
Optimizing the Oslo-Bergen Tagger

Eckhard Bick
University of Southern Denmark

Odense
eckhard.bick@mail.dk

Kristin Hagen & Anders Nøklestad
University of Oslo, Norway

kristin.hagen@iln.uio.no
anders.noklestad@iln.uio.no

Abstract

In this paper we discuss and evaluate
machine learning-based optimization of a
Constraint Grammar for Norwegian
Bokmål (OBT). The original linguist-
written rules are reiteratively re-ordered,
re-sectioned and systematically modified
based on their performance on a hand-
annotated training corpus. We discuss the
interplay of various parameters and
propose a new method, continuous
sectionizing. For the best evaluated
parameter constellation, part-of-speech
F-score improvement was 0.31
percentage points for the first pass in a 5-
fold cross evaluation, and over 1
percentage point in highly iterated runs
with continuous resectioning.

1 Introduction and prior research

Typical Constraint Grammars consist of
thousands of hand-written linguistic rules that
contextually add, change or discard token-based
grammatical tags for lemma, part-of-speech
(POS), morphological feature-value pairs,
syntactic function, semantic roles etc. Each rule
interacts intricately with all other rules, because
the application of a rule will change the
grammatical sentence context for all subsequent
rules, and section-based rule iteration further
complicates this process. Thus, a CG
grammarian can only trace rule effects for one
token at a time, and only for rules that actually
are used. As a consequence, improvements are
made in a piecemeal fashion, while it is
practically impossible for a human to
meaningfully rearrange the grammar as a whole.
We therefore believe that most CGs could
potentially profit from data-driven, automatic

optimization.

Early work in this direction was the µ-TBL
system (Lager 1999), a transformation based
learner that could be seeded with CG rule
templates, for which it would find optimal
variations and rule order with the help of a
training corpus. However, µ-TBL did not
perform as well as human grammars, and could
only handle n-gram-type context conditions.
Lindberg & Eineborg' Progol system (1998)
induced CG REMOVE rules from annotated
Swedish data and achieved a recall of 98%,
albeit with a low precision (13% spurious
readings). The first system to use automatic
optimization on existing, linguist-written
grammars, was described in Bick (2013), and
achieved a 7% error reduction for the POS
module of the Danish DanGram1 parser. Results
were twice as good for a randomly reduced
grammar with only 50% of the original rules,
indicating a potential for grammar boot-strapping
and grammar porting to another language or
genre, where only part of the existing rules
would be relevant, which was later shown to be
true for at least the Danish-English language pair
(Bick 2014). In the work presented here we
examine how Bick's optimization method holds
up for a Norwegian Bokmål CG, and discuss
different parameter options.

2 The Oslo-Bergen Tagger (OBT)

The Oslo-Bergen Tagger is a rule-based
Constraint Grammar (CG) tagger for the
Norwegian varieties Bokmål and Nynorsk.
Below we will give a brief presentation of the
OBT history, the architecture behind it, and the

1 DanGram is accessible on-line at
http://visl.sdu.dk/visl/da/parsing/automatic/parse.
php

Proceedings of the Workshop on “Constraint Grammar - methods, tools and applications” at NODALIDA 2015, May 11-13, Vilnius, Lithuania

11

http://visl.sdu.dk/visl/da/parsing/automatic/parse.php
http://visl.sdu.dk/visl/da/parsing/automatic/parse.php

OBT performance. The presentation will focus
on the Bokmål tagger.

2.1 History

OBT was developed in 1996–1998 by the
Tagger Project at the University of Oslo. The
linguistic rules were written at the Text
Laboratory in the CG1 rule framework (Karlsson
et. al. 1995). Originally, the tagger used a rule
interpreter from the Finnish company Lingsoft
AB. The tagger performed both morphological
and syntactic analysis (Johannessen et. al. 2000).
In 2000 the preprocessor and the rule interpreter
was replaced by a reimplementation in Allegro
Common Lisp made by Aksis (now Uni
Research Computing) in Bergen, and the tagger
was named The Oslo-Bergen Tagger.

