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Abstract 
This paper describes the development and requirement 
specification of an open-source framework for multi-
phase multi-component thermo properties in Modelica. 
The goal is to have a standardized interface to 
multi-component multi-phase fluids with access to 
external property packages in Modelica. This will 
make it easier to develop models for e.g. the process 
industry. The library uses a model based interface and 
implications of such a design are analyzed and 
compared with the traditional function based interface.  

The work has been carried out in collaboration with 
Modelon AB and VORtech within the umbrella of 
Methods and tools as part of the CleanSky SGO 
project. 

Keywords:     CAPE-OPEN, FluidProp, RefProp,  fluid 

properties, flash calculations 

1 Introduction 

Properties of working fluids define the achievable 
baseline accuracy for fluid system simulations. The 
availability of properties for steam and flue gases 
initiated the use of Modelica in the power industry, 
where it today is a well-established technology with 
several commercial and open source libraries available 
(Modelica Libraries, 2015). High quality fluid 
properties are laborious to produce and their non-
availability is therefore a typical blocking argument for 
the use of a certain tool or technology.  

Published work of modeling chemical process 
systems in Modelica exists, see (Tummescheit et al, 
2002; Dietl et al 2011; Baharev et al 2012). But until 
today, the use of Modelica has not been widely spread 
to this area even though it would be well-suited to 
describe these processes. Modelica is equation based, 
similar to gPROMS, which is well established in the 
process industry. However, it is lacking a standardized 
interface for multi-component multi-phase fluid 
properties. For an overview of equation oriented 
methods for chemical and related process flowsheets, 
see (Morton, 2002).  

In this project a Modelica library for multi-phase 
multi-component fluids has been developed together 
with an external C/C++ Modelica property interface 
with back ends to CAPE-OPEN, RefProp (Lemmon et 

al, 2013) and FluidProp (Fluid property library, 2015). 
The framework also contains a Modelica library for 
distillation processes for verification and testing of the 
media interface design.  
 

2 Background 

Modelica.Media is a freely available Modelica package 
contained in the Modelica standard library. It consists 
of property models from ideal gases up to high 
accuracy models of WaterIF97 and R134a. The current 
version 3.2.1 is restricted to pure two-phase or single 
phase mixtures. The goal is to extend the capabilities 
of Modelica.Media with support of multi-component 
multi-phase mixtures and to find an interface structure 
that is user-friendly both from an implementer and end-
user perspective. 

In order to collect input for the interface design, a 
meeting in Delft (Oct 2013) was held that gathered 17 
people from academia, industry and members of the 
Modelica design group. During the meeting it became 
clear that technical challenges to implement such a 
property interface efficiently using the current structure 
of Modelica.Media are high. A large part of the project 
has therefore been focused on finding an interface 
structure both within and outside the limits of the 
Modelica specification 3.3.  
 

2.1 Application overview 

The framework developed in this project must cover a 
wide range of processes. The following types of 
processes have been identified where multi-phase 
multi-component fluids are used: 
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2.1.1 Thermodynamic cycle processes 

Typical applications are refrigeration, heat pumps 
(vapor compression cycles) and Organic Rankine 
cycles using a blend of different working fluids, which 
may be available in RefProp. Models are usually 
characterized by a homogenous treatment of properties 
and flows, usually modelled with mass based units as is 
common in the energy and power industry. System 
may operate in overcritical conditions.  

These applications fit well into the Modelica.Media 
structure as it was created with these processes in 
mind. Flexible models are required due to the number 
of present phases in a model can change during 
simulation.  
  

2.1.2 Thermal separation processes (with and 

without chemical reactions) 

Typical applications are rectification and absorption 
processes where the numbers of phases usually are 
limited to vapor and liquid and models use a mole 
basis. It is common to include chemical reactions and 
fluids are often taken from databases via CAPE-OPEN.

 
Figure 1. Example of thermal separation processes. Column 

tray (left) and column packing (right). 
 

