
Constraint Grammar as a SAT problem

Inari Listenmaa Koen Claessen
Chalmers University of Technology, Gothenburg, Sweden

{inari,koen}@chalmers.se

Abstract

We represent Constraint Grammar (CG)
as a Boolean satisfiability (SAT) problem.
Encoding CG in logic brings some new
features to the grammars. The rules are in-
terpreted in a more declarative way, which
makes it possible to abstract away from
details such as cautious context and order-
ing. A rule is allowed to affect its con-
text words, which makes the number of
the rules in a grammar potentially smaller.
Ordering can be preserved or discarded;
in the latter case, we solve eventual rule
conflicts by finding a solution that discards
the least number of rule applications. We
test our implementation by parsing texts in
the order of 10,000s–100,000s words, us-
ing grammars with hundreds of rules.

1 Introduction and previous research

Constraint Grammar (CG) (Karlsson et al.1995) is
a relatively young formalism, born out of prac-
tical need for a robust and language-independent
method for part-of-speech tagging. In this work,
we present CG as a Boolean satisfiability (SAT)
problem, and describe an implementation using
a SAT solver. This is attractive for several rea-
sons: formal logic is well-studied, and serves as
an abstract language to reason about the properties
of CG. Constraint rules encoded in logic capture
richer dependencies between the tags than stan-
dard CG.

Applying logic to reductionist grammars has
been explored earlier by (Lager1998; Lager and
Nivre2001), but it was never adopted for use.
Since those works, SAT solving techniques have
improved significantly (Marques-Silva2010), and
they are used in domains such as microprocessor
design and computational biology—these prob-
lems easily match or exceed CG in complexity.

Thanks to these advances, we were able to revisit
the idea and develop it further.

Our work is primarily inspired by (Lager1998),
which presents constraint rules as a disjunctive
logic program, and (Lager and Nivre2001), which
reconstructs four different formalisms in first-
order logic. Other works combining logic to
CG include (Eineborg and Lindberg1998) and
(Sfrent2014), both using Inductive Logic Pro-
gramming to learn CG rules from a tagged corpus.

2 CG as a SAT problem

Let us demonstrate our approach with the follow-
ing example in Spanish.

"<la>"
"el" det def f sg
"lo" prn p3 f sg

"<casa>"
"casa" n f sg
"casar" v pri p3 sg
"casar" v imp p2 sg

The ambiguous passage can be either a noun
phrase, la<det> casa<n> ‘the house’ or a verb
phrase la<prn> casa<v><pri><p3> ‘(he/she)
marries her’. We add the following rules:

REMOVE prn IF (1 n) ;
REMOVE det IF (1 v) ;

Standard CG will apply one of the rules to the
word la; either the one that comes first, or by some
other heuristic. The other rule will not fire, be-
cause it would remove the last reading. If we use
the cautious mode (1C n or 1C v), which re-
quires the word in the context to be fully disam-
biguated, neither of the rules will be applied. In
any case, all readings of casa are left untouched
by these rules.

The SAT solver performs a search, and starts
building possible models that satisfy both con-
straints. In addition to the given constraints, we

Proceedings of the Workshop on “Constraint Grammar - methods, tools and applications” at NODALIDA 2015, May 11-13, Vilnius, Lithuania

23

have default rules to emulate the CG principles:
an analysis is true if no rule affects it, and at least
one analysis for each word is true—the notion of
“last” is not applicable.

With these constraints, we get two solutions.
The interaction of the rules regarding la disam-
biguates the part of speech of casa for free, and
the order of the rules does not matter.

1) "<la>"
"el" det def f sg

"<casa>"
"casa" n f sg

2) "<la>"
"lo" prn p3 f sg

"<casa>"
"casar" v pri p3 sg
"casar" v imp p2 sg

The most important differences between the tradi-
tional and the SAT-based approach are described
in the following sections.

2.1 Rules disambiguate more

Considering our example phrase and rules, the
standard CG implementation can only remove
readings from the target word (prn or det). The
SAT-based implementation interprets the rules as
“determiner and verb together are illegal”, and is
free to take action that concerns also the word in
the condition (n or v).

This behaviour is explained by simple prop-
erties of logical formulae. When the rules are
applied to the text, they are translated into im-
plications: REMOVE prn IF (1 n) becomes
casa<n> ⇒ ¬la<prn>, which reads “if the n
reading for casa is true, then discard the prn read-
ing for la”. Any implication a ⇒ b can be rep-
resented as a disjunction ¬a ∨ b; intuitively, ei-
ther the antecedent is false and the consequent can
be anything, or the consequent is true and the an-
tecedent can be anything. Due to this property,
our rule translates into the disjunction ¬casa<n>
∨ ¬la<prn>, which is also equivalent to another
implication, la<prn> ⇒ ¬casa<n>. This means
that the rules are logically flipped: REMOVE prn
IF (1 n) translates into the same logical for-
mula as REMOVE n IF (-1 prn). A rule
with more conditions corresponds to many rules,
each condition taking its turn to be the target.

