

Cover photo 'Vilnius castle tower by night' by Mantas Volungevičius
http://www.flickr.com/photos/112693323@N04/13596235485/
Licensed under Creative Commons Attribution 2.0 Generic
See http://creativecommons.org/licenses/by/2.0/ for full terms

Cover design Nils Blomqvist

http://www.flickr.com/photos/112693323@N04/13596235485/

Proceedings of the Workshop on
Innovative Corpus Query and

Visualization Tools at
NODALIDA 2015

Editors
Gintarė Grigonytė, Simon Clematide,

Andrius Utka and Martin Volk

May 11-13, 2015
Vilnius, Lithuania

Published by

Linköping University Electronic Press, Sweden
Linköping Electronic Conference Proceedings #111
ISSN: 1650-3686
eISSN: 1650-3740
NEALT Proceedings Series 25
ISBN: 978-91-7519-035-8

Copyright

The publishers will keep this document online on the Internet – or its possible replacement –from
the date of publication barring exceptional circumstances. The online availability of the document
implies permanent permission for anyone to read, to download, or to print out single copies for
his/her own use and to use it unchanged for non-commercial research and educational purposes.
Subsequent transfers of copyright cannot revoke this permission. All other uses of the document are
conditional upon the consent of the copyright owner. The publisher has taken technical and
administrative measures to assure authenticity, security and accessibility. According to intellectual
property law, the author has the right to be mentioned when his/her work is accessed as described
above and to be protected against infringement. For additional information about Linköping
University Electronic Press and its procedures for publication and for assurance of document
integrity, please refer to its www home page: http://www.ep.liu.se/.

Linköping University Electronic Press Linköping, Sweden, 2015
Linköping Electronic Conference Proceedings, No. 111
ISSN: 1650-3686
eISSN: 1650-3740
URL: http://www.ep.liu.se/ecp_home/index.en.aspx?issue=111
NEALT Proceedings Series, Vol. 25
ISBN: 978-91-7519-035-8

© The Authors, 2015

http://www.ep.liu.se/

Preface

Recent years have seen an increased interest in and availability of many
different kinds of corpora. These range from small, but carefully anno-
tated treebanks to large parallel corpora and very large monolingual cor-
pora for big data research.

It remains a challenge to offer flexible and powerful query tools for
multilayer annotations of small corpora. When dealing with large cor-
pora, query tools also need to scale in terms of processing speed and re-
porting through statistical information and visualization options. This be-
comes evident, for example, when dealing with very large corpora (such
as complete Wikipedia corpora) or multi-parallel corpora (such as Eu-
roparl or JRC Acquis).

The QueryVis workshop has gathered researchers who develop and
evaluate new corpus query and visualization tools for linguistics, lan-
guage technology and related disciplines. The papers focus on the design
of query languages, and on various new visualization options for mono-
lingual and parallel corpora, both for written and spoken language.

We hope that QueryVis will stimulate discussions and trigger new
ideas for the workshop participants and any reader of the proceedings.
The preparation of the workshop and the reviewing of the submissions
has already been an inspiring experience.

All papers were peer-reviewed by three program committee mem-
bers. We would like to thank all reviewers and contributors for their work
and for sharing their thoughts and experiences with us.

Let us all join our forces to make corpus exploration a rewarding, en-
tertaining, and exciting experience which will grant us ever new insights
into language and thought.

May 4, 2015
Zürich

Gintarė Grigonytė
Simon Clematide

Andrius Utka
Martin Volk

iii

Program Committee

Janne Bondi Johannessen University of Oslo
Noah Bubenhofer University of Zurich
Simon Clematide University of Zurich
Johannes Graën University of Zurich
Gintarė Grigonytė Stockholm University
Miloš Jakubı́ček Lexical Computing Ltd.
Andrius Utka Vytautas Magnus University
Martin Volk University of Zurich
Robert Östling Stockholm University

iv

Table of Contents

KoralQuery - A General Corpus Query Protocol 1
Joachim Bingel and Nils Diewald

Reflections and a Proposal for a Query and Reporting Language
for Richly Annotated Multiparallel Corpora 6

Simon Clematide

Interactive Visualizations of Corpus Data in Sketch Engine 17
Lucia Kocincová, Vı́t Baisa, Miloš Jakubı́ček and Vojtěch Kovář

Visualisation in speech corpora: maps and waves in the Glossa
system . 23

Michał Kosek, Anders Nøklestad, Joel Priestley, Kristin Hagen
and Janne Bondi Johannessen

ParaViz: A vizualization tool for crosslinguistic functional
comparisons based on a parallel corpus . 32

Ruprecht von Waldenfels

v

KoralQuery – a General Corpus Query Protocol

Joachim Bingel, Nils Diewald
Institut für Deutsche Sprache

Mannheim, Germany
bingel,diewald@ids-mannheim.de

Abstract
The task-oriented and format-driven de-
velopment of corpus query systems has led
to the creation of numerous corpus query
languages (QLs) that vary strongly in ex-
pressiveness and syntax. This is a severe
impediment for the interoperability of cor-
pus analysis systems, which lack a com-
mon protocol. In this paper, we present
KoralQuery, a JSON-LD based general
corpus query protocol, aiming to be inde-
pendent of particular QLs, tasks and cor-
pus formats. In addition to describing the
system of types and operations that Koral-
Query is built on, we exemplify the rep-
resentation of corpus queries in the serial-
ized format and illustrate use cases in the
KorAP project.

1 Introduction

In the past, several corpus query systems have
been developed with the purpose of exploring and
providing access to text corpora, often under the
assumption of specific linguistic questions that the
annotated corpora have been expected to help an-
swer. This task-oriented and format-driven devel-
opment has led to the creation of several distinct
corpus query languages (QLs), including those
mentioned in Section 3. Such QLs vary strongly
in expressiveness and usability (Frick et al., 2012).

This brings several unpleasant consequences
both for researchers and developers. For instance,
the researcher who uses a particular system must
formulate her queries in no other QL than the one
used for this system, which might require addi-
tional training prior to the actual research. It might
even be the case that certain research questions
cannot be answered due to limitations of the QL,
while the actual query system and the underlying
corpus data could in fact provide results. For de-
velopers, the lack of a common protocol prevents

interoperability between different query systems,
for instance to forward user requests from one sys-
tem to another, which may have access to addi-
tional resources.

In this paper, we present KoralQuery, a gen-
eral protocol for the representation of requests to
corpus query systems independent of a particular
query language. KoralQuery provides an extensi-
ble system of different linguistic and metalinguis-
tic types and operations, which can be combined
to represent queries of great complexity. Several
query languages can thus be mapped to a common
representation, which lets users of query systems
formulate queries in any of the QLs for which such
a mapping is implemented (cf. Section 4). Further
benefits of KoralQuery include the dynamic defi-
nition of virtual corpora and the possibility to si-
multaneously access several, concurrent layers of
annotation on the same primary textual data.

2 Related Work

In former publications, KoralQuery was intro-
duced as a unified serialization format for CQLF1

(Bański et al., 2014), a companion effort focussing
on the identification and theoretical description of
corpus query concepts and features.

Another approach to a common query lan-
guage that is independent of tasks and formats
is CQL (Contextual Query Language) (OASIS
Standard, 2013), with its XML serialization for-
mat XCQL.2 KoralQuery differs from CQL in fo-
cussing on queries of linguistic structures, and
separating document and span query concepts (see
Section 3).

1CQLF is short for Corpus Query Lingua Franca, which
is part of the ISO TC37 SC4 Working Group 6 (ISO/WD
24623-1).

2Like KoralQuery, XCQL is not meant to be human read-
able, but to represent query expressions as machine readable
tree structures. For various compilers from CQL to XCQL,
see http://zing.z3950.org/cql/; last accessed 27 April
2015.

1

3 Query Representation

KoralQuery is serialized to JSON-LD (Sporny et
al., 2014), a JSON (Crockford, 2006) based for-
mat for Linked Data, which makes it possible for
corpus query systems to interoperate by exchang-
ing the common protocol.3 JSON-LD relies on
the definition of object types via the @type key-
word, thus informing processing software of the
attributes and values that a particular object may
hold. As can be seen in the example serializations
in this section (see Fig. 1-3), KoralQuery makes
use of the @type keyword to declare query object
types. Those types fall into different categories
that we introduce in the remainder of this section.4

While KoralQuery aims to express as many dif-
ferent linguistic and metalinguistic query struc-
tures as possible, it currently guarantees to rep-
resent types and operations defined in Poliqarp
QL (Przepiórkowski et al., 2004), COSMAS II QL
(Bodmer, 1996) and ANNIS QL (Rosenfeld, 2010).
In addition, the protocol comprises a subset of the
elements of CQL (OASIS Standard, 2013).

As JSON-LD objects can reference further
namespaces (via the @context attribute), Koral-
Query is arbitrarily extensible.

3.1 Document Queries

KoralQuery allows to specify metadata constraints
that act as filters for virtual collections using the
collection attribute. Those metadata constraints,
so-called collection types, serve a dual purpose:
Besides the obvious benefit of allowing users to
restrict their search via dynamic sampling to docu-
ments that meet specific requirements on metadata
such as publication date, authorship or genre, they
can be used to control access to texts that the user
has no permission to read (cf. Sec. 3.3).

A single metadata constraint is called a basic
collection type, and defines a metadata field, a
value and a match modifier, for example to negate
the constraint. Basic collection types can be com-
bined using boolean operators (AND and OR) to
recursively form complex collection types. The
result of a collection type is a collection of doc-
uments which satisfy the encoded constraint (or

3JSON-LD was chosen to be compatible with LAPPS rec-
ommendations from ISO TC37 SC4 WG1-EP, as suggested
by Piotr Bański.

4The type categories are set in boldface. A detailed def-
inition of types and attributes is provided by the KoralQuery
specification (Diewald and Bingel, 2015), which may serve
as a reference for implementers of KoralQuery processors.

1 {
2 "@context" : "http://korap.ids-mannheim.de/ns/

koral/0.3/context.jsonld",
3 "collection" : {
4 "@type" : "koral:doc",
5 "key" : "pubDate",
6 "value" : "2005-05-25",
7 "type" : "type:date",
8 "match" : "match:geq"
9 },
10 "query" : {}
11 }

Figure 1: KoralQuery serialization for a virtual
collection that is restricted to documents with a
pubDate of greater or equal than 2005-05-25.

combination of constraints), for instance all doc-
uments that were published after a certain date or
that contain a certain string of characters in their
title. Figure 1 illustrates the serialization of a sim-
ple virtual collection definition.

3.2 Span Queries
To find occurrences of particular linguistic struc-
tures in corpus data (possibly restricted through
the aforementioned document queries), Koral-
Query uses the attribute query, under which it
registers objects of specific, well-defined types.
Those objects, along with their hierarchical orga-
nization, represent the linguistic query issued by
the user.5

The intended generic usability of KoralQuery
demands a high degree of flexibility in order to
cover as many linguistic phenomena and theories
as possible. It must therefore be maximally inde-
pendent of, and neutral with regard to,

(i) the type and structure of linguistic annotation
on the text data,

(ii) the choice of specific tag sets, e.g. for part-
of-speech annotations or dependency labels.

KoralQuery achieves this neutrality by instanti-
ating distinct linguistic types as abstract structures
which can flexibly address different sources and
layers of linguistic annotation at the same time.
Linguistic patterns of greater complexity can be
defined by using a modular system of nestable
types and operations, drawing on various famil-
iar search technologies and formalisms, includ-

5As the response format is not part of the KoralQuery
specification, the result handling is subject to the query en-
gine. It may, for instance, return surrounding text spans or
the total number of occurrences.

2

ing concepts from regular expressions, XML tree
traversal, boolean search and relational database
queries.

The nesting principle of KoralQuery states that
objects describing linguistic structures in the cor-
pus data, so-called span types, may be embedded
in parental objects to recursively describe complex
linguistic structures, thus forming a single-rooted
tree.

Span types may be further sub-classified into
basic and complex types. Basic span types denote
linguistic entities such as words, phrases and sen-
tences that are annotated in the corpus data. The
result of such a span type is a text span, which in
turn is defined through a start and an end offset
with respect to the primary text data. Complex
span types define linguistic or result-modifying
operations on a set of embedded span types, which
thus act as arguments (or operands) of the relation
and pass their resulting text spans on to the parent
operation.6 Such operations may express syntactic
relations or positional constraints between spans.

Figure 2, for example, represents a span query
of two koral:token objects (basic span types)
each wrapping a single koral:term object, whose
resulting text spans are required to be in a se-
quence (i.e. follow each other immediately in
the order they appear in the list), as formulated
by the operation:sequence in the embedding
koral:group object (a complex span type).

Leaf objects of the span query tree structure
may either be basic span types or parametric
types, containing specific information that is re-
quested for certain span types. They are intended
to normalize the usage and representation of simi-
lar or equal parameters used across different types.
The koral:term objects in Figure 2, which ex-
press constraints on their parent koral:token ob-
jects, are examples of such parametric types and
are used to uniformly access annotation labels
from different sources and on different layers.
Next to such basic parametric types, KoralQuery
provides complex parametric types that encode,
for instance, logical operations on other paramet-
ric types (see the koral:termGroup in Figure 2).

Note that all of those types are themselves com-
plex structures in that they are composed of a spe-

6In addition, the koral:reference type may refer to ob-
jects elsewhere in the tree, which provides a mechanism sim-
ilar to ID/IDREF in XML. This strategy is necessary to sup-
port graph-based query structures found in certain query lan-
guages.

1 {
2 "@context" : "http://korap.ids-mannheim.de/ns/

koral/0.3/context.jsonld",
3 "collection" : {},
4 "query" : {
5 "@type":"koral:group",
6 "operation" : "operation:sequence",
7 "operands" : [{
8 "@type" : "koral:token",
9 "wrap" : {
10 "@type" : "koral:termGroup",
11 "relation" : "relation:and",
12 "operands" : [{
13 "@type" : "koral:term",
14 "foundry" : "tt",
15 "key" : "ADJA",
16 "layer" : "pos",
17 "match" : "match:eq"
18 }, {
19 "@type" : "koral:term",
20 "foundry" : "cnx",
21 "key" : "@PREMOD",
22 "layer" : "syn",
23 "match" : "match:eq"
24 }]
25 }, {
26 "@type" : "koral:token",
27 "wrap" : {
28 "@type" : "koral:term",
29 "key" : "octopus",
30 "layer" : "lemma",
31 "match" : "match:eq"
32 }
33 }]
34 }
35 }

Figure 2: KoralQuery serialization for a pre-
modifying adjective followed by the lemma oc-
topus. The dual constraint on the first token
(adjective and premodifying) is reflected by the
koral:termGroup, which expresses a conjunction
of the two koral:term objects. The different val-
ues for foundry indicate that different annotation
sources are addressed.

cific set of obligatory and optional attributes that
carry corresponding values. Those values, in turn,
are also constrained to be of specific data types.
They can either be primitives (like string, integer
or boolean), parametric KoralQuery types, or con-
trolled values.

