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Abstract

Parameter sensitivities of mathematical models play
a vital rule in many applications of sensitivity anal-
ysis. The availability of algorithmic capabilities for
representing and computing these quantities is surly
advantageous. In this work it is shown how to sys-
tematically transform a Modelica library to another li-
brary that describes the desired models together with
derivatives of model variables w.r.t. model parameters.
The produced library remains with the same structure
and the underlying models keep the same interface
and outlook. The proposed approach relies on novel
equation-based algorithmic differentiation techniques
that are especially designed for Modelica. The illus-
tration is rather done via a compact library, the open-
source ADMSL library, but rich enough to facilitate
a lot of representative Modelica language constructs.
The ADMSL library is the algorithmically differenti-
ated version of the standard Modelica library subpack-
age Modelica.Electrical.Analog.Basic.

Keywords: algorithmic differentiation; parameter
sensitivities; sensitivity analysis, ADMSL, AD of Mod-
elica libraries

1 Motivation to algorithmic differen-
tiation

If you want to draw Bamboos, you should try drawing
Bamboos for your whole life, then you might be
able to draw Bamboos, an ancient Chinese wisdom.
In other words, the earliest modelers have already
recognized that there is no model that identically
describes the reality up to the tiniest details. This
seems to be also the case now days, at least in the
field of Systems Biology [27]. However even an
elementary model describing a complex system is
an essential initial step towards gaining insights and

winning additional knowledge of the modeled system.
Via e.g. the availability of further experimental data,
the model can be better tuned [5]. Nevertheless,
instead of trying to approach a true model for one’s
whole life, many tools of sensitivity analysis, such
as model identification, validation and optimization
[11, 12] can help the modelers to realize their visions,
hopefully in a reasonable amount of time.

Significant quantities, that can assist the imple-
mentation of such computational tools, are parameter
sensitivities, i.e. the derivatives of model outputs w.r.t.
model parameters. Straightforward ways for evalu-
ating these quantities via finite difference methods
are not recommended for accuracy reasons [16]. A
more reliable but technically difficult approach is
to symbolically derive these quantities and then to
evaluate them via a numerical integrator, e.g. the
IDAS solver within the Sundials Suite [21].

These factors among other typical applications
of mathematical derivatives increasingly attract at-
tention at a special domain of scientific computing
called Algorithmic Differentiation (AD) of computer
programs [19]. Based on the chain rule of Calculus,
procedural compiler methods and other established
techniques, many automatic differentiation tools (cf.
www.autodiff.org) are capable of:

e analyzing a large set of computer programs writ-
ten in many procedural programming languages

e adequately computing new programs additionally
representing partial derivatives

The resulting generated programs are typically used
for evaluating the derivatives of program outputs w.r.t.
program inputs among other directional derivatives.
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2 Introduction

AD and the Modelica community

While classical AD techniques and tools are targeting
a large scope of developers of mathematical programs,
only a tiny part of the Modelica community is explic-
itly utilizing AD methods, namely tool vendors and
developers of Modelica simulation environments. For
instance, in [25, 4, 7] the Jacobian is symbolically
computed for the task of index reduction and adaptive
numerical integration. For the more difficult task of
computing parameter sensitivities, some simulation
environments such as JModelica [3] and SystemMod-
eler [2] can be used. A translated Modelica model
is linked with advanced specialized integrators suite
like SUNDIALS capable of evaluating parameter
sensitivities [21]. In this context, AD techniques are
usually applied at low level C code describing the
translated equations.

In contrary, the approach of applying AD tech-
niques directly to the high-level descriptive model
represents another attractive option. An example is
given by the tool ADModelica [15, 14], which is
capable of transforming a given high-level Modelica
model into another Modelica model additionally
describing parameter sensitivities. Similar works have
been also reported with other modeling languages
[6, 20]. Nevertheless and even with the availability
of open-source developer-oriented compiler tools like
OpenModelica [26], the development and mainte-
nance efforts for such a tool attempting to cope with a
rich language like Modelica becomes a continuously
exhaustive task.

