
SIGRAD 2014
M. Obaid, D. Sjölie, E. Sintorn and M. Fjeld (Editors)

Accelerated Computation of Minimum Enclosing Balls by
GPU Parallelization and Distance Filtering

Linus Källberg & Thomas Larsson

Mälardalen University, Sweden

Abstract

Minimum enclosing balls are used extensively to speed up multidimensional data processing in, e.g., machine
learning, spatial databases, and computer graphics. We present a case study of several acceleration techniques
that are applicable in enclosing ball algorithms based on repeated farthest-point queries. Parallel GPU solutions
using CUDA are developed for both low- and high-dimensional cases. Furthermore, two different distance filtering
heuristics are proposed aiming at reducing the cost of the farthest-point queries as much as possible by exploiting
lower and upper distance bounds. Empirical tests show encouraging results. Compared to a sequential CPU
version of the algorithm, the GPU parallelization runs up to 11 times faster. When applying the distance filtering
techniques, further speedups are observed.

Categories and Subject Descriptors (according to ACM CCS): D.1.3 [Programming Techniques]: Concur-
rent Programming—Parallel programming, I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Geometric algorithms, languages, and systems

1. Introduction

The minimum enclosing ball has found widespread use in
many different areas of computer science. Depending on
the specific context, the dimensionality of the balls varies
broadly. Low-dimensional cases are common in computer
graphics, computer-aided design, and geographic informa-
tion systems. Higher-dimensional cases arise frequently in
multidimensional index methods and classification based on
support vector machines. In these cases, data sets with di-
mensions in the range 10 to 10000 are common [TKK07].

In the plane, the minimum enclosing circle problem is
about fitting a circle to embrace a set of points as tightly
as possible. This is a mathematical optimization problem,
where the task is to find the unique center such that the max-
imum distance from the center to any input point is mini-
mized. More generally, in any dimension d, the minimum
enclosing ball (MEB) is sought, and the solution is usually
denoted B∗ = (c∗,r∗), where c∗ is the unique center that
gives the smallest radius r∗. The MEB problem bears many
names, e.g., the smallest bounding sphere or 1-center prob-
lem, and the literature is vast [PS85].

Due to the high computational complexity of finding the
exact MEB, a number of approximation algorithms have
been proposed in the literature [BC03, KMY03, Yıl08]. In
a recent publication, Larsson and Källberg [LK13] proposed
an efficient algorithm to compute a (1+ε)-approximation of
B∗ in O(dn

ε
+ d

ε3) time for n input points in dimension d. This
algorithm, named FASTAPXBALL, computes a sequence of
approximations Bi = (ci,ri) such that ri ≤ r∗, until a solu-
tion is reached whose radius can be enlarged to cover the
entire point set without exceeding (1+ ε)r∗. Pseudocode is
shown in Figure 1. On Lines 1–3, the current approximation
is initialized. On Line 4, a subset C of input points, known
as a core-set, is initialized. Then in each iteration of the loop
beginning on Line 5, the point q ∈ P located farthest from
the current center point is found and inserted into the core-
set. The point q as well as h = ‖q− c‖, where ‖ · ‖ denotes
the Euclidean norm, are also used on Lines 8 and 9 to update
the current solution in each iteration.

The purpose of the subroutine SOLVEAPXBALL, invoked
on Line 11, is to further refine the current solution by consid-
ering only the (at most 2/ε) points currently in the core-set
(see [LK13] for more details). In practice, this reduces the

57

L. Källberg & T. Larsson / Accelerated Computation of Minimum Enclosing Balls

FASTAPXBALL(P,ε)
input: P = {p1, p2, ..., pn}, ε > 0
output: A (1+ ε)-approximation B of B∗

1. q′,h′← FINDFARTHESTPOINT(p1,P)
2. q,h← FINDFARTHESTPOINT(q′,P)
3. (c,r)← ((q′+q)/2,h/2)
4. C←{q′,q}
5. loop 2/ε times (at most)
6. q,h← FINDFARTHESTPOINT(c,P)
7. if h≤ r(1+ ε) then exit loop
8. r← (r2

h +h)/2
9. c← q+ r

h (c−q)
10. C←C∪{q}
11. (c,r)← SOLVEAPXBALL((c,r),C,ε/2)
12. return (c,h)

Figure 1: The algorithm FASTAPXBALL.

number of passes considerably, especially in low to mod-
erate dimensions with n � d. As noted by Larsson and
Källberg, it is possible to remove Line 11 from the code
to get a modified version of the algorithm, called SIMPLE-
APXBALL, with time complexity O(dn

ε
). Interestingly, it

has been shown [KL] that this algorithm is equivalent to
Yıldırım’s first algorithm [Yıl08].

Since FINDFARTHESTPOINT takes O(dn) time in each of
the O(1

ε
) iterations, the total time spent in this subroutine

is O(dn
ε
), as captured by the left term in the time complex-

ity of FASTAPXBALL and the remaining term in the time
complexity of SIMPLEAPXBALL. In practice, these repeated
farthest-point queries constitute the main bottleneck in both
algorithms. Fortunately, however, due to its high degree of
data parallelism, the farthest-point query makes a good can-
didate for acceleration using parallel computing.