2.2 Cautious context is irrelevant
Traditional CG applies the rule set iteratively:
some rules fire during the first iteration, either be-
cause their conditions do not require cautious con-
text, or because some words are unambiguous to
start with. This makes some more words unam-
biguous, and new rules can fire during the second
iteration.

In SAT-CG, the notion of cautious context is ir-
relevant. Instead of removing readings immedi-
ately, each rule generates a number of implica-
tions, and the SAT solver tries to find a model that
will satisfy them.

Let us continue with the earlier example. We
can add a word to the input:

la casa grande ‘the big house’

and a rule that removes verb reading, if the word
is followed by an adjective:

REMOVE v IF (1 adj) ;

The new rule adds the implication
grande<adj> ⇒ ¬casa<v>, which will disam-
biguate casa to a noun1. As the status of casa
is resolved, the SAT solver can now discard the
model where casa is a verb and la is a pronoun
and we get a unique solution with det n adj.

Contrast this with the behaviour of the standard
CG. With the new rule, standard CG will also re-
move the verb reading from casa, but it is in no
way connected to the choice for la. It all depends
of the order of the two rules; if the det reading
of la is removed first, then we are stuck with that
choice. If we made the first rules cautious, that is,
keeping the determiner open until casa is disam-
biguated, then we get the same result as with the
SAT solver. Ideally, both ways of grammar writing
should yield similar results; traditional CG rules
are more imperative, and SAT-CG rules are more
declarative.

2.3 Rules can be unordered
As hinted by the previous property, the SAT solver
does not need a fixed order of the rules. Apply-
ing a rule to a sentence produces a number of
clauses, and those clauses are fed into the SAT
solver. However, in the unordered scheme, some

1Assuming that adj is the only reading for grande, it
must be true, because of the restriction that at least one anal-
ysis for each word is true. Then the implication has a true
antecedent (grande<adj>), thus its consequent (¬casa<v>)
will hold.

Proceedings of the Workshop on “Constraint Grammar - methods, tools and applications” at NODALIDA 2015, May 11-13, Vilnius, Lithuania

24

information is lost: the following rule sets would
be treated identically, whereas in the traditional
CG, only the first would be considered as a bad
order.

1) SELECT v ;
REMOVE v IF (-1 det) ;

2) REMOVE v IF (-1 det) ;
SELECT v ;

Without order, both of these rule sets will con-
flict, if applied to an input that has sequence det
v. The SAT solver is given clauses that tell to se-
lect a verb and remove a verb, and it cannot build
a model that satisfies all of those clauses. To solve
this problem, we create a variable for every in-
stance of rule application, and request a solution
where maximally many of these variables are true.
If there is no conflict, then the maximal solution is
one where all of these variables are true; that is, all
rules take action.

In case of a conflict, the SAT solver makes it
possible to discard only minimal amount of rule
applications. Continuing with the example, it is
not clear which instances would be discarded, but
if the rules were part of a larger rule set, and in
the context the REMOVE rule was the right one to
choose, it is likely that the interaction between the
desired rules would make a large set of clauses that
fit together, and the SELECT rule would not fit in,
hence it would be discarded.

This corresponds loosely to the common design
pattern in CGs, where there is a number of rules
with the same target, ordered such that more se-
cure rules come first, with a catch-all rule with no
condition as the last resort, to be applied if none of
the previous has fired. The order-based heuristic
in the traditional CG is replaced by a more holis-
tic behaviour: if the rules conflict, discard the one
that seems like an outlier.

We can also emulate order with SAT-CG. To
do that, we enter clauses produced by each rule
one by one, and assume the solver state reached
so far is correct. If a new clause introduces a
conflict with previous clauses, we discard it and
move on to the next rule. By testing against gold
standard, we see that this scheme works better
with ready-made CGs, which are written with
ordering in mind. It also runs slightly faster than
the unordered version.

These three features influence the way rules are
written. We predict that less rules are needed;
whether this holds in the order of thousands of
rules remains to be tested. On the one hand, get-
ting rid of ordering and cautious context could
ease the task of the grammar writer, since it re-
moves the burden of estimating the best sequence
of rules and whether to make them cautious. On
the other hand, lack of order can make the rules
less transparent, and might not scale up for larger
grammars.

3 Evaluation

For evaluation, we measure the performance
against the state-of-the-art CG parser VISL CG-
3. SAT-CG fares slightly worse for accuracy, and
significantly worse for execution time. The results
are presented in more detail in the following sec-
tions.

