A toolchain for Rapid Control Prototyping
using Rexroth controllers and open source software

Nils Menager Niklas Worschech Lars Mikelsons
Bosch Rexroth AG
Rexrothstr. 3, 97816 Lohr a. Main

Abstract is not used any further and the controller is set up
from scratch inside the development environment of
Taking a look at project costs from a financial poinhe controller. At Rexroth, mostly\ndraWorks as stan-
of view, the commissioning times of new indusdard tool for the development of controller algorithms
trial systems become more and more important, &sd the design of the whole controller is used. In many
they significantly drive the costs. Hence, the redugases, even the developed controller structure inside
tion of commissioning times is part of current rethe simulation tool is not used anymore. Instead, pre-
search. Besides the use of simulation and the couplifined standard control algorithms are used.
between hardware and software (Hardware-In-The-
Loop-Simulations)Rapid Control Prototyping offers However, it is clearly desirable to adapt the com-
a huge potential to reduce commissioning times. uplete control algorithm from the simulation environ-
til now, most of the toolchains use special hardwafeent. There are already possibilities to use virtu-
in combination with commercial simulation softwared!ly designed control algorithms on real-time oper-
which leads to some serious drawbacks. In this woAiNg systems using Hardware-In-The-Loop-Setups.
a toolchain for Rapid Control Prototyping using in]Wo possibilities are using a dSPACE [2] system or
dustrial controllers and open source software is p@XPC system in combination withfatiab/Smulink
sented. [3]. Though, using such a toolchain leads to three
Keywords: Rapid Control Prototyping; Model- Serious drawbacks. First, these systems are very ex-

ica; OpenModelica; Hardware-In-The-Loop; Bosch pensive. Second, even in that case the control algo-
Rexroth: real-time simulation rithm has to be re-implemented on the real control

hardware after testing on the real-time system. Fur-
thermore, it has to be taken into account that the usage

1 Introduction of such commercial real-time systems leads to depen-
dencies to external software (e.@/atlab/Smulink).
1.1 Motivation Clearly, such a dependency for the generation of code

) . for the PLC Programmable Logic Controller) is not
According to the V-model of mechatronic product dgjesiraple. Moreover, if new features should be imple-

velopment (VDI 2206, [1]), the first step during th@,ented, this is a big disadvantage, because the code

design of a new industrial system, after a rough prgsneration of the commercial tools can not be modi-
calculation of the required components, is to set dpy

a simulation model of the system under considera-

tion. Therefore, at Bosch Rexroth, our in-house tool The aim of this work is to set up a toolchain for
Rexroth Smster is used.Rexroth Smster is a simula- Rapid Control Prototyping with a Rexroth controller
tion environment, which allows object-oriented modindraControl L45) using open source software and
elling of technical, mainly mechanical, electrical anilodelica for the modeling part, i.e. a toolchain, which
hydraulic systems. Clearly, the tool includes powerfid completely independent from external software and
numerical solver to perform the simulation. After suifhardware. To be more precise, this toolchain enables
able components and parameters are determined infiideengineer to transfer virtual controller models mod-
the simulation environment, the controller concept haked in Modelica to standard Rexroth controllers. To
to be tested using a real hardware controller. At thialidate the functionality, in this contribution, the con-
point, until now, the simulation model of the controlletroller is used in a Hardware-In-The-Loop setup. The

DOI Proceedings of the 10" International ModelicaConference 371
10.3384/ECP14096371 March 10-12, 2014, Lund, Sweden

A toolchain for Rapid Control Prototyping using Rexroth controllers and open source software

validation of the controller in combination with a reaih the right part the functionality of the implemented

system is part of current work. algorithm is verified. The functionality of the algo-
rithm is then compared to the requirements specified at
1.2 Outline of this paper the beginning of the cycle. If there are differences be-

_ _ _ _ _tween the required specifications and the actual func-
In the first section of this paper, a short introductiaghnality, another iteration cycle is necessary. This pro-

into Rapid Control Prototyping is given. Furthermorgedure is repeated until the actual behavior of the con-
a standard toolchain for using Rapid Control Protgy|ler and the specifications fit together.