In this paper, GPU parallelization strategies are proposed
as well as two algorithmic distance filtering approaches,
which are applicable in both serial and parallel settings to
reduce the cost of the dominating distance computations.
The proposed techniques should be applicable in several
other MEB algorithms that perform repeated farthest-point
queries, such as [Gär99, BC03, KMY03, Yıl08].

2. Farthest-point queries on the GPU

We let the input points and the center point be represented
on the GPU as the following n×d matrix and d-ary column
vector:

P =


p1,1 p1,2 · · · p1,d
p2,1 p2,2 · · · p2,d

...
...

. . .
...

pn,1 pn,2 · · · pn,d

 , c =


c1
c2
...

cd

 ,

where p j,k and ck denote the k-th coordinate of p j and c, re-
spectively. To realize the FINDFARTHESTPOINT subroutine
efficiently, a straightforward solution is to first compute all
of the n squared distances ‖p j − c‖2 in parallel into a vec-
tor e, and then find the maximum of e in a separate parallel
reduction step. Thus, e is given by

e =


(p1,1− c1)

2 + · · · + (p1,d− cd)
2

(p2,1− c1)
2 + · · · + (p2,d− cd)

2

...
. . .

...
(pn,1− c1)

2 + · · · + (pn,d− cd)
2

 .

Note that computing squared as opposed to exact distances
is preferable since it avoids taking n square roots. The com-
putation of e can be further simplified by first rewriting each
element as

e j = ‖p j− c‖2 = ‖p j‖2 +‖c‖2−2〈p j,c〉,

where 〈·, ·〉 denotes the Euclidean inner product. Since the
term ‖c‖2 is the same in all distances during a pass, it can
be disregarded without altering which point is returned as
the farthest from the reduction step. Furthermore, the term
‖p j‖2 remains constant throughout all passes of the MEB
algorithm; thus, it can be precomputed for each input point
into an n-ary vector u, which is then reused in every pass.
Using these simplifications, the distance computation step
amounts to a GEMV (general matrix-vector multiplication)
kernel:

e = u−2Pc.

Efficient GPU implementations of GEMV are com-
monly found in GPU implementations of BLAS (Ba-
sic Linear Algebra Subprograms), such as cuBLAS and
MAGMA [DDG∗]. Similarly, there are efficient GPU im-
plementations of the reduction step available, e.g., from the
Thrust template library for CUDA [BH12].

2.1. Tailor-made kernels

The above solution based on GEMV can be expected to work
well in many situations. However, to support the distance
filtering techniques that will be described in Section 3, we
implemented two tailor-made kernels in CUDA that allow
for masking out certain rows of the matrix P in the dis-
tance computations. To retain some degree of data locality
in this case, we let P be stored in row-major order. This way,
any point can be loaded from the global memory in a coa-
lesced fashion into the SMs, provided the dimension is large
enough and the matrix is allocated with a properly set pitch.

In the first kernel, a tile mesh is superimposed on the
matrix such that each tile covers tx × ty elements. Each
thread block is mapped to a number of such tiles, deter-
mined by the parameters wx and wy for the x and y direc-
tions, respectively. Thus, in general, a thread block processes

58

L. Källberg & T. Larsson / Accelerated Computation of Minimum Enclosing Balls

P

c

wx

wy
blockDim.x = tx

blockDim.y

ty

Figure 2: Illustration of the assignment of matrix tiles to thread blocks and elements within the tiles to threads. In this example,
each block processes wx = 3 tiles in the horizontal direction and wy = 2 tiles in the vertical direction. Since tx = ty = 8 and
blockDim.y = 2, each thread must iterate four times for a full tile to be processed.

(wx×wy)× (tx× ty) elements of the matrix and wx× tx el-
ements of the center point in total in each invocation, al-
though some blocks may do less work depending on the ma-
trix dimensions. Furthermore, depending on the blockDim
settings, the thread blocks might need to iterate within each
tile to process all of its elements. To keep the parameter
space manageable, we let the tiles be squares with side td ,
i.e., tx = ty = td , and we let blockDim.x be fixed to td . This
leaves the parameters td , blockDim.y, wx, and wy that can be
varied to tune the performance of the kernel. More details on
the used tuning process are given in Section 4.

As illustrated in Figure 2, the thread blocks process
their assigned tiles in a left-to-right, top-to-bottom order.
Within each tile, the elements are processed from top to bot-
tom. With these traversal orders, each thread can maintain
ty/blockDim.y partial sums of its computed squared differ-
ences by storing them in registers. After the last tile in the
current row has been processed, all threads in the block store
their partial sums into a matrix of size ty× tx in shared mem-
ory. Each row of this matrix is then summed up, which re-
duces it to a column vector of ty partial sums. Then, before
moving on to the next row of tiles, these values are added
to the output vector e, which was initialized to 0 before in-
voking the kernel. Note that in cases when there are more
than one thread block working on the same rows of P, i.e.,
when wx× tx < d, the latter addition to e must be done using
an atomic add operation, since another thread block might
attempt to update the same elements of e simultaneously.

