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Abstract

In  this  paper  we  discuss  and  evaluate
machine learning-based optimization of a
Constraint  Grammar  for  Norwegian
Bokmål  (OBT).  The  original  linguist-
written rules  are reiteratively re-ordered,
re-sectioned and systematically modified
based  on  their  performance  on  a  hand-
annotated training corpus. We discuss the
interplay  of  various  parameters  and
propose  a  new  method,  continuous
sectionizing.  For  the  best  evaluated
parameter  constellation,  part-of-speech
F-score  improvement  was  0.31
percentage points for the first pass in a 5-
fold  cross  evaluation,  and   over  1
percentage point  in  highly  iterated runs
with continuous resectioning.

1 Introduction and prior research

Typical  Constraint  Grammars  consist  of
thousands  of  hand-written  linguistic  rules  that
contextually add, change or discard token-based
grammatical  tags  for  lemma,  part-of-speech
(POS),  morphological  feature-value  pairs,
syntactic function, semantic roles etc. Each rule
interacts intricately with all other rules, because
the  application  of  a  rule  will  change  the
grammatical sentence context for all subsequent
rules,  and  section-based  rule  iteration  further
complicates  this  process.  Thus,  a  CG
grammarian can only trace rule effects for one
token at a time, and only for rules that actually
are  used.  As a  consequence,  improvements  are
made  in  a  piecemeal  fashion,  while  it  is
practically  impossible  for  a  human  to
meaningfully rearrange the grammar as a whole.
We  therefore  believe  that  most  CGs  could
potentially  profit  from  data-driven,  automatic

optimization.

Early  work  in  this  direction  was  the  µ-TBL
system  (Lager  1999),  a  transformation  based
learner  that  could  be  seeded  with  CG  rule
templates,  for  which  it  would  find  optimal
variations  and  rule  order  with  the  help  of  a
training  corpus.  However,  µ-TBL  did  not
perform as well as human grammars, and could
only  handle  n-gram-type  context  conditions.
Lindberg  &  Eineborg'  Progol  system  (1998)
induced  CG  REMOVE  rules  from  annotated
Swedish  data  and  achieved  a  recall  of  98%,
albeit  with  a  low  precision  (13%  spurious
readings).  The  first  system  to  use   automatic
optimization  on  existing,  linguist-written
grammars,  was  described  in  Bick  (2013),  and
achieved  a  7%  error  reduction  for  the  POS
module of the Danish DanGram1 parser. Results
were  twice  as  good  for  a  randomly  reduced
grammar  with  only  50%  of  the  original  rules,
indicating a potential for grammar boot-strapping
and  grammar  porting   to  another  language  or
genre,  where  only  part  of  the  existing  rules
would be relevant, which was later shown to be
true for at least the Danish-English language pair
(Bick  2014).  In  the  work  presented  here  we
examine how Bick's optimization method holds
up  for  a  Norwegian  Bokmål  CG,  and  discuss
different parameter options.

2 The Oslo-Bergen Tagger (OBT)

The  Oslo-Bergen  Tagger  is  a  rule-based
Constraint  Grammar  (CG)  tagger  for  the
Norwegian  varieties  Bokmål  and  Nynorsk.
Below we will  give a brief  presentation of the
OBT history, the architecture behind it, and the

1 DanGram is accessible on-line at 
http://visl.sdu.dk/visl/da/parsing/automatic/parse.
php 
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OBT performance.  The  presentation  will  focus
on the Bokmål tagger.

2.1 History

OBT  was  developed  in  1996–1998  by  the
Tagger  Project  at  the  University  of  Oslo.  The
linguistic  rules  were  written  at  the  Text
Laboratory in the CG1 rule framework (Karlsson
et.  al.  1995).  Originally,  the tagger used a rule
interpreter  from the  Finnish  company  Lingsoft
AB.  The  tagger  performed  both  morphological
and syntactic analysis (Johannessen et. al. 2000).
In 2000 the preprocessor and the rule interpreter
was replaced by a reimplementation in Allegro
Common  Lisp  made  by  Aksis  (now  Uni
Research Computing) in Bergen, and the tagger
was named The Oslo-Bergen Tagger.  

Within  the  project  Norwegian  Newspaper
Corpus  (2007-2009),  OBT  was  once  again
converted.  The  CG  rules  were  semi-
automatically transformed from CG1 to the new
CG3 formalism (Bick  & Didriksen  2015),  and
Uni  Research  Computing  made  a  stand-alone
version  of  the  preprocessor  that  could  work
together with the CG3 compiler2.