typing nowadays is discussed. In the second section,
after requirements for the toolchain have been defined,
the specific parts of the toolchain are presented. Thd dSPACE/Matlab

functionality of the toolchain is finally verified usin q th f Rapid Control Prototvoi
a Hardware-In-The-Loop setup consisting of a reg vadays, e usage o kapid t.ontrol Frototyping
J8 already standard in different industry branches,

of an industrial control algorithm created in Modelic -g. the automotive industry. Therefore, for example

and a model of a hydro-mechanic system. In the | s%PACE Oigital Sgnal Processing And Control En-

part, a short summary and an outlook on further inve%_neenr?g) systemg can be us_ed. OT‘ a dS.PACE box
tigation is presented. a real-time operating system is working which allows

to execute code in real-time on the device. To gener-
ate the code, e.g. special toolboxes frivtatlab can
2 Rapid Control Prototyping be used. These toolboxes allow to generate executable
code for the dSPACE box in a very short time. Using
Rapid Control Prototyping is a computer-aideghis toolchain it is possible to develop and test control
method for developing and testing control algorithmgructures on a real-time operating system in an easy
quickly on real-time operating systems. This approaghd fast way.
allows to investigate how the control algorithm will
behave later on the real hardware controller. RapidAlthough this method offers the possibility to
Control Prototyping includes all steps between the d‘?é'st algorithms quickly, it does not avoid the re-
inition of the controller specifications and the impl%fnplementation on the final hardware device, which
mentation of the final control algorithm. The singI% a big disadvantage. Besides the fact, that a re-
steps d_uring the Rapid_antroI Prototyping process "ﬁl}‘?plementation is time consuming and a possible er-
shown in the V-model in figure 1. The I'e.ft pgrt of th?or source, the portability is potentially incalculable.
V-model shows the way from the specification of the .o\not he guaranteed that the controller on the final
requirements to the implementation of the controllgg ot hehaves in the same way as the controller on the
test device. Other disadvantages are the costs of such a
specifications controller dSPACE system and the dependencies to the commer-
cial software.

Because théVlatlab Code Generation only works
for special operating systems and special hardware,
there are no direct possibilities to adapt the code gener-
ation for other devices like the Rexroth controller. Of
course, it could be tried to wrap the code could for the
use on other devices, but even in this case, this code
has to be compiled for the target operating system. If
only one single part of the code cannot be compiled
for the operating system, it is impossible to execute
the code on the hardware. Hence, it is necessary to de-
velop a toolchain, which is open source and therefore
applicable to different hardware devices. The develop-
Figure 1: V-model showing the Rapid Control Protanent of such an open source toolchain is the topic of
typing process this work.

system design overall system

modelling

subsystem
test

simulation

controller
design

controller test

implementation

372 Proceedings of the 10" International ModelicaConference DOI
March 10-12, 2014, Lund, Sweden 10.3384/ECP14096371

Session 2E: Modelica Tools 1

3 Realization of the toolchain i OpMd'

For the realization of the toolchain, clearly, different Tem=a=-
tools are needed. The structure of the toolchain cw =
shown in figure 2. The starting point is the simulai:)
tion environmenRexroth Smster. As already said in \Ii
the introduction, the first step during the development IndraWorks
of a new system is to set up a simulation model o= -~~~ - I
the system and the controller inside the simulation ef : —] —
vironment. The simulation todRexroth Smster will, L e EC
in one of the next releases, support both the usage)
models from an internal library (written in C/C++) and Rexrotn Simster T
M

of Modelica models. It makes sense to use Modelica
models, because they offer three big advantages. The
first one is, that Modelica models are easy to create
and support an object-oriented modeling structure, ei- T l,
ther using a graphical user interface or the Modelicp—
editor. Second, in order to simulate Modelica mod
els, they have to be compiled to C/C++. There exis.
both commercial (e.doymola) as well as open source
(e.g.OpenModelica, IModelica) Modelica-compilers.
In this work, of course the open sour@penModel-
ica-compiler (OMC) is used. Furthermore, Modelica Figure 2: Structure of the toolchain
is a widespread language, which is used frequently in

the industry.

