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Abstract

Natural language processing (NLP) tools
are often developed with the intention of
easing human processing, a goal which is
hard to measure. Eye movements in read-
ing are known to reflect aspects of the cog-
nitive processing of text (Rayner et al.,
2013). We explore how eye movements
reflect aspects of reading that are of rel-
evance to NLP system evaluation and de-
velopment. This becomes increasingly rel-
evant as eye tracking is becoming avail-
able in consumer products. In this pa-
per we present an analysis of the dif-
ferences between reading automatic sen-
tence compressions and manually simpli-
fied newswire using eye-tracking experi-
ments and readers’ evaluations. We show
that both manual simplification and auto-
matic sentence compression provide texts
that are easier to process than standard
newswire, and that the main source of dif-
ficulty in processing machine-compressed
text is ungrammaticality. Especially the
proportion of regressions to previously
read text is found to be sensitive to the dif-
ferences in human- and computer-induced
complexity. This finding is relevant for
evaluation of automatic summarization,
simplification and translation systems de-
signed with the intention of facilitating hu-
man reading.

1 Introduction

Intuitively, the readability of a text should reflect
the effort that a reader must put into recognizing
the meaning encoded in the text. As a concept,
readability thus integrates both content and form.

Sentence-level readability assessment is desir-
able from a computational point of view because

smaller operational units allow systems to take
rich information into account with each deci-
sion. This computer-centric approach is in con-
trast to traditional human-centric readability met-
rics which are explicitly constructed for use at text
level (cf. Bjornsson (1983) and Flesch (1948))
and are by their own definitions unsuitable for au-
tomatic application (cf. Benjamin (2012) for an
evaluation of readability-formula usability).

The standard approach to assessing text read-
ability in natural language processing (NLP) is
to ask readers to judge the quality of the output
in terms of comprehensibility, grammaticality and
meaning preservation (cf. Siddharthan and Katsos
(2012)). An alternative is to use existing text col-
lections categorized by readability level for learn-
ing models of distinct categories of readability
e.g. age or grade levels (Schwarm and Ostendorf,
2005; Vajjala and Meurers, 2014).

In this paper we seek to establish whether read-
ers share an intuitive conceptualization of the read-
ability of single sentences, and to what extent this
conceptualization is reflected in their reading be-
havior. We research this by comparing subjective
sentence-level readability judgments to recordings
of readers’ eye movements and by testing to what
extent these measures co-vary across sentences of
varying length and complexity. These analyses
enable us to evaluate whether sentence-level sim-
plification operations can be meaningfully and di-
rectly assessed using eye tracking, which would be
of relevance to both manual and automated simpli-
fication efforts.

1.1 Automatic Simplification by Compression

Amancio et al. (2014) found that more than one
fourth of the transformations observed in sen-
tence pairs from Wikipedia and Single English
Wikipedia were compressions. To obtain auto-
matically simplified sentences we therefore train
a sentence-compression model.
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With inspiration from McDonald (2006), we
train a sentence compression system on a corpus
of parallel sentences of manually expert-simplified
and original newswire text where all simplifica-
tions are compressions. The system is described
in detail in section 2.

Sentence compression works by simply drop-
ping parts of a sentence and outputting the shorter
sentence with less information content and simpler
syntax. This approach allows us to control a num-
ber of variables, and in particular, it guarantees
that each expert simplification and each system
output are true subsets of the original input, pro-
viding three highly comparable versions of each
sentence. Further the system serves as a proof
of concept that a relatively small amount of task-
specific data can be sufficient for this task.

Sentence compression is, in addition, an impor-
tant step in several downstream NLP tasks, includ-
ing summarization (Knight and Marcu, 2000) and
machine translation (Stymne et al., 2013).

Below, we present the automatic simplification
setup, including the parallel data, features and
model selection and details on how we select the
data for the eye-tracking experiment. The follow-
ing section details the eye movement recording
and subjective evaluation setup. Section 4 presents
our results followed by a discussion and our con-
clusions.

2 Automatic Simplification Setup

2.1 Training and Evaluation Corpus

For the sentence compression training and evalu-
ation data we extracted a subset of ordinary and
simplified newswire texts from the Danish DSim
corpus (Klerke and Søgaard, 2012). In Figure 1
we give a schematic overview of how the data for
our experiments was obtained.