Within the project Norwegian Newspaper
Corpus (2007-2009), OBT was once again
converted. The CG rules were semi-
automatically transformed from CG1 to the new
CG3 formalism (Bick & Didriksen 2015), and
Uni Research Computing made a stand-alone
version of the preprocessor that could work
together with the CG3 compiler2.

Finally, a statistical module was trained to
remove the last ambiguity left by OBT. This
module also performed lemma disambiguation, a
task the original OBT did not do. The new
system was called OBT+stat and is described in
more detail in Johannessen et. al. (2012).

In this article we will focus on the
morphological CG part of OBT+stat since the
optimization is performed on the morphological
rules without regard to the statistical module.

2.2 The architecture behind OBT

The morphological part of OBT consists of two
modules:

a) Preprocessor: The preprocessor is a
combined tokenizer, morphological analyzer and
guesser that segments the input text into
sentences and tokenizes their content. There are
special rules for names and various kinds of
abbreviations. Each token is assigned all possible
tags and lemmas from the electronic lexicon
Norsk ordbank (Norwegian Word Bank). The
Bokmål part of this lexicon contains more than
150 000 lemmas together with inflected forms

2 CG3 (or vislcg-3) is open source and available at
SDU: http://visl.sdu.dk/constraint_grammar.html

(Hagen & Nøklestad 2010). The guesser includes
a compound word analyzer and manages
productively formed compounds as well as
unknown words (Johannessen & Hauglin 1998).

b) Morphological disambiguator: The
morphological disambiguator is based on CG3
rules that select or remove tags attached to the
input tokens. There are 2279 linguistic rules in
this module. 693 of them are rules for specific
word forms. 1371 are SELECT rules and 908
are REMOVE rules.

The tag set is rather large, consisting of 358
morphological tags. The part of speech
classifications, which include information about
morphosyntactic features, are performed in
accordance with Norsk referansegrammatikk
(Faarlund et. al. 1997).

2.3 OBT performance

The original tagger was tested on an unseen
evaluation corpus of 30,000 words taken from a
wide variety of material such as literary fiction,
magazines and newspapers. The recall and
precision were 99.0 and 95.4 percent
respectively, with a combined F-measure of 97.2
(Hagen & Johannessen 2003:90)

After the conversion to CG3 format, recall
remained at 99.0 percent while precision
increased to 96.0 percent, resulting in an F-
measure of 97.5 (see the OBT homepage).

3 Grammar optimization

For our experiments we used a 155.000 word3

corpus with hand-corrected OBT tags covering
POS and inflection. The original corpus was
divided into a (larger) development section and a
(smaller) testing section. We used this division
for the parameter-tuning experiments, but for the
final results, in order to avoid a bias from human
rule development, we fused these sections and
created sections of equal size to be used in 5-fold
cross evaluation. We also adapted the OBT
grammar itself, because its rules have operators,
targets and contexts on separate lines, sometimes
with interspersed comments. Although CG3-
compatible, this format had to be changed into 1-
line-per-rule in order to make rule movements
and rule ordering possible.

3.1 Optimization technique and parameters

The optimization engine works by computing for

3 when counting all tokens, including punctuation

Proceedings of the Workshop on “Constraint Grammar - methods, tools and applications” at NODALIDA 2015, May 11-13, Vilnius, Lithuania

12

each rule in the grammar a performance value
based upon how often it selects or removes a
correct reading in the training corpus. Rules are
then reordered, removed or modified in reaction
to this value, and the effect measured on the test
corpus. After this, the process is repeated with
the new grammar, and so on. As in Bick (2013,
2014), we investigated the following actions and
parameters:

(1) Sorting rules according to performance

(2) Promoting good rules the next-higher
section (good = error percentage lower than T/2)

(3) "Demoting" bad rule to the next-lower
section (bad = error percentage higher than T)

(4) "Killing" very bad rules (error percentage is
over 0.5, doing more bad than good)

(5) Add relaxed versions of good rules, by
removing C- (unambiguity-) conditions and,
conversely, changing BARRIERs into
CBARRIERS

(6) Replace bad rules with stricter versions, by
adding C conditions and turning CBARRIER
into BARRIER.