WindRiver Workbench IndraControl L45

ware Indrawbrks is used. Indraworks is a standard

The controller model shall then directly be used dgol for the development of control algorithms and the
the real PLC. The PLC used here is a common Rexréi@sign of Rexroth PLCs. The connection between the
controller (Rexroth IndraControl L45). Therefore igontroller thread and the main thread is realized with
is necessary to compile the model of the controll@-function block according to IEC 61131 [4] inside
for the operating system of the hardware. The re&€ IndraWorks-application, which is used as an in-
time operating system running on the hardwarebis terface. In order to run the HiL-simulation, data has
Works. To execute the code and run the simulation & b€ exchanged between the PLC aetroth Sm-
the PLC, a simulation core, which runs and manag@®'- Therefore, the MLPIotion Logic Program:-
the simulation, is additionally required. This simulding Interface) is used [S]. The MLPI is a program-
tion runtime has also to be compiled for the operdfling interface for high level programming languages
ing systemVx\Works. To compile the system and thdC/C++/C#/VBA/Java/LabVIEWY/...). It can be used
runtime and load the compiled libraries onto the harkf: Write applications, which can be used to configure
ware, the development environmamndRiver Work- and run a Bosch Rexroth controller which supports the
benchis used. This environment includes among othMLPl interface technology, like the IndraControl L45.
things avxWorks compiler. The simulation of the con-
troller model can then be executed in parallel to the1 Used software components
main thread on the PLC. This first step, to compile
and load the model on the PLC, is shown via the gré®, the following sections, a short overview and more
dashed arrow in figure 2. detailed information about the tools used in this work

are given.

To allow the exchange of data between the PLC and
the_simulation environment during a HiL-simuIatiors_ll1 Rexroth Simster
an interface between the newly created thread running
the controller code (controller thread) and the origi-he simulation environmerRRexroth Smster is an in-
nal IndraWorks thread (main thread) is required. Téouse tool developed by Bosch Rexroth. It covers mul-
get access to the Rexroth IndraControl L45, the sdfiple domains (mechanic, hydraulic, electric) and has

DOI Proceedings of the 10" International ModelicaConference 373
10.3384/ECP14096371 March 10-12, 2014, Lund, Sweden

A toolchain for Rapid Control Prototyping using Rexroth controllers and open source software

been developed for the design and optimization of cahis interface, it is possible to write applications to con-
trolled automation systems. The component library ifigure and run Bosch Rexroth devices which support
cludes both generic and Rexroth specific componeritee MLPI interface technology. It contains a set of
which can simply be placed on the worksheet usihgaders and libraries. There are 8 different libraries,
drag and dropRexroth Smster includes a special sim-which allow access to different parts of the controller:
ulation core. This simulation core offers an interface
for models from the standa@mster libraries, which ¢ mipiAPILib includes functions to connect and
are implemented in C/C++. The C/C++ code gener- disconnect MLPI
ated by theOpenModelica-compiler implements the
same interface. Thus, the simulation core can handle mlpiSystemLib includes functions to read system
both models from the own internal library and Model- information like temperature, diagnosis data and
ica models. Detailed information about the developed the firmware version
simulation runtime is given in [6].

e mipiParameterLib includes functions to read-

3.1.2 WindRiver Workbench /write parameter

WindRiver Workbench is an eclipse-based develop- ¢ mipiLogicLib includes functions to start/stop/re-
ment environment folxWorks and is used in ver- set the PLC, load PLC programs, browse/read-
sion 3.3. VxWorks is a real-time operating system, /write symbol variables

which is mainly used in embedded systems and is the

operating system running on Rexroth hardware con-® mipiMotionLib allows access to general motion
trollers. Included in the development environment is ~ functions, single axis motion, cyclic commands
a Vx\Works compiler, which generates executable code and synchrone axis motion

from C/C++-code. The tool is used to compile both , _ , _ _

the controller model and the simulation core for the ® MpiContainerLib allows cyclic read/write access
use on the hardware controller. The classes inside the With fast container buffer mechanism

simulation core are compiled into dynamically linked
libraries, which leads toout-files. These.out-files
have then to be moved to the internal flash card of the
Rexroth hardware. This is done using an FTP client.

e mipiWatchdogLib includes functions to monitor
the user application

e mipiTraceLib includes functions for the trace

configuration and to add, collect and view debug
3.1.3 IndraWorks information.

