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Abstract

Omni wheel is defined as one having rollers along its
rim. Respectively omni vehicle is one equipped by
omni wheels. Several steps of development of dynam-
ical model of the omni vehicle multibody system are
implemented. Essential parameters of the model: (a)
number of rollers per the wheel, and (b) angle of the
roller axis inclination to the wheel plane, are intro-
duced. Initially, dynamics of the free roller moving in
a field of gravity and having a unilateral contact con-
straint with horizontal surface is modeled. The con-
tact tracking using simplified and efficient algorithm
turns out being possible. On the next stage the omni
wheel model is developed and debugged. After that
the whole vehicle model is assembled as a container
class having arrays of objects as instantiated classes /
models of omni wheels and joints. Dynamical proper-
ties of the resulting model are illustrated via numerical
experiments.

Keywords: omni wheel; contact tracking; unilateral
constraint; contact detection; model of friction

1 Introduction

Investigation of omni vehicle dynamical properties is
sufficiently popular topic in frame of the multibody
dynamics [1, 2, 3, 4]. The omni vehicle is one hav-
ing omni wheels, wheels equipped by rollers along
the rim. Simplified, idealized models having contact-
ing rollers as an infinitely small discrete elements are
known. Thus one has a resulting non-holonomic con-
straint being “uniformly distributed” over the wheel
rim. As a result, paradoxically, the physical objects,
omni wheels, describe approximately, in this situation,
an idealized object, “simplified” infinitesimal model.

Our goal in this paper is to develop a technique for

building up a dynamical prototype for the “real” model
of the omni vehicle explicitly involving dynamics of
physical rollers. Here we rely upon the “simple”3D
multibody dynamics library classes utilized previously
in several examples of the multibody systems dynam-
ics [5]. Simultaneously this library enables us to create
complex dynamical models including unilateral con-
straints of different nature.

Unlike to [2, 3] we emphasize here on the details
of the unilateral constraint implementation paying spe-
cial attention to contact switching when rollers chang-
ing.

2 Problem formulation

Upon describing the omni vehicle model construct
note that the number of rollers per each wheel and the
angle of inclination of the roller axis of symmetry to
the wheel plane are both fundamental parameters of
the vehicle dynamical model. For simplicity and pre-
sentation clarity we currently consider omni wheels
being equipped by four rollers. Also, for simplicity
rollers themselves have their axes of symmetry lying
in the wheel plane, see Figure 1. These fundamental
parameters are easily changed in a way simple enough.
We assume also that the rollers are located on the omni
wheel such that for wheel vertically aligned a projec-
tion of the curve of contact consists of segments in the
sequence, each segment corresponding to the contact
of individual roller. These segments are connected in
a way such that the normal relative velocity at con-
tact is equal to zero at the switching point of rollers.
This means that the normal impact is always absent.
Discontinuities of the tangent relative sliding veloc-
ity are absent for zero angle of inclination. But the
tangent force of friction may have discontinuity of the
first kind in the worst case of angle of inclination if the
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roller symmetry axis to the wheel plane is non-zero.
Thus, the wheel linear and angular velocities will be
continuous at an instant when roller switching contact.
Similar statement takes place for rollers, as well. Then
tangent impacts are also absent.

Figure 1: The omni wheel vertically aligned.

Note, in addition, that the curve of contacting points
forms thexy-projection onto the wheel plane, having
a shape of the circle of radiusR, see Figure 1. Thus
for translational and rotational motion we have conti-
nuity as well. Resúming we are able to conclude that
the regularity of motion is conserved as roller switch-
ing at contact. At least on the level of integrity of
the omni wheel. Recall, that all the description above
takes place for vertical alignment of the omni wheel.

On the next level of assembling process, several
omni wheels are interconnected with the moving plat-
form of the vehicle, see Figure 2, using joint constraint
as a class from the previous stage. In our case, number
of wheels may be three or more. They can form differ-
ent configurations on the platform body. We analyse
an example with three wheels forming an equilateral
triangle in the plane of the platform, see Figure 2, par-
allel to the coordinate horizontal planezx. Axis y here
is assumed vertical.