2.1.3 Transport of multiphase flows 

Typical applications are compositional pipe network 
simulations, which are computationally expensive.  In 
this case multiple phases may coexist and a 
homogenous assumption is not valid. 

2.2 Context 

Following types of usage are possible: 
• Dynamic simulation 
• Steady-state simulation 
• Optimization 

From an interface perspective a difference is in the 
requirement of differentiation of properties. Solving an 
optimal control problem also involves the Hessian 
(Boyd et al) Even if these can be calculated 
numerically the performance and robustness increase if 
analytical derivatives can be provided (Åkesson et al, 
2012) An interface should therefore support the usage 
of analytical derivatives if these can be provided.  
 

2.3 Phase equilibrium calculation 

A phase equilibrium calculation determines subject to 
specified constraint, e.g. fixed pressure and 
temperature, present phases and the composition and 
fraction of each present phase. It is an iterative 
calculation which often uses specialized algorithms; 
see (Parekh et al, 1998; Gernert et al, 2014). 

Phase equilibrium calculations are time consuming 
and will dominate the total CPU usage, up to 95% 
according to (Trapp, 2014). Similar numbers have also 
been observed in this work.  
To achieve competitive performance: 
1. The number of phase equilibrium calculations 

should be minimized. This can be achieved by 
designing fluid and application library interfaces 
so that calculation result can be shared between 
components. This may require expanding the 
connector class with additional variables to avoid 
redundant calculations. 

2. For each phase equilibrium calculation, the 
number of iterations inside these algorithms needs 
to be minimized. This can be achieved by 
providing good iteration guess values.  

3 Modelica media interface 

There are several possibilities to define an interface 
due to Modelica support both models and functions.  

The first step in the design process was to analyze 
and list requirements. 
 

3.1.1 General media requirements 

1. User-friendliness and structure 
• The structure should be easy to understand and 

use. Implementation details such as external 
objects should be hidden from the user. 

• Interface that can be used by both a native 
Modelica and external C-code media 
implementation.   

• Calculation of parameters, preferable also 
structural parameters, from property functions 
that may have a dependency on external 
code/external object.  

2. Possibility to create a media structure using 
inheritance. To easily create new media from 
existing templates and interfaces. 

3. Performance 
• The interface should be designed with efficiency 

in mind. It should support differentiation of 
properties and caching through external 
objects. 

• Possibility to provide additional information 
about present phases that can be used to 
simplify or skip computational expensive phase 
equilibria calculations. 
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• Support to add initial guesses of start values. 
4. Derivative functions 
• It should be possible to specify derivative 

functions needed for: state variable 
transformations, index reduction and generation 
of analytic Jacobians.  

5. Additional 
• It should be possible to extend the interface with 

new functionality such as reaction properties. 
 

3.1.2 Multi-component multi-phase requirements 

There is a wide range of different properties that may 
be needed but here we consider the most basic usage. 
• Calculation of phase equilibrium. 
• Calculation of properties for a specified phase at 

phase equilibrium. 
• Support for common properties such as fugacity 

and activity coefficients. 
• Support of both molar and mass based properties. 

The chemical process industry usually works in 
mole while the energy industry works in mass 
based units. 

• No restriction of the number of supported phases. 

3.1.3 Additional requirement 

• Take advantage of unit declaration. The 
possibility to declare units is a powerful feature 
in Modelica that should be used.   

• Uniquely identify phases and compounds.  
 

3.2 Design restrictions 

When designing a property interface in Modelica 
following restrictions (Modelica Association, 
Specification, 2015) needs to be considered. 
1. Functions need to be pure, i.e. they are not 

allowed to have any side effect. This is a 
fundamental assumption in Modelica that makes it 
possible for a tool to apply symbolic 
transformation and rearrange calculations.  

2. Records are not suited to be used as function 
inputs. This is due to the fact that it is not allowed 
to specify a derivative function if the record 
contains a non-real variable. It is also not efficient 
to use a record with additional variables due to all 
variables needs to be considered for 
differentiation. A record is also not allowed to 
contain an external object.  