Finally,  a  statistical  module  was  trained  to
remove  the  last  ambiguity  left  by  OBT.  This
module also performed lemma disambiguation, a
task  the  original  OBT  did  not  do.  The  new
system was called OBT+stat and is described in
more detail in Johannessen et. al. (2012). 

In  this  article  we  will  focus  on  the
morphological  CG part  of  OBT+stat  since  the
optimization is performed on the morphological
rules without regard to the statistical module. 

2.2 The architecture behind OBT

The morphological part of OBT consists of two
modules:

a)  Preprocessor:  The  preprocessor  is  a
combined tokenizer, morphological analyzer and
guesser  that  segments  the  input  text  into
sentences and tokenizes their content. There are
special  rules  for  names  and  various  kinds  of
abbreviations. Each token is assigned all possible
tags  and  lemmas  from  the  electronic  lexicon
Norsk  ordbank (Norwegian  Word  Bank).  The
Bokmål part of this lexicon contains more than
150 000  lemmas  together  with  inflected  forms

2 CG3 (or vislcg-3) is open source and available at 
SDU: http://visl.sdu.dk/constraint_grammar.html

(Hagen & Nøklestad 2010). The guesser includes
a  compound  word  analyzer  and  manages
productively  formed  compounds  as  well  as
unknown words (Johannessen & Hauglin 1998).

b)  Morphological  disambiguator:  The
morphological  disambiguator  is  based  on  CG3
rules that select or remove tags attached to the
input tokens. There are 2279 linguistic rules in
this module. 693 of them are rules for specific
word forms.   1371 are SELECT rules and 908
are REMOVE rules. 

The tag set is rather large, consisting of 358
morphological  tags.  The  part  of  speech
classifications, which include information about
morphosyntactic  features,  are  performed  in
accordance  with  Norsk  referansegrammatikk
(Faarlund et. al. 1997).

2.3 OBT performance

The  original  tagger  was  tested  on  an  unseen
evaluation corpus of 30,000 words taken from a
wide variety of material such as literary fiction,
magazines  and  newspapers.  The  recall  and
precision  were  99.0  and  95.4  percent
respectively, with a combined F-measure of 97.2
(Hagen & Johannessen 2003:90)

After  the  conversion  to  CG3  format,  recall
remained  at  99.0  percent  while  precision
increased  to  96.0  percent,  resulting  in  an  F-
measure of 97.5 (see the OBT homepage). 

3 Grammar optimization

For our  experiments  we used a  155.000 word3

corpus  with  hand-corrected  OBT tags  covering
POS  and  inflection.  The  original  corpus  was
divided into a (larger) development section and a
(smaller)  testing section.  We used this  division
for the parameter-tuning experiments, but for the
final results, in order to avoid a bias from human
rule  development,  we  fused  these  sections  and
created sections of equal size to be used in 5-fold
cross  evaluation.  We  also   adapted  the  OBT
grammar itself, because its rules have operators,
targets and contexts on separate lines, sometimes
with  interspersed  comments.  Although  CG3-
compatible, this format had to be changed into 1-
line-per-rule  in  order  to  make  rule  movements
and rule ordering possible.

3.1 Optimization technique and parameters

The optimization engine works by computing for

3 when counting all tokens, including punctuation
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each rule  in  the  grammar a  performance value
based  upon  how often  it  selects  or  removes  a
correct reading in the training corpus. Rules are
then reordered, removed or modified in reaction
to this value, and the effect measured on the test
corpus.  After this, the process is repeated with
the new grammar, and so on. As in Bick (2013,
2014), we investigated the following actions and
parameters:

(1) Sorting rules according to performance

(2) Promoting  good  rules  the  next-higher
section (good = error percentage lower than T/2)

(3) "Demoting"  bad  rule  to  the  next-lower
section (bad = error percentage higher than T)

(4) "Killing" very bad rules (error percentage is
over 0.5, doing more bad than good)

(5) Add  relaxed  versions  of  good  rules,  by
removing  C-  (unambiguity-)  conditions  and,
conversely,  changing  BARRIERs  into
CBARRIERS

(6) Replace bad rules with stricter versions, by
adding  C  conditions  and  turning  CBARRIER
into BARRIER.

