
EDITORS: PROF. PETER FRITZSON AND DR. HILDING ELMQVIST

The conference is organized by Dassault Systèmes and Linköping University in cooperation with the Modelica Association.

PROCEEDINGS OF THE

September 21–23, 2015
Palais des Congrès de Versailles, France
www.modelica.org

PALAIS DES CONGRÈS

DE VERSAILLES

Proceedings of the 11th International Modelica Conference
Versailles, France, September 21-23, 2015

Editors:
Prof. Peter Fritzson and Dr. Hilding Elmqvist

Published by:
Modelica Association and Linköping University Electronic Press

ISBN: 978-91-7685-955-1
Series: Linköping Electronic Conference Proceedings, No 118
ISSN: 1650-3686
eISSN: 1650-3740
DOI: http://dx.doi.org/10.3384/ecp15118

Organized by:
Dassault Systèmes and Linköping University

Programming Environments Laboratory (PELAB)
10 rue Marcel Dassault, CS 40501 Department of Computer and Information Science
78946 Vélizy-Villacoublay Cedex SE-581 83 Linköping
France Sweden

in co-operation with:

Modelica Association
c/o PELAB, Linköpings Univ.
SE-581 83 Linköping
Sweden

Conference location:
Palais des Congrès de Versailles
10 Rue de la Chancellerie
78000 Versailles
France

Copyright © Modelica Association, 2015

2 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

http://dx.doi.org/10.3384/ecp15118
http://www.3ds.com
http://liu.se
http://www.modelica.org/

T
he 11th International Modelica Conference,

which takes place at Palais des Congrès de

Versailles, is the main event for the Modelica

community. Users, library developers, tool vendors, and

language designers gather to share their knowledge

and learn about the latest scientific and industrial

progress related to Modelica and FMI (Functional

Mockup Interface).

The fundamental idea behind Modelica is to allow

storing modeling knowhow in a high-level formally

defined format, i.e., to collect information which

you otherwise would find in engineering books only

accessible by humans. By allowing convenient reuse

of this knowhow by definition of component model

libraries, enormous saving in man-hours for setting up

simulation studies is achieved. Furthermore, by proper

validation of such model libraries, much more reliable

conclusions can be made from simulation studies

leading to better products and user experience.

These considerations lead to the equation-based

object-oriented formalism of Modelica.

Since the start of the collaborative design work for

Modelica in 1996, Modelica has matured from an idea

among a small number of dedicated enthusiasts to a

widely accepted standard language for the modeling

and simulation of cyber-physical systems. In addition,

the standardization of the language by the non-profit

organization Modelica Association enables Modelica

models to be portable between a growing number

of tools. Modelica is now used in many industries

including automotive, energy and process, aerospace,

and industrial equipment. Modelica is the language of

choice for model-based systems engineering.

The FMI standard has been added to the project

portfolio of the Modelica Association. FMI provides

a complementary standard that enables deployment

of pre-compiled high quality models originating

from different model formats to a larger number of

engineers working with system design and verification.

The format of the conference is somewhat changed

compared to previous years. We moved the vendor

sessions to the first day of the conference to have two

days of purely scientific presentations. Starting the

tutorials one hour earlier allowed us to allocate more

time and have room for 15 vendors to present their

offers compared to 6 at the previous conference.

The program is available in an event app for smartphones,

tablets, and PCs. It enables searching for papers with

abstracts, authors, and conference rooms. It also allows

setting up your own schedule by selecting your favorite

presentations.

Taking a walk in the Garden of Versailles is suggested

on Tuesday evening. We have allocated a break of more

than one hour after the scientific program before the

conference dinner is served at the Palais des Congrès

de Versailles. This means that you have time to see the

Apollo Fountain.

Conference highlights:

• 2 Keynote speeches

• 83 papers in 4 parallel tracks

• 18 posters

• 7 tutorials

• 5 libraries submitted for the Modelica Library Award

• 15 vendor sessions presenting the latest Modelica

and FMI tools

• A fully booked exhibition area featuring 20 exhibitors

• Electronic proceedings including all papers and some

associated Modelica libraries and models

Finally, we want to acknowledge the support we

received from the conference board and program

committee. Special thanks to our colleagues at this

year’s organizers, Dassault Systèmes and Linköping

University, and Amelie Rönngård from Altitude

Meetings. The support from the conference sponsors is

gratefully acknowledged. Last but not least, thanks to

all authors, keynote speakers, and presenters for their

contributions to this conference.

We wish all participants an enjoyable and inspiring

conference.

Lund and Linköping, September 1, 2015

Hilding Elmqvist and Peter Fritzson

Hilding Elmqvist Peter Fritzson

WELCOME

DOI
10.3384/ecp15118

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

3

4 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Designing Cyber-Physical Systems:

A Tale of Two Worlds Coming Together

Presenter:

Prof. Alberto Sangiovanni-Vincentelli

UC Berkeley, USA

Abstract: Cyber-Physical Systems have been the focus of

many research and public forum initiatives in the world

since the early 2000s. The concept of CPS involves the

tight integration and co-design of physical (for example,

mechanical, electrical, biological and chemical), systems

with analysis, monitoring and control implemented on a

computing system. As such it has important intersections

with other fields of great interests such as Internet of

Things, Hybrid Systems, Swarm Systems and Systems of

Systems. One of the main challenges has been to develop

solid foundations for design and manufacturing including

formal methods and requirement capture.

I will review the major directions of research and industrial

relevance of CPS with particular attention to design

methodologies and requirement capture with considerations

about approaches to CPS simulation and analysis and their

limitations.

Bio: Alberto Sangiovanni-Vincentelli holds the Buttner

Chair of EECS, University of California, Berkeley. He was

a co-founder of Cadence and Synopsys, the two leading

companies in Electronic Design Automation. He was a

member of the HP Strategic Technology Advisory Board, of

the Science and Technology Advisory Board of GM, and is

a member of the Technology Advisory Council of UTC. He

is member of the Scientific Council of the Italian National

Science Foundation (CNR) and of the Executive Committee

of the Italian Institute of Technology. He is President of

the Consiglio Nazionale Garanti della Ricerca, and of the

Strategic Committee of the Italian Strategic Fund.

He received the Kaufman Award for “pioneering

contributions to EDA”, the IEEE/RSE Maxwell Medal“ for

groundbreaking contributions that have had an exceptional

impact on the development of electronics and electrical

engineering or related fields. He holds an honorary

Doctorate by the University of Aalborg, Denmark and one by

KTH, Sweden.

He is an author of over 850 papers, 17 books and 2 patents,

is IEEE Fellow and a Member of the NAE.

A systems engineering perspective

for Modelica and the heritage of

synchronous language

Presenter:

Dr. Albert Benveniste,

INRIA, France

Abstract: In the first part of my talk I shall develop a vision

of the central role of Modelica in systems engineering.

The Modrio project has recently developed a Requirements

profile for Modelica and progresses have recently been

made regarding the link between Modelica and safety

analyses. I shall discuss how far, I think, one could go in

these directions. I shall also draw directions toward using

Modelica for system-wide monitoring and diagnosis. All

of this calls for a rigorous understanding of Modelica, its

execution semantics: paying attention to this will constitute

the second part of my presentation. I shall describe the

background from synchronous languages by emphasizing

how sound compilation schemes can be formally derived

and how some of the above mentioned uses in system

engineering were performed with synchronous languages.

I shall conclude by indicating how these techniques can be

adapted to derive structural analyses for multi-mode DAE

systems. Nonstandard analysis will be used to help for this.

Bio: Albert Benveniste was Directeur de Recherche at INRIA,

where he is now emeritus. In 1990 he received the CNRS

silver medal, he was elected IEEE fellow in 1991 and IFAC

Fellow in 2013. From 1986 to 1990 he was vice-chairman

of the IFAC committee on Theory and was chairman of this

committee for 1991-1993. He has been Associate Editor

(at Large) for IEEE Transactions on Automatic Control,

Associate Editor for Int. J. of Adaptive Control and Signal

Processing, and Int. J. of Discrete Event Dynamical Systems,

and member of the Editorial Board of the Proceedings of the

IEEE. From 1997 to 2013, he was head for INRIA of the joint

Alcatel-INRIA research programme. He is a member of the

scientific advisory boards of Safran Group and Orange. From

2011 to 2014, he was co-heading the Center of Excellence

(Labex) CominLabs in the area of telecommunications

and Information systems. He has been elected to the

Académie des Technologies in december 2011. His areas of

interest cover system identification in control, embedded

systems in computer science, and network management in

telecommunications.

KEYNOTE SPEAKERS

DOI
10.3384/ecp15118

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

5

6 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Program Committee

General Chair
Dr. Hilding Elmqvist, Dassault Systèmes, Lund, Sweden

Program Chair
Prof. Peter Fritzson, Linköping University, Sweden

Program Board
Dr. Hilding Elmqvist, Dassault Systèmes, Lund, Sweden
Prof. Peter Fritzson, Linköping University, Sweden
Prof. Martin Otter, DLR, Germany
Dr. Michael Tiller, Xogeny, Michigan, USA

Program Committee
Prof. Bernhard Bachmann, Univ. Applied Sciences Bielefeld, Bielefeld, Germany
Prof. John Baras, University of Maryland, Maryland, USA
Dr. John Batteh, Modelon Inc., Ann Arbor, USA
Dr. Albert Benveniste, INRIA, Rennes, France
Christian Bertsch, Robert Bosch GmbH, Stuttgart, Germany
Volker Beuter, VI-grade GmbH, Marburg, Germany
Torsten Blochwitz, ITI GmbH, Dresden, Germany
Dr. Scott Bortoff, MERL Cambridge, USA
Dr. Timothy Bourke, INRIA, France
Daniel Bouskela, EDF R&D, Paris, France
Dr. David Broman, KTH Royal Institute of Technology, Stockholm, Sweden
Dr. Lena Buffoni, Linköping University, Sweden
Dr. Dan Burns, MERL, Cambridge, USA
Prof. Francesco Casella, Politecnico di Milano, Milano, Italy
Prof. François E. Cellier, ETH Zürich, Zürich, Switzerland
Dr. Christoph Clauß, Fraunhofer IIS EAS, Dresden, Germany
Mike Dempsey, Claytex Services Ltd, UK
Dr. Bernard Dion, Esterelle Technologies, Paris, France
Dr. Hilding Elmqvist, Dassault Systèmes, Lund, Sweden
Dr. Olaf Enge-Rosenblatt, Fraunhofer IIS Dresden, Dresden, Germany
Prof. Gianni Ferretti, Politecnico di Milano, Italy
Dr. Rüdiger Franke, ABB AG, Mannheim, Germany
Dr. Jens Frenkel, ITI Gmbh, Dresden, Germany
Prof. Peter Fritzson, Linköping University, Sweden
Prof. Manfred Hajek, TU Munich, Munich, Germay
Peter Harman, CyDesign, Coventry, United Kingdom
Prof. Anton Haumer, Technical consultant, OTH Regensburg, Regensburg, Germany
Dr. Dan Henriksson, Dassault Systèmes, Lund, Sweden
Dr. Yutaka Hirano, Toyota, Japan
Prof. Bengt Jacobson, Chalmers Technical Universiy, Gothenburg, Sweden
Prof. Tommi Karhela, VTT / Aalto University, Espoo, Finland
Åke Kinnander, Siemens Turbo, Sweden
Dr. Johan de Kleer, PARC, Palo Alto, USA
Dr. Christian Kral, Mechatroniker für Elektromaschinenbau und Automatisierung, Vienna, Austria
Jochen Köhler, ZF AG, Friedrichshafen, Germay
Dr. Chris Laughman, MERL, Cambridge, USA
Prof. Alberto Leva, Politecnico di Milano, Italy
Kilian Link, Siemens AG, Erlangen, Germany
Prof. Edward Lee, UC Berkeley, USA
Dr. Sven-Erik Mattsson, Dassault Systèmes, Lund, Sweden
Kristin Majetta, Fraunhofer IIS, Dresden, Germany
Dr. Jakob Mauss, QTronic GmbH, Berlin, Germany
Dr. Lars Mikelsons, Bosch-Rexroth GmbH, Lohr am Main, Germany

DOI
10.3384/ecp15118

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

7

Ramine Nikoukhah, Altair Engineering, Paris, France
Prof. Henrik Nilsson, University of Nottingham, Nottingham, Great Britain
Prof. Akira Ohata, Toyota Motor Corporation, Tokyo, Japan
Dr. Hans Olsson, Dassault Systèmes, Lund, Sweden
Prof. Martin Otter, DLR, Germany
Prof. Peter Pepper, TU Berlin, Berlin, Germany
Dr. Andreas Pillekeit, dSPACE , Germany
Dr. Adrian Pop, Linköping University, Sweden
Dr. Adrijan Ribaric, Sentient Science, USA
Johan Rhodin, Wolfram Research, Illinois, USA
Dr. Michael Sasena, LMS, , Ann Arbor, USA
Prof. Gerhard Schmitz, Technical University Hamburg-Harburg, Germany
Dr. Clemens Schlegel, Schlegel Simulation, Munich, Germany
Dr. Peter Schneider, Fraunhofer IIS EAS, Dresden, Germany
Prof. Stefan-Alexander Schneider, Hochschule Kempten, Kempten, Germany
Dr. Martin Sjölund, Linköping University, Sweden
Prof. Thierry Soriano, Supmeca, France
Dr. Rita Streblow, RWTH Aachen, Aachen, Germany
Dr. Ed Tate, Exa, Livonia, USA
Dr. Wilhelm Tegethoff, TLK-Thermo GmbH, Germany
Bernhard Thiele, Linköping University, Sweden
Dr. Michael Tiller, Xogeny, Michigan, USA
Dr. Jakub Tobolar, DLR, Munich, Germany
Dr. Hubertus Tummescheit, Modelon Inc., West Hartford, USA
Prof. Alfonso Urquía, UNED, Spain
Prof. Luigi Vanfretti, KTH- Royal Inst. of Technology, Stockholm, Sweden
Dr. Subbarao Varigonda, Cummins, Columbus, USA
Dr. Stéphane Velut, Lund, Sweden
Dr. Michael Wetter, LBNL, Berkeley, USA
Dr. Dirk Zimmer, DLR, Germany
Dr. Johan Åkesson, Modelon AB, Lund, Sweden

Conference Organization Team:
Amelie Rönngard, Malmö, Sweden
MCI France
Dr. Hilding Elmqvist, Dassault Systèmes, Lund, Sweden
Prof. Peter Fritzson, Linköping University, Sweden
Martin Malmheden, Dassault Systèmes, Paris, France
Dr. Martin Sjölund, Linköping University, Sweden
Bernhard Thiele, Linköping University, Sweden
Ulrika Wiklund, Dassault Systèmes, Lund, Sweden

8 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Contents
Session 2A: FMI 1 17

Experience with Industrial In-House Application of FMI . 17
A Novel Proposal on how to Parameterize Models in Dymola Utilizing External Files under Consider-

ation of a Subsequent Model Export using the Functional Mock-Up Interface 23
Design Choices for Thermofluid Flow Components and Systems that are Exported as Functional

Mockup Units . 31
FMI for Physical Models on Automotive Embedded Targets . 43

Session 2B: Building Energy Applications 1 51
Methodology for Obtaining Linear State Space Building Energy Simulation Models 51
Simulation Speed Analysis and Improvements of Modelica Models for Building Energy Simulation . . 59
Energy Efficient Design for Hotels in the Tropical Climate using Modelica 71
Presentation, Validation and Application of the DistrictHeating Modelica Library 79

Session 2C: Simulation Techniques 89
Multi-Mode DAE Systems with Varying Index . 89
Internalized State-Selection: Generation and Integration of Quasi-Linear Differential-Algebraic Equa-

tions . 99
Fractional-Order Modelling in Modelica . 109
Modelica Library for Feed Drive Systems . 117

Session 2D: Automotive Applications 1 127
Model-based Development of a Holistic Thermal Management System for an Electric Car with a High

Temperature Fuel Cell Range Extender . 127
Predicting the Effect of Gearbox Preconditioning on Vehicle Efficiency 135
Model Based Development of Future Small Electric Vehicle by Modelica 143
Modelling of Torque-Vectoring Drives for Electric Vehicles: a Case Study 151

Session 3A: FMI 2 159
Co-Simulation of Hybrid Systems with SpaceEx and Uppaal . 159
Automated Deployment of Modelica Models in Excel via Functional Mockup Interface and Integration

with modeFRONTIER . 171
An Open-Source Graphical Composite Modeling Editor and Simulation Tool Based on FMI and TLM

Co-Simulation . 181
The Modelica Language and the FMI Standard for Modeling and Simulation of Smart Grids 189

Session 3B: Building Energy Applications 2 197
Coupled modeling of a District Heating System with Aquifer Thermal Energy Storage and Absorption

Heat Transformer . 197
Energy-Efficient Design of a Research Greenhouse with Modelica . 207
Production Planning for Distributed District Heating Networks with JModelica.org 217
Hardware-in-the-Loop-Simulation of a Building Energy and Control System to Investigate Circulating

Pump Control Using Modelica . 225

Session 3C: Modelica Language & Compiler Implementation 1 235
Automatic GPU Code Generation of Modelica Functions . 235
Constructs for Meta Properties Modeling in Modelica . 245
Flattening of Modelica State Machines: A Practical Symbolic Representation 255
Exploiting Repeated Structures and Vectorization in Modelica . 265

Session 3D: Automotive Applications 2 273
High Fidelity Multibody Vehicle Dynamics Models for Driver-in-the-Loop Simulators 273
Modeling and Validation of a Multiple Evaporator Refrigeration Cycle for Electric Vehicles 281
Modeling the Effects of Energy Efficient Glazing on Cabin Thermal Energy & Vehicle Efficiency . . . 291

DOI
10.3384/ecp15118

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

9

Session 4A: Optimization Applications and Methods 301
A Framework for Nonlinear Model Predictive Control in JModelica.org 301
A Toolchain for Solving Dynamic Optimization Problems Using Symbolic and Parallel Computing . . 311
NMPC Application using JModelica.org: Features and Performance 321

Session 4B: Control Applications 1 329
A Modelica Library for Manual Tracking . 329
Model-based control with FMI and a C++ runtime for Modelica . 339
Nonlinear Dynamic Inversion Control for Wind Turbine Load Mitigation based on Wind Speed Mea-

surement . 349

Session 4C: Novel Modelica Applications and Libraries 359
Free Modelica Library for Chemical and Electrochemical Processes . 359
Modeling Biology in Modelica: The Human Baroreflex . 367
A City Traffic Library . 377

Session 4D: Building Energy Applications 3 383
An Open Toolchain for Generating Modelica Code from Building Information Models 383
Lessons Learnt from Network Modelling of a Low Heat Density District Heating System 393
Modelica based Design and Optimisation of Control Systems for Solar Heat Systems and Low Energy

Buildings . 401

Session 5A: Control Applications 2 411
How to Shape Noise Spectra for Continuous System Simulation . 411
Dynamic Modelling of a Flat-Plate Solar Collector for Control Purposes 419

Session 5B: Mechanical Systems 427
Generic Modelica Framework for MultiBody Contacts and Discrete Element Method 427
Different Models of a Scaled Experimental Running Gear for the DLR RailwayDynamics Library . . . 441

Session 5C: Modelica Language & Compiler Implementation 2 449
Efficient Compilation of Large Scale Dynamical Systems . 449
Simulation of Large-Scale Models in Modelica: State of the Art and Future Perspectives 459

Session 5D: Electrical Systems 469
Developing Mathematical Models of Batteries in Modelica for Energy Storage Applications 469
Average Model of a Synchronous Half-Bridge DC/DC Converter Considering Losses and Dynamics . . 479

Session 7A: Aerospace Applications 1 485
Modeling and Simulation of Liquid Propellant Rocket Engine Transient Performance Using Modelica . 485
Model Based Specifications in Aircraft Systems Design . 491

Session 7B: Electrical Machines 501
Multi Electrical Machine Pre-Design Tool with Error Handling and Machine Specific Advanced Graph-

ical Design Aid Features Based on Modelica . 501
Enhancements of Electric Machine Models: The EMachines Library 509

Session 7C: 3D Representations for Modelica Models 517
Simulation of Piping 3D Designs Powered by Modelica . 517
3D Schematics of Modelica Models and Gamification . 527

Session 7D: Virtual Test Benches 537
Holistic Virtual Testing and Analysis of a Concept Hybrid Electric Vehicle Model 537
Modeling of an Automatic Transmission for the Evaluation of Test Procedures in a Virtual End-of-Line

Test Bench . 547

Session 8A: Aerospace Applications 2 557
A New Fault Injection Method for Liquid Rocket Pressurization and Feed System 557
Automated Safety Analysis by Minimal Path Set Detection for Multi-Domain Object-Oriented Models 565
High-fidelity Modelling of Self-regulating Pneumatic Valves . 577

10 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Session 8B: Power, Energy & Process Applications 1 585
Dynamic Modeling of a Central Receiver CSP System in Modelica . 585
Modeling of Linear Concentrating Solar Power using Direct Steam Generation with Parabolic-Trough 595
Transient Simulation of the Power Block in a Parabolic Trough Power Plant 605

Session 8C: Safety & Formal Methods 615
Fault Detection and Diagnosis with Modelica Language using Deep Belief Network 615
Formal Requirements Modeling for Simulation-Based Verification . 625
Towards a Formalized Modelica Subset . 637

Session 8D: Thermofluid Systems, Models and Libraries 1 647
Fundamental EoS Implementation for {Water+Ammonia} in Modelica 647
MultiComponentMultiPhase - A Framework for Thermodynamic Properties in Modelica 653
Modeling of the German National Standard for High Pressure Natural Gas Flow Metering in Modelica 663

Session 10A: Testing & Diagnostics 671
Automatic Regression Testing of Simulation Models and Concept for Simulation of Connected FMUs

in PySimulator . 671
Abrasive Waterjet Intensifier Model for Machine Diagnostics . 681
Optimica Testing Toolkit: a Tool-Agnostic Testing Framework for Modelica Models 687

Session 10B: Power, Energy & Process Applications 2 695
Status of the TransiEnt Library: Transient Simulation of Coupled Energy Networks with High Share

of Renewable Energy . 695
Mathematical Model of Soot Blowing Influences in Dynamic Power Plant Modelling 707
Flexibilization of Coal-fired Power Plants by Dynamic Simulation . 715

Session 10C: Modelica Tools 725
Where impact got Going . 725
Visualizing Simulation Results from Modelica Fluid Models Using Graph Drawing in Python 737
Reuse of Physical System Models by means of Semantic Knowledge Representation: A Case Study

applied to Modelica . 747

Session 10D: Thermofluid Systems, Models and Libraries 2 759
Mass Conserving Models of Vapor Compression Cycles . 759
EPSILON Modelica Library for Thermal Applications . 769
Multi-Objective Optimization of Dynamic Systems combining Genetic Algorithms and Modelica: Ap-

plication to Adsorption Air-Conditioning Systems . 777

Poster Session 785
A new Modelica Electric and Hybrid Power Trains Library . 785
Initiatives for Acausal Model Connection using FMI in JSAE (Society of Automotive Engineers of

Japan) . 795
Dynamical Model of a Vehicle with Omni Wheels: Improved and Generalized Contact Tracking Algorithm803
Kansei Modeling for Delight Design based on 1DCAE Concept . 811
A Modelica Library Organization Method Supporting Online Modeling and Simulation 817
Control Development and Modeling for Flexible DC Grids in Modelica 823
Towards Enhanced Process and Tools for Aircraft Systems Assessments during very Early Design Phase831
Using FMI in a Cloud-based Web Application for System Simulation 845
Anticipatory Shifting - Optimization of a Transmission Control Unit for an Automatic Transmission

through Advanced Driver Assistance Systems . 849
Simulation of Distributed Energy Storage in the Residential Sector and Potential Integration of Gas-

based Renewable Energy Technologies using Modelica . 855
Test of Basic Co-Simulation Algorithms Using FMI . 865
Experimental Calibration of Heat Transfer and Thermal Losses in a Shell-and-Tube Heat Exchanger . 873
Suitability of Different Real-Time Solvers for a Model-Based Engineering Toolchain using Industrial

Rexroth Controllers . 883
Integrated Engineering based on Modelica . 893
Coupling Model Exchange FMUs for Aggregated Simulation by Open Source Tools 903

DOI
10.3384/ecp15118

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

11

An Aeronautic Case Study for Requirement Formalization and Automated Model Composition in
Modelica . 911

FastHVAC - A Library for Fast Composition and Simulation of Building Energy Systems 921
Open Source Library for the Simulation of Wind Power Plants . 929

12 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Author Index

Ackermann, Günter 695
Ahle, Elmar 43
Åkesson, Johan 687, 903
Albarello, Nicolas 911
Alvarez Rodríguez, Jose María 747
Andersson, Christian 903
Andres, Markus 23
Andresen, Lisa 695
Andrieu, Olivier 637
Arumugham, Siva Sankar 43
Asghar, Adeel 181, 671
Aurousseau, Antoine 595
Axelsson, Magdalena 301
Bachmann, Bernhard 339
Baldwin, Alexander D. 527
Barbe, Jean-Baptiste 377
Bardow, André 777
Barrios, German 71
Batteh, John 171
Bau, Uwe 777
Baviere, Roland 79
Becker, Leonard 647
Belhaj, Issam 893
Bensch, Valerie 537
Berg, Lars Fredrik 127
Bergero, Federico 449
Bertsch, Christian 43
Bezian, Jean-Jacques 595
Bianconi, Raphael 831
Bittner, Stefan 845
Blochwitz, Torsten 401
Boes, Jérémy 189
Bogomolov, Sergiy 159
Bohlin, Markus 217
Bonilla, Javier 873
Bosmans, Maarten 653
Botta, Mariano 449
Bouskela, Daniel 625
Braun, Willi 181, 339
Brecher, Christian 117
Buffoni, Lena 625, 911
Camilleri, Guy 189
Campostrini, Esteban 449
Cao, Jun 383
Casella, Francesco 109, 459, 577
Ceraolo, Massimo 785
Chaker, Salim 849
Chapuis, Christophe 517
Chen, Liping 485, 557
Chilard, Olivier 189
Chung, Tek Shan 929
Clauß, Christoph 401, 865
Colaço, Jean-Louis 637
Colleoni, Arnaud 769
Constantin, Ana 225
Corrales Ciganda, José Luis 647

Crespo, Matthieu 831
Croteau, Dominique 189
Cudok, Falk 197
Dahlberg, Simon 527
Dao, Thanh-Son 469
Daumas, Julien 831
de La Calle, Alberto 873
Del Hoyo Arce, Itzal 393, 419
Delgado Beltran, Juan Gabriel 273
Dempsey, Mike 135, 273
Dersch, Jürgen 605
Diehl, Stephan 23
Ding, Ji 485
Dolin, Nicolas 769
Dominik, Andreas 367
Donn, Christian 537
Dubucq, Pascal 695
Duggan, Alexander 171
Eberhart, Philip 929
Edman, Johan 585
Elmqvist, Hilding 89, 235, 245, 427, 527, 625
Ernst, Gernot 367
Fateh, Nader 171
Feral, Hervé 769
Ferretti, Gianni 681
Finkbeiner, Konstantin 921
Fischer, Torben 127
Fish, Garron 273
Flehmig, Martin 265
Folie, Michael 537, 849
Fontes De Miranda, Pablo 911
Francke, Henning 197
Franke, Rüdiger 339
Friebe, Johannes 537
Fritzson, Dag 181
Fritzson, Peter 181, 255, 625, 671, 911
Fuchs, Marcus 31, 737
Führer, Claus 903
Funkquist, Jonas 217
Gall, Leo 17
Gallardo-Yances, Stephanie 17
Gallego, Elena 747
Garcia Espinosa, Antoni 501
Garro, Alfredo 625
Gauterin, Frank 127
Geletu, Abebe 311
Gengler, Thierry 517
Gerasimov, Kirill 803
Ghandriz, Toheed 427
Gierow, Conrad 707
Giese, Tim 491
Gillot, Romain 135
Giraud, Loic 79
Gleizes, Marie-Pierre 189
Goesmann, Alexander 367
Gohl, Jesse 171

DOI
10.3384/ecp15118

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

13

Goletti, Massimo 681
Göres, Jörn 547
Görner, Klaus 715
Goteman, Axel 235, 427
Götz, Florian 127
Gräber, Manuel 281
Graf, Frank 855
Grasso, Marco 681
Gravelle, Aled 291
Greitschus, Marius 159
Gubsch, Ines 265
Gühmann, Clemens 547
Hartlep, Christian 321
Hassel, Egon 707
Haufe, Jürgen 401
Haumer, Anton 509, 929
Heckmann, Andreas 411, 441
Helsen, Lieve 51, 59
Henningsson, Toivo 301, 321
Herfs, Werner 117
Herrero López, Saioa 393, 419
Herzog, Hans-Georg 479
Hintzen, Ullrich 401
Hirano, Yutaka 143, 795
Hirono, Tomohide 795
Hirsch, Tobias 605
Hofmann, Andreas 893
Höger, Christoph 99
Hopfgarten, Siegbert 311
Huang, Sen 71
Hübel, Moritz 707
Huber, Frank 849
Inderfurth, Alexander 197
Inoue, Shintaro 143
Jardin, Audrey 625
Jensen, Peter G. 159
Ježek, Filip 359
Johnsson, Anna 823
Johnsson, Victor 687
Jorissen, Filip 51, 59
Kampfmann, Rüdiger 883
Kather, Alfons 695
Keck, Alexander 441
Kehrer, Christian 849
Klöckner, Andreas 411
Klostermann, Volker 401
Knoblach, Andreas 411
Koeppel, Wolfgang 855
Kofman, Ernesto 449
Kofranek, Jiri 359
Köhler, Jürgen 281
Kollmeier, Hans-Peter 127
Kosenko, Ivan 803
Kral, Christian 509, 929
Kranz, Stefan 197
Kuhn, Martin 491
Lachassagne, Laurent 769
Lacroux, Simon 377

Lanzerath, Franz 777
Larsen, Kim G. 159
Larsson, Per-Ola 217
Laughman, Christopher 759
Lauster, Moritz 383
Lazutkin, Evgeny 311
Lee, Byoung Doo 615
Lee, Dong Kyu 615
Li, Dan 71
Li, Pu 311
Li, Wan 817
Liebold, Edgar 401
Link, Kilian 17
Liu, Wei 485
Liyana, Eashan 377
Llorens, Juan 747
López Perez, Susana 393, 419
Magnusson, Fredrik 301
Maile, Tobias 383
Majetta, Kristin 401
Matejak, Marek 359
Mattsson, Sven Erik 89
Menager, Nils 883, 893
Mengist, Alachew 181, 671
Mesonero Dávila, Iván 393, 419
Michalski, Tomasz D. 501
Mickan, Bodo 663
Mikelsons, Lars 883, 893
Mikučionis, Marius 159
Miranda, Reymundo 71
Modarrez Razavi, Sara 217
Möllenbruck, Florian 715
Monno, Michele 681
Moser, Sascha 479
Motschke, Tobias 117
Mühlbauer, Monika 17
Müller, Dirk 225, 383, 737, 921
Murakami, Shitaroh 795
Nagel, Wolfgang E. 265
Neidhold, Thomas 845
Neitzke, Daniel 777
Neudorfer, Jonathan 43
Nilsson, Andreas 217
Nocke, Jürgen 707
Nouidui, Thierry S. 31
Nytsch-Geusen, Christoph 197, 383
Oeljeklaus, Gerd 715
Oelsner, Olaf 845
Ohsumi, Yuji 795
Ohtomi, Koichi 811
Olenmark, Andreas 823
Olsson, Hans 235, 245, 625
Oppermann, Jens 225
Ota, Junya 143
Otter, Martin 89, 245, 491, 625
Özdemir, Denis 117
Pagano, Bruno 637
Palanisamy, Arunkumar 671

14 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Pannu, Pukashawar 903
Paulus, Cédric 79
Payelleville, Maxime 625
Peniche Garcia, Ricardo 695
Perles, Alexandre 189
Perlman, Alexander 687
Petridis, Kosmas 865
Pfeiffer, Andreas 671
Picard, Damien 51
Picarelli, Alessandro 135, 291
Pipiorke, Jörg 207
Pitchaikani, Anand 171
Polklas, Thomas 605
Pollok, Alexander 109, 235, 577
Pop, Adrian 181, 255, 671
Potter, James 329
Prabhakaran, Praseeth 855
Prölss, Katrin 653
Qiao, Hongtao 759
Rachkov, Alexey 803
Rädler, Jörg 383
Ramachandran, Karthikeyan 43
Reiner, Matthias 349
Remmen, Peter 383
Remond, Xavier 517
Riba Ruiz, Jordi-Roger 501
Ribas Tugores, Carles 197
Richter, Marcel 715
Robinson, Dr. Simon 291
Roca, Lidia 873
Rodríguez-García, Margarita M. 873
Romeral Martinez, Luis 501
Röper, Jan 547
Roxling, Vilhelm 235, 427
Runvik, Håkan 217
Satabin, Lucas 637
Scaglioni, Bruno 681
Schallert, Christian 565
Schamai, Wladimir 625, 911
Schenk, Heiko 605
Schmitke, Chad 469, 537
Schmitt, Thomas 23
Schmitz, Gerhard 663, 695
Schneider, Georg Ferdinand 225
Schoenewolf, Stefan 479
Schölzel, Christopher 367
Schuchart, Joseph 265
Schumacher, Markus 921
Schwan, Torsten 207
Schwarz, Christine 537
Schwarz, Christoph 441
Seidel, Stephan 401
Sekisue, Takayuki 795
Sewgobind, Awin 653
Seya, Osamu 795
Shao, Jintao 557
Shimada, Satoshi 795
Shin, Jin Woo 615

Siemers, Alexander 181
Sjölund, Martin 671
Sloth, Jens 823
Spike, Jonathan 537
Starinsk, Andreas 715
Steinbrecher, Andreas 99
Sten, Jon 687
Stepanov, Sergey 803
Stinner, Sebastian 921
Streblow, Rita 225, 737, 921
Strump, Thomas 159
Svensson, Jörgen 823
Taube, Julian 479
Tavella, Jean-Philippe 189
Teraoka, Yoichi 795
Thiele, Bernhard 255
Thomas, Eric 625, 831
Thomas, Olivier 831
Thorade, Matthis 383
Thuy, Andreas 43
Thuy, Nguyen 625
Tifan, Xiong 817
Tiller, Michael 725
Tilly, Anders 687
Tobolář, Jakub 151
Tribula, Martin 359
Tripakis, Stavros 159
Tummescheit, Hubertus 653
Tundis, Andrea 625
Unger, Rene 207
Valenzuela, Loreto 873
Vallée, Mathieu 79
van der Linden, Franciscus L. J. 151
van Es, Eli 653
van Treeck, Christoph 383
Varchmin, Andreas 281
Velut, Stéphane 217
von der Heyde, Michael 663
Vuillerme, Valéry 595
Walther, Marcus 265, 339
Waurich, Volker 265
Wetter, Michael 31, 59
Wilhelmsson, Carl 823
Wimmer, Reinhard 383
Windahl, Johan 585, 653
Winkler, Dietmar 725
Winter, Michael 479
Worschech, Niklas 339, 883
Xie, Gang 485, 557
Yang, Hao 485
Yongchao, Li 817
Zhang, Haiming 485
Zhiming, Zhou 817
Zhou, Fanli 557
Zhu, Mingqing 557
Ziegler, Stephan 23
Zimmer, Dirk 109, 235, 349
Zuo, Wangda 71

DOI
10.3384/ecp15118

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

15

16 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Experience with Industrial In-House Application of FMI

Kilian Link1 Leo Gall2 Monika Mühlbauer3 Stephanie Gallardo-Yances4

1,3,4Siemens AG, Germany, {kilian.link, monika.muehlbauer,
stephanie.gallardo}@siemens.com

2LTX Simulation GmbH, Germany, leo.gall@ltx.de

Abstract

This paper discusses FMI usage in an in-house
simulation tool landscape where it helps to open doors
between different tools. However, limitations due to
missing physical connectors or missing model structure
are faced and are described with the help of use cases.
Information hiding in FMI can turn out obstructive in
in-house applications. Experiences from implementing
FMI support in in-house simulation tools are shared.

Keywords: FMI in in-house simulators, FMI2.0,

physical connectors, structured parameters, co-

simulation, model exchange, NMPC, control test

1 Introduction

The industrial application of Functional Mock-Up
Interface (FMI) has already been discussed several
times, e.g. (Bertsch et al., 2014). The goal of this paper
is to add another aspect to this discussion. Our focus
lies on the in-house applicability of FMI in coupling
different tools and propriety models.

For several years, we are developing side-by-side
two different simulation tools for power plant systems.
An in-house Modelica library, called SiemensPower,
and a C++ based in-house tool for a similar purpose
named Dynaplant. The reason for developing both
simulation tools lies in their different strengths and
weaknesses. Dynaplant scores with its high
performance and numerical robustness that allows us
the investigation of fluid systems with a hundred
thousand dynamic states or more. It is fully integrated
into the in-house tool chain and allows an automatic
model setup from the design software KRAWAL® for
steady-state heat balances. The GUI is optimized for
the purpose of modeling large fluid systems and the
plant model looks very similar to the familiar
KRAWAL® model. The drawback of Dynaplant is the
relatively high effort when developing new component
models.

The main driver for starting a Modelica library was
the modeling flexibility and transparency to the user.
Naturally, a Modelica library requires less effort in,
developing and maintaining of models. However, the
performance and numerical robustness is worse.

Once the need for two simulation environments is
accepted, it stands to reason to combine them in order
to leverage the benefits of both solutions. The first step

is to integrate Modelica models into Dynaplant to
overcome its limits with respect to modeling flexibility
(Sun et al., 2011). This development was started some
years ago based on Dymola’s code export feature.
Then, FMI for Model Exchange was adopted as soon it
became available. The use cases in chapter 2.1 explain
this application in more detail.

Chapter 2.2 addresses the second class of use cases,
which also deal with tool interoperability. However, in
these cases co-simulation Functional Mock-up Units
(FMU) are exported from Dynaplant models and serve
as a representation of the real plant in the loop with a
Nonlinear Model Predictive Controller (NMPC).

Chapter 3 focuses on the development of FMI
support in Dynaplant and points out some issues
experienced during implementation.

2 Use Cases

Two kinds of use cases are described in this chapter,
one targeting the utilization of FMI for model
exchange, the other addressing FMI for co-simulation,
see Figure 1. Apart from different application areas
major similarities exist:

· The use cases focus on tool interoperability
· All FMUs reside in-house only
· The models are huge with respect to number

of parameters, dynamic states and
internal/local variables

Figure 1: Overview of Use Cases

Our requirements of model exchange and tool
exchange certainly differ in some aspects from those in

DOI
10.3384/ecp1511817

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

17

the use cases defined by the Modelisar project which
are described in (Blochwitz et al., 2011). For our use
cases there is no necessity for information hiding or IP
protection. On the contrary, the goal is to keep as much
information available for the user as possible.

2.1 Dynaplant Simulation

Our in-house simulator Dynaplant has been developed
for more than ten years in a cooperation of Siemens
Power and Gas and Siemens Corporate Technology. In
the past, the analysis focused on the detailed, dynamic
behavior of the water-steam cycle in a combined-cycle
power plant.

A special emphasis has been drawn on the
investigation of hydro-thermal dynamic-stability of
once-through evaporators between gas and water side
(Franke, 2008). Lately, the scope was extended to
investigations on the plant level. In general, this leads
to a higher need for flexibility in modeling because
different subsystems come into focus depending on the
application. FMI is an enabling technique to provide
that flexibility, e.g. to add the gas side and also
advanced controls, whilst keeping the efforts low. The
simulation support of tight project schedules was only
possible through the usage of FMUs.

In Dynaplant, components are modeled in one-
dimensional resolution in an acausal way. The GUI is
written in C# using a Microsoft Visio Add-in whereas
the plant model itself is stored in a Modelica similar
format. For simulation the plant is translated to C++.

2.1.1 Physical Component Models

The most natural use case for FMI in in-house
simulators is to import models from different sources
via model exchange. By this means, we integrate
Modelica models of subsystems in Dynaplant to extent
its application scope. The obvious driver behind this is
the wish to benefit from both, the high performance of
the C++ based in-house simulator and the modeling
flexibility of Modelica.

Figure 2 shows the Modelica model of a multistage
pump system controlled by a variable gear modelled in
Dymola. The model has been prepared for FMI export
which required an expansion of the physical fluid ports
to a signal interface, already resolving the causality.
Even for the very simple interface of such a pump
system the transformation to a pure signal interface
adds some overhead. Additionally, it becomes harder
to understand the model when importing it as an FMU,
see Figure 3. In Figure 4 the same system is modelled
based on built-in components. The limitation of FMUs
to signal interfaces very much hinder a convenient use
as an imported component. These issues will boost the
demand to provide all needed models as built-in
components and not as FMUs. All the more, since the

pump example is a rather simple system with a very
small interface regarding the number of physical
connectors. Looking at more involved power plant
components like a drum model with multiple fluid
connections across the boundary the graphical
representation of the FMU holds almost no benefits
because it becomes impossible to grasp the purpose of
the model at first glance.

Figure 2: Modelica model of pump system

Figure 3: Integration of pump system FMU in Dynaplant

Figure 4: Dynaplant built-in model of a pump system

Besides the loss of information caused by the
unstructured signal interface modeling, the lost
structure of parameters in an FMU is the most severe
shortcoming for us. Particularly, FMUs based on
Modelica models make use of parameter hierarchies on
many levels. Additionally, almost all professional
Modelica libraries use features like grouping and tabs
to generate a convenient user interface. Once exported
to an FMU all this information is lost and the user is
confronted with an unsorted list of parameters.

M
motor

gear

HP

boundary
p

h

MP

boundary1
p

system

g

defaults

f rom_bar1

bar

Pa

massFlowRate

m_flow

f rom_bar

bar

Pa

k=1000.0

from_kJ

h

h

k=0.001

to_kJ

firstOrder

PT 1

T=0.01

firstOrder1

PT1

T=0.1

pOut

m_flow

gearRatio

motorIsOn

pIn

hIn

hOut

Experience with Industrial In-House Application of FMI

18 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511817

2.1.2 Controller in Dynaplant (based on generated
Modelica code)

For testing plant control systems, Modelica models
are automatically generated based on proprietary
controller descriptions (Link et. al., 2014). In order to
use these controller models in Dynaplant, Modelica
models can be exported as FMU and imported into
Dynaplant. Tests showed that large controller models
are difficult to handle as FMUs for two reasons.

First, they use a bus connector (expandable
connector) for signal exchange in Modelica. This bus
connector contains hundreds of variables. Figure 5
sketches the concept for signal exchange. A global
name space is replicated by using an expandable
connector as an inner/outer component. Therefore,
actuators and measurements can be placed in the plant
on any level in the hierarchy. Furthermore, all
boundary conditions are set on the bus connector. This
graphical representation of the tested system as well as
the underlying control layout is lost when using FMI.

Figure 5: Signal Exchange in Modelica

All exchanged signals need to be available upon FMU
import in Dynaplant in order to investigate control
behavior. Currently, only scalar connectors are
supported by FMI, which makes it hard to handle large
sets of bus connector signals after importing the FMU.
Future versions of the FMI specification might
eliminate this problem.

Second, the controller models include many
instances with a huge number of parameters, which are
exported into the FMU. The resulting
modelDescription.xml measures more than 150 MB.
Compared to the Modelica implementation measuring
about 6.7 MB (total model with all classes), this leads
to slower model import and instantiation. As the
compressed FMU appears to be small for the end user,
potential causes for performance issues are not
transparent. So far, we do not have a solution for
providing a compact FMU interface with all required
information. Limiting the number of visible parameters
on the Modelica side cannot be intended, as they might
be useful for investigating control behavior.

2.2 Offline Test of NMPC Loop

This section shows the usage of FMI for offline test of
a Nonlinear Model Predictive Control (NMPC) loop.
The basic concept of NMPC is to use a dynamic model
to forecast system behavior and optimize the forecast
in producing the best decision. In practice, an optimal
control problem is solved over a finite future horizon,
but only the first optimal control signal is applied to
the system. Then the optimization horizon is shifted
and the calculations are repeated. The solution of the
optimal control problem depends on the initial state of
the model which is the current state of the plant. In
general, measurements are disturbed by noise or are
missing, resulting in the need for a state estimation
algorithm to determine the initial states under
consideration of the past record of measurements.

Figure 6: NMPC Loop

The model-based optimization framework looks as
follows (see Figure 6):
· Modelica system models are used to describe the

dynamics of the process and are used for
optimization and state estimation

· The optimization is solved using JModelica.org,
the open source platform for optimization,
simulation and analysis of complex dynamic
systems. JModelica.org interfaces the numerical
solver IPOPT and CasADi – the framework for
efficient evaluation of expressions and their
derivatives

· For online application the optimal control signal
is applied to the plant using the OPC interface of
the Siemens control system SPPA-T3000 that
performs all power plant automation tasks

· For offline tests pseudo measurement data is used
to estimate the current state of the model. These
measurements are generated by simulating a
detailed model of the power plant including the
control structure provided as co-simulation FMU
exported from Dynaplant

The FMU has an internal state consisting of all values
that are necessary to continue a simulation. This

Session 2A: FMI 1

DOI
10.3384/ecp1511817

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

19

feature could be used for NMPC to restart simulations
after initialization with different values of the input
signals. Unfortunately, the FMI 2.0 capability
canGetAndSetFMUState is not yet implemented in
JModelica.org. A workaround was implemented to set
a consistent internal state, consisting of the values of
continuous-time states as well as the iteration variables.
It is worth noting that missing FMI capabilities or
incomplete implementation is not the exception, but the
rule. For each and every intended use case it is up to
the user to test the capabilities of the chosen tool.

2.3 ControlTest in Modelica

This last use case is similar to the one from section
2.1.2, with the notable difference that not only control
code is available in Modelica but also the plant model.

It is intended to show that the openness and
flexibility of native Modelica models should not be
underestimated compared to FMI. FMUs, as a
translated and compiled version of the model, have
well-known drawbacks e.g. when changing interface
definitions or trying to understand the internal
hierarchical model structure.

On a first look, coupling real-world controller code
with physical plant models is a classic use case for
FMI. Generally, there is a clear interface between the
continuous plant model and the discrete controller
implementation.

However, for testing power plant control systems,
we currently prefer to have the full system in one
uniform Modelica model. Although this requires
transferring the graphical structure of control diagrams
as well as the full implementation of all control blocks
to Modelica. More details on this approach can be
found in (Link et al., 2014).

For each study, specific plant models are built,
specifically designed for the scope of the control task
to be tested. Before starting the first simulations, a
considerable amount of work goes into finding
consistent boundary conditions for the relevant parts of
the plant.

Having one homogeneous test unit in Modelica
revealed the following benefits. The interface between
plant and controller is not statically defined at the
beginning. This allows fast adaptions to new controller
strategies. Changes in controller or plant model do not
require exporting new FMUs. Even though exporting
FMUs requires little effort, ensuring to have the right
FMU at the right place, creates unnecessary overhead
during model development.

One holistic Modelica model allows control
engineers and plant engineers to look into the same
model. They both have access to the full system
structure, equations and model-integrated
documentation. This helps both sides to understand the
system behavior and therefore to trust on the results.

This reflects the special situation of usage of FMI in
in-house applications, as already mentioned above.

Regarding documentation, most real-world FMUs
currently lack on this part (e.g. documentation of
model limitations and expected combinations of
parameters and input signals). The FMI specification
allows documentation to be added by the exporting
tool. But, when exporting, it is not guaranteed that the
documentation will be provided to user on the
importing side. One needs to establish a process on
how and where to store the binary FMUs together with
the model source code. In contrast, using Modelica, we
have one single source of truth, being the Modelica
code in version control with hierarchical, model-
integrated documentation.

The mentioned drawbacks of FMI are
characteristically for any model exchange interface,
therefore we do not propose to fix the FMI standard.
Instead, we want to encourage users to carefully
investigate a pure Modelica solution before introducing
FMI interfaces in the tool-chain.

3 Implementation of FMI Support in

Dynaplant

With respect to FMI, we support version 1.0 and 2.0 of
model exchange import as well as 1.0 of co-simulation
export. Implementation efforts are hard to estimate as
they naturally depend e.g. on the experience of the
implementer and also on the amount of optional
features that shall be supported. However, we want to
describe briefly in the following the main steps and
issues of FMI implementation that we experienced in
Dynaplant.

3.1 Import FMI for Model Exchange 1.0

Using an FMU in our tool requires that it can be
handled almost as any other component. This means
that it has an icon that can be dragged and dropped
from a library onto the plant view. Furthermore, the
component`s inputs / outputs do have graphical port
representations that can be connected to ports of other
components. Moreover, a parameter dialog needs to be
available.

In order to support the described user experience, a
gray box component has been added to the component
library. After instantiation it shows a parameter dialog
for specifying a FMU zip archive. The
modelDescription.xml is parsed in C# where we
generated a class from the available xsd scheme for
deserialization. Parameters are then known if revealed
by the FMU and it is possible to draw ports and the
final component shape. FMUs in version 1.0 and 2.0
do not transport graphical information. Thus, own
arrangements have to be done. In our software
components usually have predefined ports and shapes
and it required significant effort to build the final

Experience with Industrial In-House Application of FMI

20 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511817

component shape only during plant editing. However,
after this specification step no extra effort is needed
during plant editing for an FMU component, compared
to any other component in the plant.

Stepping into simulation, we need to parse the xml-
File again in C++, as much more static model
information (e.g. information on internals and states) is
required during run-time. It did not seem reasonable to
overload already our model file (the plant definition)
with all information and transfer it to C++. The
implementation of calling the FMU functions with the
correct arguments and in the right order was
manageable with the help of the FMI specification and
the FMU SDK of QTronic in mind. As FMUs of
version 1.0 cannot transport information on the
Jacobian, entries have to be calculated numerically
which is quite extensive.

As far as our experience goes, a first implementation
of model import can be set up rather easily, but testing
and bug fixing is quite time consuming. It is often
hindered by tool specific problems like license issues
with the exporting tool (even if all partners have valid
licenses) or unreasonable start values for inputs in the
modelDescription.xml (e.g. some tools give only 0.0
for doubles). These values should be such that they
allow for a successful and useful initialization if
actually used and not overwritten during the import.
Moreover, a general issue in testing is given by the
nature of FMI as it is not possible to debug into the
FMU to better understand what is happening inside a
function call.

3.2 Import FMI for Model Exchange 2.0

Adopting FMI 2.0 has been accomplished by updating
the implementation for FMI 1.0 which has been
described in the section 3.1. The main effort consisted
of updating of the XML parser and of our library of
associated convenience functions in C++.

We now support an alternative way of calculating
the Jacobian in case the capability flag
providesDirectionalDerivatives is set to true. We need
to provide also an alternative treatment in case an FMU
does not support this capability. Generally, the FMI 2.0
specification and also implementation is complicated
due to the large number of optional features, in
particular capability flags. Two FMUs of version 2.0
and possibly from the same exporting tool can actually
be very different in scope and capability. This becomes
apparent only in the specific modelDescription.xml
files.

With respect to performance, some firsts tests were
done in comparing the import of the same Dymola
model as FMU of version 1.0 and 2.0 (Dymola 2016
including bug fix on directional derivatives and
sampling). Using the numerical calculation of the
Jacobian entries, we experienced a significant decrease

in performance between 1.0 and 2.0. For a rather small
example with 92 algebraic and 1322 differential
equations in total and 4500 s simulation time we
measured a +11 % time usage in the DAE solver.
Astonishingly, the loss of time was mainly in Jacobian
calculation, although the FMU contributes no states but
310 events. Using the directional derivatives and the
associated sparsity information, the performance
decreased even further by roughly the same amount.
For another example which actually contributed states,
the performance of 1.0 and 2.0 roughly leveled up
when using directional derivative information which
proved to be a benefit in 2.0. Up to this point, a lot of
questions remain and further tests are clearly indicated
with various types and sizes of models and different
exporting tools. It is not fully clear if import or export
generate the issues.

3.3 Export FMI for Co-Simulation 1.0

Probably due to the different nature of weak and strong
coupling in general, the effort to implement co-
simulation export in our tools was significantly smaller
than for model exchange import.

Most of the work was consumed in revealing plant
information on all inputs / outputs, internals and
parameters in a suiting way and offer access via
fmiGet… and fmiSet… functions. The compliance
checker was very helpful in bringing the
modelDescription.xml in a correct way. It is quite
remarkable that our model file of a Modelica similar
format consumes roughly more than a factor of 8 less
in storage than the modelDescription.xml including
only inputs/outputs and parameters but no internals.
We derived the learning that it makes sense to look
into the FMI ticket trac for recognized issues in the
specification, e.g., to find out that some importing tools
expect the path to unzipped fmu folders in the call of
fmiInstantiateSlave whereas others expect it to the
zipped path, for instance.

We found testing and bug fixing very difficult and
time-consuming also for co-simulation export. As
Dynaplant is an in-house simulation tool we do not
take part in official FMI cross-checks which could give
a hint on still existing bugs but would probably not
provide significant details on the root of the issues. It is
often hard to track if issues occur in the FMU export
implementation or in the importing environment. For
the latter, the source code is usually unavailable and
debugging possibilities or deeper knowledge on its
communication handling are missing.

An important point in our internal discussions is the
required resources of a co-simulation FMU. It is
necessary to not only transfer one dll but around 35
dlls which are required by our simulator. To begin
with, it is not clear where these should be copied to
upon import such that the importing environment can

Session 2A: FMI 1

DOI
10.3384/ecp1511817

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

21

find them because all but one are loaded only
implicitly. Any copy requires administrator rights at
the target location and upon import, an FMU itself only
knows target locations relative to its own unzipped
location or the application path. If the latter is chosen,
serious problems can occur if dlls with an identical
naming can be found there already, potentially of
different versions. Moreover, we face some difficulties
in unloading all dlls from the address space after a run.
The FMI description does not give guidance in dealing
with such questions.

4 Summary

Even if the implementation of FMI support in in-
house simulation tools implies a great effort, it is useful
for many different applications as shown for some use
cases in this paper. In principle, FMI can help or even
enable some of the shown examples and some of our
target applications, but still we face several limitations.

The use cases of chapter 2.1 highlight the urgent
need to further develop the FMI standard with respect
to the interfaces of FMUs. The existing scalar signal
interface is definitely not powerful enough to allow the
convenient application of FMI. Either it is to allow the
implementation of “physical” connectors as needed in
the use case described in chapter 2.1.1. Or to allow
structuring of a huge number of signals as described in
chapter 2.1.2.

A future FMI standard perfectly suited to our in-
house applications would also need to support the
concepts of acausal modeling - similar to the built-in
behavior of Dynaplant and the basic principles of
Modelica. Moreover, we face a mismatch between the
intention of FMI to hide information and a need to
reveal as much information as possible for in-house
application.

Acknowledgements

The work for this paper was partially funded by the
German Ministry BMBF (BMBF funding code
01IS12022A) within the ITEA2 project MODRIO.

References

Franke, J., Brückner, J. (2008): Dealing with tube cracking at
Herdecke and Hamm-Uentrop, Modern Power Systems,
October 2008.