3.3 Query Rewrites

Query processors may perform a wide range of
different tasks aside of searching. Examples in-
clude the modification of queries to restrict access
to certain documents, to improve recall (e.g. by in-
troducing synonyms or suggesting query reformu-
lations), or to inject missing query elements (like

3

1 {
2 "@context" : "http://korap.ids-mannheim.de/ns/

koral/0.3/context.jsonld",
3 "collection" : {
4 "@type" : "koral:docGroup",
5 "operation" : "operation:and",
6 "operands" : [{
7 "@type" : "koral:doc",
8 "key" : "pubDate",
9 "value" : "2005-05-25",

10 "type" : "type:date",
11 "match" : "match:geq"
12 }, {
13 "@type" : "koral:doc",
14 "key" : "corpusID",
15 "value" : "Wikipedia",
16 "rewrites" : [{
17 "@type" : "koral:rewrite",
18 "src" : "Kustvakt",
19 "operation" : "operation:injection"
20 }]
21 }]
22 },
23 "query" : {}
24 }

Figure 3: Rewritten KoralQuery instance (see Fig-
ure 1), with an injected access restriction.

preferred annotation tools) based on user settings
(Bański et al., 2014). Queries may also be ana-
lyzed for the most commonly queried structures,
for instance to perform query and index optimiza-
tion or to shed light on which texts and annota-
tions are most popular with the users. In a post-
processing step, queries can also be transformed
for visualization purposes, for example to illus-
trate sequences or alternatives in complex query
structures.

Using a well-defined and widely adopted seri-
alization format such as JSON makes it easy to
perform such tasks, and KoralQuery supports this
kind of pre- and post-processors even further by
introducing mechanisms to trace query rewrites by
using so-called report types that are passed to fur-
ther processors in the processing pipeline. In this
way, query modifications (like the aforementioned
rewrites for access restriction and recall improve-
ments) can be made visible and transparent to the
user. In this respect, KoralQuery differs from com-
mon database query systems, where rewrites are
internal and hidden from the user (Huey, 2014).

In Figure 3, the virtual collection of Figure 1 is
rewritten by the processor Kustvakt in a way that
a further constraint is injected, limiting the vir-
tual collection to all documents with a corpusID

of Wikipedia (i.e. excluding all documents from

other corpora). This rewrite is documented by
the koral:rewrite object (a report type). Doc-
umenting rewrites is optional (e.g. the injected
operation:and in the example Figure is implicit
and was not reported using koral:rewrite).

In addition, KoralQuery allows to report on var-
ious processing issues (independent of rewrites,
e.g. regarding incompatibilities) by using the
errors, warnings, and messages attributes.

Report types (in opposition to collection types,
span types, and parametric types) do not alter the
expected query result.

4 Implementations

KoralQuery is the core protocol used in KorAP7

(Bański et al., 2013), a corpus analysis platform
developed at the Institute for the German Lan-
guage (IDS). KorAP is designed to handle very
large corpora and to be sustainable with regard to
future developments in corpus linguistic research.
This is ensured through a modular architecture of
interoperating software units that are easy to main-
tain, extend and replace. The interoperability of
components in KorAP is certified through the use
of KoralQuery for all internal communications.

Koral8 translates queries from various corpus
query languages (as mentioned in Section 3) to
corresponding KoralQuery documents. This con-
version is a two-stage process, which first parses
the input query string using a context-free gram-
mar and the ANTLR framework (Parr and Quong,
1995) before it translates the resulting parse tree to
KoralQuery.

Krill9 is a corpus search engine that expects Ko-
ralQuery instances as a request format. To index
and retrieve primary data, textual annotations and
metadata of documents as formulated by Koral-
Query, Krill utilizes Apache Lucene.10

Kustvakt is a user and corpus policy manage-
ment service that accepts KoralQuery requests and
rewrites the query as a preprocessor (see Sec. 3.3)
before it is passed to the search engine (e.g. Krill).
Rewrites of the document query may restrict the
requested collection to documents the user is al-
lowed to access, while the span query may be
modified by injecting user defined properties.

7http://korap.ids-mannheim.de/
8http://github.com/KorAP/Koral; Koral is free soft-

ware, licensed under BSD-2.
9http://github.com/KorAP/Krill; Krill is free soft-

ware, licensed under BSD-2.
10http://lucene.apache.org/core/

4

5 Summary and Further Work

We have presented KoralQuery, a general proto-
col for queries to linguistic corpora, which is se-
rialized as JSON-LD. KoralQuery allows for a
flexible representation and modification of corpus
queries that is independent of pre-defined tag sets
or annotation schemes. Those queries pertain to
both selection of documents by metadata or con-
tent, and text span retrieval by the specification
of linguistic patterns. To this end, the protocol
defines a set of types and operations which can
be nested to express complex linguistic structures.
By employing an automatic conversion from sev-
eral QLs to KoralQuery, corpus engines may al-
low their users to choose the QL that they are most
comfortable with or that are best equipped to an-
swer their research questions.

The KoralQuery specification (Diewald and
Bingel, 2015) does not claim to be complete or to
cover all possible linguistic types and structures.
Amendments to the protocol may follow in fu-
ture versions or may be implemented by individ-
ual projects, which is easily done by supplying an
additional JSON-LD @context file that links new
concepts to unique identifiers. Extensions that we
consider for upcoming versions of KoralQuery in-
clude text string queries that are not constrained by
token boundaries and more powerful stratification
techniques for virtual collections.

Acknowledgements

KoralQuery, as well as the described implemen-
tation components, are developed as part of the
KorAP project at the Institute for the German
Language (IDS)11 in Mannheim, member of the
Leibniz-Gemeinschaft, and supported by the Ko-
bRA12 project, funded by the Federal Ministry of
Education and Research (BMBF), Germany. The
authors would like to thank their colleagues for
their valuable input.

References
Piotr Bański, Joachim Bingel, Nils Diewald, Elena

Frick, Michael Hanl, Marc Kupietz, Piotr Pezik,
Carsten Schnober, and Andreas Witt. 2013. KorAP:
the new corpus analysis platform at IDS Mannheim.
In Zygmunt Vetulani and Hans Uszkoreit, editors,
Human Language Technologies as a Challenge for
Computer Science and Linguistics. Proceedings of

11http://ids-mannheim.de/
12http://www.kobra.tu-dortmund.de/

the 6th Language and Technology Conference, Poz-
nań. Fundacja Uniwersytetu im. A. Mickiewicza.

Piotr Bański, Nils Diewald, Michael Hanl, Marc Kupi-
etz, and Andreas Witt. 2014. Access Control by
Query Rewriting: the Case of KorAP. In Pro-
ceedings of the Ninth International Conference on
Language Resources and Evaluation (LREC 2014),
Reykjavik, Iceland, may. European Language Re-
sources Association (ELRA).

Franck Bodmer. 1996. Aspekte der Abfragekompo-
nente von COSMAS II. LDV-INFO, 8:142–155.

Douglas Crockford. 2006. The application/json Media
Type for JavaScript Object Notation (JSON). Tech-
nical report, IETF, July. http://www.ietf.org/
rfc/rfc4627.txt.

Nils Diewald and Joachim Bingel. 2015. Koral-
Query 0.3. Technical report, IDS, Mannheim,
Germany. Working draft, in preparation, http:
//KorAP.github.io/Koral, last accessed 27 April
2015.

Elena Frick, Carsten Schnober, and Piotr Bański. 2012.
Evaluating query languages for a corpus processing
system. In Proceedings of the Eighth International
Conference on Language Resources and Evaluation
(LREC 2012), pages 2286–2294.

Patricia Huey, 2014. Oracle Database, Security Guide,
11g Release 1 (11.1), chapter 7. Using Oracle
Virtual Private Database to Control Data Access,
pages 233–272. Oracle. http://docs.oracle.
com/cd/B28359_01/network.111/b28531.pdf, last
accessed 27 April 2015.

OASIS Standard. 2013. searchRetrieve: Part
5. CQL: The Contextual Query Language
Version 1.0. http://docs.oasis-open.org/
search-ws/searchRetrieve/v1.0/os/part5-cql/
searchRetrieve-v1.0-os-part5-cql.html.

Terence J. Parr and Russell W. Quong. 1995. ANTLR:
A predicated-LL (k) parser generator. Software:
Practice and Experience, 25(7):789–810.

Adam Przepiórkowski, Zygmunt Krynicki, Lukasz De-
bowski, Marcin Wolinski, Daniel Janus, and Piotr
Bański. 2004. A search tool for corpora with posi-
tional tagsets and ambiguities. In Proceedings of the
Fourth International Conference on Language Re-
sources and Evaluation (LREC 2004), pages 1235–
1238. European Language Resources Association
(ELRA).

Viktor Rosenfeld. 2010. An implementation of the An-
nis 2 query language. Technical report, Humboldt-
Universität zu Berlin.

Manu Sporny, Dave Longley, Gregg Kellogg, Markus
Lanthaler, and Niklas Lindström. 2014. JSON-
LD 1.0 – A JSON-based Serialization for Linked
Data. Technical report, W3C. W3C Recommen-
dation, http://www.w3.org/TR/json-ld/.

5

Reflections and a Proposal for a Query and Reporting Language for
Richly Annotated Multiparallel Corpora

Simon Clematide
Institute of Computational Linguistics, University of Zurich

simon.clematide@cl.uzh.ch

Abstract
Large and open multiparallel corpora are
a valuable resource for contrastive corpus
linguists if the data is annotated and stored
in a way that allows precise and flexible
ad hoc searches. A linguistic query lan-
guage should also support computational
linguists in automated multilingual data
mining. We review a broad range of ap-
proaches for linguistic query and report-
ing languages according to usability crite-
ria such as expressibility, expressiveness,
and efficiency. We propose an architecture
that tries to strike the right balance to suit
practical purposes.

1 Introduction

There is a large amount (millions of sentences)
of open multiparallel text data available electroni-
cally: resolutions of the General Assembly of the
United Nations (Rafalovitch and Dale, 2009), Eu-
ropean parliament documents (Koehn, 2005; Ha-
jlaoui et al., 2014), European administration trans-
lation memories and law texts (Steinberger et al.,
2012; Steinberger et al., 2006), documents from
the European Union Bookstore (Skadiņš et al.,
2014), and movie subtitles. See Tiedemann (2012)
and Steinberger et al. (2014) for an overview.

Automatic part-of-speech tagging and lemma-
tization of raw text has become standard proce-
dure, and richer linguistic annotations such as
morphological analysis, named entity recognition,
base chunking, and dependency analysis are pos-
sible for many languages. Further, statistical
word alignment can be applied to any parallel lan-
guage resource. If we want to exploit these large,
richly annotated resources and flexibly serve the
language-related information needs of translators,
terminologists and contrastive linguists, an expres-
sive query language for ad hoc search must be pro-
vided. Such a query language will also be useful

for automated linguistic data mining, a use case
of computational linguists. A successful combi-
nation of these two different paradigms of linguis-
tic information retrieval (i.e. ad hoc search and
precomputed word collocation statistics) has been
shown in the case of the text corpus query lan-
guage CQL within the framework of the Sketch
Engine (Kilgarriff et al., 2014).

Historically, there are two different strains of
linguistic query systems, (a) corpus linguistics
tools for text corpora such as CQP (Christ, 1994)
with KWIC reporting, and (b) treebank tools such
as TGrep2 (Rohde, 2005) for searching through
deeply nested structures of syntactically anno-
tated sentences. In recent years, we have seen
a convergence of these strains: query languages
for text corpora have enriched their search opera-
tors in order to cope with syntactic constituents,
for example introducing the operators within

and contain in CQL (Jakubicek et al., 2010)
or the constituent search construct in Poliquarp
(Janus and Przepiórkowski, 2007). On the other
hand, treebanking-style query approaches that
were bound to context-free tree structures have
evolved into more general query systems for struc-
tural linguistic annotations, e.g. ANNIS (Krause
and Zeldes, 2014) which allows a richer set of the
structural relations (multi-layered directed acyclic
graphs, including syntactic dependencies or coref-
erence chains across sentences), or the Prague
Markup Language Tree Query (PML-TQ) system
for multi-layered annotations (Štěpánek and Pajas,
2010), which also covers parallel treebanks.1

1Unfortunately, it is difficult to access up-to-date infor-
mation about the query possibilities for alignments of words
or syntactic nodes. The documentation, however, describes a
general cross-layer, node-identifier-based selector dimension.
The parallel Prague Czech-English Dependency Treebank
2.0 (PCEDT 2.0) http://ufal.mff.cuni.cz/pcedt2.0
illustrates the representation of word-aligned dependency
trees.

6

1.1 Linguistic Information Needs
A linguistic query in a general sense is a set of
interrelated constraints about linguistic structures.
The following paragraphs introduce the structures
we want to represent and query.

Monolingual constraints on the primary level
of word tokens (the minimal unit of analysis) are
dealing with inflected word forms, base forms,
part-of-speech tags, and morphological categories.
Word tokens have a sequential ordering relation
(linear precedence). For our case of orthograph-
ically well-formed texts, we assume consistent to-
kenization for all levels of annotation. Giving up
this requirement leads to non-trivial ordering prob-
lems (Chiarcos et al., 2009). Sentences are se-
quences of tokens, and documents are sequences
of sentences.2 Documents or sentences typically
have metadata associated with them, for instance
indicating whether a document is a translation or
not.

Each full or partial dependency analysis of a
sentence can be represented as a directed and la-
beled tree graph where each node is a word to-
ken, except for the root of the tree, which we as-
sume to be a virtual node. Nested syntactic con-
stituents (or chunks in the case of partial parsing)
introduce a dominance relation between syntac-
tic nodes (non-terminals) or primary token nodes
(terminals). Dominated nodes also have a linear
precedence ordering, the sibling relation.

Cross-lingual constraints are concerned with
word alignments and sub-sentential alignments on
the chunk level.3 Directed bilingual word align-
ments as produced by statistical word alignment
tools such as GIZA++ are 1:n (Och and Ney,
2003). Bidirectional alignments are thus rela-
tional, in general, we have m : n alignments on
the level of words, for example, between a Ger-
man compound and its corresponding multi-word
unit in French, unless we apply a symmetrization
technique (Tiedemann, 2011, 75ff.).4

1.2 Reporting and Visualization
The set of constraints in a query does not exactly
determine the content or format of the search re-

2In order to keep the description simple we do not impose
more nesting levels in documents.

3Sentence alignments are considered as given in the con-
text of multiparallel corpora, although in practical terms it
might require a lot of work to achieve a proper and consistent
sentence alignment across multiple languages.

4Recently, Baisa et al. (2014) applied Dice coefficients to
identify aligned lemmas in parallel sentences.

sults. All flexible linguistic query languages offer
means to select the sub-structures and attributes
which the user is interested in.5 This may also
include sorting, aggregating or statistical tabulat-
ing of the results, as for instance the excellent re-
porting functions of PML-TQ allow. In our opin-
ion, reporting also includes the user-configurable
export of search results, for example as simple
comma-separated data for further statistical pro-
cessing6, or as hierarchically structured XML se-
rializations.

The graphical visualization of search results
aids end users in quickly browsing complex data
structures. Visualizations of syntactic structures or
frequency distributions of aligned words should be
generated on top of specific textual reporting for-
mats. Interactive behavior (collapsing trees, high-
lighting of aligned nodes) supports a quick inter-
pretation of search results.

The remainder of this paper is structured as fol-
lows. Section 2 describes general usability cri-
teria of linguistic query systems. Section 3 dis-
cusses interesting linguistic query languages and
their main properties. Section 4 introduces gen-
eral data query languages that are related to lin-
guistic systems. Section 5 discusses evaluation ap-
proaches for linguistic query languages. Finally,
section 6 presents our proposals for an efficient
linguistic query and reporting system for multipar-
allel data.

2 Usability Criteria for Linguistic Query
Systems

Expressibility How naturally can users express
their information need? Can users apply their lin-
guistic concepts to formulate their query (Jaku-
bicek et al., 2010, 743), or do they have to deal
with cumbersome constructs?

