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ABSTRACT

Direct electrical heating (DEH) is a technology for preventing hydrate formation and wax deposit
inside oil and gas pipelines. Nexans Norway AS is researching and developing DEH solutions for
deep waters. The company has produced a deep-water DEH piggyback cable that can carry its own
weight at 1 070 m water depth. When this DEH system is installed outside the coast of Africa, it
will be the world’s deepest DEH system.
For deep-water cables, including umbilicals, the maximum allowable tension (MAT) is an important
parameter that limits the water depth which the cable can be installed at. As MAT by definition is
calculated for straight (non-bent) cables, it can be argued from a theoretical point of view that
friction should be disregarded. However, from a practical point of view, one can argue that the cable
is rarely perfectly straight, which justifies inclusion of friction.
This paper derives the relation between the cable’s axial tension, the axial tensions of the individual
cable elements, and friction, with emphasize on how friction influences MAT. Four different ap-
proaches for calculating friction’s influence on MAT are presented. These approaches range from
fully neglecting friction to including the maximum possible friction. Two approaches include fric-
tion up to a certain curvature limit, which corresponds to an "almost straight" cable, and neglect the
friction for higher curvatures. The most conservative approach gives 19% lower MAT than the least
conservative approach for the deep-water DEH piggyback cable.
Keywords: Axisymmetric Analysis; Cable Capacity; Capacity Curve; Cross Section Analysis; Max-
imum Allowable Tension; Maximum Handling Tension; Offshore Technology; Riser; Subsea Cable;
Umbilical.

NOTATION
Ai Cross section area of each cable ele-

ment in layer i [m2].
Ci Total radial contact force per unit

length of the cable between cable lay-
ers i−1 and i [N/m].

ci Radial contact force per unit length
of the cable induced by cable layer i
[N/m].

Ei E-modulus of cable elements in layer i
[Pa].

EAc The cable’s axial stiffness [N].
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fi Maximum possible friction on each el-
ement in cable layer i per unit length of
the cable [N/m].

Li Pitch length of cable layer i [m].
li Length of cable elements in layer i over

one pitch length [m].
MAT Maximum allowable tension of the ca-

ble [N].
N Number of layers of conductor strands

[-].
ni Number of strands in layer i [-].
Ri Pitch radius of cable elements in layer

i [m].
ri Element radius of cable elements in

layer i [m].
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SMYS Specified minimum yield stress [Pa].
Tc The cable’s axial tension [N].
Ta,i Axial tension of each cable element in

layer i due to axial cable tension [N].
αi Pitch angle of cable elements in layer i

[rad].
εc Axial cable strain [-].
εi Axial strain of cable elements in layer i

[-].
κc The cable’s bending curvature [m−1].
κ limit

c The upper limit of cable bending cur-
vature for which friction is included in
calculations of MAT [m−1].

κc,i The cable’s bending curvature where
cable elements in layer i slip at angle
θ [m−1].

κmax
c,i The maximum cable bending curvature

for which σ f ,i is to be calculated for ca-
ble elements in layer i [m−1].

θ Angular position of cable element, rel-
ative to the center of the cable cross
section [rad].

σa,i Contribution to axial stress in cable el-
ements of layer i due to axial tension of
the cable [Pa].

σb,i Bending stress in cable elements of
layer i due to bending the cable [Pa].

σ f ,i Contribution to axial stress in cable el-
ements of layer i due to friction when
bending the cable [Pa].

σmax
f ,i Maximum possible contribution to ax-

ial stress in cable elements of layer i
due to friction when bending the cable
[Pa].

µi, j Coefficient of friction between ele-
ments of layer i and layer j.

Negative values of Li and αi indicate left lay direc-
tion, and positive values indicate right lay direction.

