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Abstract

Modelica models are mathematical descriptions and
therefore their simulation output typically shows nu-
merical variable trajectories. While universal for all
kinds of simulations, this representation is oftentimes
difficult to understand. In the field of multi-body sim-
ulations, 3D visualizations present a way of display-
ing vast amounts of numerical data in an intuitive
way which is instantly understandable, even by peo-
ple without specialized knowledge. For integration
of visualization in Modelica multi-body simulations,
the "DLR Visualization Library" has been developed.
This paper presents the newest additions to the library
and shows their application in several DLR projects.
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1 Introduction

The visualization of simulation data is an important el-
ement of advanced simulations. With the increasing
complexity of modern multi-body simulations, con-
cerning for example flexible bodies, thermal dissipa-
tion, or contacts, the demands for a realistic, real-time
capable visualization of the simulation also rise. Us-
ing Modelica as modeling language allows the user
to pack model functionality in reusable sub-models,
e.g. as a replaceable block for a suspension, an engine,
etc. This also enables the integration of visualization
definitions into the single sub-models, eliminating the
need for an additional visualization definition in a sep-
arate program.

In 2009, the "DLR Visualization Library" for Mod-
elica has been introduced under the now deprecated
name "DLR External Devices Library" [1]. The li-
brary features a variety of visualization blocks to be
used directly as visualizers within Modelica. Visu-
alization elements like configurable rigid bodies (e.g.

sphere, box, gearwheel) or rigid and flexible bodies
generated from CAD files can be displayed by con-
necting their respective Visualizer block to the cor-
responding frame in the multi-body model. Figure 1
shows an example scene created in Modelica and its
visualization. Using the C-interface of Modelica, the
visualization information is transmitted to the external
visualization software which is started automatically

Figure 1: Top: Modelica model for a single cylinder,
showing the integration of model and visualization.
Bottom: The corresponding 3D visualization of a ra-
dial engine.
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with the simulation and allows the user to replay and
observe the simulation run in real-time and export it as
video. Furthermore, as a result of the latest develop-
ment, the library features a feedback channel, allow-
ing the visualization to influence the simulation. This
makes it possible to interact with the simulation us-
ing a graphical user interface (GUIs / HUDs), defined
in the Modelica model, and to evaluate collisions be-
tween visualization elements, this is for example re-
quired in contact force calculations.

The following sections shall introduce the newly
added features to the "DLR Visualization Library" and
present some application examples of its use in ongo-
ing research topics at DLR.

2 State of the art

The first attempts to create 3D Visualizations with
Modelica was in 2000, when Engelson [2] started a
discussion about techniques for the integration of vi-
sualization information with Modelica code. In his
paper he presents a set of annotations for 3D graphic
primitives and standardized simple geometries. Visu-
alization would then have to be implemented by IDE
tool vendors. Even though it brought up the idea of
creating visualizations from Modelica models, the pre-
sented techniques were never implemented on a larger
scale.

Yet, the idea of creating 3D visualizations from
Modelica simulations persisted and in 2003 Otter et
al. [3] revived the "MultiBody Library" of the Model-
ica standard library. This change introduced a new sub
library called "Visualizers", containing shape objects
for simple 3D forms as well as more complex objects
from files. These are Modelica blocks and as such may
easily be integrated in existing models or may be used
in the creation of submodels which contain both simu-
lation and visualization information. The visualization
itself is redirected to the ModelicaServices library, re-
sponsible for all vendor specific implementations. So
the Modelica standard library provides a standardized
visualization description, to be implemented by Mod-
elica IDE vendors. This technique is now part of all
major simulation environments.

In 2008 Hoeft et al. [4] revisited the ideas of Engel-
son, this time integrating the powerful X3D standard
in Modelica annotations. X3D, short for Extensible
3D Graphics, is an open international standard, devel-
oped for web applications. It is a representation of a
3D environment with XML. They present new annota-
tions with X3D code and show an implementation of

the technique in the MOSILAB simulator.
Furthermore the Modelica3D library was presented

by Höger et al. at the 2012 Modelica Conference [5].
It implements a scene graph in Modelica and uses the
C-interface to connect the simulation front-end with
the visualization back-end via interprocess communi-
cation. Besides their Modelica library, two different
back-ends are presented. One based on the Open-
SceneGraph 3D library and one based on the Blender
3D graphics software.