(7) "Wordform stripping" - i.e. adding a relaxed
version of a wordform-conditioned rule without
this condition, thus allowing it to work on all
tokens.

Performance values (recall, precision and F-
score) for the modified grammars, in the tables
below, are for POS (i.e. without inflection), and
because OBT has more than one tag for a
comma, evaluation also includes punctuation.

3.2 What did not work, or in limited ways

The maybe most obvious step, sorting rules
section-internally after each iteration, decreased
performance. Sorting was only helpful in dry-
run4 mode, for an initial ordering of the original
grammar and after the 1. iteration's addition of
modified rules5, and only in the combination of
complete sorting plus resectioning. regardless if
sorting was performed for sections individually

4 In a dry-run call, CG3 applies all rules once, but
without making changes to the input. Rule tracing
in a dry-run will therefore is a way to measure
how rules would perform in isolation without
actually running thousands of 1-rule
minigrammars.

or for the whole grammar together. The
importance of re-sectioning indicates that the
existence and placement of sections is an
important parameter, that the concept of a
good/bad rule is section-dependent6, and that it is
an important optimization parameter. All runs in
the table below were with standard PDK and 1-
time dry-run sorting and examine different
combinations of iterative sorting. As can be seen,
section-internal sorting worked worst (F=96.26),
having a kill-section helped more (F=96.49) than
factoring in human sectioning as a weight
(F=96.26). But in all instances, iterated sorting
was worse than 1-time sorting (F=96.56).
Increasing the number of sections to 11 led to a
certain recovery of F-scores in hight iterations,
but could not beat the first run in our experiment
window (50 runs).

PDK ite-
ration

Recall
(%)

Precision
(%)

F-
score

original grammar 98.08 94.27 96.13

no iterated sorting 3 98.72 94.50 96.56

sorting 5 sections 1 98.23 94.66 96.41

sorting 11 sections
(--> F-score recovery)

1 98.22 94.66 96.41

sorting11, +kill 1 98.33 94.72 96.49

sorting2, +kill 1 98.32 94.72 96.49

sorting11, -kill, human
section-weighting

11 98.25 94.36 96.26

sorting5 sect.-internal 14 96.99 94.35 95.65

Effects of iterated sorting

Word form stripping was reported in Bick (2014)
to have had a positive effect in cross language
grammar porting, but we could not reproduce
this effect in the monolingual setup with the
same parameters (PDK, 1 dry-sorting). Cross-
language, the method can possibly offset the
problem that wordforms from one language don't
exist in the other, creating versions of the rules

5 The rule change that profited from sorting was
stripping of wordform target conditions, because
this change creates very unrestrained and
dangerous rules.

6 10% errors, for instance, is good in a heuristic
section, where most of the disambiguation has
been done already, but may be bad if the rule is
run too early, where the error rate may be the
same in relative terms, but worse in absolute
terms, because it will apply to more cases.

Proceedings of the Workshop on “Constraint Grammar - methods, tools and applications” at NODALIDA 2015, May 11-13, Vilnius, Lithuania

13

that work at least in terms of POS etc., while this
effect is not relevant monolingually, were
wordform rules just get more risky by losing
their pivotal wordform condition. However, with
a subsequent second dry-run sorting and very
high, section-growing iteration counts, the
optimizer seems to be able to identify the useful
subset of wordform-stripped rules and find
acceptable section placements for them (cf ch.
4).

In terms of numerical parameters we
experimented with the error threshold, but failed
to find a better value the 0.25 suggested by (Bick
2013) - both lower and higher thresholds
decreased performance, independently of other
parameter settings7.

