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Abstract
This paper describes the design of a visual analysis tool for our Inclusion Processing Framework, called
IPFViewer. The tool has been designed in cooperation with a large German steel production facility in order
to acquire knowledge from data collected about nonmetallic inclusions and other defects in steel samples. We
have highlighted parts of the framework in previous publications in interdisciplinary journals. Here, we describe
our contribution in the area of grouped or clustered data items. These data groups are visualized by techniques
known from uncertainty visualization to make visible fluctuations and corresponding variations in steel samples.
However, our results are also transferable to other ensemble data. To find an optimal way to design algorithms and
visualization methods to process the huge data set, we discuss the project-specific requirements regarding memory
usage, execution behavior and precision. By utilizing approximate, incremental analysis techniques when needed,
the responsiveness of the application is ensured while high precision is guaranteed for queries with fast response
times. The design allows workers at the steel production facility to analyze correlations and trends in billions of
data rows very quickly and to detect outliers in routine quality control.

Categories and Subject Descriptors (according to ACM CCS): Computing Methodologies [I.3.6]: Computer
Graphics—Methodology and Techniques

1. Introduction

In [HBT∗12] we presented a new approach to measuring
nonmetallic inclusions and other defects in steel samples at a
real-world steel production facility. These samples are con-
tinuously sliced by a milling machine to accumulate volu-
metric data about any defects they might contain through re-
peated image capturing and processing. For each defect var-
ious attributes, including volumetric statistics, such as vol-
ume and sphericity, are calculated and stored. In [BBPL14]
we continued our work by classifying the defects with the
help of machine learning algorithms. As a result, three types
of defects can be identified: pores, such as those containing
trapped gases; solid inclusions containing non-metallic ele-
ments, like aluminum oxide; or longish cracks. In [TBL14]
we reported on some features and the visual capabilities of
the visual analysis tool IPFViewer, which was built explicitly
for visually analyzing the huge data set. We also responded
to objectives and tasks defined by the steel experts in greater
detail and presented applicable visualizations and interaction
techniques. In this paper, we report on ongoing research in

the area of data groups — in particular, groups of samples.
Samples using the same production parameters are of spe-
cial interest. Through natural fluctuations during the steel-
making process, each sample is different. These differences
lead to uncertainties in all kinds of measurements, including
the amount, size and position of defects in the sample. Un-
certainties are visualized with the help of uncertainty visual-
ization techniques to allow the analysis of variances. These
large data groups, which contain billions of data items, yield
performance problems that we have not previously discussed
in detail.

Visual analytics of the data set provides highly valuable
information. Steel experts want to know what influence var-
ious process parameters have on the outcome of the steel
product (sensitivity analysis). Their interest lies in a better
understanding of the steel making process, which has been a
significant focus of research for over 80 years. Defects have
a major impact on the mechanical properties of steel and
therefore on its steel. The goal is to improve the quality of
steel while, at the same time, lowering the costs of producing
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it. Additionally, quality control in daily usage is of interest.
By comparing the measured production outcomes with ref-
erence data that show the intended outcomes, manufacturers
can monitor production and detect outliers.

Our scientific contribution is a design study that solves a
specific real-world problem in the domain of steel produc-
tion. The targeted audience is steel experts who want to an-
alyze their steel quality. First, we define a new task which
was not discussed in our previous papers: the grouping of
multiple objects, mostly the grouping of samples of simi-
lar production parameters. After specifying the design re-
quirements from a visual analytics perspective, we justify
our general design choices based on related work in the
literature. The design itself is then presented along with a
use case. These are analyzed in order to validate the design
choices and point out possible improvements. In short, the
design choices are

• uncertainty visualization to show fluctuations.
• data management based on expected query cost.
• incremental, approximate analysis for large queries.

2. Task Analysis and Design Requirements

We begin by defining the tasks necessary for an analysis of
milled steel samples based on data collected by a large Ger-
man steel facility. Each sample is an ensemble member in
an ensemble data set [WP09]. There are multiple steel sam-
ples containing multiple defects. Therefore, the data set is a
tree of ensemble members, or hierarchical ensemble data.
The data is also large, multidimensional and multimodal.
In [TBL14], we presented a new way of dealing with that
data, which came down to three tasks:

• Task #1: Single node analysis
Analyzing a single node (a subtree) in the data tree (e.g.,
a sample and its defects) with the help of a multiple view
system to generate hypotheses and to find relationships
and anomalies.