3. It is not possible to access a previous value of a 
continuous variable. There is no such operator in 
Modelica.  

3.2.1 Iterative algorithms  

A consequence of the restrictions is that it is inefficient 
to implement explicit iterative algorithms in native 
Modelica. This is due to that functions are not allowed 
to have internal memory between function calls and 
there is no operator to access a previous value of a 
continuous variable. The start value of a variable in an 
algorithm is therefore equal to its start attribute during 
simulation. This is a drawback for function based 
media property calculations that need to be solved by 
an iteration process. If instead a model based interface 
is used and the algorithm is replaced with an implicit 
equation formulation, the tools non-linear solver can 
use the last solution point as a start for the next 
iteration (Olsson et al, 2005). 
 

3.3 Model based interface structure 

Based on the requirements and restrictions it was 
decided that the interface structure should be model 
based (this does not hinder the implementation to be 
function based). 
Main advantages with a model based structure are: 
• Possible to implement a medium using a 

declarative approach as demonstrated in 
(Olsson et al, 2005). It makes it possible to 
quickly create a medium with good 
performance, see section 5.1  

• Possible to share interface between an external 
code based media and a native Modelica based 
media. 

• User friendly as implementation details can be 
hidden from the user and the possibility to 
work graphically and by that taking advantage 
of a tool support of e.g. unit conversion.  

• Possible with a minimalistic interface as it is not 
necessary to create new models for new input 
combinations. The model based interface may 
not specify the causality of the variables. 

• Avoid the need for a tool to support common-sub 
expression elimination as the result of an 
expensive calculation can be stored in a model. 

• Possible to use block and models in an 
implementation, e.g. the Modelica Standard 
Library tables. 

 
There are also disadvantages that should be considered: 
• A model can’t be instantiated inside a function 

which limits the scope where a media 
calculation can be executed. 

• It is user unfriendly to calculate parameters from 
a media. It requires setting a parameters fixed 
attribute to false and an additional equation in 
the initial equation section. 
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• Not possible to calculate a property on demand as 
a model needs to be instantiated. 

 

3.3.1 MultiPhaseMixture interface 

The current interface structure is shown in Figure 2, it 
consists of a few models and helper functions. 
 

 
Figure 2. Screenshot of the current interface structure 
of MultiPhaseMixture. Note that it is currently under 

development and is therefore subject to change.  

3.3.2 Example of usage 

An example of how to use the ThermoProperties model 
is shown in Listing 1. 
 

 
 

 
 
 
 
 

 
 
 
 
 

4 External interface 

Developing thermodynamic property models for multi-
phase multi-component fluids is fairly complex and 
requires specialist knowledge. There already exist tools 
like MultiFlash and FluidProp that have been 
developed in the process industry and in academia over 

a long time. It is therefore useful for the new Media 
library to be able to interface with external fluid 
property tools and databases. 
The overall structure of the external framework is 
illustrated in Figure 3.

 
Figure 3. Overview of external framework structure.  

 
 

4.1 Previous work in Modelica 

There exists previous published work with interfacing 
external properties in Modelica, see (Tummescheit, 
2002; Trapp 2014; Wellner 2014). There is also an 
open-source framework available, ExternalMedia 
(Casella, 2008), but it is limited to pure two-phase 
media.  
 

4.2 Using external code in Modelica 

Modelica has an external function interface to C which 
makes it possible to use external routines within a 
Modelica function. Following issues have been 
considered when building the new Modelica libraries 
around external code: 
• Differentiation 
• Error messages 
• Use of external objects 

 
An advantage of using native Modelica code over 
external code is that the Modelica compiler has access 
to structural information on the dependency between 
inputs and outputs. This makes it possible to 
automatically differentiate, create analytical Jacobians 
and explore sparsity patterns that will increase 
robustness and performance of a simulation.  