3.3 What did work

While the negative effect of sorting confirms
results for Danish, there was a surprising
difference regarding promoting, demoting and
killing. For DanGram, demoting and killing rules
had a beneficial effect, while promoting rules
had almost no effect. For OBT, however, rule
promotion (P) was important, and for a
combination of only demoting (D) pseudokilling
(k3) extra iterations did not yield a better effect
than the initial one-time sectioned rule-sorting
(S0).

R dR P dP F dF

unaltered grammar 98.08 94.27 96.13

S0D(s)k3, -w
(i=1/508)

98.22 0.14 94.66 0.39 94.41 0.28

S0PDsk3, -w
(i=45/50)

98.71 0.63 94.85 0.58 96.75 0.62

Effect of rule promoting

This can possibly be explained by different
grammar properties: OBT is recall-optimized
(there are about 4 times as many spurious
readings than errors9), while DanGram resolves

7 However, we did not have computational
resources to experiment with exponent changes or
the *0.5 difference between good rule and bad
rule thresholds.

8 F-Score stabilized below the initial sorting
optimization, independently of whether new
sections were added or not, for the latter from
iteration 11, at 96.224, for the former from
iteration 5, at 96.222.

almost all ambiguity (i.e. one reading per token),
so that precision will roughly equal recall.
Therefore OBT profits from promoting good
rules (so they can do more disambiguation
work), while DanGram, on the recall side, profits
from demoting and killing rules (preventing them
from removing correct reading). Another
difference between the two grammar is that OBT
has a higher proportion of SELECT rules and a
lower proportion of C contexts and BARRIERs.
Because C and BARRIER contexts are harder to
instantiate10 (needing more supporting context
disambiguation first), and because SELECT
resolves ambiguity in one go that REMOVE
rules would have needed several steps for, it can
be said that DanGram's rules work more
incrementally and indirectly, while OBT is more
direct in its disambiguation. This harmonizes
with the finding that promoting helped OBT, but
not DanGram, because promoting makes sense
for rules that are formulated as "absolute truths"
(SELECT rules), but doesn't help for rules whose
C and BARRIER contexts force them to wait for
other rules to work first anyway.

DanGram OBT

morph. rules 5120 2215

REMOVE 2837 (55.4%) 898 (40.5%)

SELECT 2178 (42.5%) 1312 (59.2%)

OTHER 105 (2.1%) 5 (0.2%)

wordform rules 1808 (35.3%) 777 (35.1%)

contexts 17539
(3.48/rule)

11525
(5.55/rule)

C conditions 4549 (25.9%) 1303 (11.3%)

NOT 3239 (18.5%) 5007(43.4%)

NEGATE 477 (2.7%) 5 (0.0%)

LINK 4192 (23.9%) 2705 (23.5%)

BARRIERS 3554 (20.3%) 927 (8.0%)

CBARRIERS 276 (1.6%) 44 (0.4%)

global contexts 4597 (26.2%) 3326 (28.9%)

Grammar properties DanGram - OBT

9 This 1:4 ratio holds for both for our own tests
(R=98, P=92) and Hagen & Johannessen's (2003)
evaluation (R=99, P=96)

10 The effect may be somewhat compensated for,
however, by the higher percentage of NOT rules
in OBT, which also makes rules more "cautious".

Proceedings of the Workshop on “Constraint Grammar - methods, tools and applications” at NODALIDA 2015, May 11-13, Vilnius, Lithuania

14

Killing rules does have a slight initial effect in
OBT, but over several iterations, the effect is
negligible. We therefore introduced a
compromise parameter into the optimizer,
defining "killing" as moving a rule 1011 sections
down, rather than removing it completely it from
the grammar. This did not have an adverse effect,
and while most of these rules never moved up
again in later iterations, a few of them can do a
little late heuristic work in low sections. The
method also preserves the rules in question for
use with other text types, reducing the risk of
over-fitting a very lean grammar to a specific
training corpus. Metaphorically speaking, we
preserve a varied "gene pool" of rules as a
reserve for a new data environment. In the same
vein we decided to preserve unused rules (rather
than going for an efficiency gain in a leaner
grammar)12.