• Task #2: Repeatability analysis
Knowledge from task #1 is reexamined in neighboring ob-
jects by utilizing small multiples of multiple views.

• Task #3: Trend analysis
How does a correlation between two or more attributes
vary with respect to other attributes? For example, one
hypothesis is that, the larger a defect, the more spherical
it will be. Such correlations may only be true for some
of the smoother steels. This is shown by sorting the small
multiples.

Next, we define a new task, which is the aggregation or
grouping of multiple samples and defects:

• Task #4: Aggregation of objects
Repeat task #1 to #3 with user-defined groups of proba-
tions or defects.

The outcomes of the steel making process have certain
natural fluctuations even when the same production param-
eters have been used. Therefore, analysis of a single sample
may lead to misconceptions if that sample is not representa-
tive or is an outlier. By grouping multiple samples, there is a
high probability that the resulting statistics will yield a gen-
eral truth that is less susceptible to outliers and will predict
the features of future production. This prediction depends on
breadth of the range of fluctuations. These variances may de-
pend on some process parameters and are important factors.
This kind of analysis is known as uncertainty or variance
analysis. Steel experts want to know the boundaries of the
range of possible outcomes. They want to be able to identify
best- and worst-case samples as well as the range of most
probable outcomes.

Aggregating samples with similar production parameters
helps in the analysis of the range of possible outcomes, while
aggregating samples with similar outcomes helps in the anal-
ysis of the range of process parameters suitable to achieve
particular outcomes. For example:

• To guarantee similar production conditions, the fol-
lowing parameters are important: steel type, temper-
atures, amount of oxygen and timings.

• Similar outcomes are grouped based on: amount and
types of defects and total cleanliness.

After identifying the tasks for the steel analysis, we im-
posed additional requirements on the system in order to cope
with the challenges familiar in visual analytics:

Requirement #1: Visualization of uncertainty. As
shown in previous publications, each sample is visualized
with the help of different statistical visualizations. For in-
stance, a trend graph showing the influence of the defect
diameter on the defect eccentricity in a particular sample.
Larger defects may be more spherical. When dealing with
a whole group of samples, we get a family of curves (one
curve for each sample) [KLM∗12]. These multiple curves
can be aggregated and then visualized as a single trend chart
with uncertainty bars or box plots.

Requirement #2: Flexible parameter set. The concrete
set of data attributes for samples and defects may change
from time to time. There are thousands of process param-
eters and measurements stored for each sample and defect
on different independent database systems. For security rea-
sons, however, the database for the analysis will be separated
and process parameters will be added and removed regularly
based on current analysis goals.

Requirement #3: Fast response times. There are ex-
pected to be more than 10 billion defects over the next 10
years. Statistics over such huge amounts of data items can-
not be calculated quickly enough to allow interactive anal-
ysis with continuously changing user demands. Scalability
to huge datasizes is one of the current challenges in visual
analytics in the research agenda [TC06].
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3. Related Work

The visual analysis of ensemble data sets is relatively new
[WP09]. Wilson et al. published a general overview of chal-
lenges of ensemble data sets. We compared our general ap-
proach with their paper about Ensemble-Vis [PWB∗09] in a
previous paper [TBL14].

To enable fast querying in large databases, a great deal of
research is being conducted in the area of database optimiza-
tion [KIML11]. There is a great demand on standardized im-
plementations at the database level, because optimizations at
this level are beneficial for all visual analytics tools [TC06].
However, such techniques are not yet mature or available for
standardized databases.

A recent publication in this area is BlinkDB [AMP∗13].
Instead of querying every single data item, it uses a small
sample of the database to get an approximate answer. There
are a lot of sampling based solutions available. The chal-
lenge is to find an optimal sample that best approximates
the precise answer. BlinkDB manages multiple sets of uni-
formed and stratified samples for that purpose. The pre-
calculated sample selection is based on predictions of the
most likely future queries. In their case, they predict the
columns involved in the query. Their work is very impres-
sive, as they developed an approximate query engine with
both error and response time constraints. The disadvantage
of systems based on prediction and pre-calculation is a cer-
tain degree of inflexibility when compared to incremen-
tal, approximate analysis. Some answers can be given very
quickly, while others cannot. This is a problem in explorative
analysis, where all answers should be provided interactively.
In our case, the flexible parameter set is an additional burden
to pre-aggregation. In BlinkDB’s taxonomy of four different
workload models, the most flexible one is the online aggre-
gation model. On the negative side, online aggregation does
not offer solutions to increase efficiency. It is only supposed
to return intermediate results so that users are involved in the
calculation process. They can monitor interim results and in-
tervene accordingly. An optimal way to gain efficiency and
flexibility at the same time is to use hybrid systems, which
may arise when mature implementations of each technique
are available. Systems can evaluate query costs and choose
the optimal corresponding technique.