For external functions, derivative information needs 
to be specified by the user. In the general case it would 
require full knowledge about the implementation. For 
thermodynamic properties the effort on providing this 
information can be decreased by taking advantage of 
thermodynamic properties definitions. But it is 
important that there are test cases as wrongly 

model ExampleOfUsage 
  package Medium=MultiPhaseMixture.Air_PureModelica; 
  Medium.ThermoProperties thermoProperties( 
    inputs=MultiPhaseMixture.Interfaces.Inputs.pTY, 
    p=100000, 
    T=298.15, 
    Zm=Medium.reference_Y); 
 Density d; 

equation 
 d= thermoProperties.d; 
end ExampleOfUsage; 

 
Listing 1. Modelica code showing the usage of a 
property calculation using the model based interface. 
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calculated derivatives will lead to convergence failure 
which may be very hard to debug. 

Another important aspect is implementation of 
appropriate error messages, as otherwise the simulation 
may crash without leaving any information to the user. 
 

4.2.1 External object 

With the use of external objects there is a defined way 
to allocate and de-allocate resources. It is also possible 
to store internal information between function calls 
which may be used to cache iteration start values. The 
C-interface is therefore based on external objects.  

Disadvantages are restrictions on how they can be 
used in Modelica (Modelica Spec, 2015) and it is not 
clear how they work in combination with symbolic 
transformation such as inverse functions and sub-
expression elimination.  We have also encountered 
bugs related to the use of them, however it seems more 
stable with more recent versions of Modelica tools.  

 
 

4.3 Modelica external media interface 

MultiPhaseMixture.ExternalMixture is a template that 
implements the Modelica MultiPhaseMixture interface.  
It consists mainly of: 
• Functions that call the external C- code interface. 
• Wrapper functions for various property and input 

combinations. 
• Calculations of multi-phase properties and 

derivatives 
With the wrapper functions it is possible to specify 
derivative annotations and support differentiation of 
external properties. 
 

4.3.1 Derivatives 

Neither CAPE-OPEN nor RefProp supports total 
overall properties derivatives, which may be needed for 
dynamic simulation, especially for state variable 
transformation. It was therefore decided that these 
types of calculations should be implemented on the 
Modelica side and not in the C-interface. For a pure 
fluid, the calculations are straight-forward and there are 
publications available (Thorade et al, 2013). For 
mixtures they are more complicated (Li, 1955). The 
difficult part is when several phases coexist. In that 
case they are currently calculated numerically. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 

4.3.2 Mole vs mole fractions 

A recommendation was given to use mole numbers 
instead of mole fractions (Szczepanski, 2013). The sum 
of all mole fractions is equal to 1: ∑�� 

�  =   (1) 

Mole fractions are not independent and are therefore 
more difficult to differentiate. This is further explained  
by (Molerup et al,  2002) where they state “Derivatives 

with respect to mole fractions are best avoided, as they 

require a definition of the ‘dependent’ mole fraction 
and in addition lead to more complex expressions 

missing many important symmetry properties.”  
 

protected  
  Auxilary.Properties properties; 
  final parameter  ExternalMediaObject eo=     
ExternalMediaObject(setupInfo); 
equation  
  if (inputs == Inputs.pT) then 
      properties =Auxilary.calcProperties_pTX(p=p,T=T,X=Z,eo=eo); 
      d =Auxilary.Wrapper_pTX.density_pTX(p=p,T=T,X=Z, 
        state=properties); 

function density_derh_p 
  input Properties state; 
  input MExternalMediaObject eo "External object"; 
  output Real ddhp "Density derivative wrt h at constant pressure"; 
protected  
... 
algorithm  
  if (state.nbrOfPresentPhases == 1) then 
    pd:=state.dpdd_TN_1ph[integer(state.presentPhaseIndex[1])]; 
    … 
    ddhp:= -
state.d_overall*state.d_overall*pt/(state.d_overall*state.d_overall*pd*
cv + state.T_overall*pt*pt); 
  elseif (nC == 1 and nP== 2) then 
    … 
    dpT :=  (vap_s - liq_s)*liq_d*vap_d/(max(liq_d -vap_d,eps)); 
    ddhp:=-state.d_overall*state.d_overall/(dpT*state.T_overall); 
  else 
    // multiple phases - calculate ddhp numerically 
d_deltah:= Wrapper_phX.density_phX(p=state.p_overall, h=state.h_o
verall+deltah,X=X, 
state=calcProperties_phX(p=state.p_overall,h=state.h_overall+deltah,
X=X,eo=eo),eo=eo); 
    ddhp:=(d_deltah-state.d_overall)/deltah; 
  end if; 
 

Listing 2. Code snippet of a Modelica implementation of 
density derivative wrt to specific enthalpy at constant pressure. 