Christian Bertsch, Elmar Ahle, Ulrich Schulmeister (2014):
The Functional Mockup Interface - seen from an industrial
perspective, Proceedings of the 10th International

Modelica Conference, March 10-12, 2014, Lund, Sweden.
doi:10.3384/ecp1409627

Kilian Link, Leo Gall, Julien Bonifay, Matthias Buggert
(2014): Testing Power Plant Control Systems in Modelica,
Proceedings of the 10th International Modelica

Conference, March 10-12, 2014, Lund, Sweden.
doi:10.3384/ecp140961067

Yongqi Sun, Stephanie Vogel, Haiko Steuer (2011):
Combining Advantages of Specialized Simulation Tools
and Modelica Models using Functional Mock-up Interface
(FMI), Proceedings of the 8th International Modelica

Conference, March 20th-22nd, Technical University,
Dresden, Germany. doi:10.3384/ecp11063491

T. Blochwitz, M. Otter, M. Arnold, C. Bausch, H. Elmqvist,
A. Junghanns, J. Mauß, M. Monteiro, T. Neidhold, D.
Neumerkel, H. Olßon, J.-V. Peetz, S. Wolf, C. Clauß
(2011): The Functional Mockup Interface for Tool
independent Exchange of Simulation Models, Proceedings

of the 8th International Modelica Conference, March 20th-
22nd, Technical University, Dresden, Germany.
doi:10.3384/ecp11063105

Experience with Industrial In-House Application of FMI

22 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511817

A Novel Proposal on how to Parameterize Models in Dymola

Utilizing External Files under Consideration of a Subsequent

Model Export using the Functional Mock-Up Interface

Thomas Schmitt1 Markus Andres1 Stephan Ziegler1 Stephan Diehl1

13DS GmbH, Germany, ④t❤♦♠❛s✳s❝❤♠✐tt✱ ♠❛r❦✉s✳❛♥❞r❡s✱ st❡♣❤❛♥✳③✐❡❣❧❡r✱ st❡♣❤❛♥✳❞✐❡❤❧⑥❅✸❞s✳❝♦♠

Abstract

This paper introduces a novel proposal on how to pa-

rameterize models with data, taking a subsequent model

export into account, using e.g. the Functional Mock-Up

Interface (FMI). During model export parameters are ei-

ther assigned with values directly or they are linked to

external data-files. If the design of models or libraries is

done without considering how data is handled in an ex-

ported model, those concepts are often mixed, resulting

in an inconsistent data management which is cumber-

some or even error prone for the user.

Keywords: model parameterization, data files, model

export, functional mock-up interface, FMI, FMU

1 Introduction

In 2011 a new model export standard was released by

Modelisar: The Functional Mock-Up Interface (FMI)

(Blochwitz et al., 2011), (Association, 2015). FMI was

immediately accepted and promoted by many tool ven-

dors and Original Equipment Manufacturers (OEMs).

Unfortunately, there are a couple of known pitfalls re-

lated to the export of models (Bertsch et al., 2014). One

especially relevant for an a-causal modeling language

like Modelica is related to the change of an a-causal to

a causal model. This required adaption can cause higher

index problems and/or algebraic loops (Blochwitz et al.,

2012). However, this paper shall deal with a topic not yet

intensely discussed by the Modelica community but of

central importance for industrial use cases: Parameteri-

zation of models, considering a subsequent model export

and the handling of data in this case.

From our experience library developers should put

considerable effort into proper model parameterization

when it comes to a subsequent model export. Fortu-

nately, the Modelica language offers several possibilities

to parameterize a model, i.e. to assign parameters with

values.

In Modelica it is common to specify parameter val-

ues in records. The parameterization can either be done

by coding values into the record with the Modelica en-

vironment or by reading the data from an external file

for which the format can vary. Both solutions have their

pros and cons and are absolutely justifiable. (Köhler

and Banerjee, 2005) shows a case where custom text-

based files are used as parameter files, which can be

accessed by multiple simulation environments. On the

other hand, Modelica-based parameter files (records) are

usually more convenient for the user, especially for be-

ginners as they can be edited directly in the Modelica

environment.

1.1 Use-Cases of Exported Models

In this paper we will focus on the export of FMUs from

Dymola1, discussing different use-cases in which the

FMU is utilized after the export. Depending on the par-

ticular use-case the model export underlies different re-

quirements regarding convenient data handling. To our

experience the following cases cover most of the appli-

cations used in industry today.

1. Parameter values are stored inside the FMU.

2. Parameters are stored in an external data-file. The

FMU reads the parameter values during initializa-

tion of the simulation.

3. The data-file is stored inside the FMU’s

r❡s♦✉r❝❡s folder, i.e. the FMU reads the

parameters during initialization, but no external

files are necessary.

Each of those use-cases requires a different implementa-

tion in terms of model parameterization.

1.2 User Convenience

From our experience it turns out that enabling all three

uses-cases significantly enhances the flexibility of the de-

signed models and especially its exported version e.g. an

1Although other ways of exporting like using the ❞②♠♦s✐♠✳❡①❡

or exported source code should behave the same way.

DOI
10.3384/ecp1511823

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

23

FMU. This enables the same models to be applied as a

complete unit coupling models and parameters (use-case

1), as well as using a single model in multiple applica-

tions varying parameters by simply replacing data on a

file system2 (use-case 2) or enabling a combination of

both (use-case 3). Although covering all use-cases would

be the most satisfying solution, it is also valuable to de-

cide for the single most important use-case and imple-

ment this one throughout the whole library.

Therefore we are very pleased to present a first pro-

posal within this paper. Until today the presented ap-

proach is restricted to scalars and tables up to a dimen-

sion of two, but an extension to higher dimensions seems

reasonable.

2 A Small Modelica Library

For a better understanding the parameterization of the

models and the subsequent model export will be demon-

strated using an exemplary Modelica library: The

❚❛❜❧❡❇❛s❡❞❉✐♦❞❡s library (refer to Figure 1).

Figure 1: Package structure of the Modelica library

The packages and the models will be explained in the

following sections.

2.1 The Utilized Model

The model illustrated in Figure 2, which is located in

❇❛s❡❈♦♠♣♦♥❡♥ts✳❙t❛t✐❝❉✐♦❞❡❇❛s✐❝, will be used

to demonstrate both the parameterization and the export

of the model.

2Or alternatively modifying the string pointing to the file.

If = f(Vf)

signalCurrent

Characteristic

V

voltageSensor

reverseBlockingDiode p n

forward

Figure 2: Static model of a diode: I f = f (Vf)

2.2 Model Parameters

To parameterize the model, the diode’s forward char-

acteristic, i.e. I f = f (Vf) is implemented using the

one-dimensional table of the MSL (❈♦♠❜✐❚❛❜❧❡✶❉).

Since the reverse characteristic is not always provided

in datasheets an additional reverse blocking diode (ideal

diode of the MSL) is used to ensure that no current will

flow in reverse direction. The parameters of this diode

are two scalars describing the on-state resistance ❘♦♥ and

the off-state conductance ●♦❢❢.

2.3 Record Structure

To provide different data sets, the parameters

are usually declared in records. We propose to

provide a partial record, i.e. ❘❡❝♦r❞s✳❇❛s❡✳✲
❋♦r✇❛r❞❈❤❛r❛❝t❡r✐st✐❝ that contains the parameter

declarations. This (base) record shall then be extended

to assign the parameters with values via modifiers.

Listing 1: Base record of the static diode model

♣❛rt✐❛❧ r❡❝♦r❞ ❋♦r✇❛r❞❈❤❛r❛❝t❡r✐st✐❝

❡①t❡♥❞s ▼♦❞❡❧✐❝❛✳■❝♦♥s✳❘❡❝♦r❞❀

✐♠♣♦rt ❙■ ❂ ▼♦❞❡❧✐❝❛✳❙■✉♥✐ts❀

♣❛r❛♠❡t❡r ❙tr✐♥❣ ❋✐❧❡♥❛♠❡ ❂ ✧♥♦❋✐❧❡✧❀

♣❛r❛♠❡t❡r ❇♦♦❧❡❛♥ t❛❜❧❡❖♥❋✐❧❡ ❂ ❢❛❧s❡❀

♣❛r❛♠❡t❡r ❙■✳❈✉rr❡♥t ❢♦r✇❛r❞ ❬✿✱✿❪ ❂ ❢✐❧❧✭✵✳✵

✱ ✵✱ ✷✮ ✧❞✐♦❞❡✬s ❢♦r✇❛r❞ ❝❤❛r❛❝t❡r✐st✐❝

✐ ❂ ❢✭✈✮✧❀

♣❛r❛♠❡t❡r ❙■✳❘❡s✐st❛♥❝❡ ❘♦♥✭♠✐♥ ❂ ✵✱ st❛rt ❂

✶❡✲✺✮ ✧❝❧♦s❡❞ ❞✐♦❞❡ r❡s✐st❛♥❝❡✧❀

♣❛r❛♠❡t❡r ❙■✳❈♦♥❞✉❝t❛♥❝❡ ●♦❢❢✭♠✐♥ ❂ ✵✱ st❛rt

❂ ✶❡✲✺✮ ✧♦♣❡♥❡❞ ❞✐♦❞❡ ❝♦♥❞✉❝t❛♥❝❡✧❀

❡♥❞ ❋♦r✇❛r❞❈❤❛r❛❝t❡r✐st✐❝❀

2.4 Combining Model and Data

A composition of the diode model shown in Figure 2 and

the record in Listing 1 will result in the model depicted

in Figure 3.

The parameters of ❇❛s❡❈♦♠♣♦♥❡♥ts✳❙t❛t✐❝✲
❉✐♦❞❡❇❛s✐❝ will be assigned with values stored in the

data record via dot-notation. The corresponding code is

illustrated in Listing 2.

A Novel Proposal on how to Parameterize Models in Dymola Utilizing External Files under Consideration of a
Subsequent Model Export using the Functional Mock-Up Interface

24 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511823

data

staticDiodeBasic

p n

Figure 3: Model and data are combined

Listing 2: Text layer of the static diode model shown in

Figure 3

♠♦❞❡❧ ❙t❛t✐❝❉✐♦❞❡

✳✳✳

r❡♣❧❛❝❡❛❜❧❡

❘❡❝♦r❞s✳❇❛s❡✳❋♦r✇❛r❞❈❤❛r❛❝t❡r✐st✐❝ ❞❛t❛

❛♥♥♦t❛t✐♦♥✭❝❤♦✐❝❡s❆❧❧▼❛t❝❤✐♥❣✮❀

❇❛s❡❈♦♠♣♦♥❡♥ts✳❙t❛t✐❝❉✐♦❞❡❇❛s✐❝

st❛t✐❝❉✐♦❞❡❇❛s✐❝✭

t❛❜❧❡❖♥❋✐❧❡❂❞❛t❛✳t❛❜❧❡❖♥❋✐❧❡ ✱

t❛❜❧❡❂❞❛t❛✳❢♦r✇❛r❞ ✱

t❛❜❧❡◆❛♠❡❂✧❢♦r✇❛r❞❈❤❛r✧✱

❢✐❧❡◆❛♠❡❂❞❛t❛✳❋✐❧❡♥❛♠❡ ✱

❘♦♥❂❞❛t❛✳❘♦♥ ✱

●♦❢❢❂❞❛t❛✳●♦❢❢✮❀

✳✳✳

❡♥❞ ❙t❛t✐❝❉✐♦❞❡❀

In Figure 3 a partial record is instantiated, i.e. a re-

placeable model is introduced. If we add the annotation

❝❤♦✐❝❡s❆❧❧▼❛t❝❤✐♥❣ a drop-down menu appears in

the model’s parameter window (refer to Figure 4).

Figure 4: Parameter window of the static diode model

Now, every record that extends the partial (base)

record can be selected in the ❞❛t❛ menu. This will be

important to be able to easily distinguish the use-cases.

2.5 Getting Data from Files

If data-files are used, it is possible to influence when the

parameters of the model are assigned with values speci-

fied in the data-file. Assigning can either happen during

model translation3 or at the beginning of the simulation,

3Generating an FMU is a functionality similar to translating a

model, resulting in a lot of common properties.

i.e. during initialization. Assigning parameters during

translation means that all values from the data-file are

written into the model’s code directly. Therefore the file

from which the data was read during translation is not

needed anymore when the model is simulated. In con-

trast to that, assigning parameters during initialization of

the simulation needs the file available to start the simula-

tion.

Both of the mentioned possibilities can be favorable

depending on the scenario the model is used in. There-

fore, four implementations will be demonstrated in Sec-

tion 3 demonstrating how to influence when the param-

eterization happens. First we will discuss how to handle

paths to files efficiently within Modelica.

2.6 File Handling

Typically the data-files are put into a folder located in

the libraries root directory, e.g. ❚❛❜❧❡❇❛s❡❞❉✐♦❞❡s as

shown in Figure 1. The data folder is called ❉❛t❛. It

is common to provide the relative path to this folder in-

side the Modelica library by introducing, e.g. the pack-

age ❉✐r❡❝t♦r② shown in Listing 3.

Listing 3: Directory Package

♣❛❝❦❛❣❡ ❉✐r❡❝t♦r②

❝♦♥st❛♥t ❙tr✐♥❣ ❞❛t❛❋♦❧❞❡r ❂

▼♦❞❡❧✐❝❛✳❯t✐❧✐t✐❡s✳❋✐❧❡s✳❧♦❛❞❘❡s♦✉r❝❡✭✧

♠♦❞❡❧✐❝❛ ✿✴✴ ❚❛❜❧❡❇❛s❡❞❉✐♦❞❡s✴✧✮ ✰ ✧❉❛t❛✴✧

❀

❡♥❞ ❉✐r❡❝t♦r②❀

3 Parameterization of the Model

In the following chapter, four different implementations

are introduced to cover the proposed use-cases. Those

will be discussed in the following sections.

3.1 Implementation 1: Parameters are As-

signed in the Record Directly

A very common case for Modelica library developers is

to specify the value of a parameter directly inside the

record. This generates an exported model (FMU) that

does not need any data-file. This is particularly useful

when the user just wants to change only few parameters

- preferably scalar values - but not the whole parameter

set containing big tables.

Listing 4 illustrates the parameters of the diode’s for-

ward characteristic which can be found in the datasheet

of Infineon’s Hybrid Pack 2.

Listing 4: Data stored in the record

r❡❝♦r❞ ❋♦r✇❛r❞❈❤❛r❴❍P✷

✧❢♦r✇❛r❞ ❝❤❛r❛❝t❡r✐st✐❝ ❋❙✽✵✵❘✵✼❆✷❊✸✧

❡①t❡♥❞s ❇❛s❡✳❋♦r✇❛r❞❈❤❛r❛❝t❡r✐st✐❝✭

❢♦r✇❛r❞ ❂ ❬✵✱✵❀ ✵✳✺ ✱✵✳✵✶❀

✵✳✼✹✸ ✱✼✳✼✹✾❀ ✶✳✵✵✼ ✱✶✵✾ ✳✷✵✸❀

Session 2A: FMI 1

DOI
10.3384/ecp1511823

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

25

✶✳✶✷✻ ✱✷✵✼ ✳✽✸✽❀ ✶✳✷✷✻ ✱✸✵✾ ✳✷✾✶❀

✶✳✸✵✻ ✱✹✵✼ ✳✾✷✻❀ ✶✳✸✼✾ ✱✺✵✾ ✳✸✼✾❀

✶✳✹✹✵ ✱✻✵✽ ✳✵✶✹❀ ✶✳✺✵✷ ✱✼✵✾ ✳✹✻✼❀

✶✳✺✺✺ ✱✽✵✽ ✳✶✵✷❀ ✶✳✻✵✾ ✱✾✵✾ ✳✺✺✺❀

✶✳✻✻✸ ✱ ✶✵✵✽ ✳✶✾✵❀ ✶✳✼✶✸ ✱✶✶✵✾ ✳✻✹✸❀

✶✳✼✺✺ ✱✶✷✵✽ ✳✷✼✽❀ ✶✳✽✵✺ ✱✶✸✵✾ ✳✼✸✶❀

✶✳✽✹✼ ✱ ✶✹✵✽ ✳✸✻✻❀ ✶✳✽✾✸ ✱✶✺✵✾ ✳✽✷❪✱

❘♦♥ ❂ ✶❡✲✺✱

●♦❢❢ ❂ ✶❡✲✺✮❀

❡♥❞ ❋♦r✇❛r❞❈❤❛r❴❍P✷❀

One possible drawback when specifying data directly

inside the record is that it is rather inconvenient to mod-

ify arrays and matrices. Hence, data is often provided

inside data-files, i.e. ♠❛t-files, ❝s✈-files, ❤❞❢✺-files or

any other file formats or even user-specific file formats.

3.2 Implementation 2: Read Data from File

during Model Translation

To read data from ❝s✈ or ♠❛t files Dymola provides

functions within the ❉❛t❛❋✐❧❡s package. The func-

tion r❡❛❞▼❆❚♠❛tr✐①✭✮ needs two arguments, the file-

name and the variable name stored inside the file. The

s❝❛❧❛r✭✮ function is needed to convert the ✭✶①✶✮-

matrix into a scalar value. In Listing 5 the data is read

from the file ❉✐♦❞❡❋❙✽✵✵❘✵✼❆✷❊✸✳♠❛t. When the

model is translated the values of the data-file are stored

inside the record, i.e. the data-file is not needed to simu-

late the model.

Listing 5: Data read from file during model translation

r❡❝♦r❞ ❋♦r✇❛r❞❈❤❛r❴❍P✷❴❚r❛♥s❧❛t✐♦♥

✧❢♦r✇❛r❞ ❝❤❛r❛❝t❡r✐st✐❝ ❋❙✽✵✵❘✵✼❆✷❊✸ ❢r♦♠ ❢✐❧❡

❞✉r✐♥❣ ❚r❛♥s❧❛t✐♦♥✧

❡①t❡♥❞s ❇❛s❡✳❋♦r✇❛r❞❈❤❛r❛❝t❡r✐st✐❝✭

❢♦r✇❛r❞ ❂ ❉❛t❛❋✐❧❡s✳r❡❛❞▼❆❚♠❛tr✐①✭

❉✐r❡❝t♦r②✳❞❛t❛❋♦❧❞❡r ✰ ✧

❉✐♦❞❡❋❙✽✵✵❘✵✼❆✷❊✸✳♠❛t✧✱ ✧❢♦r✇❛r❞❈❤❛r✧✮

✱

❘♦♥ ❂ s❝❛❧❛r✭❉❛t❛❋✐❧❡s✳r❡❛❞▼❆❚♠❛tr✐①✭

❉✐r❡❝t♦r②✳❞❛t❛❋♦❧❞❡r ✰ ✧

❉✐♦❞❡❋❙✽✵✵❘✵✼❆✷❊✸✳♠❛t✧✱ ✧❘♦♥✧✮✮✱

●♦❢❢ ❂ s❝❛❧❛r✭❉❛t❛❋✐❧❡s✳r❡❛❞▼❆❚♠❛tr✐①✭

❉✐r❡❝t♦r②✳❞❛t❛❋♦❧❞❡r ✰ ✧

❉✐♦❞❡❋❙✽✵✵❘✵✼❆✷❊✸✳♠❛t✧✱ ✧●♦❢❢✧✮✮✮❀

❡♥❞ ❋♦r✇❛r❞❈❤❛r❴❍P✷❴❚r❛♥s❧❛t✐♦♥❀

In case of a subsequent model export the exported

model will behave exactly the same as the one covered

in implementation 1. The major difference is, that in this

implementation parameter values are read from a file in-

stead of Modelica code during translation. This can be

convenient, as tools specialized on data manipulation can

be used to generate the data file and they can be indepen-

dent of the simulation environment as e.g. in (Köhler and

Banerjee, 2005).

3.3 Implementation 3: Read Data from File

during Model Initialization

This implementation becomes favorable if the user wants

to exchange whole data sets of one and the same model.

This can be the case when the user wants to generate only

one FMU of a model, using different sets of parameters

based on data files.

If the record shown in Listing 5 is modified to the

record illustrated in Listing 6 the data will not be saved

in the model. This is due to two major differences in the

implementation.

For the scalar values Dymola’s Modelica compiler as-

sumes that the parameter ❋✐❧❡♥❛♠❡ replacing the con-

stant String in Section 3.2 is intended to be changed, and

is therefore kept as a parameter in the compiled model.

This makes it possible to change the ❋✐❧❡♥❛♠❡ after

model compilation.

For the table values, the ability of the MSL’s

❈♦♠❜✐❚❛❜❧❡s is used, which enables the user to de-

cide if an external file or a table from Dymola shall be

used. In this case no internal table is used as shown in

Section 3.2, but a reference to a file instead. Therefore

the table only receives the path to the file containing the

data. During simulation the functions within the table it-

self will access the data directly from the file specified

as ❋✐❧❡♥❛♠❡. As the data is not written to the model,

the size of the tables within the file are not determined

during compilation and the sizes of the tables within the

datafile can change without modifying the model itself.

Listing 6: Data read from file during simulation

r❡❝♦r❞ ❋♦r✇❛r❞❈❤❛r❴❍P✷❴❙✐♠✉❧❛t✐♦♥

✧❢♦r✇❛r❞ ❝❤❛r❛❝t❡r✐st✐❝ ❋❙✽✵✵❘✵✼❆✷❊✸ ❢r♦♠ ❢✐❧❡

❞✉r✐♥❣ ❙✐♠✉❧❛t✐♦♥✧

❡①t❡♥❞s ❇❛s❡✳❋♦r✇❛r❞❈❤❛r❛❝t❡r✐st✐❝✭

❋✐❧❡♥❛♠❡ ❂ ❉✐r❡❝t♦r②✳❞❛t❛❋♦❧❞❡r ✰ ✧

❉✐♦❞❡❋❙✽✵✵❘✵✼❆✷❊✸✳♠❛t✧✱

t❛❜❧❡❖♥❋✐❧❡ ❂ tr✉❡ ✱

❘♦♥ ❂ s❝❛❧❛r✭❉❛t❛❋✐❧❡s✳r❡❛❞▼❆❚♠❛tr✐①✭

❋✐❧❡♥❛♠❡ ✱ ✧❘♦♥✧✮✮✱

●♦❢❢ ❂ s❝❛❧❛r✭❉❛t❛❋✐❧❡s✳r❡❛❞▼❆❚♠❛tr✐①✭

❋✐❧❡♥❛♠❡ ✱ ✧●♦❢❢✧✮✮✮❀

❡♥❞ ❋♦r✇❛r❞❈❤❛r❴❍P✷❴❙✐♠✉❧❛t✐♦♥❀

As one can see in Listing 6, the parameter ❢♦r✇❛r❞
(shown in Listing 5) was removed and the parameter

t❛❜❧❡❖♥❋✐❧❡ was set to tr✉❡ to enable the function-

ality described above.

String Parameters in Dymola

If the record ❋♦r✇❛r❞❈❤❛r❴❍P✷❴❙✐♠✉❧❛t✐♦♥ is cho-

sen (Listing 6), the parameter values are not stored in

the FMU. They will be read automatically from the data-

file during model initialization. The generated FMU will

solely contain the string parameter ❋✐❧❡♥❛♠❡ specifying

the path to the data-file. Dymola users have to set the fol-

lowing flag to ensure that string parameters appear inside

the FMU:

A Novel Proposal on how to Parameterize Models in Dymola Utilizing External Files under Consideration of a
Subsequent Model Export using the Functional Mock-Up Interface

26 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511823

❆❞✈❛♥❝❡❞✳❆❧❧♦✇❙tr✐♥❣P❛r❛♠❡t❡rs ❂ tr✉❡

Now one can simply change the to path to the data-file

by changing the string parameter.

3.4 Implementation 4: Read Data from File

during Model Initialization with Data in

the FMU

In many cases it is desired to put the data-files into the

FMU since many users don’t want to separate model and

data when it comes to model export to avoid potential

sources of errors. One very common error in that re-

gard is, that data-files are not found as they are not being

passed on with the FMU or their (relative) path on the

hard drive changed.

Therefore it makes sense to store the data-file in the

FMU’s r❡s♦✉r❝❡s folder. To do so only a slight modi-

fication of implementation 3 (Listing 6) is necessary. The

resulting code is shown in (Listing 7).

Listing 7: Record used to store the data-file in the FMU’s

resources folder

r❡❝♦r❞ ❋♦r✇❛r❞❈❤❛r❴❍P✷❴❧♦❛❞❘❡s♦✉r❝❡

✧❢♦r✇❛r❞ ❝❤❛r❛❝t❡r✐st✐❝ ❋❙✽✵✵❘✵✼❆✷❊✸ ❢r♦♠ ❢✐❧❡

❧♦❛❞ ❘❡s♦✉r❝❡✧

❡①t❡♥❞s ❇❛s❡✳❋♦r✇❛r❞❈❤❛r❛❝t❡r✐st✐❝✭

❋✐❧❡♥❛♠❡ ❂

▼♦❞❡❧✐❝❛✳❯t✐❧✐t✐❡s✳❋✐❧❡s✳❧♦❛❞❘❡s♦✉r❝❡

✭❉✐r❡❝t♦r②✳❞❛t❛❋♦❧❞❡r ✰ ✧

❉✐♦❞❡❋❙✽✵✵❘✵✼❆✷❊✸✳♠❛t✧✮✱

t❛❜❧❡❖♥❋✐❧❡ ❂ tr✉❡ ✱

❘♦♥ ❂ s❝❛❧❛r✭❉❛t❛❋✐❧❡s✳r❡❛❞▼❆❚♠❛tr✐①✭

❋✐❧❡♥❛♠❡ ✱ ✧❘♦♥✧✮✮✱

●♦❢❢ ❂ s❝❛❧❛r✭❉❛t❛❋✐❧❡s✳r❡❛❞▼❆❚♠❛tr✐①✭

❋✐❧❡♥❛♠❡ ✱ ✧●♦❢❢✧✮✮✮❀

❡♥❞ ❋♦r✇❛r❞❈❤❛r❴❍P✷❴❧♦❛❞❘❡s♦✉r❝❡❀

The only difference to the record shown in Listing 6

is the ❧♦❛❞❘❡s♦✉r❝❡✭✮ function applied with the file-

name as parameter.

Dymola and the FMU’s Resources Folder

To make Dymola copy the file to the FMU, the op-

tion Copy resources to FMU in the Dymola Simulation

Setup has to be activated. With this flag set and the

❧♦❛❞❘❡s♦✉r❝❡s function in use, the resulting FMU will

contain a r❡s♦✉r❝❡s folder including the data-file.

As mentioned before this implementation enhances

usability, as the user does not have to care about the lo-

cation of the data files. Still this reduces flexibility as it

is not possible anymore to simply change the path to the

data file by changing the string parameter introduced in

Listing 6. To change the data-file currently the user has

to extract the FMU4, change the data file and compress it

again, which is obviously more effort than just changing

a parameter.

4Which is just a renamed .zip file.

4 Model Export via FMI

For the model export via FMI we use the model

▼♦❞❡❧❊①♣♦rt✳❍❛❧❢❲❛✈❡❘❡❝t✐❢✐❡r❋▼❯ depicted in

Figure 5.

staticDiodeBasic

R
=

1
0
.0

re
s
is

to
r

ground

C
=

1
0
e
-3

c
a

p
a

c
ito

r

s
ig

n
a

lV
o

lta
g

e

+

-

V

v
o

lta
g

e
S

e
n

s
o

r

A

currentSensor

u

vLoad

iLoad

Figure 5: Model used to generate FMUs

We will export the model using the records intro-

duced in the former sections (which can be found

in the ❘❡❝♦r❞s✳❉❛t❛ package shown in Figure 1).

Changing the record by selecting an entry in the pull-

down menu will obviously only change the behavior

of the st❛t✐❝❉✐♦❞❡❇❛s✐❝. The parameters of the

❝❛♣❛❝✐t♦r and the r❡s✐st♦r are not affected by the

settings of the diode.

Within the drop-down menu that appears when open-

ing the parameter window of the st❛t✐❝❉✐♦❞❡❇❛s✐❝,

one of the four implementations presented in Section 3

can be chosen. Those are:

1. ❋♦r✇❛r❞❈❤❛r❴❍P✷

2. ❋♦r✇❛r❞❈❤❛r❴❍P✷❴❚r❛♥s❧❛t✐♦♥

3. ❋♦r✇❛r❞❈❤❛r❴❍P✷❴❙✐♠✉❧❛t✐♦♥

4. ❋♦r✇❛r❞❈❤❛r❴❍P✷❴❧♦❛❞❘❡s♦✉r❝❡

The identifiers shown in Figure 6 are determined by the

model description defined in respective implementations

in Listings 4, 5, 6 and 7.

Figure 6: Parameter window of the diode model

By selecting an entry in the pull-down the behavior of

both, the model itself in Dymola and the exported FMU

Session 2A: FMI 1

DOI
10.3384/ecp1511823

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

27

are changed. We can now link the implementations to

the use-cases described in Section 1.1.

1. Selecting entry 1 or 2 will both result in a use-case 1

model. The difference will be that entry 1 will rely

on data directly stored in the Modelica code and

entry 2 will read data from an external file when

the model is translated. Still this will not affect the

behavior of the generated FMU.

2. Choosing entry 3 will create a use-case 2 model, i.e.

load parameters from a data-file which is located in

the ❉❛t❛ folder with an optional string parameter

to change the path to the file (see Section 3.3).

3. Compared to the last point selecting entry 4 will

only change the behavior in case of FMU gen-

eration representing use-case 3. The data files

specified by the ❧♦❛❞❘❡s♦✉r❝❡s function will be

copied to the FMU’s r❡s♦✉r❝❡s folder.

5 Tables with Dimensions Greater

than Two

It turns out that the implementation is relatively straight-

forward for scalar parameters and tables with two inde-

pendent variables, with simple scalar parameters and ta-

bles being based on the MSL’s ❈♦♠❜✐❚❛❜❧❡s5. Still,

today it is not possible - at least with reasonable effort

- to provide Modelica libraries covering every use-case

as soon as tables with a dimension greater than two are

necessary. As tables are of essential importance in the

industrial use, some of the problems regarding parame-

ter handling with table-based models will be highlighted

now, focusing on an arbitrary number of dimensions.

Implementations of tables with dimensions greater

than two (n-dimensional) are provided e.g. by Dymola

within the ❉❛t❛❋✐❧❡s package ❚❛❜❧❡◆❉ and by 3DS

GmbH’s ❙✐♠❉❡✈❚♦♦❧s (◆❉❚❛❜❧❡).

However, Dymola’s n-dimensional table offers no

possibility to enter tables directly or read data from a file

during model initialization. Thus, not all use-cases can

be covered.

Providing proprietary solutions like the

❙✐♠❉❡✈❚♦♦❧s fails until today, since Dymola re-

quires to pre-compile functions before the translation of

the model (e.g. for the determination of the table size).

This has to be done manually until today, resulting in a

unacceptable inconvenience for the user.

Mixing different table types implicates a number of

disadvantages. Regarding the possible use cases, for a

model that includes both, e.g. MSL’s ❈♦♠❜✐❚❛❜❧❡s
for dimensions up to two and ❉❛t❛❋✐❧❡s’s ❚❛❜❧❡◆❉
for higher dimensions, solely use-case 1 can be covered

since the Dymola table reads the values from a data-file

5Which only offer tables up to a dimension of two.

during model translation and in turn stores them inside

the model. Additionally those tables behave differently

when it comes to interpolation and extrapolation, which

is not directly related to model parameterization, but is a

major drawback during simulation and debugging. Table

1 shows a summary of the features of the table imple-

mentations available today.

In order to enhance table-based modeling which is of

central importance in system simulation within an indus-

trial environment, we want to encourage the Modelica

community to put even more effort into this topic. Espe-

cially into:

• Extending the tables functionality such that it is

possible to use data with more than two indepen-

dent dimensions by default.

• Providing the possibility to import additional data

formats, e.g. ❤❞❢✺, ideally in a user-expendable

fashion for arbitrary data formats.

6 Compatibility with Other Modelica

Simulation Environments

The implementations shown in Section 3 which are re-

quired to enable the different use-cases shown in Sec-

tion 1.1 were created using Dymola and its ❉❛t❛❋✐❧❡s
package as well as the MSL. Unfortunately, we were not

able to test how other Modelica environments (refer to

❤tt♣s✿✴✴♠♦❞❡❧✐❝❛✳♦r❣✴t♦♦❧s) treat the implemen-

tations, which would be important as the resulting behav-

ior is likely to be tool-dependent.

For the Modelica community it would be highly favor-

able to have a solution like Dymola’s ❉❛t❛❋✐❧❡s pack-

age available in the MSL. This would enable the user to

read data from external files6 independent of the simu-

lation environment. Ideally it should be extendable to

enable customer specific or future data formats.

7 Conclusion

The paper presents three use-cases of model parameter-

ization and four implementations which cover all three

use-cases, specifically aimed at a subsequent model ex-

port. Additionally it is shown how to implement records

with the possibility to choose how an exported model

shall behave, by selecting a set of parameters. This prop-

erty can be set by changing the set of parameters using

Modelica based functionality.

This approach is currently only possible for param-

eters which are scalars, 1D and 2D tables. For higher

dimensions it has been pointed out why this is currently

not possible.

6Arrays as well as scalars

A Novel Proposal on how to Parameterize Models in Dymola Utilizing External Files under Consideration of a
Subsequent Model Export using the Functional Mock-Up Interface

28 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511823

Library Dims Formats Interplation Extrapolation Data Source
Parametri-

zation

MSL CombiTables 1-2
txt, mat, csv

(import)

hold, linear,

smooth first

derivative

linear Modelica/files
translation,

initialization

DataFiles 1-n mat v4, csv linear hold files translation

SimDevTools 1-32 sdf (hdf5)
hold, linear,

Akima

no, hold, lin-

ear
files initialization

Table 1: Table implementations covered in the paper.

References

Modelica Association. ❤tt♣✿✴✴❢♠✐✲st❛♥❞❛r❞✳♦r❣✴, 2015.

Christian Bertsch, Elmar Ahle, and Ulrich Schulmeister. The

functional mockup interface - seen from an industrial per-

spective. In Proceedings of the 10th International Modelica

Conference, 2014.

T. Blochwitz, M. Otter, M. Arnold, C. Bausch, C. Clauß,

H. Elmqvist, A. Junghanns, J. Mauss, M. Monteiro, T. Nei-

dhold, D. Neumerkel, H. Olsson, J.-V. Peetz, and S. Wolf.

The functional mockup interface for tool independent ex-

change of simulation models. In Proceedings of the 8th In-

ternational Modelica Conference, 2011.

T. Blochwitz, M. Otter, J. Akesson M., Arnold 4, C. Clauß,

H. Elmqvist, M. Friedrich, A. Junghanns, J. Mauss,

D. Neumerkel, H. Olsson, and A. Viel. Functional mockup

interface 2.0: The standard for tool independent exchange of

simulation models. In Proceedings of the 9th International

Modelica Conference, 2012.

J. Köhler and A. Banerjee. Usage of modelica for transmission

simulation in zf. In Proceedings of the 4th International

Modelica Conference, 2005.

Session 2A: FMI 1

DOI
10.3384/ecp1511823

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

29

30 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Design choices for thermofluid flow components and systems that

are exported as Functional Mockup Units

Michael Wetter1 Marcus Fuchs2 Thierry S. Nouidui1

1Lawrence Berkeley National Laboratory, Energy Technologies Area, Building Technology and Urban Systems

Division, Simulation Research Group, Berkeley CA, USA, {mwetter,tsnouidui}@lbl.gov
2RWTH Aachen University, E.ON Energy Research Center, Institute for Energy Efficient Buildings and Indoor

Climate, Aachen, Germany, mfuchs@eonerc.rwth-aachen.de

Abstract

This paper discusses design decisions for exporting

Modelica thermofluid flow components as Functional

Mockup Units. The purpose is to provide guidelines

that will allow building energy simulation programs

and HVAC equipment manufacturers to effectively use

FMUs for modeling of HVAC components and systems.

We provide an analysis for direct input-output depen-

dencies of such components and discuss how these de-

pendencies can lead to algebraic loops that are formed

when connecting thermofluid flow components. Based

on this analysis, we provide recommendations that in-

crease the computing efficiency of such components and

systems that are formed by connecting multiple compo-

nents. We explain what code optimizations are lost when

providing thermofluid flow components as FMUs rather

than Modelica code. We present an implementation of

a package for FMU export of such components, explain

the rationale for selecting the connector variables of the

FMUs and finally provide computing benchmarks for

different design choices. It turns out that selecting tem-

perature rather than specific enthalpy as input and output

signals does not lead to a measurable increase in com-

puting time, but selecting nine small FMUs rather than a

large FMU increases computing time by 70%.

Keywords: FMI, Modelica, thermofluid flow

1 Introduction

The Functional Mockup Interface Standard (Modelica

Association, 2014) is an open standard that has been de-

veloped to export models or whole simulators from one

simulation software and import them into another simu-

lation software to perform a coupled simulation of time

dependent systems. It enables interoperability among

simulation software by standardizing (i) an application

programming interface and its semantics, (ii) an xml

schema that describes the model structure and capabil-

ities, and (iii) the structure of a zip file that is used to

package the model, its resources and documentation.

This type of simulation software interoperability is in-

teresting for various use cases in building energy simu-

lation. First, it allows building energy simulation pro-

grams, for which it currently is difficult for users to

add new models, to add an interface that allow users

to insert own component models that may be written

in and exported by a variety of simulation software

that support the FMI standard (see https://www.

fmi-standard.org/tools for a list). As a point

in case, EnergyPlus currently undergoes a prototype re-

design in which HVAC simulation will be based on

FMUs (Wetter et al., 2015). Second, the American Soci-

ety of Heating, Refrigerating, and Air-Conditioning En-

gineers (ASHRAE) is currently developing Standard 205

that standardizes the representation of HVAC equipment

performance data for building energy simulation.1 As

the built-in control and staging algorithms of such equip-

ment affects the performance, participants of the stan-

dards committee expressed the need for sharing mod-

els as executable code rather than simple performance

maps. Here, FMU may be a solution for such model rep-

resentation. Third, Swegon AB, an international HVAC

equipment manufacturer, expressed the need for receiv-

ing from their suppliers component models to allow them

to optimize the integration of these components into their

products. Swegon also is interested in providing equip-

ment models as FMUs to energy simulation programs.

For these use cases, FMI is an interesting technology

as it is an open standard that has been designed for the

exchange of such models. However, various design ques-

tions have to be answered for its effective use, namely:

(i) Are both versions of the standard, FMI for model-

exchange and FMI for co-simulation, applicable? (ii) If

an FMU represents an individual equipment, how would

a system simulation program have to execute this com-

ponent if used as part of an whole HVAC simulation?

(iii) What recommendations should one follow to allow

an efficient simulation of FMUs if part of an HVAC sys-

tem simulation? (iv) What code optimization is lost if

FMUs are used rather than Modelica, the latter allowing

1 See http://spc205.ashraepcs.org/.

DOI
10.3384/ecp1511831

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

31

−1 0 1

y1

y2

x/δ

Figure 1. Plot of the function y = R(x,y1,y2,δ).

symbolic processing prior to code generation. (v) What

variables should the parameters, inputs and outputs of an

FMU have? Would specific enthalpy as is used in the

Modelica.Fluid library be a good choice?

This paper addresses the above questions. It is struc-

tured as follows: Section 2 states assumptions and in-

troduces notation. In Section 3, we discuss the applica-

bility of the two standards. In Section 4, we provide an

analysis of execution sequences and provide recommen-

dations for efficient model implementation. In Section 5,

we discuss the design of connector variables. Section 6

explains code optimizations that are no longer possible if

FMUs rather than Modelica are used. Section 7 discusses

the implementation of FMU export for thermofluid flow

components in a development version of the Modelica

Buildings library (Wetter et al., 2014), and Section 8

shows numerical benchmarks for different implementa-

tions.

2 Terminology and assumptions

2.1 Conventions

1. If a component has two acausal fluid ports, then they

are denoted by subscript a and b, respectively, where

a is the port into which mass flows under the design

flow direction.

2. Consider a model that has an input u ∈ R, an out-

put y ∈ R
2 and a parameter p ∈ R. Suppose y1 = pu

and dy2/dt = u. We say that there is a direct depen-

dency between u and y1 as the value of u needs to be

known to produce the output y1. In contrast, y2 does

not directly depend on u as it can be produced without

knowing the current value of u.

2.2 Notation

To enable robust iterative computation of a numerical

approximation to the solution of differential and alge-

braic systems of equations, the Modelica Specification

defines special functions to handle systems in which the

flow reverses its direction, and the Modelica Standard

Library 3.2 implements regularization functions (Franke

et al., 2009; Modelica, 2010). This section explains these

functions and the nomenclature that we will use for these

functions.

The regularization function Modelica.Fluid.

Utilities.regStep(x,y1,y2,x_small) ap-

proximates

y =

{

y1, if x > 0,

y2, otherwise,
(1)

m2

a b
m1

b
m3

a

Figure 2. Connection diagram of three models that is used to

explain the concept of stream variables.

by the once continuously differentiable function that is

shown in Figure 1. In our discussions, we will denote this

function by y =R(x,y1,y2,δ), with δ > 0. The function

is defined as

R(x,y1,y2,δ) =











y1, if x > δ ,

y2, if x <−δ ,

r(x,y1,y2,δ), otherwise.

(2)

where r(·, ·, ·, ·) is

r(x,y1,y2,δ) =
x

δ

(

(x

δ

)2

−3

)

y2 − y1

4
+

y1 + y2

2
. (3)

Note that some models use Modelica.Media.Air.

MoistAir.Utilities.spliceFunction()

rather than Modelica.Fluid.Utilities.

regStep(). While these functions are different, their

input-output dependency is identical. We will therefore

always use the notation R(·, ·, ·, ·) as our discussion is

identical for both implementations. 2

To describe in a numerically reliable way the bi-

directional transport of specific quantities that are carried

by mass flow rate, such as enthalpy, Modelica 3.2 pro-

vides the inStream() function. Let m1, m2 and m3 be

models, and let a and b be fluid ports that are connected

as shown in Figure 2. Let h_outflow be the specific

enthalpy in the connection point if mass leaves the com-

ponent (regardless of the current flow direction). For

the configuration shown in Figure 2, the inStream()

function satisfies

inStream(m2.a.h_outflow) = m1.b.h_outflow;

inStream(m2.b.h_outflow) = m3.a.h_outflow;

In our discussions, we will use the notation ι(ha) to

denote the value of inStream(a.h_outflow).

2.3 Assumptions

We will make the following assumptions:

1. All components conserve mass, e.g., ∑i ṁi +∆ṁ = 0

where the sum is over all ports and ∆ṁ is the moisture

added or removed by a humidifier or a cooling coil.

2. Each component has as inputs the mass flow rate ṁa,

the pressure pa, the temperature Ta,i (or specific en-

thalpy ha,i) of the medium that flows into port a if

ṁa ≥ 0, and the temperature Tb,i (or specific enthalpy

hb,i) of the medium that flows into port b if ṁa < 0.

2In a benchmark for the Annex 60 model library (see https:

//github.com/iea-annex60/modelica-annex60/

issues/300) we measured that the function regStep() is on

average about 8% faster than spliceFunction(). Therefore,

work is in progress to update the Annex60 and Buildings

libraries accordingly.

Design Choices for Thermofluid Flow Components and Systems that are Exported as Functional Mockup Units

32 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511831

3. Each component has as outputs the mass flow rate ṁb,

the pressure pb, the temperature Tb,o (or specific en-

thalpy hb,o) of the medium that flows out of port b if

ṁa ≥ 0, and the temperature Ta,o (or specific enthalpy

ha,o) of the medium that flows out of port a if ṁa < 0.

4. We assume the following direct dependencies: The

outlet temperatures are Tb,o = f (Ta,i, ṁa) and, simi-

larly, Ta,o = g(Tb,i, ṁa) for some functions f ,g : R×
R→ R.

5. The pressure drop of flow resistances is assumed to

be a function of the mass flow rate rather than volume

flow rate. The reason for this assumption will become

clear in Section 4.

Hence, to simplify the discussion, we typically say

that input and output to a component are temperature T .

Clearly, models that treat moist air also have water vapor

mass fraction Xw as input and output. Except for the dis-

cussion of dehumidifying or humidifying components,

we do not specifically mention water vapor mass frac-

tion as other components conserve mass. Furthermore

the discussion also holds if one were to use specific en-

thalpy rather than temperature as input and output vari-

ables.

3 FMI Standards

FMI 2.0 defines two standards: FMI for model-exchange

(FMI-ME) and FMI for co-simulation (FMI-CS): In

FMI-ME, the host simulator is responsible for the numer-

ical integration of the model equations, whereas in FMI-

CS, the FMU implements its own mechanism for advanc-

ing the values of its state variables. FMI-CS provides no

mechanism for an FMU to output an instantaneous reac-

tion to a changed input value.3 Hence, FMI-CS cannot be

used for steady-state component models of HVAC equip-

ment. However, FMI-ME is applicable. Specifically,

FMI-ME allows to set inputs by calling fmi2SetReal

followed directly by fmi2GetReal to obtain outputs.

Furthermore, the standard says that fmi2SetReal "re-

initializes caching of variables that depend on these vari-

ables [being set]". Hence, fmi2SetReal causes the

equations to be evaluated. Therefore, we restrict this dis-

cussion to FMI-ME.

4 Direct input-output dependencies

of thermofluid flow components

and systems

The purpose of this section is to provide guidance to

users and developers who connect multiple thermofluid

flow component models so they understand when

algebraic loops are performed, and how such algebraic

loops can be avoided. While in general the existence

3 Specifically, FMU-CS does not allow calling fmi2SetReal

followed by fmi2GetReal without first invoking fmi2DoStep

(see p. 104 of the standard). Furthermore, fmi2DoStep does not

allow a communication step size of 0.

of algebraic loops can readily be obtained from the

translation information of Modelica tools, the insight we

give in this section should inform users and developers

a-priori about how different component formulations,

system compositions and media selections affect the

existence of algebraic loops, and how such algebraic

loops can be avoided. Based on these discussions, we

also provide recommendations for efficient component

model formulation.

Questions that this sections answers are:

1. Suppose we know the mass flow rate at each flow leg.

Under which arrangements do FMUs, each represent-

ing a steady-state fluid flow component, cause an al-

gebraic loop?

2. How does the answer to the above question change

if computing the value of the mass flow rate requires

solving a flow rate versus pressure drop calculation?

3. Under what conditions does the use of the regulariza-

tion function to treat near zero mass flow rates cause

algebraic loops, and how can they be avoided?

In the next section, we discuss direct input-output de-

pendencies in major HVAC components, and afterwards

discuss situations where these components are connected

to form HVAC systems.

4.1 Major HVAC components

This section describes the direct input-output dependen-

cies of major HVAC components under the assumption

that they are modeled steady-state, as is common in

building energy simulation. The purpose of the discus-

sion in this section is to understand what outputs depend

directly on what inputs and how direct dependencies can

be reduced.

4.1.1 Heater

heater

Legend

pressure

mass flow rate

temperature in design flow direction

temperature in reverse flow direction

Figure 3. FMU of a heater.

We will start with a simple component of a heater that

injects a known amount of heat Q̇ into a fluid stream. In

such a component, the outlet pressure is pb = pa+ f (ṁa)
for some function f : R→ R, and the outlet temperature

is Tb = g(ṁa, ι(Ta)) for some function g : R×R → R.

For example, for an ideal water heater, g(ṁa, ι(Ta)) =
ι(Ta) + Q̇/(ṁa cp). We will depict graphically such a

component as shown in Figure 3, where the arrows indi-

cate inputs (for this component, inputs are on the left and

outputs on the right). The dotted lines inside the compo-

nent show on what inputs an output directly depends on.

We selected to use this graphical representation rather

than writing the incidence matrix as the graphical repre-

Session 2A: FMI 1

DOI
10.3384/ecp1511831

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

33

sentation allows us to graphically connect components to

form HVAC systems.

4.1.2 Dehumidifying or humidifying components

humidifying or

dehumidifying component

(with exact mass balance)

humidifying or

dehumidifying component

(mass balance ignores change

in water vapor)

Legend

pressure

mass flow rate

temperature in design flow direction

temperature in reverse flow direction

Figure 4. FMU of a humidifying or dehumidifying compo-

nent. The component on the right implements Recommenda-

tion 4.2, and hence the red dashed line is removed.

We now discuss the situation in which the heat ex-

changer in Figure 3 dehumidifies or humidifies the air.

This can be the case for a humidifier or for a cooling

coil that cools the air below its dew point. In this situ-

ation, the rate of heat and mass transfer affect the out-

let mass flow rate. Therefore, if the outlet mass frac-

tion of the humidifying or dehumidifying component

depends on the thermodynamic state of the inlet fluid,

which generally is the case, then the pressure drop equa-

tions are coupled to the heat transfer equations. Hence,

such a component has the structure shown in Figure 4.

Note that for this component, there generally is no need

to properly characterize its thermodynamic behavior for

reverse flow because such equipment is only operated

when the fan is on. When the fan is off, small re-

verse flows may occur, but for this situation, it suffices

to set Ta = ι(Tb) and Xa = ι(Xb), or Ta = Tde f ault and

Xa = ι(Xde f ault), where Tde f ault and Xde f ault are default

values for temperature and mass fraction. The latter ver-

sion can lead to smaller system of equations if compo-

nents are used in a flow network.4 We therefore de-

cided in Figure 4 that the change in mass flow rate has

the functional form ṁb−ṁa = f (ṁa, ι(Ta), ι(Xa)) rather

than ṁb − ṁa = f (ṁa, ι(Ta), ι(Xa), ι(Tb), ι(Xb)). I.e.,

the thermodynamic properties of the reverse flow are not

used to compute the amount of humidification or dehu-

midification. We therefore make the following recom-

mendation:

Recommendation 4.1 To reduce the number of direct

input-output dependencies of components that humid-

ify or dehumidify the air, such components should im-

plement for the reverse flow port_a.h_outflow=

Medium.h_default, where Medium.h_default

is the default specific enthalpy of the medium. Otherwise,

4See https://github.com/iea-annex60/

modelica-annex60/issues/281 for a discussion.

the energy equations for the backward flow become part

of the residual functions of the pressure and mass flow

rate equations.

Because the outlet mass flow rate is ṁb = ṁa (1 +
∆Xw), where ∆Xw is the change in water vapor mass frac-

tion across the component, this component couples the

energy calculation to the pressure drop versus mass flow

rate calculations. However, in typical building HVAC

systems, ∆Xw < 0.005kg/kg. Hence, by tolerating a rel-

ative error of 0.005 in the mass balance, one can decou-

ple these equations. Decoupling these equations avoids

having to compute the energy balance of the humidifier

and its upstream components when solving for the pres-

sure drop of downstream components5. We therefore

make the following recommendation:

Recommendation 4.2 If an error in the mass balance

of about 0.5% is acceptable, then one can implement a

humidifier or dehumidifier that neglects in the mass bal-

ance equation the change in water vapor mass fraction.

This can allow computing the mass flow rate versus pres-

sure drop equations without having to couple the energy

balance, or the control input of a humidifier or dehumid-

ifier, to these equations.

As in building simulation, there is considerable uncer-

tainty in air flow rate calculations, and also because

larger effects such as duct leakage are generally ignored,

taking a relative error of 0.5% into account seems ac-

ceptable in typical applications. See also Jorissen et al.

(2015) for a discussion.

4.1.3 Fan

fan (head dependent

on actual density)

fan (head simplified to be

independent of actual density)

Legend

pressure

mass flow rate

temperature in design flow direction

temperature in reverse flow direction

Figure 5. FMU of a fan. The component on the right imple-

ments Recommendation 4.3, and hence the red dashed line is

removed.

According to the laws of fluid dynamics, the pres-

sure rise over a fan is related to the volume flow rate

rather than the mass flow rate. Therefore, the functional

form for the fan head is pb − pa = f (ṁa, ι(Ta), ι(Xa))
and the input-output dependency is as shown in the left-

hand side of Figure 5. However, if one were to simplify

5In the Buildings library, only downstream components are af-

fected because the humidifier evaluates a component’s pressure drop

for ṁa and not for ṁb.

Design Choices for Thermofluid Flow Components and Systems that are Exported as Functional Mockup Units

34 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511831

the fan laws and use a constant mass density, then the di-

rect input-output dependency of the inlet thermodynamic

properties could be eliminated, as shown in the right-

hand side of Figure 5. We therefore make the following

recommendation:

Recommendation 4.3 If the operating temperature of a

fan (or pump) does not change much, or if large uncer-

tainties exist in parameters or the models for the pressure

drop calculation of the duct (or pipe) network, then one

should assume a constant mass density in the fan model,

as this leads to fewer coupled equations.

4.1.4 Heat exchanger between supply and return air

heat exchanger

Legend

pressure

mass flow rate

temperature in design flow direction

temperature in reverse flow direction

Legend

pressure

mass flow rate

temperature in design flow direction

temperature in reverse flow direction

Figure 6. FMU of a component that exchanges heat between

two fluid streams.

Figure 6 shows the direct input-output dependency of

a heat exchanger. On top left is the inlet of one fluid

stream and on the bottom right is the inlet of the other

fluid stream. Such heat exchangers are typically modeled

using two different implementations.

1. The simplest form is a constant effectiveness heat ex-

changer. In this situation, the rate of heat transfer is

Q̇ = ε Ċmin (Tin,1 − Tin,2), where ε ∈ (0, 1) is a con-

stant, Ċmin = min(|ṁa,1 cp,1|, |ṁa,2 cp,2|) is the min-

imum heat capacity flow rate and Tin,1 is the inlet

temperature of the fluid 1, which is equal to ι(Ta,1)
or ι(Tb,1). Hence, the in-streaming thermodynamic

properties of the forward and reverse flow must be

known in order to compute the thermodynamic prop-

erties of the out-streaming fluid for forward and re-

verse flow.

2. A more elaborate model is one that uses the ε −NTU

model. In this situation the same direct input-output

dependency is obtained as for the model with constant

effectiveness.

This discussion shows that heat exchangers lead to com-

plex direct input-output dependencies. If one were to

compromise on not being able to properly compute the

heat transfer if one or both streams reverse their di-

rection, then one could simplify the model to the form

shown in Figure 7. Here, we changed the model so that

the transferred heat is zero if any of the flows is differ-

ent from the design flow direction. Initial experiments

indeed confirmed that such a simplified implementation

leads to smaller systems of coupled equations. We there-

heat exchanger

Legend

pressure

mass flow rate

temperature in design flow direction

temperature in reverse flow direction

Figure 7. FMU of a component that exchanges heat between

two fluid streams but with the simplification that no heat is

exchanged if any of the flows is different from the design flow

direction.

fore make the following recommendation:

Recommendation 4.4 If the thermodynamic behavior

of a heat exchanger under reverse flow directions is not

of interest to the application, then the equations should

only be formulated for forward flow. For reverse flow sit-

uations, one should simply assign Tb,k = ι(Ta,k) for both

streams k ∈ {1, 2}. Note that reverse flow may occur in

HVAC systems due physical reasons such as wind pres-

sure on the facade (when the fan is off) or due to numeri-

cal artifacts because numerical solvers only compute an

approximate numerical solution and hence small nega-

tive flows can exist when the HVAC system is off.

4.1.5 Temperature or humidity control

The user guide Annex60.Fluid.Sensors.

UsersGuide and of libraries that use Annex60, such

as AixLib, Buildings, BuildingSystems and

IDEAS, recommend to measure temperature, relative

humidity, mass fraction, trace substances and specific

enthalpy with a sensor that has two ports, and use a

dynamic balance to compute the measured quantity.

This dynamic balance has shown to be beneficial in large

systems that can have zero flow rate. If such sensors

are used as an FMU, they have the advantage that the

dynamic balance causes the measured quantity to be a

state variable. Hence, if used in combination with a P or

PI controller, the use of this state variable avoids having

to solve an algebraic loop.

Therefore, in the subsequent discussion, we will as-

sume that a dynamic sensor is used.