3 The roller dynamics model

Firstly, we presume that the roller is axisymmetric
spindle-shaped rigid body having outer surface defined
in body frame of referenceOxyz, see Figure 3, by

Figure 2: The three wheeled vehicle. Top view.

equation

x2 +
(√

y2 +z2 +R1

)2
= R, (1)

where R is the omni wheel radius,R1 = Rcosα is
the distance from the roller center to the wheel cen-
ter, α = π/n is the half of the roller opening angle of
visibility from the wheel center,n is number of rollers
per wheel.

Figure 3: The roller over horizontal surface. Lateral
view.

Dynamics of the roller translatory–rotary motion is
implemented using equations of Newton – Euler as
was shown in [6]. And rotational motion was modeled
by the quaternion algebra [7].
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Algorithm for contact tracking plays an important
role for the correct and efficient work of the computer
model of the contacting process of the roller and the
horizontal surface. For modeling and simulation of the
rigid body dynamics with unilateral constraint we ap-
ply the technology described in [8]. So we could have
used in the object of contact a system of well known
algebraic or implicit differential–algebraic equations.
However, these equations degenerate at the roller tips
defined by equationsx = ±Rsinα in the roller coor-
dinates, see Figure 1. Usually, such a degeneration
causes an abnormal completion of the simulation pro-
cess.

In our case of the spindle-shaped roller over the hor-
izontal surface, arranging the contact tracking proce-
dure turns out being sufficiently simple. So one can
point out explicit procedure for computing the near-
est pointPB of the roller to the horizontal surface, see
Figure 4. This surface has its own nearest pointPA at
contact. Evidently the pointPA is a vertical projection
of the pointPB of the roller.

Figure 4: Contact tracking scheme.

Denote byi = (1,0,0)T the unit vector along the
axis OBxB of the roller connected coordinate system
from Figure 4. This vector is resolved with respect to
(w. r. t.) the systemOBxByBzB. Let TB be the rotational
matrix of the roller w. r. t. the inertial frame of refer-
ence. The latter frame, in our case, coincides with the
fixed horizontal surface coordinate systemOAxAyAzA.
Also, let rB be the roller current mass center radius
vector w. r. t. the inertial system, andnA = (0,1,0)T

be the ascending vertical unit vector. Simultaneously
nA is the normal vector to the horizontal plane.

Conventionally, we denote the plane as bodyA, and

roller as bodyB. Let d be the horizontal unit vector
defined by equation

d =
TBiB×nA

|TBiB×nA|
.

Therefore, the directed segment
−−→
OBO must have a

lengthR1 and be defined by formula

−−→
OBO = R1d×TBiB.

Here, O is the curvature center for the circle of the
roller vertical section, see Figure 4. This segment is
located simultaneously in the vertical plane and in the
wheel plane. Thus from Figure 4 we see that the low-
est pointPB of the roller outer surface is defined by
equation

rPB = rB +R1d×TBiB−RnA (2)

since thePB lies on the same vertical with the pointO
and on the circle mentioned above. To compute posi-
tion of the pointPA one has to put

rPA = (xPB,0,zPB)T . (3)

All the procedure above is valid only if the vector
TBiB is inclined to the horizontal plane within an angle
±α. Otherwise one has to putPB = B− whereB− is
the “left”, see Figure 4, tip of the roller for angle of the
vectorTBiB inclination greater than the valueα. If this
angle is less than−α then one has to guessPB = B+

whereB+ is the “right” tip of the roller.
Finally, one can write down a contacting condition

between roller and horizontal surface in the form

|TBiB ·nA| ≤ sinα. (4)

This condition, however, is satisfied simultaneously
for the lowest, being in contact, roller, and the highest
one. To reject the latter case one can add to condition
(4) yet another one

yB < R (5)

whereyB is the altitude of the roller mass center w. r. t.
inertial frame of reference.