Non-experts may profit from a visual or menu-
based composition of queries. Gärtner et al.
(2013) and Mı́rovský (2008) describe graphical
query solutions for dependency trees. ANNIS
(Zeldes et al., 2009) offers a graphical query in-
terface for AQL. Nygaard and Johannessen (2004)
built a menu-based visual query composition for
parallel treebanks that used TGrep2 as its query
execution engine.

5TGrep2 uses backticks to mark the top node of the sub-
tree that is printed as output.

6ANNIS provides a practical export format for the WEKA
machine learning framework.

7

Experts, however, will profit most from text-
based queries that allows to abstract common
and recurrent functionality in the form of user-
definable macros, variables, or functions.

Expressiveness Are there inherent limitations in
a query language that systematically prevent the
formulation of precise search constraints for cer-
tain structures? It is well known since its inception
that the fragment of existential first-order logic im-
plemented by the TIGERSearch language does not
allow for the search of missing constituents in syn-
tactic graphs (König and Lezius, 2003). Lai and
Bird (2010) provide a concise overview on the for-
mal expressiveness of query languages for hier-
archical linguistic structures and discuss the fact
that transitive closures of immediate dominance or
precedence relations formally require the expres-
siveness of monadic second-order logic. Interest-
ingly, such a high expressiveness does not imply
inefficient or impractical execution times as shown
by Maryns and Kepser (2009) for context-free
treebank structures – if tree automata techniques
are used. However, purely logical approaches have
not received much attention in practice.

Efficiency How much processing time and
memory is needed for the execution of a query?
Answers to this question relate to many different
parameters. First, data size of the corpora matters
– dealing with thousands, millions, or billions of
sentences makes a big difference. Second, data
model complexity matters. Third, query expres-
siveness and complexity matters.

Even if a user is dealing with large datasets,
complex data models and complicated queries,
there are solutions to produce acceptable response
times. For instance, by providing a highly par-
allel computing infrastructure using MapReduce
techniques (Schneider, 2013), or by using sophis-
ticated indexing and retrieval techniques (Ghodke
and Bird, 2012).

Reporting and exporting Does the query lan-
guage or query system offer flexible support for
the user to configure the data reported in the search
results? The selection of sub-structures is typi-
cally deeply integrated in the query syntax. For
text concordancing tools, Frick et al. (2012) men-
tion the LINK/ALL operator of COSMAS II, or
bracketed expressions in Poliquarp. The statisti-
cal reporting functions of the monolingual tree-

bank search tool TIGERSearch7 rely on named
node specifications, and they can only be accessed
and configured by graphical user interface inter-
actions. Other query languages such as PML-TQ
offer a proper reporting language with a rich set
of functions for sorting, aggregating and exporting
(e.g. grammar rules).

Visualization Does the query system offer ap-
pealing visualizations of the data or data aggrega-
tions? ANNIS3 (Krause and Zeldes, 2014) has an
outstanding amount of visualization options.

Availability and accessibility Is a system bound
to specific operating systems? Large datasets
typically overstrain personal desktop computers.
Web-based services can be hosted on dedicated
computing infrastructure, and there is typically no
client-side software installation necessary given
the rendering capabilities of modern web browsers
(e.g. interactive SVG graphics). Open web-based
services enable easy sharing of query results via
URLs (Pezik, 2011).

3 Families of Linguistic Query
Languages

As mentioned above, there are two strains of lin-
guistic query languages. Some specific properties
of these languages are discussed next.

3.1 Text Corpus Query Languages

CQP The language of the IMS Corpus Query
Processing Workbench (Hardie, 2012)8 has a long
history (Christ, 1994). From this common ances-
tor, CQL (Kilgarriff et al., 2004) and Poliquarp
were later developed. Right from the beginning,
CQP supported annotated word tokens, structural
boundaries (sentences, constituents) and sentence-
aligned parallel texts. The core of a query con-
sists of regular expressions that specify matching
token sequences. These descriptions can refer to
the level of word forms, part-of-speech tags or any
other positional (=token-bound) attribute. Non-
recursive constituents are indirectly available as
structural boundaries and can be used to restrict
the search space for regular expression matches
on the positional level. The constituent segments
also allow for attributes which can be queried, for
instance syntactic head information. The main

7http://www.ims.uni-stuttgart.de/forschung/
ressourcen/werkzeuge/tigersearch.html

8http://cwb.sourceforge.net

8

Relation QL Symbol
Immediate
dominance

TGrep2, fsq, TS, AQL >
LPath /

Transitive
dominance

TGrep2 >>
fsq >+
TS, AQL >*
LPath //

Immediate
precedence

TGrep2, fsq, TS, AQL .
LPath ->

Transitive
precedence

TGrep2, fsq ..
TS, AQL .*
LPath -->

Immediate
sibling

TS, AQL $
TGrep2 $.
LPath =>

Table 1: Operators of query languages (QL)

weakness of this query language is the lack of a
means to query arbitrary relations between tokens,
which would be necessary to properly support the
search for dependency relations. Given the fact
that dependency labels are bound to words, one
could map this information as an attribute on the
positional level, for example, attributing the prop-
erty of being a subject to the head of the subject.

An integrated macro and reporting language
distinguishes CQP as a powerful and versatile tool.

CQL The query language behind the commer-
cial corpus query platform Sketch Engine9 is an
extension of CQP (Jakubicek et al., 2010).

Support for identifying word matches across
parallel corpora is technically implemented via the
within operator. For a sentence-aligned parallel
corpus (English and German Europarl corpus), a
query rooted in the English side might look like:
[word="car"] within europarl7_de: [word="Auto"]

This finds all occurrences of car in sentences
where a parallel sentence containing the word
Auto exists. This kind of query, however, does
not allow to explicitly test for word alignment re-
lations. Still, the search patterns on both sides of
the within operator can be arbitrarily complex.

3.2 Treebank Query Languages

TGrep2 The efficient treebank query tool
TGrep2 is limited to context-free parse trees. Lai
and Bird (2004) see its strength in the ability to
query for non-inclusion or non-existence of con-
stituents. Their information need Q2 “Find sen-
tences that do not include the word saw” can be

9See Kilgarriff et al. (2014) for a recent description. The
NoSketchEngine, the open-source part of the Sketch Engine,
is available from http://nlp.fi.muni.cz/trac/noske.

expressed succinctly as S !<< saw. Their infor-
mation need Q5 “Find the first common ancestor
of sequences of a noun phrase followed by a verb
phrase” leads to a short but intricate query (see
Tab. 1 for operators):

*=p << (NP=n .. (VP=v >> =p !>>
(* << =n >> =p)))

3.2.1 Path-based Languages
LPath Bird et al. (2006) developed this query
language as a generally applicable extension of
the XPath query language for XML10. Syntactic
trees as well as XML documents are ordered trees.
However, the direct use of XPath for querying lin-
guistic trees is limited by the absence of (a) the
horizontal axis of x immediately follows/precedes
y, and (b) sibling x immediately follows/precedes
sibling y.11 Q2 from above can be stated as

/S[not //_[@lex = ’saw’]]

Q5 cannot be expressed correctly (Lai and Bird,
2004). A further extension of LPath, called
LPath+ (Lai and Bird, 2005), is more expressive
and allows for a correct but complex query:

//_[/_[(NP or (/_[not(=>_)])*/NP[not(=>_)) and
=> (VP or (/_[not(<=_)])*/VP[not(<=_)])]

This is due to the fact that path-based, variable-
free languages cannot easily express equality re-
strictions. Therefore, the following shorter LPath
expression does not have the correct meaning be-
cause each NP (or VP) may refer to different
nodes:

//_[{//NP->VP} and not(//_{//NP->VP})]

DDDQuery This language is another attempt to
extend XPath and to better adapt it for linguistic
information needs (Faulstich et al., 2006). Its data
model was developed for a multi-layered, linguis-
tically richly annotated representation of historical
texts, including transcriptions and aligned trans-
lations, which resulted in “non-tree-shaped anno-
tation graphs and multiple annotation hierarchies
with conflicting structure”. This query language
“goes beyond LPath by supporting queries on text
spans, on multiple annotation layers, and across
aligned texts”. The language introduces shared
variables for any node set in order to easily ex-
press equality restrictions and report the matched
nodes as result data.

10http://www.w3.org/tr/xpath
11Note that the transitive closures of these relations are

available in XPath.

9

PML-TQ This query language is also a path-
based approach (Štěpánek and Pajas, 2010). A
query consists of a Boolean combination of node
selector paths and filters. The language allows re-
cursive sub-queries in selectors which evaluate to
node sets. The cardinality of these node sets can
be tested by numeric quantifiers. A quantifier of
zero tests for the non-existence of nodes; there-
fore, non-existing nodes can be queried in a natu-
ral way. A similar technique of extensionalization
of sub-queries into node sets was implemented for
the TreeAligner language (Marek et al., 2008).

3.2.2 Logic-based Languages
fsq12 The Finite Structure Query language
(Kepser, 2003) provides full first-order logic as
a query language over syntactic structures of the
TIGER data model (Brants et al., 2004). This
includes labelled secondary edges between arbi-
trary nodes and discontiguous children. Therefore,
fsq has an outstanding expressiveness. Regular
expression support for node labels and response
times that are comparable to TIGERSearch make
this approach a practical one. Lai and Bird’s dif-
ficult question Q5 can be expressed as follows in
the somewhat inconvenient LISP-like prefix nota-
tion for first-order logic of fsq 13:
(E a (E n (E v (&

(cat n NP) (cat v VP) (>+ a v) (.. n v)
(! (>+ n v)) (! (>+ v n))
(A b (-> (& (>+ a b) (>+ b n))

(! (>+ b v))))))))

Compared to the query language of TIGERSearch,
there is a lack of special purpose predicates such
as the (token) arity of syntactic nodes or prece-
dence or dominance restrictions with numeric dis-
tance limits, for example, >2,5 expressing a indi-
rect dominance relation with a minimal depth of 2
and a maximum of 5.

MonaSearch14 Maryns and Kepser (2009) ex-
tended the logical expressiveness of fsq even fur-
ther to monadic second-order logic. However, its
data model is restricted to context-free parse trees.
A main application of such an expressive lan-
guage are automatic consistency checks in human-
created treebanks. However, existentially quan-

12The Java implementation of fsq also includes a
TIGERSearch-like visualization for the matched trees, see
http://www.tcl-sfs.uni-tuebingen.de/fsq.

13Existential (E) and universal (A) quantification, conjunc-
tion (&), negation (!), implication (->).

14http://www.tcl-sfs.uni-tuebingen.de/
MonaSearch

tified formulas can be used to effectively query
matching structures.

TIGERSearch König and Lezius (2000) intro-
duced this logic-based, syntax graph description
language for the TIGER data model. It is a subset
of first-order logic, providing only globally exis-
tentially quantified variables and limited negation.
The language has two layers, namely, node con-
straints and graph constraints.

Node constraints are either node descriptions or
node (relation) predicates. Node descriptions are
Boolean expressions of feature-value constraints
with optional variable decorations for referencing
the same node several times in a query, for in-
stance #v:[word != "saw"] for a terminal node
description, or #np:[cat = ("NP"|"CNP")] for
a simple or coordinated noun phrase. Node
predicates constrain selected properties of nodes,
such as being the root of a tree (root(#s))
or having a certain number of daughter nodes
(arity(#CNP,2)). Node relation predicates ex-
press the usual structural relations in a user-
friendly operator notation, e.g. #s >* #np for
a dominance relation. Graph constraints are
conjunctions or disjunctions of node constraints.
Negation is not allowed on the level of graph con-
straints, which severely limits the expressiveness.

The TIGER language originally specified user-
defined macros (templates), however, this part of
the language was never implemented.

AQL The query language of ANNIS is an exten-
sion of the TIGERSearch language for multi-level
graph-based annotations. It offers operators for la-
belled dependency relations, inclusion or overlap
of token spans, corpus metadata information, and
namespaces for annotations of the same type pro-
duced by different tools15. The operator for depen-
dency relations is an instance of the general opera-
tor -> for directed and labelled edges between any
two nodes. Such edges can also be used to es-
tablish or query alignments between parallel sen-
tences on the level of words or phrases.

TreeAligner The Stockholm TreeAligner (Lund-
borg et al., 2007) introduced an operator for
querying bilingual alignments between words or
phrases of parallel treebanks, freely combinable
with monolingual TIGERSearch-style queries.
To overcome some expressiveness limitations of

15For instance, for different parsers (Chiarcos et al., 2010).

10

TIGERSearch, Marek et al. (2008) introduced
node sets (node descriptions decorated with vari-
ables starting with % instead of #). One might try
to express Bird and Lai’s Q2, that is, find sentences
without saw, in the following ways:
#s:[cat="S"] >* #w:[word!="saw"] (1)
#s:[cat="S"] !>* #w:[word="saw"] (2)
#s:[cat="S"] !>* %w:[word="saw"] (3)

(1) actually matches all cases where a sentence
dominates any other word than saw. (2) searches
for occurrences of the word saw not dominated by
a sentence node. The interpretation of (3) relies on
a modified evaluation strategy of the negated dom-
inance if one of the arguments is a node set: only
those sentences match where the negated transi-
tive dominance constraint !>* is true for any of
the nodes with the word attribute saw.

4 General Data Query Languages

Complex data structures are not a privilege of lin-
guistics, so obviously many general data query
languages and data management systems exist.
Some of them have been used to represent and
query linguistic structures.

XPath/XQuery16 Bouma and Kloosterman
(2007) used these XML technologies in a
straightforward manner for querying and mining
syntactically annotated corpora. These query
languages are also the basis of Nite QL (Carletta
et al., 2005), which is targeted at multimodal
annotations.

SQL The structured query language for rela-
tional databases (RDBMS) is a standard tech-
nology with highly efficient implementations.
RDBMSs have been widely used to represent large
amounts of data, e.g. for text concordancing.17

CYPHER18 Distributed NoSQL graph
databases and CYPHER as one of the straight-
forward query languages seem to be a good
match for highly interconnected linguistic data
(Holzschuher and Peinl, 2013). Pezik (2013) re-
ports some experiments for corpus representation
and corpus query with a pure graph database.
Banski et al. (2013) integrate a general text
retrieval engine with a graph database for their
corpus analysis platform.

16http://www.w3.org/XML/Query
17http://corpus.byu.edu (Davies, 2005)
18http://neo4j.com/developer/

cypher-query-language

SPARQL19 RDF (Resource Description Frame-
work) triple stores with SPARQL endpoints for
querying linked data are fairly standard nowa-
days. Kouylekov and Oepen (2014) used this tech-
nique to represent and query semantic dependen-
cies. However, the queries directly operate on the
internal RDF representations and do not meet the
criteria of natural expressibility. The authors pro-
pose a query-by-example and a template expan-
sion front-end for better usability.

Chiarcos (2012) introduce POWLA, a generic
formalism to represent multi-layer annotated cor-
pora in RDF and OWL/DL and to query these
structures by SPARQL. In order to improve the ex-
pressibility, SPARQL macros for AQL operators
are defined. Given the expressiveness of SPARQL,
this allows to overcome the query language lim-
itations of AQL or TIGERSearch, which cannot
query for missing annotations.

LUCENE20 Every information retrieval system
has an integrated query language. Powerful text
indexing and query engines such as LUCENE can
be used to manage large amounts of texts. By
treating each sentence as an IR document, Ghodke
and Bird (2012) implemented a high-performance
treebank query system21 on top of LUCENE.

5 Evaluation Strategies for Linguistic
Query Languages

There are essentially two approaches to implement
the evaluation of linguistic query languages: either
by programming a custom implementation of the
execution of the query over a custom implementa-
tion of the data management, or by translating the
query and the data into a host database system and
executing the actual query on the host.