Until then, we have chosen to implement the most flexible
technique, online aggregation, which was called incremen-
tal, approximate analysis in a recent paper in visual analyt-
ics [FPDs12]. The same technique is also used by the CON-
TROL project [HHW97]. Incremental, approximate analysis
or "online incremental analysis" has many advantages over
other techniques. The idea is to calculate answers on a small
sample of the data first. The approximate answer is visual-
ized, while another sampling of the data is obtained that does
not include the data items of the previous sample (sampling
without replacement). After that, the two approximate an-
swers are merged to obtain a better approximation. At the

last data iteration, all available data has been taken into ac-
count, which leads to either precisely or closely approxi-
mated results. What was missing in previous publications
was a discussion of the algorithms used. While [FPDs12]
only named average, sum and count, more sophisticated sta-
tistical functions, like quantile estimation, are needed for a
versatile analysis tool. Below, we will discuss and categorize
some requirements of statistical algorithms.

Visualizing uncertainty when dealing with summary
statistics is commonly done with box plots or similar tech-
niques [PKRJ10]. Instead of analyzing individual values, the
average value can be used. Depending on the desired pre-
cision of the information, more precise summaries for data
distributions are available. One of these is the five-number
summary, which consists of the min and max values, the up-
per and lower quartiles and the median. The family of curves
provides a good example. When a trend graph visualization
has multiple data points per bin (one for each curve), the
bin can be summarized with a corresponding summary. The
trend graph shows a trend including its possible variations
just as we need it for the analysis of groups of steel samples
and defects (Fig. 3).

4. The Data Model

Generating groups of objects can be understood differently.
When dealing with more complex algorithms that try to
group objects on nontrivial aspects, literature refers to clus-
tering. We cluster data offline only and make results avail-
able as attributes in the database. The IPFViewer groups ob-
jects based on intervals of their attributes in real time. This
means, for instance, that we group the samples based on
melting temperature intervals. This is also known as data
binning. On the other hand, we might group samples accord-
ing to categorical data dimensions, like the steel type. We
allow the definition of an unbound number of dimensions
for clustering. That means that users can first create clus-
ters based on attributes such as defect diameter, for example,
small and large. The resulting clusters can be further divided
by defect type, such as cracks and pores. In this way, we
obtain four clusters — small cracks and small pores, large
cracks and large pores — which then are visualized.

4.1. Algorithm Requirements

First of all, we require limited memory usage. Depending
on the system’s memory capacities, the amount of data items
and distinct data dimensions required for one or multiple vi-
sualizations, we can run into a memory overflow quite fast.
As a result, we want to keep only the current iteration in
memory. Data items of older iterations have to be summa-
rized in such a way that their meaning distributes to the over-
all calculation without saving each item separately. An ex-
ample is the calculation of the average. We can calculate and
store the average of the complete first iteration without sav-
ing each individual item. In the next iteration, we can merge
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the results to get a more precise average. This requirement
makes quantile calculation difficult. To calculate quantiles
with a naive algorithm, we need all data items to be sorted in
a single list. A lot of research regarding quantile estimation
is available [GK04].

The second requirement concerns execution behavior.
Algorithms can only work batch-wise, iteratively or com-
pletely. Batch-wise means that the data is divided into parts,
or batches, which are handled one after the other. When
working with batch-wise algorithms, we assume the ability
to merge results (Mergeable Summaries [ACH∗12]). For in-
stance, we could calculate the quantiles of several batches.
However, these batch quantiles would not reveal the quan-
tiles of the overall data. While it is possible to use the me-
dian of medians, which fulfills the batch-wise behavior, this
method is not as precise as needed. On the other hand, the
count function can be executed batch-wise, and simply sum-
marizing the results of the batches results in an outstanding
ability to merge them. Other examples are sum, count, min,
max and avg. In contrast, iterative algorithms handle data
items one after the other. Here, we also assume the single
pass criterion, which means that each data item is viewed
only once. If that were not the case, we would overburden
the limited memory available in order to store the data items
for subsequent passes. While batch-wise and iterative algo-
rithms are appropriate for very large data sets, algorithms
that require access to the complete data set without the abil-
ity to provide interim results are completely unsuitable, as
discussed above.

