating one candidate and 

state a minimal diagnosis, the probing points needs to taking 

into account as well.    

2.5 Level of detail 

From above discussion about reasoning approach to 

diagnosis, the natural extension of that subject is; on which 

level of detail should components be developed, so they 

could be used both for nominal- as well as for faulty- 

behavior in a generic way. It should be noted that the main 

task of a diagnosis model is not to perform a simulation. 

For example: When modeling a relay, from a diagnosis 

point of view. It’s not relevant that equations corresponding 

to current-flow through the coil are implemented in the 

model (if not the interesting symptoms expects to depend on 

that specific behavior). An easier approach is to represent 

the relay with a resistance and a discrete switch, the function 

of the “simple-relay” is then emphasized from knowledge 

according to effect flow in the resistance-element. 

2.6 Simple hydraulic modeling 

The interface between components in Rodelica [2] is built 

on the idea that many systems can be described in terms of 

flow- and intensity-variables. Such observations are often 

represented in bond graphs [5]. For modeling work in 

RODON, no account needs to been taken to maintain 

conflict-free causality. The solver deals with this during its 

simulation-routine. 

 

Figure 9 Bond graph of a mechatronic system, photo: 

bondgraph.org 

For hydraulic environments these flow- and intensity 

variables are directly translated to flow and pressure 

respectively.  

 

Figure 10, component-interface in RODON 
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Since Rodelica is built on interval-arithmetic, the only sharp 

value that has been declared for a hydraulic environment is 

tank-pressure (apart from parameters). Value-assignment for 

the rest of the hydraulic circuit is done by simulation-

routine.   

3 Results 

In the following subsections results from the thesis to 

present day will be presented.  

3.1 Components 

As been described; the master thesis that this paper is based 

on, aims to develop a standard component-library in 

RODON.  

Hydraulic components can rather rough be divided into 

following classes:  

- Hydraulic machines (pumps and motors) 

- Actuators 

- Directional valves  

- Pressure-control valves 

- Flow-control valves 

- Check-valves  

- Pipes 

For which objects can be instantiated. With different 

attributes e.g.: 

- Proportional control 

- Servo control  

- Linear/non-linear characteristics 

3.2 Hydraulic modeling in RODON 

In the world of interval arithmetic and diagnostic approach; 

programming of component-classes can become quite 

confusing at first glance. Since one not normally propagates 

calculation order in RODON, the function-structure differs 

from a conventional simulation-program (e.g. 

MATLAB/Simulink). The easiest way of illustrate above 

statement is to look in to the Rodelica-code of a throttle 

valve. 

model Throttel 

/** Hydromechanical connectors*/ 

connector Flange=HydFlange; 

Flange p1, p2; 

parameter FrictionCoeff kFriction = 1; 

FailureMode fm (max = 1, mapping = "ok, blocked"); 

// --------------------------------------------------------------------- 

behavior 

//---------------------------------------------------------------------- 

    // Constraints valid for all modes: 

    // Volume flow balance: 

    p1.Vdot + p2.Vdot = 0; 

     // Definition of pressure drop: 

    deltaP = p1.p - p2.p; 

     

     // Basic constraints for nominal case:  

    if (fm == 0)  

  { 

    deltaP = kFriction * p1.Vdot; 

  } 

// Constraints for failure mode "blocked": 

    if (fm == 1)  

 { // No volume flow through pin 1: 

 p1.Vdot = 0;  

  } 

end Throttel; 
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In the Rodelica-code for a throttle; no propagation is taken 

place for input/output signal, nor which of the ports that 

acting input/output. Depending of components, more or less 

sophisticated failure-modes have been implemented. A 

failure-mode can be considered as a state-machine; 

whenever a fault is present, the component should act in a 

predefined way.  

As a first approach in component-modeling of hydraulics; 

only trivial failure modes are implemented, e.g. clog (as in 

the case of throttle-model) or pressure drain to atmosphere. 

Verbal defined functions: 

- If the clog- failure mode is active, then set flow 

through component to zero 

- If component suffer from leakage to atmosphere, 

then set component pressure to atmosphere 

pressure. 

Due to diagnosis purpose, modeling can be done with 

different abstraction-level (2.5 level of detail). Consider a 

load holding-valve like the one in figure 11.   

 

Figure 11 Schematic view of a conventional load holding- 

valve, photo: used with permission from Volvo CE 

A Newtonian force balance of the component in figure 11 

exhibit at least four well-defined forces. These are all 

relevant for simulation purpose, due to the study of 

dynamic/static behavior. Suppose now that the purpose of 

modeling is to investigate the health of the load holding-

valve; an abstraction of component-function becomes: 

- Depending on flow direction; No effect-losses on 

the high-pressure side, i.e. free flow. On the low-

pressure side, a small pressure build up is 

propagated, i.e. component acting like a throttle. If 

a local or global fault is active, then the behavior 

will change. 

An implementation of an abstracted load holding-valve in 

RODON is presented in figure 12. One demand in the 

master thesis is that all components should be constructed in 

a generic way; when the component classes are created, 

additional features are implemented as well. For the case of 

the load holding-valve in figure 12, an extra port (p3) has 

been added. Due to this one can e.g. let the valve function 

depend on a pilot valve or some other external components. 