Unsatisfied with the existing visualizers, provided
by "MultiBody Library", we implemented the "DLR
Visualization Library". It is based on the ideas of En-
gelson and Otter, but tries to take those to the next level
with more complex 3D environments, visualizations of
mass and power flow, flexible deformation of objects
and many other features in a high fidelity rendering.

3 New Functions

3.1 3D-Elements

3.1.1 Dynamic textures

Given a 2D Matrix of 3D points, the flexible surface
element may be used to display arbitrary shapes, with
the ability to deform during the simulation. More de-
tails may be found in [1].

A new addition to flexible surfaces is the ability to
display videos as textures, both local files as well as
video streams from a network, as shown in figure 2.
For local files the video is synced with the simulation
time stamp. For network streams this is not possible
and the surface will always display the last received
image. The supported network protocols and the URL
definitions for opening streams are inherited from the
underlying FFmpeg library and are described in [18]
in detail. Most commonly used protocols are thereby
supported, such as: RTP, FTP, MMS, HTTP and HLS.

Figure 2: Full HD MPEG Video image from a pre-
sentation of the DLR Robotic Motion Simulator [9],
rendered onto a flexible surface.
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Figure 3: On the left a simple 3D scene; on the right
this part is rendered on a flexible surface using a virtual
camera, symbolized on the upper left side. All parts
are in the same scene.

Besides Videos, images from virtual cameras can
be rendered onto a flexible surface. For this purpose
a standard camera from the "DLR Visualization Li-
brary" is placed in the scene and its output mode is set
to "render to texture". The camera output can then be
selected as texture for the flexible surface. The result
is a camera image, drawn on the surface in the same
way it would otherwise be drawn on screen. An exam-
ple of this is illustrated in figure 3. The whole image
shows one scene. On the left side a few objects are
arranged and on the right side a flexible surface is de-
picted which shows the left part of the scene again, as
seen from the virtual camera above the arrangement,
rendered as a texture on a flexible surface.

3.1.2 Feedback - HUD

In [1] all communication was strictly from the sim-
ulation to the visualization. The following, new ele-
ments abandon this concept. They not only send data
from the simulation to the visualization but also re-
ceive data, which may then be used to influence the
simulation.

The first interactive objects presented here are inter-
active HUD elements. The base class for all of these
elements is the button class. This defines an invisi-
ble HUD object in the visualization and with outputs
in the simulation which are dependent on user input
on the visualization. By combining the button object
with HUD elements for the representation and Model-
ica logic for reactions, typical user interfaces, like but-
tons or sliders, can be created and used as interactive
input for simulations. The button base class is capa-
ble of reacting to mouse-over events while the mouse
cursor hovers over them, mouse clicks and dragging
of the element by moving the mouse while a button

Figure 4: At the top part simple HUD elements are
presented and below that their representation in the
Modelica graphical designer.

is clicked. The "DLR Visualization Library" contains
with a selection of predefined GUI elements, using the
described button base class. The following HUD ele-
ments are depicted in figure 4:

• Buttons are by default visualized as simple
squares with a label. They have a Boolean out-
put value which is "true" for as long as the user
presses it and "false" otherwise.

• Check boxes have a different look but actually
behave very similar to buttons, except the out-
put value behaves like a flip-flop. Permanently
changing its value with every click.

• Sliders for simple adjustment of continuous val-
ues

3.1.3 Feedback - Collision detection

The description of complex 3D geometries usually
uses geometric meshes. Reading the according data
from files, interpreting it and running collision detec-
tion algorithms from Modelica is complicated. Phys-
ical simulations, especially in the area of multi body
simulations often require to measure the distance be-
tween objects or contacts between objects. The re-
quired data, especially the interpretation and arrange-
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Figure 5: Collision detection with visualization of the
contact. The red line represents the collision detector,
the sphere shows the contact point and the arrow dis-
plays the surface normal.

