
MultiComponentMultiPhase – a framework for thermodynamic

properties in Modelica

Johan Windahl1 Katrin Prölss1 Maarten Bosmans2 Hubertus Tummescheit1 Eli van Es2 Awin
Sewgobind2

1Modelon AB, Lund, Sweden,
{johan.windahl,katrin.prolss,hubertus.tummescheit}@modelon.com

2VORtech, Delft, Netherlands, {maarten.bosmans,eli.vanes,awin.sewgobind}@vortech.nl

Abstract
This paper describes the development and requirement
specification of an open-source framework for multi-
phase multi-component thermo properties in Modelica.
The goal is to have a standardized interface to
multi-component multi-phase fluids with access to
external property packages in Modelica. This will
make it easier to develop models for e.g. the process
industry. The library uses a model based interface and
implications of such a design are analyzed and
compared with the traditional function based interface.

The work has been carried out in collaboration with
Modelon AB and VORtech within the umbrella of
Methods and tools as part of the CleanSky SGO
project.

Keywords: CAPE-OPEN, FluidProp, RefProp, fluid

properties, flash calculations

1 Introduction

Properties of working fluids define the achievable
baseline accuracy for fluid system simulations. The
availability of properties for steam and flue gases
initiated the use of Modelica in the power industry,
where it today is a well-established technology with
several commercial and open source libraries available
(Modelica Libraries, 2015). High quality fluid
properties are laborious to produce and their non-
availability is therefore a typical blocking argument for
the use of a certain tool or technology.

Published work of modeling chemical process
systems in Modelica exists, see (Tummescheit et al,
2002; Dietl et al 2011; Baharev et al 2012). But until
today, the use of Modelica has not been widely spread
to this area even though it would be well-suited to
describe these processes. Modelica is equation based,
similar to gPROMS, which is well established in the
process industry. However, it is lacking a standardized
interface for multi-component multi-phase fluid
properties. For an overview of equation oriented
methods for chemical and related process flowsheets,
see (Morton, 2002).

In this project a Modelica library for multi-phase
multi-component fluids has been developed together
with an external C/C++ Modelica property interface
with back ends to CAPE-OPEN, RefProp (Lemmon et

al, 2013) and FluidProp (Fluid property library, 2015).
The framework also contains a Modelica library for
distillation processes for verification and testing of the
media interface design.

2 Background

Modelica.Media is a freely available Modelica package
contained in the Modelica standard library. It consists
of property models from ideal gases up to high
accuracy models of WaterIF97 and R134a. The current
version 3.2.1 is restricted to pure two-phase or single
phase mixtures. The goal is to extend the capabilities
of Modelica.Media with support of multi-component
multi-phase mixtures and to find an interface structure
that is user-friendly both from an implementer and end-
user perspective.

In order to collect input for the interface design, a
meeting in Delft (Oct 2013) was held that gathered 17
people from academia, industry and members of the
Modelica design group. During the meeting it became
clear that technical challenges to implement such a
property interface efficiently using the current structure
of Modelica.Media are high. A large part of the project
has therefore been focused on finding an interface
structure both within and outside the limits of the
Modelica specification 3.3.

2.1 Application overview

The framework developed in this project must cover a
wide range of processes. The following types of
processes have been identified where multi-phase
multi-component fluids are used:

DOI
10.3384/ecp15118653

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

653

2.1.1 Thermodynamic cycle processes

Typical applications are refrigeration, heat pumps
(vapor compression cycles) and Organic Rankine
cycles using a blend of different working fluids, which
may be available in RefProp. Models are usually
characterized by a homogenous treatment of properties
and flows, usually modelled with mass based units as is
common in the energy and power industry. System
may operate in overcritical conditions.

These applications fit well into the Modelica.Media
structure as it was created with these processes in
mind. Flexible models are required due to the number
of present phases in a model can change during
simulation.

2.1.2 Thermal separation processes (with and

without chemical reactions)

Typical applications are rectification and absorption
processes where the numbers of phases usually are
limited to vapor and liquid and models use a mole
basis. It is common to include chemical reactions and
fluids are often taken from databases via CAPE-OPEN.

