
A toolchain for Rapid Control Prototyping
using Rexroth controllers and open source software

Nils Menager Niklas Worschech Lars Mikelsons
Bosch Rexroth AG

Rexrothstr. 3, 97816 Lohr a. Main

Abstract

Taking a look at project costs from a financial point
of view, the commissioning times of new indus-
trial systems become more and more important, as
they significantly drive the costs. Hence, the reduc-
tion of commissioning times is part of current re-
search. Besides the use of simulation and the coupling
between hardware and software (Hardware-In-The-
Loop-Simulations),Rapid Control Prototyping offers
a huge potential to reduce commissioning times. Un-
til now, most of the toolchains use special hardware
in combination with commercial simulation software,
which leads to some serious drawbacks. In this work,
a toolchain for Rapid Control Prototyping using in-
dustrial controllers and open source software is pre-
sented.

Keywords: Rapid Control Prototyping; Model-
ica; OpenModelica; Hardware-In-The-Loop; Bosch
Rexroth; real-time simulation

1 Introduction

1.1 Motivation

According to the V-model of mechatronic product de-
velopment (VDI 2206, [1]), the first step during the
design of a new industrial system, after a rough pre-
calculation of the required components, is to set up
a simulation model of the system under considera-
tion. Therefore, at Bosch Rexroth, our in-house tool
Rexroth Simster is used.Rexroth Simster is a simula-
tion environment, which allows object-oriented mod-
elling of technical, mainly mechanical, electrical and
hydraulic systems. Clearly, the tool includes powerful
numerical solver to perform the simulation. After suit-
able components and parameters are determined inside
the simulation environment, the controller concept has
to be tested using a real hardware controller. At this
point, until now, the simulation model of the controller

is not used any further and the controller is set up
from scratch inside the development environment of
the controller. At Rexroth, mostlyIndraWorks as stan-
dard tool for the development of controller algorithms
and the design of the whole controller is used. In many
cases, even the developed controller structure inside
the simulation tool is not used anymore. Instead, pre-
defined standard control algorithms are used.

However, it is clearly desirable to adapt the com-
plete control algorithm from the simulation environ-
ment. There are already possibilities to use virtu-
ally designed control algorithms on real-time oper-
ating systems using Hardware-In-The-Loop-Setups.
Two possibilities are using a dSPACE [2] system or
a xPC system in combination withMatlab/Simulink
[3]. Though, using such a toolchain leads to three
serious drawbacks. First, these systems are very ex-
pensive. Second, even in that case the control algo-
rithm has to be re-implemented on the real control
hardware after testing on the real-time system. Fur-
thermore, it has to be taken into account that the usage
of such commercial real-time systems leads to depen-
dencies to external software (e.g.Matlab/Simulink).
Clearly, such a dependency for the generation of code
for the PLC (Programmable Logic Controller) is not
desirable. Moreover, if new features should be imple-
mented, this is a big disadvantage, because the code
generation of the commercial tools can not be modi-
fied.

The aim of this work is to set up a toolchain for
Rapid Control Prototyping with a Rexroth controller
(IndraControl L45) using open source software and
Modelica for the modeling part, i.e. a toolchain, which
is completely independent from external software and
hardware. To be more precise, this toolchain enables
the engineer to transfer virtual controller models mod-
eled in Modelica to standard Rexroth controllers. To
validate the functionality, in this contribution, the con-
troller is used in a Hardware-In-The-Loop setup. The

DOI
10.3384/ECP14096371

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

371

validation of the controller in combination with a real
system is part of current work.

1.2 Outline of this paper

In the first section of this paper, a short introduction
into Rapid Control Prototyping is given. Furthermore,
a standard toolchain for using Rapid Control Proto-
typing nowadays is discussed. In the second section,
after requirements for the toolchain have been defined,
the specific parts of the toolchain are presented. The
functionality of the toolchain is finally verified using
a Hardware-In-The-Loop setup consisting of a real
Rexroth hardware controller running controller code
of an industrial control algorithm created in Modelica
and a model of a hydro-mechanic system. In the last
part, a short summary and an outlook on further inves-
tigation is presented.