IndraWbrks is a tool developed by Bosch Rexroth and .

is used as standard tool for the development of con-There are four different MLPI toolboxes, each sup-
trol algorithms and the entire configuration of the PLEOrtINg a different programming language. Here, the
Inside Indravbrks, an application to run on the hardt0lbox for C/C++ is used. In this work, MLPI is used
ware can be created. After having configured the cd? the hand side to realize the data exchange between
nection parameters (IP address, type of connectidf Simulation tooRexroth Smster and the hardware
the algorithms are developed using the IEC 61131c_gntroller. Furthermore, MLPI is used as interface be-
standard PLC programming languages. Furthermdi¥een the user and the controller to change controller
additional languages especially for the use of moti&qrameter |n_S|d_e the control!er code_. Thg structure and
commands (PLCOpen) are available. During the rufynctional principle of MLP1 is explained in [5].

time of the controller, the process can be visualized

and monitored using plotter and other visualizatiof o Connecting the different components to
tools. the toolchain

To ensure the functionality of the toolchain, some ad-
ditional aspects must be considered while connecting
The Motion Logic Programming Interface is an inter- the different parts to the toolchain. The different as-
face supporting many high level programming intepects are discussed in the following, each in an own
face and is also developed by Bosch Rexroth. Usisgbsection.

3.1.4 Motion Logic Programming Interface

374 Proceedings of the 10" International ModelicaConference DOI
March 10-12, 2014, Lund, Sweden 10.3384/ECP14096371

Session 2E: Modelica Tools 1

3.2.1 Modifications inside the simulation core

An important point is the library handling MxWorks.
Hence, each location inside the code loading a library
has to be modified. To ensure the functionality in both
the new operating systenvWorks) and the old en- ’
vironment (Microsoft Windows), pre-processor com-

S ‘ userstop

mands are used to decide which implementation
used. Using this method the same runtime can |be
used in botHRexroth Smster and on the PLC, which is
an important requirement. To load dynamic librarigs
in VxWorks, the following basic framework has to be
used:

int libraryFile = open("lib.out", O_RDONLY, 0777);
if (libraryFile == ERROR)
I/l Error loading library

luserstop

t—tex == tcycle

t—tex < toycle

MODULE_ID c¢_moduleld = loadModule(libraryFile ,
LOAD_ALL_SYMBOLS);

close(libraryFile);
if (c_moduleld == NULL)
// Unable to load as module

PLC calculation finished

PLC calculation running

extern SYMTAB_ID sysSymThbl;
SYM_TYPE symType;
double (funcPtr)(int);

if (symFindByName (sysSymTbl, "name", Figure 3: UML Diagram showing the synchronization
(charxx) &funcPtr, &ymType) == ERROR)
/1 Symbol not found

inputs of the controller are read. Then, the control
algorithm is executed and the output data based on
After the library is loaded by thepen command, the input data is computed. The last step is to write
all symbols are loaded using theadModule function. the calculated values to the output. Therefore, the
This allows to get access to the functions inside teentroller expects input signals in real-time. Using
library. The next step is to create a function pointe{.standard PLC containing a standamdraWorks ap-
The function pointer in this example points on a fungiication (i.e. the controller computes the output in
tion, which gets an integer as input variable and whig8al-time) in a Hardware-In-The-Loop-setup with the
returns a double value. The last step is to searchiR@éroth Smster, there are two possibilities: either the
specific function in the symbol list using tisgmFind- simulation is forced to run in real-time or the controller

ByName function. This function pointer can then b@as to be adapted to the simulation speed of the simu-
used to call the function inside the library. lation environment.

double a = funcPtr (2);

3.2.2 Synchronization of the HiL-setup Because the second way has some big advantages,
the slowdown of the controller has been realized. One
The next aspect is the synchronization between th@in advantage is the user-friendliness. Main users
simulation of the system insid@exroth Smster and of this toolchain are engineers like start-up engineers,
the code execution on the PLC. It is clear, that boljhg shall design a new industrial system and do not
processes have to run synchronized, so that the g¥ye the possibility to use a real-time operating sys-
changed data fit togetheRexroth Smster is & Win- tem on their working computer. Additionally, this way
dows application and therefore, without any modificg more comfortable, as there are no limits with regard

tions, not real-time capable. That means, that the G@)-applicable numerical solve algorithms or the com-
culation time depends on the complexity of the modgiexity of the model.