4.2 Components in series

Figure 8 shows four FMUs in series. This represents

the case where a mass flow rate of outside air is con-

ditioned and transported to a room that has a dynamic

Session 2A: FMI 1

DOI
10.3384/ecp1511831

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

35

component 1

(outside)
component 2

(heater)

component 3

(fan)

component 4

(room)

to residual function

to iterate on mass flow rate

bc or iv

bc

bc

bc

bc: known boundary condition

iv: independent variable, solution to linear or nonlinear eqn.

s: state variable

s

Legend

pressure

mass flow rate

temperature in design flow direction

temperature in reverse flow direction

Figure 8. FMUs connected in series.

energy balance, and hence the room air temperature is a

state variable whose value is determined by an integra-

tion algorithm. The outside air imposes a pressure and

temperature boundary condition. The outdoor mass flow

rate is either an independent variable or a boundary con-

dition. In the first case, the outdoor mass flow rate is

iterated upon until the pressure equations are satisfied.

In the second case, the pressure drop equations could be

removed from the set of equations.

The equations for this arrangement can be solved as

follows. First, by assumption, the pressure drop only

depends on the mass flow rate and not on temperature.

Therefore, the mass flow rate can be solved iteratively

by setting an initial value, evaluating the pressure drop

equations of component 1, 2, 3 and 4 in series until a

convergence criteria on the difference between the out-

let pressure of component 3 and the room air pressure

(component 4) is met. Once the mass flow rate is known,

components 1, 2, 3 and 4 can be called in sequence to

obtain the temperatures for the forward flow direction.

For the reverse flow direction, components 4, 3, 2 and 1

need to be called in sequence.

The red line in the fan of Figure 8 is only present if

Recommendation 4.3 is not implemented. In this situa-

tion, the energy equation of the heater need to be eval-

uated in order to compute the mass flow rate, thereby

increasing the number of operations required to evaluate

the residual function.

Analyzing Figure 8 leads us to the following remark:

Remark 4.1 Evaluating the energy equations for for-

ward flow and then for backward flow is only possible if

the energy equations only depend on the thermodynamic

state of the inflowing medium. For example, if a compo-

nent were to use the regularization

h_in = spliceFunction(

pos = inStream(port_a.h_outflow),

neg = inStream(port_b.h_outflow),

x = m_flow,

deltax = m_flow_nominal/100)

then the thermodynamic properties of the backward flow

must be known to compute the thermodynamic properties

of the forward flow. Moreover, if, in Figure 8, compo-

nents 2 and 3 both use the above spliceFunction,

then a nonlinear equation must be solved to compute the

thermodynamic properties.

Hence, we make the following recommendation:

Recommendation 4.5 Regularization in which the ar-

guments of the regularization function directly depend

on the thermodynamic properties of the forward and re-

verse flow should be avoided as this can lead to nonlin-

ear equations.

Note, however, the following:

Remark 4.2 Simply replacing

h_in = spliceFunction(

pos = inStream(port_a.h_outflow),

neg = inStream(port_b.h_outflow),

x = m_flow,

deltax = m_flow_nominal/100)

with

h_in = if m_flow >= 0

then inStream(port_a.h_outflow),

else inStream(port_b.h_outflow);

is not a solution to Recommendation 4.5. In fact, this

would also lead to a non-linear equation, but with a

discontinuity in the residual equation, which can lead

to problems in Netwon-Raphson solvers. Rather, one

could attempt to set h_in=inStream(port_a.h_

outflow) and let the transfered heat go to zero as the

mass flow rate approaches zero from above.

4.3 Components in parallel

Figure 9 is as Figure 8 except that it has two rooms, each

with a variable air volume (VAV) terminal. The VAV ter-

minals can increase the flow resistance based on a con-

trol signal, and possibly provide heating or cooling (here,

we assumed no dehumidification at the terminal unit).

To implement such a system, a flow splitter is needed.

The flow splitter has as an input the split of the mass

flow fraction between the two outlet ports. This input

is required as otherwise the splitter is underdetermined.

Design Choices for Thermofluid Flow Components and Systems that are Exported as Functional Mockup Units

36 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511831

component 1

(outside)
component 2

(heater)

component 3

(fan)
components 7 and 8

(room)

to residual function to iterate on outdoor

mass flow rate and on split of room mass

flow rates

bc or iv

bc

bc

bc

s

components 5 and 6

(VAV terminal)

component 4

(flow splitter)

bc

s

iv:

split of room

mass flow rates,

obtained from

solver

bc: known boundary condition

iv: independent variable, solution to linear or nonlinear eqn.

s: state variable

Legend

pressure

mass flow rate

temperature in design flow direction

temperature in reverse flow direction

Figure 9. FMUs connected in series that serve two rooms.

The input may be a variable determined by a numerical

solver. The VAV terminal has the same input-output re-

lation as the heater.

The equations for this arrangement can be solved as

follows: A solver determines the outdoor mass flow rate

and the split of the mass flow rates until the residual func-

tion of the pressure is satisfied. This can be accomplished

by evaluating the pressure drop equations of all FMUs

along the flow direction. If the fan does not implement

Recommendation 4.3, then the energy equation of com-

ponents 2 and 3 also need to be evaluated. Once the mass

flow rate has converged to its solution, components 1, 2,

3, 4, 5, 6, 7 and 8 can be evaluated for forward flow.

Finally, components 7, 8, 5, 6, 4, 3, 2 and 1 can be eval-

uated for reverse flow.

4.4 Air loops

Figure 10 shows an air loop that consists of the heat ex-

changer that implements Recommendation 4.4, two fans

that implement Recommendation 4.3, and a return duct.

The room conserves mass and has a pressure equation for

the outlet pressure. Therefore, during the iterative solu-

tion of the mass flow rate, convergence is checked on the

pressure of the exhaust air.

The equations can be solved as follows: First, compo-

nents 1, 2, 3, 4, 5, 6 and again 2 are evaluated to solve

for the mass flow rate. Next, the energy equation can be

solved for forward flow by evaluating components 5 (to

get the state T) and 6 to obtain the return air inlet temper-

ature of the heat exchanger. Then, components 1, 2, 3,

4 and 5 can be evaluated, which concludes the computa-

tions for the forward flow. For the reverse flow direction,

components 1, 5, 4, 3, 2, 6 and again 1 and 5 can be eval-

uated. Note that the order is not unique as one could have

started with component 5.

Remark 4.3 Note that the heat exchanger is called at

least four times if flow reversal is allowed, i.e., twice for

the iteration for the mass flow rate, once for forward flow

and once for reverse flow. Without flow reversal, the heat

exchanger is called at least three times. This indicates

the inherent inefficiencies when using FMUs for individ-

ual fluid flow components, rather than letting the sym-

bolic processor of a Modelica tool rearrange the equa-

tions to a block lower triangular form.

4.5 Control Loops

As discussed in Section 4.1.5, feedback control loops

for thermodynamic properties such as temperature or

humidity do not cause an algebraic loop if a dynamic

sensor is used. Specifically, if a sensor from the pack-

age Buildings.Fluid.Sensor is used and its time

constant tau is set to a value larger than zero, then

the sensor will output a state variable and hence the

feedback control loop does not cause an algebraic loop.

If tau=0 and the controller has direct feedthrough,

then such control loops for steady-state HVAC com-

ponents cause an algebraic loop. To avoid such al-

gebraic loops, the controller could be idealized and

implemented directly in the HVAC component, as is

done for example in the model Buildings.Fluid.

HeatExchangers.HeaterCooler_T.

5 Connector variables
In this section, we discuss the selection of the vari-

ables that will appear as inputs and outputs of the

FMU. We recall that Modelica.Fluid, Annex60.

Fluid and libraries that depend on it such as AixLib,

Session 2A: FMI 1

DOI
10.3384/ecp1511831

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

37

component 1

(outside)
component 2

(heat exchanger)

component 4

(fan)

component 5

(room)

to residual function

to iterate on mass flow rate

bc or iv

bc

bc s

component 6

(fan)

component 3

(heater)

Legend

pressure

mass flow rate

temperature in design flow direction

temperature in reverse flow direction

Figure 10. FMUs connected in a loop with a heat exchanger between the outside air intake and the exhaust air.

Buildings, BuildingSystems and IDEAS, use

for the pressure the total pressure in Pascal, for the mass

flow rate kg/s and for the mass concentration for moist

air kg/kg total air. We will use the same variables for the

parameters, input and output signals of the FMU. While

the connectors in the above libraries use specific enthalpy

h, we will use the absolute temperature T in Kelvin in-

stead. The reasons for this selection are as follows:

1. If we were to use the specific enthalpy h as a connector

variable, then an FMU would not be self-contained.

Rather, to use the FMU, one would require knowledge

of the function that is used by the FMU to relate tem-

perature and mass fraction to enthalpy. Consequently,

exchanging models in FMUs would not be possible

without also providing such a function.

2. In Modelica, using h is motivated as it allows mix-

ing of fluid streams in a port, e.g., in a port, hmix =
∑i max(0, ṁi)hi/∑i max(0, ṁi), where hi is the en-

thalpy of the fluid that flows into the port. Using

temperature in the mixing equations that are gener-

ated by the fluid connections can give wrong results

as Tmix = ∑i max(0, ṁi)Ti/∑i max(0, ṁi) only holds if

the specific heat capacity cp is constant. However, this

is not a concern for FMUs as mixing in ports is sup-

ported in Modelica but not when FMUs are connected

among each other.

We also had to make a choice about using Kelvin or de-

gree Celsius for the temperature. Whereas users may be

more accustomed to use degree Celsius, we decided to

use Kelvin for the following reasons:

1. FMUs for model-exchange and for co-simulation not

only expose input and output signal, but also state

variable and parameters. The state variables in models

of the Buildings library are temperature in Kelvin.

Changing them to degree Celsius would require re-

designing the library, and hence using a unit conven-

tion in the Buildings library that is different from

what is used in the Modelica Standard Library.

2. Without such a redesign, FMUs would require some

temperatures in Celsius and others in Kelvin.

3. Many models have parameters for design tempera-

tures, and also compute outputs that are temperatures,

such as temperature sensors or the temperature of a

furnace. These quantities have units of Kelvin. Hence,

for all parameters and all such signals, a unit conver-

sion would need to be implemented, which would be

quite cumbersome. Moreover, such parameters and

variables may still show up as an FMU interface vari-

able, thereby introducing mixed units.

Because using mixed units is confusing and error-prone,

we use Kelvin and propose that tools handle unit

conversions between the computed quantities and the

quantities that are displayed to the user, as is done for

example in Dymola 2016.

With these design decisions, an FMU that has two

fluid ports called inlet and outlet will have the fol-

lowing interface variables.

inlet.m_flow

p

forward.T

X_w

C

backward.T

X_w

C

where m_flow is the mass flow rate, p is the abso-

lute pressure (which is conditionally removed if use_

p_in=false) and forward and backward are the

thermodynamic properties for the forward flow and

backward flow. If allowFlowReversal=false,

then backward is removed. The thermodynamic vari-

Design Choices for Thermofluid Flow Components and Systems that are Exported as Functional Mockup Units

38 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511831

ables are temperature T in Kelvin, water vapor mass frac-

tion X_w in kg/kg total air, which is removed for water,

and trace substances C, which is removed if Medium.

nC=0.

6 Code optimizations lost by using

small FMUs

This section describes code optimizations that are no

longer done when models are shared as an FMU as op-

posed to sharing Modelica mode, because FMUs either

contain compiled code or C-code, neither of which al-

lows the level of computer algebra possible with Model-

ica. While the Modelica specification does not prescribe

the code optimization, most Modelica compilers are ex-

pected to conduct the optimizations described below.

1. Consider Figure 8. A Modelica compiler would use

one variable for the mass flow rate that enters the com-

ponent, and one for the leaving mass flow rate. Results

can be written efficiently by storing only the mass

flow rate ṁ1,b that leaves component 1, and declaring

in the output file that ṁk,b = ṁ1,b for k ∈ {2,3} and

ṁk,a = ṁ1,b for k ∈ {2,3,4}. However, such knowl-

edge is no longer available if multiple FMUs are used.

Hence, mass flow rates must be set, read, stored and

written to disk multiple times. Similar discussions

apply for thermodynamic properties that remain un-

changed in a component, such as T , Xw and C in an

air damper.

The efficiency loss that incurs if the output has

the same value as the input could, however, be

avoided using optional features of the FMI stan-

dard. For example, first, if variables share the same

valueReference in the modelDescription.

xml file, then they have the same value. Second, if

dependenciesKind="fixed" is declared in the

modelDescription.xml file, then the output is,

after fmi2ExitInitializationMode, equal to

a fixed factor times the input, and hence a master al-

gorithm can deduce that they are equal. Dymola 2016

uses the latter construct.

2. Consider Figure 8. If ṁ1,b is an iteration variable,

components 2 and 3 can be configured to compute

pressure drop as a function of the mass flow rate,

rather than mass flow rate as a function of the pres-

sure drop, thereby keeping the number of iteration

variables as small as possible. Such a selection is no

longer possible if a component is exported as an FMU.

See also Jorissen et al. (2015) for how this can affect

computing time.

3. Consider Figure 8. A Modelica compiler may do au-

tomatic differentiation of the Modelica code to com-

pute a symbolic expression of the Jacobian matrix that

is used to iteratively solve for the mass flow rate that

satisfies the constraint on the pressure.

4. In Figure 9, if the VAV terminals 5 and 6 both require

the evaluation of psychometric functions that depend

com

T Q_flow

com.port_a.p - com.port_b.p

dpCom

bouIn

m

inlet

p

bouOut

outlet

p

-

pOut

inlet outlet

inlet outlet

TSet
Q_flow

Figure 11. Block that contains a replaceable model of a heater

and that defines input and output signals for export as an FMU.

on its inlet temperature and humidity, which are equal

for components 5 and 6, then Modelica compilers can

compute these functions once and assign the results to

both components using what is called common subex-

pression evaluation.

5. If no pressure drop calculation is requested, in Mod-

elica it is possible to remove all these computations.

In FMUs, while computations can be disabled with a

boolean parameter, there will still be an input-output

dependency, causing a system simulator to wrongfully

believe that there is an algebraic loop.

6. If multiple components form a system of equations,

Modelica compilers may solve it explicitly if it is

small and linear. If it is nonlinear, a Modelica com-

piler can use block-lower triangularization and tearing

to reduce its dimension (Cellier and Kofman, 2006).

As a drawback when allowing these optimizations, one

would require a Modelica translator and a C-compiler

on the host simulator. Also, for large Modelica mod-

els that involve buildings and HVAC systems, translation

and compilation time can be in the order of minutes in

tools such as Dymola or OpenModelica. This, however,

could be reduced by compiling only the HVAC system,

and by doing incremental parallel compilation.

7 Implementation

We implemented the package Buildings.Fluid.

FMI that contains connectors, blocks that have replace-

able thermofluid components, examples blocks that can

be exported as FMUs, and examples in which we con-

nected these example blocks to form system models.

Figure 11 shows such an example block. In the mid-

dle is the actual thermofluid component. In this case, it

is a heater or cooler, but it may be a whole subsystem

that contains multiple thermofluid components as long

as it extends Buildings.Fluid.Interfaces.

PartialTwoPort. To the left and right are adaptors

that convert between the signal flow and the acausal fluid

connectors. At the bottom is the computation of the pres-

sure difference across the component. This is required

Session 2A: FMI 1

DOI
10.3384/ecp1511831

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

39

as one adaptor needs to set the flow rate and the other

the pressure in order for the component to be balanced.

The connectors inlet and outlet contain the input

and output signals. The inlet connector is defined as

follows (most annotations have been removed for better

readability):

within Buildings.Fluid.FMI.Interfaces;

connector Inlet " Connec tor f o r f l u i d i n l e t "

import FMI = Buildings.Fluid.FMI;

replaceable package Medium =

Modelica.Media.Interfaces.PartialMedium

" Medium model ";

parameter Boolean use_p_in = true

"= t r u e t o use a p r e s s u r e from c o n n e c t o r ";

parameter Boolean allowFlowReversal = true

"= t r u e t o a l l o w f l o w r e v e r s a l ";

input Medium.MassFlowRate m_flow

" Mass f l o w r a t e i n t o t h e component ";

FMI.Interfaces.PressureInput p

if use_p_in

" Thermodynamic p r e s s u r e ";

input FMI.Interfaces.FluidProperties

forward(

redeclare final package Medium = Medium)

" I n f l o w i n g p r o p e r t i e s ";

output FMI.Interfaces.FluidProperties

backward(

redeclare final package Medium = Medium)

if allowFlowReversal

" O u t f l o w i n g p r o p e r t i e s ";

end Inlet;

The connector Buildings.Fluid.FMI.

Interfaces.FluidProperties contains the

thermodynamic properties, and is defined as follows:

within Buildings.Fluid.FMI.Interfaces;

connector FluidProperties

" Type d e f i n i t i o n f o r f l u i d p r o p e r t i e s "

import FMI = Buildings.Fluid.FMI;

replaceable package Medium =

Modelica.Media.Interfaces.PartialMedium

" Medium model ";

Medium.SpecificEnthalpy h

" S p e c i f i c thermodynamic e n t h a l p y ";

FMI.Interfaces.MassFractionConnector X_w

if Medium.nXi > 0

" Water vapor mass f r a c t i o n s per kg t o t a l a i r ";

Medium.ExtraProperty C[Medium.nC]

" P r o p e r t i e s c _ i /m";

end FluidProperties;

Note that we introduced the new connectors

Buildings.Fluid.FMI.Interfaces.

PressureInput and Buildings.Fluid.

FMI.Interfaces.MassFractionConnector.

The first was required to conditionally remove the

pressure from the connector. For example, if a user

is not interested in computing the pressure drop, then

setting the parameter use_p_in=false will elim-

inate p from the connector, remove all pressure drop

calculations and setting the pressure of the component to

Medium.p_default. We also decided to introduce

the new connector

within Buildings.Fluid.FMI.Interfaces;

connector MassFractionConnector =

Modelica.SIunits.MassFraction

" Water vapor mass f r a c t i o n per kg t o t a l mass ";

to avoid having a vector with one component for the

water vapor mass fraction. This was done so that the

FMUs have as an input or output for the water mass

fraction a scalar variable X_w rather than having a vector

with one component for the water vapor mass fraction.

In the Buildings library, when running the regres-

sion tests, for each model that is exported as an FMU

a file will be generated that shows the dependencies of

outputs, states and initial unknowns. This file can be in-

spected to see what dependencies thermofluid flow com-

ponents have, and the file will be used in subsequent re-

gression tests to verify that the dependencies do not in-

advertently change when models are revised.

8 Numerical experiments

8.1 Connector Variables

To benchmark the computing time with temperature T

versus specific enthalpy h in the FMU input and output,

we simulated an HVAC system. The HVAC system is a

VAV system with economizer, heating and cooling coil

in the air handler unit, and models of return duct, split-

ter, terminal heaters and controls. The FMUs either had

T or h as input and output variables. Internally, the mod-

els use enthalpy balance, and hence if T is an input and

output variable, a conversion from T to h is required for

the input and from h to T for the output. We exported

the components as nine FMUs from Dymola 2015 FD01

and connected and simulated them in Ptolemy II (Ptole-

maeus, 2014) for the same number of steps. To bridge

from Java used in Ptolemy II to FMI, we used the Java

Native Interface (JNI). This experiment did not show a

difference in computing time.

Next, we simulated the Modelica implementations

with T or h in the inlet and outlet signals, connected to

a first order room response, directly in Dymola with the

Rkfix3 integration algorithm, without use of any FMUs.

This experiment also showed no difference in computing

time.

These two experiments indicate that there is no perfor-

mance penalty of choosing T rather than h for the input

and output signals.

8.2 Code optimizations lost by using small

FMUs

To investigate the impact of lost code optimization, we

simulated the HVAC model of Section 8.1 that was ex-

ported as either one or as nine FMUs. Both systems were

simulated in Ptolemy II for 35,040 steps, which would

correspond to an annual simulation with an average time

step of 15 minutes. The simulation time was 2 seconds

for the case with one FMU, and 3.4 seconds for the case

with nine FMUs. Hence, using nine FMUs increased the

computing time by 70%. The difference is attributed to

the lost code optimization in FMUs, the overhead of call-

ing many FMUs, and transferring data between outputs

and inputs of FMUs. Note however that the version of

Ptolemy II that we used for our experiments does not

Design Choices for Thermofluid Flow Components and Systems that are Exported as Functional Mockup Units

40 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511831

make use of the dependenciesKind information ex-

plained in Section 6, item 1.

9 Conclusions

The analysis in Section 4 showed that regularization

and the use of the inStream function can cause direct

input-output dependencies in FMUs that contain steady-

state HVAC equipment models. Recommendations to

avoid such dependencies are provided. We also pro-

vided various recommendations to implement approxi-

mate equations in thermofluid flow models that lead to

fewer input-output dependencies, and hence smaller cou-

pled systems of equations.

Our analysis showed that using multiple small FMUs

prevents system-level code optimization that is otherwise

done in Modelica. This was confirmed by our numerical

experiments.

For users, we provide a Modelica package that allows

export of thermofluid flow components and systems for

different media, with and without pressure drop calcula-

tions.

In summary, the efficiency of using FMUs for ther-

mofluid flow components strongly depends on compo-

nent design, and various code optimizations are lost

when using small FMUs rather than Modelica models.

10 Acknowledgment

This research was supported by the Assistant Secretary

for Energy Efficiency and Renewable Energy, Office of

Building Technologies of the U.S. Department of En-

ergy, under Contract No. DE-AC02-05CH11231.

This work emerged from the Annex 60 project, an in-

ternational project conducted under the umbrella of the

International Energy Agency (IEA) within the Energy in

Buildings and Communities (EBC) Programme. Annex

60 will develop and demonstrate new generation com-

putational tools for building and community energy sys-

tems based on Modelica, Functional Mockup Interface

and Building Information Modeling standards.

References
François E. Cellier and Ernesto Kofman. Continuous System

Simulation. Springer, 2006.

Rüdiger Franke, Francesco Casella, Martin Otter, Michael

Sielemann, Hilding Elmqvist, Sven Erik Mattsson, and

Hans Olsson. Stream connectors – an extension of

modelica for device-oriented modeling of convective

transport phenomena. In Francesco Casella, editor,

Proc. of the 7-th International Modelica Conference,

Como, Italy, September 2009. Modelica Association.

URL https://www.modelica.org/events/

modelica2009/Proceedings/memorystick/

pages/papers/0078/0078.pdf.

Filip Jorissen, Michael Wetter, and Lieve Helsen. Simulation

speed analysis and improvements of Modelica models for

building energy simulation. In 11-th International Model-

ica Conference, Paris, France, September 2015. Modelica

Association.

Modelica, 2010. Modelica – A Unified Object-Oriented Lan-

guage for Physical Systems Modeling, Language Specifi-

cation, Version 3.2. Modelica Association, March 2010.

URL https://www.modelica.org/documents/

ModelicaSpec32.pdf.

Modelica Association. Functional Mock-up Interface for

Model-Exchange and Co-Simulation version 2.0, 2014.

https://www.fmi-standard.org/downloads.

Claudius Ptolemaeus, editor. System Design, Modeling, and

Simulation using Ptolemy II. Ptolemy.org, 2014. URL

http://ptolemy.org/books/Systems.

Michael Wetter, Wangda Zuo, Thierry S. Nouidui, and Xi-

ufeng Pang. Modelica Buildings library. Journal of

Building Performance Simulation, 7(4):253–270, 2014.

doi:10.1080/19401493.2013.765506.

Michael Wetter, Thierry S. Nouidui, David Lorenzetti, Ed-

ward A. Lee, and Amir Roth. Prototyping the next genera-

tion energyplus simulation engine. Accepted: 13-th IBPSA

Conference. International Building Performance Simula-

tion Association, December 2015. URL http://www.

ibpsa.org/.

Session 2A: FMI 1

DOI
10.3384/ecp1511831

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

41

42 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

FMI for physical models on automotive embedded targets

Christian Bertsch
1
 Jonathan Neudorfer

1
 Elmar Ahle

1

Siva Sankar Arumugham
2
 Karthikeyan Ramachandran

2
 Andreas Thuy

3

1
Robert Bosch GmbH, Corporate Sector Research and Advance Engineering, 71272 Renningen, Germany

2
Robert

Bosch Engineering and Business Solutions Private Limited, 560 103 Bangalore, India

3
 ETAS GmbH, 70469 Stuttgart, Germany

Christian.Bertsch@de.bosch.com Jonathan.Neudorfer@de.bosch.com Elmar.Ahle@de.bosch.com

SivaSankar.Arumugham@in.bosch.com Karthikeyan.R@in.bosch.com Andreas.Thuy@etas.com

Abstract

This paper explores the possibility to include and

execute source code functional mockup units on Bosch

electronic control units. A prototypical realization is

presented, and assumptions as well as limitations are

documented. Special emphasis is laid on requirements

for the contained C-code. Furthermore, aspects for an

extension to adapt the FMI to the usage on automotive

embedded real-time systems are summarized.

Keywords: Automotive, FMI, Embedded Systems,

Electronic Control Units

1 Introduction

The Functional Mock-up Interface (FMI) is a well

received tool independent approach for model

exchange (Blochwitz et al. 2011, 2012) and a

promising candidate to become the industry standard

for exchange of models and cross-company

collaboration (Bertsch et al. 2014). From the beginning

in the MODELISAR project, a wide range of possible

simulation target platforms for FMI was foreseen,

ranging from offline simulation platforms over

Hardware-in-the-Loop (HiL) real-time systems to

embedded systems (Chombard 2012). While in the

offline simulation world FMI is well-established, this is

not the case for embedded applications.

This paper presents results of a prototypical FMI

implementation for physical models on automotive

embedded targets. Furthermore, the usage and

adaptation of the FMI as a standard for the automotive

embedded world is investigated.

Section 2 provides an overview of the state of the art

of physical models on real-time systems. In Section 3,

a prototype implementation of FMI on an Electronic

Control Unit (ECU) is introduced. Section 4 proposes

aspects for an extension to adapt the FMI to the usage

on automotive embedded real-time systems before

Section 5 concludes with a summary and an outlook.

2 Physical models for real-time systems

First, an overview of real-time systems is given where

physical models are already implemented using the

FMI standard (Section 2.1). Then, the status on

embedded systems is examined (Sections 2.2 and 2.3)

and the idea as well as advantages of the FMI on

embedded systems is presented in Section 2.4.

2.1 FMI for real-time systems: state of the art

The usage of FMI for real-time simulation is gaining

importance. The import of Functional Mock-up Units

(FMUs) is supported on major HiL systems in the

automotive domain, e.g., ETAS LABCAR (Mitrohin

2014). The same is true for rapid prototyping

applications (Brembeck et al. 2014). There are even

first applications of FMI for productive online control

and optimization tasks of power plants (Franke 2015).

All of these real-time applications have one thing in

common, i.e., they run on personal computers (PC) or

similar systems.

2.2 Embedded systems and ECUs

In contrast to real-time applications running on PCs,

software on automotive ECUs has special

requirements. Some of them are more generally true

for embedded systems, some of them apply only to

automotive embedded systems such as special coding

guidelines (MISRA 2013) or software architecture

(AUTOSAR 2015).

Typically, a modern vehicle has a lot of different

ECUs for different tasks such as a vehicle control unit,

an electronic stability control unit, and last but not least

an engine control unit for internal combustion engines.

ECUs are embedded systems with a different design

compared to other computer systems such as PCs:

Usually they have restrictions on

 memory usage,

 power consumption as well as computational

power,

 hard real time requirements, and

DOI
10.3384/ecp1511843

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

43

 available libraries: Not all mathematical functions

known in the offline world, e.g., as declared in

math.h, are available for embedded targets.

2.3 Physical models on ECUs: state of the art

Physical models play an important role in the advanced

control of internal combustion engines. Application

fields are, e.g., in the advanced control of the air

system of internal combustion engines. Also the real-

time capable implementation of advanced numerical

methods such as implicit discretization of stiff ordinary

differential equations for ECU software functions have

been successfully implemented (Wagner et al. 2008)

and are used in real-life applications. One major

advantage of physical models is that they can reduce

calibration effort and the number of characteristic maps

(Seuling et al. 2012).

The demand for the implementation of physical

models is rapidly growing due to the growing

complexity of systems (e.g., hybrid electrical systems),

higher demands on control and diagnosis due to

efficiency and legislation. There is a need for new

model-based methods for

 virtual sensors, i.e., observers,

 model-based diagnosis,

 inverse physical models as feed forward part of

control structures, and

 model predictive control.

In many cases the solution of the physical equations

can be separated from other of the control algorithms

and thus this part could be encapsulated an FMU. An

example for this is shown for the model-based

diagnosis, as depicted in Figure 1.

Figure 1: Encapsulated physical model as FMU in

model–based diagnosis, adapted from (Ding 2013)

 For the offline development and simulation of such

physical model, powerful tools are available. However,

the generated C-code from the majority of the tools

cannot be ported directly to an ECU. Today, these

models are often (re-)implemented individually for the

specific use case on the ECU. This requires expert

knowledge and significant effort.

Furthermore, there is no standardized interface for

physical models available on the ECU. Although the

AUTOSAR standard is widely accepted in the

automotive domain, it is not supported by typical

modeling tools for physical models. Also, AUTOSAR

does not provide an interface for solvers of Ordinary

Differential Equations (ODEs) and related

mathematical description.

2.4 The idea and advantages of FMI on the ECU

The idea of using FMI not only in PC-based

environments but also for embedded systems is already

considered as a possibility in the existing FMI

standard. Our motivation to work in this direction is to

facilitate the implementation of physical models on the

ECU by defining re-usable interface-functions and

numerical algorithms. This enables improvement in the

development process for physical models within ECU

software: The models could be seamlessly reused from

early design (offline), over rapid control prototyping,

and then finally ported to the ECU. This will also

facilitate the collaborative development of ECU

software between original equipment manufacturers

(OEMs) and their suppliers in the context of physical

models.

There are a lot of tools available for physical

modeling that support the FMI standard (also with

C-code generation), but only very few that support the

AUTOSAR standard. In a first step, one can apply the

prototype presented below for rapid (control)

prototyping purposes with physical models being

exported as FMUs from different tools.

Later – when additional requirements on the

included C-code would be fulfilled and the standard

would be adapted – it could also be used to exchange

code for real ECU projects. The core question is how

to integrate the FMU and its numeric framework into

an ECU software architecture like AUTOSAR.

3 Prototype implementation of FMI on an

ECU

A first prototype for using FMI as an intermediate

format in AUTOSAR was described in (Thiele et al.

2011) with the intention of using FMI as a lean

standard to exchange software components. There it is

pointed out that compared to AUTOSAR, the FMI

standard is much smaller and more straightforward,

and support of the FMI standard is a more manageable

task. Additionally, (Thiele et al. 2011) describes in

detail the mapping of FMI and AUTOSAR

XML configuration files and interfaces. In our

approach this is done in a similar way, as described in

Section 3.2.1. However, in contrast to our intention, the

emphasis of (Thiele et al. 2011) was on pure control

software and on the software architecture. In this paper,

the focus is laid on porting physical models to an ECU

and actually computing them on the target platform.

Process

Process Model

as FMU

input

-

output

Residual generation

Residual

evaluation
+ Knowledge

of faults

FMI for Physical Models on Automotive Embedded Targets

44 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511843

Figure 2: Bosch MDG1 ECU

As a demonstration platform the latest ECU

platform of Bosch for powertrain applications is

selected - the new “MDG1 ECU” as depicted in

Figure 2. It is a scalable multi core processor system,

see (Rüger et al. 2013) for details. As shown in

Figure 3, this platform supports both application

software (ASW) in a Bosch specific format compatible

with former Bosch ECU generation “MEDC17”, and

AUTOSAR. The base software is fully AUTOSAR

compliant and communicates with the AUTOSAR

application software via the run-time environment

(RTE) and with MEDC17 application software with a

Bosch-specific interface.

This is the platform for which the execution of

FMUs has been prototypically realized within the real

ECU software infrastructure (i.e., the build toolchain

and special compilers).

Figure 3: Software architecture of MDG1 ECU,

(Rüger et al. 2013)

3.1 Considerations for the prototypical porting

of FMUs to the ECU

The prototype is intended to work with source code

FMUs from publicly available modeling tools. These

tools were selected by inspection of the generated

source C-code, w.r.t. the criteria listed in Section 4.2.

As even the most suitable C-code did not fulfill all our

requirements, modifications of the C-code are

necessary. For this purpose a conversion tool was

developed to perform this semi-automatically.

When considering the usage on FMI for embedded

software, one has to choose between model exchange

or co-simulation FMUs. Both types of FMUs have

their pros and cons: co-simulation is closer to task-

based execution in ECU software, while model

exchange can interface special re-usable numerical

algorithms optimized for the ECU that can be provided

within a solver library.

The choice of the FMU type also depends on what

the modeling tool can export: Some tools export very

good variable step solvers for co-simulation FMUs

intended for the PC-world but with no chance to

compile and use such solvers for an embedded target.

More suited for embedded targets are inline integration

methods (Elmqvist et al. 1995).

On the other hand, model-exchange FMUs can take

advantage of optimized solvers and numerics for the

target platform without the above mentioned target

dependency of the FMU. For this reason both, co-

simulation and model exchange FMUs, are selected.

However, regarding real-time capability, especially for

model exchange FMUs, the prototype only supports a

subset of the FMI standard necessary for the

description of continuous ODEs neglecting events. The

assumptions and limitations of the implementation are

described in Section 3.4.

3.2 A prototypical workflow to bring FMUs on

Bosch ECUs

This prototypical workflow addresses the

transformation that an FMU must go through to be a

part of an ECU software component, by utilizing the

available ECU resources and numerical capability.

The whole conversion process can be done in a

preparation phase offline on a development platform

(typically a PC), where

 the FMU is unzipped,

 the modelDescription.xml file is parsed and

mapped to the corresponding configuration

XML file on the ECU software side, and

 the C-code is manipulated so that it can be

compiled for the target ECU within the standard

ECU software architecture before finally

 the manipulated C-code is included in an

application software component that can be

included in the overall ECU software.

Session 2A: FMI 1

DOI
10.3384/ecp1511843

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

45

Then, the software can be compiled and flashed to the

ECU and then executed and validated.

3.2.1 Mapping of configuration files and interface

definitions

The data description file of the FMI standard

modelDescription.xml must be converted to the

data description format for ECUs (e.g., ARXML in

AUTOSAR). This is performed analogously to the way

described by (Thiele et al. 2011). This task is done by

the first stage of a script-based conversion tool (see

Figure 4).

Figure 4: FMU file artifacts converted automatically into

an ECU compatible software component

3.2.2 Conversion of C-source code from FMUs to

ECU software C-code

Some changes like the selection of suitable data types

(e.g., single precision float for fmi2Real) can be

configured in the platform dependent configuration

files fmi2TypesPlatform.h and

fmi2Functions.h.

For other changes the second stage of the tool-

supported conversion process applies: the C-code

contained in the source code FMUs is converted to

C-code that can be compiled for an ECU with the

standard toolchain for Bosch engine control software.

Since the FMU source code is generated from

simulation tools typically operating in a PC

environment, there are some code adaptations involved

in the process of running them on ECU. However, the

goal is to keep the code change as low as possible.

Some examples of the changes of the C-code are:

 All macro definitions in fmu.c must be moved to

private headers to avoid multiple definitions while

compiling multiple FMUs together. For example,

definitions such as the following should be put in

private headers:
#define NUMBER_OF_REALS XX
#define NUMBER_OF_INTEGERS YY

 Information from FMUs that must be exposed to

the outside shall be defined in public header files,

e.g., reference to the FMU interfaces or function

declaration prototypes such as
void modelName_fmi2instantiate(…);

 Some header inclusions generated in FMU source

files like stdio.h, math.h etc., must be

removed or excluded since they are not available

on the embedded platform.

 Mathematical function calls must be mapped to

the available functions from the AUTOSAR base

software.

 Floating point variables and constants within the

code have to be converted to single precision. A

notable compiler specific change is that for any

arithmetic expression in model equations where

float constants are used, they must be suffixed by

f to enable the compiler to identify that it is a

single precision float variable and not double

precision. This means that the original code
mu*((1.0-x0*x0)*x1)-x0;

is replaced by
mu*((1.0f-x0*x0)*x1)-x0;

 Implicit type castings are replaced by explicit type

castings.

 Any explicit print functions like fprintf(),

printf() should be removed.

The structure of the C-code contained in source code

FMUs is very specific to the exporting tool. At the

moment FMUs generated from three different tools are

supported. The conversion of the C-code is performed

mainly automatically, but still the inspection of the

modified C-code and some manual adaptations are

necessary.

3.2.3 Modification of memory allocation

On the ECU, dynamic memory allocation is not

allowed. Instead, the memory demand must be known

at compile time. Therefore, the required memory must

be pre-allocated and later assigned via the FMI

callback function allocateMemory(). However, it

is not sufficient for the ECU implementation of the

callback function to return just a pointer to any free

space in memory. Instead, memory for each variable is

pre-allocated individually and the correct memory

location for each allocation request must be returned.

This is important for debugging and calibration. The

respective tools must be able to map the variable

names to the resp. space in memory. For instance, a

model might use a struct containing the parameters

a, b, and c. Here, the calibration tool must be able to

unambiguously map the variables a, b, and c to their

respective locations in memory.

3.2.4 Concept of FMU computation algorithm

The modified C-code is called by the “FMU

computation algorithm” which takes the role of the

solver in the case of model exchange FMUs and the

master algorithm in the case of co-simulation FMUs.

This FMU computation algorithm is the application

software component that can communicate with the

other parts of the ECU software and is scheduled by

the operating system.

The FMU computation algorithm can make use of

solver libraries in the case of model exchange. It

FMI for Physical Models on Automotive Embedded Targets

46 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511843

interacts with the modified C-code from the FMUs via

the standard FMI interface functions according to the

supported part of the FMI standard calling sequence.

This design enables easy integration of FMU

components as ECU components, thereby enabling

interfacing with the FMU computation algorithm,

solver libraries, and other ECU components. A

graphical representation of the FMU software

components’ organization inside the ECU is shown in

Figure 5.

Figure 5: FMU software component for model exchange

FMUs

As shown in the depicted setup, the FMU is

accessed via the FMI interface functions, thus keeping

the FMU’s C-code with minimal changes while

executing it on the ECU. The FMU computation

algorithm is a combined set of functions defined,

organized and distributed across different source files

under a common container.

3.2.5 Example: double mass spring damper model

Several FMUs have been ported to the Bosch MDG1

ECU with different properties of the physical models

such as number of states (up to >10), stiffness of the

included ODEs and physical domains covered. The

prototype workflow allows bringing physical models

very easily on the ECU in a fraction of the time

necessary to hand-code the model and solvers from

scratch.

Figure 6: Schematic representation of the double mass

spring damper model

To demonstrate the execution of FMUs running on

an ECU, a stiff model of a double mass spring damper

as depicted in Figure 6 is considered. This example

serves as a benchmark problem for a stiff powertrain

model that could be used in applications listed in

Section 2.3. For this simple model, source code FMUs

were generated with several Modelica-based

simulation tools. The size of the contained C-code

differed from 54kByte to 2.9MByte, i.e., differing by a

factor of more than 50. This correlated also with the

complexity and “readability” of the contained C-code

and is a first indication, how feasible it is to re-use this

C-code on embedded targets.

For the above model, the system of equations is

given by

(1)

with the following parameters:
= =1kg, = =1N/m, =100Ns/m, =1Ns/m

and initial conditions:
=2m, =0m/s, =2m, =0m/s.

The solution calculated with a linear-implicit Euler

solver with a step size of 10 ms demonstrates the

expected damped oscillation of the masses. An explicit

Euler solver is unstable for the same step size, as

shown in Figure 7.

Figure 7: Displacement of mass provided by explicit

and linear implicit Euler methods

This well know behavior of explicit solvers for stiff

ODEs with large time steps also demonstrates the

benefit of FMI for porting physical models on the

ECU: (linear-)implicit solvers can be easily realized

either by:

‐1

‐0,5

0

0,5

1

1,5

2

0 5 10 15 20

D
is
p
la
ce
m
e
n
t (
m
)

Time (s)

Explicit Euler

Linear Implicit Euler

Session 2A: FMI 1

DOI
10.3384/ecp1511843

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

47

 Co-simulation FMUs generated by exporting tools

supporting inline integration for implicit

discretization methods of ODEs (Elmqvist et al.

1995)

 Model-exchange FMUs providing a standardized

interface between the model equations (even with

the possibility to calculate the Jacobian matrix in

FMI 2.0) and an optimized implementation of

numerical algorithms for the target platform.

In this example, a model exchange FMU generated

from a commercial tool is used as well as our own

implementation of explicit and linear-implicit Euler

solvers on the Bosch MDG1 ECU.

3.3 Validation of FMUs running on the ECU

The computation results of the FMUs ported to the

MDG1 ECU are validated in several steps:

 Creating reference signals by simulating the FMU

offline on a PC. The FMU can also be embedded

in a closed loop system model to derive

meaningful stimuli for the further tests.

 Compiling the modified FMU within an ECU

software with the Bosch standard toolchain and

creating a Windows DLL that can be tested within

the ETAS test tool RT2.

 Compiling the modified FMU within an ECU

software with the Bosch standard toolchain for the

target processor and running it on virtual

hardware (Leupers et al. 2012).

 Running the FMU on the real target platform

(Bosch ECU test board or series product).

Stimulate and measure with an ETAS LABCAR

Hardware-in-the-Loop (HiL) setup or a

measurement and calibration tool such as ETAS

INCA.

3.4 Restrictions of the prototype implementation

There are also some restrictions in the prototypical

implementation of FMU like no event handling for

model exchange and no variable step size for solvers.

Otherwise one would have to take additional measures

to guarantee real-time behavior and to map calculations

to ECU tasks. Special assumptions on the contained

C-code are made and adapted to the prototype to cope

with FMUs generated from three different tools

(including Modelica-based tools) which address the

desire of using FMUs from commercial tools.

However, C-code from many commercial tools is not

suitable to run on an ECU due to their size and

complexity since it was not intended to run on an

embedded system.

At the moment, the prototype does not yet fulfill all

requirements, e.g., regarding compliance with the

software development guidelines for the C

programming language by the Motor Industry Software

Reliability Association (MISRA 2013), for series

engine control software.

With the successful prototypical implementation, the

next steps will be:

 Usage of FMUs for the computation of physical

models as virtual sensors or in advanced control

and diagnosis tasks as described in Section 2.3.

 Extension of the offline preprocessing and

calculation algorithm for connected FMUs as well

as the connection to other software components

 Full AUTOSAR support

4 Key findings and outlook

Based on the sample FMUs implemented on a Bosch

ECU, the key findings are summarized and an outlook

is given.

4.1 Aspects for embedded systems already

contained in the FMI standard

In the original development of the FMI, some

consideration was already given to the usage of FMI on

embedded systems (cf. the FMI 2.0 standard), resulting

in the following features which are required by such

systems:

 Source code FMUs come with C-code, the most

common language to program embedded systems.

 It is easy to replace data types (double precision

float to single precision float).

 The interface description in an XML file can be

mapped easily to corresponding XML files for

ECU software components.

 Co-simulation FMUs with fixed communication

step size can be mapped easily to ECU tasks with

periodic activation

 Callback functions are defined for memory

allocation and logging, which can be replaced or

disabled by special mechanisms for the target

platform.

4.2 Key findings: changes to source code FMUs for

embedded targets

On ECUs, one is confronted with computation

limitations compared to the offline world or the real-

time PC environment. These limitations should be

reflected in an FMU that is suitable for applications

running on an ECU.

 Limitation 1: Memory

The FMI purposefully leaves the organization of a

model’s data (e.g., parameters, internal variables)

to the FMU in order to achieve maximum

freedom. In contrast, ECU software is organized

with respect to memory to allow transparency,

simplicity, and efficiency. That means, if data

structures are left to the freedom of the

implementer, they still have to be transparent to

the outside at least so far as to allow

FMI for Physical Models on Automotive Embedded Targets

48 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511843

parameterization and signal observation.

Currently, this is not possible with the FMI since

parameters, states, inputs, and outputs are not

exposed directly to the outside but hidden behind

access functions.

 Limitation 2: Event handling

In general, events could increase the runtime for

real-time systems in an unpredictable manner.

There may be any number of events within a

second which all trigger their respective event

handling algorithms. Thus, in order to guarantee

that models with event handling satisfy real-time

requirements one will have to take extra

measures.

 Limitation 3: Algebraic loops

Similar to event handling, algebraic loops

generally have an unpredictable impact on the run

time of an FMU where they require an iterative

solution. This restriction applies both to connected

FMUs and to iterative solution methods within

one FMU.

 Limitation 4: User-interaction is impossible

Several features which make sense for offline

simulations are either overhead or even dangerous

for computations on the ECU. Such features

which are either supported or not explicitly

forbidden in the FMI include logging and I/O

operations such as print().

 Limitation 5: Support functions

Support functions such as available from the

math.h library are usually not available on the

ECU. State of the art ECUs provide their own set

of support functions through an AUTOSAR

library. However, function names and usage of

these are generally different from their offline

counterparts.

 Limitation 6: C-code compliance

Strict coding guidelines apply for source code that

is executed on an ECU. Such requirements are

standardized by the Motor Industry Software

Reliability Association (MISRA 2013).

 Limitation 7: Cross-compilation and object

code FMUs

As ECUs are quite special platforms, they require

special compilers and build processes as well.

Object file FMUs have to be cross-compiled

accordingly which requires the availability of the

suitable toolchain for the target platform

 Limitation 8: Available data types

In order to provide optimized code, the set of

available data types should be enlarged. For

example, one should be able to distinguish a

uint8 from a uint32 variable.

Beyond the mentioned restrictions, to achieve a

convincing performance of FMUs running on an ECU,

careful consideration of the target platform is required:

 The solver must be able to make use of the

platform’s computing capabilities, which differ

widely from one platform to another.

 Computations are mostly performed using single

precision floats.

 Heap and stack usage must be minimized.

4.3 Outlook towards a future FMI variant for

embedded systems

The limitations listed in the previous section will have

to be addressed by a possible future FMI standard.

Major changes to the existing FMI 2.0 standard will be

necessary that it does not seem to be possible to

include them very easily, as there will be not only

requirements on the interface such as for FMI today,

but also on the contained C-code. Thus, a variant of the

FMI standard especially for automotive embedded

targets and a connection to the AUTOSAR standard is

desirable. FMUs generated according to such a

standard could then be executed on ECUs without the

conversion steps presented in Section 3 of this paper.

Such FMUs could really be seamlessly used for all

cycles of the development process until running on

automotive embedded systems.

5 Summary

In this paper, it is shown by a prototype that the current

FMI standard with some modifications which are

highly tool-dependent allows the computation of

FMUs of physical models on an ECU (as a

representative for embedded controllers) as long as the

FMU satisfies some assumptions and limitations. This

was demonstrated for FMUs generated from different

tools on a Bosch MDG1 engine control unit, where the

modified FMUs have been included in the real

software build process. The prototype can be used for

rapid control prototyping with physical models.

For usage of FMUs out of the box in productive

ECU software, the standard will have to be modified,

mostly enforcing the above mentioned restrictions

(Section 4.2). ECU software must be lean, efficient,

and above all, safe. We foresee the benefits for the

establishment of an “FMI for automotive embedded

systems” for seamless model-based design until the

execution on the target platform.

Acknowledgements

We would like to thank Martin Otter, Andreas Pfeiffer,

and Jonathan Brembeck from DLR as well as our

colleagues Andrea Flexeder, Eckart Mayer-John,

Matthews Peter, Dibakar Mahalanabish, Naresh

Mandipalli, Wolfgang Lengerer, and Marcus Bossler

for fruitful discussions.

Session 2A: FMI 1

DOI
10.3384/ecp1511843

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

49

References

AUTOSAR Consortium, Autosar Standard 4.2, available at

http://www.autosar.org/, 2015

Bertsch, C., Ahle, E., Schulmeister, U., The Functional

Mockup Interface - seen from an industrial perspective, In:

Proceedings of the 10
th
 International Modelica Conference

2014, Lund, Sweden

Blochwitz, T., Otter M., Arnold, M., Bausch, C., Clauß, C.,

Elmqvist, H., Junghanns, A., Mauss, J., Monteiro, M.,

Neidhold, T., Neumerkel, D., Olsson, H., Peetz, J.-V,

Wolf, S., The Functional Mockup Interface for Tool

independent Exchange of Simulation Models, In:

Proceedings of the 8
th
 International Modelica Conference

2011, Dresden, Germany

Blochwitz, T., Otter, M., Akesson, J., Arnold, M., Clauß, C.,

Elmqvist, H., Friedrich, M., Junghanns, A., Mauss, J.,

Neumerkel, D., Olsson, H., Viel, A., The Functional

Mockup Interface 2.0: The Standard for Tool independent

Exchange of Simulation Models, In: Proceedings of the 9
th

Modelica Conference 2012, Munich, Germany

Brembeck, J., Pfeiffer, A., Fleps-Dezasse, M., Otter, M.,

Wernersson, K., Elmqvist, H., Nonlinear State Estimation

with an Extended FMI 2.0 Co-Simulation Interface, In:

Proceedings of the 10
th
 International Modelica Conference

2014, Lund, Sweden

Chombard, P., Multidisciplinary modeling and simulation

speeds development of automotive systems and software,

ITEA2 innovation report, 2012, published online:

https://itea3.org/project/modelisar.html

Ding, S. X., Model-Based Fault Diagnosis Techniques,

Springer, 2nd edition, London 2013

Elmqvist, H., Otter M., Cellier, F.E.: Inline Integration: A

new mixed symbolic/numeric approach for solving

differential-algebraic equation systems, In: Proceedings

of ESM’95, European Simulation Multiconference, 1995

Franke, R., Mathematical optimization of dynamic systems

with OpenModelica, Annual OpenModelica Workshop

2015, published online:

https://openmodelica.org/images/docs/openmodelica2015/

OpenModelica2015-talk02-Franke_Optimization.pdf

Leupers, R., Martin, G., Plyaskin, R., Herkersdorf, A.,

Schirrmeister, F., Kogel, T., Vaupel, M., Virtual

Platforms: Breaking New Grounds, IEEE DATE

Conference, Dresden 2012

Mitrohin, C., FMI in LABCAR HiL; From MiL to SiL

towards HiL, FMI-Tutorial, 10
th
 International Modelica

Conference 2014, Lund, Sweden

MISRA Consortium, MISRA C: 2012 Guidelines for the use

of the C language in critical systems, 2013, available from

http://www.misra.org.uk

Rüger, J.-J., Wernet, A., Kececi, H.-F., Thiel, T., MDG1:

The New, Scalable, and Powerful ECU Platform from

Bosch, Proceedings of the FISITA 2012 World

Automotive Congress - Volume 6: Vehicle Electronics,

Springer, 2014

Seuling, S., Hamedovic, H., Fischer, W., and Schuerg, F.,

Model Based Engine Speed Evaluation for Single-

Cylinder Engine Control, SAE Technical Paper 2012-32-

0044, 2012

Thiele, B.; Henriksson, D., Using the Functional Mockup

Interface as an Intermediate Format in AUTOSAR

Software Component Development, In: Proceedings of the

8
th
 International Modelica Conference 2011, Dresden,

Germany

Wagner, A., Bleile, T, Lux, S., Fleck, C., Method for real

time capability simulation of an air system model of an

internal combustion engine, US Patent US 8321172 B2,

2008

FMI for Physical Models on Automotive Embedded Targets

50 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511843

Methodology for Obtaining Linear State Space Building Energy

Simulation Models

Damien Picard1 Filip Jorissen1,2 Lieve Helsen1,2

1Mechanical engineering, KU Leuven, Belgium, {damien.picard, filip.jorissen}@kuleuven.be
2EnergyVille, Waterschei, Belgium, lieve.helsen@energyville.be

Abstract

Optimal climate control for building systems is facili-

tated by linear, low-order models of the building struc-

ture and of its Heating, Ventilation and Air Condition-

ing (HVAC) systems. However, obtaining these models

in a practical form is often difficult, which greatly ham-

pers the commercial implementation of model predictive

controllers. This work describes a methodology for ob-

taining a linear State Space Model (SSM) of Building

Energy Simulation (BES) models, consisting of walls,

windows, floors and the zone air. The methodology uses

the Modelica library IDEAS to develop a BES model,

including its non-linearities, and automates its lineari-

sation. The Dymola function linearize2 is used to

generate the state space formulation, facilitating further

mathematical manipulations, or simulation in different

environments. Optionally this model can then be reduced

for control purposes using model order reduction (MOR)

techniques. The methodology is illustrated for the zone

air temperature in an office building. For this case, the

absolute error between the non-linear BES and its SSM

remains under 1 K and its yearly average is 0.21 K. The

original 50 states SSM could furthermore be reduced to

16 states without significant loss of accuracy.

Keywords: model predictive control, Dymola, building

energy simulation, linearisation, model order reduction.

1 Introduction

Building climate control uses around 18% of the to-

tal end energy in Europe (Perez-Lombard et al., 2008).

One way of reducing energy use is to develop more ef-

ficient control algorithms for the production and distri-

bution of heat and cold in buildings. Recent research

has shown that (near) optimal controllers such as Model

Predictive Control (MPC) can greatly improve the en-

ergy efficiency of buildings compared to traditional rule-

based-controllers (Gyalistras and Gwerder, 2009; Ver-

helst, 2012). However, its practical implementation is

hampered due to the difficulty of finding a controller

model that is simple enough to allow optimization within

a reasonable computation time but still accurate enough

to correctly predict the building behaviour. Linear mod-

els are preferred since efficient optimization algorithms

can then be used (Kummert, 2001; Sturzenegger et al.,

2012).

Controller models are often obtained using system

identification, i.e. fitting reduced order models based

on measurement data. Obtaining controller models for

buildings is an active research topic due to the complex-

ity of the systems and due to the difficulty or even im-

possibility of performing experiments allowing the iden-

tification of multi-input, multi-output building models

(Sturzenegger et al., 2014). An alternative approach is

to create models based on physical insight and knowl-

edge about the system. Lehmann et al. (2013) showed

that building energy simulation (BES) models are only

weakly non-linear. They set up a relative complex lin-

ear model based uniquely on physical data, which was

able to mimic the non-linear TRNSYS BES model with

an error smaller than 1 K. The accuracy of the model

is not enough for design purposes but it is sufficient for

MPC or sensitivity analysis. Sturzenegger et al. (2014)

automated their approach for deriving state space models

for MPC applications using the BRCM Matlab toolbox.

The toolbox needs a considerable amount of information

such as an EnergyPlus input file.

In this work, we propose an automated way of obtain-

ing accurate linear BES models based on a non-linear

model implementation in Dymola using the IDEAS li-

brary (Baetens et al., 2015). Section 2 describes the non-

linearities of BES models together with common sim-

plifications and Section 3 explains the linearisation tech-

nique. Section 4 describes the linearisation methodol-

ogy in IDEAS and Section 5 shows a validation of the

methodology. Section 6 briefly discusses a model order

reduction technique for the linear model and their use for

optimal controllers. Main conclusions are summarized in

Section 7.

DOI
10.3384/ecp1511851

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

51

2 Non-linearities in Building Energy

Simulation Models and Common

Simplifications

Typically, BES models contain three major sources of

non-linearities. The first is longwave radiation, which

is typically described using the Stefan-Boltzmann law.

The second is the absorption of incident solar radiation

by windows, which is a function of the incidence angle.

The third is convective heat transfer, which is usually de-

scribed using correlations for the convective heat trans-

fer coefficient. These non-linear equations are first de-

scribed in this section, then a linearisation technique is

proposed. Other non-linearities in real buildings exist

(e.g temperature dependent emissivity, pressure depen-

dent air leakage, ...) but they are rarely modelled. They

will not be treated in this work.

Radiation Radiation is described by the non-linear

Stefan-Boltzmann law which is given by Eq. 1 for two

grey-bodies with surface areas A1 and A2.

Q̇1→2(t) = σF1→2 A1

(

T 4
1 (t)−T 4

2 (t)
)

(1)

Q̇1→2 and F1→2 are the heat transferred from surface 1

to 2 and their view factor respectively, σ = 5.670373×
10−8 W/(m2.K4) the Stefan-Boltzmann constant, and Ti

the temperature of body i.