Contribution

For the first time an equation-based modeling-oriented
AD approach for differentiating Modelica libraries
is demonstrated. The approach provides the basic
guidelines for systematically transforming a library
into a topologically-identical algorithmically dif-
ferentiated library in which parameter sensitivities
are additionally represented. By reimporting the
augmented library into already existing base models
and slightly altering the declaration for specifying the
required model parameters w.r.t. which derivatives are
sought, parameter sensitivities is represented at the
model level. In this sense, transformed library com-
ponents are overloaded with semantics for describing
parameter sensitivities. Using an arbitrary Modelica

simulation environments, parameter sensitivities are
directly simulated within the model.

Due to the speciality of the Modelica language
and its significant difference from assignment-based
procedural languages for which classical AD tech-
niques were designed, new specialized equation-based
AD techniques are demonstrated in this work. These
techniques, relying on equation-based compiler
notions, utilize Modelica powerful capabilities to
provide efficient representation of partial derivatives.
Consequently, the inclusion of parameter sensitivities
within Modelica libraries can be considered from the
early design phase or alternatively, existing libraries
can be augmented with additional components for
describing the required derivatives. In this sense, AD
techniques needs to be applied only once and the
resulting library can be used for ever.

According to Naumann [24], to meister AD concepts,
AD users should be first able to manually differentiate
their own compact programs before applying AD
tools. In this work, the presented techniques are intu-
itive enough to be systematically applied on manual
basis even on sophisticated libraries with complex
mathematical models, e.g. ADGenKinetics [10]. In
this way, a larger part of the Modelica community can
possess the art of self-handing AD techniques along
their modeling activities. The presented approach
describes the basic steps subject to automation and
consideration within realistic Modelica-based AD
tools. A comprehensive algorithmic specification of
the demonstrated techniques is given in [13].

3 General scheme

The key idea of the presented approach is illustrated
via the diagram presented in Figure 1. Without loss of
generality, a model M with two connected components
C; and G, is given. The components are mathemati-
cally described by Differential Algebraic Equations
(DAESs) via the functions f; and f>, respectively. x;
and p; for i € {1,2} correspond to systems variables
and model parameters, respectively. The function g
describes a causal or an acausal connection relation
between C; and Cs.

The algorithmically differentiated components
C} and C) extend the components C; and C, with
the underlying Sensitivity Equation Systems (SESs).
A SES is obtained by forward differentiation of
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Algorithically Differentiated Model M*
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Figure 1:
differentiated copies

the original DAE system w.r.t. the model parameters
p=(p1 p2)". The component C} additionally declares
the input Jacobian of the parameters dp;/dp, i.e. the
derivatives of the local active parameters within C|
w.r.t. the parameters of the whole model p. In general,
the model parameters are of course not known within
the separate component C}. Therefore, input Jacobian
J) 1s declared w.r.t. arbitrary model parameters p that
are first defined at the model level. An example is
given in the next Section. Analogously C} specifies
the active local parameters within C, via their input
Jacobian w.r.t. arbitrary unknown parameters.

An algorithmically differentiated model M’ is
obtained by connecting the components C] and
C’. The connection relation is similarly described
by forward differentiation of the equation system
g wrt. p. The key idea is based on the chain
rule of Calculus by which partial derivatives are
propagated among components and hence parameter
sensitivities of the whole model are inherently present.