Figure 1. Example of thermal separation processes. Column

tray (left) and column packing (right).

2.1.3 Transport of multiphase flows

Typical applications are compositional pipe network
simulations, which are computationally expensive. In
this case multiple phases may coexist and a
homogenous assumption is not valid.

2.2 Context

Following types of usage are possible:
• Dynamic simulation
• Steady-state simulation
• Optimization

From an interface perspective a difference is in the
requirement of differentiation of properties. Solving an
optimal control problem also involves the Hessian
(Boyd et al) Even if these can be calculated
numerically the performance and robustness increase if
analytical derivatives can be provided (Åkesson et al,
2012) An interface should therefore support the usage
of analytical derivatives if these can be provided.

2.3 Phase equilibrium calculation

A phase equilibrium calculation determines subject to
specified constraint, e.g. fixed pressure and
temperature, present phases and the composition and
fraction of each present phase. It is an iterative
calculation which often uses specialized algorithms;
see (Parekh et al, 1998; Gernert et al, 2014).

Phase equilibrium calculations are time consuming
and will dominate the total CPU usage, up to 95%
according to (Trapp, 2014). Similar numbers have also
been observed in this work.
To achieve competitive performance:
1. The number of phase equilibrium calculations

should be minimized. This can be achieved by
designing fluid and application library interfaces
so that calculation result can be shared between
components. This may require expanding the
connector class with additional variables to avoid
redundant calculations.

2. For each phase equilibrium calculation, the
number of iterations inside these algorithms needs
to be minimized. This can be achieved by
providing good iteration guess values.

3 Modelica media interface

There are several possibilities to define an interface
due to Modelica support both models and functions.

The first step in the design process was to analyze
and list requirements.

3.1.1 General media requirements

1. User-friendliness and structure
• The structure should be easy to understand and

use. Implementation details such as external
objects should be hidden from the user.

• Interface that can be used by both a native
Modelica and external C-code media
implementation.

• Calculation of parameters, preferable also
structural parameters, from property functions
that may have a dependency on external
code/external object.

2. Possibility to create a media structure using
inheritance. To easily create new media from
existing templates and interfaces.

3. Performance
• The interface should be designed with efficiency

in mind. It should support differentiation of
properties and caching through external
objects.

• Possibility to provide additional information
about present phases that can be used to
simplify or skip computational expensive phase
equilibria calculations.

V

L

L V

MultiComponentMultiPhase - A Framework for Thermodynamic Properties in Modelica

654 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118653

• Support to add initial guesses of start values.
4. Derivative functions
• It should be possible to specify derivative

functions needed for: state variable
transformations, index reduction and generation
of analytic Jacobians.

5. Additional
• It should be possible to extend the interface with

new functionality such as reaction properties.

3.1.2 Multi-component multi-phase requirements

There is a wide range of different properties that may
be needed but here we consider the most basic usage.
• Calculation of phase equilibrium.
• Calculation of properties for a specified phase at

phase equilibrium.
• Support for common properties such as fugacity

and activity coefficients.
• Support of both molar and mass based properties.

The chemical process industry usually works in
mole while the energy industry works in mass
based units.

• No restriction of the number of supported phases.

3.1.3 Additional requirement

• Take advantage of unit declaration. The
possibility to declare units is a powerful feature
in Modelica that should be used.

• Uniquely identify phases and compounds.

3.2 Design restrictions

When designing a property interface in Modelica
following restrictions (Modelica Association,
Specification, 2015) needs to be considered.
1. Functions need to be pure, i.e. they are not

allowed to have any side effect. This is a
fundamental assumption in Modelica that makes it
possible for a tool to apply symbolic
transformation and rearrange calculations.

2. Records are not suited to be used as function
inputs. This is due to the fact that it is not allowed
to specify a derivative function if the record
contains a non-real variable. It is also not efficient
to use a record with additional variables due to all
variables needs to be considered for
differentiation. A record is also not allowed to
contain an external object.