Otherwise, when there is only one block in the horizontal
dimension of the grid of thread blocks, a regular add opera-
tion can be used instead. However, a more significant opti-
mization is possible in this case: since each distance is com-

puted by a single thread, the reduction needed to find the
largest distance can be integrated with the distance compu-
tation kernel. This fuses two kernel calls (first computing the
distances, then finding the maximum) into one. Moreover, it
reduces the amount of data that needs to be written out to
global memory, since it becomes unnecessary to store all the
distances to the vector e. Thus, we made the kernel detect
this special case, so that a local reduction is performed by
each thread block to find the maximum of its computed dis-
tances. Then, before returning, an inter-block reduction is
performed in a scalar in global memory using atomic opera-
tions.

Whenever the matrix dimensions are not multiples of the
tile dimensions, the last row and/or column in the grid of
thread blocks will have tiles to process that are not com-
pletely filled. This is handled as a special case in the kernel,
so that the overhead from the necessary conditional state-
ments is isolated to the affected thread blocks. Since there
are not enough elements in these partially filled tiles to oc-
cupy all threads in these blocks, parts of the thread blocks
become inactive. As long as both n and d are large enough
to give mostly filled tiles overall, this reduction in thread uti-
lization is amortized sufficiently over the processing of the
filled tiles. However, whenever either n or d is very small,
measures must be taken to avoid poor performance due to
low utilization. Since we focus mainly on cases where d� n
here, we consider only cases where d is small, i.e., when P
has a tall shape. Our second kernel is specifically optimized
for such matrices. When executing this kernel, we relax the
requirement on square tiles and fix only tx = d. As before,
we set blockDim.x = tx, which in this case automatically im-
plies wx = 1. Thus, the remaining tunable launch parameters
for this kernel are ty, blockDim.y, and wy. Note that there

59

L. Källberg & T. Larsson / Accelerated Computation of Minimum Enclosing Balls

may be more than one warp working on each row of the ma-
trix in this case, when d is neither a multiple nor a divisor
of the warp size 32. For example, in d = 3, each warp spans
b 32

3 c= 10 full rows as well as parts of one or two other rows.
This keeps all threads of the block fully occupied, and due to
the row-major organization of P, it also increases the locality
of the data accessed by each warp.

3. Distance filtering

Evaluating the distance metric for pairs of points is an ex-
pensive operation, particularly in high dimensions. There-
fore, attempting to reduce the number of exact distance com-
putations by utilizing approximate distance measures may
speed up the processing substantially. By exploiting knowl-
edge from already computed similar distances together with
the triangle inequality, safe bounds can be derived to give
simple conditions for when an exact distance computation
can be skipped.

Of course, using the triangle inequality to filter out dis-
tance computations is not a new idea. Such approaches
are well-known in data mining where similarity queries are
common (see, e.g., [BK73, BS98, BEKS01]). Hjaltason and
Samet describe several general rules which can be applied to
prune the search space under varying circumstances depend-
ing on what distances are known and what distance calcula-
tions are attempted to be avoided [HS03].

The filtering techniques we describe below are designed
for the specific case of MEB computation. Intuitively, this
is a situation where this type of filtering can be expected to
pay off very well. The sequence of generated center points
sweeps out a path in the neighborhood of the optimal center
c∗, and overall the distance between each pair of consecutive
center points tends to decrease with each pass. Thus, search-
ing for the farthest point from ci+1 is expected to be very
similar to searching for the farthest point from ci. To study
the benefit of reducing the number of full distance computa-
tions between points during the farthest-point queries, we
describe three different filtering schemes for caching and
reusing computed distances between the passes of the MEB
algorithm. To make the discussion more general, we will use
the notation D(·, ·) to represent any distance measure that
satisfies the triangle inequality.

3.1. Triangle inequality filtering

During the first farthest-point query of the MEB algorithm,
the distances from the first center point to all input points
are computed and stored in a simple auxiliary array of size
O(n), hereafter called the distance array. Then in all the sub-
sequent passes, the distances cached in this array are used
to derive an upper bound on the distance to each point in P
from the current center point. Before a pass is started, say
pass i + m, the distances from ci+m to all previous center
points are computed. Also, a lower bound f on the actual

a)

ci
ci+1

ci+2

ci+3

p j
b)

ci
ci+1

ci+2

ci+3

p j

Figure 3: Upper bounds on the unknown distances, shown
as dashed lines, are derived from the known distances,
shown as solid lines. a) The exact distance from ci to the
current center point is recomputed in each pass. b) The ac-
cumulated movement from ci is used instead.

farthest distance max(D(ci+m, p ∈ P)) is needed. We simply
let f = ri+m, where ri+m is the current radius. Assuming the
distance from an earlier center point ci to a point p j is cur-
rently stored in position j of the distance array, the following
condition can be tested before evaluating the exact distance
D(ci+m, p j):

D(ci, p j)+D(ci,ci+m)< f .

When this is fulfilled, it is impossible that D(ci+m, p j) ≥
f holds, and the computation of the exact distance can be
skipped. This is an immediate consequence of the triangle
inequality, which states that

D(ci, p j)+D(ci,ci+m)≥ D(ci+m, p j).

This type of filtering is illustrated in Figure 3a., where the
distance to a point p j is computed in pass i, and then the
triangle inequality gives approximate distance measures to
p j in the next three passes. Given that the filtering condition
succeeds, the unknown distances shown with dashed lines
are never computed.