Listing 3 Code snippet of the MultiPhaseProperties model for 
the external  media template. 
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What is not described is how this can be applied to a 
thermodynamic framework for dynamic simulation 
which may contain intensive continuous state variables 
or connector variables.  

Implications of changing the input mole fraction 
vector to a molar substance vector in a function 
interface are: 
• A media model that is written in intensive form 

needs to add an extra conversion inside all 
functions. There may be cases where there are 
transformations back and forth. This affects the 
performance as it makes automatic 
differentiated code more complicated. This was 
seen in a simulation of the DistillationColumn 
model using the native Modelica media, where 
the total CPU time was increased with 7% 
when the input to the fugacity was changed 
from mole fraction to molar substance. Another 
disadvantage is that the code might get more 
verbose as it may require auxiliary variables 
with an appropriate unit when converting 
between fraction and substance.  

• Advantages are that it will possible to support 
and calculate property models written in 
extensive variables and have better support of 
partial derivatives from external properties 
tools. 

 
Currently the C-interface supports both mole fraction 
and molar substance by having an extra input that 
defines the unit of the fraction vector.  
 

4.3.3 External object 

The external object is a pointer to an instance of a 
Material class on the C++ side. It consists of: 
• A pointer to a property calculator, i.e. an instance 

of e.g. RefProp or CAPE-OPEN where one 
calculator instance is shared between external 
objects with the same calculator key. 

• An instance of a cache which may be used by a 
calculator to extract start values for iterative 
calculations.  

On the Modelica side an external object should be 
associated with variables from one thermodynamic 
state set. An advantage with the model based approach 
is that these details can be hidden from the user which 
avoids the risk of a user breaking the rule and thereby 
mess up the caching. 
An illustration of the structure is found in Figure 4. 

 
Figure 4. Illustration of the external object structure. 

 

4.4 Challenges with external property code 

Most of the available external property packages have 
not been designed to be used for dynamic simulations. 
General problems are: 
• Error handling when calling properties outside 

their validity region.  
• Limited support for partial derivatives.  
• Lack of support to speed up iterative calculation 

by providing good start values. 
• No access to the used tolerances, which may 

cause numerical problems when creating 
numerical derivatives. 

• Non converging regions. 
We have seen in this project that without any 
additional handling of the validity region issue, 
simulation will often crash during initialization or 
simulation. An explanation is that even if a simulation 
model is set-up to operate within the validity region, 
the solver might call property routines with invalid 
inputs when it tries to find a solution for a system of 
non-linear equations or when it test a large step-size.  

In the external interface we decided that it should be 
the property calculator responsibility to handle this as 
different property types such as e.g. transport and 
equation of state based properties may have different 
validity regions and might be a function of 
composition. 
 

 

4.5 CAPE-OPEN 

“CAPE-Open standards are the uniform standards for 

interfacing process modelling software components 

developed specifically for the design and operation of 

chemical processes” (Colan, 2015). 
The only currently widely adopted standard for 
thermodynamic property packages is the CAPE-OPEN 
Thermodynamic and Physical Properties. The backend 
that has been developed supports both the 1.0 and 1.1 
version of the specification. 
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4.5.1 Disadvantages 

Following disadvantages with the CAPE-OPEN 
thermo interface should be considered (Szczepanski, 
2013).  
• Missing calculations of: critical properties, phase 

boundaries, phase stability test.   
• No support of flash derivatives (derivatives of 

flash outputs w.r.t flash specifications with 
phases in equilibrium) 

• Single calculation, in some circumstances it 
would be useful to calculate properties for an 
array of inputs 

Another disadvantage is that it contains several internal 
function calls which create an overhead in computation 
time. And although it was intended as a cross-platform 
specification, in practice CAPE-OPEN is only 
supported on Windows. 