INTRODUCTION
The world’s increasing energy demand, combined
with the exhaustion of many easily accessible oil
and gas reserves, drives the petroleum industry into
deeper waters. Manufacturers of subsea cables and
umbilicals are among those who face the technolog-
ical challenges of increased water depths.
Another significant challenge of offshore petroleum
production is that the pipeline content is cooled by

the surrounding water. As the pipeline content drops
to a certain temperature, hydrates may be formed
and wax may start to deposit inside the pipeline wall.
Hydrates and wax may partially, or even fully, block
the pipeline. Hydrate formation may start at temper-
ature as high as 25◦C, while wax deposit may start
at 35-40◦C [1].
There are several ways to prevent hydrate forma-
tion and wax deposition. An intuitive solution is to
apply thermal insulation at the outer surface of the
pipeline. However, at long pipelines, low flow rates,
or production shut downs, this solution may be in-
sufficient.
When thermal insulation is insufficient, a commonly
used approach is to add chemicals to the pipeline in
order to reduce the critical temperature for hydrate
formation and wax deposition. Methanol or glycol
is commonly used [1, 2]. However, as explained in
reference [1], adding chemicals has practical as well
as environmental disadvantages.
A technology that has emerged over the last years is
direct electrical heating (DEH). The first DEH sys-
tem was installed at Statoil’s Åsgard oil and gas field
in the Norwegian Sea in year 2000 [3]. Nexans Nor-
way AS qualified the DEH technology together with
Statoil and SINTEF.
In DEH systems, the electrical resistance of the steel
in the pipeline wall is used as a heating element. A
single phase cable, referred to as piggyback cable
(PBC), is strapped to the pipeline. In the far end (the
end of the pipeline far away from the topside) the
PBC is connected ("short circuited") to the pipeline.
In the near end (the end of the pipeline close to the
topside), a two-phase DEH riser cable is connected
to the PBC and the pipeline; one phase of the riser
cable is connected to the PBC, and the other phase of
the riser cable is connected to the pipeline. When the
riser cable is energized topside, energy is transferred
through the PBC into the steel of the pipeline wall.
Nexans Norway AS is currently developing deep-
water DEH solutions. A piggyback cable that is
reparable, i.e. can carry its own weight, at 1 070 m
water depth is already produced by Nexans in a de-
livery project. The cross section of this cable is
shown in Figure 1. When this DEH system is in-
stalled outside the coast of Africa, it will be the
world’s deepest DEH system [3].
The piggyback cable presented in Figure 1 has 19
(1 + 6 + 12) steel strands in center (gray color in
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Figure 1: Cross section of the deep-water DEH pig-
gyback cable.

the figure). The purpose of the steel strands is to
improve the mechanical capacity of the conductor.
This solution is patented by Nexans Norway AS.
Outside the steel strands there are 72 (18 + 24 + 30)
copper strands (brown color). Outside the stranded
conductor there are an electric insulation system
(dark gray and light gray colors) and an inner sheath
(gray color). Outside the inner sheath there are
fillers for mechanical protection (yellow color), and
then the outer sheath (black color).
This paper focuses on how friction influences ca-
bles’ maximum allowable tension (MAT). This is-
sue is particularly important for deep-water cables
and umbilicals. The contributions of the paper
are: (i) Derive the relationship between axial cable
tension, axial element tension, and friction. This
derivation is strongly inspired by references [4],
[5], and [6]. (ii) Present four different approaches
for how to handle friction when calculating MAT.
These four approaches are then compared by apply-
ing them to the deep-water DEH piggyback cable
and the results are discussed.
The derivations of this paper are based on the fol-
lowing assumptions and simplifications: (i) All ma-
terials are assumed to be linear elastic. (ii) Radial
displacement and the Poisson ratio effect are ne-
glected. (iii) Helical elements are modeled as ten-
dons. That is, these elements’ axial stiffness is mod-
eled, while their bending stiffness and torsion stiff-
ness are neglected. (iv) The cable is prevented from
twisting. (v) Only inter-layer contact and friction are

considered, i.e. contact and friction between adja-
cent cable layers. Intra-layer contact and friction are
neglected, i.e. contact and friction within the same
cable layer. (vi) When considering radial contact
forces, only the steel and copper strands of the pig-
gyback cable is considered, because the radial con-
tact forces caused by the fillers is small compared to
those from the strands. (vii) End effects induced in
the cable terminations are neglected.