Radiative heat transfer between room surfaces is of-

ten approximated using the Mean Radiant Temperature

model (e.g. in TRNSYS TYPE 56 (S.A. Klein et al.,

2010)) or using the Radiant Star Temperature model (e.g.

in IDEAS (Baetens et al., 2015)) since it greatly sim-

plifies the computations without a significant loss in ac-

curacy (Liesen and Pedersen, 1997). This radiant star

temperature Tstar is derived from the energy conservation

equation in the radiant node and the temperature of each

surface Ak is calculated using a distribution coefficient

Rk:

Q̇k→star(t) =
σAk

Rk

(

T 4
k (t)−T 4

star(t)
)

(2)

Eq. 2 is often linearised around nominal temperatures

Tk,nom and Tstar,nom (Eq. 3), which is an accurate ap-

proximation for small temperature differences. Figure 1

shows the approximation error for the heat exchange be-

tween two black bodies with view factor equal to one.

Q̇k→star(t)≃ c(Tk(t)−Tstar(t)) (3)

c =
σAk

Rk

(

(Tk,nom +Tstar,nom)(T
2

k,nom +T 2
star,nom

)

(4)

The longwave radiation heat flow Q̇lw,k(t) between ex-

terior surface k of the building with longwave emissivity

−10 −5 0 5 10 15 20 25 30 35 40
−200

−100

0

100

200

P
o

w
e

r
W

/m
2

Linearization error: σ (T
4
 − 293.15

4
) − 4 σ 293.15

3
 (T − 293.15) for T = 293.15 K

q

q
lin

−10 −5 0 5 10 15 20 25 30 35 40
−40

−20

0

Temperature T [degC]

P
o

w
e

r
W

/m
2

q − q
lin

Figure 1. Error made by the linearisation of the radiative heat

transfer equation between two black bodies with view factor

one.

εlw,k and its environment can be modelled as:

Q̇lw,k(t) = σεlw,kAk

(

T 4
s,k(t)−Fce,kT 4

ce(t)

−(1−Fce,k)T
4

db(t)
)

Fce,k =
1+ cos ik

2

(5)

with Ts,k(t), Tce(t), Tdb(t) the surface, celestial dome and

dry bulb temperature respectively, Fce,k the view factor

between the surface k and the celestial dome, and ik the

inclination of the surface. This equation is linearised by

default in IDEAS as:

Q̇lw,k(t)≃ c
(

Ts,k(t)−

4

√

Fce,kT 4
ce(t)+(1−Fce,k)T

4
db(t)

)

(6)

with c a parameter defined similar to Eq. 4.

Finally, the shortwave solar irradiation absorbed by

exterior surface k equals:

Q̇sw,k(t) = εsw,kAkEe,k(t) (7)

with Ee,k(t) the incident solar irradiation on surface Ak

as a function of time.

Absorption and transmission through glazing Heat

absorbed or transferred through windows is typically

highly non-linear as it depends on the spectral proper-

ties of the window, on the angle of incidence of the sun

and on possible shading. Typically, the window prop-

erties are pre-computed using specialized software and

delivered as an input to the simulation software. IDEAS

uses the software Window 4.0 (Finlayson et al., 1993)

to pre-compute window spectral properties but it com-

putes the amount of absorbed and transmitted light dur-

ing the simulation, requiring trigonometrical transforma-

tions and lookup tables, which are non-linear functions.

Methodology for Obtaining Linear State Space Building Energy Simulation Models

52 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511851

Convective heat transfer Two types of convective

heat transfer are present in buildings: exterior, forced

convection by the wind, and interior, natural convection

when forced ventilation is absent.

In IDEAS, the external convective heat transfer rate

Q̇cv(t) between an exterior surface with area Ak and the

outdoor air is based on Defraeye et al. (2011):

Q̇cv,k(t) = hcv(t)Ak

(

Tdb(t)−Ts,k(t)
)

hcv(t) = max
{

5.01(v10(t))
0.85

,5.6
}

W/m2K
(8)

with convective heat transfer coefficient hcv(t), dry bulb

ambient temperature Tdb(t), surface temperature Ts,k(t)
and the undisturbed wind speed at 10 meters above the

ground v10(t).
Eq. 8 is non-linear even if the convection coefficient

is an input due to the multiplication of input with input

(hcv(t)Tdb(t)) and inputs with state (hcv(t)Ts,k(t)). If the

nominal values of Tdb(t) and Ts,k(t) are equal, Eq. 8 can

be linearised as:

Q̇cv,k(t)≃ h̄cvAk

(

Tdb(t)−Ts,k(t)
)

(9)

with h̄cv the yearly average of the exterior convection co-

efficient.

The interior convective heat transfer rate of a wall,

ceiling or floor with surface area Ak and an air node is

computed as:

Q̇cv,k(t) = hcv,k(t)Ak

(

Tdb(t)−Ts,k(t)
)

hcv,k(t) = n1,k D
n2,k

k

∣

∣Tdb(t)−Ts,k(t)
∣

∣

n3,k
(10)

with Dk the hydraulic diameter, and coefficients

ni,k. The value of the coefficients are n1:3 =
{1.823,−0.121,0.293} for vertical surfaces, n1:3 =
{2.175,−0.076,0.308} for heated floors and cooled ceil-

ings and n1:3 = {0.704,−0.601,0.133} for cooled floors

and heated ceilings (Awbi and Hatton, 1999).

These interior convection equations can be linearised

in IDEAS using an average value for hcv:

hcv,k ≃ n1,k D
n2,k

k |∆Tnom|
n3,k (11)

with ∆Tnom the nominal temperature difference.

Heat diffusion through walls and floors Heat transfer

through walls and floors is characterized by convective

and radiative heat transfer at the surfaces and conduc-

tion through the solid layers. The latter is governed by

a partial differential equation (PDE). It extends in three

spatial dimensions and in time. However, the heat trans-

fer through walls and floor can often be approximated

using a one dimensional PDE due to the low thickness to

height and width ratio. The equations can then either be

solved using discrete Laplace transform (e.g. TRNSYS)

or using a finite volume method (e.g. EnergyPlus (Strand

et al., 1999)). In IDEAS, the finite volume method is

used, leading to a set of linear equations.

3 Linearisation Technique

The linearisation of a function consists of the first order

term of the Taylor expansion of this function around a

working point. Given a deterministic non-linear dynamic

system:

ẋ = f (x,u)

y = g(x,u)
(12)

where x ∈ R
nx are the states, ẋ are their derivatives, u ∈

R
nu the inputs, and y ∈R

ny the outputs. The linearisation

of Eq. 12 around point p⋆ , (x⋆,u⋆) is defined as:

ẋ = f (p⋆)+
∂ f

∂x

∣

∣

∣

∣

p⋆

(x− x⋆)+
∂ f

∂u

∣

∣

∣

∣

p⋆

(u−u⋆)

, f (p⋆)+Ax̃+Bũ

y = g(p⋆)+
∂g

∂x

∣

∣

∣

∣

p⋆

(x− x⋆)+
∂g

∂u

∣

∣

∣

∣

p⋆

(u−u⋆)

, g(p⋆)+Cx̃+Dũ

(13)

where A,B,C,D are constant matrices.

The Dymola built-in function linearize2 of the

Modelica Linear System2 library provides the possibil-

ity of linearising Modelica models (Otter, 2014). The

hybrid differential-algebraic equation system is treated

as an ordinary differential equation system at the lineari-

sation point and the partial derivatives of the functions

f and g are obtained by evaluation of the analytical Ja-

cobian if it is available. Otherwise a central difference

method is used. The function can also be used to trans-

form a linear model into a SSM.

It should be noted that even for a linear system, the

linearisation point p⋆ used by the function linearize2

should be chosen carefully to avoid numerical noise. The

states x⋆ can be set using initial equations or start val-

ues. The inputs u⋆ can be set using start values. The

default start value for the inputs in Dymola is zero

which can lead to significant error when evaluating the

derivatives using the central difference method.

4 Linearisation Methodology in

IDEAS

This section describes how IDEAS was adapted to au-

tomatically obtain a state space formulation of a BES

model in Dymola. Firstly the linearization of the equa-

tions is discussed, followed by the model structure re-

quirements for SSM’s. Finally the SSM structure is de-

scribed.

4.1 Linearisation of the equations

Here we describe how the non-linear equations of the

Modelica BES models are conditionally linearised or

Session 2B: Building Energy Applications 1

DOI
10.3384/ecp1511851

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

53

Wea

Zone

IntWall

OutWall
Eq.2&10Eq.5&8

Eq.5&8

Eq.2&10 Eq.2&10

Eq. Win

Win

Emb

Con

Rad
Eq. Win

Wea

Zone

IntWall

OutWall

Win

Eq.3&11Eq.6&9

Eq.6&9

Eq.3&11 Eq.3&11

Eq. Win

Wea

Win

Sensors

h2s

h2s

h2s

Emb

Con

Rad

Weather data
Acausal connection

Causal connection
Non-linear eq. Linearized eq. Linear eq. Removed eq. HeatPort

Output
Input

weaBus

winBus

E
q.2&

10

E
q.3&

11

Figure 2. Left: original model with non-linear equations. Right: Adjusted model structure with moved and/or linearized non-

linear equations. Component models are outer wall ‘OutWall’, interior wall ‘IntWall’, Window ‘Win’, weather model inputs

‘Wea’ and HeatPorts embedded (Emb), convective (Con) and radiative (Rad). White triangles represent inputs to the model,

whereas black triangles represent outputs of the model.

Tvs,S Tws,S

Qsol,S

Tamb

South North

Qint,S

Tws,STc,S

Tz,S

Tvs,N

Tz,N

Tws,N

Tws,N

Tc,N

Qint,N

Qsol,N

Tamb

Figure 3. Illustration of the office building section, (Sourbron et al. (2013), p 5)

moved outside the model and replaced by model inputs.

Note that the moved equations should not depend on any

state variables.

Radiation As described in the previous section, all

longwave radiation equations can be linearised accu-

rately. If linearise = true, Eq. 2 and Eq. 5 are re-

placed by Eq. 3 and Eq. 6, respectively, where the square

root term is transformed into a model input for each dif-

ferent orientations and inclination. The solar irradiation

E
(k)
e (t) required for the shortwave absorption is also con-

verted into a model input per orientation and inclination.

Window models Window models contain equations

for calculating the solar irradiance, the impact of shad-

ing and the amount of heat that is absorbed and transmit-

ted through the window. These are non-linear equations

indicated in Figure 2 by ‘Eq. Win’. Linearising these

equations would introduce large errors. Linearising them

at may for instance have the consequence that the so-

lar position and corresponding incidence angles become

fixed, which can cause a large underestimation of the so-

lar gains for windows. Therefore the absorbed and trans-

mitted heat flow rates are calculated outside of the model

and they are inputs to the linearised model, as indicated

in the right of Figure 2. Each window model is instanti-

ated twice, once inside and once outside of the linearised

model. The grey boxes in Figure 2 indicate which equa-

tions are removed and replaced by inputs. Note that the

window model is thereby split into two parts. A bus con-

nector winBus for each of the nwin windows is used for

connecting the inputs.

Convective heat transfer The interior convective heat

transfer is linearised using Eq. 11. ∆Tnom was chosen

equal to the mean absolute temperature difference

between the window or wall and the zone air tempera-

ture. The exterior convective heat transfer coefficient

is simplified by using the yearly average convective

heat transfer coefficient h̄cv. These linearisations are

indicated on Figure 2 using green rectangles.

The remaining model equations, like thermal conduc-

tion equations, are already linear and they are retained.

Methodology for Obtaining Linear State Space Building Energy Simulation Models

54 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511851

4.2 State space formulation

In the previous paragraphs all non-linear equations are

removed from the building envelope model. This linear

model needs to be converted into state space format. This

requires that all exterior connections are either inputs or

outputs, otherwise Dymola does not detect the connec-

tions. However, HeatPort connections Emb, Con and

Rad contain variables T and Q_flow that do not spec-

ify whether they are inputs or outputs. Each HeatPort

for the room thermal gains is therefore connected to an

input-output block h2s, which either sets heat flow rate

Q_flow to a fixed input and temperature T to an output

or the other way around.

In order to propagate weather data inputs to all sub-

models, one weather bus weaBus with prefix input is

connected to each zone. The zone further propagates this

data to all its connected surfaces (walls, windows, ...) as

indicated by the dotted lines in Figure 2.

4.3 State space model structure

All non-linear equations are now removed and all con-

nections are either defined as an input or as an output.

The state space formulation can now be obtained by us-

ing the linearize2 function on the model containing

all components of the dashed green box in Figure 2. This

function returns matrices A, B, C and D. The SSM inputs

u are the heat flow rate or temperature for thermal gains

of the zones, the weather bus and nwin window buses.

Outputs are either the temperature or the heat flow rate of

the transformed HeatPorts. Additional outputs can be

defined in the linearised model by adding RealOutput

components.

5 Validation

In this section, the methodology is applied to a test case.

The case is firstly described after which the methodology

is validated.

Case description The validation uses the cut-out of

a typical office building with South and North oriented

facades described by Sourbron et al. (2013) (See Fig-

ure 3). We only consider the building structure, which

consists of three zones (a corridor, a south-oriented and

a north-oriented zone) each equipped with a thermally

activated ceiling and floor composed of multiple layers

(floor tiles, air layer, screed, and reinforced concrete),

two external walls composed of multiple layers (plaster,

concrete blocks, mineral wool, and bricks), and two win-

dows. Each zone has a convective and a radiative heat

gain input and heat can also be injected at the core of the

thermally activated building parts.

The model is implemented with all details above in

Modelica using the IDEAS library (Baetens et al., 2015).

Table 1. Comparison between three models based on equation

types and equation formats.

Ref Lin SSM

Convection non-linear linear linear

Radiation non-linear linear linear

Model inputs non-linear non-linear non-linear

Other equations linear linear linear

SSM formulation no no yes

The model has 8434 variables and 50 differentiated

states. Once linearised, the model has 52 inputs. The

model uses the weather data of Uccle (Belgium).

Each of the heat flow rate inputs is set equal to the

sum of the two sinusoids of Equations 14-15, with t = 0

at new year. The sinusoid with a period of one day and

one year respectively represent internal gains, and heat-

ing or cooling delivered by the HVAC system. The sinu-

soid parameters are tuned such that the zone temperature

remains around 22 ◦C.

sin1 = 4+4sin

(

2π t

86400
−

π

2

)

(14)

sin2 = 13sin

(

2π t

31536000
−1.4

)

(15)

Model description In order to validate the method-

ology, the zone temperatures of three models are com-

pared. The reference model is the IDEAS model

with non-linear radiative heat transfer (Eq. 3 and 6),

temperature-dependent interior convection (Eq. 11) and

wind speed dependent exterior convection (Eq. 8).

The second model is identical to the reference model

but it uses the linearised equations for the radiation and

interior and exterior convection. The model is then fully

linear except for its inputs.

Note that the linearisation of the exterior convection

coefficient can cause a heat flow rate error of more to 150

W/m2 due to the wide range of hcv (from 7 to 55 W/m2K)

and the potentially large difference between the ambient

dry bulb temperature and the surface temperature. For

the given example, the maximum deviation is 141 W/m2.

This error culminates when both wind speed and solar

radiation are high, which causes both a high heat transfer

rate and a high surface temperature.

The third model is the state space version of the

second model. The SSM is loaded into Dymola using

Modelica.Blocks.Continuous.StateSpace.

Note that the difference between the third and the

second model should be around the solver tolerance.

A comparison between the equation types and formats

of the three models is given in Table 1.

Session 2B: Building Energy Applications 1

DOI
10.3384/ecp1511851

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

55

0 50 100 150 200 250 300 350
0

5

10

15

20

25

30

35
T

[◦
C
]

Ambient Non-linear Linear SSM

0 50 100 150 200 250 300 350
−2.0
−1.5
−1.0
−0.5
0.0
0.5
1.0

∆
T

[◦
C
]

TNon−lin−TLin

0.0
0.5
1.0
1.5
2.0
2.5

∆
T

[◦
C
]

1e−5

TLin−TSSM

Figure 4. Result comparison between three model types for a one year simulation. The top graph shows absolute temperatures,

while the other two graphs show absolute temperature differences.

Model comparison The three model versions are sim-

ulated in one model for a whole year using solver Dassl

with a tolerance of 10−6. The zone air temperatures

are then compared. Figure 4 shows the southern zone

temperature of the different models, the average error of

the three zone air temperatures of the reference model

and the linear model, and this average error for the lin-

ear model and its SSM. The figure shows that the zone

temperature is excited over a realistic range. The CPU

time is also compared 1. Normalized CPU times tnorm

are computed by subtracting the ‘CPUtime’ required for

a simulation that only computes the building model in-

puts. The CPU time ratio ri is computed based on the

non-linear reference case: ri =
tnorm,re f

tnorm,i
. The total compu-

tation time for the reference case is 290 s.

Figure 4 shows that the linear model is a good approx-

imation of the non-linear model as the absolute error re-

mains smaller than 1K and its average is close to zero.

This justifies the often made linear approximations in

building modelling. Figure 4 also shows that the trans-

formation of the linear model into a SSM does not intro-

duce significant errors, as expected. This indicates that

the model equations were successfully extracted by the

linearize2 function.

The linear model is faster than the non-linear model

with rlin = 1.8. This can be expected because linear

equations typically require less operations and do not re-

quire non-linear algebraic loops to be solved. Interest-

ingly, the SSM is much faster with a rSSM = 8.5. This is

1Simulations are performed using Dymola 2016 and Euler integra-

tion using a fixed time step of 10 s and a duration of 107 seconds. Euler

integration is chosen to ensure that the same number of time steps is

performed.

because the state space model contains only 50 states and

therefore only 50 equations. The linear model contains

50 states and 453 additional2 algebraic variables, which

also need to be computed, often requiring the analytical

solution of linear systems of equations.

These results suggest that the symbolic processing

could be improved, resulting in faster models.

6 Model Order Reduction

The obtained SSM of Section 5 is accurate but a large

number of states is used. This might be problematic for

model-based optimal controllers such as MPC. In this

section, we apply a MOR technique for different orders

and we investigate their simulation accuracy compared to

the original model. The comparison is extended by im-

plementing a state observer for each ROM and by com-

puting the 48-hours ahead prediction performance. The

prediction performance is an indicator for the efficiency

of the MPC which uses the model predictions to optimize

the inputs of the system.

The different ROM’s are obtained by applying the

Matlab function reduce to the SSM, using the default

balance algorithm (balancmr). The simulation perfor-

mance is compared using the mininum, maximum, mean

and nominal root mean square error (NRMSE) (Eq. 16)

between the original SSM and the ROM’s for each of

the three zones. The errors are calculated over a period

of 100 days. The applied heat inputs and the gains are

computed as a sum of sinusoids with 30 frequencies and

2The translated linear model contains 453 ‘time-varying variables’

more than the translated SSM model.

Methodology for Obtaining Linear State Space Building Energy Simulation Models

56 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511851

realistic amplitudes. The weather-related inputs are com-

puted using a typical year of Uccle (Belgium).

NRMSE(n) = 100

(

1−
‖y− ŷ(n)‖

‖y− ȳ‖

)

(16)

with y the output signal, ȳ its time averaged value, and

ŷ(n) the output signal of the n order ROM.

Figure 5 shows the comparison for the reduced order

models of different orders. For this particular example,

the error rapidly decreases with the model order and it

becomes negligible for ROM’s with n ≥ 15 . The error

on the south zone, which is irradiated by more direct sun

light than the north zone, is the highest. We therefore

conclude that the MOR technique can for this case suc-

cessfully decrease the number of states without signifi-

cant loss of accuracy but that a minimal number of states

is necessary to correctly capture the faster dynamics of

the system. These dynamics correspond to small thermal

capacities of the different surfaces excited by the sun.

This result was expected as the MOR technique typically

removes the small eigenvalues of the system, responsible

for the fast dynamics.

Note that by applying model reduction, the size of

the SSM matrices decreases but the original matrices

sparsity is lost. It is therefore not interesting to use re-

duced order model in Dymola as the number of additions

and multiplication increase thereby. However, the loss

of sparsity for optimal controller model is not an issue,

since the required conversion from the continuous to the

discrete time domain already removes that sparsity of the

matrices.

7 Conclusion

This paper presents an approach for deriving linear state

space models from BES models using the IDEAS li-

brary and Dymola. To this end, weakly non-linear equa-

tions are linearised. The remaining non-linear equa-

tions can be evaluated outside of the model since they

do not depend on the model states. The resulting model

is linearised using the Dymola function linearize2,

which derives the state space matrices. The errors made

by linearising the models are found to be acceptable. The

SSM can be reduced using model order reduction tech-

niques. For the tested case, the order of the model could

be reduced by a factor three without significant loss of

prediction accuracy. An important advantage of the pre-

sented methodology is that it automates the conversion of

IDEAS BES models into state space formulation which

can then be used for different purposes or by different

programs.

The current implementation still presents some draw-

backs that can be solved in the future. So far, the model

can only have four different perpendicular orientations

and all surfaces should either be horizontal or vertical.

Furthermore, the Medium in the zone should be simple

air without any species concentration. Finally ventila-

tion can only be modelled using heat flow inputs and not

using mass/energy transport equations.

8 Acknowledgments

The authors acknowledge the financial support by the

Agency for Innovation by Science and Technology in

Flanders (IWT) for the PhD work of F. Jorissen (contract

number 131012). The authors acknowledge the financial

support by IWT and WTCB in the frame of the IWT-VIS

Traject SMART GEOTHERM focusing on integration of

thermal energy storage and thermal inertia in geother-

mal concepts for smart heating and cooling of (medium)

large buildings. This work emerged from the Annex 60

project, an international project conducted under the um-

brella of the International Energy Agency (IEA) within

the Energy in Buildings and Communities (EBC) Pro-

gramme.

References

S.A. Klein et al. TRNSYS 17, A Transient System Simulation

Program. Solar Energy Laboratory, University of Wiscon-

sin, Madison, USA, http://sel.me.wisc.edu/trnsys, 2010.

H.B. Awbi and a. Hatton. Natural convection from heated

room surfaces. Energy and Buildings, 30(3):233–244, Au-

gust 1999.

R. Baetens, R. De Coninck, F. Jorissen, D. Picard, L. Helsen,

and D. Saelens. OpenIDEAS - An open framework for inte-

grated district energy simulations. In Submitted to Building

simulation 2015, Hyderabad, 2015.

T. Defraeye, B. Blocken, and J. Carmeliet. Convective heat

transfer coefficients for exterior building surfaces: Existing

correlations and CFD modelling. Energy Conversion and

Management, 52(1):512 – 522, 2011.

E. U. Finlayson, D. K. Arasteh, C. Huizenga, M. D. Rubin, and

M. S. Reilly. Window 4.0: Documentation of calculation

procedures. Technical report, 1993.

D. Gyalistras and M. Gwerder. Use of Weather and Occu-

pancy Forecasts for optimal building climate control, two

years progress report. Technical report, 2009.

M. Kummert. Contribution to the application of modern

control techniques to solar buildings. Simulation-based ap-

proach and experimental validation. PhD thesis, Fondation

Universitaire Luxembourgeoise, 2001.

B. Lehmann, D. Gyalistras, M. Gwerder, K. Wirth, and S. Carl.

Intermediate complexity model for Model Predictive Con-

trol of Integrated Room Automation. Energy and Buildings,

58(0):250 – 262, 2013.

Session 2B: Building Energy Applications 1

DOI
10.3384/ecp1511851

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

57

0 5 10 15 20 25 30 35
40

60

80

100

Model order

N
R

M
S

E
 [

%
]

N S C

0 10 20 30 40
0

2

4

6

M
a

x
 e

rr
o

r
[K

]

0 10 20 30 40
−3

−2

−1

0

M
in

 e
rr

o
r

[K
]

Model order

0 10 20 30 40
−0.5

0

0.5

1

M
e

a
n

 e
rr

o
r

[K
]

Figure 5. Nominal root mean square error (NRMSE), maximum, minimum and mean error between the original state space

model of 50 states and the reduced order model of different order for the north (N), south (S) and corridor (C) zones.

R.J. Liesen and C.O. Pedersen. An evaluation of inside surface

heat balance models for cooling load calculations. Technical

report, American Society of Heating, Refrigerating and Air-

Conditioning Engineers, Inc., Atlanta, GA (United States),

1997.

M. Otter. Modelica_linearsystems2, 2014. URL

https://github.com/modelica/Modelica_

LinearSystems2.git.

L. Perez-Lombard, J. Ortiz, and C. Pout. A review on buildings

energy consumption information. Energy and Buildings, 40

(3):394–398, 2008.

M. Sourbron, C. Verhelst, and L. Helsen. Building models for

model predictive control of office buildings with concrete

core activation. Journal of Building Performance Simula-

tion, 6(3):175–198, 2013.

R. Strand, F. Winkelmann, F. Buhl, J. Huang, R. Liesen,

C. Pedersen, D. Fisher, R. Taylor, D. Crawley, and

L. Lawrie. Enhancing and Extending the Capabilities of

the Building Heat Balance Simulation Technique for use in

EnergyPlus. In in Proceedings of Building Simulation’99,

Volume II, pages 653–660, Kyoto, Japan, 1999.

D. Sturzenegger, D. Gyalistras, M. Morari, and Smith R. Semi-

automated modular modeling of buildings for model predic-

tive control. In BuildSys 2012 - Workshop of ACM SenSys

Conference, Toronto, Canada, 2012.

D. Sturzenegger, D. Gyalistras, V. Semeraro, M. Morari, and

R. Smith. BRCM Matlab Toolbox: Model Generation for

Model Predictive Building Control. In American Control

Conference, pages 1063–1069, Portland, June 2014.

C. Verhelst. Model Predictive Control of Ground Coupled Heat

Pump Systems for Office Buildings. PhD thesis, KU Leuven,

Belgium, 2012.

Methodology for Obtaining Linear State Space Building Energy Simulation Models

58 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511851

Simulation Speed Analysis and Improvements of Modelica

Models for Building Energy Simulation

Filip Jorissen1,3 Michael Wetter2 Lieve Helsen1,3

1Mechanical Engineering, KU Leuven, Leuven, Belgium, {filip.jorissen, lieve.helsen}@kuleuven.be
2Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA, mwetter@lbl.gov

3EnergyVille, Waterschei, Belgium

Abstract

This paper presents an approach for speeding up Model-

ica models. Insight is provided into how Modelica mod-

els are solved and what determines the tool’s computa-

tional speed. Aspects such as algebraic loops, code ef-

ficiency and integrator choice are discussed. This is il-

lustrated using simple building simulation examples and

Dymola. The generality of the work is in some cases

verified using OpenModelica. Using this approach, a

medium sized office building including building enve-

lope, heating ventilation and air conditioning (HVAC)

systems and control strategy can be simulated at a speed

five hundred times faster than real time.

Keywords: Modelica, speed, performance, buildings

1 Introduction

The Modelica language allows simulations of multidis-

ciplinary problems. Combining multiple disciplines can

lead to models that quickly grow in size and complexity.

Consider for instance building energy modelling where

building envelope, heating, ventilation and air condi-

tioning (HVAC) systems and controls are integrated in a

single model. The building envelope’s thermal response

typically has relatively slow dynamics, and heat transfer

can be modelled using mostly linear equations. Building

HVAC systems however contain a lot of non-linearities,

performance curves and performance tables and typi-

cally have faster dynamics. Building control contains

less dynamic components but contains a lot of discrete

variables. Simulation of these types of systems can

become very time consuming, limiting the use of these

models.

Current literature does not provide a lot of insight into

what determines computational speed and what Model-

ica users and library developers can do to speed up mod-

els. Chapter 14 of (Tiller, 2001) provides some hints on

ways to improve computational performance such as us-

ing equations instead of algorithms, avoiding events, pro-

viding Jacobians of functions, selecting good solvers and

tolerances and eliminating intermediate variables. The

Dymola manual, section 5.7, suggests to limit overhead

for writing results and to avoid chattering, and to use op-

tions such as inline integration and parallelization (Das-

sault Systèmes, 2014).

While the provided tips can be valuable, they are still

high-level and often do not provide a lot of insight and

consequently can be difficult to apply in practice. Also, a

lot of potential for code optimization remains untouched.

This paper provides insight in approaches to increase

computational performance of models, specifically tar-

geted at Modelica users and Modelica library developers.

Related research focuses on creating efficient solvers

such as Quantized State System (QSS) solvers, using fast

Jacobian evaluation techniques and using efficient paral-

lelization strategies. These methods can be useful and

complementary, but are outside of the scope of this work.

Firstly, some technical background about Modelica

is given to allow easier interpretation of the discus-

sion. Secondly, relatively small examples are used to

demonstrate how Modelica code and models can be im-

proved in Dymola and OpenModelica. These examples

are based on the IEA-EBC Annex 60 Modelica library

(Wetter et al., 2015) and are available online. Finally,

the code improvements are applied to a large building

model, demonstrating the potential of Modelica in con-

junction with the solvers available in Dymola 2015 FD01

for whole building simulations.

2 Technical Background

The goal of this section is to provide the technical

background required for understanding the analysis per-

formed in this paper.

2.1 Governing Equations

A typical Modelica model can be mathematically ex-

pressed as an implicit system of Ordinary Differential

DOI
10.3384/ecp1511859

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

59

Equations (ODE) of the form

F(t, ẋ,x,u) = 0, (1)

with initial conditions x(0) = x0, where F : [0, 1]×R
n×

R
n ×R

m → R
n, for some n,m ∈ N, t is time, x is the

vector of state variables and u are inputs. For simplicity

we omit discrete variables in this discussion. Often the

equations can be manipulated analytically such that this

system of equations can be expressed as an explicit ODE

of the form

ẋ = F̃(t,x,u). (2)

For example, if a heat capacitor with capacitance C is

coupled to a fixed temperature boundary condition u

through a thermal resistor R, then (2) becomes

ẋ =
(u− x)

RC
. (3)

However, if the system of ODE is coupled to algebraic

equations, as is common in building simulation, such

a formulation is often not possible. In this case, the

problem is defined by a system of Differential Algebraic

Equations (DAE) of the form

ẋ = f (t,x,y,u), (4)

0 = g(t,x,y,u), (5)

with initial conditions x(0) = x0, where y ∈R
p, for some

p∈N, are algebraic variables. Under certain smoothness

assumptions and by use of the Implicit Function Theo-

rem, one can show existence of a unique solution to (4)

and (5) (Polak, 1997; Coddington and Levinson, 1955).

This DAE can be solved by first solving (5) for y and

then using y to compute ẋ. For example, consider a per-

fectly mixed volume with thermal capacity C and a pump

that provides a constant pressure head ∆p = u1. Suppose

that the pump provides water to the mixing volume with

temperature u2 and that the water mass flow rate ṁ = y is

defined by a simplified pressure drop equation describing

a pipe as ṁ = k
√

∆p or, equivalently, y = k
√

u1. Equa-

tions (4) and (5) are then

ẋ =
(u2 − x) · y · cp

C
, (6)

0 = y− k
√

u1, (7)

where cp is the specific heat capacity of water and k is a

constant.

2.2 Solution of Algebraic System

At time t, equation (5) needs to be solved for the alge-

braic variables y. Note that g(·, ·, ·, ·) consists of p equa-

tions 0 = gi(·, ·, ·, ·). Ideally, these can be reformulated

using computer algebra and block-lower triangulariza-

tion such that y can be explicitly computed.

However, such a reformulation is not always possi-

ble. In our example, the solution is still relatively easy

since ṁ can be calculated directly from ∆p, which is a

known input. ∆p may however be a function of an alge-

braic variable ṁ, for instance if a proportional controller

is tracking a set-point for the mass flow rate. In this case

an algebraic loop is created, with two equations needing

to be solved simultaneously:

0 = ṁ− k
√

d p, (8)

0 = kp · (ṁ− ṁset)−d p, (9)

where kp is the proportional gain of the P controller. Note

that non-linear algebraic loops are typically more expen-

sive to solve than linear systems of equations. Dymola

will try to manipulate algebraic loops to limit the amount

of work required for solving them. Information about the

sizes of these (non-)linear systems before and after ma-

nipulation can be found in Dymola in the Translation tab

under ‘Statistics’.

2.3 Time Integration

For simplicity, we explain the consequences of selecting

explicit versus implicit time integration algorithms based

on the Euler integration algorithm. Let the index i de-

note the current time step and consider a fixed step-size

Euler integration method. The explicit Euler integration

method computes

xi+1 = xi +∆t ẋi = xi +∆t f (ti,xi,yi,ui), (10)

whereas the implicit Euler integration algorithm com-

putes

xi+1 = xi +∆t ẋi+1 = xi +∆t f (ti+1,xi+1,yi+1,ui+1).
(11)

Hence, for the implicit Euler algorithm, if f (·, ·, ·, ·) can-

not be solved symbolically for xi+1, an iterative solu-

tion is required to obtain xi+1. This system of equa-

tions is large if there are many state variables. Solv-

ing it typically involves the calculation of the Jacobian

and requires multiple iterations before convergence is

achieved. This may lead to more work per time step, but

it also allows large time steps being taken. Also, implicit

integrators are better suited to solve stiff ODEs.

The Radau IIa integration is an implicit Runge-Kutta

method. This method is a single-step method, mean-

ing that the solution at the current time step is only af-

fected by information from the previous time step. In-

tegrators such as DASSL (Petzold, 1982) and Lsodar

(Petzold, 1983; Hindmarsh, 1983) are multi-step meth-

ods (Dassault Systèmes, 2014). Multi-step methods use

more than one previous value of the integrator’s solution

to approximate the new solution. For a more detailed

discussion on integrators we refer to Cellier and Kofman

(2006) and Hairer and Wanner (2002).

Simulation Speed Analysis and Improvements of Modelica Models for Building Energy Simulation

60 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511859

2.4 Simulation Procedure

The simulation of a Modelica model typically proceeds

as follows. First, the state variables are initialized based

on the initial equations and start values. Then continu-

ous time integration starts and results are saved at inter-

mediate time intervals. At certain points in time, time

or state events may occur, which need to be handled

by the integrator. The equations f (·, ·, ·, ·) and g(·, ·, ·, ·)
that are solved can be found in the Dymola output file

dsmodel.mof in the working directory. Output of this

file can be enabled in the Translation tab. Note that no

distinction between equations of f (·, ·, ·, ·) and g(·, ·, ·, ·)
is made in this file. The file may contain different sec-

tions that determine when the contained code is exe-

cuted, such as the Initial section, Output section, Dynam-

ics section, Accepted section and Conditionally accepted

section. A description of these sections can be found

in Dassault Systèmes (2014). Using dsmodel.mof and

also the C-code in dsmodel.c can be important for de-

bugging model stability and performance.

3 Analysis of Computational Over-

head

This section builds upon the basic simulation pro-

cedure detailed above to provide further insight

into reduction in computing time using illustrative

examples. All numbered examples are available

at https://github.com/iea-annex60/

modelica-annex60, commit e9e247d, in the

Modelica package Fluid.Examples.Performance.

Presented results are based on Dymola 2015 FD01

and OpenModelica 1.9.3+dev (r25881) installed on

Ubuntu 14.04 64 bit running on a virtual machine (Paral-

lels 9.0.24251) on OS X Yosemite. Since the authors are

most familiar with Dymola, all analyses are performed

using Dymola, unless stated otherwise. A selection of

results have been verified using OpenModelica to test

their generality. Models that could not be compiled by

OpenModelica were not verified.

The CPU time required for performing a simulation

can be approximated by

t = O
(

tinit +n f g · t f g +nint · tint +ndata · tdata

)

, (12)

where t are the computation times of different steps,

n are the number of times these steps are evaluated,

and tinit is the time required to solve the initialization

problem. The indices f g, int, data refer, respectively, to

the evaluation of functions f (·, ·, ·, ·) and g(·, ·, ·, ·), the

overhead for the integrator and the data storage.

The total computational overhead can be reduced

by addressing any of these components. Knowing

their values provides an important hint for where

bou

pump

P

m_flow_in

m_flow

hea

T Q_flow

pulse

period=1000 k=m_flow_nominal

gain

const

k=0.5

allowFlowReversal

true

res

dp_nominal=1000

m0=m_flow_nominal

nRes

k=20

Figure 1. Example 1 illustration

computing time can be reduced. These values can be

estimated from the Dymola simulation output. Setting

Advanced.GenerateBlockTimers = true in Dy-

mola generates the required output. The parameter n f g

in (12) equals the last column of the block timers. The

value of t f g equals the sum of column ‘Mean’ of rows

‘OutputSection’ and ‘DynamicsSection’. Row ‘Outside

of model’ contains the overhead of the integrator, and

possibly other overhead as well. nint equals the ‘Number

of (succesful) steps’. ndata is determined by the settings

in the ‘General’ and ‘Output’ tabs of the simulation

settings.

Decreasing any of these factors will result in a lower

simulation time. However it is not always clear how this

should be achieved. A measure for decreasing one fac-

tor may also cause an increase in another. The following

sections provide more insight into how to influence these

different factors. Firstly the overhead for each function

evaluation t f g is discussed. Secondly the number of eval-

uations n f g is discussed. Whenever possible, example

models are provided based on the Annex 60 library. Fi-

nally a methodology is proposed for increasing the sim-

ulation speed of large building models.

3.1 Overhead per Evaluation

Evaluation of f (·, ·, ·, ·) and g(·, ·, ·, ·) involves the evalua-

tion of sequential code, algorithms, linear and non-linear

algebraic loops, etc. We discuss how the overhead for

this code can be reduced.

3.1.1 Algebraic Loops

When multiple equations are interdependent, an alge-

braic loop is formed. Depending on the type of equa-

tions the algebraic loop can be linear or non-linear. Solv-

ing non-linear algebraic loops requires iterative solutions

such as encountered in a Newton-Raphson algorithm and

is therefore more expensive. The user should therefore

try to simplify or remove these systems where possible.

We present some examples that demonstrate how this can

be approached.

Session 2B: Building Energy Applications 1

DOI
10.3384/ecp1511859

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

61

Algebraic Loops Iterating on Enthalpy Consider

Example 1 shown in Figure 1. The presented hydraulic

system contains a heater, a three-way valve and a pump

setting the mass flow rate. The pump is connected to

nRes.k parallel pressure drop components res. The only

two states are the temperatures of the heater and the

pump with a time constant of 10 and 1 seconds, re-

spectively. A pulsed signal sets the mass flow rate of

the pump and the outlet temperature of the heater. The

valve opening is set to 50%. The results are generated

for nRes.k = 20 unless stated otherwise.

For the given configuration Dymola generates the

following algebraic loops:

Sizes nonlinear systems of equations {6, 21, 46}

Sizes after manipulation {1, 19, 22}

Based on the C-code generated by OpenModelica, the

following algebraic loops are generated:

Sizes nonlinear systems of equations {7, 41, 47}

Sizes after manipulation {1, 20, 23}

In Dymola, these algebraic loops can be analysed us-

ing the dsmodel.mof file. The first system solves for

the mass flow rate in the left part of the fluid loop. The

second system solves for the mass flow rate in the right

part of the fluid loop. The third system solves for the en-

thalpies of the components in the right part of the fluid

loop.

Dymola’s BlockTimers generate the following output

for the system dynamics:

Name of block, Block, CPU[s],

DynamicsSection: 14, 0.200, ...

Dynamics 2 eq: 15, 0.000, ...

Dynamics code: 16, 0.000, ...

Nonlin sys(1): 17, 0.007, ...

Dynamics code: 18, 0.000, ...

Dynamics 20 eq: 19, 0.066, ...

Dynamics code: 20, 0.002, ...

Nonlin sys(22): 21, 0.122, ...

Dynamics code: 22, 0.001, ...

Blocks 17, 19 and 21 clearly dominate the computa-

tional cost of this example. The Dymola file dsmodel.c

shows that these block numbers correspond to the three

non-linear systems. We explain how these systems can

be simplified or removed.

The third system is created because there are no

enthalpy states in the right circuit except in the pump. In

general, the fluid can flow in both directions. Therefore

the inlet and outlet enthalpies of all res components can

be a function of all other res components, depending on

the flow direction. This causes an algebraic loop since

all enthalpy values depend on each other.

thermalConductor

G=1

thermalConductor1

G=1

fixedTemperature

T=273.15

KK

prescribedTemperaturecos

freqHz=100

heatCapacitor

C

Figure 2. Example generating linear system of 2 equations

A common approach for decoupling algebraic loops

is adding additional states (Zimmer, 2013). However,

this can introduce fast dynamics, necessitating short time

steps during parts of the simulation. The values of the

state variables are solved by the integration algorithm,

and hence they reduce the size of the algebraic loops. A

simple example is shown in Figure 2 where a system of

two linear equations is generated when the heat capacitor

is unconnected. This system is decoupled when a heat

capacitor is added, since the temperatures at the ports

connecting the two conductances are then equal to the

state variable of this heat capacitor and need no longer

be obtained by solving an algebraic loop.

The enthalpy calculation of Example 1 can be

simplified in a similar way by adding nRes.k mixing

volumes at the location of the blue dot in Figure 1,

introducing a state in the flow path with a time constant

for the enthalpy of 10 s. The state values for the

enthalpy cause the system to become decoupled. The

system size is now reduced from 46/47 to 4/7 before

the manipulation, and from 22/23 to 1/3 after the

manipulation for Dymola/OpenModelica, regardless

of the value of nRes.k. Note that adding states also

changes the simulation results.

In this example, a second approach is possible. We

know that the fluid will always flow from the pump into

the resistance. Therefore the inflow enthalpy of the resis-

tances is always equal to the enthalpy leaving the pump.

This knowledge can be passed on to the model by setting

allowFlowReversal=false in the components where

no flow reversal occurs. This causes the min and max at-

tributes of the m_flow variable of the fluid ports to be

set to zero. Dymola utilizes this and simplifies equations

such as

H_out = semiLinear(port_a.m_flow,

inStream(port_a.h_outflow),

port_a.h_outflow)

into

H_out = port_a.m_flow * inStream(port_a.h_outflow)

or

H_out = port_a.m_flow * port_a.h_outflow .

It can conduct this simplification because the solver can

now take into account that the mass flow rate will never

become negative (or positive). Due to the simplified

structure of the problem, the solver is able to sort the

enthalpy equations in such a way that no algebraic loop

is formed: the solver can evaluate the equations se-

quentially, following the fluid downstream starting from

Simulation Speed Analysis and Improvements of Modelica Models for Building Energy Simulation

62 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511859

Succesful Jacobian Function Continuous Mean time Total time

steps evaluations evaluations n f g time states dynamics sec. [µs] dynamics sec. [s]

N: Initial model 55 21 647 2 310 0.200

N: Enthalpy state 54 20 1448 22 103 0.150

N: No flow reversal 55 21 647 2 109 0.071

A: Enthalpy state 54 20 547 22 137 0.075

A: No flow reversal 55 20 557 2 116 0.065

Table 1. Solver output for 3 configurations of Example 1 (Figure 1), with nRes.k = 20 and analytic (A) or numeric (N) Jacobian

5 10 15 20 25 30 35
nRes.k

0.0

0.2

0.4

0.6

0.8

1.0

CP
Ut
im

e
[s
]

initial model
enthalpy state
allowFlowReversal = False

(a) numeric Jacobian

5 10 15 20 25 30 35
nRes.k

0.0

0.2

0.4

0.6

0.8

1.0

CP
Ut
im

e
[s
]

initial model
enthalpy state
allowFlowReversal = False

(b) analytic Jacobian

Figure 3. Simulation time for three variants of Example 1

known values of state variables. This causes the equa-

tions to be solved explicitly. OpenModelica does not

make this simplification and consequently the algebraic

loop size remains unchanged.

A different approach can be taken to break algebraic

loops without relying on the solver to make simplifica-

tions. Many fluid components contain equations such as

port_a.h_outflow = inStream(port_b.h_outflow);

port_b.h_outflow = inStream(port_a.h_outflow);

which may be simplified into

port_a.h_outflow = if allowFlowReversal

then inStream(port_b.h_outflow)

else Medium.h_default;

port_b.h_outflow = inStream(port_a.h_outflow);

because the value of port_a.h_outflow should

never be required for calculations upstream of port_a.

Therefore it does not matter what its value is. Choosing

a fixed value has the advantage that it allows breaking

algebraic loops. Note that when the flow does reverse,

the model equations will be wrong, which may cause

unstable dynamics.

Figure 3a shows the influence of these two measures

on the simulation time. Adding enthalpy states only re-

duced the computing time for nRes.k>20. However,

setting allowFlowReversal=false led to faster sim-

ulations. Note that the speed increase for the first case

depends on the time constants of the new states. Larger

time constants in general lead to faster simulations, but

may introduce non-physical dynamics.

The first three rows of Table 1 allow analysing the re-

sults in further detail. Both measures allow reducing the

computational work for each evaluation of f and g in

the dynamics section from 310 µs to ∼ 106 µs.

The overall speed when using allowFlowReversal=

false is however better due to the lower number of

function evaluations that is required: 647 instead of

1448. The increased number of function evaluations is

caused by the increased number of states in the model. It

turns out that the higher number of state variables leads

to significantly more function evaluations, probably be-

cause by default, Dymola computes a numerical approx-

imation to the Jacobian based on numeric differentiation.

Due to the performance penalty for approximating

the Jacobian, the simulations are repeated using an an-

alytic Jacobian, which can be done in Dymola by setting

Advanced.GenerateAnalyticJacobian=true. In

OpenModelica, an option for this exists in the simula-

tion setup. Results are shown in Figure 3b and in Ta-

ble 1. The penalty for adding new states is almost com-

pletely removed when using an analytic Jacobian. Some-

how the average execution time for the dynamics sec-

tion increased slightly, even though the equations did not

change. The reason for this is unclear. The results indi-

cate that the analytic Jacobians should be used whenever

possible, especially for models with a large amount of

states.

From this analysis we conclude that the user

should be cautious when adding states for decou-

pling algebraic loops. If they are added, setting

Advanced.GenerateAnalyticJacobian=true may

reduce computing time. An alternative approach is to use

physical insight to simplify the equations where possi-

ble, in a way similar to setting allowFlowReversal=

false. Also, it may be beneficial to remove the

states that are added by default in three-way valves and

other components containing mixing volumes. This can

be done by setting energyDynamics=massDynamics=

SteadyState. Most likely this change will create larger

systems, but often these can be simplified using the ap-

proach explained above.

Session 2B: Building Energy Applications 1

DOI
10.3384/ecp1511859

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

63

5 10 15 20 25 30 35
nRes.k

0.00

0.05

0.10

0.15

0.20

0.25

CP
Ut

im
e

[s
]

from_dp = False
from_dp = True

Figure 4. Example 1 illustrating computation time for solving

mass flow rates through parallel resistances

Algebraic Loops Iterating on Mass Flow Rates

and Pressures When setting allowFlowReversal=

false, the remaining computation time is almost en-

tirely used for computing the mass flow rates and pres-

sures. We now focus on reducing this computing time

further.

The pressure drop equations in this non-linear system

can be written either as ṁ= f (∆p) or as ∆p= f−1(ṁ) for

some function f (·) or its inverse f−1(·). The value of the

parameter res.from_dp will pick one or the other for-

mulation. If from_dp=false, then the system has size

21/22 before and 19/20 after manipulation, otherwise it

has sizes 21/22 and 1/1 in Dymola/OpenModelica. This

can be explained as follows. When from_dp=true, the

mass flow rate is calculated as a function of the pressure

difference ∆p. Therefore ∆p is chosen as an iteration

variable. The symbolic processing algorithm detects that

all resistances are in parallel and hence must have the

same pressure drop. Therefore, they can all use the same

iteration variable, leading to a much smaller system. This

leads to a significant speed improvement, as shown in

Figure 4.

Example 1 uses a pump which sets the mass flow rate

to an input value and which is connected to nRes.k par-

allel pressure drop components. The solver can exploit

the system structure by selecting the common pressure

drop as an iteration variable. The “dual” problem (Ex-

ample 2) could be to consider a pump which takes the

pressure drop as an input value and which is connected to

nRes.k pressure drop components connected in series.

In this case, it is advantageous to set from_dp=false

since Dymola and OpenModelica then select the com-

mon mass flow rate as the iteration variable, as illustrated

in Figure 5.

These were fairly simple problems. In practice, com-

binations of parallel and series connections are used,

making the choice of the parameter from_dp difficult.

However, it is often possible to aggregate multiple pres-

sure drop components that are connected in series. If

all components have the same nominal mass flow rate

m_flow_nominal, then the nominal pressure drops dp_

nominal can be added into one component, reducing

the series branch into a single pressure drop equation.

Otherwise dp_nominal needs to be rescaled. This ap-

2 4 6 8 10 12 14
nRes.k

0

1

2

3

4

5

6

CP
Ut
im
e
[s
]

from_dp = false
from_dp = true

Figure 5. Example 2 illustrating computation time for solving

mass flow rates through resistances in series

V=1

vol

hex

eps=0.8

bou

T
m

sinkm_condens

mCond

xSat

T

phi

X_steam

phiSat

k=1

Tin

duration=1

res

senTem

T

Figure 7. Example 4 illustration

proach can also be used when a valve is connected in

series to the pressure drop components. The valve pa-

rameter dpFixed_nominal should then be used.

Figure 6a shows Example 3 where nRes.k paral-

lel instances of a series connection of two resistances

are simulated. The simulation time for this example is

shown in Figure 6b. The parameter mergeDp indicates

whether the two resistances are merged into one. Merg-

ing the two resistances gives much better results, espe-

cially when combined with from_dp=true. However

when the two resistances are not merged, it is better to

set from_dp=false.

Model Design for Avoiding Algebraic Loops Devel-

opers should avoid coupling systems of equations that

are only weakly dependent. Consider for instance the

model of a condensing heat exchanger. Such a model

contains equations for the pressure drop, heat flow rate

and water vapour condensation. One should try to avoid

coupling these equations into one algebraic loop.

Example 4 in Figure 7 shows a simple condensing heat

exchanger model. Along the flow path, first air cools

in the heat exchanger hex, then condensate is extracted

from the stream in vol (steady state) and finally the re-

maining mass is sent through a pressure drop component.

Ideally the solver would be able to first compute the mass

flow rate based on the pressure drop characteristic. Using

this mass flow rate, the heat flow rate can be computed

since it only depends on inlet temperatures and mass flow

rates. Finally moisture can be extracted such that the air

stream becomes saturated. In practice this sequential cal-

culation is not possible because removing water vapour

from the air affects its mass flow rate and therefore also

the pressure drop. As a consequence the equations for the

Simulation Speed Analysis and Improvements of Modelica Models for Building Energy Simulation

64 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511859

pump

P

m_flow_in

m_flow

b
o
u

pulse

period=1

res

mergeDp

true

from_dp

true

res1

nRes

k=6

(a)

2 4 6 8 10 12 14
nRes.k

0

2

4

6

8

10

CP
Ut

im
e

[s
]

mergeDp = true, from_dp = false
mergeDp = false, from_dp = false
mergeDp = true, from_dp = true
mergeDp = false, from_dp = true

(b)

Figure 6. Example 3 (a) illustration for solving mass flow rates through parallel instancs of a series connection of two resistances

and (b) simulation time based on two parameters (mergeDp and from_dp)

mass flow rate, heat flow rate and moisture balance are

coupled into a single system of 12/10 non-linear equa-

tions before manipulation in Dymola/OpenModelica.

As a simplification one could argue that the impact of

the water vapour mass flow rate on the pressure drop is

very small and that it could therefore be removed from

the mass conservation equation ∑ ṁ = 0. This physi-

cal approximation decouples the algebraic loop so that

in both simulation tools the equations can be solved se-

quentially.

We conclude from this discussion that the developer

should consider to approximate equations if such

approximations allow decoupling large systems of

equations while maintaining the accuracy required by

the application.

In some cases analytical solutions to nonlinear sys-

tem of equations may exist. Especially linear system

of equations can often be solved analytically. To en-

able this, the solver needs to be able to establish whether

a system is linear. When using a Modelica function

in a system of equations, it is therefore important that

annotation(Inline=true) is used. When using this

annotation, the model developer suggests to the symbolic

processor to substitute the function call with the body

of the Modelica function, thereby allowing the symbolic

processor to detect the linearity. This allows symbolic

manipulation, such that algebraic loops can be simpli-

fied.

Setting in Dymola the option Evaluate=true may

also cause analytical solutions to be found, especially for

linear algebraic loops. However, this leads to parameter

values to be evaluated during translation, and hence they

can no longer be changed without translating the model

again.

These examples illustrate that even using existing

component models can be a challenge. Ideally this level

of complexity is not exposed to the end user. A possi-

ble approach to do this is to construct often used base

circuits that are preconfigured in an efficient way.

3.1.2 Overhead Due to Inefficient Code

In general, every implemented equation will be evalu-

ated. Simulation tools are able to perform certain code

simplifications such as common subexpression evalua-

tion and detection of alias variables, but the level of op-

timization is not exhaustive. Therefore the developer

should be aware of how the solver treats equations. Here

we illustrate some important aspects.

Inlining functions Inlining functions may allow bet-

ter symbolic processing. It can also lower the func-

tion evaluation time, probably because overhead for call-

ing a C-function is avoided. We recommend to set

Inline=true by default for all functions, unless their

body is large.

Model Parameters Consider Example 5 shown in the

code listing below:

model Example5

parameter Boolean efficient = false;

parameter Real[3] a = 1:3;

parameter Real b = sum(a);

Real c;

equation

der(c) = sin(time)*
(if efficient then b else sum(a));

end Example5;

The corresponding code in dsmodel.c is

helpvar[0] = sin(Time);

F_[0] = helpvar[0]*(IF DP_[0] THEN W_[0]

ELSE DP_[1]+DP_[2]+DP_[3]);

adding annotation(Evaluate=true) to the defini-

tion of efficient results in

helpvar[0] = sin(Time);

F_[0] = helpvar[0]*(DP_[0]+DP_[1]+DP_[2]);

This can be further improved by setting efficient=

true

helpvar[0] = sin(Time);

F_[0] = helpvar[0]*W_[1];

The new code contains less operations, even though the

implementation is mathematically identical. Taking this

into account allows implementing more efficient models.

Session 2B: Building Energy Applications 1

DOI
10.3384/ecp1511859

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

65

Obsolete Model Variables In some cases it may be

wise to eliminate model variables. Consider for instance

variables a, b and c where b = 2a and c = 2b. If b is

not used in any other equation, then it is better to write

c = 4a and remove b.

It may be important to analyse the effects of such

changes in detail. Consider for instance the model of

a discretised wall. The model consists of a series of tem-

perature states with an adiabatic boundary condition on

one side and a sinusoidal temperature on the other side.

Typically, this will be modelled using thermal capaci-

tances C and thermal resistors R. A Modelica implemen-

tation could be as presented by Example 6.

model Example6

parameter Integer nTem = 500;

parameter Real R = 0.001;

parameter Real C = 1000;

Real[nTem] T;

Real[nTem+1] Q_flow;

equation

Q_flow[1] = ((273.15+sin(time))-T[1])/R;

der(T[1]) = (Q_flow[1]-Q_flow[2])/C;

for i in 2:nTem loop

Q_flow[i] = (T[i-1] - T[i])/R;

der(T[i]) = (Q_flow[i]-Q_flow[i+1])/C;

end for;

Q_flow[nTem+1] = 0;

end Example6;

In this model variables Q_flow are calculated but not

necessarily needed. These variables can be eliminated as

illustrated in Example 7.

model Example7

parameter Integer nTem = 500;

parameter Real R = 0.001;

parameter Real C = 1000;

parameter Real tauInv = 1/(R*C);

Real[nTem] T;

equation

der(T[1]) = ((273.15+sin(time))-2*T[1]+T[2])

*tauInv;

for i in 2:nTem-1 loop

der(T[i]) = (T[i-1]-2*T[i]+T[i+1])*tauInv;

end for;

der(T[nTem]) = (T[nTem-1]-T[nTem])*tauInv;

end Example7;

Comparing Example 7 to Example 6 a variable has been

eliminated but the number of operations within the for

loop remains the same. In particular, there are two ad-

ditions and two divisions in Example 6, and two ad-

ditions and two multiplications in Example 7. How-

ever, Example 7 is ∼ 83% faster in Dymola (2.83 s

→ 0.49 s) and OpenModelica (9.2 s → 1.6 s). It

turns out that this is mostly because a division gener-

ates more overhead than a multiplication, probably be-

cause of guarding against division by zero. This perfor-

mance penalty can be reduced significantly by adding

annotation(Evaluate=true) to parameters R and

C, or by creating a dummy parameter similar to tauInv

and by multiplying with this parameter. This reduces

simulation time to 0.65 s > 0.49 s in Dymola and 2.39 s

> 1.6 s in OpenModelica.1 The reason for the remaining

1These CPU times are based on the total Dynamics section time

in Dymola and the ‘simulation’ timer in the Statistics output of Open-

performance difference is unclear but may be explained

by the extra variables Q_flow, which may generate over-

head.