There are many structural similarities between
the model M and its AD version M’ [17]:

1. Both models have the same interface in a GUI-
editor, the SES remains hidden from the user per-
spective

2. The Jacobian of the differentiated equation sys-
tem w.r.t. one single parameter has an identical
structure and sparsity pattern of the Jacobian of
the original system [23]

g ox; g 6x27

éx, dp 0x, Op

Fal¥,x5, pya1)=0
lel)):xglpz)

af, Bx'2+ﬂf2 6x2+ﬂf2 aﬁz_n
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ﬂxg(p:)
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P

A general block diagram of a model with two connected components and their algorithmically

3. It can be proven that the structural indices of both
models are equal

These characteristics can be utilized for simplifying
the compilation phases within a Modelica compiler
targeting AD of Modelica libraries and models. The
next section provides a simple example illustrating the
whole paradigm in Figure 1.

4 Illustrative example: The declara-
tion part

4.1 The ADMSL library

Based on the techniques presented, an
example illustrated on a subpackage of
the Modelica standard library (MSL)
Modelica.Electrical.Analog.Basic. The

whole illustration is provided via the open-source
ADMSL library [1]. The ADMSL library serves as an
experimentation platform for:

1. Ilustrating the basic steps for performing AD of
Modelica libraries

2. Identifying the best capabilities of the Modelica
language relevant for expressing parameter sen-
sitivities at the library components level

3. Recognizing current limitations from expressibil-
ity perspective with which automatic code gener-
ation becomes less systematic
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4.2 Code generation rules

In Naumann [24], basic code generation rules for per-
forming AD of procedural languages have been pre-
sented. Analogously, in this paper simple code gen-
eration rules, however, for the Modelica language are
demonstrated. These Modelica-specialized rules serve
as main guidelines for performing AD of Modelica li-
braries. Note that the presented rules are distinguish-
ably different than those provided for classical lan-
guages. For a complete understanding of the following
subsections, the reader is recommended to consult the
subpackage Modelica.Electrical.Analog.

Declaration rule 1: structure duplication

When performing AD of a Modelica li-
brary, all packages and subpackages are sim-
ply duplicated. For instance, the subpackage
ADMSL.Electrical.Analog corresponds to the
subpackage Modelica.Electrical.Analog. Within
each package, model components with the same
names are placed. Each model component extends the
original components. For instance, the corresponding
AD version of the connector Pin becomes:

Listing 1: AD version of Pin

connector Pin
extends Modelica.Electrical.Analog.
Interfaces .Pin;

end Pin;

For components declaring these Pins, the correspond-
ing AD version, e.g. of the OnePort component,
should declare the corresponding AD versions of Pins.
This is done by redeclaring replaceable Pins:

Listing 2: AD version of OnePort

partial model 0OnePort
extends
Modelica.Electrical.Analog.
Interfaces.0OnePort (
ADMSL .Electrical.Analog.
Interfaces.PositivePin p,
ADMSL .Electrical.Analog.
Interfaces.NegativePin n);

redeclare

redeclare

end OnePort;

The above code assumes that the electrical pins p
and n are declared as replaceable. However, this
is not the case in the latest Modelica library version
3.2. Alternatively, as a temporary solution, the orig-
inal TwoPort model has been slightly modified and
placed under Analog.Interfaces.Bases package
as shown in Appendix A. Similarly, for models (e.g.

Capacitor) extending partial models (e.g. OnePort),
their AD versions need to extend the AD versions of
these partial models, for example:

Listing 3: AD version of Capacitor

model Capacitor
extends Bases.Capacitor (
redeclare replaceable class
OnePort = ADMSL.Electrical.Analog.
Interfaces.0OnePort);

end Capacitor;

Declaration rule 2: duplication of data segments

Any new component needs to reference the global
number of active parameters w.r.t. which derivatives
are sought. This is done by extending the component
ADMSL.Interfaces.GradientInfo declaring global
gradient related information:

Listing 4: Declaring the number of gradients

outer parameter Integer NG

The parameter is declared as outer utilizing implicit
connection mechanisms. It gets first initialized only
by explicit declaration defining the same parameter as
inner at the top level model. Accordingly, for all
model components a derivative object (i.e. the gradi-
ent) is additionally declared for each real variable or
parameter within the corresponding component, e.g.
the AD version of theconnector Pin:

Listing 5: AD version of Pin

connector Pin
extends
extends ADMSL.Interfaces.GradientInfo;
Real g_v[NG]

flow Real g_il[NG]

end Pin;

The idea is simple, potential derivative objects are as-
sociated with variables while flow derivative objects
are associated with flow variables. Similarly, in the
model capacitor:

Listing 6: Declaration part of Capacitor

model Capacitor
extends ...;

parameter Real g_CING] = zeros(NG);

end Capacitor;

Here, a derivative object initialized to the zero vec-
tor is associated with the parameter C. Each entry of
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a gradient represents the derivative w.r.t. a parameter
specified via the input Jacobian at the top model. So
far the main rules for altering the declaration part has
been demonstrated. In the next section, further rules
for deriving the sensitivity equations are illustrated.

5 Illustrative example: The equation
part

5.1 Modeling SES in gradient format

Assume that a given Modelica component C is de-
scribed more or less DAE system (without discrete
variables):

F(X,X,p,l):() ’ X(IO):XO(p) (1)
where x(7) € R" and p € R™ represent state variables
and parameters, respectively. Additionally, assume
that F : R>**"+1 _ R" is continuously differentiable
w.r.t. X,x and p. Required is an additional compo-
nent C’ that augments C with additional equations for
describing the time-dependent parameter sensitivities
(dx/dp)(t) € R™*™. As mentioned before, C' needs to
include the sensitivity equation subsystems (SESub):

(9360(17)
dpi

i=1,2,..

Fesi+Fsi+F,, =0 ; (2)

ox
ap;

S,'(l‘()) =

where s; = for ,m

SESub is obtained by differentiating all equations
w.r.t. desired parameters. This is a large equation

system of dimension m -n. Explicit listing all these
equations makes C’ not compactly implemented.

To overcome this drawback, Modelica array ca-
pabilities can be utilized if the equation system 2
is implemented in gradient format. Within a model
component corresponding to a DAE of the form (1),
assuming that F; corresponds to the i-th equation in F
let F; be defined as follows:

P oF;
o ax,

j= 1,2,...,n] € R

and let F;, F),,x, and x, be analogously defined. Fur-
thermore, let the input Jacobian J, be defined as fol-
lows:

Jy— [317,

o= 1,2,...,m] € Rmxm
Pj

A typical case is to set J, = I, the identity matrix,
for a set of independent parameters. Then the corre-
sponding differentiated equation w.r.t. a parameter p;
is derived from Equation (2) as follows:

m n n

+ LI

k=1 k=1

(i,k) xp(k,1)] +

L%kJH

Using Modelica array capabilities and assuming that
the given set of parameters is independent (i.e.
dpi/dp;=0fori# j), Equation (3) can be rewritten
in a gradient format comprising m equations:

n n
Z (i,k) xp(k Z (i,k) xp(k,:)] +
FP(’) :) =0 4
for i =1,2,...,n where A(i,:) represents the i-th row

of a matrix A.

5.2 Code generation rules

Forward differentiation rule 3: deriving sensitivity
equations

Using Equation (4), SES of simple model com-
ponents can be easily implemented. For in-
stance the equation part of the component
ADMSL. Analog.Basic.Capacitor becomes:

Listing 7: Equation part of Capacitor

model Capacitor
extends ...;

equation

g_i[1:NG] = g_C[1:NG] * der(v) +

C * der(g_v[1:NG]);
end Capacitor;

Deriving SES for simple mathematical formulas like
the previous one is straightforward. For long complex
formulas, common computer algebra packages can be
used. However, it is recommendable to employ the
equation-based AD techniques illustrated in Section 6.