(7) "Wordform stripping" - i.e. adding a relaxed
version of a wordform-conditioned rule without
this  condition,  thus  allowing it  to  work  on  all
tokens.

Performance  values  (recall,  precision  and  F-
score) for the modified grammars, in the tables
below, are for POS (i.e. without inflection), and
because  OBT  has  more  than  one  tag  for  a
comma, evaluation also includes punctuation.

3.2 What did not work, or in limited ways 

The  maybe  most  obvious  step,  sorting  rules
section-internally after each iteration, decreased
performance.  Sorting  was  only  helpful  in  dry-
run4 mode, for an initial ordering of the original
grammar and after the 1. iteration's addition of
modified rules5, and only in the combination of
complete sorting plus resectioning. regardless if
sorting was performed for sections individually

4 In a dry-run call, CG3 applies all rules once, but
without making changes to the input. Rule tracing
in a dry-run will therefore is a way to measure
how  rules  would  perform  in  isolation  without
actually  running  thousands  of  1-rule
minigrammars.

or  for  the  whole  grammar  together.  The
importance  of  re-sectioning  indicates  that  the
existence  and  placement  of  sections  is  an
important  parameter,  that  the  concept  of  a
good/bad rule is section-dependent6, and that it is
an important optimization parameter. All runs in
the table below were with standard PDK and 1-
time  dry-run  sorting  and  examine  different
combinations of iterative sorting. As can be seen,
section-internal sorting worked worst (F=96.26),
having a kill-section helped more (F=96.49) than
factoring  in  human  sectioning  as  a  weight
(F=96.26).  But  in all  instances,  iterated sorting
was  worse  than  1-time  sorting  (F=96.56).
Increasing the number of sections to 11 led to a
certain recovery of F-scores in hight  iterations,
but could not beat the first run in our experiment
window (50 runs).

PDK ite-
ration

Recall
(%)

Precision
(%)

F-
score

original grammar 98.08 94.27 96.13

no iterated sorting 3 98.72 94.50 96.56

sorting 5 sections 1 98.23 94.66 96.41

sorting 11 sections
(--> F-score recovery)

1 98.22 94.66 96.41

sorting11, +kill 1 98.33 94.72 96.49

sorting2, +kill 1 98.32 94.72 96.49

sorting11, -kill, human 
section-weighting

11 98.25 94.36 96.26

sorting5 sect.-internal 14 96.99 94.35 95.65

Effects of iterated sorting

Word form stripping was reported in Bick (2014)
to have had a positive effect in cross language
grammar  porting,  but  we  could  not  reproduce
this  effect  in  the  monolingual  setup  with  the
same  parameters  (PDK,  1  dry-sorting).  Cross-
language,  the  method  can  possibly  offset  the
problem that wordforms from one language don't
exist in the other, creating versions of the rules

5 The rule  change that  profited  from sorting  was
stripping of wordform target conditions, because
this  change  creates  very  unrestrained  and
dangerous rules.

6 10% errors,  for  instance,  is  good in a  heuristic
section,  where  most  of  the  disambiguation  has
been done already, but may be bad if the rule is
run  too  early,  where  the  error  rate  may be  the
same  in  relative  terms,  but  worse  in  absolute
terms, because it will apply to more cases.
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that work at least in terms of POS etc., while this
effect  is  not  relevant  monolingually,  were
wordform  rules  just  get  more  risky  by  losing
their pivotal wordform condition. However, with
a  subsequent  second  dry-run  sorting  and  very
high,  section-growing  iteration  counts,  the
optimizer seems to be able to identify the useful
subset  of  wordform-stripped  rules  and  find
acceptable  section  placements  for  them (cf  ch.
4).

In  terms  of  numerical  parameters  we
experimented  with the error threshold, but failed
to find a better value the 0.25 suggested by (Bick
2013)  -  both  lower  and  higher  thresholds
decreased  performance,  independently  of  other
parameter settings7.

3.3 What did work

While  the  negative  effect  of  sorting  confirms
results  for  Danish,  there  was  a  surprising
difference  regarding  promoting,  demoting  and
killing. For DanGram, demoting and killing rules
had  a  beneficial  effect,  while  promoting  rules
had  almost  no  effect.  For  OBT,  however,  rule
promotion  (P)  was  important,  and  for  a
combination of only demoting (D) pseudokilling
(k3) extra iterations did not yield a better effect
than  the  initial  one-time  sectioned  rule-sorting
(S0).