From this analysis we conclude that there exists unex-

ploited code optimization potential in popular Modelica

tools. Certain variables can be eliminated and dummy

parameters can be introduced to avoid parameter divi-

sions during each time step. Until these issues are re-

solved, users can avoid performance penalties by taking

into account these limitations by reformulating models.

Duplicate Code The developer should avoid making

models that generate duplicate code. A good example is

a window model, which requires the solar irradiance to

be calculated. Since this calculation is influenced by pa-

rameters such as the window orientation and inclination

angle, the developer may choose to include these equa-

tions in the window model. If multiple windows have

the same orientation and inclination, then this means that

the same calculation is repeated multiple times. This

is not necessarily a problem if the overhead is small.

However, in the case of a window model, the compu-

tation involves a lot of trigonometrical calculations and

it would be better to isolate this calculation in a sepa-

rate model. An example implementation of this problem

can be found in the IDEAS library (Baetens et al., 2015).

However, putting the solar irradiation in a separate model

requires the user to keep the radiation computation con-

sistent among multiple models.

An illustration of common subexpression elimination

is given by Example 8.

model Example8

Real a = sin(time+1);

Real b = sin(time+1);

end Example8;

The Dymola C-code evaluates the sine and addition only

once:

W_[0] = sin(Time+1);

W_[1] = W_[0];

This simplification is not made in OpenModelica since it

evaluates the sin(·) function once for a and once for b.

Still, more complicated common subexpressions such

as in IDEAS are not detected by both tools. Therefore,

improving the common subexpression elimination would

allow further performance improvements.

3.2 Number of Evaluations

The previous section focussed on how to reduce the com-

putational overhead for each evaluation of f (·, ·, ·, ·) and

g(·, ·, ·, ·). The current section focusses on how to re-

duce the number of evaluations. Important aspects are

the time constants of the system, the system stability, the

number of events, computing the Jacobian and the inte-

grator choice.

Modelica when performing 100 000 Euler integration steps of Exam-

ple 6 and Example 7.

Simulation Speed Analysis and Improvements of Modelica Models for Building Energy Simulation

66 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511859

System Time Constants When a system has fast dy-

namics, then the solver has to track these dynamics with

small step sizes. In general, systems with large time con-

stants have shorter calculation times. It may therefore

be advantageous to make certain dynamics slower, espe-

cially the fastest dynamics in the system. Dymola option

“Which states that dominate error” may be used to iden-

tify these states. Changing the dynamics may however be

non-physical or introduce instability in feedback control

loops. In this case a different option may be to remove

the fast dynamics completely and simulate the system as

a steady state system. Note, however, that this may in-

crease the size of the algebraic system of equations.

The latter approach may be very effective when

considering air flow networks. If air is modelled

as compressible, pressure states are created in in-

stances of MixingVolume, unless massDynamics=

SteadyState. These states however introduce small

time constants if part of a building air flow network. It

may therefore be better to remove them. Again, this may

create larger systems of equations.

System Stability If a feedback control loop is tuned

badly, oscillatory behaviour can occur. A variable time

step integrator may track these oscillations, leading to a

major decrease in simulation speed. Note that it may be

difficult to see these oscillations when the output interval

is set too large.

Number of Events Events require the integration to

stop and restart, typically with a lower order method and

with smaller time steps. In addition, for state events, typ-

ical ODE solvers require an iterative solution to find the

time when the event happens.

Computing the Jacobian Some integrators require the

Jacobian to be calculated. Having more states leads to a

larger Jacobian, as was illustrated in Example 1. Since

by default, Dymola and OpenModelica use numeric dif-

ferentiation to approximate the Jacobian, a lot of finite

differences need to be calculated, each requiring a func-

tion evaluation. Note that in particular models with a

larger number of states benefit more from having an an-

alytic Jacobian, since the number of Jacobian entries

equals the square of the number of states.

Integrator Choice Many integrators use an implicit

integration scheme. This typically requires the compu-

tation of a Jacobian and requires iterations to be per-

formed before reaching convergence. This can lead to

more function evaluations. However, for stiff systems,

implicit integrators are more efficient than explicit inte-

grators.

3.3 Analysis of Large Problems

In the previous sections, computing time was analysed

using small models. In building simulation, models can

however become considerably larger and analysing the

computational speed can be difficult since it depends on

a lot of factors, including the unknown solver implemen-

tation. Still, we predict some trends for the computation

time, based on the size of the model.

Consider a model of a district energy system, includ-

ing building models and an electrical grid. When dou-

bling the size of the district, ideally the computational

time would double as well, such that computational time

scales linearly with problem size. Let us analyse this

further based on Equation 12. Ideally t f g scales linearly

with the problem size. In practice this is not necessar-

ily the case. The electrical grid of the district typically

results in a large non-linear system of equations since

all electrical components have very fast transients and

are therefore modelled as steady state components. Dou-

bling the size of the model therefore also doubles the size

of the algebraic loop. Example 1 has shown that compu-

tational time for algebraic loops does not scale linearly

with size and therefore larger models will become com-

putationally slow. Equations outside algebraic loops can

be solved sequentially. Therefore their computational

time does scale linearly.

Because t f g scales, at best, linearly with size, n f g

should remain constant if we want to obtain overall lin-

ear scaling of the computational time. However, firstly,

generally n f g also grows with problem size, for example

because larger problems have more controllers that may

trigger events. If the amount of buildings doubles, then

the amount of state events may double, which causes a

performance penalty. Secondly, when a numeric Jaco-

bian needs to be computed, then n f g will increase since

the number of states increases linearly with the prob-

lem size. The number of operations for an implicit in-

tegrator typically does not scale linearly either. Solving

dense implicit systems typically requires O(n3) opera-

tions (Hairer and Wanner, 2002). Building model Ja-

cobians are however very sparse. It is not clear how

well this is exploited by Dymola. An integrator such as

Rkfix4 can have an operation count that is linear with

the problem size, unless the fixed time step is changed.

For certain large problems that do not require event han-

dling, it can therefore be advantageous to use these sim-

ple integrators, also because they do not require a Jaco-

bian to be calculated.

3.3.1 Parallelization

Dymola supports parallelization for the cal-

culation of f (·, ·, ·, ·) and g(·, ·, ·, ·) (Dassault

Systèmes, 2014) and analytic Jacobian (see

Advanced.ParallelizeAnalyticJacobian).

However parallelization generates overhead for syn-

Session 2B: Building Energy Applications 1

DOI
10.3384/ecp1511859

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

67

Integrator Tolerance CPUtime Dynamics Outside of Function State Time Jacobian Eel

/ step size [s] section [s] model [s] evaluations n f g events events evaluations [error]

Dassl 1 E-6 4261 3538 476 787341 41 8 1235 -4.35 E-6

Dassl 1 E-4 3088 2759 327 546326 36 8 862 3.17 E-3

Radau IIa 1 E-6 4042 2400 1416 453073 37 8 347 1.64 E-3

Lsodar 1 E-6 3450 2666 547 679486 44 8 1047 -4.35 E-6

Lsodar 1 E-4 2073 1435 515 347018 41 8 537 -2.25 E-5

Lsodar 1 E-2 1655 1152 406 256458 38 8 399 4.51 E-3

Dopri45 1 E-6 194 159 17.0 41166 39 8 0 4.68 E-4

Dopri45 1 E-8 199 162 18.3 42017 39 8 0 1.96 E-6

Rkfix4 20 s 15.4 11.3 1.1 2717 39 8 NA 1.34 E-2

Rkfix4 5 s 50.6 42.9 1.5 10233 43 8 NA 2.52 E-3

Rkfix4 1 s 224 202 3.2 50211 38 8 NA 1.28 E-3

Euler 5 s 24.0 18.2 1.7 4271 50 8 NA -2.00 E-3

Euler 0.25 s 446 389 12.8 80233 41 8 NA -4.22 E-4

Table 2. Example building model statistics for various integrators and tolerance options. Results are the solution statistics (when

available, else ‘NA’) and the relative error of Eel

chronization and communication. The authors have not

been able to gain notable improvements in simulation

speed in building applications by using parallelization in

Dymola 2015 FD01.

3.3.2 Example of Large Building Model

The approach explained in this paper was applied to a

building model based on a real case (Solarwind, Lux-

emburg), containing 32 IDEAS (Baetens et al., 2015)

building zones with individual concrete core activation

circuits (Baetens et al., 2015) and Variable Air Vol-

ume (VAV) boxes including heating battery, bore field

model (Picard and Helsen, 2014), solar collector (Wet-

ter et al., 2014), four thermal storage devices (Wetter

et al., 2014), one pellet boiler, four heat pumps (Baetens

et al., 2015), two adiabatic/active heat recuperating air

handling units, pumps (Wetter, 2013) and valves (Wet-

ter et al., 2015) and a control strategy based mostly on

hysteresis controllers, PID controllers, heating/cooling

curves and boolean algebra. The model has 2468 con-

tinuous time states and 28342 time-varying variables.

Special care was taken to make sure that the small-

est time constants are in the order of 30 s. Therefore air

ducts are steady state, pumps and valves have no open-

ing delay or filter and pipes were lumped into only a few

states per circuit branch, thereby allowing to increase

the time constant. Temperature sensors are assumed to

have a time constant in the order of one minute. Using

dynamic sensors avoids coupling the thermal equations

with the control equations into a single algebraic loop.

This model was simulated for tend − tstart = 10 000 s

using various implicit integrators, with numeric Jaco-

bians and explicit integrator Dopri45. The total amount

of function evaluations exceeds 40 000 in each case. This

is on average one function evaluation every 0.25 s, while

the smallest time constant of the system is ∼ 30 s. There-

fore it makes sense to use an explicit fixed step integra-

tor. Table 2 shows the results, including fixed step ex-

10-6 10-5 10-4 10-3 10-2 10-1 100 101

Relative error Eel

101

102

103

104

CP
Ut
im

e
[s
]

Euler
Rkfix4
Dopri45
dassl
Lsodar
Radau

Figure 8. Relative errors of Eel for various solvers and toler-

ances or fixed time step sizes

plicit integrators Rkfix4 and Euler. It contains statis-

tics and the error on one simulation result that is of inter-

est, namely the integrated electrical power consumption

of the building Eel . The relative error was calculated us-

ing Dassl with a tolerance of 10−8, which produced a

result of 4.591880 kWh.

From these results and Figure 8 it is clear that implicit

integrators are very slow compared to explicit integrators

for this problem. Fixed step methods are especially fast

when high accuracy is not required, allowing a simula-

tion speed 500 times faster than real time, which is more

than 100 times faster than Dassl. For higher accuracies,

Dopri45 can be used. Lsodar is the fastest implicit inte-

grator that was tested. Note that the simulation can easily

be made faster by using a larger step size, at the cost of

accuracy. Also, using larger step sizes will eventually

lead to numerical instabilities. The user may therefore

want to adjust the dynamics of the system, or set certain

dynamics to steady state. It is thus important that models

expose these parameters and allow easy configuration.

The achieved speed increase is considerable. How-

ever, this still requires about 18 hours for a one-year sim-

ulation. As this is longer than typical building energy

simulations, we think that further research is desirable to

reduce the simulation time further.

Simulation Speed Analysis and Improvements of Modelica Models for Building Energy Simulation

68 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511859

4 Conclusion

We conclude that the analysis of algebraic loops, the

optimization of Modelica code and the application of

physical insight can lead to significant simulation time

improvements. Analysis of the model time constants,

avoiding system instabilities, using analytic Jacobians

and proper integrator choice can also be important.

These modifications were applied to a large building

model where removal of all ‘fast’ dynamics allowed ex-

plicit integrators to perform well. Fixed step integra-

tors can also be used if simulation results do not need

to be very accurate. Euler integration performs very

well in terms of computation time, allowing detailed of-

fice building simulations at a speed 500 times faster than

real time.

Further work can focus on analysing and changing the

problem structure in such a way that parallelization can

be used efficiently. It should also be investigated up to

which extent models can be made faster by changing the

model dynamics, which allows larger time steps to be

taken, without introducing too large errors. The pro-

posed changes demonstrate that further symbolic pro-

cessing in Dymola and OpenModelica is possible. We

also propose to use analytic Jacobians by default for all

Jacobian elements where an analytic Jacobian can be

computed.

5 Acknowledgements

The authors acknowledge the financial support by the

Agency for Innovation by Science and Technology in

Flanders (IWT) for the PhD work of F. Jorissen (contract

number 131012).

This research was supported by the Assistant Secre-

tary for Energy Efficiency and Renewable Energy, Of-

fice of Building Technologies of the U.S. Department of

Energy, under Contract No. DE-AC02-05CH11231.

This work emerged from the Annex 60 project, an

international project conducted under the umbrella of

the International Energy Agency (IEA) within the En-

ergy in Buildings and Communities (EBC) Programme.

Annex 60 will develop and demonstrate new generation

computational tools for building and community energy

systems based on Modelica, Functional Mockup Inter-

face and BIM standards.

References

Ruben Baetens, Roel De Coninck, Filip Jorissen, Damien Pi-

card, Lieve Helsen, and Dirk Saelens. Openideas - an open

framework for integrated district energy simulations. In

Building simulation 2015, submitted, Hyderabad, 2015.

François E. Cellier and Ernesto Kofman. Continuous System

Simulation. Springer US, 2006.

Earl A. Coddington and Norman Levinson. Theory of ordinary

differential equations. McGraw-Hill Book Company, Inc.,

New York-Toronto-London, 1955.

Dassault Systèmes. Dymola user manual, vol. 1, 2014.

Ernst Hairer and Gerhard Wanner. Solving Ordinary Differen-

tial Equations II: Stiff and Differential-Algebraic Problems.

Springer-Verlag Berlin Heidelberg, 2002.

Alan C. Hindmarsh. Odepack, a systematized collection of

ode solvers. IMACS transactions on scientific computation,

1:55–64, 1983.

Linda R. Petzold. Description of dassl: a differential/algebraic

system solver. Technical report, Sandia National Labs., Liv-

ermore, CA (USA), 1982.

Linda R. Petzold. Automatic selection of methods for solving

stiff and nonstiff systems of ordinary differential equations.

SIAM journal on scientific and statistical computing, 4(1):

136–148, 1983.

Damien Picard and Lieve Helsen. Advanced Hybrid Model for

Borefield Heat Exchanger Performance Evaluation, an Im-

plementation in Modelica. In 10th International Modelica

Conference 2014, pages 857–866, Lund, 2014.

Elijah Polak. Optimization, Algorithms and Consistent Ap-

proximations, volume 124 of Applied Mathematical Sci-

ences. Springer Verlag, 1997.

Michael Tiller. Introduction to Physical Modeling with Mod-

elica. Springer US, 2001.

Michael Wetter. Fan and pump model that has a unique solu-

tion for any pressure boundary condition and control signal.

In Jean Jacques Roux and Monika Woloszyn, editors, Proc.

of the 13-th IBPSA Conference, pages 3505–3512, 2013.

URL http://simulationresearch.lbl.gov/

wetter/download/2013-IBPSA-Wetter.pdf.

Michael Wetter, Wangda Zuo, Thierry S. Nouidui, and Xiufeng

Pang. Modelica buildings library. Journal of Building Per-

formance Simulation, 7(4):253–270, 2014.

Michael Wetter, Marcus Fuchs, Pavel Grozman, Lieve Helsen,

Filip Jorissen, Moritz Lauster, Dirk Müller, Christoph

Nytsch-Geusen, Damien Picard, Per Sahlin, and Matthis

Thorade. IEA EBC annex 60 modelica library - an inter-

national collaboration to develop a free open-source model

library for buildings and community energy systems. In

Building simulation 2015, submitted, Hyderabad, 2015.

Dirk Zimmer. Using Artificial States in Modeling Dynamic

Systems : Turning Malpractice into Good Practice. In Pro-

ceedings of the 5th International Workshop on Equation-

Based Object-Oriented Modeling Languages and Tools,

pages 77–85, 2013.

Session 2B: Building Energy Applications 1

DOI
10.3384/ecp1511859

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

69

70 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Energy Efficient Design for Hotels in the Tropical Climate using

Modelica

Reymundo J. Miranda1,2 Sen Huang1 German A. Barrios1 Dan Li1 Wangda Zuo1*
1. Department of Civil, Architectural and Environmental Engineering, University of Miami, Coral Gables, Florida, USA,

2. UCI Engineering, Miami, Florida, USA
rmiranda@ucieng.com,{s.huang10, g.barrios, d.li11}@umiami.edu, w.zuo@miami.edu

Abstract

For hotels located in the tropical climate, a significant
amount of energy is attributed to the domestic hot
water (DHW) usage and the space cooling. To improve
the energy efficiency of hotels in the tropical climate,
we proposed a heat recovery system that could utilize
the waste heat from the space cooling system to pre-
heat the city water supplied to the DHW system. To
support the system design, we selected Modelica to
model the heat recovery system and its control, which
is difficult to be simulated by conventional building
simulation tools. The Modelica Buildings library and
the Modelica_StateGraph2 library were employed to
build the system model. A hotel in Miami, Florida,
U.S. was selected for the case study. The simulation
results showed that the proposed heat recovery system
could save up to around 30% boiler energy use in the
DHW system.

Keywords: energy efficient design, hotel, tropical

climate, Modelica

1 Introduction

In the U.S., hospitality facilities, such as hotels and
resorts, account for 7% of the primary energy
consumption of all commercial buildings (U.S.
Department of Energy), which is equivalent to
approximately 1.3% of primary energy consumption in
the nation. In an average hotel, the Heating, Ventilation
and Air Conditioning (HVAC) system accounts for
around 50% of electricity usage and up to 86% of
natural gas consumption (U.S. Environmental
Protection Agency, 2008). Due to their significant
energy consumption, improving energy efficiency of
the HVAC systems in hospitality facilities is of great
interests to the society.
The conventional HVAC system for the hospitality
facilities consists of two parts: the Domestic Hot Water
(DHW) system and the space conditioning system. The
DHW system provides the hot water to the kitchen and
the guestroom. It obtains the supplement water from
the municipal water network, which is called “city
water”. The city water is then heated by heating
equipment such as boilers. The space conditioning

system provides cooling \ heating to the space. In the
cooling condition, the heat from the building is
extracted by the space conditioning system and usually
dumped to the ambient environment. The dumped heat
is called “waste heat”. In the heating condition, the
space condition system extracts heat from the ambient
environment or boilers and then injects the heat into
the hotel space.
The same HVAC systems are also implemented for
hotels in the tropical climate. However, the space
cooling in tropical climate is the dominant usage of the
space conditioning and there is a significant amount
waste heat generated from the space cooling all the
year. Thus, it is possible to save the energy
consumption by the heating equipment in the DHW
system if we can recover the waste heat from the space
conditioning system and use it to preheat the city water
before it enters into the heating equipment.
In addition, if there is a capacity control in the heat
rejection of the space conditioning system (e.g.
variable speed fan control in the cooling tower), we can
also reduce the energy consumption by the heat
rejection since the waste heat injected by the heat
rejection system decreases if the heat recovery occurs.
Besides the energy saving, we also have other benefits
from the heat recovery: it can extend the life of both
the heating equipment and the heat rejection system by
reducing their usage. If the cooling towers are
employed in the heat rejection system, the heat
recovery can also further help the environment by
reducing the usage of evaporative cooling at the
cooling towers, which requires make-up water and
chemicals for treating the make-up water.
On the other side, there are some potential negative
impacts associated with the heat recovery: adding an
extra piping system to connect the space conditioning
system and the DHW systems requires additional
initial cost in equipment, such as pipes, heat
exchangers, pumps and valves, and labor for
installation. It will also need additional pump energy to
cycle water between two systems to enable the heat
recovery. Finally, controlling the heat recovery can be
a challenge since the system operates under various
conditions with complicate flow loops.

DOI
10.3384/ecp1511871

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

71

Overall, the heat recovery seems to be promising since
it is not just economically beneficial but
environmentally as well. However, to find a balance in
terms of costs and benefits, it is necessary to
quantitatively evaluate the performance of the
proposed heat recovery design.
In this paper, we presented our research in designing
and modeling a heat recovery system for the Grand
Beach Hotel in Miami, Florida, U.S. We first introduce
the detailed design of the heat recovery system. Then
we evaluate the energy performance of the heat
recovery system with simulation. In the simulation,
Modelica was used to establish the system model.
After showing the simulation results of different
operating scenarios, we discuss the future work for the
project.

2 Design of the Heat Recovery System

As shown in Figure 1 and Figure 2 are the DHW
system and the space condition system of the Grand
Beach hotel, respectively. The DHW system contains a
group of three identical boilers with a combined total
capacity of 350kW and they are represented by a single
boiler (Boiler-1), a group of three identical domestic
hot water tanks with a total capacity of 3000 L and
they are also represented by a single DHW tank (HW
Tank). The DHW system provides hot water at 60oC.
Part of the 60 oC hot water would be directly supplied
to the kitchen and the rest would be mixed with the city
water to provide a 43.3oC hot water to the guestroom.
To ensure the quick delivery of the hot water, the hot
water is continuously circulating within the distribution
network. The space conditioning system is made up of
two heat pumps, two cooling towers, one heat
exchanger and one small (102.4kW) boiler (Boiler-2).
Boiler-1 is the dedicated main boilers that provide the
heat for both the DHW system and the space
conditioning system. Boiler-2 is a backup boiler that
operates only when Boiler-1 is not able to meet the
heating demand.

Figure 1. Schematic of the DHW system

Figure 2. Schematic of the space conditioning system in
the space cooling mode

As mentioned in the introduction, we can save the
energy consumption of both the DHW system and the
system conditioning system by recovering the waste
heat from the latter to the former. In fact, Miami
provides an ideal environment for the use of the heat
recovery. The climate in Miami is considered to be
tropical or sub-tropical. According to the ASHRAE
standard 169 (ASHRAE, 2006), Miami is located in
Climate Zone 1A, which is very hot and humid. Thus,
there is a large amount of waste heat from the space
cooling throughout the year. With that in mind, we
proposed to use a connection loop, which recovers the
heat from the space conditioning system to the DHW
system through a heat exchanger (Hex-2 in Figure 3a).
There are seven possible operating states for the whole
system varying from the space heating to the space
cooling. In the winter of Miami, there are occasionally
a few cold days, especially during the morning that the
space heating is needed. Since hotel guests tend to take
shower in the morning, the DHW demand may also be
high at the same time when the space heating is
needed. If the DHW demand is extremely large that
requires the full capacity of Boiler-1, the space
conditioning and the DHW systems will run
independently (State 1). The purpose is to guarantee
the supply of the DHW. In this case, the heat recovery
system will stop working.
When the DHW demand drops and Boiler-1 has
additional capacity to meet a partial demand of the
space heating, the system will operate at State 2 that
use both Boiler-1 and Boiler-2 for the space heating
through the connecting loop. This is anticipated to be
the typical operating state for the space heating. The
flow direction in the connection loop at State 2 is
shown in Figure 3a.
If the combined demand for the space heating and the
DHW drops to a level that can be met by Boiler-1,
Boiler-2 will be turned off and the system will operate
at State 3.
State 4 happens when there is no need for the space
heating or cooling, which seldom happens. At this
state, the DHW system and the system conditioning
system are disconnected and no space heating or
cooling will be provided. This state is used as a
transitional period between the space heating and the
space cooling.

Energy Efficient Design for Hotels in the Tropical Climate using Modelica

72 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511871

At State 5, a moderate space cooling and a large
amount of the DHW is provided at the same time. The
waste heat from the space cooling is used to heat the
cool city water before it is further heated by Boiler-1.
The demand for the DHW is sufficiently large so that
the DHW subsystem can absorb all the waste heat from

the space conditioning system.
If the DHW subsystem cannot absorb all the waste heat
from the space conditioning system because either the
large demand for the space cooling or insufficient
demand for the DHW, the cooling towers are kicked on
to eject the remaining waste heat to the ambient

 (a) State 2 for the space heating

(b) State 6 for the space cooling

Figure 3. Two typical operating states of the proposed HR system

Session 2B: Building Energy Applications 1

DOI
10.3384/ecp1511871

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

73

environment (State 6). This is anticipated to be the
typical operating state for the space cooling since the
DHW demand in the hotel mainly occurs in the early
morning and late afternoon. For the rest of the day, the
DHW demand is small but the cooling demand can be
large. The flow direction in the connection loop at
State 6 is shown in Figure 3b.
If it is hot and the DHW demand is too small (such as
at night), it is not worth of running the heat recovery
system. In that case, the DHW system and system
conditioning system will operate independently at State
7.
The above analysis shows that the two subsystems
operate jointly at State 2, 3, 5 and 6. However, the
energy saving due to the heat recovery would only
occur at State 5 and 6.
The transition between the states is achieved by
employing a state machine (shown in Figure 4). In the
state machine, temperatures, temperature differences
and flow rates are used to indicate the different states
of the whole system. The dead band and waiting time
are employed to avoid short cycling.

Figure 4. Supervisory control described by the state
machine (the location of the temperature sensor and
flow meter can be refered to Figure 3)

3 Evaluation

3.1 System Model
A commonly used method for the quantitative
evaluation is to perform computer simulations (Gregor
P. Henze, Clemens Felsmann et al, 2004; Hien, Poh et

al, 2000). The widely used modeling tools in the
building industry include EnergyPlus (Crawley, Lawrie

et al, 2001) and TRNSYS (Klein, Duffie et al, 1976).
However, it is difficult to use EnergyPlus to model the
proposed heat recovery system because it does not
support the unconventional system topology and tends

to highly idealize the control process (Huang and Zuo,
2014; Piette, Granderson et al, 2012; Wetter, 2009;
Wetter, Zuo et al, 2011). TRNSYS is also not suitable
for this case due to two limitations. First, TRNSYS is
not effective in simulating such large system as the
proposed design because it doesn’t supply hierarchical
modeling, which is essential for the debugging and
model reuse (Wetter and Haugstetter, 2006); second,
the pressure-driven flow distribution in the connection
loop is hard to be modeled with TRNSYS. On one
side, the flow direction in the connection loop varies
by the operational states. On the other side, TRNSYS
requires fixed and prescribed flow directions in the
hydraulic system modeling (Kim, Zuo et al, 2013).
To overcome these challenges, we chose Modelica in
the system modeling. The Modelica Buildings library
(Wetter, Zuo et al, 2014; Wetter, Zuo et al, 2011) was
used to build the physical system while
Modelica_StateGraph2 (Otter, Årzén et al, 2005) was
employed to simulate the control system. The
simulation platform is Dymola 2015 FD01.
Figure 6 shows the diagram of the top-level model for
the whole system. It consists of five components: the
DHW system, the connecting loop, the heat pump for
the space conditioning, the condenser water loop, and
the supervisor control system. Solid blue lines are
pipes connecting the components and dashed lines are
input or output signals for controls. We use the DHW
system and the supervisor controller as examples to
show the details of the Modelica models.

Figure 5. Diagram of the model for DHW system

Figure 5 is the model for the DHW system. The
similarity between the system schematic (Figure 1) and
Modelica models (Figure 5) allows a quick
identification of modeling error. The DHW system
model consists of physical equipment, such as a boiler
(Bolier-1), a tank, and pumps, and the local controller
for the temperature of DHW supplied to the
guestrooms. This controller is committed to provide a
43.3oC hot water to the guestroom by mixing 60oC hot
water from the boiler with the city water. The input of
the DHW system model is the DHW demand for the

State 1

State 2

T4 > 60 + 1.12 oC (2 oF)

(Waiting Period = 600 s)

T4 < 60 - 1.12 oC

(Waiting Period = 600 s)

State 3

T2 > 16.11 + 1.12 oC

(Waiting Period = 600 s)

T2 < 16.11 - 1.12 oC

or T4 < 60 - 1.12 oC

(Waiting Period = 600 s)

State 4

T2 > 18.33 + 1.12 oC

(Waiting Period = 600 s)

T2 < 18.33 - 1.12 oC

(Waiting Period = 600 s)

State 5

T2 > 25 + 1.12 oC

(Waiting Period = 600 s)

T2 < 25 - 1.12 oC

(Waiting Period = 600 s)

State 6

T3 > 28.88 + 1.12 oC

(Waiting Period = 600 s)

T3 < 28.88 - 1.12 oC

(Waiting Period = 600 s)

State 7

T2 - T3 < 0.56 oC (1 oF)

(Waiting Period = 600 s)

F4 > 0.25 kg/s

(Waiting Period = 600 s)

 T : Temperature

F : Flow rate

P

K
it
P

u
m

M
m

_
fl
o

w
_

in

m
_

fl
o

w

K
itC

o
lW

a
t

DomHotWat

m D
o

m
C

o
lW

a
t

m
_

flo
w

P

DomPum

M

m_flow_in

m_flow

senTem

T

ta
n

Q
L

o
s
s

boi

yT

P

p
u

m

M

m
_

flo
w

_
in

m
_

flo
w

Cir_flow

k=0.21

c
o

o
W

a
tC

o
n

TBoiSet

k=0.21

boi.fue

Fue

port_a1

port_a2

TBoi

m_flow_in_kit

m_flow_in_dom

HR_flow

P

fueBoi

Tank

Boiler

Local

Controller

Guestroom

DHW

Kicthen

DHW

Energy Efficient Design for Hotels in the Tropical Climate using Modelica

74 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511871

kitchen and the guestroom while the output is the
temperature of the DHW leaving Boiler-1 and the
calculated recovering water flow rate as well as the
energy consumption of Bolier-1 and so on.
Figure 7 shows the Modelica model for the supervisor
control. The key part of this model is the state machine
model, which consists of state (oval icon) and
transition (bar icon) modules. The state modules were
used to represent the seven states described in Figure 4.
The input of the supervisor control model includes
temperature of the condenser water entering and
leaving the heat pump, the temperature of DHW
leaving Boiler-1 and the heat recovering water flow
rate. Its output is the state for the whole system.

Figure 7. Diagram of the model for the supervisory
control

3.2 Evaluation Setting
To evaluate the performance of the proposed heat
recovery system, we simulated the system for one year
period using a typical weather data. In addition, we
studied the system for a typical cooling day and a
special day.
For the annual simulation, there are three input
variables: the weather data, the cooling load and the
DHW demand. The weather data we used is the TMY
(Typical Meteorological Year) file for the nearby
Miami International Airport (U.S. Department of
Energy). The cooling load is the heat that needs to be
removed from the building. A negative sign of the
cooling load means the heat is added into the building
for the space heating (heating load). We used an
empirical equation to calculate the cooling load
according to the outdoor temperature:

�̇ = ⟨ͶͳͲͲ (� − ʹͳͳͳ + ͳʹ) > −ͳͶͷ ͶͳͲͲ (� − ʹͳͳͳ + ͳʹ)ͶͳͲͲ (� − ʹͳͳͳ + ͳʹ) ≤ −ͳͶͷ −ͳͶͷ (1)

where �̇ is the cooling load (kW) and � is the outdoor
air dry bulb temperature.
Furthermore, based on the engineering knowledge, we
created a profile for the typical daily DHW demand in
the hotel. The peak of DHW usage by the guestroom
appears in the morning when guests get up and in late
afternoon when guests come back from the beach. The
DHW usage by the kitchen is mainly for preparing the
lunch and dinner. The generated load and DHW profile
is shown in Figure 8.

state1

state2

state3

state4

state5

state6

state7

else: pre(y)

multiSwitch

{1,2,3,4,5,6,7}

timDel

T1

T
B

o
iH

P
 >

 (
T

B
o
i1

S
e
t
-

0
.5

)

timDel

T2

T
H

e
a
tP

u
m

p
 >

 (
T

B
o
i2

S
e
t
+

 d
e
a
B

a
n
)

timDel

T3

T
H

e
a
tP

u
m

p
 >

 T
1
S

e
t
+

 d
e
a
B

a
n

timDel

T4

T
H

e
a
tP

u
m

p
 >

 T
2
S

e
t
+

 d
e
a
B

a
n

timDel

T5

T
B

o
iH

P
 >

 T
3
S

e
t
+

 d
e
a
B

a
n
 o

r
m

a
s
F

lo
H

o
tW

a
t
0
.4

timDel

T6

T
H

e
a
tP

u
m

p
 -

 T
B

o
iH

P
 d

T

timDel

T7

T
B

o
iH

P
 (T

B
o
i1

S
e
t - d

e
a
B

a
n
)

timDel

T8

T
H

e
a
tP

u
m

p
 (T

B
o
i2

S
e
t - d

e
a
B

a
n
) o

r T
B

o
iH

P
 (T

B
o
i1

S
e
t - d

e
a
B

a
n
)timDel

T9

T
H

e
a
tP

u
m

p
 T

1
S

e
t - d

e
a
B

a
n

timDel

T10

T
H

e
a
tP

u
m

p
 T

2
S

e
t - d

e
a
B

a
n

timDel

T11

T
B

o
iH

P
 T

3
S

e
t - d

e
a
B

a
n
 a

n
d
 B

y
p
a
s
V

a
lP

o
s
 0

.1
 a

n
d
 m

a
s
F

lo
H

o
tW

a
t >

 0
.3

timDel

T12

m
a
s
F

lo
H

o
tW

a
t >

 m
a
s
F

lo
S

e
t

TLeaHP

y

TEntHP

TBoiDHW

masDHW

State 1

State 2

State 3

State 4

State 5

State 6

State 7

Figure 6. Diagram of the top-level model

cooTowSys

heaPumSys conLooSys

DHWSys

supCon

TwetBulbData

h
e

x

e
p

s
=

0
.8

expCon2 expConLoo1

expConLoo2expCon1

GueRooDomWatDem

KitHotWatDem

CooLoa

DHW System

Connecting Loop

Heat Pump

Condenser Water Loop

Supervisor

Control

System

Session 2B: Building Energy Applications 1

DOI
10.3384/ecp1511871

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

75

Figure 8. Cooling \ heating load and hot water usage
profile for the annual simulation

For the typical cooling day, there would solely be
cooling demand in the building. We used the same
hourly DHW demand profile described in Figure 8 and
a new hourly cooling load profile shown in Figure 9.

Figure 9. Cooling load for the typical cooling day
simulation

For the special day (Feb 13), the heating and cooling
was both needed as the day passed. We choose this day
to evaluate the robustness of the supervisory control.
We used the same hot water demand profile and use
equation (1) to generate the load profile for cooling \
heating load data that is shown in Figure 10. According
to the load, the operation mode of the space
conditioning system should change from space cooling
to space heating in the middle night. It then should turn
back to space cooling in the morning.

Figure 10. Cooling \ heating load for the special day
simulation

3.3 Result
The result for the annual simulation is showed in Table
1 and Figure 11. The annual saving amount and saving
ratio for Bolier-1 energy use is 411GJ and 19%,
respectively.

Table 1. Annual simulation result

Without

heat
recovery

With
heat

recovery
Boiler-1 annual
energy consumption (GJ)

2,196 1,785

Boiler-1 annual
energy saving ratio

N/A 19%

As expected, the system largely operated at State 5 to 7
and there was energy saving potential for Boiler-1
throughout the whole year (Figure 11). Most of the
energy savings ranged from 20% to 30%. There were
some days in the winter that the space heating was
needed and the system ran at Sate 1 to 3. There are
only a few hours that the system ran at State 1 when
the cold weather and extreme large DHW demand
happened at the same time.

Figure 11. Annual simulation results

Energy Efficient Design for Hotels in the Tropical Climate using Modelica

76 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511871

As shown in Figure 12 is the simulation result for the
typical cooling day, the system mainly operated at
States 6 and 7 depending on the DHW usage. If the
DHW usage is sufficiently large, the heat recovery
system ran at State 6 and saved about 25% energy for
Boiler-1. Otherwise, the system ran at State 7 and there
was no energy saving.

Figure 12. Simulation results for the typical cooling
day

As shown in Figure 13, the system state in the special
day changed from State 7 to State 2 in the early
morning to switch from the space cooling to the space
heating. It then switched back to the space cooling in
the late morning. When the cooling load was below
200kW or there was only a little DHW demand, there
was no energy savings taking place. However, when
the cooling load rose above 200kW and there was
DHW demand, Boiler-1 energy savings ratio spiked to
just fewer than 25%. Then when the guestroom DHW
demand was high between four to eight o’clock in the
afternoon the boiler energy saving ratio stayed between
20% and 25%. The fall to 20% at the end of the time
period could be attributed to additional DHW need for
the kitchen and the lack of waste heat being transferred
to warm up the 2.7kg/s of city water during the winter.

Figure 13. Simulation results for the special day

4 Conclusion

Based on the above analysis, we can find that,
1) the proposed heat recovery system can bring up to

around 30% energy savings by the DHW boiler;
2) the special day simulation result showed that the

proposed control system was able to regulate the
relatively complicated system operation.

As we mentioned in the introduce section, the heat
recovery system would affect not only the energy use
of the boilers but also that of pumps and the cooling
towers. However, due to the lack of the performance
data, we couldn’t make a quantitative analysis
regarding the impact of heat recovery system on the
pumps and the cooling towers energy use. Besides the
energy saving, the reduction in the water usage by the
cooling towers was also not considered since the water
system was excluded from current simulation scope. At
the next stage of this study, we will perform a more
comprehensive evaluation after identifying the missing
performance data for other equipment and including
the water system in the system modeling. Based on
those results, we may make recommendations for the
design and control of heat recovery systems of hotels
in tropical climate.
This study shows that there are advantages to using
Modelica in the modeling of the building system. On
the other hand, it still is challenging in debugging the
Modelica models for the building systems using
current Modelica environment, e.g. Dymola, since only
limited information is provided during the simulation.

Acknowledgement

This work emerged from the Annex 60 project, an
international project conducted under the umbrella of
the International Energy Agency (IEA) within the
Energy in Buildings and Communities (EBC)
Programme. Annex 60 will develop and demonstrate
new-generation computational tools for building and
community energy systems based on Modelica,
Functional Mockup Interface and BIM standards.

References

ASHRAE. ANSI/ASHRAE/IES Standard 169-2006 --
Weather Data for Building Design Standards, 2006.

Drury B. Crawley, Linda K. Lawrie, Frederick C.
Winkelmann, W.F. Buhl, Y. Joe Huang, Curtis O.
Pedersend, Richard K. Strand, Richard J. Liesen, Daniel E.
Fisher, Michael J. Witte, Jason Glazer. EnergyPlus:
creating a new-generation building energy simulation
program. Energy and Buildings, 33(4): 319-331, 2001.

Gregor P. Henze, Clemens Felsmann, Gottfried Knabe.
Evaluation of optimal control for active and passive
building thermal storage. International Journal of Thermal

Sciences, 43(2004): 173-183, 2004.

Wong Nyuk Hien, Lam Khee Poh, Henry Feriadi. The use of
performance-based simulation tools for building design

Session 2B: Building Energy Applications 1

DOI
10.3384/ecp1511871

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

77

and evaluation - a Singapore perspective. Building and

Environment, 35(2000): 709-736, 2000.

Sen Huang, Wangda Zuo. Optimization of the water-cooled
chiller plant system operation. In Proc. of

ASHRAE/IBPSA-USA Building Simulation Conference,
Atlanta, GA, U.S.A., 2014.

Donghun Kim, Wangda Zuo, James E. Braun, Michael
Wetter. Comparisons of building system modeling
approached for control system design. In Proc. of the 13th

Conference of IBPSA, Chambery, France, 2013.

S. A. Klein, J. A. Duffie, W. A. Beckman. TRNSYS – A
Transient Simulation Program. ASHRAE Transactions,
82(1): 623-633, 1976.

Martin Otter, Karl-Erik Årzén, Isolde Dressler. StateGraph –
A Modelica Library for Hierarchical State Machines. In

Proc. of the 4th International Modelica Conference,
Hamburg, Germany, 2005.

Mary Ann Piette, Jessica Granderson, Michael Wetter, Sila
Kiliccote. Responsive and Intelligent Building Information
and Control for Low-Energy and Optimized Grid
Integration. In Proc. of ACEEE 2012 Summer Study on

Energy Efficiency in Buildings, Pacific Grove, CA,U.S.A.,
2012.

U.S. Department of Energy. Buildings Energy Data Book.
Retrieved May 15, 2014, from
https://catalog.data.gov/dataset/buildings-energy-data-
book.

U.S. Department of Energy. EnergyPlus weather data.
Retrieved May 18, 2015, from
http://apps1.eere.energy.gov/buildings/energyplus/cfm/we
ather_data3.cfm/region=4_north_and_central_america_w
mo_region_4/country=1_usa/cname=USA.

U.S. Environmental Protection Agency ENERGY STAR
Building Upgrade Manual, 2008.

Michael Wetter. Modelica-based Modeling and Simulation
to Support Research and Development in Building Energy
and Control Systems. Journal of Building Performance

Simulation, 2(2): 143-161, 2009.

Michael Wetter, Christoph Haugstetter. MODELICA versus
TRNSYS - a comparison between an equation-based and
procedural modeling language for building energy
simulation. In Proc. of the 2nd National IBPSA-USA

Conference, Cambridge, MA, U.S.A., 2006.

Michael Wetter, Wangda Zuo, Thierry Nouidui, Xiufeng
Pang. Modelica Buildings library. Journal of Building

Performance Simulation, 7(4): 253-270, 2014.

Michael Wetter, Wangda Zuo, Thierry Stephane Nouidui.
Recent Developments of the Modelica "Buildings" Library
for Building Energy and Control Systems. In Proc. of the

8th International Modelica Conference, Dresden,
Germany, 2011.

Energy Efficient Design for Hotels in the Tropical Climate using Modelica

78 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511871

Presentation, Validation and Application of the DistrictHeating

Modelica Library

Loïc Giraud, Roland Bavière, Mathieu Vallée, Cédric Paulus

Univ. Grenoble Alpes, INES, F-73375 Le Bourget du Lac, France
CEA, LITEN, 17, Rue des Martyrs, F-38054 Grenoble, France, roland.baviere@cea.fr

Abstract

District heating systems are a relevant solution for
reducing CO2 emissions, especially in dense areas with
older buildings. However, due to the heavy investment
costs, there is a great interest in simulation and
software solutions to reduce distribution losses, limit
the overuse of peak generators and optimize the use of
storage capacities. In this paper, we describe how we
designed, validated and used a library of fast, precise
and robust components for district heating systems.
Among other results, we could reduce the number of
equations in some components by a factor of 40 and
demonstrate more than 10% reduction in heat losses on
a sample application.

Keywords: district heating, physical modeling,

dynamic simulation, supply temperature optimization

1 Introduction

In French urban area, residential buildings currently
account for 60% of the total energy consumption. This
sector is also responsible for a large amount of carbon
dioxide emissions. Most of this consumption is due to
space heating and domestic hot water production.
Following the recommendations of the “Grenelle
Environment Round Table”, France is tied up to divide
by four all emissions of greenhouse gases by 2050.
New energy solutions must therefore be searched for
the building sector. Generalizing standards of low
consumption in new housings (e.g. RT2012 building
code) as well as setting up incentives for building
retrofitting can only be considered as long term
measures since the renewal rate of existing buildings is
limited to 1 %. On the other hand, district heating
systems may already play a role since they are
generally well established in dense urban area. Such
system may massively increase the share of renewable
and recovery energies, especially in urban areas where
the use of decentralized systems is problematic or
impossible. These context elements explain why
France is currently experiencing a new age of
development for district heating networks.

In France, large well-established district heating
systems are continuing their extension while many

small networks are being built. However, due to the
heavy investment costs of such systems, there is a great
interest in simulation and energy planning software
solutions leading to the reduction of distribution losses,
limiting the overuse of peak generators and optimizing
the use of centralized and decentralized storage
capacities. In the Modelica community, previous work
have been investigating issues related to short-term
production planning in district heating networks (Velut
et al, 2014). Our research group is currently involved
in several research programs devoted to the definition
of optimal operation of district heating systems. In this
context we have been working on the development of
computationally efficient and accurate dynamic
simulation capabilities in order to propose and evaluate
advanced control strategies.

 The beginning of the present research program in
January 2014 was devoted to the selection of an
appropriate simulation platform, for instance able to
host flexible model development. We have carried
comparative studies of various candidates and the
details of this analysis can be found in (Giraud et al,
2014). This work has led us to the conclusion that the
equation-based object-oriented language Modelica
along with the simulation platform Dymola was the
most adapted tool for our application. This has led us
to develop a Modelica component model library that
we named DistrictHeating.

The purpose of this paper is to present the
DistrictHeating library and to show how accurate
modelling of a district heating network can be used as a
basis to develop efficient control strategies. Section 2
first describes the structure and some of the models
contained in the DistrictHeating library. Since the
experimental validation of such models is an important
issue, the validation process applied for the pipe model
is entirely described in section 3. In section 4, we
describe the optimization of a temperature control
strategy in a virtual district heating network, designed
to reproduce the behavior of a small part of the district
heating network in Grenoble, France. Consumers are
simulated using actual heat load profiles observed in
the Grenoble main district heating system. Two supply
temperature control strategies, a standard and an

DOI
10.3384/ecp1511879

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

79

optimized strategy, are compared in order to show the
potential of energy savings.

2 Library for district heating system

modelling and simulation

The current version of the DistrictHeating library
contains several models intended to provide solutions
for dynamic simulation of district heating and cooling
systems. The modelling scope of the library is limited
to systems using liquid water as the heat carrier fluid.
As a consequence, the applicability of the developed
models is restricted to cases where the fluid can be
considered slightly- or in-compressible and poorly- or
non-expandable.

2.1 Compatibility

Our DistrictHeating library relies on many modelling
solutions provided by the version 3.2.1 of the Modelica
Standard Library. For instance the FluidPort
connectors defined in the Modelica.Fluid library
(Franke et al, 2009) and relying on stream variables are
used. The DistrictHeating library can thus handle the
flow-reversals which can occur for instance in meshed
networks or networks with multiple supply points. The
HeatPort connectors of the Modelica.Thermal library
are also used. The modelling of one-dimensional
thermo-fluid flows in piping network within the
DistrictHeating library is compliant with the
Modelica.Media package. We have also chosen to base
our work on the Modelica.Fluid library since it allows
modeling fluids with multiple trace substances. This
feature can for instance be used to dynamically track
the influence area of various production plants on the
same heat grid. The compatibility of our model
developments with other already existing, well
documented and open-source modelica libraries such
as Buildings (Wetter et al, 2014) was also an important
design criterion.

Although the DistrictHeating library is limited to
our internal use for now, we can envision a wider
diffusion of some components under an open-source
license in the future.

2.2 Structure of the DistrictHeating library

The DistrictHeating library is composed of several
packages containing model solutions for various
components of a district heating system such as pre-
insulated pipe, pump, substation, heat generator… The
most important packages of our library are described in
the following sections.

2.3 Package Fluid

The Fluid package provides components to model one-
dimensional fluid flow in networks (see Figure 1).

The models representing one-dimensional pipes are
gathered in the Pipes sub-package. The piping network
of a district heating system is generally composed of

two identical parts namely the supply and the return
networks. The twin-pipe configuration1 apart, each
piping element is composed of a pipe and a
surrounding cylindrical thermal insulation. In some
cases, it is necessary to account for the internal heat
exchange between the supply and the return networks.
In all cases, heat losses towards the surrounding
environment should be accounted for. To ease the data
collection burden for end-users we have developed a
model representing a pair of pre-insulated pipes (see
Figure 2) relying on geometrical parameters and solid
properties available from vendors. We have collected
such models in the PipeShopCatalogue sub-package.

A model of tank with variable level is not useful for

our application. We also found that head losses
experienced by the fluid at inlet/outlet connections of a
tank were generally negligible for our application.
Following these two considerations, we have decided
to introduce a Vessels sub-package in our library. This
sub-package can be considered as a simplified version
of the Modelica.Fluid.Vessels package.

Some systems are built from � ሺ� ∈ ℕ, � > 1ሻ
identical components (eg tube, pump …) in parallel.
For clarity reasons, let us only consider here the case of � tubes in parallel. When the operating conditions are
similar for each tube, it is tempting to model the
system relying on one elementary pipe affected with a
weight of �. The weight feature is for instance
available in the DynamicPipe model of the
Modelica.Fluid library through the use of the �࢒ࢋ࢒࢒���ࡼ parameter. However, implementing this

1
Configuration with two pipes in the same casing.

Figure 1.

Structure of the
Fluid package.

Figure 2. Icon representing
a pair of pre-insulated
pipes.

Presentation, Validation and Application of the DistrictHeating Modelica Library

80 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511879

feature has led to the modification of 11 files within the
Modelica.Fluid.Pipes sub-package. To ease the
maintenance of our code, we have searched for a less
intrusive mean of programming this feature. A
FlowDivider and a HeatDivider model were developed
for this purpose. These models are intended to be
positioned at the interfaces of the system built from �
identical components. Both models consist of a pair of
ports introducing a division (respectively a
multiplication) of the flow variables (mass flow-rate
and heat flow-rate) in the positive (respectively
negative) flow direction. Of course, the pressure drop
and the accumulation terms for mass and energy are set
to zero. These models are part of the Components sub-
package.

2.3.1 Focus on the pipe model

Heat is convected at a velocity typically ranging from
0.05 m/s to approximately 2 m/s and over distances of
a few to several tens of kilometers in a district heating
network. As a consequence, a temperature change
initiated at a production plant reaches far end-
consumers with a delay that can exceed several hours.
In order to limit heat losses throughout the distribution
network, this delay must be correctly evaluated in
order to overheat the network only when the thermal
demand is high. Defining an optimal operation strategy
for a district heating system therefore requires the use
of a reliable pipe model correctly accounting for the
temperature propagation dynamics. In order to define
the best possible combination between accuracy and
numerical performance we have developed two
different numerical models to represent a district
heating distribution pipe. Both models share common
equations to express the momentum and mass balances
across the pipe.

Several friction models ranging from linear relations
to detailed laws accounting for the laminar-turbulent
transition and the effect of roughness are available for
end-users. However, a quadratic law fitted to data
corresponding to nominal conditions and linearized in
the laminar regime generally represents the best
comprise between accuracy and numerical
performance for district heating applications.

The following simplified equation derived from the
first law of thermodynamics for open systems is used
to express the 1-D fluid’s energy conservation: � ∙ � ∙ �௣ (���� + � ����) = A ∙ λ �2���2 + ܳ̇ (1)

where � stands for the cross-sectional pipe area, �, ��
and � respectively stand for the fluid density, specific
heat capacity and thermal conductivity, �, � and ̇ࡽ⁡
stand for the fluid temperature, velocity and the wall to
fluid heat transfer-rate. As shown, in the validation
section, the first term of the right hand side of Equation
(1) can generally be ignored.

Equation (1) is a partial derivative equation (PDE)
that requires the use of a numerical method to convert
it in a form solvable by a computer program. We
developed two pipe models based on two different
numerical methods. These methods are respectively
referred as the “element-” and the “node-“ method in
the Danish scientific literature devoted to the
modelling of temperature propagation within a district
heating network (Benonysson, 1991; Gabrielaitiene et

al, 2008).
The ElementPipe model

In the first model, Equation (1) is spatially discretized
using a finite volume method (Patankar, 1980).
Relying on a collection of axially distributed non
overlapping control volumes, Equation (1) is
transformed into a system of ordinary differential
equations that can be solved by a MODELICA tool.
Each equation results from an integration of Equation
(1) over an elementary control volume where the fluid
temperature is assumed to be uniform.

The finite volume method is implemented using the
DynamicPipe from the Modelica.Fluid library as a
basis. The following modifications applied to the
original DynamicPipe model are worth noting. Firstly,
only one balance equation per pipe is considered for
mass and momentum regardless of the number of
control volumes used for the energy equation.
Secondly, the discretization scheme for the convection
term in the energy balance equation has been upgraded
from an Upwind-Difference Scheme to the higher-
order Quadratic Upstream Interpolation for Convective
Kinematics (QUICK) scheme (Leonard, 1979). The
QUICK scheme intends to limit artificial (also called
numerical) diffusion. Thus, for a given accuracy level,
larger mesh sizes can be used thereby improving the
numerical efficiency of the model.

The NodeMethodPipe model

In the second model, Equation (1) is integrated along a
fluid’s particle path line following the method of
characteristics (Wylie et al, 1978). Along the path line,
namely a characteristic curve, the PDE becomes an
ordinary differential equation which can be natively
integrated within a Modelica based computer program.

Following this method, it can be shown that the
outlet temperature of a pipe can be inferred from a past
inlet value according to the following equations (see
(Giraud, 2015) for details): ��௨௧∗ ሺ�ሻ = ሺ��௡ሺ� − �ሻ − �௘�௧ሻ݁− ��� + �௘�௧ (2)

where ���ሺ࢚ − �ሻ represents the pipe inlet temperature
at the past instant ࢚⁡– ⁡�, � is the transportation time, �࢚�ࢋ is the external temperature, �࢚ is a heat loss
characteristic time and ��࢚࢛∗ ሺ࢚ሻ is the pipe outlet
temperature obtained by neglecting the heat capacity of
the tube. � is determined using (3) where ࡸ⁡ is the length of
the pipe and � is the mean fluid velocity:

Session 2B: Building Energy Applications 1

DOI
10.3384/ecp1511879

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

81

∫ �ሺݏሻ�ݏ௧
௧−� = ∗࢚࢛�� (3) � ሺ࢚ሻ is then modified to account for the heat

stored in the steel tube by assuming that the heat
capacity of the whole tube is gathered at the outlet of
the pipe and that the fluid and tube temperatures are
equal: ݉� ���௨௧�� = ݉̇�௣�ሺ��௨௧ − ��௨௧∗ ሻ (4)

where ��࢚࢛ is the fluid outlet temperature, ࢓� is the
mass of the steel tube and ̇࢓ and ��� respectively

stand for the fluid mass flow-rate and the fluid
specific heat capacity.

Equations (2), (3) and (4) have been implemented
using a combination of the delay(…) and the
spatialDistribution(…) operators (Modelica
Association, 2014).

Table 1. Relative number of equations of the DAE system
for a model composed of a pre-insulated district heating
pipe and two boundary conditions

Model Library Rel. Nb. Eq.

DynamicPipe Modelica.Fluid 100 %

ElementPipe DistrictHeating 32.7 %

NodeMethodPipe DistrictHeating 2.56 %

Table 1 compares the size of the system of

Differential Algebraic Equations (DAE) for different
pipe models. The number of meshes for the finite
volume models (namely DynamicPipe and
ElementPipe) is chosen such that the obtained
numerical results are close to the results yielded by the
model based on the method of characteristics (namely
NodeMethodPipe) for a typical district heating
transient. As can be seen from Table 1 the number of
DAEs for the ElementPipe model is smaller by a factor
of 3 to that of the Modelica.Fluid DynamicPipe. More
importantly a reduction by a factor of 40 is observed
for the NodeMethodPipe. Accordingly, significant
computational costs savings are observed with this
model when compared to the DynamicPipe or even to
the ElementPipe models. In district heating system
simulations, these numerical optimizations do not have
any accuracy impact, as shown in the validation section
(Figure 5). The NodeMethodPipe is thus used for the
application shown in section 4.

