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Abstract

This paper introduces a rocket model and discusses the
advantages of refining it using a variable-structure ap-
proach to remodel critical parts. Both versions of the
model are implemented in Modelica and were simu-
lated using Dymola as simulation environment. The
DySMo framework, which supports the simulation of
variable-structure models in common simulation envi-
ronments, was used to facilitate the redesign. The gen-
eral benefits of the variable-structure approach are pre-
sented, and on the basis of the rocket model we present
that simulation time and the data volume of the simu-
lation can be reduced while maintaining the accuracy
of the simulation results.

variable-structure modeling, simulation speed, data
reduction, reduce equation stiffness, rocket launch

1 Introduction

In this paper, we regard the benefits of modeling
a moon bound rocket using variable-structure to in-
crease the simulation speed and to reduce the amount
of saved simulation data.

The aim of our simulation is to predict the trajectory
of the rocket, beginning with the ignition on earth’s
surface up until it reaches the moon as destination. The
rocket is multi-staged, and as such consists of three
booster modules and a payload module without means
of propulsion. The model takes into account the chem-
ical reactions in the boosters combustion chambers,
which generate the thrust, the gravity of both earth
and moon as well as atmospheric influences. First,
we introduce a classical implementation of the model,
which we will then compare to a redesigned version
that uses the variable-structure approach.

The classical model calculates all components dur-
ing the entire simulation. However the time frame

of the chemical reactions and of the rocket’s move-
ment are very different, which results in a stiff system
of equations. This stiff equation system necessitates
small step sizes, although a great part of the equation
set would permit rather large time steps. Additionally,
the chemical reactions only need to be calculated as
long as the thrust of the rocket has not reached a steady
state.

As a result, the simulation of the classical model
generates an exceeding overhead of unnecessary sim-
ulation data and calculations. The ability to enable and
disable equations during runtime, holding certain val-
ues constant for a given period of time, would allow to
reduce this overhead. However, Modelica requires a
constant set of equations and does not allow to change
the equation system while simulating. All equations
have to be solved during the whole simulation. In spe-
cial cases and with the use of some workarounds the
equation system can be manipulated to a certain de-
gree, but not in the extend we want to use in this paper.

In section 2, we introduce the concept of variable-
structure models and discuss different approaches to
implement and simulate them. We will then give a de-
tailed overview over the rocket model as well as the
redesigned version in section 3. We compare the sim-
ulation results of both models, regarding performance
and accuracy as well as the volume of generated data,
in section 4.

2 Variable-Structure Modeling

The aim of variable-structure modeling is to improve
models by introducing the means to change their equa-
tion and variable set during simulation. This is re-
alized by encapsulating certain sets of equations and
variables into different models, to which we refer as
modes, and implementing a way to switch between
them. Each transition is triggered by a predefined
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switching condition. The mode switch is then realized
by storing the end values of certain variables and us-
ing them to initialize variables of the next mode. The
decision, which end values are used to initialize vari-
ables of the subsequent mode, has to be made by the
modeler.

Variable-structure models are the topic of numerous
publications, although they are often referred to by dif-
ferent names. In [6, 8] they are introduced as ’Multi-
models’, whereas they are referred to as ’Structurally
dynamic systems’ in [4] and ’Variable structure sys-
tems’ in [10]. As they feature discrete mode switches
as well as continuous equation systems they are often
considered a variant of hybrid systems. A noteworthy
method of formally specifying hybrid systems is the
DEVS formalism, introduced in [9, 7].