Data handling is divided into multiple steps. At each step,
execution behavior can vary. From a database we normally
get multiple data items batch-wise to reduce overhead. After
that, a subsequent algorithm with an independent execution
behavior may run within the application. Sometimes, batch
results can be calculated directly within the database sys-
tem. We assume that this was the way CONTROL [HHW97]
and [FPDs12] worked. When dealing with more complex al-
gorithms, especially quantile estimation and data mining, we
receive all data items batch-wise and calculate results within
the application.

Another requirement deals with the precision of results.
A statistical calculation can be precise or it can yield an es-
timation with precise bounds or an estimation with proba-
bilistic bounds. While trying to achieve as much precision
as possible, we work with all these precisions and make sure
to tell the user the degree of precision currently available.
As stated in the introduction, a high degree of precision is
not necessarily needed for analyzing general trends or creat-
ing hypotheses. Related to precision is the need for a priori
knowledge. Some algorithms achieve good results only for
certain data distributions. Due to the nature of explorative
analysis, we cannot foresee such data distributions. Other a
priori knowledge often needed is the number of data items.
When dealing with many data items that are highly filtered,

we would have to use a previous pass to count them. There-
fore, we require algorithms without any a priori knowledge.

4.2. Algorithms based on query costs

Itemcount:
multiple billion

Itemcount:
multiple
thousand

Standard func.:
count/
max/min/
sum/avg/
std. binning (e.g.
histogram)

precise

Batch-wise
calculation by DB,
merging by applica-
tion

precise

One-
step by DB

Statistical func.:
quantiles
variance
skewness
kutosis
mode
stat. binning
(e.g. box plot)

approximation
in some cases
Batch-wise retrieval
of values from DB,
iterative calculation
by application

precise

One-
step by DB

Table 1: The data processing steps depend on table sizes and
desired statistics

We differentiate between low and high numbers of data
items in the expected results. As mentioned above, the ex-
act number of data items is not known a priori when filters
are involved. However, the typical item count for tables is
familiar; thus, we know the limits for some types of queries:

Query all samples: max. 100 thousand items
Query defects from one sample: max. 100 thousand
items
Query defects from multiple samples: up to 10 billion
items

For a small number of items, we calculate the statis-
tics completely in one step within the database system and
achieve a precise result in an acceptable amount of time
(Tab. 1). For large numbers of items, we differentiate be-
tween standard functions, which are very well suited for
batch-wise merging [ACH∗12], and more complex func-
tions, which are calculated by the application iteratively.
For the latter, we receive all data items in batches from the
database and then iteratively calculate the desired statistics
using the Boost Accumulator library †. These calculations,
however, are not necessarily precise, but may be approxi-
mations in some cases. For instance, the quantile estimation
uses the extended P-Square algorithm [JC85]. When binning
is involved, which means a statistical calculation for each

† Boost Accumulator: www.boost.org
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Figure 1: The data model is divided into two parts. On the left is a level overview showing an overview of the level of interest in
the data tree, which is selected by the user. Each data point in the overview corresponds to a sub-tree shown on the right. The
sub-trees are visualized side by side in detail in the level detail view, using a multiple view system. The color orange indicates
connections between the nodes. Grouped data is visualized with uncertainty to represent fluctuations of group members.

bin is needed, we also differentiate between standard func-
tions (histogram based on count) and statistical binning (box
plots). Our implementation regarding incremental data min-
ing is not mature yet. We mine and recommend data items
based on most occurrences (mode) and extremes (min and
max of attributes) of pre-calculated item descriptors. Once
we have found suitable items, more corresponding data di-
mensions are received and presented as recommendations,
such as the most dangerous defect.

small table large table
small workload
per item
(count, avg, etc.)

no limit limit scanned
items

large workload per
item
(aggregates, joins)

limit returned
items

limit returned
and scanned
items

Table 2: Query limit depends on table size and expected
workload

One of the problems we ran into was paging within the
database. Paging is the operation of limiting the data to
small portions, or pages, and receiving them one after the
other using multiple queries utilizing LIMIT and OFFSET.
As the database does not necessarily cache previous oper-
ations, a large offset means rearranging all items below the
offset in the same order as before (the order must be unique),
which can be a long operation. This was solved using the in-
dexed ID as order and filter queries to the first ID that is a
potential match. In this way, previous entries do not have to
be scanned again. On the negative side, this prevents an opti-
mization of the intermediate results based on sampling order,
which is one of the most common optimizations. However,
this problem can be solved by creating additional indices.
Our solution is shown in Tab. 2. Using these limitations, the
workload is distributed relatively equally among the queries,
independent of the number of items that match the filters.