For model development and selection we ex-
tracted all pairs of original and simplified sen-
tences under the following criteria:

1. No sentence pair differs by more than 150
characters excluding punctuation.

2. The simplified sentence must be a strict sub-
set of the original and contain a minimum of
four tokens.

3. The original sentence must have at least one
additional token compared to the simplified

sentence and this difference must be non-
punctuation and of minimum three charac-
ters’ length.

This results in a corpus of 2,332 sentence pairs,
close to 4% of the DSim corpus. Descriptive
statistics of this corpus are shown in Table 1.

We followed the train-dev-test split of the DSim
corpus forming a training set of 1,973 sentence
pairs, a development set of 239 pairs, and a test
set of 118 pairs.1

For our experiment with eye tracking and sub-
jective evaluation we created a similar dataset,
denoted “augmented compressions” in Figure 1,
from sentence pairs displaying similar compres-
sions and in addition exactly one lexical substitu-
tion. We augmented these pairs by simply chang-
ing the synonym back to the original word choice,
resulting in a valid compression. We obtained
an automatically compressed version of these sen-
tences from the trained model2. This results in a
corpus of sentence triples consisting of an origi-
nal, an expert simplification and a system gener-
ated version. In some cases the system output was
identical to either the original input or to the ex-
pert simplification. We therefore selected the eval-
uation data to include only sentence triples where
all three versions were in fact different from one
another resulting in 140 sentence triples, i.e. 420
individual stimuli. On average the system deleted
15 tokens per sentence while the experts average
around 12 token deletions per sentence.

2.2 Compression Model and Features
The compression model is a conditional random
field (CRF) model trained to make a sequence of
categorical decisions, in each determining whether
the current word should be left out of the compres-
sion output while taking into account the previous
decision. We used CRF++ (Lafferty et al., 2001)
trained with default parameter settings.

Below, we describe the features we imple-
mented. The features focus on surface form, PoS-
tags, dependencies and word frequency informa-
tion. Our initial choice of features is based on the
comparisons in Feng et al. (2010) and Falkenjack
and Jönsson (2014), who both find that parsing

1The corpus was PoS-tagged and parsed using the Bohnet
parser (Bohnet, 2010) trained on the Danish Dependency
Treebank (Kromann, 2003) with Universal PoS-tags (Petrov
et al., 2011).

2Note that this dataset did not contribute to training, tun-
ing or choosing the model.
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Figure 1: We extract observed compressions from the simplification corpus and train an automatic com-
pression model. For the eye tracking and subjective evaluation we run the model on data that was not
used for training. We only keep automatic compressions that are different from both the input and the
expert compression. Augmented compressions are similar to compressions, but in addition they dis-
play one lexical substitution. We augment these by substituting the original synonym back in the expert
simplification, thereby making it a compression.

Original newswire Expert compressions Difference
Characters Tokens Characters Tokens % deleted tokens

Total 288,226 46,088 133,715 21,303 53.8%

Mean 123.6 19.8 57.3 9.1 51.0%
Std 43.2 7.1 24.5 4.0 18.2%
Range 24 – 291 5 – 45 15 – 178 4 – 33 4.4% – 86.2%

Table 1: Statistics on the full specialized corpus, 2.332 sentence pairs in total. Except for the row “Total”,
statistics are per sentence. “Difference Tokens” report the average, standard deviation and range of the
proportional change in number of tokens per sentence.

features are useful while the gain from adding fea-
tures beyond shallow features and dependencies is
limited. In the CRF++ feature template we speci-
fied each feature to include a window of up to +/- 2
tokens. In addition we included all pairwise com-
binations of features and the bigram feature option
which adds the model’s previous decision as a fea-
ture for the current token.

Shallow FORM, POS, CASE: This group con-
sists of the lowercase word form, universal PoS-
tag and the original case of the word.

Length W LENGTH, S LENGTH: This group
registers the word length (characters) and sentence
length (tokens).

Position PLACE, NEG PLACE, REL TENTH,
THIRDS: This group records the token indices
from both the beginning and end of the sentence,
as well as each token’s relative position measured
in tenths and in thirds of the sentence length.

Morphology BIGRAM, TRIGRAM, FOUR-
GRAM: The group records the final two, three and
four characters of each token for all tokens of at

least four, five and six characters’ length, respec-
tively.