2 Rapid Control Prototyping

Rapid Control Prototyping is a computer-aided
method for developing and testing control algorithms
quickly on real-time operating systems. This approach
allows to investigate how the control algorithm will
behave later on the real hardware controller. Rapid
Control Prototyping includes all steps between the def-
inition of the controller specifications and the imple-
mentation of the final control algorithm. The single
steps during the Rapid Control Prototyping process are
shown in the V-model in figure 1. The left part of the
V-model shows the way from the specification of the
requirements to the implementation of the controller,

specifications controller

implementation

controller test

subsystem
test

overall system
test

system design

modelling

simulation

controller
design

iteration
cycles

Figure 1: V-model showing the Rapid Control Proto-
typing process

in the right part the functionality of the implemented
algorithm is verified. The functionality of the algo-
rithm is then compared to the requirements specified at
the beginning of the cycle. If there are differences be-
tween the required specifications and the actual func-
tionality, another iteration cycle is necessary. This pro-
cedure is repeated until the actual behavior of the con-
troller and the specifications fit together.

2.1 dSPACE/Matlab

Nowadays, the usage of Rapid Control Prototyping
is already standard in different industry branches,
e.g. the automotive industry. Therefore, for example
dSPACE (Digital Signal Processing And Control En-
gineering) systems can be used. On a dSPACE box
a real-time operating system is working which allows
to execute code in real-time on the device. To gener-
ate the code, e.g. special toolboxes fromMatlab can
be used. These toolboxes allow to generate executable
code for the dSPACE box in a very short time. Using
this toolchain it is possible to develop and test control
structures on a real-time operating system in an easy
and fast way.

Although this method offers the possibility to
test algorithms quickly, it does not avoid the re-
implementation on the final hardware device, which
is a big disadvantage. Besides the fact, that a re-
implementation is time consuming and a possible er-
ror source, the portability is potentially incalculable.
It cannot be guaranteed that the controller on the final
target behaves in the same way as the controller on the
test device. Other disadvantages are the costs of such a
dSPACE system and the dependencies to the commer-
cial software.

Because theMatlab Code Generation only works
for special operating systems and special hardware,
there are no direct possibilities to adapt the code gener-
ation for other devices like the Rexroth controller. Of
course, it could be tried to wrap the code could for the
use on other devices, but even in this case, this code
has to be compiled for the target operating system. If
only one single part of the code cannot be compiled
for the operating system, it is impossible to execute
the code on the hardware. Hence, it is necessary to de-
velop a toolchain, which is open source and therefore
applicable to different hardware devices. The develop-
ment of such an open source toolchain is the topic of
this work.

A toolchain for Rapid Control Prototyping using Rexroth controllers and open source software

372 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096371

3 Realization of the toolchain

For the realization of the toolchain, clearly, different
tools are needed. The structure of the toolchain is
shown in figure 2. The starting point is the simula-
tion environmentRexroth Simster. As already said in
the introduction, the first step during the development
of a new system is to set up a simulation model of
the system and the controller inside the simulation en-
vironment. The simulation toolRexroth Simster will,
in one of the next releases, support both the usage of
models from an internal library (written in C/C++) and
of Modelica models. It makes sense to use Modelica
models, because they offer three big advantages. The
first one is, that Modelica models are easy to create
and support an object-oriented modeling structure, ei-
ther using a graphical user interface or the Modelica
editor. Second, in order to simulate Modelica mod-
els, they have to be compiled to C/C++. There exist
both commercial (e.g.Dymola) as well as open source
(e.g.OpenModelica, JModelica) Modelica-compilers.
In this work, of course the open sourceOpenModel-
ica-compiler (OMC) is used. Furthermore, Modelica
is a widespread language, which is used frequently in
the industry.

The controller model shall then directly be used on
the real PLC. The PLC used here is a common Rexroth
controller (Rexroth IndraControl L45). Therefore it
is necessary to compile the model of the controller
for the operating system of the hardware. The real-
time operating system running on the hardware isVx-
Works. To execute the code and run the simulation on
the PLC, a simulation core, which runs and manages
the simulation, is additionally required. This simula-
tion runtime has also to be compiled for the operat-
ing systemVxWorks. To compile the system and the
runtime and load the compiled libraries onto the hard-
ware, the development environmentWindRiver Work-
bench is used. This environment includes among other
things aVxWorks compiler. The simulation of the con-
troller model can then be executed in parallel to the
main thread on the PLC. This first step, to compile
and load the model on the PLC, is shown via the grey,
dashed arrow in figure 2.