2.4 Package Substation

The heat transported throughout a district heating
network is delivered to consumers by the mean of a
substation. The purpose of the Substation package is to
provide generic model solutions to represent the
thermalhydraulic behavior of a district heating
substation.

A substation is generally composed of a heat
exchanger a control valve positioned on the primary
side and a PI controller used to control the secondary
outlet temperature (see Figure 3). Two distinct regimes
must be considered to cover the operational conditions
encountered in a district heating system. Firstly, in the
thermal regime, the heat demand is satisfied and the
primary mass flow-rate is entirely governed by the
consumers’ needs. On the other hand, in the hydraulic
regime, the requested heat cannot be provided by the
network. As a consequence, the control valve is fully
opened and the primary mass flow-rate depends on the
local pressure difference between the primary supply
and return lines.

Figure 3. Schematic representation of a substation. ����
 .are the primary (resp (࢙࢚࢛�� /⁡࢙��� .resp) �࢚࢛��⁡/
secondary) inlet / outlet temperatures.

We have developed several substation models in our
library consisting of a control valve, a heat exchanger
and a simplified controller. Details on this
development work and on the validation procedure can
be found in (Giraud et al, 2015). In the present paper,
only the model representing the best compromise
between accuracy and computational costs for our
application will be described.

The purpose of a substation model is to cover
simulation periods ranging from days to months.
Consequently, the detailed dynamics of the PI
controller can be ignored and the model may consider
that the secondary outlet temperature always matches
the set point value in the thermal regime. Correctly
accounting for the heat exchanger behavior is a crucial
part of the model. This part is based on the classical ࡸ��� (Log Mean Temperature Difference)
formulation (Shah et al, 2003): ܲ��݁ݎ = �� ∙ (5) ��ܯ�

where ࢁ� stands for the global heat exchanger thermal
conductivity.

The ࡸ��� term reads:

Presentation, Validation and Application of the DistrictHeating Modelica Library

82 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511879

��ܯ� = ∆�ଵ − ∆�2��ሺ∆�ଵ ∆�2⁄ ሻ (6)

where ��૚ = ���� − and ��૛ ࢙࢚࢛�� = �࢚࢛�� are the temperature differences at the two ends of ࢙���−
the heat exchanger.

By considering that the solid/fluid heat transfers are
similar for both sides of the heat exchanger and that the
conduction in the solid part is negligible, ࢁ� can
conveniently be expressed as:

�� = ��௡�� ∙ [ሺ݉̇�௡��ሻ−௤ + ሺ݉̇ݏ௡��ሻ−௤]ሺ݉�̇ ሻ−௤ + ሺ݉̇ݏ ሻ−௤ (7)

where ࢓�̇ and ࢙̇࢓ respectively stand for the primary
and the secondary mass flow-rates. The ��࢓⁡
subscript indicates nominal conditions values and ࢗ is
a user-defined parameter generally of the order of 0.7.

Figure 4. Evolutions of the temperatures (top) and valve
position (bottom) for the exact and approximate
substation models – for a decreasing network temperature.

Equations (5), (6) and (7) have been programmed in
a Modelica model. When translated and solved by the
DYMOLA FD01 2015 software, these equations lead
to convergence and numerical stability issues,
especially in the region where |Δ�ଵ − Δ�2| Δ�ଵ⁄ ≪ 1.
As a workaround, the regularization method proposed
in (Mattsson, 1997) was tested but the resulting model
still suffered from numerical difficulties in the
conditions of our application. Finally an alternative
formulation, also linearized in the aforementioned
region was implemented. In parallel, to improve
numerical efficiency, we have searched for an
approximate method relying on an explicit formulation
that could be programmed in an algorithm section.

For the thermal regime, the heat exchanger behavior
has been inferred from an explicit correlation between ࢓�̇ and the inputs of the model, see (Giraud et al,
2015) for details. In the hydraulic regime ࢓�̇ can be
determined prior to the heat exchanger calculation.
Equations (5), (6) and (7) can thus be solved explicitly
is this regime.

Figure 4 compares the evolutions obtained with the
“exact” and explicit (i.e. approximate) developed
substation models. In the simulation scenario, the
network temperature is progressively decreased while
all other quantities are kept constant (power demand,
network pressure difference, …). Up to time 1.1 h, the
heat demand is satisfied and the substation model runs
in the thermal regime. In this regime, both models
predict an increase in ��࢚࢛� when ���� decreases.
This is a coherent behavior for a heat exchanger with a ࢁ� coefficient that is only slightly sensitive to mass
flow-rates variations. However, since this ��࢚࢛�
increase is limited, decreasing the supply temperature
in a district heating network will generally lead to an
overall heat losses improvement. In the hydraulic
regime, ��࢙࢚࢛ decreases and the consumers’ heat
demand cannot be fulfilled anymore. In summary,
Figure 4 demonstrates a good qualitative behavior for
our explicit substation model. We have also performed
experimental validation relying on the analysis of
temperature data recorded from instrumented district
heating substations. Details of this validation results
and procedures can be found in (Giraud et al, 2015).

2.5 Other Packages

The DistrictHeating Modelica library is also composed
of many other packages providing solutions to model
pumps, heat generator, stratified heat storage,
conduction in multi-layers planar or cylindrical walls
etc … The thermophysical properties of the solid
materials traditionally encountered in district heating
and cooling systems are gathered in the SolidMaterials
package.

3 Validation

In this section, we detail some of the experimental
validation work that we have conducted for the pipe
models described in section 2.3.1.

The accuracy of the different pipe models is
assessed using the experimental data reported in
(Ciuprinskas et al, 1999). The same experimental data
have already been used in a similar validation work
performed by (Gabrielaitiene et al, 2008). The
measurements reported in (Ciuprinskas et al, 1999)
have been obtained by triggering a temperature wave at
a production plant of the Vilnius district heating
network. The experiment has been conducted at the
end of the heating season, when heat demand is low
and network mass flow-rate is almost constant.
Temperature measurements have been positioned at

Session 2B: Building Energy Applications 1

DOI
10.3384/ecp1511879

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

83

both ends of an horizontal 470m in length pre-insulated
pipe. Details on this case study and on the parameters
that have been considered to build the corresponding
model can be found in (Ciuprinskas et al, 1999;
Gabrielaitiene et al, 2008).

Figure 5. Numerical vs. experimental comparison of the
temperature evolutions at both ends of an horizontal
district heating pre-insulated pipe, 470m in length.

Figure 5 plots the experimental and the numerical
results for two pipe models of our library, namely the
ElementPipe and the NodeMethodPipe (see section
2.3.1 for details). This figure firstly shows that heat
losses are correctly evaluated by the models since the
temperature evolutions at the outlet are all equivalent.
However, the numerical predictions slightly differ from
the experimental evolutions concerning the peak
temperature and the time at which the outlet
temperature starts to rise. These errors exceed the
experimental uncertainties (not shown here) reported in
(Ciuprinskas et al, 1999). The same findings were also
reported for comparable pipe models developed in a
non-modelica environment (Gabrielaitiene et al, 2008).

In (Gabrielaitiene et al, 2008) it is postulated that
the aforementioned numerical errors could originate
from the fact that turbulent axial dispersion is
significant in the conditions of the study yet this

phenomenon it is not accounted for by the models.
Consequently, we have implemented a simplified
version of the thermal diffusion and dispersion models
proposed by (Drouin, 2010) in our ElementPipe model.
This did not significantly improve our numerical
predictions. We have also analyzed the potential
impact of bends and other singularities on the
temperature propagation dynamics by following the
models proposed in (Park et al, 1971). Again, this did
not improve our numerical predictions. We have also
carried a sensitivity analysis on several uncertain
experimental parameters (e.g. wall capacity, fluid/solid
heat transfer coefficient, thermal dispersion coefficient
…). Within the considered variation ranges, it was not
possible to significantly reduce the numerical errors.

Water tests on thermal stratification in a long
horizontal pipe subject to transient inlet conditions
were reported in (Tenchine et al, 2014). The purpose
was to validate criteria for the prediction of occurrence
and amplitude of thermal stratification in a simple
horizontal pipe. The variation ranges regarding the
experimental conditions explored in (Tenchine et al,
2014) are compatible with the experimental conditions
of the present validation work in terms of pipe
diameter, fluid mean velocity, amplitude of the inlet
temperature transient but also Reynolds, Peclet, and
Richardson dimensionless numbers. When applied to
the district heating experimental conditions analyzed
here, the criteria proposed in (Tenchine et al, 2014)
suggest that the maximum cross-sectional temperature
difference could reach 50 % of the inlet temperature
wave amplitude. In other words, thermal stratification
has probably occurred in the experiments reported in
(Ciuprinskas et al, 1999). This would explain why the
time at which the outlet temperature starts to rise is
significantly under-predicted by the pipe models of our
library which all rely on the assumption of flat velocity
and temperature profiles. Since, the operational
conditions leading to potential occurrence of thermal
stratification in a district heating network (very low
mass flow-rates and steep temperature changes) are

Figure 6. Layout of the sample district heating network, with 26 consumers and one heating plant.

Presentation, Validation and Application of the DistrictHeating Modelica Library

84 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511879

very rare, we have decided to not include such a
phenomenon in our pipe models. However, to
complement the validation procedure exposed in the
present paper, a dedicated experiment will be
conducted in the Grenoble district heating network.
More realistic experimental conditions will be targeted
in order to exclude the potential occurrence of thermal
stratification.

In summary, the numerical predictions produced by
the available pipe models of the DistrictHeating library
for a typical district heating transient are comparable to
those obtained by other research group relying on non-
Modelica tools (Gabrielaitiene et al, 2008). However,
when compared to the experimental data reported in
(Ciuprinskas et al, 1999), a slight numerical error is
observed. By analysing the possible origins for this
error, we have found that thermal stratification might
have biased the temperature transport measurements
performed in (Ciuprinskas et al, 1999). Further
experimental work would be required to firmly
conclude on this issue.

4 Application: optimized supply

temperature

After presenting the library and its validation, we now
present a concrete application of the library on a
sample district heating network. In this section, we first
give an overview of the realistic virtual district heating
network we consider. We then describe the issue of
choosing the supply temperature and the standard
control law generally used in industry. We then show
how the precise, fast and robust simulation obtained
with the DistrictHeating library makes it possible to
quickly obtain optimized supply temperatures results.

4.1 Overview of the virtual district heating

network

Figure 6 depicts the virtual district heating network we
use for this study. The mesh-free network layout
considered in the virtual network originates from an
extension project of the main district heating network
in Grenoble, France. However, since the characteristics
of the buildings in this new district are not yet
available, we reconstructed heat load profiles based on
historical data from other existing buildings in
Grenoble.

In order to make this simulation as realistic as
possible, we dimensioned the various virtual
components carefully, taking into account the
following constraints. Firstly, the buildings’ profiles
are chosen in order to respect the usual distribution of
district heating clients in France, composed of 58 %
households, 36% services and 6 % industries.
Secondly, the substation models are dimensioned
according to the local rules stating that the
dimensioning load must be deliverable to consumers at
a pressure difference of 1 bar and a heat exchanger

temperature difference of 110 K (i.e. ���௣ − ���� =11Ͳ K). Finally, the pipes internal diameters are
chosen within the range DN65 to DN350 in order to
limit the maximal fluid velocity to 1.5 m/s. This leads
to a maximum heat transportation time between the
boiler and the far end consumer of 3 hours in the
operating conditions investigated in the present
work.The various piping elements of the virtual district
network are modelled using the NodeMethodPipe

Table 1.

Figure 7. Evolution of the main variables over the
simulation period (08/12/2013-13/12/2013).

The global heat losses coefficient of the network is
adjusted to limit the relative losses to 10 % of the
distributed energy during typical winter days.

The simulation period covers five consecutive days
of December 2013 characterized by a cold yet sunny
anticyclonic weather with daily temperature variations
ranging between – 4.1 °C and + 8.1 °C. During this
period, heat load patterns are regular, allowing for a
particularly clear analysis.

4.2 Standard control of the supply temperature

In such a district heating network, correctly choosing
the supply temperature at the heating plant is a good
way of improving the efficiency of the whole system.
On the one hand, the supply temperature must be high
enough for substations to deliver the required power to
customers. One the other hand, choosing higher supply
temperatures increase heat losses during the transport,
especially as transport times also tend to increase with
higher temperatures. Perfectly optimizing the choice of
the supply temperature would require taking into
account the interdependencies between temperatures
and transportation times for all consumers, as well as
predicting the power requirements of all consumers
over a few hours. In practice, even for a small network
with a few dozen consumers, such a direct control
proves impractical, both in terms of computation and in
terms of investment costs for measurements.

Session 2B: Building Energy Applications 1

DOI
10.3384/ecp1511879

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

85

As a consequence, the standard supply temperature
control strategy uses an indirect solution, based on a
static heating curve. With this strategy, the supply
temperature is chosen as a linear function of the
external temperature. The linear dependency between
the supply and external temperatures can be adapted so
that the maximal opening of the control valves never
exceeds a given threshold, leaving a security margin
for extreme cases.

Figure 8. Supply temperature, network temperatures ��
and critical temperatures⁡�����࢚ for consumer DS.

Using the virtual district heating network described
above, we applied a standard supply control strategy,
adapted so that the maximal opening of the control
valves is limited to 85 % during the simulation period.

Figure 7 depicts the evolution of the main variables
over the simulation period: the external temperature;
the supply and return temperatures as well as the mass
flow rate at the heating plant; and the maximal opening
of control valves.

Since the choice of the supply temperature is only
indirectly related to the heat loads at the consumer, and
especially does not take into account transport times,
we can observe that this standard control strategy leads
to large variations of the opening of the control valves.
This behavior is consistent with the observations in a
real DH system.

Looking at the consumer side, we can use the
substation models for a finer analysis. Figure 8 depicts
the network temperatures at a consumer, named DS
(red), together with the supply temperature (red
dashed). One indicator we can compute thanks to the
detailed substation model is the critical temperature
(black), i.e., the minimal temperature required to be
able to satisfy consumer demand. On these figures, we
can see the actual network temperature is much higher
than the critical temperature. For instance it can be
about 150°C when only 120°C would be sufficient.

4.3 Optimizing the supply temperature

For each substation, we can compute the critical
temperature, hereafter noted �����࢚, which corresponds
to the minimal network temperature allowing to serve
the power required by consumer n° �. By taking into
account transport times and heat losses, we can further
compute the critical temperature at the heating plant
according to the following equation:

��௨௣���௧ሺ�ሻ = max�,௧′⁡ (�����௧ሺ�′ሻ + �⁡��ℎ⁡�ℎ�ݑݏ′�⁡∀ ⁡,(ሺ�ሺ�′ሻሻݏ݁ݏݏ��⁡ = �′ − �ሺ�′ሻ (8)

Choosing a supply temperature close to �࢚����࢛࢙ሺ࢚ሻ
ensures that demand at consumer side will be satisfied
at all time, while minimizing heat losses. For a given
set of heat load predictions, we can obtain all the data
to compute �࢚����࢛࢙ሺ࢚ሻ directly from the simulation
results. However, since modifying the supply
temperature also modifies mass flow rates, transport
time, and thus network temperature, the selection of an
optimized supply temperature is actually an iterative
process.

Figure 9. Computation of an optimized supply
temperature, over a 24h prediction horizonሺ࢚૙. . .૛�ሻ࢚

Figure 9 depicts the iterative process computing an
optimized supply temperature:

1. Estimate an initial supply temperature
schedule

2. Simulate the network using the Modelica
DistrictHeating library

3. Extract critical temperatures and transport
time for each consumers

4. Compute the aggregated critical temperature at
the heating plant, taking into account
individual critical temperatures and time
delays (see Equation (8))

5. Choose a new supply temperature based on the
aggregated critical temperature

6. Check if the supply temperature changed, and
iterate to step 2 if necessary.

7. Once a solution is found, apply the supply
temperature.

For our application, we implemented this algorithm
in the Scilab scientific computing software (Scilab
Enterprises, 2015), which communicates with Dymola
for executing the Modelica simulation. This setting is
close to the one adopted in previous work (Du et al,
2014), for optimizing dynamic hybrid energy systems.

Modif. ��௨௣?

Apply supply

temperature

no

yes

Estimate ��௨௣ �0. . �24
1

Simulate

the network

2
Extract �����௧ �0. . �24�� �0. . �24

3

Compute��௨௣���௧ �0. . �24
4

Propose new ��௨௣ �0. . �24
5

6
7

Presentation, Validation and Application of the DistrictHeating Modelica Library

86 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511879

Figure 10. Main variables at the heating plant and
maximal control valve opening, in the reference (red) and
optimized (blue) cases. Return temperature at the heating
plant (green) is similar in both cases.

4.4 Comparison between standard and

optimized supply temperature

Figure 10 depicts the evolution of the main variables at
the heating plant and the maximal control valve
opening, both using the standard supply temperature
(in red), and using the optimized supply temperature
(in blue). In the upper figure we can see that the supply
temperature can be reduced by up to 30°C, without
reducing the ability to meet the consumers demand. In
Figure 11, we can see that the produced thermal power
is slightly reduced, because of a reduction of heat
losses. Over the period we consider, the total energy
savings amount to about 18% of the total heat losses.

Figure 11. Produced thermal power in the reference (red)
and optimized (blue) cases, and aggregated thermal power

. transferred to consumers (green)

Looking at the consumer side, Figure 12 clearly
shows that the optimized network temperature (blue) is
lower than using the standard supply temperature (red),
and is closer to the critical temperatures (black

dashed). We can also observe that the control valves
operate between 70% and 95% opening, and with more
dynamic variations, indicating a finer control.

Figure 12. Results for consumer CK3 in the reference
(red) and optimized (blue) cases: network temperatures
(top), control valve position (bottom).

4.5 Discussion about heat load prediction

We can notice that heat load prediction for consumers
plays an important role in the optimization of the
supply temperature. In the work presented above,
incorrect predictions could lead to lower network
temperatures at the substations, and prevent from
meeting the heat demand at some points in time. To
mitigate this constraint, we can note the following
points:

1. Since critical temperatures at consumers �����࢚ are
close to linearly related to the heat load at each
consumer, we can propagate prediction
uncertainties to the choice of a supply temperature.
For instance, if there is 10% uncertainty on the
heat load prediction, increasing the optimized
supply temperature by 10% of the typical
temperature difference (approx. 1°C in most cases)
would provide a good confidence to the network
operator.

2. Even in case the network temperature is too low
for meeting the heat demand during short periods
of time, previous studies have shown that the
thermal inertia of buildings ensure the inhabitants’
comfort for at least a few hours (Kensby et al,
2015). In typical buildings, it is only after a few
dozen hours that a reduction of heat power by 10%
will lead to a reduction of internal temperature by
2°C.

3. To minimize prediction uncertainty, we can adopt
a model-predictive control approach, in which the
optimized supply temperature is updated on a
regular basis with new predictions. Thanks to the
rather slow dynamics of a district heating network,
computing a new optimized supply temperature

Session 2B: Building Energy Applications 1

DOI
10.3384/ecp1511879

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

87

every 15 minutes is enough to guarantee a fine-
grained control.

5 Conclusion

In this paper, we describe how we designed, validated
and used DistrictHeating, a library of fast, precise and
robust Modelica components for district heating
systems. In this library, we designed the components
by iteratively improving standard components in order
to reach a good balance between the precision and
execution time of the simulation. We then validated the
components by comparing their behavior with
experiments on real district heating networks.

Based on the DistrictHeating library, we could
design an application for optimizing the supply
temperature of a sample district heating network. Using
an optimized supply temperature allows reducing heat
losses by 18% compared to a standard strategy. This
optimized strategy relies on accurate prediction of the
heat load for consumers.

As a further step, we will develop a model-
predictive control approach for supply temperature
optimization. In this approach, we can update heat load
predictions regularly, and compute an optimized
supply temperature for the next time slot accordingly.
The improved simulation times of our library make it
possible to adopt an update rate of a few minutes even
for medium size systems (dozens of consumers), which
is perfectly compatible with the slow dynamics of a
district heating network. Using this approach, we plan
to extend our study to a one-year simulation in order to
estimate possible yearly savings on our test case.

Acknowledgements

The authors wish to thank Elise Le Goff, Nicolas
Giraud and Philippe Clolot from CCIAG for their
fruitful help in the realization of this study. We also
would like to acknowledge the financial support of
CCIAG for the joint research program and of ADEME
for the PhD of Loïc GIRAUD.

References

A. Benonysson, “Dynamic Modelling and Operational
Optimization of District Heating Systems,” ISBN 87-
88038-24-6. PhD Thesis - Technical University of
Denmark, Lyngby, 1991

K. Ciuprinskas and B. Narbutis, Experiments on heat losses
from district heating pipelines. Energetika vol. 2 pp. 35–
40, 1999

M. Drouin, “Modélisation des écoulements turbulents
anisothermes en milieu macroporeux par une approche de
double filtrage,” PhD Thesis - Université de Toulouse,
2010 http://www.theses.fr/2010INPT0066

W. Du, H. Garcia and C. Paredis, “An Optimization
Framework for Dynamic Hybrid Energy Systems”, Proc.

of the 10-th International Modelica Conference, Lund,
Sweden, March 2014. DOI: 10.3384/ECP14096767

R. Franke, F. Casella, M. Otter, K. Proelss, M. Sielemann,
and M. Wetter “Standardization of thermo-fluid modeling
in Modelica.Fluid” in Francesco Casella, editor, Proc. of

the 7-th International Modelica Conference, Como, Italy,
September 2009. DOI: 10.3384/ecp09430077

I. Gabrielaitiene, B. Bøhm, and B. Sunden, “Evaluation of
Approaches for Modeling Temperature Wave Propagation
in District Heating Pipelines,” Heat Transf. Eng., vol. 29,
no. 1, pp. 45–56, 2008 DOI: 10.1080/01457630701677130

L. Giraud, R. Bavière and C. Paulus, “Modeling of Solar
District Heating: A Comparison between TRNSYS and
Modelica” Proc. of EuroSun 2014, Aix-les-Bains, France,
2014. DOI: 10.18086/eurosun.2014.19.06

L. Giraud, R. Bavière, C. Paulus, M. Vallée and J.-F. Robin
“Dynamic Modelling, Experimental Validation and
Simulation of a Virtual District Heating Network” in Proc.

of the 28
th
 Int. Conf. on Efficiency, Cost, Optimization,

Simulation and Environmental Impact of Energy Systems
(ECOS), Pau, France, 30th June – 3rd July 2015

J. Kensby, A. Trüschel, and J.-O. Dalenbäck, “Potential of
Residential Buildings as Thermal Energy Storage in
District Heating Systems – Results from a Pilot Test.”
Applied Energy, vol. 137 (January), pp. 773–781, 2015
DOI: 10.1016/j.apenergy.2014.07.026.

B. P. Leonard, “A stable and accurate convective modelling
procedure based on quadratic upstream interpolation”
Comput. Methods Appl. Mech. Eng., vol. 19, pp. 59–98,
1979

S. V. Mattsson, “On Modeling of Heat Exchanger in
Modelica”, Proc. of the 9th European Simulation
Symposium, ESS'97, Passau, Germany, Oct 19-23, 1997

Modelica Association, Modelica Language Specification
version 3.3 Revision 1, 2014

C. M. Park and A. Gomezplata, “Axial dispersion in a
tubular flow vessel with bends,” Can. J. Chem. Eng., vol.
49, no. 2, pp. 202–206, 1971

S. V. Patankar, Numerical heat transfer and fluid flow. CRC
press, Taylor and Francis group, 1980

Scilab Enterprises. Scilab: Free and Open Source software
for numerical computation, 2015. Available from:
http://www.scilab.org

R.K. Shah and D.P. Sekulić, “Fundamentals of heat
exchanger design” John Wiley & Sons, Inc., Hoboken,
New Jersey , 2003.

D. Tenchine and P. Gauthé, “Occurrence of thermal
stratification in sodium cooled fast reactor piping,” Nucl.

Eng. Des., vol. 274, pp. 1–9, Jul. 2014

S. Velut, P.-O. Larsson, J. Windahl, L. Saarinen, and K.
Boman. “Short-Term Production Planning for District
Heating Networks with JModelica.org.” Proc. of the 10-th

International Modelica Conference, Lund, Sweden, March
2014. DOI: 10.3384/ECP14096959

M. Wetter, Wangda Zuo, Thierry S. Nouidui and Xiufeng
Pang, Modelica Buildings library, Journal of Building

Performance Simulation, 2014 Vol. 7, No. 4, 253–270,
DOI: 10.1080/19401493.2013.765506.

E. B. Wylie and V.L. Streeter, “Fluid Transients”, McGraw-
Hill Inc, New York, New York 1978

Presentation, Validation and Application of the DistrictHeating Modelica Library

88 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511879

Multi-Mode DAE Systems with Varying Index

Sven Erik Mattsson1, Martin Otter2, Hilding Elmqvist1
1Dassault Systèmes, Sweden, {SvenErik.Mattsson, Hilding.Elmqvist}@3ds.com

2Institute of System Dynamics and Control, DLR, Germany, Martin.Otter@dlr.de

Abstract

This paper discusses an approach to handle multi-mode
Differential Algebraic Equation (DAE) systems
described by continuous-time state machines where
mode-dependent state constraints are present. The goal
is to perform static symbolic analysis and to generate
efficient run-time code. This technique extends the
class of multi-mode systems that can be handled by
Modelica tools.

Keywords: Multi-mode, DAE, varying index,

continuous-time state machine, variable structure

system, symbolic transformation.

1 Introduction

1.1 Multi-Mode Systems

In (Elmqvist et al., 2014) a proposal was presented to
extend the synchronous Modelica 3.3 state machines
(Elmqvist et al., 2012) to continuous-time state
machines having continuous-time models as “states”.
Every model can be a “state” of a state machine and in
particular acausal models. These new types of models
are called “multi-mode systems”. An example of such
kind of system is shown in Figure 1.

Figure 1. Circuit with two acausal state machines, from
(Elmqvist et al., 2014).

Additionally, a method was developed to map
connections to connectors of states in a particular way.
The resulting equations can be processed basically by
the standard symbolic algorithms supported by
Modelica 3.2 tools. This approach already allowed
handling a large class of useful variable structure
systems with dynamically changing number of

continuous-time states.
However, models could not be handled with this

new method if connections between state and non-state
components lead to constraints on continuous-time
state variables that vary for the different state machine
states. For example, the model in Figure 2 could not be
handled. This circuit describes a capacitor C1 that is
destroyed when the voltage becomes too large. The
destroyed capacitor is modelled with a small resistor
R1.

Figure 2. Circuit that could not be handled previously due
to different state constraints in the different state machine
states; slightly adapted from (Elmqvist et al., 2014).

The goal of this work is to extend the class of multi-
mode DAE systems that can be simulated by Modelica
tools and prototype the technique in Dymola (Dassault

Systèmes, 2015).
In the EU research project RealSim, algorithms had

been developed to symbolically process variable
structure DAE systems and simulate the generated
code (Mattsson et al., 2001). In particular, also a
certain class of DAEs could be treated where Dirac
impulses occur when switching the structure. These
developments had not been incorporated into the
release version of Dymola, because they had not been
mature enough for a production software. Some ideas
from the developments in the RealSim project are now
being transferred to multi-mode systems.

DOI
10.3384/ecp1511889

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

89

1.2 Other Approaches

There are also other approaches to handle variable
structure, varying index systems. For example
(Zimmer, 2010) uses a run-time interpreter that
processes the DAE equations at run-time, when the
structure and/or the index is changing. The benefit is
that a very large class of DAEs with varying index can
be handled, at least in principal. The drawback is that
the run-time efficiency is one or more orders of
magnitude reduced with respect to an approach
advocated by this article. Dynamically changing the
structural analysis at run-time is also performed by
(Höger, 2014). Describing variable structure systems
with causal state machines is discussed by (Pepper et

al., 2011).
(Benveniste et al., 2014) is tackling the problem

from a fundamental point of view: The underlying,
precise mathematical description is based on non-
standard analysis for discrete-time and hybrid
continuous-time/discrete-time multi-mode systems.
This approach looks promising. However, it is not yet
clear how to utilize this theory practically in a
Modelica simulation environment.

2 Prerequisites

In this section several equations and properties are
collected together that are prerequisites of the
developed methodology, which is introduced in
sections 3 and 4.

2.1 Connection equations

In (Elmqvist et al., 2014) it was shown how to map
physical, acausal connections from components outside
of a state machine to components on a state machine.
An example is shown in Figure 2 where the
components R2 and C2 are connected to the
components R1 and C1 that form a continuous-time

state machine.
Assume a connector �� present on a state � is defined

by one potential variable �� and one flow variable ��
and that � of these connectors from the same state
machine are connected to m connectors ��,� outside of
(that is external to) this state machine. Therefore, the
following connect statements will be present (for
simplicity it is assumed that exactly one of the
external connectors, ��,1, is connected to all the state
machine connectors; if this would not be the case,
one could always automatically re-arrange the
connect statements):

connect(��,1, �1)
 ...
connect(��,1, ��)
connect(��,1, ��,2)
 …
connect(��,1, ��,�)

These connect statements are replaced by the
following equations, where � characterizes the active
state of the state machine:

Connection equations

(1)

� = {�1,�2,⋯ ,��}; � = {�1, �2,⋯ , ��};

 � = activeState();

�� = ���,1,��,2,⋯ ,��,��; �� = {��,1, ��,2,⋯ , ��,�}; ��,1 = ��; // potential equations ��,1 = ��,2:�

0 = �� + ∑ ��,���=1 // flow equation

for � in 1:� − 1

 � = mod(� + � − 1,�) + 1

 0 = h�(�� ,��) // dummy equations

end for

Note, the for-loop generates � − 1 dummy equations,
0 = h�(…). These dummy equations are only present
in order that the equations of the non-active states form
a regular system. The exact form of these equations is
irrelevant because they are only used during symbolic
analysis and are not present in the generated code. For
more explanations, see (Elmqvist et al., 2014).

For connections of two external connectors to two
states of a state machine, the connector equations of
(1) simplify to:

Connection equations for the connection of
two external connectors ce1, ce2 with
two state machine connectors c1, c2:

 // Equations for potential variables
 ce1.p = if activeState(state1) then c1.p else c2.p;
 ce1.p = ce2.p

 // Equation for flow variables
 0 = ce1.f + ce2.f +
 (if activeState(state1) then c1.f else c2.f);

 // Dummy equation for not connected state
 0 = if activeState(state1) then
 h1(c2.p, c2.f) else h2(c1.p, c1.f);

(2)

The function activeState(name) is the Modelica 3.3 built-
in function to inquire whether the instance name is the
current active state of a state machine or not. Equations
(2) are used in all following examples to map
connections to state machines in to equations.

Input/output connections to states of a state machine
can also be handled. Due to the known causality, this
results in a much simpler approach as with acausal,
physical connectors, and is not discussed in this paper.

2.2 Sinks and sources

The dummy equations (see last equation of (2)) have
the drawback that they introduce algebraic loops
between the states of a state machine and therefore
make the analysis more difficult and the generated
code less efficient (due to larger algebraic systems of

Multi-Mode DAE Systems with Varying Index

90 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511889

equations). These equations can be removed if either
one external potential variable or all external flow
variables are constants or known functions of time, in
other words if the state machine states are connected to
sink or source components. In such cases, equations (2)
can be rewritten to:

Connection equations if one external potential variable
ce1.p is a constant or a known time function:

 // Equations for potential variables
 ce2.p := ce1.p
 c1.p := if activeState(state1) then ce1.p else last(c1.p)
 c2.p := if activeState(state2) then ce1.p else last(c2.p)

 // Equation for flow variables
 0 = ce1.f + ce2.f +
 (if activeState(state1) then c1.f else c2.f);

(3)

or to

Connection equations if all external flow variables
ce1.f, ce2.f are constants or known time functions:

 // Equations for potential variables
 ce1.p = if activeState(state1) then c1.p else c2.p;
 ce1.p = ce2.p

 // Equation for flow variables
 c1.f := if activeState(state1) then ce1.f + ce2.f
 else last(c1.f)
 c2.f := if activeState(state2) then ce1.f + ce2.f
 else last(c2.f)

(4)

Here last(v) is a conceptual function (only used during
symbolic analysis) to indicate the value of variable v
from the last time instant where the corresponding state
was active. For the symbolic analysis, last(v) is a
known value. The “:=” operator in the equations
indicates the computational causality (= the left hand
side is computed from the right hand side).

The proof of equations (3) is straightforward (a
proof of equations (4) can be performed in a similar
way): Start from (2) and recognize that the dummy
equations of the not connected states, h1(..) and h2(..),
can be arbitrarily selected, as long as the equations of
the not connected states together with these dummy
equations are structurally consistent

1. In (3) it is
implicitly assumed that state_i together with the rest of
the system is structurally consistent if the state is
active. If state_i is not active, one can assume that
keeping the causality of the connector (= identical to
the case where the state is active) will still keep this
non-active state together with its other dummy
equations structurally consistent. In other words, under
the assumption that ce1.p is a constant or a known
function of time, the last equation of (2) can be
replaced by:

1 A DAE is “structurally inconsistent”, if a unique solution
cannot exist, or stated differently, if the Pantelides algorithm
does not converge. (Pantelides, 1988) provides an algorithm to
test for this property.

 // Dummy equation for not connected state
 0 = if activeState(state1) then
 c2.p - last(c2.p) else c1.p - last(c1.p);

(5)

Rearranging the other equations of (2) together with
(5) results in (3).

As a concrete example, lets analyze the circuit of
Figure 2: At node 2 the state machine connectors C1.n,
R1.n and the external connectors C2.n, voltage.n, and
ground.p are connected together:

 connect(ground.p, R1.n)
 connect(ground.p, C1.n)
 connect(ground.p, C2.n)
 connect(ground.p, voltage.n)

(6)

Since the potential of the ground component is given,
ground.p = 0, one external potential variable of the
connection set is a constant and therefore equations (3)
can be utilized resulting in the following equations that
are equivalent to (6):

Connection equations at node 2 of Figure 2:

 // Equations for potential variables
 R1.n.v = 0
 C1.n.v = 0
 C2.n.v = 0
 voltage.n.v = 0

 // Equation for flow variables
 0 = ground.p.i + voltage.n.i + C2.i +
 (if activeState(R1) then R1.n.i else C1.n.i);

(7)

2.3 Differentiating dummy equations

When equations must be differentiated using a
generalized form of the Pantelides algorithm
(Pantelides, 1988), see section 3 and 4, dummy
equations of non-connected states might need to be
differentiated as well. For example assume that the
equation for flow variables in (2) needs to be
differentiated. When this equation is differentiated, the
time derivatives of ce1.f, ce2.f, c1.f, c2.f are introduced.
This in turn means that also the dummy equation in (2)
needs to be differentiated. Differentiating this dummy
equation would utilize the newly introduced
derivatives of the flow variables, but would also
introduce new derivatives of the potential variables c1.p
and c2.p. This in turn might trigger other (unnecessary)
differentiations.

We are rather free to select the dummy equations.
They are only used to keep the equation sets of non-
connected states structurally consistent. To avoid
unnecessary state constraints of the dummy equations,
and in turn unnecessary differentiations of equations,
the dummy equations are actually defined in such a
way that they provide a relationship between the
actually occurring highest derivatives of the potential
and flow variables.

For example, when the flow equation in (2) needs to
be differentiated and the time derivatives of ce1.f, ce2.f,

Session 2C: Simulation Techniques

DOI
10.3384/ecp1511889

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

91

c1.f, c2.f are introduced, then the dummy equation is
changed to:

 // Dummy equation for not connected state
 0 = if activeState(state1) then
 h1(c2.p, der(c2.f)) else h2(c1.p, der(c1.f));

(8)

Therefore, they provide a relationship between the
differentiated flow variables and the non-differentiated
potential variables.

2.4 Standard Pantelides and BLT algorithms

The Pantelides algorithm (Pantelides, 1988) is the key
algorithm in this paper and will be generalized for
multi-mode systems2. It is summarized here for
Modelica 3.2 DAEs, that is hybrid DAEs but without
(discrete or continuous-time) state machines:

The flattened equations of a Modelica 3.2 model are
described by the following equations:

Flattened equations of a Modelica 3.2 model

(a) � = {�̇, �, �, �,�,�−}
(b) � = �(�, relation(�))
(c) � = �(�, relation(�))

(9)

where � The independent (real) variable �(�) Variables of type Real, appearing
differentiated �(�) Variables of type Real, appearing not
differentiated (= algebraic variables) �(���) Variables of type discrete Real, Boolean,
Integer. They change their values only at
event instants ���. At an event instant, �−
is the value of � at the previous event
iteration at this time instant. During
continuous integration, that is between
events, � is fixed (does not change) and �− ≔ �

relation(�) All the relations in the model, for
 example �2 > �5. During continuous

integration all relations are fixed (do not
change).

If (directly or indirectly) constraints between variables � are present, the Jacobian of (9b) with respect to the
unknowns of type Real is singular:

det(������̇� �������) = 0 (10)

This means that (9b) cannot be algebraically solved for
the unknowns �̇ and �. When using an explicit
integration method to solve (9b) between events, these
unknowns must be computed. Consequently, if (10)

2 Most likely, the alternative formulation from (Pryce, 2001) can
be used instead of the Pantelides algorithm as well.

holds, explicit integration methods cannot be used and
initialization is problematic3.

The Pantelides algorithm solves this problem by
differentiating singular subsets of equations. Since only
equations are under consideration that are integrated,
the starting point of the algorithm is equation (9b)
where the discrete variables �,�−, relation(�) are
kept constant (because they do not change during
continuous integration) and therefore their
dependencies are ignored: � = �(�̇, �, �, �) (11)

In particular this means that all when-clauses are
removed and the dependency of the equations from
conditions of if-clauses is ignored. The variable and
equation structure of (11) is described in the following
way:

• All variables appearing in (11) are collected in
vector � = {�̇, �, �}, � ∈ ℝ�� and (11) are ��0 = �� + �� equations: � = �(�, �)

• The variable association list V is an Integer vector
that defines if a variable �� is the derivative of a

variable i: �� = �, if
����� = ��. If no derivative of

variable �� is present, then �� = 0 (i.e., these
variables have the highest occurring derivatives).

• The equation association list F is an Integer vector
that defines if equation �� is the derivative of an

equation i: �� = �, if
����� = ��. If no derivative of

equation �� is present, then �� = 0 (i.e., these
equations have the highest occurring derivatives).

After termination of the Pantelides algorithm the
following two sets of equations are present:

0 = ��(�, �), �� = 0,
������ structurally regular

 for �� = 0,
(12)

and

0 = ��(�, �), �� > 0, �� > 0 (13)

In other words, (12) are ��0 equations (the highest
derivative equations) in ��0 unknowns (the highest
derivative variables), and the highest derivative
variables can be computed from the highest derivative
equations (provided the Jacobian is not only
structurally regular but also regular).
(13) are �� − ��0 equations describing the constraint
equations between the potential states x. They are also
called invariants. The highest derivatives of the
variables, �� with �� = 0, do not appear in these
equations. These constraint equations can either be
used to compute appropriate dummy derivatives with
the Dummy Derivative method of (Mattsson and

3 see (Pantelides, 1988)

Multi-Mode DAE Systems with Varying Index

92 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511889

Söderlind, 1993), or these equations can be used to
project the solution of (12) to the invariants (13) when
the drift becomes too large.

For the new algorithm, the highest derivative
equations (12) must be sorted to determine the
execution order to compute the highest derivative
unknowns. This includes determining the algebraic
loops of this equation system. This is a standard
algorithm for Modelica models and will be abbreviated
as BLT (Block Lower Triangular) as it is usually done.

3 Basic Idea

In this section the basic idea to symbolically process
multi-mode systems with varying state constraints (and
therefore varying DAE index) is sketched at hand of
the circuit of Figure 2. In the follow-up section 4 this
idea is generalized and described in more detail.

Intuitively, when activeState(C1) is true, there are two
capacitors in parallel, C1 and C2, and this results in a
state constraint between the potential states C1.v and
C2.v. The constraint equation must be differentiated,
which means that the potential variables of the node 1
connection set, such as C2.p.v, must be differentiated
as well.

When activeState(R1) is true, there is a capacitor C2
and a resistor R1 in parallel, and no state constraint is
present. Therefore, the potential variables of the node 1
connection set, such as C2.p.v, need not to be

differentiated. Since variables of external connectors to
a state variable must be differentiated in one mode, and
need not to be differentiated in the other mode, it is
unlikely that it is possible to build one common
equation system for all modes.

Such types of systems can be handled by an obvious
brute force method: For every possible mode the
equations of the complete system are generated for this
particular mode and during simulation the model is
switched between these equation sets. In the case of the
circuit in Figure 2 there would be two equation sets.
For small systems with only a few possible modes, this
approach might be feasible. However, for large
systems with many state machines and several states
per state machine, the number of equation sets would
be growing exponentially and the generated code
would quickly become unmanageable. So this brute
force method is not practical for the general case.

For this reason another approach is used that is
inspired by (Mattsson et al., 2001). It is based on the
property that differentiated equations contain the
solution set of the non-differentiated equations. In the
circuit of Figure 2 the potential variables of node 1
need to be differentiated when in state C1. We can
accept this fact and use these differentiated potential
variables also when in state R1. As a consequence, the
potential equation R1.p.v = C2.p.v is an invariant that
must hold during simulation of its differentiated form.
The benefit is that only one equation set can be

constructed for all modes. Lets’ analyze this approach
in more detail for the circuit in Figure 2:

The connection equations at node 2 are given by (7).
The connection equations at node 1 are:

Connection equations at node 1 of Figure 2:

 // Equations for potential variables
 C2.p.v = if activeState(R1) then R1.p.v else C1.p.v
 R2.n.v = C2.p.v

 // Equation for flow variables
 0 = C2.p.i + R2.n.i +
 (if activeState(R1) then R1.p.i else C1.p.i)

 // Dummy equation for not connected state
 0 = if activeState(R1) then
 h1(C1.p.v, C1.p.i) else h2(R1.p.v, R1.p.i);

(14)

Collecting all equations together and applying the
Pantelides algorithm shows that no equation must be
differentiated. The reason is that the if-clauses in (14)
hide the state constraint between the two capacitors
from the structural algorithm. BLT partitioning of the
equations, taking into account the zeros in (7) and alias
elimination, results in:

Sorted equations of Figure 2:

inputs = {C1.v, C2.v} // continuous-time states

R2.v = voltage.V-C2.v
R2.v = R2.R*voltage.i

algebraicLoop
 unknowns = {R1.p.v, R1.p.i, C1.i}

 // Local equations of R1
 if activeState(R1) then
 R1.p.v = R1.R*R1.p.i
 end if;

 // Potential connections to the state machine
 C2.v = if activeState(R1) then R1.p.v else C1.v

 // Dummy equations for inactive states
 0 = if activeState(R1) then
 h1(C1.v, C1.i) else h2(R1.p.v, R1.p.i)
end algebraicLoop

// Flow connection to the state machine
C2.i+voltage.i =
 -(if activeState(R1) then R1.p.i else C1.i)
C2.i = C2.C*der(C2.v)

if activeState(C1) then
 C1.i = C1.C*der(C1.v)
end if;

// Flow connection to the state machine
ground.p.i-C2.i-voltage.i =
 (if activeState(R1) then R1.p.i else -C1.i)

(15)

Session 2C: Simulation Techniques

DOI
10.3384/ecp1511889

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

93

For BLT blocks with one variable and one equation,
the equation with the variable to solve for is type-set in
bold. In this example there is first a sequence of two
such equations. After them there is an algebraic loop
with 3 unknowns. The equations to use include local
equations from the two states and external connection
equations to them.

Every algebraic loop that contains connection
equations to a state of a state machine must be
analyzed whether it is (structurally) non-singular in all
modes. For this, it is tried to make an assignment for
every particular mode that can occur in the algebraic
loop at hand. The algebraic loop in (15) gives rise to
two modes: activeState(R1) is true or false. In both cases
the relevant equations need to be extracted and the
unknowns not present in this mode need to be
removed:

Algebraic loop of (15) for activeState(R1) == true:

inputs = {C2.v} // continuous-time states

algebraicLoop
 unknowns = {R1.p.v, R1.p.i}

 R1.p.v = R1.R*R1.p.i

 // Potential connections to the state machine
 C2.v = R1.p.v
end algebraicLoop

(16)

The algebraic loop in this mode consists of two
equations in two unknowns. An assignment is possible,
because R1.p.v can be assigned in the second equation
and R1.p.i in the first equation. Therefore this set of
equations is structurally regular.

Algebraic loop of (15) for activeState(R1) == false:

inputs = {C1.v, C2.v} // continuous-time states

algebraicLoop
 unknowns = {C1.i}

 // Potential connections to the state machine
 C2.v = C1.v
end algebraicLoop

(17)

The algebraic loop in this mode consist of one equation
in one unknown. Since the unknown C1.i does not
appear in this equation, the algebraic loop is
structurally singular.

The approach of Pantelides is to differentiate
equations if the smallest possible set of equations has
more equations as unknowns. In the new method we
differentiate additionally the potential or flow
connector equations from external connectors to
connectors on a state of a continuous-time state
machine if

these connector equations belong to an algebraic
loop and in one mode this algebraic loops is (a)

singular and (b) the connector equation is present in
this singular case.

In the above example, only equation

C2.v = if activeState(R1) then R1.p.v else C1.v (18)

fulfills these requirements (it is a potential connector
equation present in an algebraic loop, in mode
activeState(R1) == false this loop is singular, and the
equation is part of this singular loop). We differentiate
this equation and adapt the corresponding dummy
equation:

 der(C2.v) = if activeState(R1) then
 der(R1.p.v) else der(C1.v)
 0 = if activeState(R1) then
 h1(der(C1.v), C1.i) else
 h2(der(R1.p.v), R1.p.i)

(19)

We take the original equations (15), remove (18) and
its corresponding dummy equation and add (19). The
(standard) Pandelides algorithm is performed on the
resulting system. In this case the algorithm
differentiates equations and variables. After
termination, the highest derivative equations are
structurally regular. Performing BLT partitioning on
this structurally regular subset results in the following
equations:

Sorted equations of highest derivative equations

inputs = {C1.v, C2.v, R1.p.v}
 // continuous-time states + dummy states

R2.v = voltage.V-C2.v
R2.v = R2.R*voltage.i
R1.p.v = R1.R*R1.p.i

algebraicLoop
 unknowns = { der(C1.v), der(C2.v), der(R1.p.v),
 C1.i, C2.i}

 C1.i = C1.C*der(C1.v)
 C2.i = C2.C*der(C2.v)
 der(C2.v) = if activeState(R1) then der(R1.p.v)
 else der(C1.v)
 C2.i – R2.i = -if activeState(R1) then R1.p.i
 else C1.i
 0 = if activeState(R1) then
 h1(der(C1.v), C1.i) else
 h2(der(R1.p.v), R1.p.i)
end algebraicLoop

ground.p.i = C2.i-R2.i+ (if activeState(R1) then
 R1.p.i else C1.i)

(20)

Analyzing the newly occurring algebraic loop reveals
that this loop is structurally regular in all modes (if this
would not be the case, again potential or flow
equations in the loop would be differentiated).
Therefore, the overall algorithm can be terminated. The
final equations have the property that the highest
derivative equations are structurally regular in all

Multi-Mode DAE Systems with Varying Index

94 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511889

modes. The further processing and code generation is
performed nearly in the same way as for Modelica 3.2
models. Especially, the dummy derivative method is
applied (Mattsson and Söderlind, 1993) and a BLT of
all highest derivative equations together with all
discrete equations (9c) is performed as function of all
unknowns. During code generation one has to add-
itionally take into account that equations need to be de-
activated when their corresponding state is not active.

Simulation results with the Dymola prototype are
shown in the next figure:

Figure 3. Simulation results of the circuit of Figure 2.

Since variable values of non-active states can have non
meaningful values, Dymola only displays them in the
time period, where the corresponding state is active.
Therefore, C1.v is displayed only in the time range [0s,
0.33s] and R1.v is displayed only in the time range
[0.33s, 0.6s].

4 Multi-Mode Pantelides Algorithm

The approach sketched in the previous section is more
formally defined:

Starting point is a Modelica 3.2 model with one or
more continuous-time state machines. As in section 2.4
all discrete equations and discrete variables are ignored
during the following analysis. This also means that all
transition conditions, such as C1.v > 8 in Figure 2, are
ignored in this phase and the symbolic analysis is
performed on equation (11). This equation is seen as a
function of all (continuous-time) variables of type Real
that appear in all states of all state machines and in all
equations outside of all state machines.

Multi-Mode Pantelides Algorithm

1. Perform the standard Pantelides algorithm on (11)
until convergence.

2. Perform BLT partitioning on the highest derivative
equations (12) with respect to the highest derivative
unknowns.

3. Analyze the algebraic loops detected in 2., that have
at least one potential or flow connection equation
(2) in the loop. For every such loop perform an
assignment for every mode present in this loop (for
the assignment ignore all variables and equations not

active in the particular mode).

4. Stop, if all algebraic loops in 3. are structurally

regular for all modes. Otherwise, if an algebraic
loop is structurally singular for at least one mode,
stop the analysis of this loop after this first singular
mode was found and goto 5.

5. For every loop in 4. that was found to be singular,
the potential or flow connection equations that are
(a) present in the respective loop and (b) give a
structural singularity in the analyzed mode, need
(conceptually) to be differentiated. This is indirectly
achieved by introducing the differentiated variables
of the respective connection equations in the
variable association list.

6. Continue with the standard Pantelides algorithm by
analyzing the highest derivative equations (without
taking modes into consideration). After convergence
is reached, goto 2.

The standard Pantelides algorithm differentiates the
smallest possible set of equations that has more
equations as unknowns. The generalization above
additionally differentiates connection equations that are
the result of connections to states of state machines, if
algebraic loops become structurally singular when the
corresponding state is active. After termination of the
multi-mode Pantelides algorithm, (12) and (13) hold
again. The new property is that (12) is structurally
regular with respect to the highest derivative variables
in all modes!

After step 2. it may happen that a connection
equation is present outside of all algebraic loops and
that this equation shall be solved for a potential or flow
variable defined on one of the states. This is, for
example, the case in the example of section 5.2:

// Flow connection to the state machine
 L2.i = if activeState(diode.open) then
 diode.open.p.i else diode.closed.p.i;

(21)

This equation is structurally singular when state
diode.open is active. Therefore, such an equation must
also be differentiated in step 5.

The multi-mode Pantelides algorithm has a worst
case complexity that grows exponentially with the
number of possible modes which might be
troublesome. However, in practice one can hope that
this worst case complexity is usually not reached:
Whenever state machines are present that influence
each other not dynamically (say ideal diodes in an
electrical circuit and friction components in the
mechanical part of the model), then different algebraic
loops will occur for the different state machines, the
possible mode values in the loops will be different, and
the analysis of the loops is decoupled.

One question is under which conditions the multi-

mode Pantelides algorithm is converging (so stops
after a finite number of iterations). For the standard

Session 2C: Simulation Techniques

DOI
10.3384/ecp1511889

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

95

Pantelides algorithm this can be determined by
replacing �̇ with � in (11): � = �(�, �, �, �) (22)

and performing an assignment for � and �. If this is
possible, the algorithm converges. If not, the DAE (11)
is structurally inconsistent and the algorithm does not
converge. It is not yet clear how to generalize this
property for the multi-mode Pantelides algorithm.

5 Examples

In this section further examples are shown that shall
demonstrate the multi-mode Pantelides algorithm in
different situations.

5.1 Varying index with inductors

The circuit in the next figure consists of two inductors
in series, L1 and L2, where an over-current destroys L1
(the destroyed case is modeled with a large resistor).

Figure 4. Inductors in series, where one of the inductors
is destroyed when the current becomes too large.

When in state L1 the two inductors are in series and
there is a constraint between the potential states L1.i
and L2.i. When in state R1, this constraint is no longer
present. The multi-mode Pantelides algorithm operates
in a similar way as for the circuit in Figure 2.
Simulation results are shown in the next figure:

Figure 5. Simulation results of the circuit in Figure 4.

5.2 Varying index with inductor and diode

With continuous-time state machines it is possible to
model ideal electrical switches, and in particular ideal
diodes:

icon layer diagram layer

Figure 6. Ideal diode modelled with a continuous-time
state machine.

The diode is modeled as a state machine where the first
state is modeling a broken or open line and the second
state is modeling an ideal line without resistance. For
most situations there is no difference in using this
diode model or the one from package Modelica
(Modelica.Electrical.Analog.Ideal.IdealDiode) and setting
Ron = Goff = 0. However, if varying state constraints
occur this is different. Let us consider for example an
inductor in series with a diode:

Figure 7. Inductor in series to an ideal diode model.

The current through the inductor, L1.i, is a state when
the diode is in state “closed”. When the diode is in
state “open”, the current through the diode is zero,
which poses a state constraint forcing also the current
though the diode, L1.i, to be zero, which means L1.i
cannot be a state in that mode. Such circuits can now
be handled with the multi-mode Pantelides algorithm,
whereas using the ideal diode model from package
Modelica would give a singular system during
simulation.

Application of the standard Pantelides algorithm on
the version with the ideal diode model of Figure 7 does
not lead to differentiated equations. BLT does not lead
to algebraic loops (provided the zero potential at the
ground object is utilized). However, the sorted
equations contain equation (21), as already discussed

Multi-Mode DAE Systems with Varying Index

96 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511889

in section 4. Since this equation is structurally singular
when state diode.open is active, the differentiated
connector variables, der(diode.open.p.i) and
der(diode.closed.p.i) are newly introduced in the variable
association list (der(L1.i) is already present). In the next
iteration of the algorithm an algebraic loop occurs
which is structurally regular in both modes and the
algorithm terminates.

5.3 Varying index with capacitor and diode

It is also possible to simulate the case of an ideal diode
that is in parallel to a capacitor:

Figure 8. Capacitor in parallel to an ideal diode model.

When the diode is open, C1.v is a state, when it is
closed, it is no state. The multi-mode Pantelides

algorithm handles this system as well. It is
interesting to compare simulations of this ideal diode
model with the approximate ideal diode model of
package Modelica:

Figure 9. Simulation results of Figure 8.

Even for small values Ron = Goff = 10-8 and strict
relative error tolerances of 10-8 unphysical vibrations
occur that are not present with the ideal diode model
of Figure 6 giving the correct mathematical solution.

5.4 Varying index with breaking shaft

In Figure 10 a breaking shaft model is shown that
could not be handled in (Elmqvist et al., 2014): In the
beginning two inertias are rigidly connected together.
When the absolute value of the cut-torque tau =
inertia2.flange_b.tau becomes too large, the shaft breaks
and two not-connected inertias remain. This is a case
where three iterations of the multi-mode Pantelides

algorithm are needed: In the first iteration the potential
equations of the inertias (= flange angles) are
differentiated, in a second iteration these differentiated
equations are differentiated again, and in the third
iteration it is recognized that the highest derivative
equations are structurally regular for all modes. The
Dymola prototype selects variables inertia1.phi and
inertia1.w statically as states and then there are two
conditional state selections for inertia2.phi and
inertia2.w.

6 Limitations

The central result of this paper, the multi-mode

Pantelides algorithm, was tested with several simple
examples. However, much more tests especially with
large models are needed. It might still be the case that
improvements of the algorithm are needed. The
following limitations are already known:

When using continuous-time state machines it is
easy to model systems where Dirac impulses occur.
For example, replacing the diode in Figure 8 by an
electrical switch and closing this switch when the
voltage drop is not zero, will result in a Dirac impulse.
Simulation is usually successful. However, the
“propagation” of impulses is not taken into account
and therefore in many cases the simulation results will
not be correct.