and the workload of the used operating system. Thus,

the simulation can be faster or slower than real-time.To realize the slowdown of the controller, a trigger
In contrast, a PLC is a hard real-time system withvariable inside the controller application to start the
fixed cycle time. At the beginning of one cycle, thtask is necessary, which activates one calculation step

DOI Proceedings of the 10" International ModelicaConference 375
10.3384/ECP14096371 March 10-12, 2014, Lund, Sweden

A toolchain for Rapid Control Prototyping using Rexroth controllers and open source software

on the controller. After the simulation is progressed by

the length of the cycle time, the simulation is stopped IndraLoglc L45

and the values of the input variables on the controller S.i:;i’é?
are set inside thendraWorks application using MLPI \ input/output variables ‘4 >
commands. After that, the trigger variable is set to 3 4

true, which starts the calculation of one single step of f h 4

the controller. At the end of the computation, another s Function

variable, which indicates that the computation is fin- interface
ished, is set térue. The simulation environment reads
the output values from the controller and sets both the
trigger variable and the variable indicating the end of | activate
the calculation tdalse. These steps are repeated until

the end of the simulation time is reached.

v
In the setup described in this contribution, how- 9
ever, the control algorithm is not implementedim fé
draWbrks and therefore not computed inside the main %
thread of the controller, but in the separate controller £ VLRI function ——
thread running in parallel to the main thread, which ©| registration controller model

makes the situation more complicated. This means,
that the program is not controlled via &mdraWborks
task like in the case discussed before.

_ _ Figure 4: Interface between main thread and controller
3.2.3 Establishment of a connection between they,read on the hardware controller

different threads

The next challenge is the establishment of the con-

nection between the controller thread and the mair/\[ter having established the connection between the
thread, because the MLPI commands allow only Jwo threads, the synchronization between the simula-
cess to variables and functions inside theraworks tion of the system insidBexroth Smster and the con-
application running on the PLC. The connection bE©ller can be realized analogous to the technique de-
tween both threads is realized via a function block ificfiPed before. The trigger variable is defined inside
side thelndra\brks application. It is possible to link thendra\\orks application and can be set by both the

an external implementation to a function block, so thidTulation environment and the controller thread.
function block has no own implementation.

To ensure that the application will find the missing
function implementations, the external implemented2.4 Initialization of the toolchain
functions have to be registered using the MLPI func-
tion mipiLogicPouExtensionRegister from the mipi- The next aspect to be considered is the initialization
LogicLib. This function provides the possibility ofof the code execution on the controller. After the
using C/C++ extensions within the IEC 61131-3 emompilation of the simulation core and the controller
vironmentindraWbrks and describes the mapping bezode, all dynamic libraries are available on the inter-
tween the function block name IndraWbrks and the nal memory. To start the controller, a main function
function name in the C/C++ implementation. The varie manage the code execution (load the libraries in the
ables that shall be exchanged can now be defineccagect order, call the functions to initialize the solver
variables inside the function block in the main threadnd the system, start the code execution) is necessary.
Then, both the simulation insideexroth Smster and This function has to be executed before the controller
the controller on the PLC can get access to the vastarts, so that all libraries are loaded and all instances
ables using MLPI functions as well as read and writd the classes are already initialized. This is the func-
the variables. The structure of the communication b@n later called automatically via the function block
tween the two parallel threads is shown in figure 4. interface.

376 Proceedings of the 10" International ModelicaConference DOI
March 10-12, 2014, Lund, Sweden 10.3384/ECP14096371

Session 2E: Modelica Tools 1

3.2.5 Resulting workflow for the toolchain tion block. Therefore the task controlling the func-

_ _ tion block has to be started. This can again be realized
Regarding all the aspects discussed before, the reYl-MLPIL The task is defined asiggered task, which

controller inside the simulation environmeReéxroth all necessary libraries are loaded and the simulation

Smster 'already exist, the first step is to compile thﬁ]anager is started. Inside the simulation manager,
simulation core and the controller code for the oper-