Dependencies DEP HEAD, DEP LABEL: These
two features capture the index of the head of the
token and the dependency label of this dependency
relation.

Vocabulary OOV, FREQ 3, FREQ 5,
FREQ 10PS, FREQ 10EXP: This feature group
records a range of frequency-counts3. The first
feature records out-of-vocabulary words, the
remaining features assign the token to one of 3,
5 or 10 bins according to it’s frequency.4 In the
10-bin cases “Pseudo tenths” (PS) assigns the
token to one of 10 bins each representing an equal
number of word forms5, while “Exponential”

3We used the Danish reference corpus KorpusDK (As-
mussen, 2001) concatenated with the training part of the
DSim corpus

43 bins: in 1K most frequent tokens (mft), 5K mft or out-
side 5K mft. 5 bins: in 100 mft, 500 mft, 1K mft, 5K mft or
outside 5K mft.

5Three large bins were assigned word forms occurring 1,
2 and 3 times respectively while the remaining word forms
were sorted in seven bins of equal number of word forms
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splits the vocabulary into 10 bins containing a
decreasing number of word forms as the contained
word form frequencies rise exponentially.

2.3 Feature Selection

We tested five types of feature selection on the de-
velopment set of the corpus, namely single best
feature, single best feature group, add-one, and
feature-wise and group-wise feature ablation. On
the development set the single best feature was
POS alone, the single best feature group was the
Shallow group alone, while the add-one-approach
returned the combination of the three features
FORM, PLACE and FREQ 10PS, and single fea-
ture ablation returned all individual features mi-
nus FREQ 10EXP, OOV, REL TENTHS, and group-
wise ablation favored all groups minus the Vo-
cabulary and Shallow groups. Of these, the last
model, chosen with group-wise feature ablation,
obtained the best F1-score on the test set. We
use this model, which include the feature groups
Length, Position, Morphology and Dependencies,
to generate system output for the subsequent ex-
periments.

3 Human Evaluation

The experiment described in the following section
consisted of an eye tracking part and a subjective
evaluation part. The eye tracking part of the ex-
periment was carried out first and was followed by
the subjective evaluation part, which was carried
out by email invitation to an online survey.

We recruited 24 students aged 20 to 36 with
Danish as first language, 6 male and 18 female.
All had normal or corrected-to-normal vision.
None of the participants had been diagnosed with
dyslexia. A total of 20 participants completed the
evaluation task. The experiment was a balanced
and randomized Latin-square design. This design
ensured that each participant saw only one ver-
sion from each sentence-triple from one half of the
dataset while being eye-tracked. Afterwards par-
ticipants were asked to assign relative ranks be-
tween all three versions in each sentence-triple in
the half of the dataset which they had not previ-
ously seen. In total, each version of each sentence
was read by four participants in the eye-tracking
experiment and ranked by 9-11 other participants.

In the subjective evaluation task participants
had to produce a strict ordering by readability of
all three versions of each sentence, with the rank

‘1’ designating the most readable sentence. Pre-
sentation order was fully randomized.

3.1 Eye Tracking Design

The stimuli were presented on a screen with
1080 x 1920 resolution, and eye movements were
recorded with a Tobii X120 binocular eye tracker
at 60hz. We used the IV-T fixation filter with stan-
dard parameter settings (Olsen, 2012). The eye
tracker was calibrated to each participant.

Each stimulus was presented on one screen with
left, top and right margins of 300 px and 1-6 lines
per slide6. The font vas Verdana, size 60px and
line spacing was 0.8em7.

Participants were given written instructions and
three demo trials before they were left alone to
complete the experiment. All participants com-
pleted 72 trials in three blocks, with the option
to take a short break between blocks. Each trial
consisted of a fixation screen visible for 1.5 sec-
onds, followed by stimulus onset. The participants
were instructed to try to notice if each sentence
was comprehensible and to press a key to proceed
to the following trial as soon as they had finished
reading.

This setup only encourages but does not require
participants to read for comprehension. Through
data inspection and informal questions after the
experiment, we ascertained that all participants
were in fact reading and trying to decide which
sentences were comprehensible.