WHY FRICTION INFLUENCES THE MAXI-
MUM ALLOWABLE TENSION
The technological challenges facing manufacturers
of deep-water cables, including umbilicals, are to a
large degree caused by the large mechanical forces
acting on the cables. The net force of gravity minus
buoyancy causes large axial cable tension at hang-
off and in the upper part of the cable. The axial cable
tension is distributed between the cable elements ac-
cording to the elements’ mechanical properties and
the cable geometry.
As many cable elements are helical, large axial ca-
ble tension sets up large radial compression forces,
which give high friction between the cable elements.
When the cable is being bent, the helical elements
slide. However, at large axial cable tension, the he-
lical elements stick due to the friction. Then large
axial tension and compression forces build up in the
elements until the friction is exceeded, and thereby
allows the elements to slide. Hence, the axial cable
tension gives two contributions to the axial tensions
of the cable elements: (i) Distribution of the cable’s
axial tension to the individual cable elements. (ii)
Axial element tensions necessary to exceed the fric-
tion.
Large axial cable tension leads to two significant
challenges: (i) High axial element tensions may
cause the elements to exceed their respective me-
chanical capacities. (ii) Hanging from topside, the
cable is subject to oscillating bending due to waves.
Due to high friction, the helical elements partly
stick, causing alternating tension and compression.
This may lead to fatigue damage of the cable ele-
ments. For non-load-carrying elements, both these
issues may damage the elements to the extent that
they can no longer serve their respective purposes.
Even worse is damage to load-carrying elements;
this may ultimately break the cable.
This paper focuses on how friction influences the
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maximum allowable tension (MAT). MAT is here
defined as the maximum axial cable tension, assum-
ing straight (non-bent) cable, where all cable ele-
ments are within their respective mechanical capac-
ity criteria. These criteria are typically defined by
maximum allowed von Mises stress. If the cable is
bent, the cable may be damaged at lower axial ten-
sion than MAT.

ELEMENT TENSION VS. CABLE TENSION
In the deep-water DEH piggyback cable of Figure 1,
all cable elements are helical, except for the center
strand and the sheaths (including the insulation sys-
tem). All helices have the same center, which is the
center of the cable’s cross section. While helices are
three dimensional geometries, it is common to illus-
trate these geometries in two dimensions as shown
in Figure 2.
The pitch length, Li, is the axial length of the cable
corresponding to one revolution of the helix. Ele-
ments in the same cable layer always have the same
pitch length. The element length, li, is the length of
the cable element over one pitch length. The pitch
radius, Ri, is the radius from center of the cable to
center of the element. The pitch angle, αi, is the an-
gle between the cable’s axis (length direction) and
the tangent of the helix. The relation between li, Li,
Ri, and αi is shown in Figure 2.
This section derives the relation between the cable’s
axial tension, Tc, and the axial tensions of the indi-
vidual cable elements, Ta,i. From Figure 2 Pythago-
ras’ theorem gives

li2 = (2πRi)
2 +Li

2. (1)

Implicit derivation with respect to Li

2li
dli
dLi

= 2Li, (2)

dli =
Li

li
dLi = cos(αi)dLi. (3)

Dividing Eq. 3 by Li and using Li = li cos(αi) gives

dli
Li

=
dli

li cos(αi)
= cos(αi)

dLi

Li
, (4)

dli
li

= cos2(αi)
dLi

Li
, (5)

εi = cos2(αi)εc. (6)

2πR
i

L
i l

i

α
i

Figure 2: The geometric relation between li, Li, Ri,
and αi.

In Eq. 6 it is used that the cable’s axial strain
is εc

def
= dLi/Li, while the element’s axial strain is

εi
def
= dli/li. A cable element’s axial tension is given

as Ta,i = EiAiεi. Hence, multiplying Eq. 6 with
EiAi cos(αi) leads to

Ta,i cos(αi) = EiAi cos3(αi)εc, (7)

∑
i

Ta,i cos(αi) = ∑
i

EiAi cos3(αi)εc (8)

=

(
∑

i
EiAi cos3(αi)

)
εc,

∑i Ta,i cos(αi)

εc
=

Tc

εc
= ∑

i
EiAi cos3(αi), (9)

EAc
def
=

Tc

εc
= ∑

i
EiAi cos3(αi). (10)

In Eq. 8 all cable elements are summed. The strain in
the cable’s length direction, εc, is equal for all cable
elements. In Eq. 9 it is used that the cable’s axial ten-
sion, Tc, is equal to the axial component, Ta,i cos(αi),
of all cable elements. In Eq. 10 it is used the cable’s
axial stiffness is by definition EAc

def
= Tc/εc. Note

that Eq. 10 is valid also for non-helical elements. For
non-helical elements αi = 0.
Multiplying Eq. 6 with EiAi and using εc = Tc/EAc

gives the relation between the cable tension, Tc, and
the cable tension’s contribution to the elements’ ten-
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sion, Ta,i, and axial stress, σa,i.