3. It is not possible to access a previous value of a
continuous variable. There is no such operator in
Modelica.

3.2.1 Iterative algorithms

A consequence of the restrictions is that it is inefficient
to implement explicit iterative algorithms in native
Modelica. This is due to that functions are not allowed
to have internal memory between function calls and
there is no operator to access a previous value of a
continuous variable. The start value of a variable in an
algorithm is therefore equal to its start attribute during
simulation. This is a drawback for function based
media property calculations that need to be solved by
an iteration process. If instead a model based interface
is used and the algorithm is replaced with an implicit
equation formulation, the tools non-linear solver can
use the last solution point as a start for the next
iteration (Olsson et al, 2005).

3.3 Model based interface structure

Based on the requirements and restrictions it was
decided that the interface structure should be model
based (this does not hinder the implementation to be
function based).
Main advantages with a model based structure are:
• Possible to implement a medium using a

declarative approach as demonstrated in
(Olsson et al, 2005). It makes it possible to
quickly create a medium with good
performance, see section 5.1

• Possible to share interface between an external
code based media and a native Modelica based
media.

• User friendly as implementation details can be
hidden from the user and the possibility to
work graphically and by that taking advantage
of a tool support of e.g. unit conversion.

• Possible with a minimalistic interface as it is not
necessary to create new models for new input
combinations. The model based interface may
not specify the causality of the variables.

• Avoid the need for a tool to support common-sub
expression elimination as the result of an
expensive calculation can be stored in a model.

• Possible to use block and models in an
implementation, e.g. the Modelica Standard
Library tables.

There are also disadvantages that should be considered:
• A model can’t be instantiated inside a function

which limits the scope where a media
calculation can be executed.

• It is user unfriendly to calculate parameters from
a media. It requires setting a parameters fixed
attribute to false and an additional equation in
the initial equation section.

Session 8D: Thermofluid Systems, Models and Libraries 1

DOI
10.3384/ecp15118653

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

655

• Not possible to calculate a property on demand as
a model needs to be instantiated.

3.3.1 MultiPhaseMixture interface

The current interface structure is shown in Figure 2, it
consists of a few models and helper functions.

Figure 2. Screenshot of the current interface structure
of MultiPhaseMixture. Note that it is currently under

development and is therefore subject to change.

3.3.2 Example of usage

An example of how to use the ThermoProperties model
is shown in Listing 1.

4 External interface

Developing thermodynamic property models for multi-
phase multi-component fluids is fairly complex and
requires specialist knowledge. There already exist tools
like MultiFlash and FluidProp that have been
developed in the process industry and in academia over

a long time. It is therefore useful for the new Media
library to be able to interface with external fluid
property tools and databases.
The overall structure of the external framework is
illustrated in Figure 3.

Figure 3. Overview of external framework structure.

4.1 Previous work in Modelica

There exists previous published work with interfacing
external properties in Modelica, see (Tummescheit,
2002; Trapp 2014; Wellner 2014). There is also an
open-source framework available, ExternalMedia
(Casella, 2008), but it is limited to pure two-phase
media.

4.2 Using external code in Modelica

Modelica has an external function interface to C which
makes it possible to use external routines within a
Modelica function. Following issues have been
considered when building the new Modelica libraries
around external code:
• Differentiation
• Error messages
• Use of external objects

An advantage of using native Modelica code over
external code is that the Modelica compiler has access
to structural information on the dependency between
inputs and outputs. This makes it possible to
automatically differentiate, create analytical Jacobians
and explore sparsity patterns that will increase
robustness and performance of a simulation.

For external functions, derivative information needs
to be specified by the user. In the general case it would
require full knowledge about the implementation. For
thermodynamic properties the effort on providing this
information can be decreased by taking advantage of
thermodynamic properties definitions. But it is
important that there are test cases as wrongly

model ExampleOfUsage
 package Medium=MultiPhaseMixture.Air_PureModelica;
 Medium.ThermoProperties thermoProperties(
 inputs=MultiPhaseMixture.Interfaces.Inputs.pTY,
 p=100000,
 T=298.15,
 Zm=Medium.reference_Y);
 Density d;

equation
 d= thermoProperties.d;
end ExampleOfUsage;

Listing 1. Modelica code showing the usage of a
property calculation using the model based interface.