5. The Visualization Model

We now present the visualization model, which is shown in
Fig. 1. First, a level of the main data tree is chosen as the
level of interest. For instance, one might want to analyze
the samples by conducting a comparison and a trend analy-
sis. Another level of interest would be the hierarchical level
containing the defects. We present all the data items on that
level of the data tree in a visualization, the level overview,
and also visualize each data item in detail side by side in the
level detail. Each data item or cluster in the level overview is
represented by a single visual item within a visualization,
like a point or a bar. Multiple visualizations can be used
as the level overview. In the level detail, each data item or
cluster is represented by a comprehensive multiple-view sys-
tem [WBWK00], showing various data dimensions, modali-
ties and visualization forms simultaneously. Users can spec-
ify the data and visualization forms, like histograms, bar
charts, graphs, scatter plots, pie charts and textual informa-
tion. Since each visual item in the level overview relates
to one comprehensive visualization layout in the level de-
tail (Fig. 1, orange), sorting, filtering and clustering the data
level affect both visualization methods. This is very effective
for trend analysis [TBL14]. To sum up, we provide a small
multiples visualization [Tuf90] (actually small multiples of
multiple views) with an additional overview, as shown in
Fig. 2.

The upper part of Fig. 1 deals with non-clustered data. We
focus on the lower part regarding visualization of clusters. A
cluster is a group of nodes on the data tree. The precision
of the summary statistic can be selected. Instead of show-
ing a single value to represent a large cluster, such as an av-
erage, multiple values representing boundaries have advan-
tages when examining uncertainty [MTL78]. Here are some
examples:

1 value: avg, median, count, etc.
2 values: min+max, upper/lower quartiles, etc.
3 values: min+avg+max, upper/med/lower quart., etc.
5 values: five-number summary (boxplots), etc.
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Figure 2: A screenshot of the main window of the tool. In the overview on the left, uncertainties of four different outcome mea-
surements are shown for different steel grades (bar charts). Two pie charts show the distribution of two categorical attributes.
On the right, each steel grade is visualized in greater detail. Each steel grade uses the same layout, which enables easier
comparison. Additionally, for every steel grade, four of the most significant defects are shown.

For categorical data dimensions, like the steel type, we
cannot use these numerical statistics. Instead, statements
about most occurrence are given as textural information, uti-
lizing the statistical function mode.

Besides pure processing of data by humans based on in-
formation visualization, we also added machine-based Data
Mining [KMS∗08] in the level overview via a tree traverse
through the level of interest, thus horizontally. While data
from lower and higher levels can be used during the mining
process, the mining result will be an item or cluster in the
level of interest (Fig. 1, green). The mining results are visu-
alized as a recommendation to the user. This is very valuable
in combination with level filters. For instance, the user may
choose to analyze samples from the current week only. At
first sight, exceptional samples from the current week are
seen. That approach was also chosen for the level detail.
Each sample or cluster has a large list of defects attached
to it. The data mining process here is done vertically. Ex-
ceptional defects belonging to the current sample are found
and recommended to the user, as are exceptional samples in
the case of clustered data (Fig. 2, four exceptional defects
recommended for each cluster).

6. Use Case

This paragraph describes the sequence of a typical analysis
process:

Users choose one of three categories of objects of interest.
These are defects, samples or aggregates. After choosing ag-
gregates, they specify one or more data attributes that define

Figure 4: Visualizing the defect bands for various steel
types.

the aggregates. They then select the categorical data attribute
steel type, so that samples are grouped by their steel type. In
this way, users are now comparing all the steel types avail-
able in the database.