EiAiεi = EiAi cos2(αi)εc, (11)

Ta,i =
EiAi cos2(αi)

EAc
Tc, (12)

σa,i =
Ta,i

Ai
=

Ei cos2(αi)

EAc
Tc. (13)

RADIAL CONTACT FORCES
Figure 3 illustrates a tendon being pulled over the
circumference of a circle or a circle sector, for ex-
ample a rope being pulled over a pulley. If the axial
tension of the tendon is T [N] and the radius from
center of the circle to the center of the tendon is d
[m], then the radial contact force, c [N/m], can be
shown to be

c =
T
d
= T κ, (14)

where κ = 1
d is the bending curvature of the tendon.

T T

d

c

Figure 3: A tendon (brown color) pulled over the
circumference of a circle sector (gray color).

For a helix with pitch radius, R, and pitch angle, α ,
the helix curvature, κ , can be shown to be

κ =
sin2(α)

R
. (15)

Hence, when applying axial tension, T , to a helix
winded around a cylindrical core, for example a he-
lical cable element on the beneath cable layer, the
radial contact force, c, is

c = T κ = T
sin2(α)

R
. (16)

Eq. 16 expresses the contact force from one cable el-
ement per unit length of the element, i.e. along edge

li of Figure 2. The contact force per unit length of
the cable, i.e. along edge Li, induced by ni cable el-
ements is then

ci =
ni sin2(αi)

Ri cos(αi)
Ta,i, (17)

ci =
niEiAi cos(αi)sin2(αi)

RiEAc
Tc. (18)

Eq. 12 has been inserted into Eq. 17 to give Eq. 18.
The contact forces induced by the individual cable
layers accumulate, layer by layer, towards the centre
of the cable. That is, the contact force between layer
N (the outermost layer) and layer N−1 is the contact
force induced by layer N, i.e. cN given by Eq. 18.
The contact force between layer N−1 and layer N−
2 is the contact force induced by layer N − 1 and
by layer N, i.e. cN−1 + cN . Hence, the accumulated
contact force acting between layer i and layer i−1,
Ci, is then

Ci =
1

EAc

(
N

∑
j=i

n jE jA j cos(α j)sin2(α j)

R j

)
Tc. (19)

FRICTION
Assuming Coulomb’s friction model, the maximum
possible friction force, f [N/m], between two sur-
faces is f = µc, where c [N/m] is the normal force
and µ [-] is the coefficient of friction.
Except for strands in the the outermost layer and the
center strand, all strands are subject to contact forces
both from the layer beneath and the layer above. The
maximum possible friction force on an element in
layer i per length of the element (i.e. along the edge
li of Figure 2) is then

fi =
cos(αi)

ni
(µi,i−1Ci +µi,i+1Ci+1) . (20)

In Eq. 20, the term cos(αi) is to give the friction per
unit length of the element instead of per unit length
of the cable. Division by ni is to give friction per
element.
A common assumption in the literature is to assume
that friction has no influence on cables subject to
only axisymmetric loads, i.e. axial tension and tor-
sion moment only, see for example reference [6].
However, when the cable is being bent, friction may
be very significant, depending on the applied axial
tension, the cable geometry, and the material prop-
erties. When the cable is bent, the cable itself and
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the cable elements are tensioned in the outer arc and
compressed in the inner arc.
Reference [7] shows that if a helical cable element is
prevented from sliding when the cable is bent, the el-
ement’s elongation in the outer arc is slightly larger
than the contraction in the inner arc. If the helical
elements can slide freely, the contraction will com-
pletely vanish, and only a tiny elongation will re-
main. This desired effect is actually one of the main
reasons why cables are produced with many cable
elements being helical.
If friction is present during cable bending, the helical
elements will initially stick. Then axial tension and
compression forces build up in the helical elements
until the friction is exceeded. When the friction is
exceeded, the helical elements slip and move. This
behavior is explained in references [4] and [6].
The maximum contributions of friction to the axial
stresses in cable elements can be approximated by

σ
max
f ,i (θ) =

Riθ

Ai|sin(αi)|
fi, (21)

θ ∈
[
−π

2
,
π

2

]
.