3.2 Eye-movement Measures

Eye movements in reading can be divided into
fixations and saccades. Saccades are rapid eye
movements between fixations, and fixations are
brief periods of relatively stationary eye positions
where information can be obtained from an area
covering the central 1-2 degrees of the visual field.
Because reading is largely sequential, we can ob-
serve regressions, which denote episodes of re-
reading, that is, fixations directed at text which is
located earlier in the text than the furthest fixated
word (Holmqvist et al., 2011).

In our analyses we include the measures of eye
movements described below. All measures are cal-
culated per single sentence reading and averaged

6After recording, sentences with seven lines were dis-
carded due to data quality loss at the lower edge of the screen

7Following Blache (2012) who show that the viewing pat-
terns with large text sizes are comparable to smaller text sizes
and can be detected with this type of eye tracker.
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over all four individual readings of each version
of each sentence.

Fixation count (Fix), the average total number
of fixations per sentence. This measure is expected
to vary with sentence length, with more text re-
quiring more fixations.

Total duration (ms), the average time spent
reading the entire sentence. This measure is ex-
pected to increase with sentence length and with
sentence complexity.

Fixations per word (Fix/w), the average num-
ber of fixations per word. This measure is sensitive
to the number of saccades relative to the sentence
length and is expected to reflect the reader’s con-
fusion as more fixations are needed to collect ad-
ditional information. It should also be expected to
be sensitive to high amounts of long words.

Reading time per word (ms/w), the average
time spent per word. This measure increases with
slower paced reading, regardless of the number of
fixations. Reading time is considered a measure
of processing cost and is influenced by both lexi-
cal and syntactic complexity.

Proportion regressions (%-regr), the propor-
tion of fixations spent on parts of the text that were
already passed once. This measure is typically 10-
15% in full paragraphs, and is expected to increase
with sentence complexity. (Rayner et al., 2006)

We include the sentence length as number of
words (n-words) in our analyses for comparison
because sentence length can influence the reading
strategy (Holmqvist et al., 2011).

Longer sentences will typically have a more
complex syntax than short sentences due to the
number of entities that need to be integrated into
both the syntactic and mental representation of the
sentence. However, unfamiliar or even erroneous
words and syntax can add processing difficulties
as well, leaving the reader to guess parts of the in-
tended message. We consider all these cases under
the term complexity as they are all likely to appear
in automatically processed text. This is a natural
consequence of the fact that statistical language
processing tools are typically not able to distin-
guish between extremely rare, but admissible text
use and text that would be judged as invalid by a
reader.

4 Results

We first analyze the correlation of the subjective
evaluations followed by analyses that compare eye

movement measures, subjective rankings and sen-
tence version.

4.1 Ranking
First we test whether the subjective rankings are
similar between subjects. We estimate agreement
with Kendall’s τB association statistic, which is
a pairwise correlation coefficient appropriate for
comparing rank orderings. The range of τB is
[−1,1] where -1 indicates perfect disagreement,
i.e. one ranking is the precise opposite order of
the other, 1 indicates perfect agreement and 0 in-
dicates no association, that is, the order of two el-
ements in one ranking is equally likely to be the
same and the opposite in the other ranking. The
odds-ratio of a pair of elements being ranked con-
cordantly is (1+τB)/(1−τB). The metric τB com-
pares pairs of rankings, and we therefore calculate
the average over all pairs of participants’ agree-
ment on each ranking task. We use the one-tailed
one-sample student’s t-test to test whether the av-
erage agreement between all 91 unique pairs of an-
notators is significantly different from 0. If the
rankings are awarded based on a shared under-
standing and perception of readability, we expect
the average agreement to be positive.

We find that the average τB is 0.311(p <
0.0001). This corresponds to a concordance odds-
ratio of 1.90 which means that it is almost twice as
likely that two annotators will agree than disagree
on how to rank two versions of a sentence. Al-
though this result is strongly significant, we note
that it is a surprisingly low agreement given that
the chance agreement is high for two people rank-
ing three items.

The relatively low systematic agreement could
arise either from annotators ranking only a few
traits systematically (e.g. syntax errors rank low
when present and otherwise ranking is random)
or it could result from annotators following fully
systematic but only slightly overlapping strate-
gies for ranking (e.g. one ranks by number of
long words while another ranks by sentence length
which would tend to overlap).