Whenever an actual distance has to be computed for p j,
it is also cached in the distance array simply by overwriting
the previously cached value. Note that each stored distance is
associated with a certain center point ci, which must be iden-
tified during filtering. Therefore, the value of i is cached as
well together with each computed distance. Furthermore, if a
computed distance is the largest encountered so far, the point
is stored as the current farthest point. When all points have
been processed this leaves us with the true farthest point, as
well as a distance array that has been updated for all points
where the filtering failed.

Two possible drawbacks of this technique are that the dis-
tances between all possible pairs of center points are com-
puted, and that the complete sequence of computed center
points must be stored. In the algorithms considered here,
this filtering method thus requires O(d/ε

2) time and O(d/ε)

60

L. Källberg & T. Larsson / Accelerated Computation of Minimum Enclosing Balls

storage. Depending on which MEB algorithm is used, this
may degrade the theoretical time complexity of the algo-
rithm. Nevertheless, for sufficiently large point sets and rea-
sonable ε values, this overhead is expected to have little ef-
fect on the run time in practice, even in cases when the fil-
tering effectiveness is low.

3.2. Filtering with accumulated distances

An alternative filtering method can be designed, which
avoids the above-mentioned potential problems of the pre-
vious approach by using a less tight upper bound. In this
approach, the distance array stores upper bounds on the dis-
tances to earlier center points as opposed to the exact dis-
tances. As before, the distance array is initialized with the
exact distances from the first query point to all input points.
Then in each pass, all these cached distances are incre-
mented with the movement of the center point from the pre-
vious pass. Thus, assuming ci is the last center point from
which the distance to a point p j was computed, the follow-
ing filtering condition is tested in pass i+m:

D(ci, p j)+D(ci,ci+1)+D(ci+1,ci+2)+ . . .

. . .+D(ci+m−1,ci+m)< f ,

where the sum in the left-hand side represents the value
stored for point p j. When the condition fails, the exact dis-
tance is computed and the accumulated bound in the dis-
tance array is reset. In Figure 3b, this type of filtering is il-
lustrated. The distance from ci to p j is computed in pass i,
and then during the following three passes, the consecutive
movements of the center points are accumulated in the dis-
tance array and used to find approximate distance measures
to p j. Again, given that the filtering condition is fulfilled, the
unknown distances to p j in the next three passes are never
computed.

Clearly, the accumulation tends to make the approximate
distances less tight compared to the those achieved by the
first approach described in the previous section. But simi-
larly to the previous approach, they should improve gradu-
ally as the movement of the center point decreases.

Of course, the main advantage of this approach is that it
avoids the O(d/ε

2) computation cost and O(d/ε) storage
cost introduced by the first method above. Thus, incorporat-
ing this acceleration technique in farthest point-based MEB
algorithms will not affect their theoretical asymptotic time
complexity. Of course, storing the auxiliary distance array
still introduces an O(n) storage cost.

3.3. Cauchy-Schwarz inequality filtering

Nielsen and Nock [NN04] proposed a filtering criterion
based on an upper bound on the Euclidean distance, derived

as

‖p j− ci‖=
√
‖p j‖2 +‖ci‖2−2〈p j,ci〉

≤
√
‖p j‖2 +‖ci‖2 +2‖p j‖‖ci‖.

(1)

The bound follows from the Cauchy-Schwarz inequality,
which states that for two vectors u and v, it holds that
|〈u,v〉| ≤ ‖u‖‖v‖. By computing ‖p‖ for each p ∈ P at the
beginning of the algorithm, and recomputing ‖ci‖ before
each farthest-point query, the upper bound in Equation 1 can
be computed in constant time per point. As before, if the up-
per bound is smaller than the lower bound on the searched
farthest distance, there is no need to compute the exact dis-
tance.

In general, this method can be expected to be less effec-
tive in pruning distance computations than the methods of
Sections 3.1 and 3.2. To see why, consider that the bound in
Equation 1 too expresses the triangle inequality:

‖p j− ci‖ ≤
√
‖p j‖2 +‖ci‖2 +2‖p j‖‖ci‖

=
√
(‖p j‖+‖ci‖)2

= ‖p j‖+‖ci‖.

In this interpretation, instead of utilizing center points com-
puted in earlier passes of the algorithm, this filtering method
repeatedly applies the triangle inequality to the origin o, in
addition to p j and ci. Thus, expressed with a general distance
measure D, the bound becomes

D(ci, p j)≤ D(o, p j)+D(o,ci).

Consequently, the distance D(ci, p j) is approximated well
only when at least one of D(o, p j) and D(o,ci) are suffi-
ciently small. Thus, in order to get effective filtering, either
most of the input points must be clustered close to the ori-
gin, or the sequence of generated center points must be near
the origin. In other cases, the distances tend to be largely
overestimated by this bound, leading to poor filtering.

3.4. Distance filtering on the GPU

All of the above distance filtering methods require an addi-
tional filtering step before invoking the distance computation
kernel in each pass. In this step, it is determined in parallel
which of the points in P need to have their distances com-
puted exactly. Although the details of how this is determined
differs between the methods, the result is a vector b of n bi-
nary values, where b j = 1 if the distance to point p j needs to
be computed, and b j = 0 otherwise. The vector b then goes
through a parallel compaction step, which turns it into a vec-
tor x containing all indices j such that b j = 1. For example,
given a vector

b = (0,1,0,1,1,0,0,1),

61

L. Källberg & T. Larsson / Accelerated Computation of Minimum Enclosing Balls

the compaction yields

x = (2,4,5,8),

assuming 1-based indexing. The vector x is then provided as
an argument to the distance computation kernel, which pro-
cesses the rows of the matrix P indirectly through x. In the
case of the filtering methods of Sections 3.1 and 3.2, the vec-
tor x is then used once again to store the computed distances
back into the right positions of the distance array.