ment of 3D mesh data, is already present in the visu-
alization. To make this data accessible for the simu-
lation the collision detector object is introduced. The
collision detector is a line in the 3D scene with a de-
fined start and end point. If the line intersects another
element in the visualization it produces an output for
the simulation. The output data includes a Boolean
value, indicating whether or not a collision occurred,
the distance of the first collision, measured from the
start point and the surface normal vector of the collid-
ing object at the position of the collision. The collision
detection may also be visualized as shown in figure
5. The simulation and the visualization are running
independently at different frequencies. In our exam-
ple (see section 4.3), the Modelica simulation of the
contact forces runs at a rate of 1kHz, but the visual-
ization calculating the collisions is bound to the frame
rate of the graphics card and is as such dependent on
the complexity of the scene and the hardware. By sub-
sampling the communication calls from the simulation
to the visualization, a minimum frame rate of about
30−100Hz for the visualization is defined. If the visu-
alization fails to achieve this frame rate, the simulation
is slowed down below real-time speed as it has to wait
for the answer of the visualization system providing
the collision data. Because the simulation requires the
collision data for each integrator step, a sample and
hold interpolation is performed on the collision data,
which saves the last received collision data until new
ones are available. A high-level overview of this prin-
ciple is depicted in figure 6.

3.1.4 Weather effects

To enhance the realistic impression of the simulation,
the "DLR Visualization Library" provides a selection

Figure 6: High level view of the collision detection
system

of the most common weather effects for the simula-
tion. These include: Rain, snow and fog. An example
of the rain effect is shown in figure 7. For precipita-
tion both the intensity of the effect as well as the wind
direction and speed can be set. Wind can be used to
simulate the effects of wind on the direction of pre-
cipitation. Fog is parameterized with three values: a
starting distance for the fog effect and an end distance,
where the view is completely blocked by the fog. Also
the color of the fog can be adjusted. The applicability
of those effects is not necessarily limited to the simula-
tion of weather but could for example be used in under
water simulation to show the effects of murky water.

Figure 7: An exemplary scene with rain effect

3.1.5 Paths

Visualizations often require complex motions of cam-
eras and objects through space. This is type of prede-
fined movement is seldom used in multi body simula-
tions and therefore it is complex to define using the
Modelica standard library. To simplify the creation
of visualizations, new path definitions are provided.
Paths are a multi-body connector frame with a time
dependent output. Four different kinds of paths are
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Figure 8: Top to bottom: circular, linear, Bezier, cubic
spline; spheres: control points.

available as shown in figure 8: The first type shown
here is a circular movement. The circle is defined by
a center point with orientation and the radius. The
simplest paths are point to point connection. A list
of points is supplied and the resulting path is a lin-
ear interpolation between those. For smoother paths,
Bezier curves can be used. The path is only guaranteed
to pass through the first and the last point the remain-
ing points only "stretch" the path towards them. The
fourth kind of paths is based on cubic spline interpo-
lation. Like Bezier curves these provide very smooth
paths. In contrast those the line is always guaranteed
to pass through all points. This often simplifies the
definition of paths but might lead to overshooting in
certain constellations.

3.1.6 Trace shape

Following the 3D movement of multiple objects at
once can be hard. To display this motion, a trace-shape
can be attached to any object. The trace-shape object
then generates a line trail as the object it is attached to
moves through space, thereby intuitively representing
the objects trajectory. For the illustration of multiple
trails, the line thickness, color and length can be ad-
justed by the user as needed. An example can be seen
in figure 9.

3.1.7 Sky-Box

"Empty" space, areas on screen in which no object is
defined, are by default filled with a solid color. This is
suitable for small animations or abstract illustrations
but for many applications a more realistic represen-
tation is required. For example in outdoor scenarios
those areas should show the horizon and the sky. For
this purpose the sky box is introduced. The sky box

Figure 9: Movement of a robots tool tip visualized us-
ing the trace shape.

is always depicted as infinitely far away and is com-
posed of two layers. The front layer is used for dis-
playing some sort of horizon. An example would be
distant hills or a tree line. The user has to supply six
images (It is designed as a cube with the view point
in the middle. One image per side). Behind this layer,
visible through transparent areas in the images, the sky
is drawn. The user has to provide a date, the time and
a position on earth in form of longitude and latitude.
The OsgEphemeris library [13] then uses this infor-
mation to calculate the correct position of the sun and
the moon during the day and an astronomically correct
star field during the night time. The result is a realistic
background for the simulation.