4.2 Eye Tracking
Our second analysis tests how well the subjec-
tive ranking of sentences correspond to eye move-
ments. We expect that more complex text will
slow down readers, and we want to know whether
the perceived readability reflects the variation we
observe in eye-movement measures. Again using
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Difference in medians
System – Expert System – Original Original – Expert Expert – Broken Broken – Original

avg. rank 0.25 * -0.47 *** -0.73 *** -1.51 *** 0.78 ***
ms -7.5 ms – -190.0 ms *** 182.5 ms *** -2 ms – -168 ms ***
Fix -0.8 fix – -14.0 fix *** 13.3 fix *** -1.3 fix – -11 fix ***
ms/w 3.0 ms – -3.0 ms – 6 ms ** -13 ms ** -3 ms –
fix/w 0.1 fix – 0.4 fix *** -0.27 fix ** -0.19 fix – 0.36 fix **
%-regr 4 pp ** 1 pp – 5 pp *** 11 pp *** 2 pp –
n-words -1 word * -2 words * 1 word – 0 words – -5 words –

Table 2: Influence of sentence variant and brokenness on perceived readability and eye movements.
When comparing Expert, Original and System 109 sentences are included while for Broken only 27
sentences are compared. Stars denote significance levels: *: p < .05, **: p < .01, ***: p < .001

Figure 2: Interaction of sentence type and broken-
ness on perceived readability and eye movements.
(N=27)

the τB association, we now assign ranks within
each sentence-triple based on each eye-tracking
measure and compare these pseudo-rankings to
the typical rank assigned by the annotators.8 We
find that neither sentence length or any of the
eye tracking measures are significantly associated
with the typical rank. This means that we do
not observe any correlation between sentences’

8This approach introduces ties which are handled by the
τB statistic but influences the result notably since each rank-
ing task only includes 3 items.

perceived readability and the sentence length, the
time it takes to read it or the speed or number of
fixations or proportion of regressions recorded.

One potential reason why we do not observe
the expected association between rank and eye
movements can be that several of our eye track-
ing measures are expected to vary differently with
sentence length and complexity, whereas readers’
readability rankings are not necessarily varying
consistently with any of these dimensions as par-
ticipants are forced to conflate their experience
into a one-dimensional evaluation.

In order to investigate whether the eye move-
ments do in fact distinguish between length and
complexity in sentences, we compare how readers
read and rank long original sentences, short expert
simplifications and short, syntactically broken sys-
tem output.

The system output was post hoc categorized by
syntactic acceptability by the main author and a
colleague, resulting in a sample of 27 sentence
triples with syntactically unacceptable system and
a sample of 109 fully syntactically acceptable sen-
tence triples. This allows us to compare the fol-
lowing four groups, Original, Expert, Unbroken
System and Broken System.

We compare all eye-movement measures and
ranking for each pair of groups9 and test whether
the measures differ significantly between groups
using the Wilcoxon signed-rank test. We report the
comparisons as the difference between the medi-
ans in Table 2. This is similar to an unnormalized
Cohen’s d effect size, but using the median as esti-
mate of the central tendency rather than the mean.
We observe that all group-wise comparisons re-
ceive significantly different average ranks, ranging
from the Unbroken System scoring a quarter of a

9We use the larger sample whenever the group Broken
System is not part of the comparison.
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rank-position better than the Expert compressions
to the Broken System output fairing 1.51 rank po-
sitions worse than the Expert group.

Note that Broken System is also ranked signifi-
cantly below the Original newswire sentences, sig-
naling that bad syntax has a stronger impact on
perceived readability than length. Even though
the sample of Broken System sentences is small,
overall reading time and number of fixations dis-
tinguish the long Original sentences from both
the short Expert simplifications and Broken Sys-
tem outputs, that are comparably short. We also
observe that the number of fixations per word is
consistently lower for the long Original sentences
compared to the other, shorter groups. Impor-
tantly, we observe that two measures significantly
distinguish Expert simplifications from syntacti-
cally Broken System output, namely reading time
per word, which is slower for Broken System syn-
tax and proportion of regressions which is much
higher in Broken System sentences. In addition
and as the only eye-tracking measure, proportion
of regressions also distinguishes between Unbro-
ken System output and Expert simplifications, in-
dicating a 4 percentage point increase in propor-
tion of regressions when reading Unbroken Sys-
tem output.

In Figure 2 we show how the medians of all
the measures vary in the small subset that con-
tain Broken System output, Expert compressions
and Original newswire. The figure illustrates
how the different aspects of reading behavior re-
flect length and syntax differently, with regres-
sions most closely following the subjective rank-
ing (top).