R dR P dP F dF

unaltered grammar 98.08 94.27 96.13

S0D(s)k3, -w 
(i=1/508)

98.22 0.14 94.66 0.39 94.41 0.28

S0PDsk3, -w 
(i=45/50)

98.71 0.63 94.85 0.58 96.75 0.62

Effect of rule promoting

This  can  possibly  be  explained  by  different
grammar  properties:  OBT  is  recall-optimized
(there  are  about  4  times  as  many  spurious
readings than errors9),  while DanGram resolves

7 However,  we  did  not  have  computational
resources to experiment with exponent changes or
the  *0.5  difference  between good rule  and  bad
rule thresholds.

8 F-Score  stabilized  below  the  initial  sorting
optimization,  independently  of  whether  new
sections  were  added or  not,  for  the  latter  from
iteration  11,  at  96.224,  for  the  former  from
iteration 5, at 96.222.

almost all ambiguity (i.e. one reading per token),
so  that  precision  will  roughly  equal  recall.
Therefore  OBT  profits  from  promoting  good
rules  (so  they  can  do  more  disambiguation
work), while DanGram, on the recall side, profits
from demoting and killing rules (preventing them
from  removing  correct  reading).  Another
difference between the two grammar is that OBT
has a higher proportion of SELECT rules and a
lower proportion of C contexts and BARRIERs.
Because C and BARRIER contexts are harder to
instantiate10 (needing  more  supporting  context
disambiguation  first),  and  because  SELECT
resolves  ambiguity  in  one  go  that  REMOVE
rules would have needed several steps for, it can
be  said  that  DanGram's  rules  work  more
incrementally and indirectly, while OBT is more
direct  in  its  disambiguation.  This  harmonizes
with the finding that promoting helped OBT, but
not  DanGram,  because promoting  makes  sense
for rules that are formulated as "absolute truths"
(SELECT rules), but doesn't help for rules whose
C and BARRIER contexts force them to wait for
other rules to work first anyway.

DanGram OBT

morph. rules 5120 2215

REMOVE 2837 (55.4%) 898 (40.5%)

SELECT 2178 (42.5%) 1312 (59.2%)

OTHER 105 (2.1%) 5 (0.2%)

wordform rules 1808 (35.3%) 777 (35.1%)

contexts 17539 
(3.48/rule)

11525 
(5.55/rule)

C conditions 4549 (25.9%) 1303 (11.3%)

NOT 3239 (18.5%) 5007(43.4%)

NEGATE 477 (2.7%) 5 (0.0%)

LINK 4192 (23.9%) 2705 (23.5%)

BARRIERS 3554 (20.3%) 927 (8.0%)

CBARRIERS 276 (1.6%) 44 (0.4%)

global contexts 4597 (26.2%) 3326 (28.9%)

Grammar properties DanGram - OBT

9 This  1:4 ratio  holds  for  both for  our  own tests
(R=98, P=92) and  Hagen & Johannessen's (2003)
evaluation (R=99, P=96)

10 The  effect  may  be  somewhat  compensated  for,
however, by the higher percentage of NOT rules
in OBT, which also makes rules more "cautious".
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Killing rules does have a slight initial  effect in
OBT,  but  over  several  iterations,  the  effect  is
negligible.  We  therefore  introduced  a
compromise  parameter  into  the  optimizer,
defining "killing" as moving a rule 1011 sections
down, rather than removing it completely it from
the grammar. This did not have an adverse effect,
and while most  of  these rules never moved up
again in later iterations, a few of them can do a
little  late  heuristic  work  in  low  sections.  The
method also preserves the rules in question for
use  with  other  text  types,  reducing  the  risk  of
over-fitting  a  very  lean  grammar  to  a  specific
training  corpus.  Metaphorically  speaking,  we
preserve  a  varied  "gene  pool"  of  rules  as  a
reserve for a new data environment. In the same
vein we decided to preserve unused rules (rather
than  going  for  an  efficiency  gain  in  a  leaner
grammar)12.

We  also  noted  a  positive  effect,  especially  on
precision, from adding relaxed versions of good
rules and a smaller positive effect from making
bad rules stricter.