Sometimes, these approaches are mixed; for
instance, the TreeAligner uses the relational
database SQLite for storing and retrieving the pri-
mary data of word tokens, but implements a cus-
tom in-memory engine for the evaluation of the
Boolean algebra of node predicates and node rela-
tions.

5.1 Custom Evaluation Engines

Manatee (Rychlý, 2007) is CQL’s back-end for
textual data management and query evaluation. It

19http://www.w3.org/TR/sparql11-query
20http://lucene.apache.org
21Their query language, however, does not allow regular

expressions over labels, or underspecified node descriptions.

11

is language and annotation independent and in-
cludes efficient implementations of inverted in-
dexes, word compression, etc. in order to cope
with extremely large text corpora. Attributes
of primary data can be set-valued and support
unification-style attribute comparisons. Another
interesting feature of Manatee is its support for dy-
namic attributes of positional primary data. These
are implemented as function calls which can be
declared at the level of the corpus configuration,
for instance, for external lexicon look-up, morpho-
logical analysis, or the transformation of tags.

TGrep2, TIGERSearch and fsq are examples for
treebank query systems with a fully custom data
management and query evaluation engine. Rosen-
feld (2010) gives a concise description of the
implementation techniques behind TIGERSearch.
The corpus import of TIGERSearch includes the
construction of many specialized indexes for pred-
icates and attributes. During indexing, statistics on
the selectivity of attributes are built, which in turn
guide the query execution planner to limit the full
evaluation of a query to a subset of syntactic trees.
At the stage of corpus indexing, users can provide
their own type definitions, that is, short names for
subsets of admissible feature values. A definition
for genitive or dative case looks as follows:

gen-dat := "gen","dat";

Although any query involving this case ambi-
guity can be expressed by a Boolean disjunc-
tion, type definitions lead to both more readable
and compact queries and also to more efficient
processing due to the type-based data model of
TIGERSearch.

5.2 Query Translation Approach

LPath and DDDQuery are both Xpath-style lan-
guages that owe much to the hierarchical data
model of XML. However, storing and efficient re-
trieval of large XML data sets turns out to be a
technical challenge in general (Grust et al., 2004).
One common solution for high-performance XML
retrieval is based on a mapping of the hierarchi-
cal document structure into a flat relational for-
mat, which in turn allows the use of highly effi-
cient RDBMSs. Both linguistic query languages
– LPath and DDDQuery – are translated into SQL
queries because their XML data model is physi-
cally stored in an RDBMS. The implementation
of DDDQuery (Faulstich et al., 2006) is especially
interesting for us because they first translate into a

first-order logic intermediate representation from
which the actual SQL queries are derived.

The development of the relational data model of
ANNIS (relANNIS) and the corresponding trans-
lation of the ANNIS query language AQL into
SQL queries by Rosenfeld (2010) was inspired by
the DDDQuery translation. In the next section, we
propose a linguistic query language which is sim-
ilar to AQL but has a simpler data model. There-
fore, we expect that our query translation com-
ponent can be built using the techniques of AQL
query evaluations.

6 A Proposal for Querying Richly
Annotated Multiparallel Text Corpora

Our data model presupposes the following com-
ponents: (a) multiparallel corpora with sentence,
word and sub-sentential alignments across lan-
guages; (b) monolingual linguistic annotations
such as PoS tags (preferably the same universal
tagset across languages), base forms and morpho-
logical information; (c) syntactic annotations in
the form of dependency relations and (partial) con-
stituents, allowing the output of different tools
for the same kind of analysis (multi-annotation).
Multi-tokenization is not required for our data
and would impose unnecessary complexity for the
query component. However, metadata on the level
of corpora, documents, or sentences is needed.

The proposed query language should allow to
flexibly query all aspects of our data model. How-
ever, the search space of the query evaluation will
be restricted to the context of a monolingual sen-
tence and its corresponding aligned sentences.22

The concrete query syntax for monolingual search
will be based on TIGERSearch. Additionally,
we introduce an alignment operator similar to the
bilingual one of the TreeAligner. However, in
multiparallel queries the alignment operator can
be used to constrain alignments between nodes
of any pair of languages. From AQL, we reuse
the operator for dependency relations, the sup-
port for metadata predicates, and explicit names-
paces. From CQP, we import the concept of a non-
recursive macro language. Such a facility proved
to be extremely useful for large scale linguistic
mining in the case of Sketch Grammars of the
Sketch Engine (Kilgarriff et al., 2004).

22Monolingual searches across sentence boundaries as per-
mitted in CQP-style queries will not be possible. However,
this search limit does not preclude reporting contextual infor-
mation from surrounding sentences.

12

5HSRUWLQJ

0DFUR�([SDQVLRQ

4XHU\�3DUVHU�&KHFNHU

7UDQVODWLRQ�LQWR�64/

/LQJXLVWLF�4XHU\�/DQJXDJH�
�&RQFUHWH�6\QWD[��

0DFUR�'HILQLWLRQV�RI�(QG�8VHU
�2SWLRQDO�

$EVWUDFW�4XHU\�5HSUHVHQWDWLRQ�
�'HIDXOWV�DQG�'DWD�6FKHPD��

4XHU\�([HFXWLRQ
�8VLQJ�5'%06�4XHU\�3ODQQHU� 5'%06

'DWD
0RGHO

([SRUW 9LVXDOL]DWLRQ

Figure 1: Architecture of our proposed system

The predicates needed for expressing the con-
straints of linguistic queries are different from the
reporting functions. After the query execution, re-
porting functions will be applied to the token IDs,
for instance the function lemma(#wordid) which
renders the base form of a terminal node. Flexible
reporting expressions similar to PML-TQ have to
be defined and implemented. Graphical visualiza-
tion is just another post-processing step that ren-
ders the output of specialized reporting functions.

RDBMSs are stable and efficient data manage-
ment platforms, and modern, open source imple-
mentations such as PostgreSQL23 support exten-
sions to cope with acyclic graph structures (e.g.
recursive SELECT). Therefore, we decided to host
our data on an RDBMS and compile our linguistic
query language into SQL. The overall architecture
of our system is shown in Fig. 1.

One remaining problem is the inability to search
for missing elements. The work presented here
is part of a contrastive corpus linguistics project
which is interested in differences in the use of ar-
ticles in English and other languages, especially
in the case where one language has an article and
the other has not. A direct reimplementation of
the TreeAligner approach with node set variables
seems problematic since the evaluation of a query
in the TreeAligner is implemented by iteratively
constructing and manipulating node sets in mem-
ory. However, the general idea of an extension-
alization of intermediate search results is natu-

23http://www.postgresql.org

ral.24 Indeed, SQL itself offers the set operations
UNION, INTERSECT, and EXCEPT to combine
the results of different queries. In the next section,
we present a proposal for searching missing ele-
ments using the result set operation EXCEPT.

6.1 Proposal for Query Result Set Operations

If we carefully separate reporting from querying,
we can apply result set operations in order to im-
plement the search for missing structures as filter-
ing. We admit that there will be some computing
overhead, but conceptually, filtering is easier for
end users than full first-order logic.

To illustrate the idea, we informally embed
CQP-style macros and TreeAligner constraints
into SQL syntax. Bird and Lai’s Q2 is easy:
SELECT #s FROM corpus WHERE #s:[cat="S"]
EXCEPT
SELECT #s FROM corpus

WHERE #s:[cat="S"] >* [word="saw"]

The information need of Q5 focuses on a triple
of an ancestor a, an NP n and a VP v.
MACRO a_dom_n_and_v($0=#a,$1=#n,$2=#v)
$0:[] >* $1:[cat="NP"] & $0 >* $2:[cat="VP"] &
$1 .* $2 & $1 !>* $2 & $2 !>* $1 ;

SELECT #a,#v,#n FROM corpus
WHERE a_dom_n_and_v[#a,#n,#v]

EXCEPT
SELECT #a,#v,#n FROM corpus

WHERE a_dom_n_and_v[#x,#n,#v] & #a >* #x

The first select is too general and includes all
ancestors. The second selects the ancestors which
dominate such an ancestor. The EXCEPT operator
(which calculates the set minus) leaves the very
ancestor that does not dominate any other.

A bilingual use case is the search for English
noun chunks (nc) without article that are aligned
to a German chunk with an article.25 The informa-
tion need are the parallel nouns.
MACRO aligned_nc($0=#c,$1=#n,$2=#c2,$3=#n2)
$0:[cat="NC"] > $1:[pos="NOUN"] &
$2:[cat="NC"] > $3:[pos="NOUN"] &
$1 --en,de $3 ;

SELECT #n_en,#n_de FROM corpus
WHERE aligned_nc[#c_en,#n_en,#c_de,#n_de]
& #c_de > [pos="DET"]

EXCEPT
SELECT #n_en,#n_de FROM corpus
WHERE aligned_nc[#c_en,#n_en,#c_de,#n_de]
& #c_de > [pos="DET"] & #c_en > [pos="DET"]

24Sub-selectors in PML-TQ work in a similar way and
their quantifiers are cardinality tests on the matched node
sets.

25We extend the alignment operator A -- B of the
TreeAligner with language specifications A --L1,L2 B.

13

In all examples shown above, the resulting nodes
of the combined SELECT statements will be fed
into the desired reporting functions.

7 Conclusion

We provided a thorough review of linguistic query
languages and their implementation approaches
and tried to connect them to our use case of richly
annotated multiparallel corpora. The usability of
linguistic query systems is determined by their ex-
pressibility, expressiveness, and efficiency, their
support for flexible reporting and exporting – in-
cluding output for visualization back-ends – and
open availability. We decided to host our highly
structured data on a RDBMS and to provide a
translation from a logic-based query language into
SQL.

An important open question for future work is
an empirical assessment whether our approach can
efficiently deal with the huge amount of annota-
tions and textual material of large multiparallel
corpora. Furthermore, a performance comparison
with approaches based on RDF triple stores and
SPARQL (Chiarcos, 2012) is needed.

Acknowledgments

I wish to thank Johannes Graën for fruitful discus-
sions and Rahel Oppliger for proofreading. This
research was supported by the Swiss National Sci-
ence Foundation under grant 105215 146781/1
through the project “Large-scale Annotation and
Alignment of Parallel Corpora for the Investiga-
tion of Linguistic Variation”.

References
Vı́t Baisa, Miloš Jakubı́ček, Adam Kilgarriff, Vojtěch

Kovář, and Pavel Rychly. 2014. Bilingual word
sketches: the translate button. In Proc EURALEX,
pages 505–513.

Piotr Banski, J Bingel, N Diewald, E Frick, M Hanl,
M Kupietz, P Pezik, C Schnober, and A Witt. 2013.
KorAP: the new corpus analysis platform at IDS
Mannheim. In Human Language Technologies as
a Challenge for Computer Science and Linguistics.
Proceedings of the 6th Language and Technology
Conference.

Steven Bird, Yi Chen, Susan B. Davidson, Haejoong
Lee, and Yifeng Zheng. 2006. Designing and evalu-
ating an XPath dialect for linguistic queries. In Pro-
ceedings of the 22nd International Conference on
Data Engineering, pages 52–.

Gosse Bouma and Geert Kloosterman. 2007. Min-
ing syntactically annotated corpora with XQuery. In
Proceedings of the Linguistic Annotation Workshop,
pages 17–24.

Sabine Brants, Stefanie Dipper, Peter Eisenberg, Sil-
via Hansen-Schirra, Esther König, Wolfgang Lezius,
Christian Rohrer, George Smith, and Hans Uszko-
reit. 2004. TIGER: Linguistic interpretation of a
German corpus. Research on Language and Com-
putation, 2(4):597–620.

Jean Carletta, Stefan Evert, Ulrich Heid, and Jonathan
Kilgour. 2005. The NITE XML toolkit: Data model
and query language. Language Resources and Eval-
uation, 39(4):313–334.

Christian Chiarcos, Julia Ritz, and Manfred Stede.
2009. By all these lovely tokens... merging con-
flicting tokenizations. In Proceedings of the Third
Linguistic Annotation Workshop, pages 35–43.

Christian Chiarcos, Kerstin Eckart, and Julia Ritz.
2010. Creating and exploiting a resource of paral-
lel parses. In Proceedings of the Fourth Linguistic
Annotation Workshop, pages 166–171.

Christian Chiarcos. 2012. A generic formalism to rep-
resent linguistic corpora in RDF and OWL/DL. In
Proc LREC 2012, pages 3205–3212.

Oliver Christ. 1994. A modular and flexible archi-
tecture for an integrated corpus query system. In
Proceedings of COMPLEX’95 3rd Conference on
Computational Lexicography and Text Research Bu-
dapest, Hungary, pages 23–32.

Mark Davies. 2005. The advantage of using rela-
tional databases for large corpora: Speed, advanced
queries and unlimited annotation. International
Journal of Corpus Linguistics, 10(3):307–334.

Lukas Faulstich, Ulf Leser, and Thorsten Vitt. 2006.
Implementing a linguistic query language for his-
toric texts. In Current Trends in Database Technol-
ogy, pages 601–612.

Elena Frick, Carsten Schnober, and Piotr Bański. 2012.
Evaluating query languages for a corpus processing
system. In Proc LREC 2012, pages 2286–2294.

Sumukh Ghodke and Steven Bird. 2012. Fangorn: A
system for querying very large treebanks. In Pro-
ceedings of COLING 2012: Demonstration Papers,
pages 175–182, December.

Torsten Grust, Maurice Van Keulen, and Jens Teub-
ner. 2004. Accelerating XPath evaluation in any
RDBMS. ACM Trans. Database Syst., 29(1):91–
131, March.

Markus Gärtner, Gregor Thiele, Wolfgang Seeker, An-
ders Björkelund, and Jonas Kuhn. 2013. ICARUS
– an extensible graphical search tool for dependency
treebanks. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguis-
tics: System Demonstrations, pages 55–60.

14

Najeh Hajlaoui, David Kolovratnik, Jaakko Väyrynen,
Ralf Steinberger, and Daniel Varga. 2014. DCEP -
digital corpus of the European Parliament. In Proc
of LREC 2014, pages 3164–3171.

Andrew Hardie. 2012. CQPweb — combining
power, flexibility and usability in a corpus analysis
tool. International Journal of Corpus Linguistics,
17(3):380–409.

Florian Holzschuher and René Peinl. 2013. Perfor-
mance of graph query languages: Comparison of
Cypher, Gremlin and native access in Neo4J. In
Proceedings of the Joint EDBT/ICDT 2013 Work-
shops, pages 195–204.

Milos Jakubicek, Adam Kilgarriff, Diana McCarthy,
and Pavel Rychly. 2010. Fast syntactic searching
in very large corpora for many languages. In Pro-
ceedings of the 24th Pacific Asia Conference on Lan-
guage, Information and Computation, pages 741–
747.

Daniel Janus and Adam Przepiórkowski. 2007.
Poliqarp: An open source corpus indexer and search
engine with syntactic extensions. In Proceedings of
the 45th Annual Meeting of the Association for Com-
putational Linguistics Companion Volume Proceed-
ings of the Demo and Poster Sessions, pages 85–88.

Stephan Kepser. 2003. Finite structure query: A
tool for querying syntactically annotated corpora. In
Proceedings of EACL, pages 179–186.

Adam Kilgarriff, Pavel Rychlý, Pavel Smrž, and David
Tugwell. 2004. The Sketch Engine. In Proceedings
of the Eleventh EURALEX International Congress,
pages 105–116.