3.1 Performance against VISL CG-3

We took a manually tagged corpus2 containing ap-
proximately 22,000 words of Spanish news text,
and a small constraint grammar3, produced inde-
pendently of the authors. We kept only SELECT

and REMOVE rules, which left us 261 rules. With
this setup, we produced an ambiguous version of
the tagged corpus, and ran both SAT-CG and VISL
CG-3 on it. Treating the original corpus as the
gold standard, the disambiguation by VISL CG-3
achieves F-score of 82.6 %, ordered SAT-CG 81.5
% and unordered SAT-CG 79.2 %. We did not test
with other languages or text genres due to the lack
of available gold standard.

We also tested whether SAT-CG outperforms
traditional CG with a small rule set. With our best
performing and most concise grammar4 of only
19 rules, both SAT-CG and VISL CG-3 achieve
a F-score of around 85 %. This experiment is
very small and might be explained by overfitting
or mere chance, but it seems to indicate that rules
that work well with SAT-CG are also good for tra-
ditional CG.

2https://svn.code.sf.net/p/apertium/
svn/branches/apertium-swpost/
apertium-en-es/es-tagger-data/es.tagged

3https://svn.code.sf.net/p/apertium/
svn/languages/apertium-spa/apertium-spa.
spa.rlx

4https://github.com/inariksit/cgsat/
blob/master/data/spa_smallset.rlx

Proceedings of the Workshop on “Constraint Grammar - methods, tools and applications” at NODALIDA 2015, May 11-13, Vilnius, Lithuania

25

https://svn.code.sf.net/p/apertium/svn/branches/apertium-swpost/apertium-en-es/es-tagger-data/es.tagged
https://svn.code.sf.net/p/apertium/svn/branches/apertium-swpost/apertium-en-es/es-tagger-data/es.tagged
https://svn.code.sf.net/p/apertium/svn/branches/apertium-swpost/apertium-en-es/es-tagger-data/es.tagged
https://svn.code.sf.net/p/apertium/svn/languages/apertium-spa/apertium-spa.spa.rlx
https://svn.code.sf.net/p/apertium/svn/languages/apertium-spa/apertium-spa.spa.rlx
https://svn.code.sf.net/p/apertium/svn/languages/apertium-spa/apertium-spa.spa.rlx
https://github.com/inariksit/cgsat/blob/master/data/spa_smallset.rlx
https://github.com/inariksit/cgsat/blob/master/data/spa_smallset.rlx

rules SAT-CGu SAT-CGo VISL CG-3
19 39.7s 22.1s 4.2s
99 1m34.1s 1m14.9s 6.1s
261 2m54.1s 2m31.6s 10.7s

Table 1: Execution times for 384,155 words.

3.2 Execution time
The worst-case complexity of SAT is exponen-
tial, whereas the standard implementations of CG
are polynomial, but with advances in SAT solving
techniques, the performance in the average case
in practice is more feasible than in the previous
works done in 90s–00s. We used the open-source
SAT solver MiniSat (Eén and Sörensson2004).

We tested the performance by parsing Don Qui-
jote (384,155 words) with the same Spanish gram-
mars as in the previous experiment. Table 1 shows
execution times compared to VISL CG-3; SAT-
CGu is the unordered scheme and SAT-CGo is the
ordered. From the SAT solving side, maximisa-
tion is the most costly operation. Emulating order
is slightly faster, likely because the maximisation
problems are smaller. In any case, SAT does not
seem to be the bottleneck: with 261 rules, the max-
imisation function was called 147,253 times, and
with 19 rules, 132,255 times, but the differences
in the execution times are much larger, which sug-
gests that there are other reasons for the worse per-
formance. This is to be expected, as SAT-CG is
currently just a naive proof-of-concept implemen-
tation with no optimisations.

4 Applications and future work

Instead of trying to compete with the state of the
art, we plan to use SAT-CG for grammar analysis5.
There has been work on automatic tuning of hand-
written CGs (Bick2013), but to our knowledge no
tools to search for inconsistencies or suboptimal
design.

The sequential application of traditional CG
rules is good for performance and transparency.
When a rule takes action, the analyses are removed
from the sentence, and the next rules get the mod-
ified sentence as input. As a downside, there is no
way to know which part comes directly from the
raw input and which part from applying previous
rules.

A conflict in an ordered scheme can be defined
as a set of two or more rules, such that applying

5We thank Eckhard Bick for the idea.

the first makes the next rules impossible to apply,
regardless of the input. We can reuse the example
from Section 2.3:

SELECT v ;
REMOVE v IF (-1 det) ;

The first rule selects the verb reading every-
where and removes all other readings, leaving no
chance for the second rule to take action. If the
rules are introduced in a different order, there is
no conflict: the REMOVE rule would not remove
verb readings from all possible verb analyses, so
there is a possibility for the SELECT rule to fire.