Another issue are the transition conditions: When
they are functions of the state connector variables and
these variables are differentiated, then the transition
conditions might need to be differentiated as well. For
example, friction can be modeled with the state
machine of Figure 11 (the orange lines are mechanical
connections that have angular velocity and not angle as
potential variables).

Figure 10.

Shaft that breaks due to
an overload toque
tau > tMax or
tau < -tMax

Session 2C: Simulation Techniques

DOI
10.3384/ecp1511889

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

97

The transition conditions from sliding to Stuck mode
are the critical part: w_rel > 0 or w_rel < 0. When in
Stuck mode, the constraint variable, w_rel, will be zero
or close to zero and when switching from Stuck to
Forward or Backward mode then small numerical
errors will give different results, especially if
dynamically coupled friction elements are present. It is
well-known that for this switching direction the
derivative of w_rel has also to be taken into account. It
is not yet clear how to deduce this with an algorithm.

Figure 11. Model of a Coulomb friction element that
cannot be handled with the approach of this paper.

7 Conclusions and outlook

In (Elmqvist et al., 2014) a new approach was
developed to define variable structure systems with
varying number of continuous-time states in a
convenient way with acausal continuous-time state
machines. With a rather simple technique it was
possible to symbolically analyze and simulate such
systems. In the current paper the limitations of the
previous approach have been reduced by generalizing
the Pantelides algorithm for multi-mode systems. It is
then possible to handle continuous-time state machines
where state constraints can vary when switching to a
new state. There are still unresolved issues and further
development is needed before a robust and reliable
solution becomes available for the user.

Acknowledgements

This paper is based on research performed within the
ITEA2 project MODRIO. Partial financial support of
the Swedish VINNOVA and the German BMBF are
highly appreciated.

Additionally, inspiring discussions with Albert
Benveniste and Benoit Caillaud about their approach to
handle multi-mode systems are appreciated as well.

References

Albert Benveniste, Timothy Bourke, Benoît Caillaud, Marc
Pouzet (2014): On the index of multi-mode DAE

Systems (also called Hybrid DAE Systems). [Research
Report] RR-8630, Inria; ENS. <hal-01084069>.
Download: https://hal.inria.fr/hal-01084069/document

Dassault Systèmes (2015): Dymola 2016.
http://www.Dymola.com

Elmqvist H., Gaucher F., Mattsson S.E., Dupont F. (2012):
State Machines in Modelica. Modelica'2012 Conference,
Munich, Germany, Sept. 3-5, 2012. Download:
http://www.ep.liu.se/ecp/076/003/ecp12076003.pdf

Elmqvist H., Mattsson S.E., Otter M. (2014): Modelica

extensions for Multi-Mode DAE Systems. Proceedings
of the 10th International Modelica Conference, March 10-
12, Lund, Sweden, pp. 183-193. Download:
http://www.ep.liu.se/ecp/096/019/ecp14096019.pdf

Höger C. (2014): Dynamic Structural Analysis for DAEs.
Proceedings of the 2014 SCS Summer Simulation
Multiconference. Download:
http://dl.acm.org/ft_gateway.cfm?id=2685629&ftid=1511
015&dwn=1&CFID=532067289&CFTOKEN=59766485

Mattsson, S.E. and G. Söderlind (1993): Index reduction in

differential-algebraic equations using dummy

derivatives. SIAM Journal of Scientific and Statistical
Computing, Vol. 14, pp. 677-692.

Mattsson S.E., Olsson H., Elmqvist H. (2001): Methods and

Algorithms for Varying Structure Hybrid DAE

Simulation. EC IST Project Realsim. Contract number:
IST-1999-11979, Internal Report 2.2, Dynasim, Lund,
Sweden.

Modelica Association (2014): Modelica, A Unified Object-

Oriented Language for Systems Modeling.

Language Specification, Version 3.3, Revision 1. June
11. Download:
https://www.modelica.org/documents/ModelicaSpec33Rev
ision1.pdf

Pantelides C. (1988): The consistent initialization of

differential-algebraic systems. SIAM Journal of
Scientific and Statistical Computing, 9(2), pp. 213–231.

Pepper P., Mehlhase A., Höger C., Scholz L. (2011): A

Compositional Semantics for Modelica-style Variable-

structure Modeling. 4th International Workshop on
Equation-Based Object-Oriented Modeling Languages and
Tools. ETH Zürich, Switzerland. Download:
http://www.ep.liu.se/ecp/056/006/ecp1105606.pdf

Pryce J.D. (2001): A simple structural analysis method for

DAEs. BIT Numerical Mathematics, Vol. 41, No. 2, pp.
364–394.

Zimmer D. (2010): Equation-Based Modeling of Variable-

Structure Systems. Dissertation, ETH Zürich, No.
18924. Download:
http://www.inf.ethz.ch/personal/fcellier/PhD/zimmer_p
hd.pdf

Multi-Mode DAE Systems with Varying Index

98 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511889

Internalized State-Selection: Generation and Integration of

Quasi-Linear Differential-Algebraic Equations

Christoph Höger1 Andreas Steinbrecher2

1Institute of Software Engineering and Theoretical Computer Science, TU Berlin, Germany,

christoph.hoeger@tu-berlin.de
2Department of Mathematics, TU Berlin, Germany, anst@math.tu-berlin.de

Abstract

In modeling and simulation of dynamical processes

frequently higher index differential-algebraic equations

(DAEs) arise. Since an attempt to solve higher-index

DAEs directly yields several numerical problems, a reg-

ularization in combination with a robust and efficient in-

tegration is required. QUALIDAES is a DAE solver de-

signed to make explicit use of such a regularization. It

allows for the solution of over-determined quasi-linear

DAEs of the form M(x, t)ẋ = f (x, t), 0 = g(x, t). Such

DAEs arise naturally if a quasi-linear DAE is regularized

by augmentation with the set of its (hidden) constraints.

General DAEs can be brought into the quasi-linear form.

To this end, equations can be transformed into the spe-

cific input format expected by QUALIDAES. This trans-

formation can be implemented in a functional style and

yields a non-trivial result. Additionally it provides an on-

the-fly solution for the occurrence of higher-order deriva-

tives.

Keywords: Differential-Algebraic Equations, Quasi-

Linear, Modelica, Translation, Regularization, Solver,

QUALIDAES

1 Introduction

MODELICA is a language for modeling of dynamical pro-

cesses. In general, the model equations that describe

the dynamical process consist of differential equations

in combination with algebraic constraints, i.e., we have

to deal with so-called differential-algebraic equations

(DAEs).

The solutions of such systems have to satisfy the al-

gebraic constraints, but, in general, not all constraints

are stated in an explicit way. In particular, if the re-

sulting system of DAEs is of higher index there exist

so-called hidden constraints and the numerical treatment

leads to instabilities, inconsistencies and possibly non-

convergence of the numerical methods, see Brenan et al.

(1996); Griepentrog and März (1986); Hairer and Wan-

ner (1996); Kunkel and Mehrmann (2006). On the other

hand, if a DAE does not contain any hidden constraint

then its numerical treatment by use of implicit ordinary

differential equation methods is not affected by instabili-

ties. Furthermore, all constraints are preserved such that

no drift-off effects arise in the numerical treatment.

Thus, a regularization or remodeling of the model

equations resulting in an equivalent formulation with no

hidden constraints is required to guarantee stable and

robust numerical computations, see also Gear (1988);

Hairer and Wanner (1996); Kunkel and Mehrmann

(2006); Steinbrecher (2006).

The current state of the art in many modeling and

simulation tools to deal with high index DAEs is to use

some kind of analysis of the system to identify the con-

straints, to determine the index of the system, and to com-

pute an index-reduced system model. Hereby, a crucial

step is the so-called state selection that is required in or-

der to introduce new algebraic variables (the so-called

dummy derivatives) for the selected differential compo-

nents of the DAE system in order to obtain a regular

index-reduced formulation.

In this paper, we present in Section 2 a different reg-

ularization approach for the remodeling of dynamical

systems that uses the hidden constraints to construct an

over-determined system regularization that can be solved

using a specially adapted numerical integrator imple-

mented in the software package QUALIDAES (QUAsi

LInear DAE Solver), see Section 3. This approach is

developed for the numerical treatment of quasi-linear

DAEs of the form

E(x, t)ẋ = k(x, t) (1)

and has the great advantage that the problem of state se-

lection can be moved into the numerical integrator such

that it can be performed during the run-time of the simu-

lation.

The software package QUALIDAES requires and ex-

ploits the quasi-linear structure of the model equations.

If QUALIDAES is used in the MODELICA-framework

then this requires a representation of the MODELICA

model equation in quasi-linear form, as illustrated in Sec-

tion 4.

DOI
10.3384/ecp1511899

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

99

2 Regularization Using Over-

determined Formulations

In the following, we consider quasi-linear DAEs of the

form (1) on the domain I = [t0, t f] with initial values

x(t0) = x0 ∈ R
n, where E ∈ C (Rn×I,Rn,n) is called the

leading matrix of the quasi-linear DAE and k ∈ C (Rn×
I,Rn) its right-hand side. Furthermore, x : I→ R

n rep-

resent the unknown variables. The DAE system (1) is

assumed to be uniquely solvable and non-redundant. Fur-

thermore, we assume that the rank of the leading matrix

E is constant for all (x, t) ∈ R
n×I and that the rank of

the partial derivatives of the (hidden) constraints with re-

spect to x is constant for all consistent (x, t) ∈ R
n×I.

Regularization approaches for high index DAEs like the

Dummy Derivatives Approach from Mattsson and Söder-

lind (1993) or index reduction by Minimal Extension

from Kunkel and Mehrmann (2004) consists of adding

the hidden constraints to the model equations and the se-

lection of certain differential components of the state x

that can then be replaced by new algebraic variables in

order to lower the index of the system and to obtain a

new regular index-reduced system formulation. Hereby,

a problem is that the selection of differential components

can change during the numerical integration. Thus, if

this state selection is performed outside the numerical in-

tegrator this often takes too long and is computational

inefficient.

In the following, we will present a regularization of

quasi-linear DAEs (1) of higher index, i.e., that con-

tain hidden constraints. This regularization is based on

an over-determined system formulation in order to over-

come the difficulties in the numerical simulation.

Certain analysis tools, like Pantelides’ algorithm (Pan-

telides (1988)), the structural analysis by Pryce (Pryce

(2001)), the analysis via the strangeness-index concept

(Kunkel and Mehrmann (2006)), the algebraic procedure

proposed in Steinbrecher (2006), a combined structural-

algebraic approach proposed in Scholz and Steinbrecher

(2013), or other, gives us the required information about

the hidden constraints in the system.

These information consists mainly of the order of dif-

ferentiation of (parts of) the DAE to determine the hidden

constraints by algebraic manipulations of the equations

and their derivatives. The minimal order of differenti-

ation of (parts of) the DAE required for the determina-

tion of a certain (hidden) constraint is called the level of

the (hidden) constraint. Furthermore, the maximal level

νc of existing hidden constraints is called maximal con-

straint level of the DAE. See Steinbrecher (2006). Let

us denote the set of all constraints including the hidden

constraints by

0 = h(x, t). (2)

Adding the hidden constraints to the quasi-linear DAE

(1) leads to an over-determined DAE

E(x, t)ẋ = k(x, t), (3a)

0 = h(x, t) (3b)

consisting of a differential part (3a) and an algebraic part

(3b). This over-determined formulation (3) then is equiv-

alent to the original DAE (1) in the sense that both have

the same solution set, i.e., for a given consistent initial

value, the corresponding initial value problems have the

same solution. Note that the leading matrix E not nec-

essarily has to have full rank and the unknowns x are un-

changed, i.e., a transformation of the state variables is not

necessary and the number of unknowns is not increased

(in contrast to the dummy derivative approach).

The over-determined formulation (3) has the advan-

tage that all constraints explicitly are stated, Therefore,

for (3) no hidden constraints exist. A further advantage

of the over-determined formulation (3) is the fact that it

is not necessary to apply analytic manipulations for the

determination of a square, regular system of DAEs.

The proposed remodeling can be seen as regularization

of the model equations. For more details on the regu-

larization of quasi-linear DAEs we refer to Steinbrecher

(2006).

Example 2.1 The Cartesian Pendulum: Let us con-

m

L

(p(t),q(t))

Y

X

g

ϕ

Figure 1. Topology of the Cartesian pendulum

sider the Cartesian pendulum, see Figure 1. We choose

absolute coordinates p and q denoting the position of the

mass m in the two dimensional space R
2 for the descrip-

tion of the configuration of the pendulum. The equations

of motion have the form

ṗ = v, (4a)

q̇ = w, (4b)

mv̇ = −2pλ , (4c)

mẇ = −mg−2qλ , (4d)

0 = p2 +q2 −L2, (4e)

where v and w denote the velocities of the mass point in

X- and Y -direction while λ corresponds to the Lagrange

Internalized State-Selection: Generation and Integration of Quasi-Linear Differential-Algebraic Equations

100 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511899

multiplier. The constraint (4e) is of level 0 since no dif-

ferentiation of the DAE is necessary to determine this

constraint. The hidden constraint of level 1 obtained af-

ter only one total differentiation of (4e) with respect to t

and replacing ẋ and ẏ using (4a), (4b) is given by

0 = 2pv+2qw. (4f)

Furthermore, from the second total derivative of (4e)

with respect to t and replacing ẍ, ÿ using the the first total

derivative of (4a), (4b), and subsequent replacing of ẋ, ẏ,

v̇, and ẇ using (4a)-(4d) we get the hidden constraint of

level 2 as

0 = 2v2 +2w2 +2p(−2pλ)/m (4g)

+2q(−mg−2qλ)/m.

A further differentiation of the DAE does not lead

to further constraints. Consequently the minimal or-

der of differentiation of (parts of) the DAE to deter-

mine all (hidden) constraints is two. Therefore, the

model equations for the Cartesian pendulum is a set

of DAEs of maximal constraint level νc = 2. With

all hidden constraints the regularized DAE via over-

determined formulation is given by equations (4a)-(4g).

This regularized DAE consists of 7 equations for 5 un-

knowns x =
[

p q v w λ
]T

and, due to its over-

determinedness, is not solvable within the MODELICA-

framework, e.g., OpenModelica, Dymola, MapleSim. ⊳

3 The Software PackageQUALIDAES

In the following, we consider over-determined quasi-

linear DAEs of the form

M(x, t)ẋ = f (x, t), (5a)

0 = g(x, t) (5b)

on the domain I= [t0, t f] with initial values x(t0) = x0 ∈
R

n, where M ∈C (Rn×I,RmD,n) is called the leading ma-

trix of the quasi-linear DAE and f ∈ C (Rn×I,RmD) as

well as g ∈ C (Rn×I,RmC) form its right-hand side.

Such over-determined formulations of the form (5) have

currently the disadvantage that within the common

MODELICA-frameworks it is impossible to model and

integrate over-determined systems. Therefore, a direct

numerical integrator for possibly over-determined formu-

lations in form (5) has been implemented in the software

package QUALIDAES which requires and exploits the

quasi-linear structure of the model equations.

The software package QUALIDAES is suited for general

over-determined quasi-linear DAEs of the form (5) with

the assumption that the constraints (5b) are neither con-

tradictory nor redundant, i.e.,

rank

(
∂g

∂x
(x, t)

)
= mC (6)

for all consistent (x, t) ∈ R
n × I. For a successful inte-

gration with QUALIDAES DAEs (5) with no hidden con-

straints are preferable. But often an integration of DAEs

(5) containing hidden constraints of level 1 at most is suc-

cessful. In case of no hidden constraints it holds

rank

([
M(x, t)
∂g
∂x
(x, t)

])
= n (7)

for all consistent (x, t) ∈ R
n × I. Such over-determined

formulations with no hidden constraints are obtained e.g.

by application of the regularization approach described

in the previous section.

The software package QUALIDAES is implemented in

FORTRAN.

Certain features of QUALIDAES are to be emphasized

which distinguish QUALIDAES from other solvers. Im-

portant is the fact that QUALIDAES respects all provided

constraints. In particular, if no hidden constraints exist

in (5), i.e., (7) holds, drift or instabilities are avoided

during the numerical integration.

Interface for the model equations: The information of

the model equations needed for the integration algorithm

has to be provided in residual form, as following. The

user or the calling subroutine has to provide the residual

of the right hand side f for the differential part, the

residual of the right hand side g for the constraint part,

as well as the leading matrix M. All evaluated at a point

(x, t). Furthermore, there exists a rough graphical user

interface in MATLAB (Higham and Higham (2005))

suited for model equations provided in MODELICA, see

Altmeyer and Steinbrecher (2013).

Integration method: In QUALIDAES the 3-stage im-

plicit Runge-Kutta Method Radau IIa of fixed order 5,

see Hairer and Wanner (1996), as discretization of the

overdetermined formulation is implemented.

As mentioned above, the code QUALIDAES offers the

possibility to combine the discretization method with

the regularization technique presented in the previous

section. Therefore, the algorithm may use the over-

determined regularization in form (5) as basis for the dis-

cretization. For more details on the discretization we re-

fer to Steinbrecher (2006).

The discretization of the over-determined system (5)

using the 3-stage Radau IIa method leads to an over-

determined nonlinear stage equation of the form

0 =

[
D(ξk)
C(ξk)

]
with ξk =




Xk1

Xk2

Xk3


 (8)

for the determination of the three stages Xki ∈ R
n, i =

1,2,3 on the current integration interval [tk, tk+1] with

tk+1 = tk +δk. Here δk denotes the current step size. The

stages Xki ∈ R
n, i = 1,2,3 approximate the solution at

the points tki = tk + ciδk. In (8) D represents the dis-

cretization of the differential part and C represents the

discretization of the constraints to determine the next it-

erate xk+1 from ξk. Unfortunately, the nonlinear system

Session 2C: Simulation Techniques

DOI
10.3384/ecp1511899

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

101

(8) is no longer solvable because of discretization and

rounding errors. Therefore, it is only possible to find an

approximation ξ̃k which minimizes the residual r of size

3(mD +mC) of the discretized over-determined DAE in

a certain sense with

r =

[
rD

rC

]
=

[
D(ξk)
C(ξk)

]
.

In general, such an approximation yields a residual rC 6=
0, which in turn leads to unfulfilled constraints, i.e.,

C(ξk) 6= 0 and, therefore, also g(xk, tk) 6= 0, not even

within machine precision. This would lead to the typical

difficulties in the numerical integration of higher index

DAEs, i.e., instabilities, convergence problems, inconsis-

tencies, or the solution drifts away from the original so-

lution manifold.

In order to avoid these problems it is necessary to make

sure that the constraints are always satisfied during nu-

merical integration. This can be achieved if the nonlinear

system (8) is treated separately such that ξ̃k satisfies the

lower part, i.e., the constraints, exactly or within a pre-

scribed precision, while ξ̃k yields a minimal residual in

the upper part, i.e., in the differential part.

For solving (8) as described above, an adaption of a sim-

plified Newton method is implemented in QUALIDAES.

For more details on Newton methods we refer to Deufl-

hard (2004). In particular, a constant Newton iteration

matrix is used for a certain number of Newton iteration

steps inside the current integration step [tk, tk+1]. The us-

age of the simplified Newton method saves evaluation of

Jacobians and decomposition of the Newton iteration ma-

trix in every except the first Newton iteration step. There-

fore, during the Newton iteration a linear system of the

form
[

JD

JC

]
∆ j =

[
d(ξ j

k)

c(ξ j
k)

]
(9)

has to be solved in each Newton iteration step j = 0,1, ...

to obtain the next iteration ξ̃ j+1
k = ξ̃ j

k +∆ j in the Newton

iteration. The upper part in (9) represents the differential

part while the lower part represents the constraint part.

The solving of the linear algebraic system (9) has to be

done in an efficient but stable way. For that the code

QUALIDAES decomposes the differential part and the

algebraic part via different decomposition methods. The

LU decomposition with full pivoting is used for the

constraint part and the LU decomposition with partial

pivoting is used for the differential part. While the first

full pivoting detects the set of locally constrained state

variables the second decomposition is faster and detects

a minimal set of differential equations for the locally

dynamic state variables. For a J ∈ N we accept ξ̃ J
k as the

numerical solution of (8) if a certain stopping criteria of

the Newton iteration is satisfied. Furthermore, from this

ξ̃ J
k we determine the next iterate xk+1 as approximation

of the solution at tk+1.

In particular, this strategy leads to a (numerically)

precise fulfillment of the constraints while solving the

differential part in an "approximate sense". For more

details see also Scholz and Steinbrecher (2014).

Further features of QUALIDAES: The numerical inte-

gration implemented in QUALIDAES uses a variable step

size strategy. For that an adaptation of the error estima-

tion and the step size control implemented in the code

RADAU5 is used in QUALIDAES.

Furthermore, QUALIDAES offers the possibility to

check and (if necessary) to correct initial values. For that

the user or the calling subroutine has to provide further

initial conditions in addition to the provided constraints

(5b).

If the model equations have solution invariants, e.g., en-

ergy conservation or mass conservation, then it is of-

ten desirable to preserve these solution invariants ex-

plicitly because in general the numerical solution of the

model equations does not satisfy the solution invariants.

QUALIDAES is able to preserve solution invariants if

they are provided by the user as additional equations in

the constraints (5b).

Furthermore, QUALIDAES offers the possibility to deter-

mine a continuous output. This is helpful for example for

an event detection or a visualization in the post process-

ing.

If QUALIDAES is used in the MODELICA-framework

then this requires a representation of the MODELICA

model equation in quasi-linear form. For the most

real applications, the model equations arise naturally in

quasi-linear form. But unfortunately, in the MODELICA-

framework this quasi-linear structure is not obviously re-

flected. Therefore, it is necessary to develop strategies

to represent MODELICA model equations in quasi-linear

form or to reformulate, e.g., by extension into this struc-

ture, as illustrated in the next section.

4 Quasi-Linear Model Equations

As already mentioned, MODELICA does not support

quasi-linear equations directly, but allows the user to

write arbitrary expressions to describe the dynamic be-

havior of the model. It is the responsibility of the un-

derlying interpreter to transform the expressions into an

equivalent suitable form (or, arguably, report an error if

no such transformation can be found). Therefore, to use

MODELICA as the model language for QUALIDAES, we

have to provide said transformation.

In the following section we will resort to the following

style of notation:

A language will be defined in a simple BNF-form:

Nonterminals are expressed with the same small letters

as meta-variables of the corresponding syntactic sort (e.g.

we will use e to denote both the set of terms and a vari-

able from that set). Productions are defined by ::= and

Internalized State-Selection: Generation and Integration of Quasi-Linear Differential-Algebraic Equations

102 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511899

alternatives are distinguished via |. The context will al-

low for easy distinction between both uses. Multiple

variables of the same syntactic sort are introduced before

they are used.

We will introduce the signature of functions in a black-

board style using × for Cartesian products and → to dis-

tinguish domain and co-domain. Partial functions will be

introduced using the same style but with a →֒. Addition-

ally, we consider partial functions as sets of tuples that

can be augmented using the 7→ operator (i.e. p∪{1 7→ 2}
is the partial function p augmented by mapping 1 to 2.

The domain of a partial function p is written dom(p).

Functions over elements of a language will be defined

using a freely adapted denotational style: JeKX denotes

the function X applied to e. All these (recursive) func-

tions are defined using pattern matching on their argu-

ments: Je1 + e2KX means the application of X to terms

formed by the addition of two (possible distinct) terms.

Meta-variables are bound in the patterns or correspond-

ing where-clauses.

4.1 Input Language

As input we consider a small excerpt from the MODEL-

ICA abstract syntax of terms:

e ::= e+ e | e× e

| ui | DER(ui)

| τ | c

Terms e (alternative variables are d,c) consist of addition,

multiplication, numbered unknowns (ui) a MODELICA-

style derivative-operator DER(), the simulation time τ
and constants c ⊆ R.

4.2 Quasi-Linear Language

A quasi-linear equation ql (or q̂l, q̃l) forms one row of the

aforementioned E(x, t). Without loss of generality, we

assume that all ql are of the form ei(x, t)ẋ+ ki(x, t) = 0.

We also assume that all our system consists of n un-

knowns u1 . . .un = x. Then, a quasi-linear equation can

be represented as a tuple of a constant term e and a par-

tial function γ (alternatively β ,α), mapping derivatives

to their respective coefficients:

ql ⊆ γ × e

where γ : u →֒ e

An ordered set QL= {ql1 . . .qln} (Q̃L when an alterna-

tive is needed) of n quasi-linear equations forms a system.

Such a system is equivalent to the leading matrix E aug-

mented with its right-hand-side k in the sense that each

quasi-linear equation defines a row of E|k:

QL = {ql1 . . .qln}
∧
= E|k

ei j(ẋ,x, t)
∧
= ci j · ẋ

where

qli = 〈γi,ei〉

ci j =

{
Jγi(u j),x, tKe when u j ∈ dom(γi)

0 otherwise

ki(x, t) = Jei,x, tKe

In this definition, the helper function J. . .Ke is a

straightforward interpretation of terms:

JKe : e×R
n ×R →֒ R

Je1 × e2,x, tKe
∧
= Je1,x, tKeJe2,x, tKe

Je1 + e2,x, tKe
∧
= Je1,x, tKe + Je2,x, tKe

Jτ,x, tKe
∧
= t

Jui,x, tKe
∧
= xi

Jc,x, tKe
∧
= c

Note, that the interpretation function is undefined for

derivative-terms. However, this does not cause any prob-

lems in our application, as any derivatives will be re-

moved by our transformation (the matrix E does not con-

tain any derivatives).

4.3 Transformation

With the above definitions, the remaining problem is how

to transform a general MODELICA-style equation into a

quasi-linear form. Naturally, there is a trivial transfor-

mation that replaces all derivative with simple identities

of the form DER(ui) = u j. Since these identities are triv-

ially quasi-linear, this does not violate the requirements

for the output of the transformation. However, the result-

ing system would be unnecessary large and not leverage

the structure of the system for efficient simulation. In

fact, QUALIDAES would have to solve the whole nonlin-

ear system as hidden constraints. While the result (if it

can be computed) might be (numerically) exact, this is

certainly not the best or even an acceptable strategy.

Instead, we are going to keep the amount of additional

identities to a minimum. We capture the identities in a

partial function ι (also: κ,λ):

ι : ui →֒ u j

The transformation J. . .Kqlt itself is again defined in a

denotational style using pattern-matching:

JKqlt : e×N× ι → ql×N× ι

The simplest cases are the simulation time, constants

and unknowns. In these cases, the result is the quasi-

linear equation with an empty set of coefficients, while

Session 2C: Simulation Techniques

DOI
10.3384/ecp1511899

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

103

the size of the system and the identities remain un-

changed:

Jτ,n, ιKqlt
∧
= 〈〈 /0,τ〉,n, ι〉

Jc,n, ιKqlt
∧
= 〈〈 /0,c〉,n, ι〉

Jui,n, ιKqlt
∧
= 〈〈 /0,ui〉,n, ι〉

For the summation of quasi-linear equations, we need

a way to sum their coefficients in a way that maintains

the interpretation of the coefficients as products of deriva-

tives with terms. Hence, the sum of two coefficients is

either undefined for a given unknown (when both sum-

mands are undefined for the unknown), the result of look-

ing up that unknown in one of the coefficients (when it

is only defined in one of them, mimicking addition with

zero) or the sum of both right-hand sides (when it is de-

fined in both coefficients):

(γ ⊎β)(ui)
∧
=





γ(ui)+β (ui) when ui ∈ dom(γ)∩dom(β)

γ(ui) when ui ∈ dom(γ)\dom(β)

β (ui) when ui ∈ dom(β)\dom(γ)

undefined otherwise

With this definition, the transformation of the addition-

term is the simple in-order transformation of both sum-

mands, followed by the construction of the quasi-linear

sum:

Je1 + e2,n, ιKqlt
∧
= 〈γ ⊎β ,d + c,〉, l,λ 〉

where

〈〈γ ,d〉,m,κ〉 = Je1,n, ιKqlt

〈〈β ,c〉, l,λ 〉 = Je2,m,κKqlt

In order to transform a derivative, we have to check,

whether said derivative is already identified with an (arti-

ficial) variable. In such a case, the derivative is replaced

with the corresponding unknown and put into the right-

hand-side term. If the derivative is not yet identified with

another unknown, it yields a new coefficient:

JDER(ui),n, ιKqlt
∧
=

{
〈〈 /0,uι(i)〉,n, ι〉 when i ∈ dom(ι)

〈〈{ui → 1},0〉,n, ι〉 when i /∈ dom(ι)

The transformation of multiplication-terms requires

another auxiliary function, J. . .K×:

Je1 × e2,n, ιKqlt
∧
= Jqlt,e2,m,κK×

where

〈qlt,e2,m,κ〉 = Je1,n, ιKqlt

J. . .K× allows to multiply a quasi-linear equation di-

rectly with a term. Again, it is defined in a denotational

style using pattern-matching:

JK× : ql× e×N× ι → ql×N× ι

Multiplication with non-derivative terms is again

straight-forward (with ⊗ being the multiplicative equiva-

lent to ⊎ defined above).

J〈γ ,e〉,τ,n, ιK×
∧
= 〈〈γ ⊗ τ,e× τ〉,n, ι〉

J〈γ ,e〉,c,n, ιK×
∧
= 〈〈γ ⊗ c,e× τ〉,n, ι〉

J〈γ,e〉,ui,n, ιK×
∧
= 〈〈γ ⊗ui,e× τ〉,n, ι〉

An addition-term can be multiplied with a quasi-linear

equation by multiplying its summands and summing up

the result:

Jql,e1 + e2,n, ιK×
∧
= 〈〈γ ⊎β ,e+d〉, l,λ 〉

where

〈〈γ,e〉,m,κ〉 = Jql,e1,n, ιK×

〈〈β ,e〉, l,λ 〉 = Jql,e2,m,κK×

Multiplication with a derivative is uncomplicated,

when there is no coefficient mapped to a derivative in

the quasi-linear equation:

J〈 /0,e〉,DER(ui),n, ιK×
∧
= 〈〈{ui → e},0〉,n, ι〉

If the derivative is identified with another unknown,

multiplication is defined recursively by multiplication

with that unknown. In the general case, however, the

multiplication with a derivative requires the addition of a

new identification:

Jql,DER(ui),n, ιK×
∧
=

{
Jql, ι(ui),n, ιK× when ui ∈ dom(ι)

Jql,um,m, ι ∪{ui → um}K× otherwise

where m = n+1

The final case is the multiplication of multiplication-

terms. In that case, we can simply resort to the distribu-

tive property of multiplication:

Jql,e1 × e2,n, ιK×
∧
= 〈q̃l, l,λ 〉

where

〈q̂l,m,κ〉 = Jql,e1,n, ιK×

〈q̃l, l,λ 〉 = Jq̂l,e2,m,κK×

This transformation obviously deals just with a tiny

fraction of the syntactically valid MODELICA equations

and it is also quite obvious (at least to the experienced

developer), that a lot of work needs to be put into a

full coverage. However, adding more operators or syn-

tactic variants does not add anything more insight into

the discussed principles. On the contrary, if we would

add an operation like MODELICA’s power-operator ∧,

we would have to expand our transformation with a cor-

responding JK∧ routine. It should be quite clear that

just a few such additions would make the transforma-

tion process unreadable. Hence, we conjecture (but do

not prove for practical reasons) that all MODELICA equa-

tions can, in principle, be transformed into an equivalent

quasi-linear form.

Internalized State-Selection: Generation and Integration of Quasi-Linear Differential-Algebraic Equations

104 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511899

4.4 Derivatives and Hidden Constraints

The regularization (or index-reduction) of a DAE re-

quires the (arbitrary-order) differentiation of equations

with respect to the independent variable. For a quasi-

linear representation however, the coefficients may only

be multiplied with first-order derivatives of the system’s

unknowns. To maintain that invariant, it is necessary to

break down an arbitrary-order differentiation into several

steps of first-order differentiation and transformation into

quasi-linear form.

The (first-order) derivative of a quasi-linear equation

is computed by J. . .K∇ql. It takes a quasi-linear equation,

system size and identities and yields a term (which may

contain applications of the DER()-operator) and a new

system size m and identities κ:

JK∇ql : ql×N× ι → e×N× ι

J〈γ,e〉,n, ιK∇ql
∧
= 〈d + JeK∇e,m,κ〉

where

〈d,m,κ〉 = Jγ,n, ιK∇γ

The total derivative of the set of coefficients J. . .K∇γ

is the sum of the total derivative of every coefficient. A

coefficient can be differentiated by interpreting it as the

product of the derivative with a term. To avoid generat-

ing a higher-order derivative, the coefficient’s derivative

has to be identified with a new or existing variable:

JK∇γ : γ ×N× ι → e×N× ι

J /0,n, ιK∇γ
∧
= 〈0,n, ι〉

J{ui 7→ e}∪ γ,n, ιK∇γ
∧
= 〈c,m+1,κ ∪{ui 7→ um+1}〉

where

c = JeK∇e ×um+1 + e×DER(um+1)+d

〈d,m,κ〉 = Jγ,n, ιK∇γ

Calculating the total derivative of a (derivative-free)

term is a straightforward implementation of calculus:

JK∇e : e →֒ e

Je1 + e2K∇e
∧
= Je1K∇e + Je2K∇e

Je1 × e2K∇e
∧
= Je1K∇e × e2 + e1 × Je2K∇e

JcK∇e
∧
= 0

JτK∇e
∧
= 1

JuiK∇e
∧
= DER(ui)

Again, it comes in handy that our term language is so

small. However, the above function can be generalized

for more complicated input languages using techniques

like automatic differentiation (Höger (2013)). Hence we

conjecture that differentiation is possible for all quasi-

linear equations derived from all MODELICA equations.

In order to calculate the constraints of a regularized

DAE we consider the output of the regularization as a

function c : ql → N from quasi-linear equations to the

amount of desired differentiations. Given such a func-

tion, a system of quasi-linear equations QL can be ex-

panded by regularization J. . .Kreg:

JKreg : (ql → N)×QL×N× ι → QL×N× ι

Jc, /0,n, ιKreg
∧
= 〈 /0,n, ι〉

Jc,{ql}∪QL,n, ιKreg
∧
= 〈{ql0 . . .qlk}∪ Q̃L,m,κ〉

where

k = c(ql)

〈ql0,n0, ι0〉 = 〈ql,n, ι〉

〈qli+1,ni+1, ιi+1〉 = JJqli,ni, ιiK∇qlKqlt

〈Q̃L,m,κ〉 = Jc,QL,nk, ιkKreg

After this process, the resulting augmented matrix ˜E|k
(including rows from identities) is probably non-squared.

To reconcile this property and gather all hidden con-

straints, we attempt to eliminate superfluous rows from

the matrix e.g. by symbolic Gaussian elimination.This

reconcilation depends on the symbolic equivalence of

equation terms. While this is possible (e.g. by us-

ing a suitable computer algebra system) for our small

term-language, equivalence is of course undecidable for

Turing-complete terms (as they are used in MODELICA).

Hence, the process is not practically applicable to every

model. We conjecture however, that such a limitation

exists for every symbolic processing of models.

If this process succeeds, all the removed rows have no

coefficients and are thus hidden constraints.

4.5 Example

To support our claim that JKqlt is not a trivial and hence

useless transformation, we resort to example 2.1. After

setting m = L = 1 for simplification, it can be expressed

in our simple term language (extended with subtraction

for brevity) as:

DER(u1)−u3

DER(u2)−u4

u1 ×u1 +u2 ×u2 −1

DER(u3)+2×u1 ×u5

DER(u4)+2×u2 ×u5 +g

The first and second equation are obvious identities in

the sense of ι . Hence, our transformation can be jump-

started (if we omit this jump-start, the identities would be

copied later on) using these identities and yields 3 quasi-

linear equations and said identities:

ql1 =〈 /0,u1 ×u1 +u2 ×u2 −1〉

ql2 =〈{u3 7→ 1},2×u1 ×u5〉

ql3 =〈{u4 7→ 1},2×u2 ×u5 +g〉

ι ={u1 7→ u3,u2 7→ u4}

Session 2C: Simulation Techniques

DOI
10.3384/ecp1511899

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

105

The output of a regularization step will ask us to add the

first and second derivative of equation ql1 to the system

(it will also ask us to add the first derivative of the iden-

tities, but this can be ignored since identities and their

derivatives are inlined implicitly). Doing so yields:

ql4 =〈 /0,u1 ×u3 +u2 ×u4〉

ql5 =〈{u3 7→ u1,u4 7→ u2},u3 ×u3 +u4 ×u4〉

No additional identities are required for this simple ex-

ample. Equations ql1 and ql4 are arguably constraints

(although ql1 is not hidden). The resulting augmented

coefficient matrix can be seen below:




u3 0

u4 0

1 2×u1 ×u5

1 2×u2 ×u5 +g

u1 u2 u3 ×u3 +u4 ×u4




The last row can be eliminated by subtracting the third

and fourth rows (multiplied with the corresponding coef-

ficient), which yields the third hidden constraint:

u3×u3+u4×u4−2×u1×u1×u5−2×u2×u2×u5+g

This is precisely the term we would expect from trans-

lating equation (4g). The resulting system E,k and h

can be fed into QUALIDAES and (given a consistent ini-

tial point) integrated over time without any further state-

selection.

5 Conclusions

In this article we have discussed the efficient and robust

numerical simulation of dynamical systems that are mod-

eled with MODELICA. We have presented a regulariza-

tion method for quasi-linear DAEs that is based on an

over-determined system formulation that is obtained by

adding all hidden constraints explicitly to the original

model equation. The over-determined system formula-

tion can then directly be integrated using the software

package QUALIDAES. The great advantage of the direct

discretization of the over-determined formulation is the

fact that it is not necessary to determine a dynamic (state)

selector outside of the solver QUALIDAES since this is

achieved automatically within the separated treatment of

(8) by its numerical solution, described above. Perform-

ing the state selection within the numerical integrator

also allows us to switch between different state selections

and also opens the door to handle structure varying sys-

tem models Pepper et al. (2011). Furthermore, the num-

ber of unknowns in the DAE is not increased. A further

advantage of an over-determined regularization with re-

spect to the numerical integration is the possibility to add

solution invariants, e.g., mass, impulse or energy conser-

vation laws, to the constraints, which often stabilizes nu-

merical integration.

Nevertheless, QUALIDAES requires a quasi-linear repre-

sentation of the model equations. As we have shown,

MODELICA-style equations can be transformed into

quasi-linear form in a non-trivial way. This transforma-

tion preserves enough symbolic information about the

equations to allow for the description of the hidden con-

straints. On the other hand, non-symbolic (i.e. algorith-

mic) parts can still be dealt with due to the introduction

of identities with new variables.

5.1 Future Work

Although clearly necessary, the expansion of the input

language of the quasi-linear transformation seems to be

merely technically challenging. There are however some

areas of future research that should be considered:

First, the search for a consistent initial point is a well-

known challenging problem. It remains an open ques-

tion, whether the quasi-linear transformation could pro-

vide any help in that area.

Furthermore, the transformations are currently imple-

mented in a straightforward manner. Hence, the outcome

might be non-optimal for practical applications (e.g. the

size of the derived expressions might harm the simula-

tion performance). It could be interesting to search for

variants of the transformation that maintains practically

useful properties (e.g. minimal tree size, minimal identi-

ties added).

Finally, we have already shown that the regularization of

a structurally varying DAE can be implemented in an effi-

cient, dynamic algorithm (see Höger (2014)). This is, ob-

viously, of little value when the application of its results

remains a non-dynamic monolithic algorithm. Hence

any representation, but especially the quasi-linear form

(since it is well-suited for structurally varying systems)

should be enhanced with a dynamic regularization that

preserves as much information from earlier modes as pos-

sible.

Acknowledgments

This work has been supported by the European Research

Council through Advanced Grant MODSIMCONMP

and by the German Research Foundation (Deutsche

Forschungsgemeinschaft DFG) within the project "Au-

tomatische Modellierung und Simulation von technis-

chen Systemen mit Unsicherheiten" AMSUN.

References

R. Altmeyer and A. Steinbrecher. Regularization and numeri-

cal simulation of dynamical systems modeled with Model-

Internalized State-Selection: Generation and Integration of Quasi-Linear Differential-Algebraic Equations

106 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511899

ica. Preprint 29-2013, Institut für Mathematik, TU Berlin,

2013.

K.E. Brenan, S.L. Campbell, and L.R. Petzold. Numerical

Solution of Initial-Value Problems in Differential Algebraic

Equations, volume 14 of Classics in Applied Mathematics.

SIAM, Philadelphia, PA, 1996.

P. Deuflhard. Newton methods for nonlinear problems. Affine

invariance and adaptive algorithms, volume 35 of Springer

Series in Computational Mathematics. Springer-Verlag,

Berlin, 2004.

C.W. Gear. Differential-algebraic equation index transforma-

tions. SIAM Journal on Scientific and Statistic Computing,

9:39–47, 1988.

E. Griepentrog and R. März. Differential-Algebraic Equations

and Their Numerical Treatment, volume 88 of Teubner-

Texte zur Mathematik. BSB B.G.Teubner Verlagsge-

sellschaft, Leipzig, 1986.

E. Hairer and G. Wanner. Solving Ordinary Differential

Equations II - Stiff and Differential-Algebraic Problems.

Springer-Verlag, Berlin, Germany, 2nd edition, 1996.

D.J. Higham and N.J. Higham. MATLAB Guide. Society for

Industrial and Applied Mathematics (SIAM), Philadelphia,

PA, second edition, 2005. ISBN 0-89871-578-4.

C. Höger. Operational semantics for a modular equation lan-

guage. AVICPS 2013, page 5, 2013.

C. Höger. Dynamic structural analysis for daes. In Proceedings

of the 2014 Summer Simulation Multiconference, page 12.

Society for Computer Simulation International, 2014.

P. Kunkel and V. Mehrmann. Index reduction for differential-

algebraic equations by minimal extension. Zeitschrift für

Angewandte Mathematik und Mechanik, 84(9):579–597,

2004.

P. Kunkel and V. Mehrmann. Differential-Algebraic Equations.

Analysis and Numerical Solution. EMS Publishing House,

Zürich, Switzerland, 2006.

S. Mattsson and G. Söderlind. Index reduction in differential-

algebraic equations using dummy derivatives. SIAM Jour-

nal on Scientific and Statistic Computing, 14:677–692,

1993.

C.C. Pantelides. The consistent initialization of differential-

algebraic systems. SIAM Journal on Scientific and Statistic

Computing, 9:213–231, 1988.

P. Pepper, A. Mehlhase, Ch. Höger, and L. Scholz. A composi-

tional semantics for Modelica-style variable-structure mod-

eling. In P. Fritzson F.E. Cellier, D. Broman and E.A. Lee,

editors, 4th International Workshop on Equation-Based

Object-oriented Modeling Languages and Tools (EOOLT

2011), number 56 in Linköping Electronic Conference Pro-

ceedings, pages 45–54, Zurich, Switzerland, 2011. Septem-

ber 5, 2011.

J. Pryce. A simple structural analysis method for DAEs. BIT

Numerical Mathematics, 41:364–394, 2001.

L. Scholz and A. Steinbrecher. A combined structural-

algebraic approach for the regularization of coupled systems

of DAEs. Preprint 30-2013, Institut für Mathematik, TU

Berlin, 2013.

L. Scholz and A. Steinbrecher. Efficient numerical integra-

tion of dynamical systems based on structural-algebraic

regularization avoiding state selection. In K.-E. Arzen

H. Tummescheit, editor, Proceedings of the 10th Interna-

tional Modelica Conference, March 10-12, 2014, Lund,

Sweden, number 96 in Linköping Electronic Conference

Proceedings, pages 1171–1178. Modelica Association and

Linköping University Electronic Press, 2014.

A. Steinbrecher. Numerical Solution of Quasi-Linear

Differential-Algebraic Equations and Industrial Simulation

of Multibody Systems. PhD thesis, Technische Universität

Berlin, 2006.

Session 2C: Simulation Techniques

DOI
10.3384/ecp1511899

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

107

108 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Fractional-Order Modelling in Modelica

Alexander Pollok1 Dirk Zimmer1 Francesco Casella2

1Institute of System Dynamics and Control, German Aerospace Center (DLR), Germany,

{alexander.pollok,dirk.zimmer}@dlr.de
2Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy,

francesco.casella@polimi.it

Abstract

Most dynamic systems with a basis in nature can be de-

scribed using Differential-Algebraic Equations (DAE),

and hence be modelled using the modelling language

Modelica. However, the concept of DAEs can still be

generalised, when differential operators of non-integer

order are considered. These so called fractional or-

der systems have counterparts in naturally occuring sys-

tems, for instance in electrochemistry and viscoelastic-

ity. This paper presents an implementation of approxi-

mate fractional-order differential operators in Modelica,

increasing the scope of systems that can be described in

a meaningful way. Properties of fractional-order systems

are discussed and some approximation methods are pre-

sented. An implementation in Modelica is proposed for

the first time. Several testing procedures and their re-

sults are displayed. The work is then illustrated by the

application of the model to several physically motivated

examples. A possible usability-enhancement using the

concept of "Calling Blocks as functions" is suggested.

Keywords: Fractional Order Systems, fractional calcu-

lus, Integer-Order Approximations

1 Introduction

In Modelica, models are represented as Differential-

Algebraic Equations, i.e., equations of the form

F(ẋ(t),x(t), t) = 0. This formulation is adequate for

most physical systems that can be described (or at least

approximated) with a finite number of states. There are,

however, some systems, where a more general but ulti-

mately similar framework is needed: If fractional deriva-

tives occur, the traditional DAE formulation is inade-

quate.

Fractional calculus, a misnomer1, is a branch of math-

ematics that deals with non-integer powers of differenti-

ation operators. The introduction to this concept is much

simpler in the Laplace-domain. Normally, the Laplace

1this generalisation of differentiation operators is not restricted to

fractions

variable is restricted to integer values. In fractional cal-

culus, this restriction is lifted. Let us imagine the bode

diagrams of the derivative operator (s = s1), the unity

operator (1 = s0) and the half-derivator (s0.5). The am-

plitude plot of the half-derivator has a slope of 10dB per

decade, while the phase angle is constant at 45 degrees.

This is illustrated in Figure 1. A detailed discussion of

fractional calculus is given by Sabatier et al. (2007).

−60

−40

−20

0

20

40

60

a
m

p
li

tu
d

e

s
1

s
0.5

s
0

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

frequency

−20

0

20

40

60

80

100

p
h

a
se

Figure 1. Illustration of fractional derivatives

Going back to time-domain, fractional differential op-

erators can be defined in various ways, with the Ca-

puto definition (Caputo, 1967) being applied in this pa-

per. Contrary to the often preferred Riemann-Liouville

definition, the Caputo definition allows for a physically

meaningful initialisation of the operator. The Caputo

Fractional Derivative of order α is defined as

L
−1(sα) = Dα f (t) :=

1

Γ(m−α)
·

∫ t

0

f mτ

(t − τ)α+1−m
dτ

with f : R→ R being a continuous, differentiable func-

tion, the gamma function Γ, α ∈ R,0 < α and m ∈

Z
+,m = ceil[α].
Fractional-order systems occur naturally in various

fields, like electrochemistry (Debnath, 2003), viscoelas-

ticity (Koeller, 1984), heat diffusion (Povstenko, 2004)

and biology (Magin, 2004). For example, exact solutions

DOI
10.3384/ecp15118109

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

109

for local temperature and heat flux at the boundary of a

semi-infinite body, using fractional calculus, are given

by Kulish and Lage (2000) (for a Modelica Standard Li-

brary (MSL)-friendly implementation of this findings see

Subsection 3.1). Another application is shaping noise

frequency content according to given spectra (Klöckner

et al., 2015). The usefulness is not limited to the mod-

elling of PDE’s though, fractional order modelling can

be used to describe the dynamics of scale-free networks,

for instance(Goodwine and Leyden, 2015).

The goal of this paper is to show how fractional-order

systems can be modelled using Modelica. The deriva-

tion, implementation and testing of suitable approxima-

tions in Modelica is illustrated in Section 2. Applica-

tions of this implementations are shown in Section 3. At

last, the contents of the paper are discussed and possible

ramifications to the Modelica languages are adressed in

Section 4.

2 Fractional Order Modelling

2.1 Implementation

In Modelica, only the der()-operator has to be general-

ized to model arbitrary fractional order systems. Unfor-

tunately, defining a new operator fracder(state, order) is

not possible based on the Modelica Language Specifica-

tion 3.3. Therefore, the proposed implementation uses a

Single-Input Single-Output block instead.

Fractional order systems have infinite dimensional

transfer functions, and therefore have infinite memory

(Vinagre et al., 2000). It is, however, possible to find

reasonable approximations if the frequency range of in-

terest is bounded (for a detailed error analysis refer to

Pan and Das (2012)). Accordingly, as long as the mod-

eller is not interested in extremely stiff systems, these

approximations are adequate.

For implementations based on equation-based mod-

elling languages, integer-order continuous approxima-

tions are the most useful. For examples, see Carlson

and Halijak (1964), Xue et al. (2006) or Oustaloup et al.

(2000). Some other methods are described in Vinagre

et al. (2000), but not mentioned here, as their implemen-

tation in Modelica proved difficult due to a lack of user-

level symbolic manipulation capabilities.

For Carlson’s method, Oustaloup’s method and Xue’s

method, we found general symbolic expressions for

the approximating transfer-functions, and implemented

them in Modelica. Preliminary analysis showed that

Oustaloup’s method was superior regarding flexibility

and accuracy. For this reason, in the following only

Oustaloup’s method and its implementation details are

presented.

The integer-order approximation of a fractional oper-

ator by Oustaloup’s method is given in the Laplace do-

main by

sλ
≈ G(s) = ωλ

h ·

N

∏
k=−N

s+ω ′
k

s+ωk

(1)

ωk = ωb

(

ωh

ωb

)

k+N+0.5(1+γ)
2N+1

,ω ′
k = ωb

(

ωh

ωb

)

k+N+0.5(1−γ)
2N+1

(2)

with the fitting range (ωb,ωh), the fraction of differen-

tiation λ and the order of approximation N.

An important thing to notice is that λ is not bounded,

so it is possible to simulate the second integral using

λ = −2, for example. However, more accurate results

can be obtained if abs(λ) is kept low and surplus dif-

ferential operations are simulated directly using the stan-

dard Modelica-notation.

We recreated the construction rule for the Oustaloup-

Approximator in Modelica using linked first-order ele-

ments. The corresponding code can be seen in Listings

1, 2 and 3.

2.2 Testing

To test the validity and accuracy of the derived models,

we applied three different testing scenarios: bode dia-

gram, step response, and harmonic displacement. These

tests are described in the following.

2.2.1 Bode Diagram

A Bode diagram of the unity operator (1 in the Laplace

domain) is a straight line with amplitude 1 and phase an-

gle zero degrees over the complete frequency range. The

differentiator (s in the Laplace domain) has an positive

slope of 20dB per decade and +90 degrees phase angle.

Other operators like s2 or s−1 behave analogous. From

this, we require the half-differentiator s0.5 to feature an

ascending amplitude of 10dB per decade and +45 de-

grees phase angle.

In Figure 2 and Figure 3, bode plots of the imple-

mented model with approximation orders 2 and 4 and

fitting range (0.001Hz,1000Hz) are presented.

It can be seen that slope of the amplitude shows a close

fit to the required 10dB per decade. The phase angle

shows pronounced ripple effects in the case of the 2nd

order approximation, but no visible ripples in the case of

the 4th order approximation.

The required amplitude values are matched in the

complete fitting range. For the phase angle the accept-

able range is somewhat smaller.

If the fitting interval is increased to cover a broader

range of frequencies (not shown here), noticable ripples

in the phase plot appear even for the 4th order approxi-

mation.

Fractional-Order Modelling in Modelica

110 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118109

Listing 1. Excerpt of Modelica code for a fractional derivative operator

block O u s t a l o u p O p e r a t o r

import M o d e l i c a . B l o c k s . T y p e s . I n i t ;

parameter I n t e g e r o r d e r (min= 1 , max=4) = 4 " o r d e r o f a p p r o x i m a t i o n (1 , 2 , 3 , 4) " ;

parameter Real lambda = 0 . 5 " e x p o n e n t o f o p e r a t o r (−1= i n t e g r a t o r , 1= d e r i v a t i v e) " ;

parameter Real w_lower (max=1) = 0 . 0 0 1 " lower f i t t i n g f r e q u e n c y [1 / s] " ;

parameter Real w_upper (min=1) = 1000 " h i g h e r f i t t i n g f r e q u e n c y [1 / s] " ;

parameter M o d e l i c a . B l o c k s . T y p e s . I n i t i n i t T y p e = I n i t . I n i t i a l S t a t e

" Type o f i n i t i a l i z a t i o n (1 : no i n i t , 2 : s t e a d y s t a t e , 3 : i n i t i a l s t a t e ,

4 : i n i t i a l o u t p u t) " a n n o t a t i o n (E v a l u a t e =true , D i a l o g (group = " I n i t i a l i z a t i o n ")) ;

parameter Real x _ s t a r t [number] = z e r o s (number) " I n i t i a l o r g u e s s v a l u e s o f s t a t e s "

a n n o t a t i o n (Di a l o g (group =" I n i t i a l i z a t i o n ")) ;

parameter Real y _ s t a r t =0 " I n i t i a l v a l u e o f o u t p u t "

a n n o t a t i o n (Di a l o g (e n a b l e = i n i t T y p e == I n i t . I n i t i a l O u t p u t , g roup = " I n i t i a l i z a t i o n ")) ;

f i n a l parameter Real wb = w_lower∗ M o d e l i c a . C o n s t a n t s . p i ;

f i n a l parameter Real wh = w_upper∗ M o d e l i c a . C o n s t a n t s . p i ;

f i n a l parameter I n t e g e r number = 1 + o r d e r ∗ 2 ;

f i n a l parameter Real K = wh^ (lambda) ;

f i n a l parameter Real wk [number] =

{ F r a c t i o n a l O r d e r . A p p r o x i m a t i o n s . I n t e r n a l . w k (i , wb , wh , o r d e r , lambda)

f o r i in −o r d e r : o r d e r } ;

f i n a l parameter Real wks [number] =

{ F r a c t i o n a l O r d e r . A p p r o x i m a t i o n s . I n t e r n a l . w k s (i , wb , wh , o r d e r , lambda)

f o r i in −o r d e r : o r d e r } ;

Real y _ i n t e r n a l [number] ;

Real x _ i n t e r n a l [number] ;

M o d e l i c a . B l o c k s . I n t e r f a c e s . R e a l I n p u t u

a n n o t a t i o n (Placemen t (t r a n s f o r m a t i o n (e x t e n t ={ {−120 ,−10 } , {−100 ,10 } }))) ;

M o d e l i c a . B l o c k s . I n t e r f a c e s . R e a l O u t p u t y

a n n o t a t i o n (Placemen t (t r a n s f o r m a t i o n (e x t e n t ={ { 100 ,−10 } , { 120 ,10 } }))) ;

equat ion

der (x _ i n t e r n a l [1]) = −wk [1] ∗ x _ i n t e r n a l [1] + (wks [1]−wk [1]) ∗ u∗K;

y _ i n t e r n a l [1] = x _ i n t e r n a l [1] + u∗K;

f o r i in 2 : number loop

der (x _ i n t e r n a l [i]) = −wk [i] ∗ x _ i n t e r n a l [i] + (wks [i]−wk [i]) ∗ y _ i n t e r n a l [i−1] ;

y _ i n t e r n a l [i] = x _ i n t e r n a l [i] + y _ i n t e r n a l [i−1] ;

end f o r ;

y = y _ i n t e r n a l [number] ;

i n i t i a l equat ion

i f i n i t T y p e == I n i t . S t e a d y S t a t e then

der (x _ i n t e r n a l) = z e r o s (number) ;

e l s e i f i n i t T y p e == I n i t . I n i t i a l S t a t e then

x _ i n t e r n a l = x _ s t a r t ;

e l s e i f i n i t T y p e == I n i t . I n i t i a l O u t p u t then

y = y _ s t a r t ;

end i f ;

end O u s t a l o u p O p e r a t o r ;

Session 2C: Simulation Techniques

DOI
10.3384/ecp15118109

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

111

Listing 2. First internal function for the generation of coefficients

f u n c t i o n wks

ex tends M o d e l i c a . I c o n s . F u n c t i o n ;

input I n t e g e r k ;

input Real wb ;

input Real wh ;

input Real N;

input Real lambda ;

output Real wks ;

a lgor i thm

wks : =wb∗ (wh / wb) ^ ((k+N+ (1−lambda) / 2) / (2∗N+1)) ;

end wks ;

Listing 3. Second internal function for the generation of coefficients

f u n c t i o n wk

ex tends M o d e l i c a . I c o n s . F u n c t i o n ;

input I n t e g e r k ;

input Real wb ;

input Real wh ;

input Real N;

input Real lambda ;

output Real wk ;

a lgor i thm

wk : =wb∗ (wh / wb) ^ ((k+N+ (1+ lambda) / 2) / (2∗N+1)) ;

end wk ;

Figure 2. Bode diagram of 2nd order approximation of the

half-derivative s0.5 with fitting interval (0.001Hz,1000Hz)

2.2.2 Step Response

The step responses of the unity operator y(t) = u(t) and

the integrator ẏ(t) = u(t) are known to be y(t) = 1 and

y(t) = t respectively, neglecting the initial conditions. Si-

multaneously, the unity operator and the integrator are

identified in the Laplace Domain by s0 and s−1. The step

responses of the fractional derivatives defined by sλ with

−1 ≤ λ ≤ 0 have to constitute the continuous transition

Figure 3. Bode diagram of the 4th order approximation of the

half-derivative s0.5 with fitting interval (0.001Hz,1000Hz)

between those known step responses (Oldham, 1974).