To allow the exchange of data between the PLC and
the simulation environment during a HiL-simulation,
an interface between the newly created thread running
the controller code (controller thread) and the origi-
nal IndraWorks thread (main thread) is required. To
get access to the Rexroth IndraControl L45, the soft-

Figure 2: Structure of the toolchain

ware IndraWorks is used. IndraWorks is a standard
tool for the development of control algorithms and the
design of Rexroth PLCs. The connection between the
controller thread and the main thread is realized with
a function block according to IEC 61131 [4] inside
the IndraWorks-application, which is used as an in-
terface. In order to run the HiL-simulation, data has
to be exchanged between the PLC andRexroth Sim-
ster. Therefore, the MLPI (Motion Logic Program-
ming Interface) is used [5]. The MLPI is a program-
ming interface for high level programming languages
(C/C++/C#/VBA/Java/LabVIEW/...). It can be used
to write applications, which can be used to configure
and run a Bosch Rexroth controller which supports the
MLPI interface technology, like the IndraControl L45.

3.1 Used software components

In the following sections, a short overview and more
detailed information about the tools used in this work
are given.

3.1.1 Rexroth Simster

The simulation environmentRexroth Simster is an in-
house tool developed by Bosch Rexroth. It covers mul-
tiple domains (mechanic, hydraulic, electric) and has

Session 2E: Modelica Tools 1

DOI
10.3384/ECP14096371

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

373

been developed for the design and optimization of con-
trolled automation systems. The component library in-
cludes both generic and Rexroth specific components,
which can simply be placed on the worksheet using
drag and drop.Rexroth Simster includes a special sim-
ulation core. This simulation core offers an interface
for models from the standardSimster libraries, which
are implemented in C/C++. The C/C++ code gener-
ated by theOpenModelica-compiler implements the
same interface. Thus, the simulation core can handle
both models from the own internal library and Model-
ica models. Detailed information about the developed
simulation runtime is given in [6].

3.1.2 WindRiver Workbench

WindRiver Workbench is an eclipse-based develop-
ment environment forVxWorks and is used in ver-
sion 3.3. VxWorks is a real-time operating system,
which is mainly used in embedded systems and is the
operating system running on Rexroth hardware con-
trollers. Included in the development environment is
a VxWorks compiler, which generates executable code
from C/C++-code. The tool is used to compile both
the controller model and the simulation core for the
use on the hardware controller. The classes inside the
simulation core are compiled into dynamically linked
libraries, which leads to.out-files. These.out-files
have then to be moved to the internal flash card of the
Rexroth hardware. This is done using an FTP client.

3.1.3 IndraWorks

IndraWorks is a tool developed by Bosch Rexroth and
is used as standard tool for the development of con-
trol algorithms and the entire configuration of the PLC.
InsideIndraWorks, an application to run on the hard-
ware can be created. After having configured the con-
nection parameters (IP address, type of connection),
the algorithms are developed using the IEC 61131-3
standard PLC programming languages. Furthermore,
additional languages especially for the use of motion
commands (PLCOpen) are available. During the run-
time of the controller, the process can be visualized
and monitored using plotter and other visualization
tools.

3.1.4 Motion Logic Programming Interface

TheMotion Logic Programming Interface is an inter-
face supporting many high level programming inter-
face and is also developed by Bosch Rexroth. Using

this interface, it is possible to write applications to con-
figure and run Bosch Rexroth devices which support
the MLPI interface technology. It contains a set of
headers and libraries. There are 8 different libraries,
which allow access to different parts of the controller:

• mlpiAPILib includes functions to connect and
disconnect MLPI

• mlpiSystemLib includes functions to read system
information like temperature, diagnosis data and
the firmware version

• mlpiParameterLib includes functions to read-
/write parameter

• mlpiLogicLib includes functions to start/stop/re-
set the PLC, load PLC programs, browse/read-
/write symbol variables

• mlpiMotionLib allows access to general motion
functions, single axis motion, cyclic commands
and synchrone axis motion

• mlpiContainerLib allows cyclic read/write access
with fast container buffer mechanism

• mlpiWatchdogLib includes functions to monitor
the user application

• mlpiTraceLib includes functions for the trace
configuration and to add, collect and view debug
information.