In Eq. 21, θ is the helical element’s angular position
in the cable. For θ = 0 rad the element is at the neu-
tral axis at bending, while for θ = π

2 rad the element
is at the outer arc at bending, and for θ = −π

2 rad
the element is at the inner arc. Eq. 21 is derived in
references [4] and [6]. The same references also de-
rive an approximation for which cable bending cur-
vature, κc,i, the friction is exceeded, i.e. when the
helical element starts to slip

κc,i(θ) =
θ

EiAi cos2(αi)|sin(αi)|sin(θ)
fi, (22)

θ ∈
[
−π

2
,
π

2

]
.

From Eq. 22 it is seen that the first slip occurs at the
neutral axis, θ = 0 rad, and then propagates towards
the inner arc, θ =−π

2 rad, and the outer arc, θ = π

2
rad. Also note that the slip propagation reaches the
inner arc and the outer arc at a curvature, κc,i, that
is π

2 times as large as the curvature of the first slip.
Due to symmetry at the point θ =−π

2 rad and at the
point θ = π

2 rad, the behavior explained here will
be repeated for every half pitch length of the helical
cable element.

FRICTION’S INFLUENCE ON MAXIMUM
ALLOWABLE TENSION
Maximum allowable tension (MAT) is an important
parameter for deep-water cables, including umbil-
icals, because MAT limits the water depths which
the cables can be installed and operated. MAT is
the maximum axial cable tension, Tc, where all cable
elements are within their respective criteria for me-
chanical capacity. These criteria are typically that
the element’s von Mises stress should be within a
certain percentage of the material’s specified min-
imum yield stress (SMYS). MAT is calculated for
straight (non-bent) cables. For bent cables the up-
per limit of axial tension is usually lower than MAT.
It is common practice to use a more conservative
MAT value during operation than during cable in-
stallation.
The following text presents four approaches, with
different degree of conservatism, for how to handle
friction when calculating or simulating MAT.

Approach 1

As explained above, it is a common assumption in
the literature to assume no influence from friction
in the axisymmetric case, i.e. when the cable is not
bent. Because MAT by definition is calculated for
straight cables, it can be argued from a theoretical
point of view that friction should be completely ne-
glected when calculating MAT. That is, evaluation of
the elements’ mechanical capacities are based only
on Eq. 12 or Eq. 13, without considering the con-
tribution from Eq. 21. This is the least conservative
approach.

Approach 2

From a practical point of view, one can argue that
real-life cables are usually not perfectly straight, i.e.
have bending curvatures not exactly equal to zero.
Based on this point of view, it may be reasonable
to include a contribution from friction. A conserva-
tive approach will then be to include the maximum
possible friction, as given by Eq. 21.
Using this approach, the total axial stress to be eval-
uated is σa,i + σmax

f ,i

(
π

2

)
, where σa,i is given by

Eq. 13 and σmax
f ,i is given by Eq. 21.
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Approach 3

The disadvantage of Approach 1 is that it assumes a
perfectly straight cable (exactly zero bending curva-
ture), which may be unrealistic for a real-life cable.
Approach 2 includes the maximum possible contri-
bution from friction, regardless of at which cable
bending curvature the maximum possible friction is
reached. As MAT is defined for non-bent cables, it
may be too conservative to include stress from fric-
tion occurring at large bending curvatures.
A feasible compromise between Approach 1 and
Approach 2 is to include friction up to a certain
bending curvature, κ limit

c , which corresponds to an
"almost straight" cable, for example κ limit

c = 1.0×
10−2 m−1 (i.e. 1.0×102 m bending radius), and ne-
glect friction occurring beyond this curvature.
A cable element is in full slip when Eq. 22 is evalu-
ated for θ = π

2 rad. The maximum curvature, κmax
c,i ,

for evaluation of σ f ,i is then the smallest value of
Eq. 22 and κ limit

c , i.e.

κ
max
c,i (23)

= min
(

π

2EiAi cos2(αi)|sin(αi)|
fi , κ

limit
c

)
.

From reference [6] it follows that until the friction
is exceeded, the axial element stress from friction at
bending can be approximated by

σ f ,i(θ) =EiRi cos2(αi)sin(θ)κc, (24)

θ ∈
[
−π

2
,
π

2

]
.