MultiComponentMultiPhase - A Framework for Thermodynamic Properties in Modelica

656 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118653

calculated derivatives will lead to convergence failure
which may be very hard to debug.

Another important aspect is implementation of
appropriate error messages, as otherwise the simulation
may crash without leaving any information to the user.

4.2.1 External object

With the use of external objects there is a defined way
to allocate and de-allocate resources. It is also possible
to store internal information between function calls
which may be used to cache iteration start values. The
C-interface is therefore based on external objects.

Disadvantages are restrictions on how they can be
used in Modelica (Modelica Spec, 2015) and it is not
clear how they work in combination with symbolic
transformation such as inverse functions and sub-
expression elimination. We have also encountered
bugs related to the use of them, however it seems more
stable with more recent versions of Modelica tools.

4.3 Modelica external media interface

MultiPhaseMixture.ExternalMixture is a template that
implements the Modelica MultiPhaseMixture interface.
It consists mainly of:
• Functions that call the external C- code interface.
• Wrapper functions for various property and input

combinations.
• Calculations of multi-phase properties and

derivatives
With the wrapper functions it is possible to specify
derivative annotations and support differentiation of
external properties.

4.3.1 Derivatives

Neither CAPE-OPEN nor RefProp supports total
overall properties derivatives, which may be needed for
dynamic simulation, especially for state variable
transformation. It was therefore decided that these
types of calculations should be implemented on the
Modelica side and not in the C-interface. For a pure
fluid, the calculations are straight-forward and there are
publications available (Thorade et al, 2013). For
mixtures they are more complicated (Li, 1955). The
difficult part is when several phases coexist. In that
case they are currently calculated numerically.

4.3.2 Mole vs mole fractions

A recommendation was given to use mole numbers
instead of mole fractions (Szczepanski, 2013). The sum
of all mole fractions is equal to 1: ∑��

� = (1)

Mole fractions are not independent and are therefore
more difficult to differentiate. This is further explained
by (Molerup et al, 2002) where they state “Derivatives

with respect to mole fractions are best avoided, as they

require a definition of the ‘dependent’ mole fraction
and in addition lead to more complex expressions

missing many important symmetry properties.”

protected
 Auxilary.Properties properties;
 final parameter ExternalMediaObject eo=
ExternalMediaObject(setupInfo);
equation
 if (inputs == Inputs.pT) then
 properties =Auxilary.calcProperties_pTX(p=p,T=T,X=Z,eo=eo);
 d =Auxilary.Wrapper_pTX.density_pTX(p=p,T=T,X=Z,
 state=properties);

function density_derh_p
 input Properties state;
 input MExternalMediaObject eo "External object";
 output Real ddhp "Density derivative wrt h at constant pressure";
protected
...
algorithm
 if (state.nbrOfPresentPhases == 1) then
 pd:=state.dpdd_TN_1ph[integer(state.presentPhaseIndex[1])];
 …
 ddhp:= -
state.d_overall*state.d_overall*pt/(state.d_overall*state.d_overall*pd*
cv + state.T_overall*pt*pt);
 elseif (nC == 1 and nP== 2) then
 …
 dpT := (vap_s - liq_s)*liq_d*vap_d/(max(liq_d -vap_d,eps));
 ddhp:=-state.d_overall*state.d_overall/(dpT*state.T_overall);
 else
 // multiple phases - calculate ddhp numerically
d_deltah:= Wrapper_phX.density_phX(p=state.p_overall, h=state.h_o
verall+deltah,X=X,
state=calcProperties_phX(p=state.p_overall,h=state.h_overall+deltah,
X=X,eo=eo),eo=eo);
 ddhp:=(d_deltah-state.d_overall)/deltah;
 end if;

Listing 2. Code snippet of a Modelica implementation of
density derivative wrt to specific enthalpy at constant pressure.

Listing 3 Code snippet of the MultiPhaseProperties model for
the external media template.