There are four different MLPI toolboxes, each sup-
porting a different programming language. Here, the
toolbox for C/C++ is used. In this work, MLPI is used
on the hand side to realize the data exchange between
the simulation toolRexroth Simster and the hardware
controller. Furthermore, MLPI is used as interface be-
tween the user and the controller to change controller
parameter inside the controller code. The structure and
functional principle of MLPI is explained in [5].

3.2 Connecting the different components to
the toolchain

To ensure the functionality of the toolchain, some ad-
ditional aspects must be considered while connecting
the different parts to the toolchain. The different as-
pects are discussed in the following, each in an own
subsection.

A toolchain for Rapid Control Prototyping using Rexroth controllers and open source software

374 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096371

3.2.1 Modifications inside the simulation core

An important point is the library handling inVxWorks.
Hence, each location inside the code loading a library
has to be modified. To ensure the functionality in both
the new operating system (VxWorks) and the old en-
vironment (Microsoft Windows), pre-processor com-
mands are used to decide which implementation is
used. Using this method the same runtime can be
used in bothRexroth Simster and on the PLC, which is
an important requirement. To load dynamic libraries
in VxWorks, the following basic framework has to be
used:
i n t l i b r a r y F i l e = open (" l i b . ou t " , O_RDONLY, 0 7 7 7) ;
i f (l i b r a r y F i l e == ERROR)

/ / E r r o r l o a d i n g l i b r a r y

MODULE_ID c_moduleId = loadModule (l i b r a r y F i l e ,
LOAD_ALL_SYMBOLS) ;

c l o s e (l i b r a r y F i l e) ;
i f (c_moduleId == NULL)

/ / Unable t o l oad as module

e x t e r n SYMTAB_ID sysSymTbl ;
SYM_TYPE symType ;
doub le (∗ f u n c P t r) (i n t) ;

i f (symFindByName (sysSymTbl , " name " ,
(cha r∗∗) &f u n c P t r , &symType) == ERROR)

/ / Symbol no t found

doub le a = f u n c P t r (2) ;

After the library is loaded by theopen command,
all symbols are loaded using theloadModule function.
This allows to get access to the functions inside the
library. The next step is to create a function pointer.
The function pointer in this example points on a func-
tion, which gets an integer as input variable and which
returns a double value. The last step is to search a
specific function in the symbol list using thesymFind-
ByName function. This function pointer can then be
used to call the function inside the library.

3.2.2 Synchronization of the HiL-setup

The next aspect is the synchronization between the
simulation of the system insideRexroth Simster and
the code execution on the PLC. It is clear, that both
processes have to run synchronized, so that the ex-
changed data fit together.Rexroth Simster is a win-
dows application and therefore, without any modifica-
tions, not real-time capable. That means, that the cal-
culation time depends on the complexity of the model
and the workload of the used operating system. Thus,
the simulation can be faster or slower than real-time.
In contrast, a PLC is a hard real-time system with a
fixed cycle time. At the beginning of one cycle, the

Initialize

userstop

Delay

tex = t

PLC calculation

One step
simulation

!userstop

Write inputs
on PLC

Read outputs
from PLC

t − tex < tcycle

t − tex == tcycle

PLC calculation running

PLC calculation finished

Figure 3: UML Diagram showing the synchronization

inputs of the controller are read. Then, the control
algorithm is executed and the output data based on
the input data is computed. The last step is to write
the calculated values to the output. Therefore, the
controller expects input signals in real-time. Using
a standard PLC containing a standardIndraWorks ap-
plication (i.e. the controller computes the output in
real-time) in a Hardware-In-The-Loop-setup with the
Rexroth Simster, there are two possibilities: either the
simulation is forced to run in real-time or the controller
has to be adapted to the simulation speed of the simu-
lation environment.