Eq. 24 is maximized for θ = π

2 rad. Then inserting
Eq. 23 into Eq. 24 gives the maximum stress due to
friction at bending

σ f ,i =EiRi cos2(αi) (25)

×min
(

π

2EiAi cos2(αi)|sin(αi)|
fi , κ

limit
c

)
.

If κ limit
c is set to a high value, then κmax

c,i is limited
by the first term inside the parenthesis of Eq. 23. In
this case, Approach 2 and Approach 3 will give the
same MAT value. How to decide the value of κ limit

c
requires a judgment by the analyst.
The total axial stress to be evaluated is then σa,i +
σ f ,i, given by Eq. 13 and Eq. 25, respectively.

Approach 4

The last approach to be discussed in this paper re-
quires a slight re-definition of MAT: Earlier in this
paper, MAT was defined as "the maximum axial
cable tension, assuming straight (non-bent) cable,
where all cable elements are within their respective
mechanical capacity criteria". The assumption of
straight cable will now be changed to "assuming a
small cable bending curvature of κ limit

c ".

This approach has the advantage that MAT can be
read directly from the capacity curve. The capacity
curve illustrates the allowed combinations of axial
cable tension, Tc, and bending curvature, κc. Hence,
once the capacity curve is established, MAT can be
found as the value of Tc corresponding to κc = κ limit

c .

Both Approach 3 and Approach 4 use the curvature
limit, κ limit

c . The difference between these two ap-
proaches is that Approach 4 also takes into account
an additional effect: When the cable is bent, the ca-
ble elements are also bent. This introduces bend-
ing stresses, σb,i, in the cable elements, which are
also taken into consideration when evaluating the
mechanical strength criteria. Hence, Approach 4 is
more conservative than Approach 3.

An expression for bending stress is given in refer-
ence [6]. For the deep-water DEH piggyback ca-
ble presented in Figure 1, σb,i corresponds to 1-2%
of SMYS for the curvature κ limit

c = 1.0×10−2 m−1.
Hence, in this case the difference between Approach
3 and Approach 4 is very small.

Comparison of the Four Approaches

Figure 4 compares MAT values of the deep-water
DEH piggyback cable presented in Figure 1, us-
ing the four approaches explained above. Figure 4
is scaled so that MAT calculated by Approach 1,
i.e. the least conservative approach, corresponds to
100%. For Approach 3 and Approach 4 the curva-
ture limit is set to κ limit

c = 1.0×10−2 m−1.

As shown in Figure 4, the most conservative ap-
proach (Approach 2) gives 19% lower MAT than the
least conservative approach (Approach 1). As ex-
pected, there is very good agreement between Ap-
proach 3 and Approach 4: Approach 4 is 2% lower
than Approach 3.
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Figure 4: Comparison of approaches 1 through 4 ap-
plied to the deep-water DEH piggyback cable pre-
sented in Figure 1. The graph is scaled so that MAT
calculated by the least conservative approach, i.e.
Approach 1, corresponds to 100%.

CONCLUSIONS
This paper derives the relation between a cable’s (or
umbilical’s) axial tension, the cable elements’ axial
tension, and friction. In particular, it is emphasized
how friction influences the maximum allowable ten-
sion (MAT).
A common assumption in the literature is to neglect
the influence of friction in the axisymmetric case.
Hence, from a theoretical point of view, it can be
argued that friction should be neglected when calcu-
lation MAT, because MAT by definition is calculated
for straight (non-bent) cables.
On the other hand, from a practical point of view,
one can argue that a real-life cable is rarely per-
fectly straight (i.e. has exactly zero bending curva-
ture). Therefore, it may be reasonable to include
contribution from friction when calculating MAT.
This paper presents four different approaches for
how to handle friction when calculating MAT. These
approaches range from neglecting friction in Ap-
proach 1 to include the maximum possible friction
in Approach 2. Approach 3 and Approach 4 are fea-
sible compromises, where friction is included up to a
certain cable bending curvature, which corresponds
to an "almost straight" cable, while friction above
this limit is disregarded. Approach 4 has the advan-
tage that it can be read directly from the cable’s ca-
pacity curve (i.e. allowed combinations of axial ten-
sion and bending curvature).

All four approaches were applied to the deep-water
DEH piggyback cable presented in Figure 1. For this
cable, the most conservative approach gives 19%
lower MAT than the least conservative approach.
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