Adam Kilgarriff, Vı́t Baisa, Jan Bušta, Miloš
Jakubı́ček, Vojtěch Kovář, Jan Michelfeit, Pavel
Rychly, and Vı́t Suchomel. 2014. The Sketch En-
gine: ten years on. Lexicography, 1(1):7–36.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In Machine Transla-
tion Summit, volume 5, pages 79–86.

Milen Kouylekov and Stephan Oepen. 2014. Semantic
technologies for querying linguistic annotations: An
experiment focusing on graph-structured data. In
Proc LREC 2014, pages 4331–4336.

Thomas Krause and Amir Zeldes. 2014. Annis3: A
new architecture for generic corpus query and visu-
alization. Digital Scholarship in the Humanities.

Esther König and Wolfgang Lezius. 2000. A descrip-
tion language for syntactically annotated corpora. In
COLING 2000, July 31 - August 4, 2000, Univer-
sität des Saarlandes, Saarbrücken, Germany, pages
1056–1060.

Esther König and Wolfgang Lezius. 2003. The
TIGER language. A description language for syn-
tax graphs. formal definition. Technical report, In-
stitute for Natural Language Processing, University
of Stuttgart.

Catherine Lai and Steven Bird. 2004. Querying and
updating treebanks: A critical survey and require-
ments analysis. In Proceedings of the Australasian
Language Technology Workshop 2004, pages 139–
146.

Catherine Lai and S. G. Bird. 2005. LPath+: A first-
order complete language for linguistic tree query. In
Proc PACLIC’19, pages 1–12.

Catherine Lai and Steven Bird. 2010. Querying lin-
guistic trees. J. of Logic, Lang. and Inf., 19(1):53–
73, January.

Joakim Lundborg, Torsten Marek, Maël Mettler, and
Martin Volk. 2007. Using the Stockholm
TreeAligner. In Proceedings of the 6th Workshop
on Treebanks and Linguistic Theories, pages 73–78.

Torsten Marek, Joakim Lundborg, and Martin Volk.
2008. Extending the TIGER query language with
universal quantification. In KONVENS 2008: 9.
Konferenz zur Verarbeitung natürlicher Sprache,
pages 5–17.

Hendrik Maryns and Stephan Kepser. 2009.
Monasearch - a tool for querying linguistic tree-
banks. In Treebanks and Linguistic Theories 2009,
pages 29–40.

Jirı́ Mı́rovský. 2008. Netgraph - making searching in
treebanks easy. In In Proc. of IJCNLP’08, pages
945–950.

Lars Nygaard and J.B. Johannessen. 2004. Searchtree
- a user-friendly treebank search interface. In Proc
TLT 2004, Tübingen, December 10–11, 2004, pages
183–189.

Franz Josef Och and Hermann Ney. 2003. A sys-
tematic comparison of various statistical alignment
models. Computational linguistics, 29(1):19–51.

Piotr Pezik. 2011. Providing corpus feedback for
translators with the PELCRA search engine for
NKJP. In Explorations across languages and cor-
pora : PALC 2009, Łódź Studies in Linguistics,
pages 135–144, Frankfurt am Main; New York. Pe-
ter Lang.

Piotr Pezik. 2013. Indexed graph
databases for querying rich TEI annotation.
http://digilab2.let.uniroma1.it/teiconf2013/wp-
content/uploads/2013/09/Pezik.pdf.

Alexandre Rafalovitch and Robert Dale. 2009.
United nations general assembly resolutions: A six-
language parallel corpus. In Proceedings of the MT
Summit, pages 292–299.

Douglas L. T. Rohde. 2005. TGrep2 user manual.
http://tedlab.mit.edu/ dr/Tgrep2/tgrep2.pdf.

Viktor Rosenfeld. 2010. An Implementation of the An-
nis 2 Query Language. Student thesis, Humboldt-
Universität zu Berlin.

15

Pavel Rychlý. 2007. Manatee/Bonito – a modular cor-
pus manager. In Proceedings of Recent Advances
in Slavonic Natural Language Processing, RASLAN
2007, pages 65–70.

Roman Schneider. 2013. KoGra-DB: Using MapRe-
duce for language corpora. In 43. Jahrestagung der
Gesellschaft für Informatik (GI), pages 140–142.

Raivis Skadiņš, Jörg Tiedemann, Roberts Rozis, and
Daiga Deksne. 2014. Billions of parallel words for
free: Building and using the EU Bookshop Corpus.
In Proc of LREC 2014, pages 1850–1855.

Ralf Steinberger, B. Pouliquen, A. Widiger, C. Ignat,
T. Erjavec, D. Tufiş, and D. Varga. 2006. The JRC-
acquis: A multilingual aligned parallel corpus with
20+ languages. In Proc of LREC 2006.

Ralf Steinberger, Andreas Eisele, Szymon Klocek,
Spyridon Pilos, and Patrick Schlüter. 2012. DGT-
TM: A freely available Translation Memory in 22
languages. In Proc of LREC 2012, pages 454–459.

Ralf Steinberger, Mohamed Ebrahim, Alexandros
Poulis, Manuel Carrasco-Benitez, Patrick Schlüter,
Marek Przybyszewski, and Signe Gilbro. 2014.
An overview of the European Union’s highly mul-
tilingual parallel corpora. Language Resources and
Evaluation, 48(4):679–707.

Jörg Tiedemann. 2011. Bitext Alignment, volume 4 of
Synthesis Lectures on Human Language Technolo-
gies. Morgan & Claypool.

Jörg Tiedemann. 2012. Parallel data, tools and inter-
faces in OPUS. In Proc of LREC 2012, pages 2214–
2218.

Amir Zeldes, Anke Lüdeling, Julia Ritz, and Chris-
tian Chiarcos. 2009. ANNIS: A search tool for
multi-layer annotated corpora. In Corpus Linguis-
tics 2009.

Jan Štěpánek and Petr Pajas. 2010. Querying diverse
treebanks in a uniform way. In Proc LREC 2010,
pages 1828–1835.

16

Interactive Visualizations of Corpus Data in Sketch Engine

Lucia Kocincová†

xkocinc@fi.muni.cz

Vı́t Baisa‡† and Miloš Jakubı́ček‡† and Vojtěch Kovář‡†

name.surname@sketchengine.co.uk

†NLP Centre, Faculty of Informatics
Masaryk University, Brno, Czech Republic

‡Lexical Computing, Brighton, United Kingdom

Abstract

Automatic analysis of large text corpora
produces large amounts of figures as re-
sult of various functions. These provide
empirical evidence for a research hypothe-
sis or serve in numerous practical applica-
tions of natural language processing. Usu-
ally, the results are presented in the form
of tables containing raw data to be inter-
preted by domain experts. This paper de-
scribes an ongoing work on new visual-
izations and user interface enhancements
in Sketch Engine corpus management sys-
tem which aim at easing the interpretation
of the data for both novice users and lan-
guage professionals.

1 Introduction

Analyses of textual data deal with the issue of
choosing a suitable representation for its results.
While this factor is often neglected and most at-
tention is being paid to the performance of the
analytic functions (where the problem might be
simply seen as continuation of Aristotle’s form vs.
matter debate, with matter being absolutely pre-
dominant in science), there is no doubt that the
representation heavily influences how data are per-
ceived and can significantly help or harm correct
understanding of the results (Meirelles, 2013).

This becomes even more appealing where the
underlying analytic sample does not posses uni-
form distribution—like language which usually
follows Zipf’s distribution (Zipf, 1949). Not only
“ordinary” language users but sometimes even
language experts tend to underestimate the impact
of such heavily skewed distributions like the Zip-
fian one, henceforth drawing invalid conclusions
from the analyses they carry out.

In this paper we describe an ongoing work on
implementing new visualization options for lan-
guage data analysis within Sketch Engine cor-
pus management system (Kilgarriff et al., 2014).
Sketch Engine has a large variety of users ranging
from language learners, students and researchers
in linguistics, lexicographers, translators and ter-
minologists or data scientists in diverse domains.

The presented enhancements to the user inter-
face are implemented with the hope that they will
not only provide a more graphically appealing and
easier way how to understand the data for novice
users, but also speed up the daily work carried out
by language experts (e.g. lexicographers).

2 Sketch Engine

Sketch Engine is a leading corpus management
system useful for discovering how words behave
in different contexts. It has a wide range of ana-
lytic functions dealing with billion-word corpora
(see e.g. (Pomikálek et al., 2012; Jakubı́ček et al.,
2013)). In this paper we focus on the visualization
of two core functions that leverage the principles
of distributional semantics—word sketches and a
distributional thesaurus.

2.1 Word Sketches

A word sketch is a one-page summary of a
word’s collocational behavior according to par-
ticular grammar relations. It is usually com-
puted by evaluating a large number of corpus
queries (Jakubı́ček et al., 2010) performing shal-
low parsing or by using some existing parser to do
this task so as to retrieve a large number of colloca-
tion candidates which are then sorted using a lex-
icographic association score (see (Rychlý, 2008;
Evert, 2005)).

A word sketch is currently presented in a table

17

Figure 1: Word sketches for lemma strategy.

where each column contains one grammar relation
with collocates sorted by their score (see Figure 1).

2.2 Thesaurus

On top of the word sketches, Sketch Engine com-
putes a distributional thesaurus. Normally a dis-
tributional thesaurus tackles the issue of finding
similar words by asking the following question:
given a word, what are the words that occur in
the same context? In Sketch Engine this question
is answered by finding words that share the same
collocates in the same grammar relations in word
sketches.

A thesaurus is simply a list of words accompa-
nied with their frequency and a similarity score.

3 Thesaurus Visualization

The thesaurus already provides a visualization of
the words in the form of a word cloud (Figure 2),
however the score is not represented in the the-
saurus in any way, so the potential of the data is
not used to its full extent.

The main objective of the presented visualiza-
tion in Figure 6 is to display all thesaurus attributes
(textual string, its frequency and similarity and
score) of each lemma in a meaningful but also a
clear way, which was achieved by mapping these
two values to multiple attributes. The core of the
visualization is a lemma, the respective words are
placed around it according to the score value—the
higher the score is, the closer a word is to the cen-
ter.

The score values are normalized into the [0,1]
range, therefore a comparison of two different
word lists is possible. However, a user evaluates
each word list independently, so a fixed score axis
could lead into misunderstanding in cases where

score value is relatively low. This fact was taken
into account when designing the visualization, so
the score axis is adaptive – its boundary values are
always taken from currently selected data, there-
fore the user can always clearly indicate the most
similar words of the current lemma.

Score in the visualization is also mapped to a
colour of the circle behind the word which simpli-
fies comparison of two close words. The user can
modify the colour range of score by choosing an-
other appropriate colour from control panel, so the
visual output can be adjusted.

Frequency is mapped to the size of a circle and
also to the font size of a word, which can be dis-
abled to avoid confusion when comparing short
and long words.

4 Word Sketch Visualization

Word sketches are technically very similar in
terms of data types—thesaurus is a word list with
score and frequency and word sketches are mul-
tiple word lists with the same attributes. There-
fore, the principles in graphical representations
may remain the same—assuming also that a con-
sistent visualization across different system func-
tion makes its perception easier.

Score and frequency values are mapped to the
same graphical elements as in thesaurus except the
colour of circles because in word sketches, distinct
colours are used for different grammar relations
– as can be perceived from Figure 3. Therefore
a score on different radius around the center is
mapped to circle transparency so the words with
the highest scores pop out from the center of the
picture.

Example of word sketch visualization can be
seen in Figure 4.

18

Figure 2: Thesaurus for lemma strategy.

Figure 3: Mapping of graphical elements. Figure 4: Word sketches of experiment.

5 Interactivity of Visualizations

Each visualization is interactive thus the explo-
ration of relationships among words is easier. All
interaction controls are grouped in a panel located
in the right side of the page. The panel includes as
many options as possible, however the number of
options will be reduced after a user testing.

The exact values of a word’s frequency and
score are not left out entirely, they can be retrieved
on demand by hovering over a particular word.
For an approximate evaluation of values which is

mostly used by users, boundaries with labels are
located in a legend. It is automatically updated
when data changes so the user is always aware of
the applied scale.

The interfaces and their parts are described in
Figure 5.

6 Implementation

The visualizations introduced in this paper were
implemented using JavaScript, jQuery and D3 li-
brary. D3 helps to focus on the graphical output

19

Figure 5: Visualization interface of thesaurus (top) and word sketches (bottom).

20

and its transformations and allows more effective
development of interactive visualizations. (Bo-
stock et al., 2011)

The input for scripts generating the visual out-
put is a JSON object retrieved from Sketch En-
gine. Data boundaries and other properties are cal-
culated to set up scales correctly.

An assignment of coordinates for each word is
made afterwards according to score values. The
new position has to satisfy two conditions—the
word’s bounding box cannot overlap with other
bounding boxes in the area and also the circles
cannot overlap. If these conditions are not met all
scales are contracted and the positions are recal-
culated. If it is not possible to meet the given re-
strictions, for example too many words are being
requested for output, the limitations are dropped
and positions are calculated without any restric-
tions and it is upon the user to filter the output.

This behavior ensures that a visualization is al-
ways rendered and the user’s requirements for data
exploration are not limited.

The exact positions of words in a given score ra-
dius are currently random, but mapping of another
attribute is possible in the future.

In the visualization of thesaurus the whole area
around the center is covered with words. In the
word sketches the whole area is divided into gram-
mar relations, each relation is assigned an arc
whose area is calculated as the sum of frequencies
of words that belong to the given relation. The
length of an arc represents the average score of
displayed words.

The presented visualizations don’t evaluate
or modify the words as strings—the algorithms
work with them as elements—they are therefore
language-independent and can be used with any
corpora available in Sketch Engine as can be seen
in Figure 6.

Graphics generated from the system can be also
downloaded for further use.

7 Conclusions and Future Work

In this paper we have presented a number of visu-
alization enhancements that are soon to appear in
Sketch Engine (including its open source variant
NoSketch Engine). The main added value of these
visualizations is that users can immediately see
differences between data values which can lead to
faster interpretation of results and faster decisions.
We are confident that further development of such

(a) Czech corpus

(b) Arabic corpus

(c) Estonian corpus

Figure 6: Thesaurus generated from different cor-
pora.

21

enhancements is necessary to facilitate better un-
derstanding of the underlying corpus data espe-
cially in the context of (“big data”).

Evaluation testing with differently experienced
users of Sketch Engine is currently in progress
and so far shows that the visualizations are mostly
valuable for new and intermediate users. Accord-
ing to the feedback from users we also plan A/B
testing to verify new improved versions of the pre-
sented visualizations. In the future further fea-
tures of Sketch Engine will be subject to visualiza-
tion enhancements as well (e. g. corpus metadata
overview).

Acknowledgments

This work has been partly supported by the Min-
istry of Education of CR within the LINDAT-
Clarin project LM2010013. The research lead-
ing to these results has received funding from the
Norwegian Financial Mechanism 2009–2014 and
the Ministry of Education, Youth and Sports under
ProjectContract no. MSMT-28477/2014 within
the HaBiT Project 7F14047.

The access to computing and storage facilities
owned by parties and projects contributing to the
National Grid Infrastructure MetaCentrum, pro-
vided under the programme ”Projects of Large In-
frastructure for Research, Development, and Inno-
vations” (LM2010005) is appreciated.

References
Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer.

2011. D3 Data-Driven Documents. Visualiza-
tion and Computer Graphics, IEEE Transactions on,
17(12):2301–2309.

Stefan Evert. 2005. The statistics of Word Cooccur-
rences: Word Pairs and Collocations. Ph.D. the-
sis, Universität Stuttgart, Holzgartenstr. 16, 70174
Stuttgart.