Because the second way has some big advantages,
the slowdown of the controller has been realized. One
main advantage is the user-friendliness. Main users
of this toolchain are engineers like start-up engineers,
who shall design a new industrial system and do not
have the possibility to use a real-time operating sys-
tem on their working computer. Additionally, this way
is more comfortable, as there are no limits with regard
to applicable numerical solve algorithms or the com-
plexity of the model.

To realize the slowdown of the controller, a trigger
variable inside the controller application to start the
task is necessary, which activates one calculation step

Session 2E: Modelica Tools 1

DOI
10.3384/ECP14096371

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

375

on the controller. After the simulation is progressed by
the length of the cycle time, the simulation is stopped
and the values of the input variables on the controller
are set inside theIndraWorks application using MLPI
commands. After that, the trigger variable is set to
true, which starts the calculation of one single step of
the controller. At the end of the computation, another
variable, which indicates that the computation is fin-
ished, is set totrue. The simulation environment reads
the output values from the controller and sets both the
trigger variable and the variable indicating the end of
the calculation tofalse. These steps are repeated until
the end of the simulation time is reached.

In the setup described in this contribution, how-
ever, the control algorithm is not implemented inIn-
draWorks and therefore not computed inside the main
thread of the controller, but in the separate controller
thread running in parallel to the main thread, which
makes the situation more complicated. This means,
that the program is not controlled via anIndraWorks
task like in the case discussed before.

3.2.3 Establishment of a connection between the
different threads

The next challenge is the establishment of the con-
nection between the controller thread and the main
thread, because the MLPI commands allow only ac-
cess to variables and functions inside theIndraWorks
application running on the PLC. The connection be-
tween both threads is realized via a function block in-
side theIndraWorks application. It is possible to link
an external implementation to a function block, so this
function block has no own implementation.

To ensure that the application will find the missing
function implementations, the external implemented
functions have to be registered using the MLPI func-
tion mlpiLogicPouExtensionRegister from the mlpi-
LogicLib. This function provides the possibility of
using C/C++ extensions within the IEC 61131-3 en-
vironmentIndraWorks and describes the mapping be-
tween the function block name inIndraWorks and the
function name in the C/C++ implementation. The vari-
ables that shall be exchanged can now be defined as
variables inside the function block in the main thread.
Then, both the simulation insideRexroth Simster and
the controller on the PLC can get access to the vari-
ables using MLPI functions as well as read and write
the variables. The structure of the communication be-
tween the two parallel threads is shown in figure 4.

IndraLogic L45

Function
block

interface

Rexroth
Simster

MLPI function
registration

Simulation of
controller model

M
a
in

 t
h
re

a
d

C
o
n
tr

o
lle

r
th

re
a
d

activate

input/output variables

Figure 4: Interface between main thread and controller
thread on the hardware controller

After having established the connection between the
two threads, the synchronization between the simula-
tion of the system insideRexroth Simster and the con-
troller can be realized analogous to the technique de-
scribed before. The trigger variable is defined inside
theIndraWorks application and can be set by both the
simulation environment and the controller thread.

3.2.4 Initialization of the toolchain

The next aspect to be considered is the initialization
of the code execution on the controller. After the
compilation of the simulation core and the controller
code, all dynamic libraries are available on the inter-
nal memory. To start the controller, a main function
to manage the code execution (load the libraries in the
correct order, call the functions to initialize the solver
and the system, start the code execution) is necessary.
This function has to be executed before the controller
starts, so that all libraries are loaded and all instances
of the classes are already initialized. This is the func-
tion later called automatically via the function block
interface.

A toolchain for Rapid Control Prototyping using Rexroth controllers and open source software

376 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096371

3.2.5 Resulting workflow for the toolchain

Regarding all the aspects discussed before, the result-
ing workflow for the toolchain can be derived. Assum-
ing, that the simulation model of the system and the
controller inside the simulation environmentRexroth
Simster already exist, the first step is to compile the
simulation core and the controller code for the oper-
ating system of the controller (VxWorks). Therefore,
a new project inside WindRiver Workbench has to be
created. The classes inside the simulation core have to
be compiled into dynamically linked libraries, which
leads to.out-files. These.out-files have then to be
moved to the internal flash card of the Rexroth hard-
ware. This is done using an FTP client. The next step
is to register the executable main function containing
the initialization of the simulation on the controller
(see section 3.2.4). The registration is done using the
MLPI functionmlpiPouExtensionRegister. The syntax
is as follows:

MLPIRESULT m l p i L o g i c P o u E x t e n s i o n R e g i s t e r (
c o n s t MLPIHANDLE connec t i on ,
c o n s t WCHAR16∗ name ,
c o n s t MLPIPOUFNCPTR f u n c t i o n ,
c o n s t ULONG s i g n a t u r e = 0 ,
c o n s t ULONG v e r s i o n = 0) .