Forward differentiation rule 4: handling blocks
within flow control

Modelica, as many other languages, provides classical
language constructs for flow control such as for,
while, if,.etc. In classical AD concepts, assign-
ment blocks within typical control flow constructs
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(e.g. for, if, ...etc.) are directly differentiated as an
independent block. Although such constructs are
interpreted differently in an equation-based context,
the generation of SES within such blocks are similarly
intuitive. For example, the equation part of the model
Analog.Examples.Utilities.NonlinearResistor
is implemented as follows:

Listing 8: Equation part of NonlinearResistor

model NonlinearResistor

equation
i =
if (v < -Ve) then
Gbx(v + Ve) - Gax*Ve
else if (v > Ve) then
Gbx(v - Ve) + Gax*Ve
else
Gax*xv;
end NonlinearResistor;

The implementation of its AD version becomes:

Listing 9: Equation part of NonlinearResistor

model NonlinearResistor

equation
g_i[:] = if (v < -Ve) then
g_Gb[:] * (v + Ve) +
Gb * (g_v[:1 + g_Vel:1)
- (g_Gal[:1 * Ve + Ga * g_Vel:1);
else if (v > Ve) then

else
-5

end NonlinearResistor;

6 Equation-based AD

So far, the demonstrated components have short equa-
tions that can be easily differentiated. In this section,
an equation-based AD technique, especially designed
for the Modelica language, is shown. In the first ever
algorithmically differentiated library, ADGenKinetics,
the following equation corresponding to the conve-
nience kinetics of chemical reaction rates

=11 Ka, +[Ad] | K,
a KAa b KII) + [Ib ]
Sfwd [Si] bwd [P j]
V, -V —
max Il] KmS,- max : Kij

(&)

Pj])_l

()2

has been easily differentiated using the demonstrated
technique, consult [10] for more details about this

equation and the ADGenKinetics library. In this paper,
the technique is illustrated on a more simple equation
within the model Analog.Basic.Conductor which
implements conductance as:

G
1+ 0 (T = Trer))

Gactual = ( (6)

While this formula can be used within a Calculus
exam, the technique is applicable on formulas like (5).

6.1 Classical AD techniques

The fundamental terminologies and concepts of clas-
sical AD techniques for assignment-based procedural
languages have been largely developed decades ago
Application of classical AD techniques is not best suit-
able to be applied on equation-based languages due to
[15, 13]:

e Classical AD techniques are mainly designed for
explicit assignments and not implicit equations

e Excessive number of expressions evaluations is
performed

e Excessive storage for temporary variables and
their gradient computations is needed

In order to overcome these drawbacks, an equation-
based technique relying on fundamental notions of
equation-based languages has been designed.

6.2 Equation-based AD technique

Figure 2: The AST of Equation 6 and the enumeration
of expression subtrees

562

Proceedings of the 10*" International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096557



Session 3E: Modelica Tools 2

Preprocessing: Intermediate elementary equations

The key idea of enabling differentiation of a com-
plex equation is to decompose it into elementary equa-
tions. Each equation is composed of a unitary op-
erator (e.g. +,—), a binary operator (e.g. +,—,*,[])
or an intrinsic function (e.g. sin,cos). By construct-
ing the abstract syntax tree (AST) of the equation, el-
ementary equations can be computed. In Figure 2,
non-leaf nodes correspond to operands. Leaf nodes
correspond to identities. Identities are distinguished
according to their variability, e.g. constants, parame-
ters and variables. Each subtree 7} is intuitively in-
dexed with a binary number k according to its position
in the tree. Each node with index k has childern of
index 2k and 2k + 1, if any. Intermediate equations
and their derivatives can be easily computed via a left-
right-node (LRN) traversal as follows:

Tiin = Thp—Tey
=2 = Th/p - Tr/ef
T = oTin
= Tj = o Tun+oaTy,
1/Ti = 14T
= Tj = —Ti, Tiu T
T = GT
=T = G ThW+GT
— G, = T

where

7 T, JITx Ty
Here, only intermediate equations corresponding to
non-leaf nodes are considered. Moreover, Modelica
capabilities are utilized for providing specialized treat-
ment of the division operator, the most expensive arith-
metic operator. This is done in a way that the let
derivatives don’t include further divisions.