Ordered SAT-CG can be used to detect these
conflicts without any modifications, as a side ef-
fect of its design. After applying each rule, it
stores the clauses produced by the rule and com-
mits to them. In case of a conflict, the program
detects the particular rule that violates the previ-
ous clauses, with the sentence where it is applied.
Thus we get feedback which rule fails, and on
which particular word(s).

Unordered SAT-CG with maximisation-based
conflict solving is not suitable for this task: the
whole definition of conflict depends on ordering,
and the unordered scheme deliberately loses this
information. On a more speculative note, an un-
ordered formalism such as Finite-State Intersec-
tion Grammar (Koskenniemi1990) might benefit
from the maximisation-based technique in conflict
handling.

Finally, we intend to test for conflicts without
using a corpus. Let us illustrate the idea with the
same two rules, SELECT v and REMOVE v IF
(-1 det) in both orders. Assume we have the
tag set {det, n, v}, and we want to find if
there exists an input such that both rules, applied
in the given order, remove something from the in-
put. There are no inputs that satisfy the require-
ment with the first order, but several that work with
the second, such as the following:

"<w1>"
det
v

"<w2>"
n
v

Thus we can say that the first rule order is conflict-
ing, but the second one is not. Implementing and
testing this on a larger scale is left for future work.

Proceedings of the Workshop on “Constraint Grammar - methods, tools and applications” at NODALIDA 2015, May 11-13, Vilnius, Lithuania

26

5 Conclusions

SAT-solvers are nowadays powerful enough to be
used for dealing with Constraint Grammar. A
logic-based approach to CG has possible advan-
tages over more traditional approaches; a SAT
solver may disambiguate more words, and may
do so more precisely, capturing more dependen-
cies between tags. We experimented with both
ordered and unordered rules, and found the or-
dered scheme to work better with previously writ-
ten grammars. For future direction, we intend to
concentrate on grammar analysis, especially find-
ing conflicts in constraint grammars.

Acknowledgments

We thank Eckhard Bick, Tino Didriksen, Francis
Tyers and Anssi Yli-Jyrä for comments and sug-
gestions, as well as the anonymous reviewers and
everyone who participated in the discussion at the
CG workshop.

References

Eckhard Bick. 2013. ML-Tuned Constraint Gram-
mars. In Proceedings of the 27th Pacific Asia
Conference on Language, Information and
Computation.

Niklas Eén and Niklas Sörensson. 2004. An Ex-
tensible SAT-solver. In Enrico Giunchiglia
and Armando Tacchella, editors, Theory and
Applications of Satisfiability Testing, volume
2919 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg.

Martin Eineborg and Nikolaj Lindberg. 1998.
Induction of constraint grammar-rules using
progol. In David Page, editor, Inductive
Logic Programming, volume 1446 of Lecture
Notes in Computer Science. Springer Berlin
Heidelberg.

Fred Karlsson, Atro Voutilainen, Juha Heikkilä,
and Arto Anttila. 1995. Constraint Gram-
mar: a language-independent system for
parsing unrestricted text, volume 4. Walter
de Gruyter.

Kimmo Koskenniemi. 1990. Finite-state parsing
and disambiguation. In Proceedings of the
13th Conference on Computational Linguis-
tics - Volume 2, COLING ’90. Association for
Computational Linguistics.

Torbjörn Lager and Joakim Nivre. 2001. Part of
speech tagging from a logical point of view.
In Logical Aspects of Computational Lin-
guistics, 4th International Conference, LACL
2001, Le Croisic, France, June 27-29, 2001,
Proceedings.

Torbjörn Lager. 1998. Logic for part of speech
tagging and shallow parsing. In Proceedings
of the 11th Nordic Conference on Computa-
tional Linguistics.

João Marques-Silva. 2010. Boolean Satisfiability
Solving: Past, Present & Future. Presenta-
tion given at the Microsoft Research Interna-
tional Workshop on Tractability, Cambridge,
UK, July 5–6.

Andrei Sfrent. 2014. Machine Learning of Rules
for Part of Speech Tagging. Master’s thesis,
Imperial College London, United Kingdom.

Proceedings of the Workshop on “Constraint Grammar - methods, tools and applications” at NODALIDA 2015, May 11-13, Vilnius, Lithuania

27

	Introduction and previous research
	CG as a SAT problem
	Rules disambiguate more
	Cautious context is irrelevant
	Rules can be unordered

	Evaluation
	Performance against VISL CG-3
	Execution time

	Applications and future work
	Conclusions
	References