So a conjunction of conditions (4) and (5) is equiv-
alent to the case of contacting. Otherwise condition
of normal reaction being zero should take place. In-
deed, according to Signorini’s law a following alterna-
tive is implemented for each individual roller: (a) con-
tact takes place – relative normal velocity at contact
should be zero; (b) contact is absent – normal reac-
tion (and tangent too) of unilateral constraint should
be zero.
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Condition (a) has several alternative possibilities of
implementation. Firstly, from the geometric viewpoint
a presence of contact is equivalent to the scalar condi-
tion

yPB = 0. (6)

Its absence is equivalent also to the scalar condition

Fn = 0

whereFn is the normal component of a reaction force
acting on the roller at the pointPB.

Computational experience show that equation of
contact in the form (6) usually causes an abnormal ter-
mination of the simulation process for the dynamical
model of the roller. One has similar result if we use
equation

vn = 0

as an implementation of condition (a). Herevn is the
normal component of the relative velocity at contact
point. And only equation of the form

v̇n = 0

leads to the required result: object of contact works
properly during the simulation process. One has to re-
call here that all the implementation of the contacting
process has the “rigid” point-contact model.

For each roller of the omni vehicle model when con-
tacting the friction model being used is “turned on”.
In our model being developed the “simple” law of the
Amontons – Coulomb dry friction is applied. Actu-
ally we use known piecewise approximation [8] to ex-
act dry friction instead. This approximation has high
accuracy over long time intervals [9]. In general, im-
plementation of unilateral constraint model is based on
the results outlined in [8].

If the angle of inclination for the roller axis of sym-
metry to the wheel plane has non-zero value then some
of the above relations ought to be slightly corrected.
In this case, rollers become distorted along the wheel
rim. Given the positionrO ∈ R3 of the wheel center,
point O, see Figure 4, firstly, we have to build up an
auxiliary base consisting of unit vectors:

i′ = TB




1
0
0


 , j ′ =

rO− rOB

|rO− rOB|
, k′ = i′× j ′.

After that a matrix of coordinates change has the
form T ′ = (i′j ′k′) wherei′, j ′,k′ are assumed as vec-
tor columns. This matrix defines transformation from
inertial frame of reference connected with the fixed

body A to the frame defined by the vector baseB′ =
{i′, j ′,k′} introduced above in the following way




xA

yA

zA


= T ′




x′

y′

z′


 .

To reduce an analysis to the case ofβ = 0 already
considered above we have to rotate the baseB′ aboutj ′

by the angle−β such that after the rotation a new base
B = {i, j ,k} should be aligned with the wheel plane
containing the unit vectorsi, j . The rotation mentioned
has the matrix

S=




cosβ 0 −sinβ
0 1 0

sinβ 0 cosβ




in the baseB′. Then in the base of the indicated body
A the rotation of the unit vectori′ can be represented as
follows i = T ′S(1,0,0)T . Suppose alsoj = j ′, k = i× j .
Evidentlyk = d whered is the unit vector given above.

Thus based on the formula (2) and taking into ac-
count Figure 4 we can conclude that for the case of
β 6= 0 the following result takes place

rPB = rB +R1j −RnA−
R1 tanβ sinγ√

1−sin2 γ
j × i, (7)

where the angleγ satisfies the equation

sinγ = i ·nA.

4 Assembling vehicle model

An assembling process of the omni vehicle prototype
is implemented in two steps: (a) assembling the omni
wheel consisting of the wheel itself and a set of rollers
attached to the wheel; (b) assembling the vehicle by in-
stantiating objects of the omni wheel class from stage
(a) into the container class of the vehicle prototype.

To connect rollers, rather objects of the roller class,
and the wheel we use model of the joint constraint pre-
viously developed and described in [5]. It is simply
revolute class with free relative rotation about its axis.
Codes of all the classes / models for the prototype are
implemented as Modelica classes library. See visual
model of the omni wheel in Figure 5. Here, in our ex-
ample we selected for simplicity and certaintyn = 4.

The model of main interest is one of the whole ve-
hicle which is “assembled” on the second stage of the
assembling process. Connecting devices were also im-
plemented as objects of the same joint class from stage
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Figure 5: The omni wheel visual model.