4 "query is continuousl erformed, whether the trig-
ating system of the controlleMgWorks). Therefore, duery y P 9

act inside WindRiver Workbench h ger variable to start one calculation step is set or not.
anew project inside WindRiver Workbench has 10 B, \he connection to the hardware device from the

created. The classes inside the simulation core haveo. . qster side. a special component is neces-
be compiled i_nto dynamically !inked libraries, Whic@ary, which has been developed for HiL-tasks (MLPI-
leads to.out-files. These.out-files have then to be oupler). The component has several inputs and out-

moved to the internal flash card of the Rexroth hargms and contains the MLPI-commands to both write

ware. Th's is done using an FTE cllent._The next_ S,t?rpe data from the different inputs on the device and
is to register the executable main function contalmrpgad the data from the device and set the values to the

the initialization of the simulation on the controlle utputs of the component. The names of the variables

(see section 3.2.4). The registration is done using th€ide IndraVbrks can be set as component parame-
MLPI function mlpiPouExtensionRegister. The syntax

. ters.

is as follows:

MLPIRESULT mlpiLogicPouExtensionRegister (The last step is to start the simulation inskiexroth
const MLPIHANDLE connection , Smster. The cycle time between the exchange of the
const WCHAR16 name, .
const MLPIPOUFNCPTR function , data can also be set in the MLPICoupler component.
const ULONG signature = 0, The simulation of the system triggers then the simu-

const ULONG version = 0).
) lation on the hardware device. The synchronization

The first input parameter is the connection handbetween both simulations is realized as described in
automatically created when a connection to the hasiction 3.2.2.
ware via MLPI is established, the second parameter
is the name of the POU (Program Organization Un@)2.6 Automation of the toolchain

in IndraWborks, in this case the name of the function

block, the third parameter is the function pointer to the€ toolchain presented in this work is not fully auto-

C/C++ implementation, while the fourth and fifth demated until now. In one of the next releaseReakroth

scribe the signature of the POU interface and the vetster, Modelica support will be added to the sim-
sion of the POU library, if implemented within a ”_ulatlon environment. Until now, an additional Mod-
brary, and have not necessarily to be set, as they §#ga environment is necessary to build up the con-
predefined with 0 [7]. troller simulation model. In the future, Modelica mod-
els can directly be created inside the simulation tool.

Now the implementation of the function block inter-The code generation is integrated into the simulation

face inside théndraWorks application is made known®¢0re. SO that the executable code can directly be gen-
to the Indrabrks application. As the next step théerated. This allows a fully automated toolchain, where
IndraWorks application, which only consists of theé'€ controller model can be set up inside the simula-
function block with the external implementation antiP" €nvironment and automatically be compiled and

the definitions of the variables to be exchanged dgENt t© the controller. Starting the simulation inside
ing the simulation as well as the trigger variable (s&270th Smster activates the toolchain (compile the

section 3.2.2), can also be uploaded to the hardwgp@troller model, transfer the code to the controller,
device (if thelr,1dra\/\brks application is uploaded be_Ioad the simulation core libraries, start controller code
fore the registration of the functions is executed, the%ecutlon).

will be linker errors for the external implementation of

the function block). 4 Application on an example system

The next step is to start the initialization of th&o verify the functionality, the toolchain is used to de-
controller on the hardware, i.e. to active the funeelop an appropriate control structure for the control

DOI Proceedings of the 10" International ModelicaConference 377
10.3384/ECP14096371 March 10-12, 2014, Lund, Sweden

A toolchain for Rapid Control Prototyping using Rexroth controllers and open source software

The connections between the pump and the valve are
modelled by lines including frictional losses. The dif-

F;L@ e ferential cylinder is modelled inside the grey box. The
iy simulation model of the cylinder considers Stribeck
o Y1 DY otrereme friction (static friction, running friction and Coulomb

friction), internal leakage and external leakage. Addi-
tionally the cylinder model has two end stops for the
: piston, which are implemented using momentum con-
) servation (optionally a coefficient of restitution can be

‘ specified).

~ The load is modeled inside the orange sub-box and
considers the force resulting from the load mass, the
gravity force, the plastic and the elastic deformation.
The velocity of the cylinder piston is defined by the
user and is available as characteristic curve in the form
v = f(t). The position profile for the cylinder, which
can be obtained through integration of the velocity
profile, is shown in figure 6 (blue curve).