Session 8D: Thermofluid Systems, Models and Libraries 1

DOI
10.3384/ecp15118653

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

657

What is not described is how this can be applied to a
thermodynamic framework for dynamic simulation
which may contain intensive continuous state variables
or connector variables.

Implications of changing the input mole fraction
vector to a molar substance vector in a function
interface are:
• A media model that is written in intensive form

needs to add an extra conversion inside all
functions. There may be cases where there are
transformations back and forth. This affects the
performance as it makes automatic
differentiated code more complicated. This was
seen in a simulation of the DistillationColumn
model using the native Modelica media, where
the total CPU time was increased with 7%
when the input to the fugacity was changed
from mole fraction to molar substance. Another
disadvantage is that the code might get more
verbose as it may require auxiliary variables
with an appropriate unit when converting
between fraction and substance.

• Advantages are that it will possible to support
and calculate property models written in
extensive variables and have better support of
partial derivatives from external properties
tools.

Currently the C-interface supports both mole fraction
and molar substance by having an extra input that
defines the unit of the fraction vector.

4.3.3 External object

The external object is a pointer to an instance of a
Material class on the C++ side. It consists of:
• A pointer to a property calculator, i.e. an instance

of e.g. RefProp or CAPE-OPEN where one
calculator instance is shared between external
objects with the same calculator key.

• An instance of a cache which may be used by a
calculator to extract start values for iterative
calculations.

On the Modelica side an external object should be
associated with variables from one thermodynamic
state set. An advantage with the model based approach
is that these details can be hidden from the user which
avoids the risk of a user breaking the rule and thereby
mess up the caching.
An illustration of the structure is found in Figure 4.

Figure 4. Illustration of the external object structure.

4.4 Challenges with external property code

Most of the available external property packages have
not been designed to be used for dynamic simulations.
General problems are:
• Error handling when calling properties outside

their validity region.
• Limited support for partial derivatives.
• Lack of support to speed up iterative calculation

by providing good start values.
• No access to the used tolerances, which may

cause numerical problems when creating
numerical derivatives.

• Non converging regions.
We have seen in this project that without any
additional handling of the validity region issue,
simulation will often crash during initialization or
simulation. An explanation is that even if a simulation
model is set-up to operate within the validity region,
the solver might call property routines with invalid
inputs when it tries to find a solution for a system of
non-linear equations or when it test a large step-size.

In the external interface we decided that it should be
the property calculator responsibility to handle this as
different property types such as e.g. transport and
equation of state based properties may have different
validity regions and might be a function of
composition.

4.5 CAPE-OPEN

“CAPE-Open standards are the uniform standards for

interfacing process modelling software components

developed specifically for the design and operation of

chemical processes” (Colan, 2015).
The only currently widely adopted standard for
thermodynamic property packages is the CAPE-OPEN
Thermodynamic and Physical Properties. The backend
that has been developed supports both the 1.0 and 1.1
version of the specification.

MultiComponentMultiPhase - A Framework for Thermodynamic Properties in Modelica

658 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118653

4.5.1 Disadvantages

Following disadvantages with the CAPE-OPEN
thermo interface should be considered (Szczepanski,
2013).
• Missing calculations of: critical properties, phase

boundaries, phase stability test.
• No support of flash derivatives (derivatives of

flash outputs w.r.t flash specifications with
phases in equilibrium)

• Single calculation, in some circumstances it
would be useful to calculate properties for an
array of inputs

Another disadvantage is that it contains several internal
function calls which create an overhead in computation
time. And although it was intended as a cross-platform
specification, in practice CAPE-OPEN is only
supported on Windows.

4.6 RefProp interface

A backend to RefProp has been developed. An early
version of the interface was successfully tested on a
full air-conditioning cycle model using the single
component media R134a. The computational time of
the simulation was in the same order as when a
corresponding native Modelica implementation of
R134a was used. But RefProp does not seem to be
suited to be used for larger system simulations for
mixtures due to the disadvantages mentioned in chapter
4.4 and that it by default use highly precise multi-
parameter equation of state which is rarely used for
mixtures due to the computational effort (Schultze,
2014). To overcome these limitations further analysis
is needed.