(a). These joints connect the vehicle body and each of
wheels. All joints above allow relative rotation with-
out any resistance and lock sliding along the joint axis.
See visual model of the vehicle in Figure 6. Here, for
presentability, objects are shown as scalar elements.
Actually, one has to instantiate corresponding arrays
of objects of classes “Roller” and “OmniWheel” for
arbitraryn and arbitrary number of wheels in the vehi-
cle.

Recall that before the DAE index reduction process
implemented in Dymola the whole vehicle model con-
sists of: (a) one rigid body of the vehicle platform;
plus (b) three rigid bodies of the vehicle wheels; plus
(c) twelve rigid bodies of rollers located on the wheels.
According, for instance, to [5] for each object of rigid
bodies we implement six Newton’s ODEs for the mass
center motion plus seven Euler’s ODEs for rotational
motion about the mass center. For the latter case we
have four Euler’s kinematical equations for the rigid

body quaternion plus three Euler’s dynamical equa-
tions for the rigid body angular velocity. Totally, the
whole vehicle model includes system of ODEs of or-
der16·13= 208. Besides, constraint objects are able
to generate additional differential equations.

Wheels being assembled into the vehicle will keep
the vertical alignment unavoidably. For this reason the
simplified contact tracking algorithm described above
works properly.

Computer experiments were performed for differ-
ent numbers of rollers per wheel and using several
friction models at contact between roller and the hori-
zontal surface. Corresponding results were compared.
For instance an evolution of the contact process for
one wheel of the three wheeled vehicle is shown in
Figure 7. Paying attention to the Figure legend we
are seeing variables with suffixes “.h” and respec-
tively curves of four colours. This variables represent
so called mutual approaches for contacting bodies.
Their values are simply distances between rollers of
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Figure 6: The omni vehicle visual model.

the wheel and the horizontal surface of rolling. These
curves correspond to rollers being in different phases
of wheel rotation: before contact, at contact, after the
contact. See an instance of the roller change being
zoomed in Figure 7. For implementing such a switch-
ing it is sufficiently simple to useif-clause thus alter-
nating states of the contact existence / non-existence.
Corresponding fragment of Modelica code may have
the following representation

· · ·
if noEvent(abs((T_B*i)*nA) < cos_of_max and

h < R) then
Drelvn = 0;
Forcet = -fric*relvt*(if

noEvent(relvtsqrt <= delta)
then 1/delta
else 1/relvtsqrt)*Forcen + mu*nA;

else
Forcen = 0;
Forcet = zeros(3);

end if;

Drelvn = der(relvn);
· · ·

The firstif-operator here is responsible for the uni-
lateral constraint detection. Its condition is equivalent
to conjunction of conditions (4) and (5).Drelvn is
the variable being equal to the derivative of the rela-
tive normal velocity at contact. So we have an alter-
native: (a)Drelvn = 0 means the contact existence
or (b) Forcen = 0 means contact absence or, equiv-
alently, zero-valued force of reaction. Vector variable
Forcet simulates tangent force of friction, being com-
puted here using piece-wise linear approximation of
dry friction.

Simultaneously, one can also observe the unilateral
constraint accuracy being kept by the model at contact-
ing, see Figure 8. In this Figure we can observe how
a numeric error of the unilateral constraint feasibil-
ity slowly diverges, mutual approach...h gradually
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Figure 7: Process of rollers contact replacement

Figure 8: Accuracy of the unilateral constraint.

grows, for each successive roller in contact. Mean-
while, an absolute value of error stays near negligible
value of10−7 meters. Change of the curve colour cor-
responds to change of the contacting roller.

5 Conclusions

As a summary of main results obtained in the course of
the omni vehicle model development we can highlight
the following issues:

• There exist a possibility for smooth impactless
switching between rollers at contact upon rolling
of omni wheel;

• Efficient and simplified contact tracking algo-
rithm was implemented;

• Dynamics of vehicle was investigated for differ-
ent number of rollers per wheel;

• Influence of friction model on dynamics of the
omni vehicle was analyzed.

This work was performed with partial support of
RFBR, projects 11-01-00354-a, 12-01-00536-a, 12-
08-00637-a.
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