4.2 Modeling the controller

Figure 5: System model inside Rexroth Simster T0 realize the control, the current position of the cylin-
der piston has to be measured. Therefore, the internal

. . . position measuring system of the cylinder, which is in-

of an industrial hydro-mechanical system, namel_ycrmded in the cylinder model, is used. As first try for

srggl: hyc:rr]aslijlrlr(;tams. C'Il'h_ls slystten:hm(;dil IS bu”;jtr']r{he controller structure a position controller is used.
A er and simuiates the behavior ot the-, o position controller compares the current position

hydro-mechanical system. The structure of this Sim('5"r'the piston with the desired position from the profile.

!atlon model can be seen n figure 5. This model al%‘?]e difference (control error) is then multiplied by a
includes a control loop which has been developed Vgéin factor (P-controller). The profile and the con-

twally inside the simulation environment. troller structure are implemented inside the rose box

in figure 5.
4.1 Model of the system

4.3 Starting the RCP process
The single axis model consists of five sub-blocks, each

highlighted in a different color. The light blue block isf0 transfer this controller model to the real hardware
the HPU (hydraulic pumping unit), i.e. it realizes thelevice, the toolchain which has been explained in sec-
oil Supp|y for the hydrau”c System and includes tH:@n 3 is used. As numerical SOIVer, the eXpIiCit Euler
oil tank, a variable pump which is powered by an e|e@lgorithm is used. Note, that the controller model con-
tric motor. The motor speed is power- and pressuf@ins an ODE from the integrator component to calcu-
controlled. Additionally an accumulator is included ifate the position from the velocity profile. For the ver-
the HPU to ensure the oil Supp|y for temporary hidﬁcation, the results of this HiL-simulation USing the
demands on oil. developed toolchain are compared with the results pro-
duced by a simulation of both the system and the con-
The yellow block shows a generic WRx proportroller insideRexroth Smster. Both results are shown
tional valve, which limits the volume flow of the hy4n figure 6, the complete simulation insideexroth
draulic fluid. Using the input signal port of the valvedmster in red, the simulation using the Rapid Control
the spool position of the valve can be modified. THerototyping toolchain in green.
valve’s dynamics is modelled with a PT2-behavior
with power limit, the flow is modelled via a character- It can be seen that both curves are very similar, but
istic curve depending on the piston strokg=€ f(s)). of course not identical. This is because the controller

378 Proceedings of the 10" International ModelicaConference DOI
March 10-12, 2014, Lund, Sweden 10.3384/ECP14096371

Session 2E: Modelica Tools 1

120

— prfle e (Gesred parameters to maybe get an even better parameter set,
—omereemns=er) - that shifts the current position more towards the de-
sired position to minimize the gap. However, this is

skipped at this point.

position

5 Summary and outlook on further
investigations

In this work, a toolchain for Rapid Control Prototyping
using an industrial Rexroth hardware controller based
2 T : R 5 e 7 0on open source software is presented. This toolchain
allows to reduce commissioning times, avoiding the
Figure 6: Results from the first controller implemerre-implementation of the controller structure from the
tation and comparison with the Rexroth Simster simgimulation environment inside the development envi-
lation ronment of the hardware controller. Furthermore, the
toolchain is based on open source software. This en-

inside Rexroth Smster is a continuous controller andSU'es: that the functionality is independent from soft-
gets the position update from the cylinder in eve?Q/’are developed py extgrnal companies, i.e. additional
solver time step, while the simulation on the hardwafr‘izé""tures can easily be implemented.