3.1.8 Particle System

The particle system is used for displaying objects, con-
sisting of many sub-objects and cannot be modeled as
traditional meshes. Examples for these kinds of ob-
jects include streams of water, fire, smoke and dis-
persed dust. Those objects are visualized using a large
number of small objects, showing a simple image,
called particles. Those particles are send out randomly
from an emitter, follow a certain path while poten-
tially turning, changing color and transparency, until
the path reaches a certain length and the particle dis-
appears. Using the right image, a large number of ob-
jects, and a specific movement, this raises for example
the impression of water flowing from a pipe.

The Modelica blocks for modeling particles are di-
vided by emitter type. The emitter is the area, from
which the particles are shot. The three types available
in the "DLR Visualization Library" are: Point emitter,
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Figure 10: Top: Three types of particle emitters. From
left to right line emitter (along z-axis), point emitter,
and area emitter (circular shape in x− z-plane);
Bottom: Particle effects used to display exhaust from
a space rocket.

line emitter and area emitter. Examples for each type
are depicted in figure 10. The particles are created ran-
domly within certain bounds, such as mean number
of particles per second, configurable for each emitter.
Furthermore the particle may change its color, trans-
parency, size over its life time. The final set of param-
eters then determines the path particles will follow.

3.1.9 Virtual Planet Builder and large scale ter-
rain visualization

The visualization engine is based on the open source
library OpenSceneGraph [12], allowing its use in con-
junction with another OpenSceneGraph application,
which is itself not part of the library: Virtual Planet
Builder [14]. Using digital elevation data, like it
is commonly produced in aerial surveys with spe-
cial cameras, Virtual Planet Builder can produce 3D
sceneries at scale of whole planets. This is accom-
plished by auto generating different levels of detail
and by converting the scenery in a special file format.
The planet surface is tiled into junks. When viewed
from a faraway distance large areas are combined into

one large tile with very little detail. As the camera
moves closer to a certain area the corresponding tile is
split into smaller junks with more detail. This process
is reiterated while the camera closes in until a maxi-
mum degree of detail is reached. For the viewer the
switchover is not visible for the lower level detail at
which a tile is rendered from afar, is not visible. Of
special importance is the way the data is preprocessed
and stored in a special format, allowing the renderer to
load certain parts at different levels of detail as needed,
very efficiently. This technique makes it possible to
show extremely large areas while retaining a high level
of detail. Figure 11 shows an earth model, created with
Virtual Planet Builder from satellite images.

When rendering these planetary scale images in
conjunction with small, close up objects, in setups like
the satellite simulation in figure 11, graphical glitches
appear. During the rendering process, each pixel is as-
signed a depth value to determine how objects overlap
each other from the cameras perspective. The techni-
cal implementation of this uses a so called depth buffer
or z-Buffer which safes each pixel distance from the
camera (the depth or z-value). This is a, typically 24-
bit on modern machines, fixed point value in the range
[0,1], where 0 represents the near plane (minimum dis-
tance from camera) and 1 the far plane (maximum dis-
tance) of the view frustum. Therefore, with increas-
ing distance between the near and far plane, the depth
buffer resolution decreases. When the depth value of
two points is so small that the depth buffer is unable
to represent the difference graphical glitches become
visible [15]. The minimum depth difference repre-
sentable by the depth buffer ∆zmin can be calculated
with equation (1). z is the depth value, n is the near

Figure 11: A model of planet earth, generated us-
ing virtual planet builder, in a satellite simulation;
Logarithmic Z-Buffering allows for a detailed satel-
lite model in the foreground and an earth model at real
scale behind it.
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plane distance and b is the depth buffers resolution in
bit. The higher resolution at low distances is caused
by perspective effects.