4. Experiments

The discussed techniques were evaluated in practice on
a laptop equipped with an Intel i7-3820QM processor
(2.7 GHz) as well as an Nvidia Quadro K4000M GPU,
whose specifications are listed in Figure 4. Sequential CPU
implementations, written in C++ and compiled with Vi-
sual Studio 2012, as well as parallel GPU implementations,
based on CUDA version 6.0, were tested. In addition, all
three of the distance filtering methods discussed in Sec-
tion 3 were evaluated in both the CPU and the GPU ver-
sions. Finally, two implementations following the approach
outlined in Section 2 were included, using the column-major
and row-major (transposed) versions of SGEMV (single-
precision GEMV) in cuBLAS. Throughout all experiments,
single-precision floating-point was used, and the approxima-
tion quality of the balls was set to ε = 10−3. No robustness
issues were observed in the experiments.

To tune the performance of our hand-written kernels, we
executed an automatic process reminiscent of auto-tuning
(cf. [Sør12, DO12]) to find good choices for the kernel
launch parameters, as well as to select between our two dis-
tance computation kernels. For each pair of d and n included
in the experiments, we executed both kernels using different
sets of parameters and kept track of the most efficient con-
figuration. The first kernel was run using all combinations of
the following parameters:

td ∈ {16,32,64},

blockDim.y ∈ { td
1
,
td
2
,
td
4
, . . . ,1},

wx,wy ∈ {1,2,4, . . . ,512}.

The kernel designed for tall matrices was evaluated with the
following parameters:

ty ∈ {16,32,64, . . . ,512},

blockDim.y ∈ { ty
1
,
ty
2
,
ty
4
, . . . ,1},

wy ∈ {1,2,4, . . . ,512}.

Of course, many combinations of the parameters above are
not valid, either due to hardware limitations or because they
are not applicable to the particular problem size, so these
were skipped. The parameters selected for each problem size
were then used regardless of whether filtering was enabled
or not.

Architecture Kepler
SMs 5
CUDA cores 960
Clock rate 600 MHz
Memory clock rate 1.4 GHz
Memory bus width 256 bits

Figure 4: Specifications for Nvidia’s Quadro K4000M GPU.

4.1. Moderate to high dimensions

The results from SIMPLEAPXBALL and FASTAPXBALL

for moderate- to high-dimensional cases are shown in the
left and right columns of Table 1, respectively. Nielsen and
Nock’s distance filtering method is denoted by NN, and our
own filtering methods from Sections 3.1 and 3.2 are denoted
by TI and TI2, respectively. For each of the selected pairs
of d and n, the algorithms were executed ten times on dif-
ferent input sets randomly generated with a uniform distri-
bution in [−1,1]d . The table shows average figures from all
ten runs: the number of passes k, the total number of full
distance computations (d.c.) performed during the farthest-
point queries as a fraction of k× n (which is the number
of such computations in the non-filtering version), the exe-
cution time in seconds, and the speedup factor s. The latter
parameter gives the average of the speedup factors computed
relative to the sequential CPU version that does not use dis-
tance filtering.

The non-filtering GPU adaptations of the algorithms show
speedups of up to 11×. The cuBLAS implementations ex-
hibit good performance as long as the dimension is quite
high, especially the column-major version. Judging from the
case d = 10, however, the GEMV kernels in cuBLAS seem
less optimized for tall matrices. The GPU implementations
based on our custom kernels are significantly faster than both
of the cuBLAS implementations in this case.

In d = 10, the tall matrix kernel was selected in the tuning
process, with the parameters ty, blockDim.y, and wy chosen
as shown in parentheses for that case in Table 1. In the re-
maining cases, the more general kernel proved to be more ef-
ficient. Similarly, the parameters td , blockDim.y, wx, and wy
selected for this kernel for each problem size are shown in
parentheses in the table. In general, the former kernel seems
to be the most efficient in dimensions up to d ≈ 20, as indi-
cated by additional test runs. Notice that the launch param-
eters for the more general kernel were consistently selected
so as to give only one thread block in the horizontal direc-
tion, i.e., such that tx×wx ≥ d. It seems natural that this is
an efficient division of labor among the thread blocks, as it
allows each thread to sum up its computed squared differ-
ences along an entire tile row using registers before the re-
duction in shared memory takes place. Thus, with only one
thread block in the horizontal direction, the number of such