We also noted a positive effect, especially on
precision, from adding relaxed versions of good
rules and a smaller positive effect from making
bad rules stricter.

3.4 Sectionizing

Sectionizing the grammar is not only a key
parameter with any sorting configuration, but
also in general. The standard optimizer from
(Bick 2013) adds one new first section for
moving up rules from the original first section,
and had a positive effect from this. But we
wanted to test the hypothesis that more sections
will lead to a more fine-grained quality ordering
of rules and exploit the fact that the CG compiler
will try rules twice (or even three times) within
the same section, and rerun higher-section rules
before it starts on the next lower (= more
heuristic) section. So we added new top and
bottom sections at each iteration, allowing the
grammar to differentiate more when promoting
and demoting existing and changed rules (PDN).

R dR P dP F dF

98.08 94.27 96.13

11 We also tried a lower number, 3, which did not
work as well.

12 Rules may be unused only because they are
placed in a certain section, so they can also come
back into play in later iterations during training,
when other - higher - rules, that did their work for
them, are demoted to a section below a given
inactive rule.

S0PDk3, -w (i=1) 98.22 0.14 94.66 0.39 94.41 0.28

S0PDNk3, -w
(i=45/50)

98.71 0.63 94.85 0.58 96.75 0.62

Effect of sectionizing (S0=1 dry sorting,
k3=killing by moving 3 sections down)

Continually adding extra sections to the grammar
had a marked dampening effect on the
performance oscillation of the iteration curve.
Also, performance kept increasing, with late
stabilization, and a maximum at iteration 45 in
the example, whereas most runs with a stable
section number had their F-Score maximum
already in the first iteration, and stabilized
somewhere between the unoptimized
performance and this first maximum. In theory,
the section-adding technique can end up section-
separating individual rules, making the process
equivalent to precise one-by-one rule ordering,
which conceptually beats the group ordering
achieved by fixed-section optimization.

The obvious price for adding new sections was
slower execution - with a worst case ceiling at
quadratic growth in time consumption (because
the compiler reruns lower sections before
embarking on a new one). In practice, however,
the distribution of rules across sections was
lumpy. For instance, when adding sections for
top/bottom-moved rules but not removing empty
sections, the grammar from iteration 51 in the
above test had 20 used and 32 empty sections,
grammar 100 had 15 used and 62 empty
sections13.

It should be noted that once a grammar is
optimized, execution time can be improved at a
fairly small price by reducing the number of
sections. Thus, F-score decreased only
marginally when we resectioned an optimized
50-section grammar to 6 equal sections.
However, the effect on recall and precision was
unequal - the former fell by 0.5 percentage
points, the latter rose by 0.4 percentage points.
Both effects can be explained by strong but
dangerous rules acting too early. Still, in average
F-score terms, optimization with a very fine-
grained section skeleton will more or less
amount to individual rule ordering and therefore

13 In a final, working grammar, empty sections
should of course be removed, but during
optimization empty in-between sections allow
more fine-grained rule differentiation and seemed
to have a slight positive effect

Proceedings of the Workshop on “Constraint Grammar - methods, tools and applications” at NODALIDA 2015, May 11-13, Vilnius, Lithuania

15

tolerate de-sectioning. In our experiment, even
removing all sections borders still did not
seriously harm F-Score. Thus, sections are
important for the optimization process, but in an
optimized grammar they are less important than
in the human original.

4 Final results

To achieve as reliable results as possible, we
used a 5-fold cross evaluation for the final
evaluation. For the best parameter setting (dry
sorting, promoting and demoting with new
sections, pseudokilling), the initial F-score
optimization gain (1. iteration) varied from 0.27
to 0.36 percentage points between the 5
combinations, with an absolute F-score spread of
95.58 to 96.60. As might be expected, the
weakest sections (3 and 4) profited the most from
optimization.