Processing: Accumulation

The previous intermediate equations though represent
desired partial derivatives, however it requires a lot of
storage for 7}/. To overcome this drawback one can
rather iteratively accumulate the partial derivatives,
within the same LRN traversal of the AST. On a man-
ual basis, this corresponds to an iterative process of
copy and paste of the intermediate equations one af-
ter another. In this way, the accumulated intermediate

equations become:

Tiin = Ty, — Ty
T = o Tun+a (T, —T,)
Ty — (& Tinnn + & (T, — Trep) Tir Tia
T} - G'Ty

+ G (—(a" T +a (T, —T,y) T Tin)
=G, = T

Now, it is enough to declare only one derivative object
for G,,.

Postprocessing: Common subexpressions

The accumulated intermediate equations contain mul-
tiplicative term that are going to be evaluated m times.
Within the same LRN-traversal, these multiplicative
terms (e.g. & T11 T11) can be rather stored in an a lo-
cal variable. These terms are stored in local variables
adl_x* within the Conductor model:

Listing 10: The AD version of the Conductor model

model Conductor
extends ...;
protected
Real T_1111;
Real T_111;
Real D_11;
Real adl_11_1;
Real adl_11_2;
Real adl_11_3;
Real adl_1_1;
Real adl_1_2;
equation
T_1111 = T_heatPort - T_ref;
T_111 = alpha * T_1111;
1/D_11 =1 + T_111;
adl_11_1 = - D_11 * D_11;
adl_11_2 = adl_11_1 * alpha;
adl_11_3 T_111 * adl_11_1;
adl_1_1 = G * adl_11_3;
adl_1_2 = G * adl_11_2;
g_G_actual[:] = g_G[:] * D_11 +
adl_1_1 % g_alphal[:] + adl_1_2
* (g_T_heatPort[:]1-g_T_ref[:]1);
g_il[:] = g_G_actuall[:]
+ G_actual * g_v[:];
g_LossPower[:] = g_v[:] * i
+ v ox g il[:];
end Conductor;

* v

This is an optional step, particularly, if the used
Modelica compiler is capable of recognizing common
subexpressions and treating them adequately. How-
ever this step still can be used for coming up with an
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efficient compact representation of the partial deriva-
tives.

7 Illustrative Example: The top
model

Having performed equation-based AD of the

Electrical.Analog sub-package, then pa-

rameter sensitivities of the electrical circuit in
Analog.Basic.Example.ChuaCircuit are implic-
itly represented by simple slight modification:

e reimporting the AD version of the library and

e specifying the input Jacobian

Listing 11: The AD version of the ChuaCircuit

model

model ChuaCircuit

Analog.Basic;
import ADMSL.Electrical.Analog.Basic;

import ADMSL.Electrical.Analog.
Examples.Utilities;

import Modelica.Icons;

extends Icons.Example;

import ADMSL.Utilities.*;

inner parameter Integer NG = 8;

Basic.Inductor L(L=18,
g_L=unitVector (1,NG));
Basic.Resistor Ro(R=12.5e-3,
g_R=unitVector (2,NG));
Basic.Conductor G(G=0.565,
g_G=unitVector (3,NG));
Basic.Capacitor C1(C=10, v(start=4),

g_C=unitVector (4,NG));
Basic.Capacitor C2(C=100,

g_C=unitVector (5,NG));
Utilities.NonlinearResistor Nr(

Ga(min=-1) = -0.757576,
g_Ga = unitVector (6,NG),
Gb(min=-1) = -0.409091,
g_Gb = unitVector (7,NG),
Ve=1,
g_Ve = unitVector (8,NG));

Basic.Ground Gnd
equation

end ChuaCircuit;

Figures 3 and 4 show some results of the parameter
sensitivities.