62

L. Källberg & T. Larsson / Accelerated Computation of Minimum Enclosing Balls

SIMPLEAPXBALL

d = 10, n = 106, k = 728.1
algorithm d.c. time s
CPU 1.000 6.650 1.0
CPU, NN 0.000 0.724 9.2
CPU, TI 0.004 1.384 4.8
CPU, TI2 0.021 1.764 3.8
cuBLAS, r.m. 1.000 5.752 1.2
cuBLAS, c.m. 1.000 2.446 2.7
GPU (128,16,16) 1.000 0.877 7.6
GPU, NN 0.003 0.467 14.2
GPU, TI 0.005 0.594 11.2
GPU, TI2 0.022 0.632 10.6

d = 100, n = 105, k = 769.7
algorithm d.c. time s
CPU 1.000 5.888 1.0
CPU, NN 0.166 1.685 3.7
CPU, TI 0.014 0.272 21.7
CPU, TI2 0.047 0.605 9.7
cuBLAS, r.m. 1.000 1.219 4.8
cuBLAS, c.m. 1.000 0.855 6.9
GPU (32,8,4,32) 1.000 0.962 6.1
GPU, NN 0.195 0.568 10.5
GPU, TI 0.020 0.473 12.5
GPU, TI2 0.055 0.520 11.4

d = 500, n = 105, k = 618.5
algorithm d.c. time s
CPU 1.000 25.106 1.0
CPU, NN 0.885 22.811 1.1
CPU, TI 0.040 1.301 19.3
CPU, TI2 0.094 2.837 8.8
cuBLAS, r.m. 1.000 2.954 8.5
cuBLAS, c.m. 1.000 2.314 10.9
GPU (32,8,16,32) 1.000 2.376 10.6
GPU, NN 0.906 3.090 8.1
GPU, TI 0.060 0.836 30.2
GPU, TI2 0.114 0.941 26.7

d = 1000, n = 104, k = 407.9
algorithm d.c. time s
CPU 1.000 3.346 1.0
CPU, NN 1.000 3.362 1.0
CPU, TI 0.120 0.493 6.8
CPU, TI2 0.199 0.710 4.7
cuBLAS, r.m. 1.000 0.478 7.0
cuBLAS, c.m. 1.000 0.422 7.9
GPU (32,8,32,16) 1.000 0.395 8.5
GPU, NN 1.000 0.547 6.1
GPU, TI 0.174 0.590 5.7
GPU, TI2 0.249 0.484 6.9

d = 5000, n = 104, k = 348.3
algorithm d.c. time s
CPU 1.000 14.354 1.0
CPU, NN 1.000 14.404 1.0
CPU, TI 0.302 4.655 3.1
CPU, TI2 0.402 5.844 2.5
cuBLAS, r.m. 1.000 1.609 8.9
cuBLAS, c.m. 1.000 1.346 10.7
GPU (32,8,256,16) 1.000 1.333 10.8
GPU, NN 1.000 1.668 8.6
GPU, TI 0.434 1.990 7.2
GPU, TI2 0.516 1.489 9.6

FASTAPXBALL

d = 10, n = 106, k = 14.9
algorithm d.c. time s
CPU 1.000 0.137 1.0
CPU, NN 0.002 0.025 5.5
CPU, TI 0.222 0.063 2.2
CPU, TI2 0.344 0.105 1.3
cuBLAS, r.m. 1.000 0.126 1.1
cuBLAS, c.m. 1.000 0.059 2.3
GPU (128,16,16) 1.000 0.019 7.4
GPU, NN 0.150 0.026 5.1
GPU, TI 0.260 0.023 6.0
GPU, TI2 0.352 0.024 5.6

d = 100, n = 105, k = 56.2
algorithm d.c. time s
CPU 1.000 0.440 1.0
CPU, NN 0.361 0.227 2.0
CPU, TI 0.191 0.129 3.4
CPU, TI2 0.280 0.183 2.4
cuBLAS, r.m. 1.000 0.107 4.1
cuBLAS, c.m. 1.000 0.082 5.4
GPU (32,8,4,32) 1.000 0.080 5.5
GPU, NN 0.519 0.086 5.1
GPU, TI 0.270 0.065 6.8
GPU, TI2 0.342 0.069 6.4

d = 500, n = 105, k = 127
algorithm d.c. time s
CPU 1.000 5.237 1.0
CPU, NN 0.953 5.093 1.0
CPU, TI 0.187 1.167 4.5
CPU, TI2 0.274 1.674 3.1
cuBLAS, r.m. 1.000 0.703 7.5
cuBLAS, c.m. 1.000 0.576 9.1
GPU (32,8,16,32) 1.000 0.560 9.4
GPU, NN 0.968 0.749 7.0
GPU, TI 0.274 0.370 14.2
GPU, TI2 0.349 0.393 13.3

d = 1000, n = 104, k = 149.1
algorithm d.c. time s
CPU 1.000 1.348 1.0
CPU, NN 1.000 1.359 1.0
CPU, TI 0.277 0.489 2.8
CPU, TI2 0.369 0.599 2.3
cuBLAS, r.m. 1.000 0.307 4.4
cuBLAS, c.m. 1.000 0.288 4.7
GPU (32,8,32,16) 1.000 0.269 5.0
GPU, NN 1.000 0.328 4.1
GPU, TI 0.394 0.339 4.0
GPU, TI2 0.469 0.312 4.3

d = 5000, n = 104, k = 269.3
algorithm d.c. time s
CPU 1.000 11.690 1.0
CPU, NN 1.000 11.736 1.0
CPU, TI 0.364 4.843 2.4
CPU, TI2 0.462 5.780 2.0
cuBLAS, r.m. 1.000 1.853 6.3
cuBLAS, c.m. 1.000 1.647 7.1
GPU (32,8,256,16) 1.000 1.618 7.2
GPU, NN 1.000 1.873 6.2
GPU, TI 0.516 2.055 5.7
GPU, TI2 0.588 1.770 6.6

Table 1: Experimental results for uniformly distributed input. Timings are given in seconds.