∆zmin ≈
z2

2bn− z
(1)

Logarithmic depth buffers are a well known technique
which seeks to attenuate this problem by applying a
logarithm to the depth value before it is written to
the depth buffer, thereby increasing the resolution for
close objects, where small difference are more likely
to be important at the expense of the resolution for
distant objects where small differences are less likely
to become visible. Equation (2) show the conversion
from the original value z to the new value zlog. The ad-
dition parameter C is used to adjust whether close or
distant objects are preferred.

zlog =
2ln(Cz + 1)

C f + 1
−1 (2)

Using a logarithmic depth buffer alters the depth buffer
resolution. It can now be calculated with equation (3).
[16]

∆zlogmin ≈
ln(C f + 1)

(2b−1) C
Cz+1

(3)

For example, the satellite visualization requires a
render distance of 1m to 15000km. With a 24bit depth
buffer this results in a minimum depth separation of
less than 1mm at the satellites distance of 100m, but
between ≈ 550m and ≈ 1100km at the earths distance
of 300km− 13000km, causing visible problems with
its rendering. Using logarithmic depth buffers with a
C Value of 0.001 the minimum separation for the satel-
lite also lies below 1mm, yet for earth it is in the range
of about ≈ 20cm−7.5m which is well below the visi-
ble range at this distance.

3.1.10 Oculus Rift Integration

The Oculus Rift is head-mounted virtual reality dis-
play, currently under development by Oculus VR. At
the time of this paper, it is only available as a devel-
oper preview version with a finalized consumer prod-
uct in development. The head-mounted system de-
picted in figure 12 includes a display with a resolution
of 1280× 800, two fish eye lenses stretching the im-
age to a field of view of about 90 ◦−110 ◦ and a three
degree of freedom rotational acceleration sensor [17].
With this device it is possible to generate a fully im-
mersive experience in a 3D environment, nearly filling
the user’s entire field of view and following his mo-
tion as he moves his head. The "DLR Visualization

Figure 12: The Oculus Rift head-mounted virtual real-
ity device.

Library" supports the currently available Oculus Rift
Development Kit as alternative display device for any
kind of already integrated cameras. All setup steps and
the camera orientation change as reaction to the users
head movement are handled fully automatically.

3.1.11 HUDs

Head-Up-Displays are a two dimensional layer in front
of the three dimensional scene. The possible applica-
tions for this kind of display range from overlaying lo-
gos, over the display of model state variables to com-
plex interactive user interfaces. All user interfaces are
composed of five base elements: The first element is
text. Text can change dynamically and therefore be
used to display model states or variables. Also typ-
ical text formatting methods such as different fonts,
bold text and so on are supported. The second type
of elements is a line drawn along a list of user pro-

Figure 13: Various HUD elements used to recreate a
plane’s cockpit instrumentation with artificial horizon,
speed and altitude meters alongside a compass and en-
gine status displays.
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vided points. Next are free form faces, displaying a
filled form based on polygon points provided by the
user. Lastly, for more complex images, graphics files
can be included. Of course the HUD elements pre-
sented here can be combined in the creation of new
more complex elements. A small selection of such el-
ements is included with "DLR Visualization Library".
An example is a scope for the presentation of variable
trajectories, a combination of lines, images and text, or
the airplane cockpit instrumentation in figure 13. The
last type is an interactive button base class which will
be discussed in a later section.

Attention has to be paid to the arrangement of HUD
elements for the size of the window they are drawn is
variable even at runtime. Therefore it would be im-
practical to use absolute coordinates and instead rela-
tive coordinates are employed. For the adaptation to
a changed display size the user can choose of the fol-
lowing four techniques:

1. The horizontal coordinate value spans over the
horizontal display size and the vertical value is
adjusted to its size is such a way that aspect ratio
is preserved.

2. The same as 1 but for the vertical instead of the
horizontal coordinate value.

3. The program automatically changes between
technique 1 and 2, depending on the smaller side.

4. Relative coordinates range for both horizontal
and vertical coordinates range over the whole dis-

Figure 14: The "DLR Robotic Motion Simulator"

play size. The aspect ratio might be distorted de-
pending on the display window setup.

4 Applications

This section exemplifies the real world application of
the previously introduced visualization objects with
help of their implementation in the "DLR Robotic Mo-
tion Simulator". An experimental motion simulation
platform, currently under development at DLR. The
system is depicted in figure 14.