3.4 Sectionizing

Sectionizing  the  grammar  is  not  only  a  key
parameter  with  any  sorting  configuration,  but
also  in  general.  The  standard  optimizer  from
(Bick  2013)  adds  one  new  first  section  for
moving up rules from the original first  section,
and  had  a  positive  effect  from  this.  But  we
wanted to test the hypothesis that more sections
will lead to a more fine-grained quality ordering
of rules and exploit the fact that the CG compiler
will try rules  twice  (or even three times) within
the same section, and rerun higher-section rules
before  it  starts  on  the  next  lower  (=  more
heuristic)  section.  So  we  added  new top  and
bottom sections  at  each  iteration,  allowing  the
grammar to differentiate more when promoting
and demoting existing and changed rules (PDN).

R dR P dP F dF

98.08 94.27 96.13

11 We also tried a lower number, 3, which did not 
work as well.

12 Rules  may  be  unused  only  because  they  are
placed in a certain section, so they can also come
back into play in later iterations during training,
when other - higher - rules, that did their work for
them,  are  demoted  to  a  section  below  a  given
inactive rule.

S0PDk3, -w (i=1) 98.22 0.14 94.66 0.39 94.41 0.28

S0PDNk3, -w 
(i=45/50)

98.71 0.63 94.85 0.58 96.75 0.62

Effect of sectionizing (S0=1 dry sorting,
k3=killing by moving 3 sections down)

Continually adding extra sections to the grammar
had  a  marked  dampening  effect  on  the
performance  oscillation  of  the  iteration  curve.
Also,  performance  kept  increasing,  with  late
stabilization, and a maximum at iteration 45 in
the  example,  whereas  most  runs  with  a  stable
section  number  had  their  F-Score  maximum
already  in  the  first  iteration,  and  stabilized
somewhere  between  the  unoptimized
performance and this first maximum. In theory,
the section-adding technique can end up section-
separating individual  rules,  making the process
equivalent  to  precise  one-by-one  rule  ordering,
which  conceptually  beats  the  group  ordering
achieved by fixed-section optimization. 

The obvious price for adding new sections was
slower execution - with a worst case ceiling at
quadratic growth in time consumption (because
the  compiler  reruns  lower  sections  before
embarking on a new one). In practice, however,
the  distribution  of  rules  across  sections  was
lumpy.  For  instance,  when  adding  sections  for
top/bottom-moved rules but not removing empty
sections,  the  grammar  from iteration 51 in  the
above test had 20 used and 32 empty sections,
grammar  100  had  15  used  and  62  empty
sections13.

It  should  be  noted  that  once  a  grammar  is
optimized, execution time can be improved at a
fairly  small  price  by  reducing  the  number  of
sections.  Thus,  F-score  decreased  only
marginally  when  we  resectioned  an  optimized
50-section  grammar  to  6  equal  sections.
However, the effect on recall and precision was
unequal  -  the  former  fell  by  0.5  percentage
points,  the latter rose by 0.4 percentage points.
Both  effects  can  be  explained  by  strong  but
dangerous rules acting too early. Still, in average
F-score  terms,  optimization  with  a  very  fine-
grained  section  skeleton  will  more  or  less
amount to individual rule ordering and therefore

13 In  a  final,  working  grammar,  empty  sections
should  of  course  be  removed,  but  during
optimization  empty  in-between  sections  allow
more fine-grained rule differentiation and seemed
to have a slight positive effect
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tolerate  de-sectioning.  In  our  experiment,  even
removing  all   sections  borders  still  did  not
seriously  harm  F-Score.  Thus,  sections  are
important for the optimization process, but in an
optimized grammar they are less important than
in the human original.

4 Final results

To  achieve  as  reliable  results  as  possible,  we
used  a  5-fold  cross  evaluation  for  the  final
evaluation.  For the best parameter setting (dry
sorting,  promoting  and  demoting  with  new
sections,  pseudokilling),  the  initial  F-score
optimization gain  (1. iteration) varied from 0.27
to  0.36  percentage  points  between  the  5
combinations, with an absolute F-score spread of
95.58  to  96.60.  As  might  be  expected,  the
weakest sections (3 and 4) profited the most from
optimization.