63

L. Källberg & T. Larsson / Accelerated Computation of Minimum Enclosing Balls

SIMPLEAPXBALL

model n k CPU cuBLAS GPU
Lucy 14.0M 15 0.595 0.256 0.061
Thai Statue 5.0M 584 8.215 2.969 0.929
Vase 4.6M 721 9.435 3.424 1.116
Asian Dragon 3.6M 730 7.416 2.727 0.885
Goblet 1.0M 830 2.354 1.047 0.386

FASTAPXBALL

model n k CPU cuBLAS GPU
Lucy 14.0M 5 0.198 0.120 0.020
Thai Statue 5.0M 8 0.113 0.060 0.013
Vase 4.6M 7 0.088 0.051 0.011
Asian Dragon 3.6M 6 0.061 0.037 0.007
Goblet 1.0M 10 0.028 0.017 0.005

Table 2: Experimental results for polygon meshes in 3D. The Lucy, Thai Statue, and Asian Dragon models are provided by the
Stanford Computer Graphics Laboratory. Timings are given in seconds.

reductions per row is minimized. Furthermore, it enables the
kernel-fusion optimization described in Section 2.1.

All the distance filtering techniques show successful re-
ductions in distance computations under certain circum-
stances, leading to quite impressive speedups. In d = 10,
Nielsen and Nock’s method is the most effective, but loses
its effectiveness rapidly as the dimension grows. Given the
uniform distribution of these point sets, this is an expected
result, as no clusters tend to be formed around the origin.
Furthermore, since it becomes increasingly improbable that
c∗ occurs in the vicinity of the origin in the higher dimen-
sions, it also becomes less likely that ci does. The triangle
inequality-based methods, on the other hand, show less prun-
ing power in d = 10, but give better results in higher dimen-
sions.

In the GPU case, it is clear that the overhead of the addi-
tional kernel invocations needed to realize the filtering pro-
cedure has a limiting effect on the achieved performance.
In fact, the introduction of distance filtering can be seen to
decrease performance in several cases, particularly in the
higher dimensions, where fewer distance computations are
skipped. In this regard, the CPU algorithms have the benefit
that testing the filtering condition and updating the cached
distances can be done in an integrated fashion during a sin-
gle traversal of the point set. Nevertheless, several successful
cases can be observed as well, indicating a potential of the
presented approach.

Noteworthy here is also that the sequential implementa-
tions possess an additional opportunity to skip more dis-
tance computations compared to the parallel implementa-
tions: during the sequential scan for the farthest point, the
lower bound on the largest distance is updated continuously

as new candidate farthest points are encountered. Thus, the
upper distance bounds are compared against a gradually in-
creasing lower bound, whereas in the parallel distance fil-
tering, the same lower bound is used throughout the whole
pass. The effects of this optimization can be seen in column
d.c. in Table 1 by comparing the figures of the CPU and GPU
versions that use the same filtering method.

4.2. Polygon meshes

To evaluate the presented techniques also in low dimensions,
and to include more realistic data sets in the experiments, we
executed the algorithms with a selection of 3-dimensional
polygon meshes as input. The results from this experiment
are shown in Table 2. Listed for each case are the number
of vertices n in the model, the total number of passes k,
and the run time in seconds of three of the evaluated im-
plementations. Included here are the non-filtering CPU ver-
sions, the GPU versions based on the column-major kernel
in cuBLAS, and the non-filtering GPU versions using the
kernel optimized for tall matrices. The parameters used for
the latter were ty = 512, blockDim.y = 64, and wy = 64 in
all runs.

The results from the GPU versions based on the tailor-
made distance computation kernel are encouraging, with
speedups in the range 5.8–9.8× on both algorithms. The
cuBLAS-based versions, on the other hand, give somewhat
disappointing speedups of at most 2.8× on SIMPLEAPX-
BALL and 1.9× on FASTAPXBALL. Again, this indicates a
lack of support for tall matrices in the cuBLAS GEMV ker-
nels.

Note that in the 3-dimensional case, less performance

64

L. Källberg & T. Larsson / Accelerated Computation of Minimum Enclosing Balls

benefits can be expected from using the discussed distance
filtering techniques, in the GPU case as well as the CPU
case. As it takes only 8 arithmetic operations to compute
a squared distance, the relative savings from filtering such
a computation is limited. On the above input examples, dis-
tance filtering gave occasional performance improvements
of up to 2.1× in the CPU version of SIMPLEAPXBALL, and
minor slowdowns to modest speedups in the CPU version of
FASTAPXBALL.

5. Conclusions

Given the extensive applicability of minimum enclosing ball
algorithms in both low and high dimensions, we expect per-
formance studies and speed-up techniques, such as the ones
presented in this paper, to be beneficial in several research
communities. Clearly, the offloading of the repeated far-
thest point queries to massively parallel GPUs pays off with
speedups up to 11×. Also, the presented algorithmic tech-
niques for distance filtering give additional opportunities for
savings in execution time both in the sequential and the par-
allel implementations.