4.1 ROboMObil GUI

The ROboMObil is a robotic car, developed at the
DLR with four separately rotatable wheels, granting
a new level of maneuverability. To make use of it, the
specialized user interface in figure 15 was developed,
using the previously described HUD elements. It is
displayed on a touch screen device in the cockpit of
the real prototype car

Figure 15: The ROboMObil GUI, as shown on the
touch sensitive device of the ROboMObil cockpit, as
well as the graphical Modelica designer. Left bot-
tom: the user can choose between different operational
modes; right: Enter additional options for the selected
mode. In the rotational mode shown here, the user can
select an instantaneous center of rotation
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and in the simulators cockpit mockup. The concept
is explained at full detail in [8]. The upper left part
shows the current and the target speed. Below that
the driving mode can be selected and the right part is
selecting a rotation center point, required for certain
driving modes. The second part of this image shows
the full integration of the GUI with other parts of the
simulation directly in the model description with Mod-
elica.

4.2 Flexible trajectory planning

The design of a complex trajectory in 3D space, for a
predefined movement of objects or cameras, can be a
rather difficult and time consuming task, if it has to be
accomplished by the direct manipulation of numeric
parameters. Therefore the interactive Trajectory De-
signer has been developed to provide a convenient way
of creating control point parameters for a B-spline in-
terpolated movement of position and orientation. The
trajectories velocity is interpolated with a two times
derivable sinusoidal function.

In order to generate a smooth trajectory through ac-
curately defined bases containing a position and ori-
entation, we use quaternions for orientation and B-
Splines for interpolation between these bases. A B-
Spline curve T (x) consists of control points Pi, i ∈
1 . . .n − p and B-Spline base functions Ni,p,τ , i ∈
1 . . .n− p−2:

T (x) =
n−p

∑
i=1

PiNi,p,τ (x) . (4)

The control points Pi each contains seven elements;
three for position and four for the orientation repre-
sented as quaternion. A base function Ni,p,τ is defined
as a polynomial piece with order p and knot vector τ:

Ni,0,τ (x) :=
{

1, x ∈ [τi,τi+1 [
0, otherwise

(5)

Ni,p,τ (x) = x−τi
τi+p−τi Ni,p−1,τ (x)

+
τi+p+1−x

τi+p+1−τi+1 Ni+1,p−1,τ (x) p> 0
(6)

The knot vector τ = [τ0, . . . ,τn−1]T ,n ≥ 2p,τi ≤
τi+1 and τi ≤ τi+p has to be chosen. The algorithms
of our implementation set the first and last p knots
equal. There are different approaches setting the re-
maining values, see [11] [10, p161]. For the traje-
tory designer we use a base functions with degree 3
in order to get a smooth trajetory with a continuity of
the second derivative. The parameter x defines the po-
sition on the trajectory, T (x) returns the interpolated

value P(x) containing the three-dimensional position
and an interpolated quaternion. The quaternion inter-
polation corresponds to a linear quaternion interpola-
tion (LERP)[6]. Therefore the resulting L2-Norm of
the vector is less than 1 and has to be normalized re-
sulting in a unit quaternion which leads to an varying
but continuous rotational velocity. Furthermore the
trajectory designer provides the functionality to set a
velocity at each control point. The behavior of the ve-
locity between the points is computed through sinu-
soidal functions:

v(λ ) = (λ − 1
2

π sin(2πλ ))(vi+1− vi)+ vi; (7)

with vi the velocity of the left and vi+1 the veloc-
ity of the right control point within the interval be-
tween Pi and Pi+1. The second derivative of this si-
nusoidal function is continuous and zero at the left
and right end providing a smooth transition at the con-
trol points. The integration of the velocity v leads to
the current position on the trajectory x. Therefore,
vi ≥ 0, i ∈ 1 . . .n− p.

The tool is operated by a small selection of key-
board commands and offers three operating modes to
manipulate the position, the orientation and the asso-
ciated velocity of the control points. In all modes con-
trol points can be removed or inserted. For verification
of the resulting interpolated movement a live preview,
adjusting to the manipulation of control points in real-
time, is available. The preview shows a coordinate sys-
tem traveling along the spline in the main scene and

Figure 16: The trajectory designer tool showing a path
(green line) above Mt. Everest. In the upper right cor-
ner a window previews the camera’s trajectory while
working on it.

Session 5E: Modelica Tools 3

DOI
10.3384/ECP14096899

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

907



a point of view rendering, adequate for the preview
of camera movements, in a separate picture-in-picture
preview area. The complete interface is depicted in
figure 16. The coordinates, orientations and velocities
are finally stored as vectors in a text file, which can be
used to reload the control points for further manipula-
tion or later playback.