—— Lol —— Rog_ii] —— G.o_{i] —— ClLo_{i] —— C20_{1] == Nrg_il —%— Gndpoit]

Figure 3: The sensitivities of the current at all compo-
nents (ie. L.i,R0.i,G.1,C1.1,C2.1i,Nr.1,Gr.1)
w.r.t. the inductance L.L

Lo —— Lol —— Lol —— Lol —— LovE]l —— LoS] —— Lol —— Lovie)

XN

I

Figure 4: The sensitivities of L. v w.r.t. all parameters
(i.e.L.L,R0.R,G.G,C1.C,.. etc.)

8 Summary and outlook

In this paper, an equation-based methodology for
AD of Modelica libraries has been comprehensively
demonstrated. The new equation-based AD tech-
niques have been designed for the Modelica language.
With few simple code generation rules, parameter
sensitivities of base models are additionally described.
These rules make use of the art of AD to let modelers
themselves be capable of manually differentiating
large-set of models. Once a library is already dif-
ferentiated for once, it can be used forever. The
whole work serves as an experimentation platform
for the implementation of AD tool. Already a lot of
the functionalities are implemented within the tool
ADModelica [14].

Further ongoing works are running on several
dimensions:

e Ensuring that all used terminology is conform to
the Modelica specification

e choosing the most proper constructs allowing fur-
ther extension of this library to be compilable
with arbitrary simulation environments
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e Implementing unit tests not only for single com-
ponents but also to ensure the correctness of in-
termediate components, processed and postpro-
cessed classes

e Implementing further useful sensitivity-related
functionalities, e.g. scaled sensitivities, finite dif-
ference functions, etc.

e Utilizing Modelica capabilities for operator over-
loading

Finally, there are further two issues that are worth to
mention. First, although normal numerical solvers not
especially designed for sensitivity analysis are used,
the expensive computation of parameter sensitivities
can be reduced by following a numerical integration
approach based on Dicknson [8]. Smaller subsets
of parameter sensitivities are considered one after
another rather than considering the whole SES [9].
The structure of the proposed gradient-oriented code
easily suggests that. Moreover, this approach is
parallelizable in a scalable manner [22].

Second, the presented approach in this work is
restricted to continuous-time based components by
which large set of already existing libraries can be
considered. However, theorems and concepts for
handling discontinuous functions and hybrid systems
already exist [18], out of which further extensions to
this work can be considered.

A Some modified components in the
Modelica.Electrical.Analog li-
brary

ADMSL .Electrical.Analog.Interfaces.
Bases.OnePort

The TwoPin model with the MSL is slightly mod-
ified by letting the declared connectors become
replaceable as follows:

Listing 12: Implementation of OnePort

partial model OnePort
Modelica.SIunits.Voltage v

Modelica.SIunits.Current i
replaceable Modelica.Electrical.Analog.
Interfaces.PositivePin p
constrainedby
Modelica.Electrical.Analog.

Interfaces.PositivePin;
replaceable Modelica.Electrical.Analog.
Interfaces.NegativePin n
constrainedby
Modelica.Electrical.Analog.
Interfaces.NegativePin;
equation

V = p.Vv - n.v;
0 =p.i+ mn.ij;
i =p.1i;

end OnePort;

ADMSL.Electrical.Analog.Interfaces.
Bases.TwoPin

The TwoPin model with the MSL is slightly mod-
ified by letting the declared connectors become
replaceable as follows:

Listing 13: Implementation of two pins

partial model TwoPin

Modelica.SIunits.Voltage v
replaceable Modelica.Electrical.Analog.
Interfaces.PositivePin p
constrainedby
Modelica.Electrical.Analog.
Interfaces.PositivePin;
replaceable Modelica.Electrical.Analog.
Interfaces.NegativePin n
constrainedby
Modelica.Electrical.Analog.
Interfaces.NegativePin;
equation
V = p.Vv - n.v;
end TwoPin;
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