5 Application test case

To verify the overall interface structure a Modelica
application library DistillationColumn was created
based on work by (Yasaman, 2012). The library has
been modified so it is easy to test different continuous
state selections and property function inputs.

5.1 Native Modelica Air media

A native Modelica air media was implemented based
on work by (Yasaman, 2012). It is a three component
model were the phase equilibria conditions are
described by the Rachford-Rice equation (Lämås,
2012) using a declarative approach. The equations are
solved by the tool’s non-linear solver. The vapor phase
is described by an ideal gas volumetric equation of
state, a linear polynomial for the heat capacity and
polynomials adapted to experiment data of the
fugacities. The liquid phase uses an incompressible
assumption where density and specific heat capacity

are constant and activity coefficients have been
adapted to experimental data.

5.2 Air separation column

The lower pressure column in a cryogenic air
separation unit was chosen to be used as a test case.
Nitrogen and argon is separated from the liquid at
atmospheric pressure and a temperature around 85-
115K. Liquid with high concentration of oxygen is
extracted from the bottom. The column is modeled by
40 equilibrium stages with a total of 164 continuous
time states using a 3 component media (nitrogen,
oxygen, argon)

5.2.1 Experiment description

Boundary conditions were set to fixed values except
for the heat source which increase its value after 100
seconds. Initial transients are present due to the model
is not initialized in steady-state

Figure 5 Model of the lower pressure column in a
cryogenic air separation unit.

The model was simulated with Dymola 2015 FD01
using the Dassl solver with a relative tolerance of 1e-5
and a non-equidistant time grid. A standard desktop
computer (Intel i7, 8GB Ram and 64-bit Windows
operating system) was used for the simulation.

Session 8D: Thermofluid Systems, Models and Libraries 1

DOI
10.3384/ecp15118653

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

659

5.2.2 Case 1: Simulation with native Air Modelica

media

Result, the simulation finished in 9.46s using 383
successful time steps. The result agreed with result
presented in (Yasaman, 2012).

Figure 6. CPU-time with native Modelica media.

The result shows that it is possible to implement an
efficient media with the proposed interface using a
declarative approach. But good start values are
required to succeed with the initialization.

5.2.3 Case 2: Simulation with RefProp Air media

The same model was simulated with a 3 component air
media from RefProp. Several different states selection
and property input combinations were tested but the
tests were unsuccessful due to solver failure when
calling properties outside their validity region or due to
the solver getting stuck.

Explanation for the slow simulation might be that
RefProp uses very high accurate media models that are
computational expensive to calculate and that each new
flash calculation restarts from scratch every time it is
called. For the general flash routines there is no
possibility to provide start values. Currently the
Modelica-C interface does not support differentiation
of all properties which creates numerical Jacobians
which are more computational expensive. There might
also be other explanations why the simulation
performance is not satisfactory. This has to be analyzed
further.

6 Limitations

Currently there are restrictions from the used tool and
in the Modelica language which makes it harder to use
the model based media structure.

6.1 Modelica tools

Following limitations have been observed for different
tools:

• Not possible to calculate iteration start values
from a property model.

• Not possible to calculate structural parameters
from a function using an external object.

The first limitation is severe if a model contains
iteration variables that are not equal to a model’s start
value parameters. If the specific enthalpy is an iteration
variable it should be calculated from the given start
value parameters as illustrated in Listing 4.

The second limitation requires that the user manually
specify the number of phases and compounds in the
property declaration.

6.2 Modelica specification

Currently it is inconvenient to use a model or block
based structure to calculate parameters as illustrated in
Listing 4. It would be more user friendly if a model or
block could be used in a similar way as a function to
calculate parameters.

6.2.1 Solver callback interface

The external interface ExternalMixtureMedia has been
designed with a structure that supports caching. The
idea is to cache result from a calculation and use it as
start values in a next coming calculation to decrease
the number of internal iterations and increase
robustness. A problem with this approach is that it is
not possible to distinguish a function call during
normal continuous simulation from one where the
steady-state solver desperately tries to find a solution.