5 Discussion

In the following section we discuss weaknesses
and implications of our results.

5.1 Learning and Scoring the Compression
Model

It is important to note that the compression model
inherently relies on the expert compressed data,
which means it penalizes any deviation from the
single gold compression. This behavior is sub-
optimal given that various good simplifications
usually can be produced by deletion and that al-
ternative good compressions are not necessarily
overlapping with the gold compression. One ex-
ample would be to pick either part of a split sen-

tence which can be equally good but will have zero
overlap and count as an error. Our results suggest
that the framework is still viable to learn a useful
model, which would need a post-processing syn-
tax check to overcome the syntax errors arising in
the deletion process.

We note that the model produces more aggres-
sive deletions than the experts, sometimes produc-
ing sentences that sound more like headlines than
the body of a text. It is surprising that this is the
case, as it is typically considered easier to improve
the readability slightly, but we speculate that the
behavior could reflect that the parts of the training
data with headline-like characteristics may pro-
vide a strong, learnable pattern. However, from an
application perspective, it would be simple to ex-
ploit this in a stacked model setup, where models
trained to exhibit different characteristics present
a range of alternative simplifications to a higher-
level model.

From inspections of the output we observe that
the first clause tends to be kept. This may be
domain-dependent or it may reflect that PoS-tags
and parsing features are more reliable in the be-
ginning of the sentence. This could be tested in
the future by applying the model to text from a
domain with different information structure.

5.2 Implications for System Development
We found that the very simple compression model
presented in this paper was performing extensive
simplifications, which is important in light of the
fact that humans consider it harder to produce
more aggressive simplifications. We trained our
model on a relatively small, specialized compres-
sion corpus. The Simple English Wikipedia sim-
plification corpus (SEW) (Coster and Kauchak,
2011), which has been used in a range of statistical
text simplification systems (Coster and Kauchak,
2011; Zhu et al., 2010; Woodsend and Lapata,
2011), is far bigger, but also noisier. We found
fewer than 50 sentence pairs fitting our compres-
sion criteria when exploring the possibility of gen-
erating a similar training set for English from the
SEW. However, in future work, other, smaller sim-
plification corpora could be adapted to the task,
providing insight into the robustness of using com-
pression for simplification.

5.3 Implications for Evaluation Methodology
In many natural language generation and manipu-
lation setups, it is important that the system is able

Proceedings of the 20th Nordic Conference of Computational Linguistics (NODALIDA 2015) 103



to recognize acceptable output, and it is typical
of this type of setup that neither system-intrinsic
scoring functions or as standard automatic evalu-
ation procedures are reliably meeting this require-
ment. In such cases it is common to obtain ex-
pensive specialized human evaluations of the out-
put. Our results are encouraging as they suggest
that behavioral metrics like regressions and read-
ing time that can be obtained from nave subjects
simply reading system output may provide an af-
fordable alternative.

5.4 Brokenness in NLP output

The experiments we have presented are targeting
a problem specific to the field of computer manip-
ulation of texts. In contrast to human-written text,
language generation systems typically cannot fully
guarantee that the text will be fluent and coherent
in both syntax and semantics. Earlier research in
readability has focused on how less-skilled read-
ers, like children, dyslectic readers and second-
language readers, interact with natural text, often
in paragraphs or longer passages. It is important to
determine to what extent the existing knowledge
in these fields can be transferred to computational
linguistics.

6 Conclusion

We have compared subjective evaluations and eye-
movement data and shown that human simplifi-
cations and automatic sentence compressions of
newswire produce variations in eye movements.

We found that the main source of difficulty in
processing machine-compressed text is ungram-
maticality. Our results further show that both the
human simplifications and the grammatical auto-
matic sentence compressions in our data are easier
to process than the original newswire text.

Regressions and reading speed were found to be
good candidates for robust, transferrable measures
that, with increasing access to eye-tracking tech-
nology, are strong candidates for being directly in-
corporated into language technologies.

We have shown that these measures can capture
significant differences in skilled readers’ reading
of single sentences across subjects and with eco-
logically valid stimuli. In future research we wish
to explore the possibility of predicting relevant
reading behavior for providing feedback to NLP
systems like automatic text simplification and sen-
tence compression.
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