4.6 RefProp interface 

A backend to RefProp has been developed. An early 
version of the interface was successfully tested on a 
full air-conditioning cycle model using the single 
component media R134a. The computational time of 
the simulation was in the same order as when a 
corresponding native Modelica implementation of 
R134a was used. But RefProp does not seem to be 
suited to be used for larger system simulations for 
mixtures due to the disadvantages mentioned in chapter 
4.4 and that it by default use highly precise multi-
parameter equation of state which is rarely used for 
mixtures due to the computational effort (Schultze, 
2014). To overcome these limitations further analysis 
is needed. 
 
 

5 Application test case 

To verify the overall interface structure a Modelica 
application library DistillationColumn was created 
based on work by (Yasaman, 2012). The library has 
been modified so it is easy to test different continuous 
state selections and property function inputs. 
 

5.1 Native Modelica Air media 

A native Modelica air media was implemented based 
on work by (Yasaman, 2012).  It is a three component 
model were the phase equilibria conditions are 
described by the Rachford-Rice equation (Lämås, 
2012) using a declarative approach.  The equations are 
solved by the tool’s non-linear solver. The vapor phase 
is described by an ideal gas volumetric equation of 
state, a linear polynomial for the heat capacity and 
polynomials adapted to experiment data of the 
fugacities. The liquid phase uses an incompressible 
assumption where density and specific heat capacity 

are constant and activity coefficients have been 
adapted to experimental data. 
 

5.2 Air separation column 

The lower pressure column in a cryogenic air 
separation unit was chosen to be used as a test case. 
Nitrogen and argon is separated from the liquid at 
atmospheric pressure and a temperature around 85-
115K. Liquid with high concentration of oxygen is 
extracted from the bottom. The column is modeled by 
40 equilibrium stages with a total of 164 continuous 
time states using a 3 component media (nitrogen, 
oxygen, argon) 
 

5.2.1 Experiment description 

Boundary conditions were set to fixed values except 
for the heat source which increase its value after 100 
seconds. Initial transients are present due to the model 
is not initialized in steady-state 
 

 

Figure 5 Model of the lower pressure column in a 
cryogenic air separation unit. 

The model was simulated with Dymola 2015 FD01 
using the Dassl solver with a relative tolerance of 1e-5 
and a non-equidistant time grid. A standard desktop 
computer (Intel i7, 8GB Ram and 64-bit Windows 
operating system) was used for the simulation. 
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5.2.2 Case 1: Simulation with native Air Modelica 

media 

Result, the simulation finished in 9.46s using 383 
successful time steps. The result agreed with result 
presented in (Yasaman, 2012). 
 

 

Figure 6. CPU-time with native Modelica media. 

 
 
The result shows that it is possible to implement an 
efficient media with the proposed interface using a 
declarative approach. But good start values are 
required to succeed with the initialization. 

5.2.3 Case 2: Simulation with RefProp Air media 

The same model was simulated with a 3 component air 
media from RefProp. Several different states selection 
and property input combinations were tested but the 
tests were unsuccessful due to solver failure when 
calling properties outside their validity region or due to 
the solver getting stuck.  

Explanation for the slow simulation might be that 
RefProp uses very high accurate media models that are 
computational expensive to calculate and that each new 
flash calculation restarts from scratch every time it is 
called. For the general flash routines there is no 
possibility to provide start values. Currently the 
Modelica-C interface does not support differentiation 
of all properties which creates numerical Jacobians 
which are more computational expensive. There might 
also be other explanations why the simulation 
performance is not satisfactory. This has to be analyzed 
further. 
 

 

6 Limitations 

Currently there are restrictions from the used tool and 
in the Modelica language which makes it harder to use 
the model based media structure. 
 

6.1 Modelica tools  

Following limitations have been observed for different 
tools: 

• Not possible to calculate iteration start values 
from a property model.  