The first input parameter is the connection handle
automatically created when a connection to the hard-
ware via MLPI is established, the second parameter
is the name of the POU (Program Organization Unit)
in IndraWorks, in this case the name of the function
block, the third parameter is the function pointer to the
C/C++ implementation, while the fourth and fifth de-
scribe the signature of the POU interface and the ver-
sion of the POU library, if implemented within a li-
brary, and have not necessarily to be set, as they are
predefined with 0 [7].

Now the implementation of the function block inter-
face inside theIndraWorks application is made known
to the IndraWorks application. As the next step, the
IndraWorks application, which only consists of the
function block with the external implementation and
the definitions of the variables to be exchanged dur-
ing the simulation as well as the trigger variable (see
section 3.2.2), can also be uploaded to the hardware
device (if theIndraWorks application is uploaded be-
fore the registration of the functions is executed, there
will be linker errors for the external implementation of
the function block).

The next step is to start the initialization of the
controller on the hardware, i.e. to active the func-

tion block. Therefore the task controlling the func-
tion block has to be started. This can again be realized
via MLPI. The task is defined astriggered task, which
allows to start the task setting the activation variable
to true. The start of the main function effects, that
all necessary libraries are loaded and the simulation
manager is started. Inside the simulation manager,
a query is continuously performed, whether the trig-
ger variable to start one calculation step is set or not.
For the connection to the hardware device from the
Rexroth Simster side, a special component is neces-
sary, which has been developed for HiL-tasks (MLPI-
Coupler). The component has several inputs and out-
puts and contains the MLPI-commands to both write
the data from the different inputs on the device and
read the data from the device and set the values to the
outputs of the component. The names of the variables
inside IndraWorks can be set as component parame-
ters.

The last step is to start the simulation insideRexroth
Simster. The cycle time between the exchange of the
data can also be set in the MLPICoupler component.
The simulation of the system triggers then the simu-
lation on the hardware device. The synchronization
between both simulations is realized as described in
section 3.2.2.

3.2.6 Automation of the toolchain

The toolchain presented in this work is not fully auto-
mated until now. In one of the next releases ofRexroth
Simster, Modelica support will be added to the sim-
ulation environment. Until now, an additional Mod-
elica environment is necessary to build up the con-
troller simulation model. In the future, Modelica mod-
els can directly be created inside the simulation tool.
The code generation is integrated into the simulation
core, so that the executable code can directly be gen-
erated. This allows a fully automated toolchain, where
the controller model can be set up inside the simula-
tion environment and automatically be compiled and
sent to the controller. Starting the simulation inside
Rexroth Simster activates the toolchain (compile the
controller model, transfer the code to the controller,
load the simulation core libraries, start controller code
execution).

4 Application on an example system

To verify the functionality, the toolchain is used to de-
velop an appropriate control structure for the control

Session 2E: Modelica Tools 1

DOI
10.3384/ECP14096371

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

377

PressurePressure

Velocity
Acceleration

cylinder
stiffness
cylinder rod

Load and process

Motion controller

pressure transducer pP pressure transducer pT

HPU

WRx prop valve

cylinder port A cylinder port B

line P line T

Figure 5: System model inside Rexroth Simster

of an industrial hydro-mechanical system, namely a
single hydraulic axis. This system model is build in-
sideRexroth Simster and simulates the behavior of the
hydro-mechanical system. The structure of this simu-
lation model can be seen in figure 5. This model also
includes a control loop which has been developed vir-
tually inside the simulation environment.