S0PDNk3, -w R dR P dP F dF

1: (i=1/6) 98.63 0.16 94.71 0.43 96.60 0.30

2: (i=1/6) 98.42 0.20 94.95 0.35 95.65 0.28

3: (i=1/6) 97.67 0.22 93.58 0.48 95.58 0.36

4: (i=1/6) 97.38 0.26 93.9 0.44 95.60 0.36

5: (i=1/6) 98.24 0.16 94.7 0.38 96.41 0.27

average (i=1/6) 98.07 0.20 94.35 0.42 96.17 0.31

Table: Performance spread across the corpus

(S0=dry run sorting only (with resectioning=5 and
10-killing), PDs=Promoting & Demoting with new
sections per iteration, k3=3-section demoting instead
of killing, -w=no wordform stripping)

With new promoting/demoting sections for every
round, performance maxima tend to occur late in
the iteration cycle, so to investigate the ultimate
improvement potential, we used the section with
the weakest dry run (3) and let iteration run for
100 rounds. Because each such run took over
half a day on our hardware, we were only able to
investigate few parameter settings at the time of
writing. The best result, an F-Score improvement
(dF) of 1.31, was achieved with reintroducing
ordinary killing at iteration 15, and a maximum
in round 86. When introducing a second "dry"
sorting in iteration 2, i.e. after the addition of
relaxed and stricted rules, and ordinary killing
from iteration 4, much shorter training runs were
needed (with an asymptotic maximum already in
round 16), albeit at a slightly lower level
(dF=1.09). With this setting, even word form-

stripping could be tolerated, with a maximal dF
of 0.51 in round 63. Here, too, the growth curve
was asymptotic, but it still oscillated until the
end, so later maxima can't be entirely ruled out -
and would make sense, given the very "un-
cautious" character of wordform-stripped rules.
It is probably these "un-cautious" rules that
explain why wordform-stripped rules benefited
precision twice as much as recall, while high
iterations otherwise had a strong recall bias.

Performance oscillations for the training corpus
correlated with performance on the test set, but
test corpus results for grammars with training
corpus maxima14 could deviate up to 0.1% from
the actual test corpus peak, which is a rough
measure for the expected "performance
impredictability" when using ML-optimized
grammars on unknown data.

test chunk 315 R dR P dP F dF

i=0 97.46 93.10 95.23

S0PDNk3K15, -w
(i-max=86/100)

99.09 1.63 94.11 1.01 96.54 1.31

training i=86 99.26 84.99 91.57

S2PDNk3K4, -w
(imax = 16 const.)

98.86 1.40 93.90 0.80 96.32 1.09

training i=16 99.07 85.41 91.73

S2PDNk3K4, -w
(i-max=63/100)

97.80 0.34 93.76 0.66 95.74 0.51

training i=63 98.04 89.18 93.40

Best case scenario - "Unlimited" iterations

5 Conclusion

We have demonstrated that ML-optimization can
be successfully performed for a Norwegian
constraint grammar, and explored a new
sectioning strategy and the respective influences

14 F-scores for training runs appear to be lower than
for the test corpus, but only because the optimizer
in the training runs evaluates against full tag
lines, i.e. with inflection and secondary tags, not
just POS.

15 We ran the second parameter setting for the
original training/test-split too, with the same
asymptotic result. F-Sore topped at 96.67, 0.53
percentage point above the unaltered grammar
(F=96.14), but the lower increase has to be
interpreted on the basis of a higher base line.

Proceedings of the Workshop on “Constraint Grammar - methods, tools and applications” at NODALIDA 2015, May 11-13, Vilnius, Lithuania

16

of rule sorting and rule movements. For most
parameter constellations, repetition of
optimization runs did not lead to a better
performance than a single pass, unless each
iteration is allowed to add new sections. The
first-pass average improvement in 5-fold cross
evaluation was 0.31 percentage points (F-Score
96.17), similar to Danish results reported in Bick
(2013), but with added sectionizing and long
iterations, improvements of over 1 percentage
point were seen, corresponding to a 30%
improvement in relative terms. The immediate
effect was best for precision, but with high
iterations, recall was affected most, with a 60%
improvement in relative terms.