Miloš Jakubı́ček, Adam Kilgarriff, Diana McCarthy,
and Pavel Rychlý. 2010. Fast Syntactic Search-
ing in Very Large Corpora for Many Languages.
PACLIC 24 Proceedings of the 24th Pacific Asia
Conference on Language, Information and Compu-
tation, pages 741–747.

Miloš Jakubı́ček, Adam Kilgarriff, Vojtěch Kovář,
Pavel Rychlý, and Vı́t Suchomel. 2013. The TenTen
Corpus Family. International Conference on Cor-
pus Linguistics, Lancaster.

Adam Kilgarriff, Vı́t Baisa, Jan Bušta, Miloš
Jakubı́ček, Vojtěch Kovář, Jan Michelfeit, Pavel

Rychlý, and Vı́t Suchomel. 2014. The Sketch En-
gine: Ten Years On. Lexicography, 1:7–36.

Isabel Meirelles. 2013. Design for Information: An In-
troduction to the Histories, Theories, and Best Prac-
tices Behind Effective Information Visualizations.
Rockport publishers.

Jan Pomikálek, Pavel Rychlý, and Miloš Jakubı́ček.
2012. Building a 70 Billion Word Corpus of En-
glish from ClueWeb. In Proceedings of the Eight In-
ternational Conference on Language Resources and
Evaluation (LREC’12), pages 502–506.

Pavel Rychlý. 2008. A Lexicographer-Friendly As-
sociation Score. Proceedings of Recent Advances
in Slavonic Natural Language Processing, RASLAN,
pages 6–9.

George Kingsley Zipf. 1949. Human Behavior and the
Principle of Least Effort. Addison-Wesley Press.

22

Visualisation in Speech Corpora: Maps and Waves in the Glossa System

Michał Kosek, Anders Nøklestad, Joel Priestley, Kristin Hagen and Janne Bondi Johannessen
The Text Laboratory, Department of Linguistics and Scandinavian Studies

University of Oslo
Oslo, Norway

{michalkk,noklesta,joeljp,kristiha,jannebj}@iln.uio.no

Abstract
We present the Glossa web-based system
for corpus search and results handling, fo-
cussing on two modes of visualisation im-
plemented in the system. First, we de-
scribe the use of maps to show the geo-
graphical distribution of search results and
its utility for exploring dialectal variation
and discovering new isoglosses. Secondly,
we present a functionality for speech visu-
alisation, yielding dynamically generated
representations of spectrograms, pitch and
formants. The analyses are accompanied
by the ability to replay selected parts of the
waveform, as well as export and compare
maximum, minimum and average values
of the parameters for different selections.
Among other things, this can be used to
explore in more detail the set of spoken
variants revealed by the geographical map
view.

1 Introduction

The current availability of large corpora presents
a new challenge for corpus research: how to pro-
cess hundreds of millions or even billions of to-
kens, extract relevant information and transform it
into a shape that can be used to explore specific
hypotheses about language. In addition, the emer-
gence of extensive collections of audio- and video-
recorded speech, accompanied by transcriptions as
well as metadata about the speakers such as their
age, sex and geographical location, presents us
with the challenge of how to make these additional
sources of linguistic data readily available to lan-
guage researchers. To help with these tasks, the
Glossa corpus search system has been developed.
The present article discusses the visualisation pos-
sibilities that Glossa provides for speech corpora,
which are particularly useful for research within
phonetics, phonology and dialectology.

The most important role of a speech corpus
is to give access to data that are otherwise diffi-
cult to obtain. Without a corpus, researchers ei-
ther need to trawl through a large amount of pre-
existing speech recordings, listening for words or
patterns they are interested in, or elicit such pat-
terns from speakers. The former option is very
time-consuming, and the latter requires setting up
an experiment, which may introduce a bias, since
the experimental setup would be designed with
specific research questions in mind. Speech cor-
pora do not necessarily solve the observer’s para-
dox (Labov, 1972). They do, however, provide
speech data that are not affected by a specific re-
search question. Furthermore, in some cases par-
ticipants are not even aware that their speech will
inform linguistic research. BigBrother1 is one
such corpus.

However, mere access to speech data is not suf-
ficient. With the large amount of material cur-
rently available for many languages, techniques
for extracting and visualising potentially interest-
ing patterns in the data have become more impor-
tant than ever. It is both important to have a way to
group a large number of search results in a mean-
ingful way, and to have the possibility to “zoom
in” and analyse detailed features of the speech. If
we take dialect research as an example, the cor-
pus user may be interested in the relation between
pronunciation and the place where the speakers
live. The first of the presented features of Glossa
groups the search results according to the phonetic
transcription and geographical location and visu-
alises them on a map. The user may then want to
perform a more detailed analysis of pronunciation
samples from some specific places shown on the
map. Another feature of Glossa may then be used:
the sound visualisation, which gives quick access
to the spectrogram, waveform, pitch and formant

1http://www.tekstlab.uio.no/nota/
bigbrother/english.html

23

Figure 1: Advanced search in Glossa. We have searched in Norwegian dialects for a pronoun and the
lemma ha separated by 1 or 2 tokens, and are in the process of selecting grammatical features for a third
search term.

plots of the speech.
The article is structured as follows. Section 2

introduces general information about Glossa, and
in particular, features related to speech corpora.
The focus of the rest of the article is on visual-
isation possibilities of speech corpora in Glossa:
geographical visualisation is presented in section
3, and speech visualisation in section 4. Section
5 describes technical details related to the imple-
mentation of these features. Then, section 6 dis-
cusses research applications that can benefit from
these types of visualisation. Finally, section 7 dis-
cusses possible improvements of the features that
may make research even more effective.

2 The Glossa Corpus Search System

2.1 Features of Glossa

Glossa is a web application that provides powerful
methods for corpus search and result visualisation
combined with a strong focus on user-friendliness.
It allows a user to search monolingual and mul-
tilingual (parallel) text and speech corpora anno-
tated with grammatical analyses or other types of
token information. By selecting a set of metadata
values (such as the author and publisher of a writ-
ten text or the location and age of a speaker), the
user can limit the search to a certain subcorpus.

There are three alternative search interfaces,
ranging from maximum ease of use to maximally

powerful queries:

a) a Google-like search box for simple token or
phrase searches,

b) a set of text inputs, checkboxes and drop-
down menus for more complex, grammati-
cally specified searches (see Figure 1),

c) a search box for queries that are directly
passed to the underlying search engine.

Results are presented as KWIC concordances,
with the additional possibility to generate fre-
quency distributions for tokens, lemmas or parts
of speech. Glossa is easily installed on servers or
laptops via Docker (see section 5). Alternatively,
the source code can be freely downloaded from
GitHub2 under a very permissive open-source li-
cence (MIT).

Out of the box, Glossa comes with support
for corpora encoded with the IMS Open Cor-
pus Workbench (Christ, 1994; Evert and Hardie,
2011)3, which supports up to 2.1 billion tokens
per corpus. However, Glossa was built from the
ground up to be easily extended with support for
different search engines and corresponding search
and result views, and there is already an optional
module for searching corpora on remote servers

2https://github.com/textlab/glossa
3http://cwb.sourceforge.net

24

using the Federated Content Search protocol de-
fined by the European CLARIN infrastructure4.

Glossa provides a simple admin interface which
allows a Corpus Workbench (CWB) corpus to be
created by uploading a zip file containing CWB in-
dexes and potentially also tab separated value files
with metadata as well as audio and video files if
applicable. Glossa itself does not provide func-
tionality to create these input resources; however
we are currently working on a corpus processing
pipeline for creating corpora from XML or plain
text files, including TEI5 format for written cor-
pora and ELAN6 format for speech corpora.

It should be noted that Glossa is not the only
web-based corpus search system available; some
examples of powerful alternatives are CQPweb7,
Corpuscle8, Korp9, and SketchEngine10. What
sets Glossa apart from these is a unique combi-
nation of characteristics:

• the functionality for audio analysis and dis-
play of geographical distribution described in
this paper,

• support for parallel queries in multilingual
corpora,

• a strong focus on ease of use for non-
technical users,

• ease of installation (particularly through its
Docker distribution),

• extensibility with respect to different search
engines and database systems,

• it is freely available without charge.

2.2 Speech Corpora in Glossa
With speech corpora, search results can be linked
to audio and video clips that are accompanied by
an auto-cue display showing each transcribed ut-
terance as it is spoken. The utterances may have
several different transcriptions. For example, in
the Nordic Dialect Corpus (Johannessen et al.,
2009), they are transcribed into the standard or-
thography, and to a simplified phonetic transcrip-
tion, which shows how the word was actually pro-
nounced in a particular utterance. The phonetic

4http://clarin.eu
5http://www.tei-c.org/index.xml
6https://tla.mpi.nl/tools/tla-tools/elan
7https://cqpweb.lancs.ac.uk
8http://clarino.uib.no/korpuskel/page
9http://spraakbanken.gu.se/eng/korp-info

10http://www.sketchengine.co.uk

search feature allows looking for utterances where
a word is pronounced in a particular way.

If the speakers in a corpus were recorded at
different geographical locations (such as in a di-
alect corpus) and geographical coordinates are
provided for these locations, search results can
also be visualised as plots on a geographical map.
Furthermore, if audio recordings are available,
each search result can be analysed in an interface
that implements the most important functionality
found in desktop applications for sound analysis
such as Praat (Boersma and Weenink, 2001). The
rest of this paper will focus on the latter two func-
tionalities: geographical maps and sound analysis.

3 Geographical Visualisation in Glossa

Corpus linguistic investigation commonly draws
on analytic and communicative techniques taken
from other fields. Dialectologists interested in re-
gional variation have long turned to manually ren-
dered maps to represent linguistic features. Per-
haps the earliest example of such work is Der
Deutsche Sprachatlas, carried out in the first half
of the twentieth century and more recently digi-
tised as a result of the Digitaler Wenker-Atlas
(DiWA) project (Schmidt et al., 2001). However,
as late as 2005, the lack of automation was still
a concern (Labov et al., 2005, 41–42). Work has
since been done to automatically render linguistic
data in geographical maps, for example Dynamic
Syntactic Atlas of the Dutch dialects (Barbiers and
others, 2006, DynaSAND). The following section
details one simple approach to achieving the type
of digital linguistic topography heralded by Labov.

Geographical location is an essential metadata
component of any speech corpus, and can be
utilised in search visualisations. The Google Maps
Embed API11 has proven useful in extending the
functionality of Glossa to this end. While origi-
nally incorporated into Glossa as a way of provid-
ing a metadata overview for corpus queries, it soon
became evident that the spatial distribution of data
reveals interesting patterns, particularly for cor-
pora comprising multiple layers of transcription.
The Norwegian component of the Nordic Dialect
Corpus (Johannessen et al., 2009) is one such ex-
ample; it is transcribed using a simplified phonetic

11https://developers.google.com/maps/web

25

Figure 2: Geographical visualisation in Glossa. We can see the geographical distribution of dialectal
variations of ikke ‘not’ in Norway: yellow = velar plosive; black = fricative/affricate, non-nasal

system as its initial layer12, with an automatically
transliterated orthographic transcription providing
a subsequent layer. This dual-tiered approach pre-
serves the rich dialectal variation while ensuring
searchability. Simple orthographic searches may
yield dozens of distinct dialectal variants. Using
the Embed API, Glossa takes advantage of this
system of transcription by compiling the phonetic
variants along with their corresponding geograph-
ical coordinates into a data structure and plotting
the locations onto a Google map. Colour palettes
are provided, giving the user the option of colour
coding specified variants. The resulting clustering
enables users to easily scan the distribution of lin-
guistic features. For corpora of a sufficient size
and geographical distribution, isoglosses are read-
ily visible (see Figure 2). The size of the corpus,
in terms of tokens per informant, will determine
which linguistic features will be available for ex-
amination; less frequent features requiring more
data. In the example, there is an average of about
4000 tokens per informant, with 564 informants
spread amongst 163 locations.

12The transcription standard is described here:
http://www.tekstlab.uio.no/nota/scandiasyn/
Transkripsjonsrettleiing%20for%20ScanDiaSyn.
pdf (in Norwegian). It is a coarse-grained transcription
standard based on the Oslo Norwegian pronunciation of the
alphabet (Papazian and Helleland, 2005).

4 Speech Visualisation in Glossa

4.1 Background

Sound visualisation applications are an important
part of the phonetician’s toolkit; they provide in-
formation that does not depend on the subjective
perception of the sound signal and can be pre-
sented and referred to in a written form. Among
various sound analysis programs, Praat (Boersma
and Weenink, 2001) is specifically designed to vi-
sualise and extract parameters of speech and there-
fore it is a standard tool within phonetics. Among
its many features, the most significant ones in-
clude: visualisation of the waveform and the spec-
trogram, pitch and formant analysis.

Speech corpora not only enable easy access to
a large amount of spoken utterances, but also al-
low the user to restrict the search according to a
range of variables, based on corpus annotations
and metadata. For instance, phonological anno-
tations allow the user to find all words that share
a particular pronunciation, part-of-speech tagging
can be used to differentiate between some of the
homonyms, and metadata may be used to specify
sex and dialect of the speaker.

It would therefore be natural to use Praat to
analyse search results from speech corpora. Un-
fortunately, it is often difficult or even impossible.

26

Figure 3: Sound visualisation in Glossa. We have searched a Mandarin Chinese corpus for utterances
with three consecutive third tones. The pitch plot (black) shows that in the presented search result only the
last syllable is pronounced with the actual low third tone. The figure also shows waveform, spectrogram
and formant plots, and the user interface that provides functionalities described in the article.

Praat operates only on local files saved on the hard
drive. Due to copyright restrictions, speech cor-
pora do not commonly allow sound files to be di-
rectly downloaded. Most often the search results
are only available via streaming and can only be
listened to through a web browser.

If the download links are available, Praat might
be sufficient for research that requires deep analy-
sis of a relatively small amount of samples. There
are, however, many situations in which the use
of Praat is suboptimal. For instance, in the ex-
ploratory phase of the research, when one tries
to formulate a hypothesis, it is often beneficial to
conduct a lot of different searches according to
different criteria and perform a quick analysis of
the results. In such cases, downloading each re-
sult separately and repeatedly switching between
separate applications is ineffective.

4.2 Features of the Current Visualisation
System

The online speech visualisation in Glossa contains
the most important features of Praat and solves the

above-mentioned problems. The sound visualisa-
tion is accessible through an icon next to each re-
sult presenting KWIC concordances. An overview
of the user interface is presented in Figure 3.

The following plots are available: the waveform
in the upper part, the spectrogram in the lower
part, and four formants and pitch overlaid over the
spectrogram. The plots can be turned on or off in-
dividually according to user preference. Just like
in Praat, the sound can be played and an animated
vertical line shows the current playing position in
real time.

The user can select a part of the spectrogram
that may, for example, correspond to one sound
or syllable, listen to that part, and zoom in to
see the features of the sound in more detail. As
the selection is made, the numerical values of the
parameters are displayed: duration and statistics
for the selected period, namely maximal, mini-
mal and average value of the pitch and formants.
The time and frequency of any point on the spec-
trogram can be accessed via a mouse hover-over.
Right-clicking allows the numerical values to be

27

exported to a separate window. Also the statistics
of the selection can be exported.

The visualisation is fully integrated with the
search functionality of Glossa. For instance, in a
corpus with speaker metadata, part-of-speech an-
notation and phonetic transcription, the user may
specify a particular word in its orthographic and/or
phonetic transcription, its part of speech, and re-
strict the search to utterances from speakers who
meet particular criteria.