4.1 Model of the system

The single axis model consists of five sub-blocks, each
highlighted in a different color. The light blue block is
the HPU (hydraulic pumping unit), i.e. it realizes the
oil supply for the hydraulic system and includes the
oil tank, a variable pump which is powered by an elec-
tric motor. The motor speed is power- and pressure-
controlled. Additionally an accumulator is included in
the HPU to ensure the oil supply for temporary high
demands on oil.

The yellow block shows a generic WRx propor-
tional valve, which limits the volume flow of the hy-
draulic fluid. Using the input signal port of the valve,
the spool position of the valve can be modified. The
valve’s dynamics is modelled with a PT2-behavior
with power limit, the flow is modelled via a character-
istic curve depending on the piston stroke (Q = f (s)).

The connections between the pump and the valve are
modelled by lines including frictional losses. The dif-
ferential cylinder is modelled inside the grey box. The
simulation model of the cylinder considers Stribeck
friction (static friction, running friction and Coulomb
friction), internal leakage and external leakage. Addi-
tionally the cylinder model has two end stops for the
piston, which are implemented using momentum con-
servation (optionally a coefficient of restitution can be
specified).

The load is modeled inside the orange sub-box and
considers the force resulting from the load mass, the
gravity force, the plastic and the elastic deformation.
The velocity of the cylinder piston is defined by the
user and is available as characteristic curve in the form
v = f (t). The position profile for the cylinder, which
can be obtained through integration of the velocity
profile, is shown in figure 6 (blue curve).

4.2 Modeling the controller

To realize the control, the current position of the cylin-
der piston has to be measured. Therefore, the internal
position measuring system of the cylinder, which is in-
cluded in the cylinder model, is used. As first try for
the controller structure a position controller is used.
The position controller compares the current position
of the piston with the desired position from the profile.
The difference (control error) is then multiplied by a
gain factor (P-controller). The profile and the con-
troller structure are implemented inside the rose box
in figure 5.

4.3 Starting the RCP process

To transfer this controller model to the real hardware
device, the toolchain which has been explained in sec-
tion 3 is used. As numerical solver, the explicit Euler
algorithm is used. Note, that the controller model con-
tains an ODE from the integrator component to calcu-
late the position from the velocity profile. For the ver-
ification, the results of this HiL-simulation using the
developed toolchain are compared with the results pro-
duced by a simulation of both the system and the con-
troller insideRexroth Simster. Both results are shown
in figure 6, the complete simulation insideRexroth
Simster in red, the simulation using the Rapid Control
Prototyping toolchain in green.

It can be seen that both curves are very similar, but
of course not identical. This is because the controller

A toolchain for Rapid Control Prototyping using Rexroth controllers and open source software

378 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096371

0 1 2 3 4 5 6 7
−20

0

20

40

60

80

100

120

simulation time

p
o

s
it
io

n

profile curve (desired)

cylinder position RCP

cylinder position Simster

Figure 6: Results from the first controller implemen-
tation and comparison with the Rexroth Simster simu-
lation

insideRexroth Simster is a continuous controller and
gets the position update from the cylinder in every
solver time step, while the simulation on the hardware
device (like every hardware controller) is updated only
in the cycle time of the connection between simula-
tion and hardware. But as the differences are very
small, the functionality of the toolchain and the data
exchange can definitely be verified.

4.4 Improvements on the controller

If again the V-model of the controller development in
figure 1 is considered, the first cycle is now finished.
But, if the current result is compared to the desired
result, another iteration cycle due to the existing os-
cillations is necessary. It is clear, that a simple P-
controller cannot fulfill the control task. In the second
iteration, a velocity feed forward to minimize the gap
and an additional control part to minimize the oscilla-
tions is integrated into the controller. Therefore, the
Modelica code is modified inside the simulation en-
vironment. After suitable parameters are determined,
the controller structure is again transferred to the In-
draControl L45 controller using the toolchain to in-
vestigate the functionality on the hardware. Figure 7
shows the result of the improvement of the control al-
gorithm.

Taking a look on the results after this iteration cycle,
it can be seen, that the oscillations could be removed.
It can be assumed, that the developed controller struc-
ture, in general, is suitable to solve the control task in
this example (the desired positions are reached with-
out oscillations). In the practice, one or two additional
iteration cycle would be performed in order to tune the

parameters to maybe get an even better parameter set,
that shifts the current position more towards the de-
sired position to minimize the gap. However, this is
skipped at this point.