The proposed distance filtering approaches can be har-
nessed also in applications using other distance measures
than Euclidean distance, as long as the used distance func-
tion obeys the triangle inequality. Furthermore, despite that
only points sets were considered as input here, it is straight-
forward to generalize the presented techniques to deal also
with ball sets.

In the future, it would also be exciting to compare other
possible acceleration techniques with the strategies pre-
sented here, such as considering alternative ways of par-
allelization, different pruning methods [KL], usage of k-
farthest points queries in each algorithm pass, and hierar-
chical searching using multidimensional tree structures (see,
e.g., [CPZ97]). This also includes evaluating combinations
of the approaches, such as using pruning techniques to elim-
inate points permanently combined with distance filtering
on the remaining points, as well as more aggressive and di-
verse algorithm parallelization on heterogeneous computing
platforms with support for different compute targets (CPU,
GPU, and FPGA). Hopefully, such studies could provide a
basis for the design of even faster ball computation algo-
rithms.

Acknowledgements

Both authors are supported by a research grant from the
Swedish Foundation for Strategic Research (No. IIS11-
0060).

References
[BC03] BÂDOIU M., CLARKSON K. L.: Smaller core-sets for

balls. In Proceedings of the fourteenth annual ACM-SIAM sym-
posium on Discrete algorithms (2003), pp. 801–802. 1, 2

[BEKS01] BRAUNMULLER B., ESTER M., KRIEGEL H.-P.,
SANDER J.: Multiple similarity queries: a basic DBMS operation
for mining in metric databases. IEEE Transactions on Knowledge
and Data Engineering 13, 1 (Jan 2001), 79–95. 4

[BH12] BELL N., HOBEROCK J.: Thrust: A productivity-
oriented library for CUDA. In GPU Computing Gems Jade Edi-
tion, Hwu W.-m. W., (Ed.). Morgan Kaufmann Publishers Inc.,
2012, pp. 359–371. 2

[BK73] BURKHARD W. A., KELLER R. M.: Some approaches
to best-match file searching. Communications of the ACM 16, 4
(Apr. 1973), 230–236. 4

[BS98] BERMAN A., SHAPIRO L.: Selecting good keys for
triangle-inequality-based pruning algorithms. In IEEE Interna-
tional Workshop on Content-Based Access of Image and Video
Database (Jan 1998), pp. 12–19. 4

[CPZ97] CIACCIA P., PATELLA M., ZEZULA P.: M-tree: An ef-
ficient access method for similarity search in metric spaces. In
Proceedings of the 23rd International Conference on Very Large
Data Bases (1997), Morgan Kaufmann Publishers Inc., pp. 426–
435. 9

[DDG∗] DONGARRA J., DONG T., GATES M., HAIDAR A., TO-
MOV S., YAMAZAKI I.: MAGMA: a new generation of linear
algebra library for GPU and multicore architectures. 2

[DO12] DAVIDSON A., OWENS J.: Toward techniques for auto-
tuning GPU algorithms. In Applied Parallel and Scientific Com-
puting, vol. 7134 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2012, pp. 110–119. 6

[Gär99] GÄRTNER B.: Fast and robust smallest enclosing balls.
In Proceedings of the 7th Annual European Symposium on Algo-
rithms (1999), Springer-Verlag, pp. 325–338. 2

[HS03] HJALTASON G. R., SAMET H.: Index-driven similarity
search in metric spaces. ACM Transactions on Database Systems
28, 4 (Dec. 2003), 517–580. 4

[KL] KÄLLBERG L., LARSSON T.: Improved pruning of large
data sets for the minimum enclosing ball problem. Graphical
Models (to appear). 2, 9

[KMY03] KUMAR P., MITCHELL J. S. B., YILDIRIM E. A.:
Approximate minimum enclosing balls in high dimensions us-
ing core-sets. Journal of Experimental Algorithmics 8 (2003). 1,
2

[LK13] LARSSON T., KÄLLBERG L.: Fast and robust approxi-
mation of smallest enclosing balls in arbitrary dimensions. Com-
puter Graphics Forum 32, 5 (2013), 93–101. 1

[NN04] NIELSEN F., NOCK R.: Approximating smallest enclos-
ing balls. In Proceedings of International Conference on Compu-
tational Science and Its Applications (ICCSA) (2004), vol. 3045
of Lecture Notes in Computer Science, Springer. 5

[PS85] PREPARATA F. P., SHAMOS M. I.: Computational Ge-
ometry: An Introduction. Springer-Verlag New York, Inc., 1985.
1

[Sør12] SØRENSEN H. H. B.: High-performance matrix-vector
multiplication on the GPU. In Euro-Par 2011: Parallel Process-
ing Workshops, vol. 7155 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2012, pp. 377–386. 6

[TKK07] TSANG I. W., KOCSOR A., KWOK J. T.: Simpler core
vector machines with enclosing balls. In Proceedings of the 24th
International Conference on Machine Learning (2007), ACM,
pp. 911–918. 1

[Yıl08] YILDIRIM E. A.: Two algorithms for the minimum en-
closing ball problem. SIAM Journal on Optimization 19, 3 (Nov.
2008), 1368–1391. 1, 2

65