For diagnosis this is very important;  Consider the load 

holding-valve in figure 11, internal failure modes could be 

{always open, spring broken}.  But system behavior  will 

also be affected if a pilot valve suffer from leakage or stucks 

in closed postion, the effects of these modes are spread to 

load holding-valve through port p3. In this case the pilot 

valve should be considered as an information port, i.e. the 

simplest way for modeling a pilot valve is to assign it 

carateristics of a discrete switch. 

 

Figure 12 Schematic representation of a load holding-valve 

In summary the discussion according to the load holding-

valve ends up in the following Rodelica-code: 

model LoadHoldingValve 

/** Hydromechanical connectors*/ 

connector Flange=HydFlange; 

/**Connector prepared for connection with pilot valve*/ 

connector actPos= Discrete; 
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/**Declare connector for pilotvalve*/ 

actPos p3; 

 

    FailureMode fm (max = 0, mapping = "ok, 
stucksClosed, stucksOpen"); 

    Discrete modeNom (min=0, max=1, mapping = 
"closed, open"); 

    Discrete modeAct (min=0, max=1, mapping = "closed, 
open"); 

/**user defined parameters*/ 

    parameter Interval fricNom; 

    parameter Interval fric2; 

    parameter Interval fricLeak; 

    parameter Interval fric1; 

//---------------------------------------------------------------------- 

behavior 

//---------------------------------------------------------------------- 

    deltaP = p1.p - p2.p; 

    p2.Vdot + p1.Vdot = 0; 

    or 

    { 

 { 

     //Behavior is not propagated from pilot valve 

     p3=0; 

     modeNom = 0; 

 } 

 { 

    //Behavior is  propagated from pilot valve 

     p3> 0; 

     modeNom = 1; 

 } 

   } 

       if (modeAct==0) 

    { 

 p1.Vdot * fric2 = deltaP; 

    } 

 

 

 

 

   if (modeAct==1) 

    {    

 //Nominal behavior 

 if(p3==1){ 

 p1.Vdot * fric1 = deltaP; 

 } 

 // Leakage over pilotValve 

 if(p3==2){ 

 p1.Vdot * fricLeak = deltaP; 

 } 

 // PilotValve stuck in closed position 

 if(p3==3){ 

 //only leakage flow over loadholding valve 

 p2.Vdot= 0; 

 } 

    } 

    // nominal case: 

    if (fm==0) 

    { 

 modeAct = modeNom; 

    } 

end LoadHoldingValve; 
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3.3 Effects due to failure 

Throughout the standard library that has been developed in 

the thesis, a certain level of abstraction has been used. In 

this section some of the component will be used for 

modeling the working hydraulics in a wheel loader and auto-

generated decision trees for guided diagnostics will also be 

presented.   

 

Figure 13 Volvo Wheel loader, photo: used with permission 

from Volvo CE 

The working hydraulics of the tilting function in a wheel 

loader is represented in figure 14. 

 

Figure 14, Tilt function in a wheel loader, modeled in 

RODON 

  

 

Assume the diagnostics engineer got interest in finding all 

candidates that can explain performance problems within the 

tilting cylinder.  

A symptom-variable is implemented, as explained in section 

(2.2), in this case: 

 lowTransmissionPower (Boolean) 

 tiltFunctionOutOfService (Boolean) 

Conditions to satisfy the symptoms --> 

    lowTransmissionPower:=(tiltFunction.p1.Vdot>0 & 
tiltFunction.p1.p< 1.42) | (tiltFunction.p2.Vdot>0 & 
tiltFunction.p2.p< 1.95); 

    tiltFunctionOutOfService := (pWM1.PWMposNom == 
0 & pWM2.PWMposNom == 0 & tiltFunction.isMoving 
!= 0) | 

    (pWM1.PWMposNom 
== 1 & pWM2.PWMposNom == 0 & 
tiltFunction.isMoving != 2) | 

    (pWM1.PWMposNom 
== 0 & pWM2.PWMposNom == 1 & 
tiltFunction.isMoving != 1); 

Based on the symptoms in the Rodelica Code; stated above, 

a decision tree has been computed (figure 15). The decision 

tree contains all the possible failure modes that can explain 

the faulty behavior; also it shows a guided diagnostic to ease 

maintenance work. Within the decision tree, the thought is 

to do the suggested tests. The final goal is to find the 

candidate on component level that can explain the 

debilitating behavior on system level.  
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Figure 15, an auto generated Decision Tree for defect tilt-

function 

4 Conclusions 

By the work of this paper; a component-library has been 

developed, for diagnostics use. It has been shown that the 

root cause for debilitating behavior can be found, through a 

model based diagnostic approach. By the end of the thesis, 

the expectations are that more sophisticated symptoms could 

be diagnosed; as well as more attributes should be 

implemented in the beta models, so that the decision trees 

will be more informative. Such additives could be an ECU. 

This work can be considered as a method evaluation, with 

the ultimate goal to find an artificial intelligence method for 

locate arbitrary failure modes in hydraulic machinery.   
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