5 Summary and outlook on further
investigations

In this work, a toolchain for Rapid Control Prototyping
using an industrial Rexroth hardware controller based
on open source software is presented. This toolchain
allows to reduce commissioning times, avoiding the
re-implementation of the controller structure from the
simulation environment inside the development envi-
ronment of the hardware controller. Furthermore, the
toolchain is based on open source software. This en-
sures, that the functionality is independent from soft-
ware developed by external companies, i.e. additional
features can easily be implemented.

The functionality of the toolchain is also verified
with an example. Here, the big advantages of Rapid
Control Prototyping get visible. The control structure
is developed and pre-tested easily inside the simulation
environment. To test this control algorithm on the real
hardware, until now, it was necessary to re-implement
the algorithm. Using the developed toolchain, the re-
implementation is no longer necessary, because the fi-
nal hardware, which is applied later on the real sys-
tem, is used for the Rapid Control Prototyping Pro-
cess. The development process consists of several it-
eration cycles (see 1). In this example, we used three
iteration cycles (third one not explicitly shown here),
hence, three re-implementations could be saved. In

0 1 2 3 4 5 6 7
−20

0

20

40

60

80

100

120

simulation time

p
o

s
it
io

n

profile curve (desired)

cylinder position RCP

cylinder position Simster

Figure 7: Results from the second controller imple-
mentation and comparison with the Rexroth Simster
simulation

Session 2E: Modelica Tools 1

DOI
10.3384/ECP14096371

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

379

more complex systems, of course, the controller struc-
ture also gets more complex.

In this contribution, the RCP toolchain is verified
virtually in a HiL-setup. In the future, the controller
executing the code has to be tested on a real system.
Therefore, theIndraWorks program has to be adapted.
In the HiL-setup, the simulation insideRexroth Sim-
ster uses MLPI commands to write the values to the
variables in theIndraWorks application. If the con-
troller is connected to a real system, the input and
output signals are transferred via the input and output
ports on the controller. Additional code for the map-
ping between the I/O ports and the variables is nec-
essary. An important point is the observation of the
calculation times. It has to be investigated in the fu-
ture, how the strict observance of the calculation times
can be guaranteed.

Another part of the future is work is to fully auto-
mate the toolchain, as described in section 3.2.6.

The simulation core can not only be used to simulate
controller models to realize Rapid Control Prototyping
and couple hardware and software in a Hardware-In-
The-Loop simulation. It is also possible to simulate
whole system models, which opens the door to many
other fields of application. One field of application
are alternative control concepts like Model Predictive
Control. Model Predictive Control calculates the cur-
rent control action by solving an optimal control prob-
lem at each sampling instant using the current state of
the plant as initial state. The cost function of an opti-
mal control problem is optimized subject to different
constraints. One main constraint is the system dynam-
ics in the formẋ = f(x, t). This condition requires the
simulation of the system in each optimization step.

References

[1] Richtlinie, V. D. I. "2206"’ - Entwick-
lungsmethodik für mechatronische Systeme,
Berlin 2004

[2] http://www.dspace.com/en/pub/start.cfm

[3] http://www.mathworks.com

[4] John, K.H.; Tiegelkamp, M. - IEC 61131-3: Pro-
gramming Industrial Automation Systems, 2010

[5] Engels, E.; Gabler, T. - Universelle Pro-
grammierschnittstelle für Motion-Logic Sys-
teme - Struktur, Funktionen und Anwendung in
Forschung und Lehre, Tagungsband AALE 2012

[6] Worschech, N.; Mikelsons, L. - A Toolchain
for Real-Time Simulation using the OpenMod-
elica Compiler. In: Proceedings of the 9th In-
ternational Modelica Conference, September 3-
5, 2012, Munich, Germany.

[7] Bosch Rexroth AG - Motion Logic Programming
Interface (MLPI) Documentation

[8] GNU GCC Release Information, URL:
http://gcc.gnu.org/gcc-3.4/

A toolchain for Rapid Control Prototyping using Rexroth controllers and open source software

380 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096371