5 Technical Details

Even though Praat has batch processing facilities,
it does not provide any application programming
interface (API) that would make integration into
a larger system possible. Therefore we used the
Snack Sound Toolkit13 instead, which contains
Tcl/Tk and Python bindings.

The visualisation is generated by a Python dae-
mon using Snack, which communicates with the
main Glossa daemon, written in Ruby on Rails,
through a simple protocol. Such an architecture is
motivated by several factors. Snack does not have
Ruby bindings, so calling it directly from the main
Glossa daemon is not possible. Moreover, hav-
ing this functionality in a separate daemon allows
Glossa to be more responsive: other functionali-
ties of Glossa are not blocked during the gener-
ation of the spectrograms, nor is it necessary to
create a separate process for every request. Ad-
ditionally, initialisation of Snack and other related
code requires several seconds. In our architecture
this needs to be done only once, after starting the
daemon, and does not affect the time of the gener-
ation of the spectrogram.

The speed of the spectrogram generation de-
pends on the size of the segments14. The dae-
mon can generate spectrograms for sound chunks
of any length. Since Snack needs to load the whole
file into memory in order to generate the spec-
trogram, and the generation of some of the plots
(e.g. the formants) may be time-consuming for
longer files, we decided to split sound files into
one-minute chunks, generate the plots for each of
them, and stitch them together in a way that makes
the result practically indistinguishable from a plot
generated directly from a larger segment. This so-
lution makes visualisation of large sound files pos-

13http://www.speech.kth.se/snack
14A segment is a piece of transcription synchronised with

the audio, with a defined start and end time.

sible without using too many resources. That said,
if the chunks are too long, the system becomes less
usable for the researchers, as they need to spend
time looking for words or sounds they are inter-
ested in. In our corpora, the segments are gener-
ally not longer than a few dozens of seconds. The
plot for a typical, 10-second segment is generated
on our server in less than 4 seconds, which al-
lows high interactivity. If a corpus is divided into
larger segments, the user will need to wait a bit
longer, but our solution is still faster than down-
loading the file and opening it in Praat: the plot
for a 38-second segment is generated in less than 9
seconds, and for a 94-second segment in less than
21 seconds.

The interactive audio player that allows any part
of the displayed sound to be played was writ-
ten in JavaScript and makes use of the API pro-
vided by SoundManager 215. Our visualisation
tool may use Adobe Flash to play sounds, or use a
purely JavaScript-based alternative when Flash is
not available.

In order to minimise installation problems
and support reproducible research (Chamberlain
and Schommer, 2014), Glossa is released as a
Docker16 image, which contains all the required
dependencies. Such packaging guarantees that it
will give exactly the same results on the same
data, avoiding problems caused by different soft-
ware versions. Moreover, although the system
makes use of several programming languages and
libraries, due to Docker packaging, it is cross-
platform and installable with just a few clicks.

In order to render the maps, Glossa communi-
cates with the Google Maps Embed API using a
JSON object. The colour-coding widget is bor-
rowed from the JQuery API, and shares the same
JSON object. The reason for choosing Google’s
service was simply practicality. At the time of
implementation, Google’s API was deemed most
well developed and its interface most familiar to
potential users. However, most of the develop-
ment involved was agnostic with regards to which
service was chosen, meaning any future move to
another service will require little adaptation. It
is worth noting here that using an open-source
map service, such as OpenStreetMap, would en-
able hosting the maps together with the Glossa in-

15http://www.schillmania.com/projects/
soundmanager2

16http://www.docker.com

28

stallation, thus enabling offline viewing.

6 Research Applications

As mentioned in subsection 4.1, the visualisation
features of Glossa may be useful in the exploratory
phase of the research. For example, one may start
by searching for a word in the Nordic Dialect Cor-
pus and see the geographical distribution of differ-
ent pronunciation variants. The phonetic search
feature, mentioned in subsection 2.2, may then be
used to restrict the search to one of the variants
presented by the geographical visualisation. The
phonetic transcription used in the corpus is coarse-
grained, which means that there may be subtler
differences within a particular variant. The sound
visualisation allows the user to find out whether
there are differences within the chosen pronuncia-
tion variant. For instance, one may measure dura-
tion of the vowels or the voice onset time of the
consonants. The spectrogram analysis may im-
prove accuracy in differentiating relatively similar
phones (such as alveolar tap and trill), compared to
a situation where only audio is available. The tool
is designed to work interactively, and one may eas-
ily repeat the procedure with different words and
different features in order to produce a hypothesis.

The map visualisation has already had a sig-
nificant impact on the Scandinavian linguistic re-
search community. Researchers from the projects
NorDiaSyn and NorDiaCorp have written more
than sixty papers on various syntactic phenomena
in the North Germanic languages, in which maps
from the Nordic Dialect Corpus have played a cru-
cial role. These papers have been published in a
new online open access journal which requires its
papers to use empirical data from, inter alia, the
Nordic Dialect Corpus and maps generated from
it: Nordic Atlas of Language Structures Journal
(Johannessen and Vangsnes, 2014).

Visualisation in speech corpora is also useful for
more reliable data gathering. For example, stress
is a feature of spoken Mandarin Chinese that re-
ceived relatively little attention. One may want to
use a Mandarin speech corpus, such as MAID17,
to investigate the patterns of its occurrence. The
problem, however, is that stress is not marked in
the Chinese writing system, and Hanyu Pinyin,
the official phonetic transcription system for Man-

17Mandarin Audio Idiolect Dictionary, a dictionary and
corpus of Beijing Mandarin: http://www.hf.uio.no/
iln/om/organisasjon/tekstlab/prosjekter/maid

darin, only distinguishes unstressed syllables that
completely lose their underlying tone. Therefore,
without a sound recording it is impossible to dis-
tinguish unstressed syllables that still retain their
tone from stressed syllables. Another feature of
Mandarin, present in the Beijing dialect, is the
retroflex suffixation. This suffix is often omit-
ted in speech transcription, and therefore an actual
recording is again more reliable than transcription
alone. But even with a recording, researchers of-
ten have no other choice than to rely on their sub-
jective evaluation of whether stress or a suffix is
present in a particular syllable. The sound visual-
isation makes it possible to refer to objective fea-
tures of the waveform, spectrogram and formants,
such as F3 decrease in case of the retroflex suffixa-
tion (Lee, 2005), instead of researchers’ subjective
perception.

Those who work with specific groups of speak-
ers, for example children or people with pronunci-
ation difficulties, may take advantage of features
of Glossa, even if corpora covering their target
group are not available. For example, Norwegian
children may tend to produce epenthetic vowels
in word-initial consonant clusters. Researching
this feature requires a control group of adult Nor-
wegian speakers, and this is where data from the
Norwegian Speech Corpus18 or the Nordic Dialect
Corpus19 may be useful. The sound visualisa-
tion makes it possible to quickly find out whether
adults produce such epenthetic vowels and to mea-
sure their duration.

One of the easiest features to analyse in the
sound visualisation is the pitch contour, which
may give valuable information, especially in the
case of tonal languages. For example, one may
analyse the 3rd tone sandhi in Mandarin Chinese:
the patterns occurring when there are two or more
subsequent syllables with the 3rd tone. When the
syllables occur within a prosodic foot, all but the
last one change to the 2nd tone (Shih, 1997). In
other cases the change is not obligatory, but may
occur. The pitch plot is a useful tool for verifica-
tion of whether the tone sandhi actually occurs and
analyse patterns of its occurrence. The visualisa-
tion is even more useful for investigating effects
of tone coarticulation – while the tone sandhi is
categorical, the coarticulation effect changes the
pitch in different degrees, depending on the sit-

18http://tekstlab.uio.no/nota/oslo/english
19http://tekstlab.uio.no/nota/scandiasyn

29

uation (Zhang and Liu, 2011). Figure 3 shows
how one may use Glossa to look for particular tone
combinations, visualise and analyse the pitch con-
tour. Average pitch values over specified periods
of time can then be exported, which allows for the
investigation of degrees of tone changes in natural
speech, depending on the adjacent tonal context.

No formal evaluation of the presented visuali-
sation features has been performed. However, the
fact that many researchers use the corpora served
by Glossa on a daily basis, and publish research
papers based on them, is a sign that they have suc-
ceeded in satisfying the user groups. 16,142 in-
dividual searches were performed by more than
220 different users between 20. December 2014
and 19. April 2015 (i.e. 135 searches per day
on average). The many papers in the Nordic Atlas
of Language Structures Journal provide yet more
evidence. The quantitative results from Google
Scholar are also worth mentioning: 141 schol-
arly publications refer to “Nordic Dialect Cor-
pus”, which is just one of the many corpora us-
ing Glossa, and another 24 refer to its Norwegian
name “Nordisk dialektkorpus”. These are high
numbers for a corpus that was only ready for use
in 2011.

7 Future Work

The detection of isoglosses discussed still leaves
the job of charting them. One interesting line of
future development would be attempting to per-
form this task automatically. The application of
k-means clustering and computing convex hulls
(Wiedenbeck and La Touche, 2008) would be one
such avenue.

The currently available sound visualisation is
a multi-purpose tool that provides a wide range
of acoustic data about the speech signal. It re-
duces the time required to visualise the features of
the utterances that are of interest. However, cor-
pora should not only give access to specific ex-
amples, but also provide useful statistics that al-
low generalisations to be drawn from the search
results. In this case, the efficiency of research
would be increased even more if the corpus search
tool could directly provide statistics relating to
the search results, for example average voice on-
set time, vowel length or formant values within a
vowel. This would, however, require synchronisa-
tion of speech at the level of words and/or sylla-
bles.

In the speech corpora currently available in
Glossa, the sound and the text are synchronised at
the utterance level. There are, however, no techni-
cal problems with producing corpora that are syn-
chronised at the word level. When such corpora
become available, Glossa may be extended with an
API that allows algorithms that find and/or mea-
sure specific phonetic details to be applied, such
as the automatic measurement of voice onset time
(Sonderegger and Keshet, 2012) or the detection
of retroflex suffixation (Zhang et al., 2014).

8 Conclusion

This paper has discussed the visualisation possi-
bilities of the Glossa corpus search system. The
main focus was on the features available for
speech corpora: geographical visualisation and
speech visualisation. Geographical visualisation
makes it possible to display pronunciation vari-
ants of the search results on a map and use colour-
coding to cluster them into larger groups. The
phonetic search feature allows specific pronunci-
ation variants in the corpus to be found. Each
search result in a speech corpus can be visualised
in the built-in tool for audio analysis. The user
may select its part and plot its parameters or ex-
port their values. These visualisations may be used
to explore the data and formulate a research hy-
pothesis, verify the existence of particular pho-
netic features, and easily analyse various param-
eters of speech.

Acknowledgements

We would like to thank Professor Christoph
Harbsmeier for his suggestions and input on the
visualisation of speech, and Pernille Hansen and
Anders Vaa for their ideas on the use of the speech
features now included in Glossa. Further, we are
grateful to those who have provided speech con-
tent, and to the transcribers who have facilitated
the searchability of our corpora. The two projects
NorDiaSyn (financed by the Research Council
of Norway) and NorDiaCorp (financed by Nord-
forsk) were responsible for many of the recordings
and the transcriptions used in the present speech
corpora.

This work was partly supported by the Research
Council of Norway through its Centres of Excel-
lence funding scheme, project number 223265,
and partly through the Research Council’s infras-
tructure project CLARINO.

30

References
Sjef Barbiers et al. 2006. Dynamic Syntactic Atlas

of the Dutch dialects (DynaSAND). Meertens Insti-
tute, Amsterdam. http://www.meertens.knaw.
nl/sand.

Paul Boersma and David Weenink. 2001. Praat, a sys-
tem for doing phonetics by computer. Glot Interna-
tional, 5(9/10):341–345.

Ryan Chamberlain and Jennifer Schommer. 2014. Us-
ing Docker to support reproducible research. Tech-
nical report, Invenshure, LLC. http://dx.doi.
org/10.6084/m9.figshare.1101910.

Oliver Christ. 1994. A modular and flexible archi-
tecture for an integrated corpus query system. In
Proceedings of the 3rd International Conference on
Computational Lexicography (COMPLEX), pages
22–32, Budapest.

Stefan Evert and Andrew Hardie. 2011. Twenty-first
century Corpus Workbench: Updating a query ar-
chitecture for the new millennium. In Proceedings
of the Corpus Linguistics 2011 conference, Birming-
ham. University of Birmingham.

Janne Bondi Johannessen and Øystein Alexander
Vangsnes. 2014. Nordic Atlas of Language Struc-
tures Journal. Department of Linguistics and Scan-
dinavian Studies, University of Oslo. http://www.
tekstlab.uio.no/nals/.

Janne Bondi Johannessen, Joel Priestley, Kristin Ha-
gen, Tor Anders Åfarli, and Øystein Alexander
Vangsnes. 2009. The Nordic Dialect Corpus –
An advanced research tool. In Proceedings of the
17th Nordic Conference of Computational Linguis-
tics NODALIDA 2009. NEALT proceedings series,
volume 4.

William Labov, Sharon Ash, and Charles Boberg.
2005. The atlas of North American English: Pho-
netics, phonology and sound change. Walter de
Gruyter.

William Labov. 1972. Sociolinguistic patterns. Num-
ber 4 in Conduct and Communication. University of
Pennsylvania Press.

Wai-Sum Lee. 2005. A phonetic study of the “er-hua”
rimes in Beijing Mandarin. In Ninth European Con-
ference on Speech Communication and Technology.

Eric Papazian and Botolv Helleland. 2005. Norsk
talemål. Hyskoleforlaget, Kristiansand.

Jürgen Erich Schmidt, Joachim Herrgen, Tanja
Giessler, Alfred Lameli, Alexandra Lenz, Karl-
Heinz Müller, Wolfgang Näser, Jost Nickel, Roland
Kehrein, Christoph Purschke, et al. 2001. Digi-
taler Wenker-Atlas. Forschungszentrum Deutscher
Sprachatlas, Marburg. http://www.diwa.info.

Chilin Shih. 1997. Mandarin third tone sandhi and
prosodic structure. Studies in Chinese Phonology,
20:81–123.

Morgan Sonderegger and Joseph Keshet. 2012. Au-
tomatic measurement of voice onset time using dis-
criminative structured prediction. The Journal of the
Acoustical Society of America, 132(6):3965–3979.

Bryce Wiedenbeck and Kit La Touche. 2008. Drawing
isoglosses algorithmically. In Class of 2008 Senior
Conference on Computational Geometry, page 22.

Jie Zhang and Jiang Liu. 2011. Tone sandhi and
tonal coarticulation in Tianjin Chinese. Phonetica,
68:161–191.

Long Zhang, Haifeng Li, Lin Ma, and Jianhua Wang.
2014. Automatic detection and evaluation of Erhua
in the Putonghua proficiency test. Chinese Journal
of Acoustics, 1:83–96.

31

The ParaViz Tool: Exploring Cross-linguistic Differences in Functional
Domains Based on a Parallel corpus

Ruprecht von Waldenfels
Institute of Polish,

Polish Academy of Sciences, Cracow
ruprecht.waldenfels@gmail.com

Abstract
ParaViz is a modular corpus query and
analysis tool in development for use with
a word-aligned, linguistically annotated
multilingual parallel corpus. Represent-
ing an addition to classic query-based cor-
pus tools, it allows to assess the cross-
linguistic variation in the functional do-
main of items or structures that are de-
fined as cognate or otherwise equivalent
by the user. ParaViz provides the user with
two perspectives on such data: on the one
hand, a close-up perspective with word-
aligned corpus examples that are classified
and color-coded according to the user’s
criteria; on the other hand, a bird’s view
perspective with word lists and Neighbor-
Net visualizations that offer an overview
of the aggregated differences in use. To-
gether they enable researchers to quickly
find and explore convergent and divergent
functional patterns of equivalent formants
in different languages.