During continuous simulation a good strategy would
be to use values from the last accepted step. For the
steady-state case it might be an idea to let the non-
linear solver update the starting values of the iteration
variables hidden in these algorithms, when the solver
makes good progress.
A solution would be to have the possibility to register a
solver callback interface, which could be used to
update iteration start values in a controlled way.

0 4000 8000

0

4

8

 Simulation time (s)

CPUtime

parameter SpecificEnthalpy h_start (fixed=false)
annotation(Evaluate=true);
SpecificEnthalpy h(start=h_start);

Medium.MultiPhaseProperties
 flash_init(Z=Z_start,p=p_start,T=T_start,
 presentPhases=presentPhases,
 presentPhasesStatus=presentPhasesStatus,
 init(p=p_start, x=fill(Z_start, Medium.nP)),
 inputs=MultiPhaseMixture.Interfaces.Inputs.pTX)
initial equation
 h_start=flash.h;

Listing 4. Calculation of parameters from a
model.

MultiComponentMultiPhase - A Framework for Thermodynamic Properties in Modelica

660 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118653

A suggestion:
• onSolverAcceptedStep() - called by

solver/simulation environment when an
accepted step has occurred. Place to implement
updates of iteration start variables.

• onSolverSteadyStateProgress() - called by
solver/simulation environment when progress
in steady-state solver. Place to update iteration
start values variables.

Advantages with introducing callback methods are that
the iteration start values can be updated in a controlled
way and thereby avoiding the risk of an update during
a bad steady-state iteration step.

7 Conclusions

A new framework for thermodynamic properties with
support for multi-component multi-phase has been
presented. It is the authors hope that this work will
initiate a similar development in the process industry as
those that have already taken place in the automotive
and power industries, where innovative companies
have built their innovation processes for systems
engineering around the Modelica technology.

The developed Modelica thermo property library use
a model based interface which is in line with the
Modelica spirit of equation based modelling. The
model based interface makes it possible to implement a
thermo property model using a declarative approach
and the concept was demonstrated by simulating a
column in a cryogenic air separation unit.

This work should be seen as a starting point for a
model based framework for multi-component multi-
phase thermo properties in Modelica. It is possible to
improve the framework in following directions:
• Implement an infrastructure for native Modelica

implementation of fluids with support of
various equations of states and mixing rules
including phase equilibrium solvers. The later
could be an interesting research topic on how to
best formulate these algorithms in a declarative
way. A difficulty with the equation based
approach is the initialization part, where it
would be interesting to see how property
models can be formulated to better support
initialization. For example by using the
homotopy operator.

• Extend the C-interface back end to support more
property packages such as MultiFlash.

• Adding additional functionality such as reaction
properties.

It would also be interesting to create use cases for the
other application mentioned in section 2.1. We

encourage people to take part of continuing the
development.

Acknowledgements

The work has been partially funded by the Seventh
Framework Programme of the European Union (project
MODELICAPROP, Clean Sky number 325975). The
financial support from the European Union is highly
appreciated.

References

Ali Baharev and Arnold Neumaier. Chemical Process
Modeling in Modelica, Proceedings of the 9th

International Modelica 2012 Conference, Munich,
Germany, September 3-5 2012.

Stephen Boyd and Lieven VandenBerghe. Convex
Optimization, Cambridge University Press.

CAPE OPEN, Thermodynamic and Physical Properties v1.1,
May 2011, Downloaded from http://www.colan.org
(accessed 2015-05-17).

Francesco Casella and Christoph Richter, ExternalMedia: A
Library for Easy Re-Use of External Fluid Property Code
in Modelica, Modelica Conference Proceedings, 2008.

Colan, http://www.colan.org/index-16.html, accessed 2015-
05-17.

Karin Dietl, Kilian Link and Gerard Schmitz. Thermal
Separation Library: Examples of Use, Proceedings of the

8th International Modelica 2011 Conference, Dresden,
Germany, March 20-22 2011.