device (like every hardware controller) is updated only

) . . . The functionality of the toolchain is also verified
in the cycle time of the connection between simula- : :
with an example. Here, the big advantages of Rapid

tion and hardware. But as the differences are Ve(%ntrol Prototvbing get visible. The control structure
small, the functionality of the toolchain and the data ypIng get VisIbie. uctu

exchange can definitely be verified. IS dgveloped and pre-te_sted easily |nS|gIe the simulation
environment. To test this control algorithm on the real

hardware, until now, it was necessary to re-implement

the algorithm. Using the developed toolchain, the re-

If again the V-model of the controller development ilinPlementation is no longer necessary, because the fi-
figure 1 is considered, the first cycle is now finishef@l hardware, which is applied later on the real sys-
But, if the current result is compared to the desird@M, is used for the Rapid Control Prototyping Pro-
result, another iteration cycle due to the existing 0&€ss- The development process consists of several it-
cillations is necessary. It is clear, that a simple Pration cycles (see 1). In this example, we used three
controller cannot fulfill the control task. In the seconieration cycles (third one not explicitly shown here),
iteration, a velocity feed forward to minimize the gapence. three re-implementations could be saved. In
and an additional control part to minimize the oscilla-

tions is integrated into the controller. Therefore, the = e s Geared
Modelica code is modified inside the simulation en — Cyinerpoiton it
vironment. After suitable parameters are determine:
the controller structure is again transferred to the Ir =
draControl L45 controller using the toolchain to in-
vestigate the functionality on the hardware. Figure
shows the result of the improvement of the control al™ «
gorithm.

4.4 Improvements on the controller

osition

20

Taking a look on the results after this iteration cycle
it can be seen, that the oscillations could be remove
It can be assumed, that the developed controller stru *‘ 2 CR— 5 C 7
ture, in general, is suitable to solve the control task in
this example (the desired positions are reached wikigure 7: Results from the second controller imple-
out oscillations). In the practice, one or two additionatentation and comparison with the Rexroth Simster
iteration cycle would be performed in order to tune th@mulation

DOI Proceedings of the 10" International ModelicaConference 379
10.3384/ECP14096371 March 10-12, 2014, Lund, Sweden

A toolchain for Rapid Control Prototyping using Rexroth controllers and open source software

more complex systems, of course, the controller stru¢s]
ture also gets more complex.

In this contribution, the RCP toolchain is verified
virtually in a HiL-setup. In the future, the controller 6
executing the code has to be tested on a real system.
Therefore, théndraWorks program has to be adapted.

In the HiL-setup, the simulation insideexroth Sm-

ster uses MLPI commands to write the values to the
variables in thendraWorks application. If the con-
troller is connected to a real system, the input an{’]
output signals are transferred via the input and output
ports on the controller. Additional code for the map-
ping between the I/O ports and the variables is neds
essary. An important point is the observation of the
calculation times. It has to be investigated in the fu-
ture, how the strict observance of the calculation times
can be guaranteed.

Another part of the future is work is to fully auto-
mate the toolchain, as described in section 3.2.6.

The simulation core can not only be used to simulate
controller models to realize Rapid Control Prototyping
and couple hardware and software in a Hardware-In-
The-Loop simulation. It is also possible to simulate
whole system models, which opens the door to many
other fields of application. One field of application
are alternative control concepts like Model Predictive
Control. Model Predictive Control calculates the cur-
rent control action by solving an optimal control prob-
lem at each sampling instant using the current state of
the plant as initial state. The cost function of an opti-
mal control problem is optimized subject to different
constraints. One main constraint is the system dynam-
ics in the formx = f(x,t). This condition requires the
simulation of the system in each optimization step.

References

[1] Richtlinie, V. D. . "2206"™ Entwick-

lungsmethodik flr mechatronische Systeme,
Berlin 2004

2]
[3]
[4]

http://www.dspace.com/en/pub/start.cfm
http://www.mathworks.com

John, K.H.; Tiegelkamp, M. - IEC 61131-3: Pro-
gramming Industrial Automation Systems, 2010

8] GNU GCC Release

Engels, E.; Gabler, T. - Universelle Pro-
grammierschnittstelle flr Motion-Logic Sys-
teme - Struktur, Funktionen und Anwendung in
Forschung und Lehre, Tagungsband AALE 2012

] Worschech, N.; Mikelsons, L. - A Toolchain

for Real-Time Simulation using the OpenMod-
elica Compiler. In: Proceedings of the 9th In-
ternational Modelica Conference, September 3-
5, 2012, Munich, Germany.

Bosch Rexroth AG - Motion Logic Programming
Interface (MLPI) Documentation

Information, URL:

http://gcc.gnu.org/gcc-3.4/

380

Proceedings of the 10*" International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096371