Future work would certainly profit from access
to a large computer cluster, to investigate the
millions of possible combinations of incremental
parameter changes. Also, it would be interesting
to get the human linguist back into the loop, to
see if some of the rules slated for killing or
demotion by the optimizer can be "saved" by
additional context conditions instead, and if the
best selected generalized variants of wordform
rules can be used for further development.

References

Bick, Eckhard. 2013. ML-Tuned Constraint
Grammars. In: Proceedings of the 27th Pacific Asia
Conference on Language, Information and
Computation, pp. 440-449. Taipei: Department of
English, National Chengchi University.

Bick, Eckhard. 2014. ML-Optimization of Ported
Constraint Grammars. In: Calzolari, Nicoletta et al.
(eds.), Proceedings of the 9th International
Conference on Language Resources and
Evaluation, LREC2014 (Reykjavik, May 28-30,
2014). pp. 3382-3386.

Bick, Eckhard & Didriksen, Tino. 2015. CG-3 -
Beyond Classical Constraint Grammar. In:
Proceedings of NoDaLiDa 2015 (forthcoming).

Faarlund, Jan Terje, Lie, Svein & Vannebo, Kjell Ivar.
1995. Norsk referansegrammatikk. Oslo:
Universitetsforlaget.

Hagen, Kristin & Nøklestad, Anders. 2010. Bruk av et
norsk leksikon til tagging og andre
språkteknologiske formål. LexicoNordica 2010
(17) pp. 55-72.

Hagen, Kristin & Johannessen, Janne Bondi. 2003.
Parsing Nordic Languages (PaNoLa) - norsk
versjon. Nordisk Sprogteknologi 2002. Museum
Tusculanums Forlag, Københavns universitet.

Johannessen, Janne Bondi and Helge Hauglin. 1998.

An Automatic Analysis of Norwegian Compounds.
In Haukioja, T. (ed.): Papers from the 16th
Scandinavian Conference of Linguistics,
Turku/Åbo, Finland 1996 : 209-220.

Johannessen, Janne Bondi, Hagen, Kristin &
Nøklestad, Anders. 2000. A Constraint-based
Tagger for Norwegian. In 17th Scandinavian
Conference of Linguistics [Odense Working Papers
in Language and Communication 19].

Johannessen, Janne Bond; Hagen, Kristin; Lynum,
André; Nøklestad, Anders. 2012. OBT+stat: A
combined rule-based and statistical tagger. In
Andersen, Gisle (ed.). Exploring Newspaper
Language: Using the web to create and investigate
a large corpus of modern Norwegian, s. 51–66.

Karlsson, Fred, Voutilainen, Atro, Heikkilä, Juha &
Anttila, Arto. 1995. Constraint Grammar: A
Language-Independent System for Parsing
Unrestricted Text. In Natural Language Processing,
No 4. Berlin and New York: Mouton de Gruyter.

Lager, Torbjörn. 1999. The µ-TBL System: Logic
Programming Tools for Transformation-Based
Learning. In: Proceedings of CoNLL'99, Bergen.

Lindberg, Nikolaj & Eineborg, Martin. 1998.
Learning Constraint Grammar-style
Disambiguation Rules using Inductive Logic
Programming. COLING-ACL 1998: 775-779

Norsk Ordbank ‘Norwegian Word Bank’. 2010.
http://www.hf.uio.no/iln/om/organisasjon/edd/forsk
ing/norsk-ordbank/.

Oslo-Bergen Tagger homepage.
<http://tekstlab.uio.no/obt-ny/>.

Proceedings of the Workshop on “Constraint Grammar - methods, tools and applications” at NODALIDA 2015, May 11-13, Vilnius, Lithuania

17

http://www.hf.uio.no/iln/om/organisasjon/edd/forsking/norsk-ordbank/
http://www.hf.uio.no/iln/om/organisasjon/edd/forsking/norsk-ordbank/