4.3 Wheel ground contact

The simulation of cars requires the modeling of con-
tacts between wheels and the ground, realized using
the collision detector elements. An abstracted model
is shown in figure 17. This contact model is then the
basis for far more complex models, such as the car
shown in figure 18. In this simulation the load on the
wheels will shift when driving on uneven terrain and
the suspension reacts accordingly. The ground plane
in the simulation can be any 3D shape.

The wheel vertical force is calculated according to
the following equation. The contact force f is the sum
of a spring force s and a damping force d.

~f =~s + ~d (8)

The spring force is calculated using the penetration
depth of the collision object and an other object p, as
well as a spring constant provided by the user S, to
push the wheel away from the other object, along the

Figure 17: Wheel ground contact in the graphical
Modelica designer and as 3D visualization.

Figure 18: A car driving on a plane. White arrows
indicate surface normals for contact points.

objects surface normal at the point of contact.

~s = S · p ·~n (9)

Just using a spring force would result in a constantly
bouncing wheel. To model energy dissipation, a damp-
ing force d is introduced. It is calculated using the
collision objects speed ṙ in the direction of the surface
normal n, a user provided damping constant D and the
resulting force, just as the spring force, acts in the di-
rection of the normal. Lastly the damping force should
only be present during impact. Otherwise the wheel
would act as if it was glued to the surface.

~d = D ·min(0,~̇r ·~n) ·~n (10)

This way of simulating object collisions does come
with certain draw backs. First of all, it intrinsically
requires the two colliding objects to interpenetrate.
While problematic for rigid bodies, it is a reasonable
approximation for flexible objects like the car tires in
the presented example. When trying to minimize the
interpenetration a further problem arises. The larger
the spring constant s, the stiffer the simulation gets,
requiring ever smaller simulation time steps. Other-
wise the interpenetration from one step to the next
can be so large, the resulting force from equation (9)
gets unrealistically large, hurling the wheel away. The
same problem can occur when the wheel is moving
with high speed and the ground inclination changes.
The sample-and-hold technique used in the communi-
cation, delays the point in time when the simulation
is able to "see", the changed ground inclination. This
is depicted in figure 19. The wheel on the left moves
at high speed to the right but due to the slower visu-
alization time steps, the ground inclination change is
communicated to the simulation with delay, causing
the wheel to penetrate the ground.
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Figure 19: Wheel moving at high speed from left to
right. Due to the fact that the simulation does run faster
than the visualization, the inclination change is recog-
nized to late. Dotted line: ground level as detected by
the simulation; red line: error due to sample and hold
technique

For small and fast moving objects, it is even possi-
ble for object collisions to be missed completely. The
collision detection object only detects collisions with
object surfaces so if an object moves so fast towards
an other, that the position "jump" between time steps
is larger than the collision object length, the collision
might get missed. This case is described by equation
(11) where v1 and v2 the speed of the two objects and
i1 and i2 are start and end point of the collision object.

∣∣∣∣
∣∣∣∣

v1− v2

||v1− v2||
· i1− i2
||i1− i2||

∣∣∣∣
∣∣∣∣

1
f
> ||(i1− i2)|| (11)

4.4 Image warping

The capsule in figure 20 is part of a simulator project.
At the back, besides the head of the pilot, are two pro-
jectors. The projection screen is the open capsule shell
to the top right. The shell has a complex geometry,
deforming the images projected onto it. In order to
present a rectified image to the pilot a reverse defor-
mation has to be applied to the image prior to projec-
tion. This preprocessing utilizes the render image to
texture functionality on a flexible surface. Due to the
fact that a flexible surface is used, the image can be
warped as needed (see figure 20) and with the correct
configuration, the final image appears restituted to the
pilot.