Currently, altering the set of equations at runtime is
not easily achieved using common Modelica simula-
tion environments, which we want to use for the rocket
simulation. However, several approaches to introduce
variable-structure to a Modelica model have been de-
vised, an overview is given in [1]. One way is pre-
sented in [2], where conditional statements are used
to enable and disable certain equations based on dis-
junct conditions, which distinguish the current mode
of the model. Such an approach is classified as Maxi-
mal state space, as the models state space is static and
holds all states regardless of the current mode. This
may lead to complicated mode switching procedures,
as more than just the equations relevant at the current
time have to be taken into account. Additionally, it
may prove difficult to add new modes to an existing
model. We followed another approach, termed Hybrid
decomposition, where each mode is implemented as a
separate model and the simulation switches between
these models based on switching conditions. Mosi-
lab [5] and SOL [10] are two approaches which enable
the user to create variable-structure models. But since
they are based on own languages it would be neces-
sary to re-implement the rocket model in the specific
language. In our approach we want to use common
simulation environments. A framework to use com-
mon simulation environments is DySMo [3]. This
framework is implemented in Python and allows a user
to define a variable-structure model. The framework
then handles the switches between the different modes
automatically. In this framework Simulink, Dymola
and OpenModelica are integrated. The communica-
tion with the tools is based on a communication inter-
face integrated in Python. New interfaces can easily be
added to the framework and then be used as simulation

environments for the variable-structure model.
A basic overview of the sequence used in the frame-

work for switching between different modes is illus-
trated in Figure 1. Each of the gray boxes is a method
defined in the communication interface from the spe-
cific simulation environment for the currently active
mode.

As a first step, all modes are compiled, which is nec-
essary for the Modelica simulation environments.

When all modes are compiled, the simulation pa-
rameters (determining start time, stop time, solver,
etc.) are set in the framework.

Mode Control

Compile modes

Write init file

Simulate

Read endvalues

Read observer Find transition

Input/Output mapping

Update mode

Save observer

t < stop time

Figure 1: Schematic view of the steps to simulate a
variable-structure model in DySMo

After this initial setup, the simulation of the first
mode, using the appropriate executable and initializa-
tion file, is started. Each mode contains a certain num-
ber of stop conditions, which define when a simulation
is terminated. When such a stop condition is reached,
a variable switch_to is set, which indicates the next
mode of the simulation. Then the simulation termi-
nates. The framework now reads the simulation results
of the recently terminated simulation, and maps those
endvalues to the starting values of the variables of the
subsequent mode. Finally, the mode is updated to the
new mode and a new simulation is started.

When the final stop time of the simulation is
reached, the simulation terminates and the saved sim-
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ulation data is stored in a file.
Using DySMo allows us to introduce variable struc-

ture to an existing model without having to completely
re-model it, as only minor changes have to be made to
add the stop conditions and make the desired adjust-
ments to the equation sets of each mode. Furthermore,
in certain modes we are able to greatly reduce the state
space to only hold the needed information. This ap-
proach shown here is of course only suitable and sensi-
ble for models with a small number of modes. If many
mode switches occur this framework is not suitable
and in the future, creating and simulating variable-
structure models should be integrated into Modelica
or other languages. But since this is not the case yet,
we want to illustrate the positive effects these kinds of
models have with the DySMo prototype.

3 Rocket Model

In this section we introduce the classical as well as
the redesigned model in greater detail. Both models
were implemented in Modelica and simulated using
Dymola. The object-oriented, component-based na-
ture of Modelica allowed us to separate our model into
different components which facilitated the variable-
structure redesign.

Earth
Fg
Fd

near earth⇒ Fd 6= 0
f ar f rom earth⇒ Fd = 0

Rocket body
movement
speed
direction

Propulsion stage
chemical reactions create thrust

start of stage⇒ Fprop 6= 0
steady state⇒ Fprop = const
empty fuel⇒ Fprop = 0

Moon
gravitational force (Fg)
orientation point

Fg_moon

Fg_earth , Fd

Fprop ,

m

Figure 2: Components of the rocket model and prop-
erties that are calculated by them

Basic mathematical description of the rocket
Since the complete Model consists of many equations,
it would be too long to explain all equations in detail.
However we give a short overview about the most

important physical laws necessary to create the rocket
model.

As the main interest was the trajectory of the rocket,
we needed Newton’s law of motion

F (s, t) = Fprop + Fg−Fd = m · s̈.