1 Introduction

ParaViz is a modular corpus query and analysis
tool in development for use with a word-aligned,
linguistically annotated multilingual corpus. It
is deployed with ParaSol, a small multilingual
parallel corpus primarily geared towards linguis-
tic contrastive and typological research of Slavic
(Waldenfels 2011), but may in general be used
with any massively parallel word-aligned corpus
such as Opus (Tiedemann, 2012) or InterCorp
(Čermák and Rosen, 2012). ParaViz functions as
a stand-alone component at the moment of writing
and is planned to be implemented as a web appli-
cation.

ParaViz adds a new type of functionality to par-
allel corpus querying going beyond what is de-
scribed in Volk et al. (2014). It supplements

and builds on ParaVoz (Meyer, Waldenfels, Ze-
man 2014), a corpus query interface which allows
querying parallel corpora through a traditional
web interface on the basis of complex queries in-
volving token sequences across aligned languages,
including negative queries on aligned segments.

Section 2 of this paper gives an introduction to
functional comparison using parallel texts as im-
plemented in ParaViz. In section 3, I describe the
implementation, and conclude in section 4.

2 Functional Comparison Based on
Parallel Texts

The function of a linguistic item as understood
here includes its semantic, pragmatic, or other
characteristics. As a rule, functional characteris-
tics of linguistic elements are harder to describe
than their formal characteristics and involve com-
plex analysis of corpus examples. This makes the
comparison of such functions particularily diffi-
cult, since it presupposes a consistent, comparable
analysis of these functions across many languages,
a task that quickly becomes very complex with a
growing number of languages.

To see this, consider a comparison of the Ger-
man, Dutch, and English perfect. In all three lan-
guages, it is quite straightforward to describe cog-
nate perfect constructions that consist of an aux-
iliary (‘have’ or ‘be’) and a past participle. How-
ever, in order to compare the functional profiles
of such constructions, we first need to describe
the functions of each construction, taking care to
do this in a consistent, comparable manner that is
indeed relevant for the comparison and does not
miss important contrasts. This is a very time-
consuming and difficult task for even a medium
number of languages.

The fact that aligned parallel corpora involve
translationally equivalent texts in many languages
can be harnessed to quickly attain insights on
functional differences and similarities based on

32

formal definitions alone (see the papers in Cysouw
and Wälchli (2007) and Dahl (2014) for related
approaches). The basic notion is straightforward:
if two items in two languages are often used as
translations of each other, we assume that their
functional potential is similar. This notion can
be used to do quite complex comparisons of func-
tional domains. In application to the above exam-
ple, the fact that these perfect constructions differ
in their function quickly emerges from simply ob-
serving that their distribution is very different in
the parallel corpus.

For a different, rather lexical example, let us
assume users want to compare the functional do-
main of color terms in different languages. In or-
der to do that, users define which words represent
the lexical categories red, blue and yellow across
many languages, and the system then compares
the use of these words (and thus, the lexical cat-
egories) across languages in translationally equiv-
alent expressions. For example, such a compari-
son would show that German blau, English blue,
French bleu are often used in the same segments,
but that the distribution of Russian sinij stands
apart, since this item denotes a dark hue of blue.
Moreover, the German representative of the lexical
concept ‘blue’ is used in contexts that it isn’t used
in English and French since it also refers to a state
of drunkenness (er ist blau ’he is drunk’), while in
English, blue also denotes a melancholic state of
mind (as in I’m feeling blue). If these uses are at-
tested in the parallel corpus, the differences in the
denotation of hues as well as in non-literal uses are
readily apparent in the distribution of these terms
in translationally equivalent segments across the
languages in question.

In this way, the functions of variables of dif-
ferent types ranging from grammatical categories
such as tense, aspect, or case to lexical categories
such as words for the color red or derivational suf-
fixes can be easily compared. Further applications
and a more detailed description of the approach
are found in von Waldenfels (2014).

3 The ParaViz system

ParaViz is meant to simplify the type of compar-
ison outlined in section 2 by offering a standard-
ized way to easily conduct such functional com-
parisons for a wide range of variables. This is
done by offering the user a mechanism to define
variables in a formal way and outputing the re-

sults of a classification of the corpus data based on
these definitions. This section describes the stand-
alone application as it is functional at the moment
of writing; in the future, this system is planned to
be implemented as a web service.

ParaViz is used with ParaSol, a small multi-
lingual parallel corpus primarily geared towards
linguistic contrastive and typological research1.
ParaSol focusses on Slavic, but also includes Ro-
mance, Germanic, Finno-Ugric, Greek, Armenian
and other languages. The word forms in most lan-
guages are lemmatized and POS-tagged; a sub-
set of the corpus is word-aligned using UPLUG
(Tiedemann, 2003).

3.1 Operationalization of Variables
As a first step in the process, users define the sets
of elements which they want to compare across
languages. This is done by the operationalization
of variables in parameter files in XML format. In
such a paramter file, variables are defined as con-
straints over word-aligned word forms and their
annotation. At the moment, the parameter files al-
low the definition of such variables as regular ex-
pressions over tokens, their lemmas and POS tags,
as well as over tokens, lemmas and POS tags di-
rectly adjacent. The following example defines the
suffix classes OST and STVO, both denoting ab-
stract nouns, in two Slavic languages:

<parameter id="NounSuffixes">
<type id="O" name="OST">
<criteria><lng>ru</lng>
<regexp level="lem">ость$</regexp>
<regexp level="tag">^N.*</regexp>

</criteria>
...
<criteria><lng>sl</lng>
<regexp level="lem">ost$</regexp>
<regexp level="tag">^S.*</regexp>

</criteria>
</type>
<type id="S" name="STVO">
<criteria><lng>ru</lng>
<regexp level="lem">ство$</regexp>
<regexp level="tag">^N.*</regexp>

</criteria>
...
<criteria><lng>pl</lng>
<regexp level="lem">[cs]two$</regexp>
<regexp level="tag">^subst.*</regexp>

1http://www.parasolcorpus.org

33

Figure 1: A word-aligned corpus sample with color coding according to user-supplied parameter file.

</criteria>
</type>

The user then defines a filter condition for one
of the languages that is taken as the primary lan-
guage. For example, for the comparison of nomi-
nal suffixes above, the user may choose to classify
only nouns. In other cases, the user may want to
restrict the classification to some list of lemmata;
for example, the user may be interested in a partic-
ular lexical or grammatical domain. The primary
language will usually be the language of the orig-
inal, but in general, any language may be chosen.

The tokens in the primary language that sat-
isfy the filter condition as well as well their word-
aligned equivalents in the other languages are clas-
sified in the next stop. This classification assigns a
type to each token in question based on the criteria
defined in the parameter file.

The system then does a corpus search and clas-
sification of the corpus data, which is offered to
the user in two ways; first, as random samples of
the corpus hits in context; second, in an aggregate
form.

3.2 Qualitative Perspective: Color-coded
Corpus Samples

As a first result, the user is given random samples
of corpus data conforming to the definitions. This
enables the user to review and refine the opera-
tionalization of his or her parameters. The word-
aligned forms in these corpus results are color-
coded to reflect the types previously defined in the
parameter file; an example output is given in fig-

ure 1. This perspective affords a qualitative assess-
ment and allows the user to explore the data.

This part of the output is based on ParaVoz, a
modular corpus query interface for CorpusWork-
bench2 (CWB; see Evert & Hardie (2011)) pub-
lished as open source (Meyer et al. 2014). It is
designed as an easy to use, easy to install and easy
to maintain flexible corpus interface for a parallel
corpus hosted by CWB. ParaVoz (and CWB) uses
CQP, a query language also used with a number of
other corpus engines such as the NoSketchEngine
(Rychlý, 2007) or Poliqarp3. ParaVoz does not use
the CWB output directly, but, having configured
CWB to SGML mode, reformats its output into
a convenience XML format using regular expres-
sions.

The output module of ParaVoz then uses XSLT
to transform the XML result document. Using
XML and XSLT at this stage allows rapid adaption
to diverse types of corpus data. In this case, word
alignment visualization is realized by linking ids
that are encoded as token annotations. These an-
notions are compared, and if a token in one of the
target languages is aligned to the target tokens in
the source language, it is shown in bold. Using the
same script, each target form is classified accord-
ing to the user-defined definitions and color-coded
accordingly.

2http://cwb.sourceforge.net
3http://poliqarp.sourceforge.net

34

Figure 2: Strings representing the word-aligned
tokens as classified into types according to the
user-supplied parameter file.

3.3 Aggregate Perspective

In a second perspective, the system outputs visual-
izations of the aggregate differences in distribution
of the variables across different languages. As de-
scibed above, tokens in the primary language and
their equivalents are classified with respect to the
user defined operationalization in terms of word,
lemma, tag, and other possible levels, just as it is
done for the random samples. The examples are
thus converted to strings as shown in figure 2. If
the strings are seen as a table, each column repre-
sents a set of word-aligned word forms, with each
word form represented as a single letter reflecting
the type it was classified as.

The functional similarity or dissimilarity be-
tween the distribution of the variables in multilin-
gual versions of the same text is then computed by
determining for each pair of texts the overlap in
the occurrences of this variable in aligned tokens,
i.e.:

dist(Vlng1,Vlng2) = 1− Vlng1∩Vlng2

Vlng1∪Vlng2

In other words, the system computes strings
of word-aligned corpus positions that are labeled
according to the classification in the parameter
file and computes the hamming distance between
these strings. This computation is used to ar-
rive at distance matrices describing the similarity
or dissimilarity of the distribution of the variable
between texts. These matrices are visualized in
NeighborNets (Huson and Bryant, 2006), a clus-
tering algorithm that was chosen since it preserves
much of the ambiguity we find in this data.

Using different filters and definitions of the fea-
tures that are being compared, the system can
then be used to output different visualizations
of the differences in distribution of the variables

Russian

Bulgarian

Macedonian

Serbian
Serbian/2

Croatian

Slovenian

Czech

Slovak

Polish

Polish/2

Belarusian

Ukrainian/2

Ukrainian
Variable: STVO-MX4

Figure 3: Similarity of use of nouns derived with
the suffix class OST in multiple versions of the
same text in different Slavic languages

ICA

eK

IK

ARNIK

EC

AÄŒ

TEL

STVIE

STVO

OST NIE

CIJA

NICA

0.1

Figure 4: Suffix classes across Slavic: functional
similarity.

in question. This concerns (a) the distances of
texts/languages to each other with respect to some
variable (see fig. 3); (b) the distances of the vari-
ables to each other taken as cross-linguistic types;
this is calculated for each pair of variables by de-
termining the proportion of examples where both
are used in equivalent word forms (see fig. 4);
(c) the distance of the language specific instanti-
ations of the variables to each other; this allows to
see whether formants of different classes overlap
in their domain (see fig. 5). In addition, it out-
puts documents with word lists of equivalent to-
kens in different languages and their classification
(not shown here).

35

RU.DO
MK.DO

BG.DO

BY.DO

UK.DO

PL.DO

UK.VACC

BY.VACC

RU.VACC

HR.VACC
SL.VACCUS.DO

SK.DO

CZ.DO

BG.V

MK.V

US.V

CZ.VLOC

SK.VLOC

PL.VLOC

RU.VLOC
HR.VLOC

SL.VLOC

UK.VLOC
BY.VLOC

PL.VACC

HR.DO
SL.DO

1.0

Figure 5: Functional similarity of Slavic preposi-
tions (language specific representations)

4 Concluding Remarks

I have presented a component that supplements a
query-based interface to a word-aligned multilin-
gual parallel corpus with a new comparative cor-
pus evaluation component which is available of-
fline and is planned to be implemented as a web
service. This corpus evaluation component will
provide users with the possibility to upload their
own parameter files which provide complex defi-
nitions of comparable items in different languages
based on their formal characteristics. The corpus
is then evaluated in respect to the functional simi-
larity of the items in question. Crucially, the com-
ponent aims to give both an aggregate and a de-
tailed view of the data, so that the user keeps the
possibility to interpret the aggregate picture, and
refine the parametrization as necessary for his or
her needs.

Acknowledgments

I gratefully acknowledge funding by the Swiss
National Science Foundation, grant 151230 Con-
vergence and divergence of Slavic from a usage
based, parallel corpus driven perspective.

References
František Čermák and Alexandr Rosen. 2012. The

case of InterCorp, a multilingual parallel cor-
pus. International Journal of Corpus Linguistics,
13(3):411–427.

Michael Cysouw and Bernhard Wälchli, editors. 2007.
Parallel Texts: Using translational equivalents in
linguistic typology. Special Issue of STUF 60/2.

Östen Dahl. 2014. The perfect map: Investigating the
cross-linguistic distribution of tame categories in a
parallel corpus. In Benedikt Szmrecsanyi and Bern-
hard Wälchli, editors, Aggregating Dialectology and
Typology: Linguistic Variation in Text and Speech,
within and across Languages, pages 268–289. De
Gruyter Mouton, Berlin, New York.

Stefan Evert and Andrew Hardie. 2011. Twenty-first
century corpus workbench: Updating a query archi-
tecture for the new millennium. In Proceedings of
the Corpus Linguistics 2011 Conference, Birming-
ham, UK. University of Birmingham.

Daniel H. Huson and David Bryant. 2006. Applica-
tion of phylogenetic networks in evolutionary stud-
ies. Mol. Biol. Evol., 23:254–267.

Roland Meyer, Ruprecht von Waldenfels, and An-
dreas Zeman. 2006-2014. Paravoz - a sim-
ple web interface for querying parallel corpora.
https://bitbucket.org/rvwfels/paravoz.

Pavel Rychlý. 2007. Manatee/bonito - a modular
corpus manager. In 1st Workshop on Recent Ad-
vances in Slavonic Natural Language Processing,
pages 65–70, Brno. Masaryk University.

Jörg Tiedemann. 2003. Recycling Translations – Ex-
traction of Lexical Data from Parallel Corpora and
their Application in Natural Language Processing.
Ph.D. thesis, Uppsala University, Uppsala, Sweden.
Anna Sågvall Hein, Åke Viberg (eds): Studia Lin-
guistica Upsaliensia.

Jörg Tiedemann. 2012. Parallel data, tools and
interfaces in opus. In Nicoletta Calzolari (Con-
ference Chair), Khalid Choukri, Thierry Declerck,
Mehmet Ugur Dogan, Bente Maegaard, Joseph Mar-
iani, Jan Odijk, and Stelios Piperidis, editors, Pro-
ceedings of the Eight International Conference on
Language Resources and Evaluation (LREC’12), Is-
tanbul, Turkey. European Language Resources As-
sociation (ELRA).

Martin Volk, Johannes Graën, and Elena Callegaro.
2014. Innovations in parallel corpus search tools. In
Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC’14),
Reykjavik, Iceland. European Language Resources
Association (ELRA).

Ruprecht von Waldenfels. 2014. Explorations into
variation across Slavic: taking a bottom-up ap-
proach. In Benedikt Szmrecsanyi and Bernhard
Wälchli, editors, Aggregating Dialectology and Ty-
pology: Linguistic Variation in Text and Speech,
within and across Languages, pages 290–323. De
Gruyter Mouton, Berlin, New York.

36

	cover-queryvis.jpg.pdf
	tite_pages_ready.pdf
	queyviz.pdf