4.5 Manned vehicle simulation

The "DLR Robotic Motion Simulator" uses the cap-
sule shown in figure 20 and an industrial robot to
which the capsule is attached as shown in figure 14.
The robot is then used to apply accelerations, in accor-
dance with the simulation, on the pilot, thereby creat-
ing an immersive motion simulation. A detailed de-
scription of the "DLR Robotic Motion Simulator" can

Figure 20: The piloting capsule of the "DLR Robotic
Motion Simulator"; On top the stereo images after
warping; The images are projected on the capsule and
appear restituted; In front of the pilot is a touch sensi-
tive display.

be found in [7]. In this application all of the previ-
ously shown applications are utilized. The pilots’ main
screen is restituted using the render to texture feature
on a flexible surface; the console in front of the pilot
shows an input GUI on touch screens, and the vehi-
cle simulation uses collision detection objects for the
wheel ground contact analysis.

5 Limitations

The presented library does have certain limitations in
its current state, of which the following three are cur-
rently under investigation for improvements. The first
one is the design of the collision detection system: it
only allows for collisions with a line object, limiting
its use to applications where the point of contact is pre-
dictable, such as the presented tire, where the contact
point can be assumed to be in the direction of grav-
ity, while arbitrary contact points, like the collision
of a car with a pole, can not be modeled in a similar
fashion. Also the underpinning architecture, as intro-
duced in [1], only permits retroactive collision detec-
tion. It only detects interpenetration of the collision
object with an other object after it happened and with-
out any possibility of detecting the exact time of con-
tact. Any contact model relying on the collision data
has to account for this. The second item for improve-
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ment is the graphical fidelity. While the current system
provides very high fidelity compared to other products
for scientific visualization, it does not hold up when
compared to state of the art graphics as seen in mod-
ern computer games. The visualization of simulation
data might not require such graphics, yet in virtual re-
ality applications the best graphics possible are desired
to maximize the users level of immersion. For com-
parison between our solution and a modern computer
games engine see figure 21. For better visibility a very
simple scene was selected here. On the top our so-
lution is shown, with shadows enabled. Below that,
the same scene is displayed using the Unity3D en-
gine [19], with deferred lighting, advanced soft shad-
ows, field of view and screen space ambient occlusion
among other effects. Even thought it is very simple,
the second scene looks more realistic. Finally, the vi-
sualization library is based on Modelicas multi-body
library. In virtual reality applications a large number
of visualization elements gets connected using frame
connectors. Even for static and fixed compositions
the number of resulting equations gets extraordinar-
ily high. An empty scene, with only the multi-body
world object and the visualization libraries update-
Visualization object, requires 1073 equations. Each

Figure 21: A simple scene for comparison between our
current visualization on the top and below a modern
computer games engine

additional ElementaryShape (e.g. a simple box) in-
troduces 217 equations and each fixedRotation object
used to arrange the objects in the scene further requires
102 equations. Clearly this modeling is too complicate
and for complex simulations it can lead to performance
problems. Since described problem is caused by Mod-
elica’s design of the multi-body library, we propose
a simplification of the connector for the case that no
masses are involved, when the multi-body library gets
reevaluated in the future.

6 Conclusion

Visualization is an important, if not necessary, aug-
mentation for a multitude of simulations. The "DLR
Visualization Library" provides a sophisticated visu-
alization framework for the Modelica modeling lan-
guage. The paper presented the new additions to the
library: videos and camera images rendered on flexi-
ble surfaces, advanced user interfaces, a collision de-
tection system, weather effects, paths, the trace shape,
a particle system, sky-boxes and integration with Vir-
tual Planet Builder and support for virtual reality hard-
ware. Furthermore, real-life applications for these new
elements were presented as they are used in the devel-
opment of the "DLR Robotic Motion Simulator".

In comparison with the other existing libraries, our
implementation is not based on annotations and there-
fore does not rely on vendor specific annotations. Also
it is not only possible to render all visualizers de-
scribed in the standard MultiBody library but it also
heavily augments its rather limited possibilities. In re-
lation to other solutions, the "DLR Visualization Li-
brary" provides the richest feature set along side high
fidelity results.

The visualization component is currently developed
for Windows XP, 7, 8 and a Linux version is in Beta
test with a installation package for Ubuntu 12.04 avail-
able. The library it self utilizes the Modelica C-
interface and should therefore be compatible with a
wide range of simulation environments but currently
only Dymola has been tested excessively and is offi-
cially supported.

In conclusion, the library proves useful for gaining
an intuitive understanding of multi-body simulations,
the creation of presentable results and the creation of
interactive virtual reality environments.
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