The remaining task was to determine F . In our model
the force consists of three parts. The aerodynamic drag
(Fd), the gravitational force (Fg) and the propulsive
power (Fprop). The gravitation force is dependent on
the planets (Earth and Moon) and their masses. Also
the position and mass of the rocket have an influence.

The aeoredynamic drag is essentially

Fd =
1
2

cW ρAv2

and is only calculated while the rocket is still in the
atmosphere of the earth.

The remaining force is calculated by simulating the
combustion of hydrogen in the combustion chamber.
Therefore many thermodynamical and chemical laws
come into play. We will mention only a few.

It is possible to model the change of concentration
during a chemical reaction

A + E→ D + F

with ordinary differential equations

ĊA = −kCACE ,

ĊD = kCACE etc.

where

k = BT n f exp
(
− E

RT

)
.

Moreover we assume the ideal gas law

p = n
RT
V
.

It is then possible to determine the temperature using

ρcv
dT
dt

=
r

∑
k=1

(−∆uk)wk

plus vaporization and heating terms. Here ∆uk is the
reaction energy of reaction k. For a chemical reaction i
where two substances A and B react, the coefficient wi

is defined as wi := kiCACB. This energy leads to pres-
sure which leads to a massflow through a thottle with
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a certain velocity. At the end the propulsive power can
be calculated with

Fprop = ṁv.

The original and the variable-strucutre model were
separated into different components, namely the
rocket body, the propulsion stage and two celestial
bodies, as shown in Figure 2. The figure already gives
a short overview of what different calculations are nec-
essary in each component.

3.1 Original Model

Basically, the rocket body calculates the movement of
the rocket by taking into account the forces it is ex-
posed to. The propulsion stage is responsible to cal-
culate the thrust the rocket produces. It contains three
booster modules that are used in succession. Each of
the booster modules has a specified amount of fuel
available and calculates the chemical reactions for the
combustion of the solid propellant. This combus-
tion builds up a pressure in the combustion chamber,
through which the thrust of the rocket is determined.
After starting a new stage the thrust is build up quite
fast and afterwards is almost constant. These chemical
reactions necessitate the solver to employ very small
step sizes, as they take place very rapidly. Whenever
the fuel of a booster module runs out, the propulsion
stage will reinitialize using the next booster module
available. Once the last booster module is emptied,
the rocket will no longer generate thrust.

The celestial bodies are used to represent the moon
and the earth. They supply the gravitational forces in-
fluencing the rocket. Air resistance and wind are also
calculated in the earth component, as the rocket is sub-
jected to these while passing through the atmosphere
of earth. The moon, however, has no atmosphere, but
is used as orientation point for the rocket.

All calculated forces are passed to the rocket body,
where the movement of the rocket is calculated. The
mass of the rocket changes substantially during the
course of the simulation, as fuel is burned up and
booster modules are discarded. The current mass of
the rocket is determined by adding up the masses of the
rocket body component, all remaining booster mod-
ules and the remaining fuel. When compared to the
chemical reactions calculated in the propulsion stage
of the model, the position of the rocket changes at a
very slow pace.

The original rocket model takes about 50 seconds to
simulate with the Dassl solver. The solver has to re-
sort to a very small step size in order to simulate the

propulsion stage accurately, even though the propul-
sion is no longer needed after a steady state is reached
or once the rocket runs out of fuel. As each simula-
tion step generates data for all variables of the model,
the overall data volume of a simulation measures about
1.5GB and postprocessing this data becomes rather te-
dious work.

3.2 Variable-structure Redesign

When introducing variable structure to a model, the
first step is always to identify the modes that are to
be implemented, or, to put it another way, to deter-
mine in which way the model could benefit from vari-
able structure. As already discussed, the rocket model
has a stiff equation set, which necessitates very small
step sizes for the simulation to be reasonably accu-
rate. However, only during the ignition of each booster
module it is necessary to calculate the chemical reac-
tions inside the combustion chamber with such accu-
racy. Afterwards, the thrust is almost constant and re-
garding the chemical reactions is not necessary any-
more.