Fluid property library; a common interface to various state-
of-the-art thermodynamic and transport property models.
http://www.asimptote.nl/software/fluidprop/ (accessed
2015-05-17).

Johannes Gernert, Andreas Jäger and Roland Span.
Calculation of phase equilibria for multi-component
mixtures using highly accurate Helmholtz energy equations
of state, Fluid Phase Equilibria 375 (2014) 209–218.

Lemmon, E.W., Huber, M.L., McLinden, M.O. NIST
Standard Reference Database 23: Reference Fluid
Thermodynamic and Transport Properties-REFPROP,

Version 9.1, National Institute of Standards and

Technology, Standard Reference Data Program,
Gaithersburg, 2013.

James C. M. Li, Clapeyron Equation for MultiComponent
Systems, The Journal of Chemical Physics volume 25.

number 3 september. 1956.

Hans Lämås, Algorithms for Multi-component Phase
Equilibrium Models in Modelica, MSc Thesis, Chalmers
University of Technology, Gothenburg, Sweden, 2012.

Yasaman Mirsadraee. Dynamic modeling and simulation of a
cryogenic air separation plant, Msc Thesis, Linköping,
Sweden, 2012

Session 8D: Thermofluid Systems, Models and Libraries 1

DOI
10.3384/ecp15118653

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

661

J.M. Mollerup and M.L. Michelsen. Calculation of
Thermodynamic Equilibrium Properties, Fluid Phase

Equilibria 74 (1992) 1–15. 1992

W Morton. Equation oriented simulation and optimization,
Proc Indian Natn Sci Acad 69, (2003) pp. 317-357. 2003

Hans Olsson, Hubertus Tummescheit and Hilding Elmqvist.
Using Automatic Differentiation for Partial Derivatives of
Functions in Modelica, Proceedings of the 4th

International Modelica 2005 Conference, Hamburg,
Germany, March 7-8 2005.

Vipul Parekh and Paul Mathias, Efficient flash calculations
for chemical process design – extension to the Boston-Britt
Inside-Out flash algorithm to extreme conditions and new
flash types, Computers and chemical engineering, vol 22
pp 1371-1380 (1998)

Modelica Association, Modelica Language Specification,
Version 3.3, 2015
https://www.modelica.org/documents/ModelicaSpec33.pdf
, accessed 2015-05-17.

Modelica Association Libraries. Available at
https://www.modelica.org/libraries, accessed 2015-05-17.

C. Schultze, A Contribution to Numerically Efficient
Modelling of Thermodynamic Systems, PhD thesis,
Technische Universität Braunschweig, Fakultät für
Maschinenbau., (2014)

Richard Szczepanski, Physical Property Modelling –
MultiFlash and CAPE-OPEN. Presentation for

ModelicaProp Workshop 9-10 Oct, Delft, 2013.

Mathis Thorade and Ali Saadat, Partial derivatives of
thermodynamic state properties for dynamic simulation,
Environ Earth Sci 70:3497–3503. 2013

C. Trapp, F.Casella, T. Stelt, P. Colonna. Use of External
Fluid property Code in Modelica of a Pre-combustion Co2
Capture Process Involving Multi-Component, Two-Phase
Fluids, Proceedings of the 10th International Modelica

2014 Conference, Lund, Sweden, March 10-12 2014.

Hubertus Tummescheit, Jonas Eborn, Chemical Reaction
Modeling with Thermofluid/MF and MultiFlash,
Proceedings of the 2

nd
 International Modelica Conference,

Munich, 2002.

K. Wellner, C. Trapp, G. Schmitz and F.Casella. Interfacing
Models for Thermal Separation Processes with Fluid
Property Data from External Sources, Proceedings of the

10th International Modelica 2014 Conference, Lund,
Sweden, March 10-12 2014.

J.Åkesson, W. Braun, P.Lindholm, B.Bachmann, ,
Generation of Sparse Jacobians for the Function Mock-Up
Interface 2.0, Proceedings of the 9

th
 International

Modelica Conference, Munich, 2012.

MultiComponentMultiPhase - A Framework for Thermodynamic Properties in Modelica

662 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118653