S0PDNk3, -w R dR P dP F dF

1: (i=1/6) 98.63 0.16 94.71 0.43 96.60 0.30

2: (i=1/6) 98.42 0.20 94.95 0.35 95.65 0.28

3: (i=1/6) 97.67 0.22 93.58 0.48 95.58 0.36

4: (i=1/6) 97.38 0.26 93.9 0.44 95.60 0.36

5: (i=1/6) 98.24 0.16 94.7 0.38 96.41 0.27

average (i=1/6) 98.07 0.20 94.35 0.42 96.17 0.31

Table: Performance spread across the corpus

(S0=dry  run sorting only  (with  resectioning=5 and
10-killing),  PDs=Promoting  &  Demoting  with  new
sections per iteration, k3=3-section demoting instead
of killing, -w=no wordform stripping)

With new promoting/demoting sections for every
round, performance maxima tend to occur late in
the iteration cycle, so to investigate the ultimate
improvement potential, we used the section with
the weakest dry run (3) and let iteration run for
100  rounds.  Because  each  such  run  took  over
half a day on our hardware, we were only able to
investigate few parameter settings at the time of
writing. The best result, an F-Score improvement
(dF)  of  1.31,  was  achieved  with  reintroducing
ordinary killing at iteration 15, and a maximum
in round 86. When introducing  a second "dry"
sorting  in  iteration  2,  i.e.  after  the  addition  of
relaxed  and  stricted  rules,  and  ordinary  killing
from iteration 4, much shorter training runs were
needed (with an asymptotic maximum already in
round  16),  albeit  at  a  slightly  lower  level
(dF=1.09).  With  this  setting,  even  word  form-

stripping could be tolerated, with a maximal dF
of 0.51 in round 63. Here, too, the growth curve
was  asymptotic,  but  it  still  oscillated  until  the
end, so later maxima can't be entirely ruled out -
and  would  make  sense,  given  the  very  "un-
cautious"  character  of  wordform-stripped rules.
It  is  probably  these  "un-cautious"  rules  that
explain  why  wordform-stripped  rules  benefited
precision  twice  as  much  as  recall,  while  high
iterations otherwise had a strong recall bias. 

Performance oscillations for the training corpus
correlated with performance on the test set, but
test  corpus  results  for  grammars  with  training
corpus maxima14 could deviate up to 0.1% from
the  actual  test  corpus  peak,  which  is  a  rough
measure  for  the  expected  "performance
impredictability"  when  using  ML-optimized
grammars on unknown data.

test chunk 315 R dR P dP F dF

i=0 97.46 93.10 95.23

S0PDNk3K15, -w
(i-max=86/100)

99.09 1.63 94.11 1.01 96.54 1.31

training i=86 99.26 84.99 91.57

S2PDNk3K4, -w
(imax = 16 const.)

98.86 1.40 93.90 0.80 96.32 1.09

training i=16 99.07 85.41 91.73

S2PDNk3K4, -w
(i-max=63/100)

97.80 0.34 93.76 0.66 95.74 0.51

training i=63 98.04 89.18 93.40

Best case scenario - "Unlimited" iterations 

5 Conclusion

We have demonstrated that ML-optimization can
be  successfully  performed  for  a  Norwegian
constraint  grammar,  and  explored  a  new
sectioning strategy and the respective influences

14 F-scores for training runs appear to be lower than 
for the test corpus, but only because the optimizer
in the training runs evaluates against full tag 
lines, i.e. with inflection and secondary tags, not 
just POS.

15 We  ran  the  second  parameter  setting  for  the
original  training/test-split  too,  with  the  same
asymptotic  result.  F-Sore  topped at  96.67,  0.53
percentage  point  above  the  unaltered  grammar
(F=96.14),  but  the  lower  increase  has  to  be
interpreted on the basis of a higher base line.
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of  rule  sorting  and  rule  movements.  For  most
parameter  constellations,  repetition  of
optimization  runs  did  not  lead  to  a  better
performance  than  a  single  pass,  unless  each
iteration  is  allowed  to  add  new  sections.  The
first-pass  average  improvement  in  5-fold  cross
evaluation was 0.31 percentage points (F-Score
96.17), similar to Danish results reported in Bick
(2013),  but  with  added  sectionizing  and  long
iterations,   improvements  of  over  1 percentage
point  were  seen,  corresponding  to  a  30%
improvement  in  relative  terms.  The  immediate
effect  was  best  for  precision,  but  with  high
iterations, recall was affected most, with a 60%
improvement in relative terms.

Future work would certainly profit  from access
to  a  large  computer  cluster,  to  investigate  the
millions of possible combinations of incremental
parameter changes. Also, it would be interesting
to get the human linguist back into the loop, to
see  if  some  of  the  rules  slated  for  killing  or
demotion  by  the  optimizer  can  be  "saved"  by
additional context conditions instead, and if the
best  selected  generalized  variants  of  wordform
rules can be used for further development.  
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