Furthermore, the rocket has to travel a great distance
without any thrust at all to reach the moon. The result
is that the simulation runs with a very small step size
for a long time while the variables feature only mini-
mal changes.

The aim of our redesign is to eliminate this problem
by holding the thrust constant once it has fully build
up and take the equations for the chemical equations
out of the model. After fuel runs out, the rocket either
switches to another booster and builds up the thrust
anew (regarding the chemical reactions), or it switches
to a mode where thrust is assumed as zero if no further
rocket stage is available. This leads to three differ-
ent modes for the propulsion stage: building the thrust
by regarding the chemical reactions, having constant
thrust, or no thrust at all.

Another improvement is to calculate air resistance
only while traveling through earth’s atmosphere. This
leads to two earth models, one that contains an atmo-
sphere and one that does not. This sums up to six
combinations of submodels, and therefore six modes,
which are shown in Figure 3. Conditions for transi-
tioning between the modes are also shown. At the
bottom of the figure the actually performed mode
switches from our model are listed. We can see that
at the beginning of the simulation the rocket alternates
between the modes I and II. This is due to the fact that
only during the last propulsion stage of the rocket it
is able to clear the atmosphere and therefore switch to
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Mode I

Mode III Mode IV

Mode VI

Mode VMode II

Thrust calculated

Atmosphere
Zero thrust

Mode switches: I -> II -> I -> II -> I -> II -> IV -> VI

leave atmosphere

enter atmosphere

thrust build up

new stage

fuel empty

enter atmosphere

leave atmosphere

fuel empty

new stage

thrust build up enter
atm

osphere

lea
ve

atm
osphere

Figure 3: Division of the rocket model into six submodels used as modes for the variable-structure redesign

mode IV, which has constant thrust and does not cal-
culate the atmosphere anymore. This mode is active
until the rocket’s fuel is burnt up, in which case mode
VI becomes active and sets the rocket thrust to zero for
the remainder of the simulation.

It is noteworthy that, considering the given model,
the modes III and V are never used. For mode III to be
active the rocket would have to leave the atmosphere
when it is in mode I. Meaning that the thrust of the
current stage is not build up yet and the rocket left the
atmosphere. With the given set of parameters this does
not occur and therefore mode III is never used. Mode
V is not used either, it would require the rocket to run
out of fuel before it leaves the atmosphere, which it
does not. We modeled these modes nonetheless, as
they could be relevant if the simulation parameters
were altered (consider for example starting from the
moon which would necessitate mode III).

For the chosen approach, all six modes had to be im-
plemented in Modelica, since Modelica does not allow
to specify the necessary changes inside the submod-
els. Switching conditions were added to each mode,
which define the modeID of the next mode and ter-
minate the current simulation. In the DySMo frame-
work the mode switches then have to be defined. This
means that the initialization for each transition has to
be regarded. For convenience, the modes for the rocket
were implemented in such a way that variables are
called the same if possible and therefore only a name
matching is necessary for each switch. The framework
then handles the occurring mode switches automati-
cally and saves the simulation data. Each mode is only
compiled once and then the executable is used in case

Figure 4: CPU time needed for the simulation in Dy-
mola

the mode needs to be simulated again (as modes I and
II are). This saves execution time since less compila-
tions are necessary and therefore less communication
with Dymola.

4 Results and Discussion

By redesigning the rocket model in a way that takes
advantage of variable-structure modeling we intended
to reduce the stiffness of the equation set, to speed up
the simulation and to reduce the excessive amount of
generated data without loosing accuracy. In this sec-
tion, we will discuss if these goals were reached, as
well as the drawbacks of our approach.

Figure 4 shows the needed CPU time of the simu-
lation runs in Dymola. Only the first 180 seconds af-
ter the launch of the rocket are shown to visualize the
CPU time of the mode switches.