Users may also choose to focus on a smaller set of steel
types. To do so, they employ filtering on some of the pro-
cess parameters, such as selecting steel types with a melting
temperature of about 1500◦C. and additional oxygen blown
into the melt. During all interaction with the GUIs the screen
is constantly updating to address the user’s requests. The
overview and the detail view use some standard layouts that
have been defined in a previous analysis session (Fig. 2).

In the detail view, users scroll through the different steel
types and see how greatly they differ in the defect sizes they
contain (histogram of diameter) and defect types that occur
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Figure 3: Visualizing the iterative loading process of a statistical plot, showing the correlation of defect diameter and defect
eccentricity: 4%, 28% and 100% of the data used.

in them (pie chart of defect type). To determine whether
there are also differences in the locational distribution of
the defects within the sample, the user changes the layout
to distribution of defects, as created in a previous session. A
binned scatter plot, representing the rectangular sample for-
mat, displays a band where most of the defects are located
(Fig. 4). The defect bands differ from steel type to steel type.
Sometimes it is broader or wider; it may contain holes or
be located differently within the sample. The user sorts the
steel types according to different process parameters to see
if there is a correlation between the defect band and certain
process parameters.

In another analysis, the hypothesis was examined that the
largest defects are more spherical and thus have a high de-
gree of eccentricity. To do so, in the overview area, the user
creates a graph showing the defect eccentricity against the
defect diameters. The graph shows the average defect eccen-
tricity for defects diameters in steps of 10µm. It seems that
the hypothesis was correct: On average, the largest defects
are more spherical.

Wondering why the variance is very high for large de-
fects, the user then decides to undertake a variance analy-
sis and edits the graph to show not only the average, but
also a five-point summary. Even in between the upper and
lower quartiles, where 50% of the defects having an eccen-
tricity value around the middle are located, there are defects
with no eccentricity and full eccentricity (Fig. 3). The user
decides to create groups based on the defect type. This vi-
sualization strengthens and refines the hypothesis. The large
defects with low eccentricity are the longish cracks, while
the non-metallic inclusions are, in fact, spherical with a low
variance (Fig. 5).

7. Discussion

The speed of the analysis tool is much better when com-
pared to older versions of the software, which calculated ev-
erything in one step by database. Performance problems oc-
curred when users changed input very quickly and ongoing
calculations could not be completed. This was noticeable es-

Figure 5: Showing a correlation for different defect types.

pecially when users scrolled through a large number of clus-
ters in the side-by-side views. By calculating the statistics
incrementally, it is possible to cancel further unneeded cal-
culation steps, greatly improving the degree of interactivity.
By implementing the seek operation as described, there is
only negligible overhead for paging. Calculating the quan-
tiles with the naive algorithm in the database was signif-
icantly slower than the new method of retrieving the data
batch-wise and approximating the answer. In general, by ex-
amining the data size and the statistical function of interest,
we can adapt the way we process the data to meet the op-
timal requirements for execution behavior, speed and preci-
sion. There are algorithms which guarantee ε-approximate
answers and fulfill our requirements. These algorithms guar-
antee an error in the approximation with an upper limit of ε.
They will be implemented in future work. With these kinds
of algorithms, as described, for instance, in [ZW07], we can
more finely adjust the system with regard to the tradeoff be-
tween speed and precision in each iteration.

We collected user feedback from the steel experts who
will use the tool and researchers involved in the project.
Most wanted statistical function to be the quantile estima-
tion. Compared to variance, user can see the distribution of
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the values above and below the average independently. Vari-
ance only shows a general uncertainty in both directions.
Feedback about performance was ambiguous. The steel fa-
cility employees work with systems that have very slow re-
sponse times. Accidental user inputs are penalized by long
waiting times before these inputs can be corrected. On the
one hand, our new way of dealing with data was accepted.
On the other, there was concern because its degree of re-
liability during the loading process was unknown. However,
this was counterbalanced by the system’s greater responsive-
ness. In many cases the approximations of visualizations hit
the final visuals very fast due to high probability of similar
data to come. We are exploring new input methods, so that
all the available data is used only when explicitly wanted.
This innovation would safeguard the infrastructure. Showing
some data in comparison with reference data was adopted
and desired for all kind of visualizations that show a single
sample. For instance, when visualizing a sample, experts do
not just see the facts about the collected data, but can evalu-
ate and rate the sample compared to a reference. By defining
the reference data dynamically — including rules to define
similarity — great opportunities arise. Reference data is not
as much of interest when clusters are visualized. Comparing
multiple clusters side by side was preferred.
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