• Not possible to calculate structural parameters 
from a function using an external object.  

 
The first limitation is severe if a model contains 
iteration variables that are not equal to a model’s start 
value parameters. If the specific enthalpy is an iteration 
variable it should be calculated from the given start 
value parameters as illustrated in Listing 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The second limitation requires that the user manually 
specify the number of phases and compounds in the 
property declaration. 

 

6.2 Modelica specification  

Currently it is inconvenient to use a model or block 
based structure to calculate parameters as illustrated in 
Listing 4. It would be more user friendly if a model or 
block could be used in a similar way as a function to 
calculate parameters.  
 

6.2.1 Solver callback interface 

The external interface ExternalMixtureMedia has been 
designed with a structure that supports caching. The 
idea is to cache result from a calculation and use it as 
start values in a next coming calculation to decrease 
the number of internal iterations and increase 
robustness. A problem with this approach is that it is 
not possible to distinguish a function call during 
normal continuous simulation from one where the 
steady-state solver desperately tries to find a solution. 

During continuous simulation a good strategy would 
be to use values from the last accepted step.  For the 
steady-state case it might be an idea to let the non-
linear solver update the starting values of the iteration 
variables hidden in these algorithms, when the solver 
makes good progress. 
A solution would be to have the possibility to register a 
solver callback interface, which could be used to 
update iteration start values in a controlled way. 

0 4000 8000 

0 

4 

8 

 Simulation time (s) 

CPUtime 

parameter  SpecificEnthalpy h_start (fixed=false)  
annotation(Evaluate=true); 
SpecificEnthalpy h(start=h_start); 
 
Medium.MultiPhaseProperties 
    flash_init(Z=Z_start,p=p_start,T=T_start, 
    presentPhases=presentPhases, 
    presentPhasesStatus=presentPhasesStatus, 
    init(p=p_start, x=fill(Z_start, Medium.nP)), 
    inputs=MultiPhaseMixture.Interfaces.Inputs.pTX) 
initial equation  
  h_start=flash.h; 
 

Listing 4. Calculation of parameters from a 
model. 
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A suggestion: 
• onSolverAcceptedStep() - called by 

solver/simulation environment when an 
accepted step has occurred. Place to implement 
updates of iteration start variables. 

• onSolverSteadyStateProgress() - called by 
solver/simulation environment when progress 
in steady-state solver. Place to update iteration 
start values variables. 

Advantages with introducing callback methods are that 
the iteration start values can be updated in a controlled 
way and thereby avoiding the risk of an update during 
a bad steady-state iteration step.  

 
 

7 Conclusions 

A new framework for thermodynamic properties with 
support for multi-component multi-phase has been 
presented. It is the authors hope that this work will 
initiate a similar development in the process industry as 
those that have already taken place in the automotive 
and power industries, where innovative companies 
have built their innovation processes for systems 
engineering around the Modelica technology.  

The developed Modelica thermo property library use 
a model based interface which is in line with the 
Modelica spirit of equation based modelling. The 
model based interface makes it possible to implement a 
thermo property model using a declarative approach 
and the concept was demonstrated by simulating a 
column in a cryogenic air separation unit. 

This work should be seen as a starting point for a 
model based framework for multi-component multi-
phase thermo properties in Modelica. It is possible to 
improve the framework in following directions: 
• Implement an infrastructure for native Modelica 

implementation of fluids with support of 
various equations of states and mixing rules 
including phase equilibrium solvers. The later 
could be an interesting research topic on how to 
best formulate these algorithms in a declarative 
way. A difficulty with the equation based 
approach is the initialization part, where it 
would be interesting to see how property 
models can be formulated to better support 
initialization. For example by using the 
homotopy operator. 

• Extend the C-interface back end to support more 
property packages such as MultiFlash. 

• Adding additional functionality such as reaction 
properties. 

It would also be interesting to create use cases for the 
other application mentioned in section 2.1. We 

encourage people to take part of continuing the 
development. 
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