Three different simulation runs can be seen in this
figure.
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1. original model (black)

2. model with modes I, II, IV and VI

3. model which starts with the original model until
the fuel runs out

At the beginning the CPU time is basically the same,
the slight alterations could not be avoided. As can be
seen the model with the many mode switches is con-
siderable faster then the other ones. This becomes evi-
dent when the first switch occurs and the thrust is con-
sidered constant.

As can be seen when mode VI is reached only about
half the time was needed for the simulation. When
mode VI is reached the CPU time’s increase is rather
insignificant. The CPU time needed is about 0.4 sec-
onds for the entire simulation. The CPU time for the
original model increases constantly and needs about
50 seconds for a simulation time of 150 000 seconds.

So far, we only took into account the needed time
for the simulation, but we also have to account for the
time it takes to switch modes and to compile the ad-
ditional models. The overall time it takes to simulate
the redesigned model including all necessary steps is
4 seconds, of which only 0.4 seconds consist of actu-
ally simulating the model. The majority of the time,
3.1 seconds, is used to compile the models in Dymola.
The framework, employed to switch between modes,
accounts for the remaining 0.5 seconds. Still, the nec-
essary time to simulate was significantly reduced com-
pared to the 50 seconds it takes to simulate the original
model.

Since the longest time was necessary for the compi-
lation and the major speed advantages were seen when
mode VI is active, we build another model, which is
basically the original model until the fuel runs out.
Then a switch to the last mode occurs. The result is
also shown in Figure 4. Here we can see that we loose
time compared to the first variable-structure model,
but when the fuel is empty the CPU time becomes al-
most constant. Since only two modes need to be com-
piled and only one mode switch occurs the overall time
necessary for this model is about 2.5 seconds, with
switching, compiling and CPU time. Which is even
faster then the originally designed variable-structure
model. This shows that choosing the correct modes
is not an easy task and needs to be done carefully.

Even though the needed time to simulate the rocket
launch could be reduced, if the simulation results
would be less accurate this improvement would lose
meaning. In Figure 5 we can see two of the simulation

Figure 5: Rocket position comparison

results plotted on top of one another (the third simu-
lation did show the same behavior). It is evident that
the difference between both results is not discernible.
Both results are essentially the same.

Another issue we had with the original model was
the huge volume of generated data, 1.5GB, which re-
sulted from storing variable data of every time step
combined with the very small step sizes necessary to
maintain accuracy for the stiff equation system. When
simulating the redesigned model we are left with 8 re-
sult files; one for the simulation of each mode. When
combined, the size of those files is about 1MB of infor-
mation. Using the two mode model the simulation data
of the two result files adds up to 30MB. It is evident
that the major part of the original data was not needed
to accurately calculate the trajectory of the rocket.

Dymola does support an option to choose the
amount of data to be stored during a simulation run,
but changing the setting for the original model resulted
in failed simulations. It seems that this setting has an
effect on the solver in Dymola. Imagine it would be
possible to chose the amount of stored data: Due to
the different time scales of the model we would have
to find a compromise between storing many values of
very fast changing variables while the thrust is built
up and less values of slow changing variables during
the flight to the moon with maximum thrust. With this
compromise we could reduce the amount of data but
may also lose information about dat af the chemical
reactions.

A problem we encountered with the variable-
structure model was that the solver of Dymola seems
to be influenced by the start time of the model. When-
ever we started a simulation at a time other than zero,
the simulation failed. The rocket model does not de-
pend on the starting time, as the time variable is not
used in the model. Thus, the solver should have been
able to start at any given time and still calculate the
same results. This was not the case for this model
though. Therefore, we had to start each mode’s simu-
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lation at zero seconds and later add a time offset to get
correct results.

5 Summary

In this paper we have shown that modeling with vari-
able structure is worthwhile. We accomplished our
goal to lessen the necessary time to simulate the flight
to the moon without loosing accuracy and were able to
significantly reduce the volume of generated data. We
have also shown that it is not a trivial task to choose
good modes and that when choosing different modes it
is even possible to save more simulation time without
disadvantages. Using variable-structure models seem
to be a good choice for stiff equations in case the stiff-
ness can be taken out for parts of the simulation.
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