The implemented model was instantiated 6 times and

assigned λ -values in 0.2 intervals between -1 and 0. All

models were subjected to a unit step (implemented by

setting the input to 1 and the initial states of the models

to 0). The results of this test can be seen in Figure 4.

It can be seen that the 6 step-responses form a smooth

transition, and the outer ones correspond to the known

Fractional-Order Modelling in Modelica

112 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118109

Figure 4. Step responses of s0.0, s-0.2, s-0.4, s-0.6, s-0.8 and s-1.0,

approximated with the 3rd order Oustaloup’s Method

step-responses mentioned earlier. All curves also match

the curves given in Oldham (1974).

2.2.3 Harmonic Displacement

If a harmonic function is derived or integrated, the re-

sulting function is a new harmonic function with a phase

offset. For the second test, it is required that the result

of fractionally integrated or derived harmonic functions

behaves analogous.

The implemented model was instantiated 8 times and

assigned λ -values in intervals of size 0.5 between -1 and

2.5. All models were subjected to a cosine input. Initial-

isation was done in such a way as to avoid unnecessary

large initial transients: The models with derivative char-

acter would see the onset of the cosine input as a step and

correspondingly respond with an impulse. For this rea-

son, their initial states were set to a steady state solution.

Models with integrative character were set to zero initial

conditions, to set their integration constants to zero as

well. The results of this test can be seen in Figure 5.

Figure 5. Cosine response of s-1.0, s-0.5, s0.0, s0.5 (zero state

initialisation) and s1.0, s1.5, s2.0, s2.5 (steady state initialisation)

approximated with the 3rd order Oustaloup’s Method

It can be seen that all model outputs form harmonic

functions. Also, the offsets between the functions are

uniform. The initialisations of s0.5 and s2.5 are obviously

not optimal, but after a few seconds those deviations van-

ish.

3 Examples

3.1 Heat Conduction

In Kulish and Lage (2000), relationships between tem-

perature and heat flow rate at arbitrary locations in semi-

infinite domains are developed. The temperature at a

given time at the boundary is in this way given by

T (t) =
α1/2

2 ·A · k
·

δ−1/2Q(t)

δ t−1/2
+T0 (3)

with the thermal conductivity k, the thermal diffusiv-

ity α , the Area A, the heat flow rate Q, and the starting

temperature T0.

As can be seen in Listing 4, the corresponding imple-

mentation in Modelica is straightforward and compact.

Listing 4. Modelica implementation of a semi-infinite thermal

domain

A p p r o x i m a t i o n s . O u s t a l o u p O p e r a t o r

h a l f I n t (o r d e r = 3 , lambda=−0 . 5) ;

equat ion

h a l f I n t . u = h e a t P o r t . Q _ f l o w ;

h e a t P o r t . T =

(a l p h a ^ (1 / 2) / (k∗A∗2) ∗ h a l f I n t . y) + T_0 ;

In Figure 6, the result of a simulation can be seen,

where a semi-infinite block was subjected to a periodic

rectangular heat flow rate at the boundary. The temper-

ature at the boundary exhibits strong memory-effects, as

would be expected from such a system.

Figure 6. Temperature response of a semi-infinite domain sub-

jected to periodic rectangular heat flow

3.2 Viscoelasticity

The dynamic behaviour of viscous fluids is commonly

described with the Navier-Stokes equations. For the dy-

namic behavior of linear elastic materials, the Lame-

Navier equations are used. Both equations have some

similarities. As an example, let us take a look at

the respective relationships between stress/velocity and

Session 2C: Simulation Techniques

DOI
10.3384/ecp15118109

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

113

stress/strain for incompressible fluids and linear-elastic

solids:

τττ = µ
(

∇v+∇vT
)

σσσ =
1

2
C
(

∇u+∇uT
)

(4)

with the stress tensors τττ and σσσ , the viscosity µ , the

tensor of elasticity C, and the velocity and displacement

tensors v and u. The structure of both equations essen-

tially differs only by one differential operation, as the

velocity is the derivative of the displacement w.r.t. time.

Likewise, a relationship between the stress and strain

in one-dimensional viscoelastic materials was found in

Stiassnie (1979).

σ = k ·
δ α ε

δ tα
(0 ≤ α ≤ 1) (5)

with the stress τ , the material properties k and α , and

the strain ε . For α-values of 0 and 1, the behaviour of

pure solids and fluids is obtained.

As with the other example, the implementation of this

model in Modelica only takes two lines of code (not

shown here).

The response of a viscoelastic block (α = 0.45) un-

der constant tension can be seen in Figure 7. The result

is similar to the results presented by Stiassnie (1979),

where the model is validated against real-world measure-

ments.

Figure 7. tension-response of a viscoelastic block with a

length of 1m under constant tension

4 Discussion

The last sections showed that DAE systems containing

time-derivatives of fractional order can be successfully

implemented by the given means of the Modelica lan-

guage. The provided solution offers an approximation

that is good enough for at least a large set of technical

applications. However, the given examples indicate that

the typical application of fractional order derivatives is

on the textual modelling level and that the applied formu-

lation is, although practically feasible, still more clumsy

than actually necessary. The reason for this is the im-

plementation in block-form. This leads to a declaration

that has a dummy character since it is only being used to

textually connect its input and output. Because any im-

plementation of a fractional-order operator requires an

internal state, an implementation as function is not pos-

sible. Yet, it would be very helpful for the modeller if

he could call the block like it would be a function. In

concrete terms, this means that an anonymous declara-

tion of a block in the equation section is enabled whose

inputs and outputs are connected within the declaration

statement. To illustrate this mechanism, let us revisit the

example of Listing 4:

Listing 5. Modelica implementation of a semi-infinite thermal

domain using the "calling blocks as function"-approach

block h a l f I n t =

A p p r o x i m a t i o n s . O u s t a l o u p O p e r a t o r

(o r d e r = 3 , lambda=0 . 5) ;

equat ion

h e a t P o r t . T = (a l p h a ^ (1 / 2) / k)

∗ h a l f I n t (u= h e a t P o r t . Q _ f l o w) . y /A + T_0 ;

Listing 5 presents a reformulation of Listing 3 based

on the concept "Calling blocks as function". First, a local

declaration of a half-integrater is created from the gen-

eral Operator-block. Then the expression

halfInt(u=heatPort.Q_flow).y is represented

as an anonymous declaration of the halfInt block. Within

the parantheses, the input is connected and the .y states

that the expression as a whole represents the output sig-

nal of the block. The presented concept "Calling Blocks

as Function" is not a new idea. Different syntactical vari-

ants are currently in discussion within the Modelica As-

sociation based on contributions by Martin Otter, Hans

Olsson, Peter Fritzson, Michael Sasena, Martin Sjölund

and others. An implementation variant in an experimen-

tal equation-based language can be found for instance in

Sol (Zimmer, 2010). Should this feature become part of

a future Modelica language version, modelling with frac-

tional order time-derivatives will be almost as convenient

as with standard time derivatives.

5 Conclusion

By design, the Modelica language is limited to the use

of integer-order differential operators. This excludes the

modelling of certain physical systems. We present an

implementation of Oustaloup’s approximation method in

Modelica. The resulting model approximates fractional-

order differential operators. Parameters for approxima-

tion order and frequency fitting range can be used to

tailor the model to a specific application. In this way,

the mentioned limitation of the Modelica language can

be conveniently bypassed, thus increasing the scope of

physical systems that can be described in a meaningful

manner.

Fractional-Order Modelling in Modelica

114 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118109

Reproducible research

The results of this paper can be reproduced using the

code which is made available on:

github.com/DLR-SR/FractionalOrder

References

Michele Caputo. Linear models of dissipation whose q is al-

most frequency independent part 2. Geophysical Journal

International, 13(5):529–539, 1967.

G Carlson and C Halijak. Approximation of fractional capaci-

tors (1/s)ˆ(1/n) by a regular newton process. Circuit Theory,

IEEE Transactions on, 11(2):210–213, 1964.

Lokenath Debnath. Recent applications of fractional calculus

to science and engineering. International Journal of Math-

ematics and Mathematical Sciences, 2003(54):3413–3442,

2003.

Bill Goodwine and Kevin Leyden. Recent results in fractional-

order modeling in multi-agent systems and linear friction

welding. IFAC-PapersOnLine, 48(1):380–381, 2015.

Andreas Klöckner, Andreas Knoblach, and Andreas Heck-

mann. How to shape noise spectra for continuous system

simulation. In Proceedings of the 11th International Mod-

elica Conference, 2015.

RC Koeller. Applications of fractional calculus to the theory of

viscoelasticity. Journal of Applied Mechanics, 51(2):299–

307, 1984.

VV Kulish and JL Lage. Fractional-diffusion solutions for

transient local temperature and heat flux. Transactions-

American Society of Mechanical Engineers Journal of Heat

Transfer, 122(2):372–375, 2000.

Richard L Magin. Fractional calculus in bioengineering. Crit-

ical Reviews in Biomedical Engineering, 32(1), 2004.

Keith B Oldham. The fractional calculus. Elsevier, 1974.

Alain Oustaloup, Francois Levron, Benoit Mathieu, and Flo-

rence M Nanot. Frequency-band complex noninteger differ-

entiator: characterization and synthesis. Circuits and Sys-

tems I: Fundamental Theory and Applications, IEEE Trans-

actions on, 47(1):25–39, 2000.

Indranil Pan and Saptarshi Das. Intelligent fractional order

systems and control: an introduction. Springer Publishing

Company, Incorporated, 2012.

Yu Z Povstenko. Fractional heat conduction equation and as-

sociated thermal stress. Journal of Thermal Stresses, 28(1):

83–102, 2004.

J Sabatier, Om P Agrawal, and JA Tenreiro Machado. Ad-

vances in fractional calculus, volume 4. Springer, 2007.

Michael Stiassnie. On the application of fractional calculus for

the formulation of viscoelastic models. Applied Mathemat-

ical Modelling, 3(4):300–302, 1979.

BM Vinagre, I Podlubny, A Hernandez, and V Feliu. Some

approximations of fractional order operators used in control

theory and applications. Fractional calculus and applied

analysis, 3(3):231–248, 2000.

Dingyu Xue, Chunna Zhao, and Yang Quan Chen. A

modified approximation method of fractional order sys-

tem. In Mechatronics and Automation, Proceedings of the

2006 IEEE International Conference on, pages 1043–1048.

IEEE, 2006.

Dirk Zimmer. Equation-based modeling of variable-structure

systems. PhD thesis, Swiss Federal Institute of Technology,

Zürich, 2010.

Session 2C: Simulation Techniques

DOI
10.3384/ecp15118109

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

115

116 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Modelica Library for Feed Drive Systems

Denis Özdemir Tobias Motschke Werner Herfs Christian Brecher
Laboratory for Machine Tools and Production Engineering (WZL) of RWTH Aachen University, Germany,

{D.Oezdemir, T.Motschke, W.Herfs, C.Brecher}@wzl.rwth-aachen.de

Abstract

As a part of machine tools and production machines,
the primary task of feed drives is to create the contour
of a workpiece by moving it and/or the tool along one
or more axes according to the control input. This paper
presents a Modelica library for feed drive systems
consisting of electrical, electro-mechanical and me-
chanical components. The aim of the library is to pro-
vide engineers means to design feed drive models that
can be parametrized with available data from compo-
nent suppliers. The models are augmented with metrics
and requirements to facilitate simulation analysis.

Keywords: Feed drives, servo motors, machine tools

1 Introduction

The design of feed drives systems is a complex tech-
nical problem due to the numerous requirements, de-
sign variables and interactions. Therefore, many com-
puter-aided methods have been developed and simula-
tion techniques are employed since the 1980s, e.g.
(Simon 1986). These approaches mostly rely on signal-
oriented models that are well suited to describe control
structures (Brecher 2002; Zirn 2008). However, using
the signal-oriented approach for physical systems such
as multi-mass oscillators yields complicated structures
that are difficult to understand even for experts. An
alternative is to couple control-simulation with multi-
body simulation or finite element software (Altintas et
al. 2011). In industrial practice, however, these simula-
tion approaches have hardly been applied as a recent
survey shows (Brecher et al. 2014). While many ma-
chine suppliers see great potential in virtual prototypes,
qualified personal and the costs of software are main
obstacles.

In contrast to these simulation approaches motor siz-
ing software such as Sizer by Siemens or Motion Ana-
lyzer by Rockwell Automation are widely used. These
tools allow a quick selection of an adequate motor for a
specified application, but the mechanical part of the
system is assumed to be given and dynamic properties
of the feed drive system as a whole are not taken into
account.

The Modelica library for feed drive systems aims to
close the gap between the elaborated simulation tech-

niques on the one hand and the sizing software on the
other hand. This means the library provides models
that can be used with limited expert knowledge by
leveraging the concept of component-orientation in
Modelica. Such an approach implies models that can
be parametrized from available supplier data. In addi-
tion to the behavioral equations, metrics and require-
ments are included in the components to highlight
critical behavioral aspects.

The Modelica library for feed drive systems is part
of a planned design environment for feed drive systems
where an optimizer is used to find those parameters
and components from a database that optimally fulfill
the requirements. The concept of the design environ-
ment and its potential implementation in the design
process of machine tools is presented in an additional
paper (Özdemir et al. 2015). In a preceding paper parts
of an earlier version of the library have been presented
briefly (Herfs et al. 2015). This paper therefore focuses
on the newly developed aspects.

The contents of this paper fall into three main parts.
In Chapter 2 models of feed drives motors are de-
scribed. Chapter 3 addresses mechanical components
and Chapter 4 presents results from the simulation of
the system as a whole. Finally, Chapter 5 summarizes
the results and explains how these models are embed-
ded into the feed drive design environment.

2 Models for Feed Drive Motors

Feed drive motors of modern machine tools are primar-
ily permanent-magnet synchronous motors (PSM),
which are therefore the focus of this paper (s. Chap.
2.1). The models for permanent-magnet synchronous
motors with field weakening option (s. Chap. 2.2) as
well as for linear motors (s. Chap. 2.3) can be easily
developed based on the model of the PSM. Hereby, the
object-oriented approach has the advantage that many
components can be reused.

2.1 Model for Permanently Excited Synchro-

nous Motors (PSM)

The Modelica Standard Library contains two models of
the PSM in the Electrical.Machines and Magnet-

ic.FundamentalWave sublibraries. The core of these
PSM models is a model of the air gap, which describes

DOI
10.3384/ecp15118117

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

117

the electromechanical torque as the cross product of
current and magnetic flux in the dq-coordinate system
that is fixed to the rotor (Kral, Haumer 2005; Kral
2011). While the PSM model in the Machines library
uses space vectors for current, voltage and flux linkage
the FundamentalWave model follows an even more
physically rigorous approach with complex vectors. In
the Machine library heat losses are considered with
regards to the resistance of the stator windings and the
damper cage. In addition eddy current losses in the
stator core and mechanical losses depending on the
speed are taken into account.

However, this rigorous physical approach requires a
variety of physical parameters, e.g. the inductances in
d- and q-direction, the leakage inductance of the stator
and parameters for eddy current losses. Because these
parameters are generally not available during drive
selection, the PSM models of the Modelica Standard
Library have to be simplified. Moreover, the standard
PSM models do not include the design requirements
that have to be considered during feed drive design.

2.1.1 Behavior Model

Typically available supplier data regarding the physical
behavior is displayed in Table 1. Based on this data a
standard model for the PSM (Schröder 2009, p. 394)
can be implemented:

    
d M D q

U p L I , (2)

      q

q D q M PM

dI
U L R I p

dt
  , (3)

3   
M PM q

M p I (4)

Here, d
U , q

U and q
I are the RMS values of the motor

voltage and torque building current in the dq-
coordinate system and M

 denotes the angular veloci-
ty of the rotor, see Figure 1. The number of pole pairs
p , the effective inductivity D

L and the winding re-
sistance R can be taken from the supplier data. The
magnetic flux of the permanent-magnet PM

 relates
motor torque M

M and torque-building current q
I and

can be calculated from the given torque constant T
K

by

The temperature of the motor M
T is dependent on

the power dissipation V
P , the heat transfer resistance

Th
R , the thermal time constant Th

t and the environ-
mental temperature ��, i.e.

 M

Th V Th M U

dT
R P t T T

dt
     . (5)

While Th
t is mostly listed in the supplier specification,

there is usually no value for Th
R given. But Th

R can be
calculated from the stall current at 100 K overtempera-
ture 0,100 K

I :

2
0,100

100

3 ()th

K

K
R

R I


 
. (6)

In addition to the winding resistance heat is dissipated
due to iron losses and bearing friction at a rate approx-
imately proportional to 1,5

M
 . Overall the resulting mo-

tor losses are therefore

1,523
V Str A R M

P R I k      , (7)

where A
I denotes the effective value of the armature

current that is equal to q
I if no field weakening is ap-

plied. The proportionality factor R
k for the iron and

bearing friction losses can be estimated by the manu-
facturer’s specifications of the motor current ,100N K

I
for the rated torque ,100N K

M and the rated speed N
 ,

i.e.

,100 ,100T N K N K

R

N

K I M
k



 
 . (8)

Table 1. Typically available physical data for a PSM

Variable Unit Physical parameter

p - Number of pole pairs

T
K Nm/A Torque constant

E
K Vs/rad Voltage constant at 20° C

R  Winding resistance at 20° C

D
L H Effective inductivity

mech
t s Mechanical time constant

Th
t s Thermal time constant

M
J kg m2 Rotor inertia

1

3
 

PM T
K

p
 . (1)

Figure 1: Equivalent circuit of the PSM

EMF JM

Rot.

RStr LD

Uq, Ud

Iq

M

MM

KT

PM

id = 0
0

d
I 

q
I

D
L

PM


M


M
M

M
J,

d q
U U

R

EMF

T
K

Rot.

Modelica Library for Feed Drive Systems

118 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118117

The manufacturer specifications contain nominal
values. However, some parameters can be determined
more accurately when the actual state of the motor is
taken into account. For example the resistance of the
windings changes with temperature according to

 1 (293,15 K)
M

R R T      (9)

with  as the temperature coefficient of copper at
20 °C. The torque constant T

K is usually given for an
overtemperature of 100 K, i.e. 0,100 0,100/

T K K
K M I .

Since the manufacturer data usually contains the stall
torque and current also for 60 K overtemperature, a
factor for the temperature dependence can be estimated
by

 0,60 0,60
,

/
1 393 K

40 K
T K K

kT T M

T

K M I
c T

K


   


. (10)

Due to saturation effects at high currents, the torque
constant decreases at torques 0,602

M K
M M  (Bosch

Rexroth AG 2009; Siemens AG 2010). With the in-
formation on maximum torque and current the reduc-
tion factor ,kT M

c can be obtained by linear interpola-
tion, so that

, ,T kT T kT M T
K c c K

    . (11)

2.1.2 Requirement Model

The requirement model of the PSM consists of the
limit values and an adequate metric, see Table 2. For
example, the line-to-line armature voltage An

U is lim-
ited by the maximum output voltage of the converter

, maxU
U , i.e.

,max ,max3
An U

U U  . (12)

Substituting (2) and (3) into (12) yields for steady state

2 2 2
,max

3 3
UM D M M M T

T T

Up L M M R K

K K

  

 

   
     

   
, (13)

which allows to calculate the voltage limiting charac-
teristic. These can then be compared to the torque-
speed diagrams that are usually given by the motor
supplier. Figure 2 shows a good correspondence be-
tween model and catalogue data regarding the voltage
limiting characteristic; while Figure 3 shows the corre-
spondence between the model and the manufacturers

Table 2. Maximum permissible values for a PSM

Limit Metric Requirement

DC link voltage  
0

2 2
, max

[,]
max (()) (())

f

An d q
t t t

U U t U t


 
,max ,max3

An U
U U 

Temperature limit  
0

, max
[,]

max ()
f

M M U
t t t

T T t T


  
, max ,M M perm

T T  

Current limit  
0

, max
[,]

max ()
f

A A
t t t

I I t



, max , maxA M

I I

Torque limit  
0

, max
[,]

max ()
f

M M
t t t

M M t



, max , maxM M I

M M

Speed limit  
0

, max
[,]

max ()
f

M M
t t t

n n t



, max ,M M perm

n n

Figure 2: Comparison between calculated voltage limit-
ing characteristics and supplier data sheet (Bosch
Rexroth AG 2009)

0 1000 2000 3000 4000 5000
0

10

20

30

Rexroth MSK 060C-0300
a) UU, max = 400 V
b) UU, max = 480 V

a) b) Model
Catalogue

Figure 3: Comparison between calculated thermal lim-
iting characteristics and supplier data sheet (Siemens
AG 2010)

0 500 1000 1500 2000 2500 3000 3500
0

10

20

30

Siemens 1FT7086-AC7
a) S1-100 K
b) S1-60 K

a)

b)

Model
Siemens SIZER

Session 2C: Simulation Techniques

DOI
10.3384/ecp15118117

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

119

Figure 5: Permanently Excited Synchronous Motor in Modelica

sizing tool. However, for other motors larger devia-
tions are observed, see Figure 4. The deviations can be
explained by parametric uncertainties and nonlineari-
ties in the interpolation.

To validate compliance with the temperature limit,
the actual motor temperature is obtained by combining
(5) and (7). Here, the manufacturer usually indicates
the so-called S1-Curve in the torque-speed diagram.
Operation points below the S1-curve allow steady-state
operation without violating the temperature limit.

2.1.3 Modelica Model

The behavioral equations and the requirements of
the PSM are included in a Modelica model that can be
parameterized with typical manufacturer data, see Fig-
ure 5. Equations (2)-(4) are modeled with the electrical
equivalent circuit consisting of inverter, resistance,
inductance, air gap, zero potential and sensors for volt-
age and current. Note, that not the connectors from the
Modelica Standard Library are used since both effec-
tive values in the dq-coordinate system have to be con-

Figure 4: Percentage deviations of breakpoint speed and no-load voltage limiting speed for different motors

-10 -5 0 5 10 15 20

Rexroth MSK060C-0300 (440 V)

Rexroth MSK075D-0450 (440 V)

Rexroth MSK100A-0200 (440 V)

Lenze MCS12D20 (400 V)

Lenze MCS12L17 (400 V)

Lenze MCS19J29 (400V)

Siemens 1FT6031-4AK71 (380 V)

Siemens 1FT6086-8AF71 (380 V)

Siemens 1FT6105-8SF70 (380 V)

Siemens 1FT7067-7WF7 (425 V)

Siemens 1FT7086-AC7 (425 V)

Siemens 1FT7108-AB7 (425 V)

Speed deviation [%]

%-dev. breakpoint speed

%-dev. voltage limiting
speed at M = 0

Modelica Library for Feed Drive Systems

120 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118117

sidered. This means the connector contains voltage and
current in d- and q-direction. In addition, the electrical
connector includes a fifth variable for the electrical
angular velocity. In contrast to the motor models from
the Standard Library the three phase current and the
harmonic oscillations are not explicitly simulated,
since these are not required to describe the control
behavior in the context of machine tools so that the
simulation time can be shortened.

With the model of the converter the effective motor
voltage in d- and q-coordinate direction can be im-
pressed. The flux-generating current d

I in the inverter
is set to zero for the PSM without field weakening. The
airgap model contains the relationship between torque-
building current and torque (4) as well as between
rotational speed and induced motor voltage (3). More-
over, the airgap includes the dependence of the torque
constant on temperature and torque (11). The heat from
the winding current and the iron and bearing friction
losses yield the total heat loss that increases the tem-
perature of the heat capacitor.

The metrics and requirements from Table 1 are in-
cluded in the sensor models. For example, the current
sensor contains the equations for maximum and RMS.

2.1.4 Validation of the Current Control Loop Model

According to (3), the relationship between torque-
building current

q
I and effective motor voltage in q-

coordinate direction
q

U can be described with a first
order time lag.

q
I is controlled with a PI controller and

the electrical time constant is compensated by tuning
the PI controller with the magnitude optimum criterion,
see Figure 6 (left). The step response is measured for a
servomotor of type Siemens 1FT6108 and compared to
simulation, see Figure 6 (right). The settling time of
simulation and measurement is similar, but the meas-
ured trajectory of

q
I oscillates at a lower frequency.

The frequency response – that has been obtained with
Modelica Linear Systems Library – underlines this
difference in the dynamic behavior since the maximum
elevation of the simulation occurs at just under 200 Hz
while the measured maximum lies at 600 Hz, see Fig-
ure 7. The amplitude response reflects the delays of the
electrical system and the measurement system with a
drop of 40 dB per decade. The differences between
measurement and simulation are probably due to the
simplified control structure in the model. Regarding
the outer control loops in the cascaded feed drive struc-
ture, the difference can be neglected.

Figure 6: Model of the current control loop (left) and step response (right)

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

Measured step response

Simulation

Reference current

Figure 7: Reference frequency response of the current control loop

-40

-30

-20

-10

0

10

Measurement

Simulation

10 20 50 100 200 500 1000 2000

-450

-360

-270

-180

-90

0

Session 2C: Simulation Techniques

DOI
10.3384/ecp15118117

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

121

2.2 Model for Permanently Excited Synchro-

nous Motor with Field Weakening Option

(PSM-FW)

The aim of field weakening is to expand the possible
operating range of the motor by eliminating the re-
striction of the voltage limiting curve. For this purpose
a counter voltage is induced that weakens the magnetic
field. For the PSM, field weakening can only be
achieved by a current component in the d-coordinate
axis that compensates the magnetic field of the perma-
nent-magnet. Given the possibility of field weakening,
but neglecting reluctance, (3) is extended to (Schröder
2009, p. 391):

 q

q D q M PM D d

dI
U L R I p L I

dt
        , (14)

which illustrates that a negative current d
I reduces

voltage component
q

U . On the one hand, the new lim-
iting curve results from the condition 2 2

, maxd q M
I I I  .

On the other hand, there is a new voltage limit at the
point of maximum field weakening at d PM D

I L  .
In this case the product of rotational speed and torque
is constant, i.e. the points on the voltage characteristic
with field weakening correspond approximately to the
same power.

From a modelling point of view, field weakening
can be described as follows. If the converter output
voltage without field weakening ,A FW

U  is below the
permissible value, no field weakening is required.
Once the converter output voltage without field weak-
ening would exceed the permissible value, a negative
current in d-coordinate direction is induced that main-
tains the voltage 2 23

A d q
U U U   below the per-

missible value. Therefore, there are two alternative
system equations:

, , max

, max , , max

0, if

, if
d A FS U U

A U U A FS U U

I U S U

U S U U S U





  
    

, (15)

where U
S denotes a safety factor that determines how

far the voltage is kept below the limit. In an exemplary
case a motor is operated at a point just below the limit-
ing curve of field weakening, see Figure 8 (left). The
armature voltage increases with the speed up to the
specified limit of , max 400 V

U U
U S  , see Figure 8

(right). Once the limit is reached, d
I keeps the voltage

constant. The peak of d
I is just below the limit value

of 20 A
d PM D

I L   which corresponds to the
operating point just below the field-weakening curve. It
should be noted that an implementation according to
(15) has the advantage that no controller tuning is re-
quired. However, reaching the maximum of the field
weakening current leads to termination of the simula-
tion since the algebraic equation system can no longer
be resolved.

2.3 Model for Linear Motors

The percentage of linear induction machines as drive
systems in machine tools is generally estimated below
10 %. Nevertheless it has its advantages in high dy-
namics and the lack of transmission elements. A disad-
vantage is the small accessible feed force in relation to
the costs. The model of the linear motor follows from
the PSM model by transferring rotational to transla-
tional dimensions, i.e. instead of M

 we have transla-
tional velocity M

v , instead of p the pole pitch p
 , and

instead of T
K the force constant F

K . This yields:

M

d D q

p

v
U L I





    , (16)

3
q F

q D q M

dI K
U L R I v

dt


      , (17)

M F q
F K I

  . (18)

Figure 8: Operation points in the torque-speed-characteristic of the supplier (l), simulated trajectories for armature volt-
age and field-weakening current (r)

0 500 1000 1500 2000 2500 3000
0

50

100

150

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

Simulated
load

Field
weakening

Voltage limit
without FW

UA [V] -Id [A]

t [s]

Siemens 1FT7086-AC7 [SIEM10]

Modelica Library for Feed Drive Systems

122 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118117

In terms of the thermal behavior, modeling of the
linear motor varies from the PSM. Due to its structure
a cooling system is deployed. The cooling cycle is
described by

  1
exp

R M V M

th p

T T T T
R V c

 
         

, (19)

where R
T is the recirculation temperature, V

T the for-
ward flow temperature, th

R the thermal resistance, V
the volume flow,  the fluid density and

p
c the spe-

cific heat capacity of the fluid. The pressure drop is
obtained from the formula of Blasius

1,75
p

p K V   , (20)

where the factor p
K can be calculated from nominal

flow rate and pressure drop as given in the manufactur-
er data. Figure 9 shows the linear induction motor
model. The similarity to the rotational induction ma-
chine is obvious. The rotational parts such as rotor,
rotational sensor and electromagnetic force have been

Table 3. Maximum permissible values for ball screw drives based on (Gross et al. 2006)

Limit Metric Requirement

Eigenfrequency
,

11

2 1 ()
ref

d

M Sp Sp Sp L

m
f

c l c k


 
 , mind d

f f

Strain to preload  
0

, max
[,]

max ()
f

Sp Sp
t t t

F F t


 3/ 2
, max ,2

Sp a VM
F F 

Strain to collapse load  
0

, max
[,]

max ()
f

Sp Sp
t t t

F F t



4

, max , 2

Sp

Kn Sp Sp Kn

Sp

d
S F k

l
  

Strain to static rating  
0

, max
[,]

max ()
f

Sp Sp
t t t

F F t



0 ,max 0am Sp am

S F C 

Critical bending speed  
0

, max
[,]

max ()
f

Sp Sp
t t t

n n t



, max , 2

Sp

n Sp Sp n

Sp

d
S n k

l
  

DN-Value  
0

, max
[,]

max ()
f

Sp Sp
t t t

n n t



, maxSp perm Sp

n DN d

Lifetime
 3 6

1

2 10

min 60
am mah

m

C FL

h n


 



 , minh h

L L

Figure 9: Modelica model for linear motors in Modelica

Session 2C: Simulation Techniques

DOI
10.3384/ecp15118117

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

123

replaced by translational components. The electrical
parts e.g. inverter and stator remain the same.

3 Mechanical Transmission Elements

Beside the servomotor, feed drives require transmis-
sion elements to transfer forces and moments from
drive to tool. These elements also need a proper model
to determine their influence on the drive system. Real-
istic component models can help predicting lifetime
and strain limits of components. Taking inherent or
geometric restrictions into account during simulation,
the search for optimal system components is facilitated.

In the following the approach will be demonstrated
by the example of a ball screw drive. Ball screw drives
are the most frequently used feed elements for machine
tools up to 4 m traveling distance to realize the trans-
mission from rotational to translational motion. The
translational motion is characterized by the spindle
pitch Sp

h and the relation between translational and
rotation velocity is given by

2
Sp

hv

 
 , (21)

Spindle torque
Sp

M and force
Sp

F are described by
a regular mechanical equation of motion

2
Sp

Sp Sp Sp Sp F

h
M J F M


     , (22)

where
F

M sums up the losses of the ball screw nut
and the force dependent friction of the spindle bear-
ings. The model contains the components spindle shaft,
spindle bearing, spindle inertia and ball screw nut. The
model for the screw nut defines the restrictions accord-
ing to eigenfrequency, maximum strain, revolution

limit, lifetime and the lossy transmission from rota-
tional to translational movement. The corresponding
requirements in Table 3 are formulated similarly to
those of the PSM.

4 Feed Drive System Simulation

A major advantage of using object-orientated mod-
els for feed drives is that modelling and simulation is
possible with limited expert knowledge if an adequate
component library is available. Once the system topol-
ogy is known, the component models from the library
can be connected and parametrized by the user from
available data of catalogues. As an example for linked
models one axis of a machine tool feed drive is shown
in Figure 10. The design is parametrized by character-
istic values that are available at an early design stage
like stiffness of motor, clutch, spindle, spindle nut or
bearings. Another advantage of the objective oriented
approach is the intuitive connection of components.
While signal oriented modeling demands mathematical
knowledge regarding transfer from the user, the object-
oriented approach allows to maintain the physical to-
pology. In addition to the motor and the mechanical
components Figure 10 shows the control loops. Using
the Linear Systems Library one is able to determine the
frequency response functions of the system, see Figure
11. As expected the correspondence between simula-
tion and experiment shows differences in the dynamic
behavior. This circumstance is owed to the simple
model neglecting several compliances of the complex
mechanical system. Nevertheless the dominant reso-
nance at approximately 350 Hz is reproduced well by
the model that only contains a-priori data. The simula-
tion results show that with small modeling effort and a-

Figure 10: Drive topology for on axis of a machining center

Modelica Library for Feed Drive Systems

124 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118117

priori available component data a prediction of the
dynamic behavior and critical operation states is possi-
ble to some extent. For a detailed structural analysis,
however, a FEM-simulation is necessary. Linked to a
component database a sensitivity analysis can be de-
ployed to find more suitable components in terms of
the desired system properties like efficiency or other
performance defining quantities.

5 Conclusion and Outlook

This paper presented the Modelica library for feed
drives. The behavior equations are based on well-
known equations. It has been shown, how these equa-
tions can be incorporated in a model that can be para-
metrized with a-priori available data. Moreover, the
paper outlines, how design requirements can be includ-
ed in the component models. The library will be sub-
mitted to the Modelica Association as a free library by
the end of 2015.

The final goal is to parametrize the object-oriented
model so that it complies with the system specific re-
strictions such as limited dc voltage supply, tempera-
ture or energy consumption. The variables of the model
serve as input for the linked optimization tool. Then the
parameters of existing products, obtained from supplier
catalogues for instance, are implemented in a database
that is directly connected to the model library of the
simulation tool. During an optimization run the opti-
mizer has access to the database and is able to vary the
model parameters at every iteration step. The optimiza-
tion algorithm is therefore responsible for the systemat-
ic search for the best solution, without simulating the
whole solution space that is containing all possible
combinations of components. Beside the optimization
of component parameters, it is also possible to analyze
the system dynamics and to optimize the control sys-
tem. By defining characteristic parameters for the dy-
namic behavior such as step response or frequency

response as target functions, the controllers are pre-
designed directly during the engineering stage of the
development process.

Acknowledgement

The authors thank the German Research Foundation
DFG for the support within the project “Optimierung
des Systementwurfs von Maschinen und Anlagen auf
Basis komponentenorientierter Verhaltensmodelle”.

References

Altintas, Y.; Verl, A.; Brecher, C.; Uriarte, L.; Pritschow, G.
(2011): Machine tool feed drives. In CIRP Annals - Manu-

facturing Technology 60 (2), pp. 779–796. DOI:
10.1016/j.cirp.2011.05.010.

Bosch Rexroth AG (2009): Rexroth IndraDyn S. Syn-
chronmotoren MSK.

Brecher, Christian (2002): Vergleichende Analyse von Vor-
schubantrieben für Werkzeugmaschinen. RWTH Aachen:
Dissertation.

Brecher, Christian; Brockmann, Birk; Daniels, Matthias;
Wennemer, Matthias (2014): Herausforderungen bei der
messtechnischen Untersuchung von Werkzeugmaschinen. In
Zeitschr. f. wirtsch. Fabrikbetrieb (12), pp. 885–888.

Gross, Hans; Hamann, Jens; Wiegärtner, Georg (2006):
Technik elektrischer Vorschubantriebe in der Fertigungs-
und Automatisierungstechnik. Erlagen: Publicis.

Herfs, W.; Özdemir, D.; Lohse, W.; Brecher, C. (2015):
Design of Feed Drives with Object-Oriented Behavior Mod-
els. In Inge Troch, Andreas Kugi, Felix Breitenecker (Eds.):
MATHMOD 2015 - 8th IFAC International Conference on
Mathematical Modelling, Vienna, pp. preprint.

Kral, C.; Haumer, A. (2005): Modelica libraries for dc ma-
chines, three phase and polyphase machines. In Proc. of the

4th Modelica Conference, pp. 549–558.

Kral, C.; Haumer, A. (2011): The New FundamentalWave
Library for Modeling Rotationg Electrical Three Phase Ma-
chines. In: Proc- of the 8th Modelica Conference, pp. 170-179

Özdemir, D.; Herfs, W.; Brecher, C. (2015): Approaching
the Dilemma between Plan and Value in Computer Aided
Engineering of Production Machines. In Proc. of the 48th

CIRP Conference on Manufacturing Systems, Ischia accept-
ed.

Schröder, Dierk (2009): Elektrische Antriebe - Grundlagen.
4th ed. Dordrecht: Springer.

Siemens AG (2010): SINAMICS S120. Synchronmotoren
1FT7. Projektierungshandbuch 03/2010. Erlangen: Siemens
AG.

Simon, Walter (1986): Elektronische Vorschubantriebe an
NC-Systemen. Technische Universität München: Disserta-
tion.

Zirn, Oliver (2008): Machine Tool Analysis. Modelling,
Simulation and control of Machine Tool Manipulators. ETH
Zürich: Habilitation.

Figure 11: Correspondence between experimental and
simulated frequency response

-20

0

20

40

10 20 30 40 50 100 200 300 400 500

-90

0

90

Experiment

Simulation

(1)

(1)

(2)

(2)(1*)

(1*)

Session 2C: Simulation Techniques

DOI
10.3384/ecp15118117

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

125

126 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Model-based Development of a Holistic Thermal Management

System for an Electric Car with a High Temperature Fuel Cell

Range Extender

Dipl.-Ing. Torben Fischer1 Dipl.-Ing. Florian Götz1

Dr.-Ing. Lars Fredrik Berg1 Dr.-Ing. Hans-Peter Kollmeier1 Prof. Dr. rer. nat. Frank Gauterin2
1Fraunhofer Institute for Chemical Technology (ICT), Project Group New Drive Systems, Germany

 {torben.fischer, florian.goetz, larsfredrik.berg, hans-
peter.kollmeier}@ict.fraunhofer.de

2Institute of Vehicle System Technology, KIT, Germany, frank.gauterin@fast.kit.edu

Abstract

Within the Fraunhofer innovation cluster “Regional
Eco Mobility 2030” (REM2030) concept developments
to improve the energy efficiency of regional eco
mobility of the future are investigated. An AUDI A1
Sportback is used as a technology demonstrator with an
entirely electric powertrain, completed to a serial
hybrid by a fuel cell range extender. A methanol
reformer provides hydrogen for the high temperature
fuel cell. The main focus of this paper is the thermal
management system of the car, which has to deal with
different temperature levels and must be designed for
zero emissions and energy efficiency. The model-based
development of such a system using Modelica is
described, comprising a conception, simulation and
testing phase.
Keywords: REM2030; Thermal Management;

Modelica; Electric Vehicle; Serial Hybrid; Heat Pump

1 Introduction and State of the Art

In conventional automobiles with combustion engines,
waste heat is used to heat the passenger cabin. Electric
cars do not dispose of sufficient waste heat to cover all
caloric demands. Furthermore, additional components
have a more sensitive operating temperature and
require thermal conditioning. The thermal management
system of the vehicle must therefore provide sufficient
cooling and heating power. The range of an electric car
is already limited due to the low energy density of the
traction battery compared to conventional combustion
fuels, and these thermal restrictions can cause a further
range reduction. Using Modelica, a holistic thermal
management system for an electric car, equipped with
a high temperature fuel cell range extender, is
developed. The goal is to minimize the electric energy
demand of the thermal management system by using
all heat sources and sinks in a holistic approach. In a
further step the concept and the simulation will be
validated on the basis of hardware testing. Once the
functionality of the system is proven, additional

research will be dedicated to the operational strategy of
the vehicle.

Thermal management systems for electrified
powertrains can generally be classified according to the
type of the battery cooling method and the heating
technology applied. Battery electric vehicles often have
a high-voltage PTC (positive temperature coefficient)
heater to generate the demanded amount of heat (for
example Tesla Model S, Smart Electric Drive and VW
e-up). However, there are a number of vehicles which
are optionally equipped with heat pumps instead of
PTC heaters, like the VW e-Golf and the BMW I3. In
the case of the Nissan Leaf II and Renault Zoe the heat
pump is already integrated in series-production
vehicles. The cooling media used to cool the battey are
air, liquid and refrigerants, with refrigerants providing
the highest efficiency but also showing the highest
complexity. To the best of our knowledge, heat pumps
as part of a holistic thermal management system are
not yet commercially available, and are still the subject
of research, for example in Germany within the
projects GATE (“Ganzheitliches Thermomanagement
im E-Fahrzeug”) and EFA 2014/2 (“Energieeffizientes
Fahren 2014 Phase 2”).

2 Conception Phase

To develop a thermal management system, the system
and its components must first be analyzed in terms of
their nominal heat in- and output and their optimal
thermal operating ranges.

 System Description 2.1

In contrast to a conventional vehicle, the powertrain of
an electric car includes the following components:

 Traction battery
 Power electronics
 Electric traction motor

DOI
10.3384/ecp15118127

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

127

The demonstrator vehicle of REM2030 is equipped
with a 13 kWh Li-ion battery, assembled with 84 serial
and two parallel cells. The traction motor is a
permanently excited synchronous motor (PSM) and has
a peak power of 80 kW, while the continuous power is
at 50 kW.
The electrical range without accessory devices is
projected to be about 80km, which can be increased by
a range extender. The range extender is realized by a
high temperature fuel cell with a methanol reformer
(RMFC) providing an electrical power output of 5 kW
(cf. Berg, 2015). With a tank volume of 11 liters, the
range can be approximately doubled. The power
electronics includes three DC/DC converters: a buck
converter, which converts the intermediate circuit
voltage (400V) to the onboard power supply (12V) and
two boost converters, which convert the fuel cell
voltage (150V) to the intermediate circuit voltage or
the battery voltage (250V-350V) to the intermediate
circuit voltage (400V). Finally, an inverter is installed
to deliver AC voltage to the PSM depending on the
requested torque and speed. This inverter can also be
used to convert the AC charging current.

 Heat Sources and Sinks 2.2

The operation temperatures of the components vary
significantly, so they can act both as a heat source and
a heat sink, depending on the ambient conditions.
Additionally, the passenger cabin plays a major role in
the thermal management system. Table 1 shows the
identified heat sources and sinks within the system
borders.

Component
Operating

Temperature

Peak Heat

Flow Rate

Battery 20-40°C 6 kW

Fuel Cell 140-180°C 5 kW

Cabin 20-25°C -3..6 kW

Power
Electronics

Up to 150°C 5 kW

Electric Motor Up to 130°C

3 kW

Sun . 1.5 kW

Table 1. Heat sources and sinks in an electrical vehicle

 Efficient Heating and Cooling Concept 2.3

To achieve the defined goal it is necessary to use all
heat sources to cover the heat demands. The residual
heat demand must be covered at the expense of range,
because the electrical energy of the traction battery is
used. One promising approach to minimize electrical
consumption for heat generation is to integrate ambient
heat by using a heat pump. Cooling demands must also
be covered using all the heat sinks. Usually, the

ambient air acts as a heat sink, but the temperature
range of the battery and the cabin can be below the
ambient temperature in some scenarios. An active
cooling method must therefore be implemented.
Conventionally, an AC-system is used, which can be
achieved by a flow reversal in the heat pump. This is
the state-of-the-art in reversible split air-conditioning
units (Hundy et al., 2008).
Figure 1 shows the concept consisting of a heat pump
with flow reversal, which is called a “thermal module”,
and the connected periphery. The blue part on the right
is the inner coolant circuit connected to the cabin heat
exchanger, and the blue part on the left is the outer
coolant circuit connected to the ambient heat
exchanger. There are multiple operating possibilities of
the thermal management system, which can be
classified depending on the season. In the winter
scenario the ambient temperature drops below the set
temperature of the passenger cabin. If the range
extender is running, the entire heat demand should be
covered by the waste heat of the fuel cell. In extreme
scenarios, the remaining heat demand can be covered
by the heat pump. Waste heat from electric
components will be released into the environment. In
cases where the range extender is not running, the heat
pump is turned on, while the waste heat of electric
components is used as an additional heat source for the
heat pump.

Fuel Cell

Fuel Cell

Cooler

Ambient HX

Power Electronics

Electric Motor

Battery

HX

Battery +
-

Cabin HX

Cabin

Thermal

Module

Thermal

Module

Figure 1. Thermal Management System

The summer scenario represents ambient temperatures
above the passenger cabin set temperature. Waste heat
from the electric components will be released to the
environment, together with excessive heat from the
cabin. The fuel cell has its own heat exchanger
allowing the waste heat to be transferred into the

Model-based Development of a Holistic Thermal Management System for an Electric Car with a High
Temperature Fuel Cell Range Extender

128 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118127

environment. The refrigeration process provides
cooling energy to cool both the cabin and the battery.
In the transition phase the ambient temperature is
considered to be slightly below the set temperature.
This leads to two cases: Either there is too much waste
heat from the fuel cell, which has to be partially
released into the environment, or the range extender is
not active, so that the heat pump has to overcome the
remaining temperature difference.
The battery is air-cooled and can be connected to the
coolant circuits via the battery heat exchanger. Since
the battery needs to be heated and cooled, three-way-
valves are installed, which allow the battery to be
connected to the respective coolant circuit. The battery
conditioning is therefore independent from the cabin
air conditioning. This function could be necessary for
example during a high demand phase on a cold winter
day, when the battery has to be cooled while the cabin
has to be heated.

3 Simulation Phase

To verify the function of the concept, a simulation
model of the system was developed. Further potential
for optimization might also be identified by running
simulations, notably by carrying out a sensitivity
analysis to identify the most significant parameters.
The models were built up in Modelica using the
Dymola environment, based on the TIL Suite Library
(Richter, 2008) by TLK Thermo GmbH and the
Powertrain Library (Schweiger, 2005) by DLR.
Thermodynamic fluid data are drawn from TILMedia
and Refprop.

 Thermal Module Model 3.1

The thermal module consists of two plate heat
exchangers, two fixed orifice valves, a compressor, a
four-way-valve and an accumulator. The heat
exchangers change their function depending on the
flow direction.
The plate heat exchanger model is based on a finite-
volume-method and discretizes the flow path into three
cells which each fulfill the energy and mass balance
equations. Pressure drops within the heat exchangers
are not taken into account. Heat transfer coefficients
for the coolant side are based on the correlation for
plate heat exchangers by the VDI (Martin, 2010), while
the heat transfer coefficients for the refrigerant side are
estimated on the basis of the Shah and Chen
correlations (Shah, 1979 and Chen, 1966). The circuit
runs on the refrigerant R1234yf, whose thermodynamic
data are drawn from Refprop.
The 4-way-valve allows the flow direction to be
adjusted, which is relevant for the initialization of the
pressure states. The control of the valve is driven by
the sign of the difference between ambient temperature
and set temperature in the passenger cabin. The

initialization of the refrigeration system therefore
depends directly on the ambient temperature. The
receiver is placed on the low pressure side before the
compressor, which is fixed in the flow reversal system.
An inner heat exchanger, which is modeled by two
tubes with a heat transport, ensures the best possible
energy use.

 Thermal Management Model 3.2

The thermal module is extended by two secondary
coolant circuits, which release or receive heat from the
connected components. The coolant flows through the
converters and the electric motor, and they are modeled
as tubes whose thermal input is calculated by the
appropriate models in the complete vehicle system (see
3.4). The battery, fuel cell and passenger cabin are
connected to the coolant circuits via fin and tube heat
exchangers with a discretization of three cells. This is
mainly due to a change in the heat transport medium
from liquid to gas. The passenger cabin is modeled as a
simple homogenous volume with a heat transfer to the
surround environment. An air recirculation is
implemented to quantify potential energy savings.

 Battery Model 3.3

The battery is an important part of the thermal
management system, as its temperature increases
depending on the inner resistance and the current. The
inner resistance, in turn, depends mainly on the
temperature and the state of charge. The battery model
therefore needs to include a feedback between electric
output and thermal output, which influence each other.

Figure 2. Equivalent circuit model with two RC elements

To develop a realistic, fast-running model, which
should be used within a system simulation, an
equivalent circuit diagram with an inner resistance and
two RC elements was modeled. This method is widely

Session 2D: Automotive Applications 1

DOI
10.3384/ecp15118127

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

129

known and can be also found in the literature (Andre et

al, 2010).
Battery cycling tests deliver parameter values for the
inner resistance, and R1/C1 or R2/C2 for the RC-
elements at an open circuit voltage. These tests are
performed within a climate chamber and cells are (dis-)
charged with a given current, varying frequency,
varying temperature and varying state of charge.
Electrical impedance spectroscopy is applied to
determine the battery parameters. A caloric
measurement of the cell in a waterbath determines the
specific heat capacity, which is needed to calculate the
temperature of the battery.
The complete parametrized model has an electric-
thermal feedback, in which the battery is modeled as a
thermal mass and one cell is scaled to a whole battery
pack.
Using the object-oriented capacities of Modelica, it is
possible to instantiate one battery cell several times to
build up a battery pack consisting of individual cells.
This provides a good possibility to investigate cooling
concepts on a component level, since the individual
temperature of each cell can be calculated. However,
this significantly increases the computation time, and is
therefore not taken into account.

 Complete Vehicle Model 3.4

The results from the thermal management system
simulation show the total energy consumption of the
compressor and the pumps. To evaluate the effect on
the range, a complete vehicle simulation with
longitudinal dynamics must be performed. The
complete vehicle model is based on the Powertrain
Library calibrated with our vehicle and component
parameters, complemented by the battery and motor
models developed.
An interface between the thermal management model
and the vehicle model has been created, which
encompasses the following considerations:

 Effects of the thermal management system on
the battery temperature

 Influence of the electrical power input of the
compressor on the state of charge (SOC) of the
traction battery

 Heat dissipation of converters and motor
The map-based model of the electric motor provides a
torque depending on the position of the accelerator
pedal and the actual speed. The supplied torque is
needed to overcome the driving resistance at constant
speed. A surplus of torque results in increasing speed
and thus in the higher velocity of the car. The motor
model also delivers the efficiency rate at the actual
operating point, which is used to calculate the amount
of heat transferred into the coolant system.
To quantify the benefit of the thermal management
system in terms of range and consumption, the WLTP

cycle (Worldwide harmonized Light vehicles Test
Procedures) is chosen as a reference driving cycle.

Figure 3. Complete vehicle system with electrical,
mechanical or hydraulic connections

 Simulation Setup 3.5

All simulations are carried out with the base vehicle
outlined in the system description 2.1. The cabin
volume is assumed to be 2.5m³, the overall heat
coefficient of the cabin to the surrounding environment
is defined to 40W/K according to measurements. The
total window area is 2.8m² and the frontal area is 2.04
m² with a drag coefficient of 0.33. The mass of the
vehicle is defined to be 1200kg with a rolling
resistance coefficient of 0.014.

4 Control System

 Classic Control Approach 4.1

The thermal management system consists of several
components, which must be maintained within their
thermal operating range. This is either for comfort
reasons, as in the case of the passenger cabin, or for
life time and performance reasons, in the case of the
battery and the fuel cell.
Relating to our system there are three set temperatures
for different components:

 Passenger cabin (~22°C)
 Fuel cell (~160°C)
 Traction battery (~20-40°C)

In this multiple-input and multiple-output system
(MIMO) every input influences more than one output.
To apply a classic control approach it is therefore
necessary to decouple the systems and to treat each
partial system as a system with a single input and a
single output (SISO). As stated in (Levine, 1999) it can
be difficult or impossible to find a controller for a
MIMO system, such that every input affects only one
output. In this case, the compressor speed is controlled
by the temperature in the passenger cabin, while the
three-way-valve in the inner coolant loop is controlled
by the battery temperature. If the battery needs to be
cooled down, the 3-way-valve opens, which causes a
temporary reduction of cooling power for the cabin.

Model-based Development of a Holistic Thermal Management System for an Electric Car with a High
Temperature Fuel Cell Range Extender

130 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118127

The temperature change in the cabin eventually
increases the compressor speed. So the control
variable of the 3-way-valve influences both the battery
and cabin temperature, but is still a simple approach to
control this MIMO system.
However, this kind of control system always produces
some overshoots, leading to an inefficient way of
providing heating and cooling energy. Furthermore, the
temperature change in the cabin might cause a feeling
of discomfort for the passenger, which has to be
avoided.

 Dynamic Optimization 4.2

Another approach is to treat the whole thermal
management system as a MIMO system. A cost
function will be defined which includes the parameters
to be minimized. As described in (Gräber et al, 2009),
the system will be repeatedly solved online in an
optimization loop, while the optimization algorithm
changes the set of parameters and eventually keeps
those resulting in a minimized cost function. This step
is repeated in every given sample time for a given time
horizon.
The computational time can be very costly, but since
thermal systems react rather slowly, the sample time
can be increased. This can lead to a more efficient
control system, as overshoots can be avoided.
Furthermore, it can be extended to a predictive control,
which could eventually include data from a predictive
operational strategy of the range extender.
The model developed can be used in its basic form to
control the system using a dynamic optimization,
although it has to be adapted when using gradient-
based optimization algorithms. Look-up tables and
fluid property models are particularly affected.

5 Preliminary Results

 PTC vs. holistic approach with heat pump 5.1

First, the base car equipped with a state-of-the-art PTC
heating element is compared to the base car with a heat
pump system. The heating element is assumed to
completely convert its electric energy to heat.

The results shown in figure 4 were simulated with
an ambient temperature of 0°C, which is also the initial
temperature of the cabin. The total consumption within
the WLTP cycle and under the mentioned assumptions
can be reduced from 18.3 kwh/100km to 14.3
kwh/100km, i.e. a decrease of about 22%.

Figure 4. Comparison of the consumption of a
conventional PTC heating element and a heat pump
system at an ambient temperature of 0°C

Meanwhile, the electrical range can be increased from
60 to 75km. The coefficient of performance (COP),
which is the coefficient between the thermal output and
electrical input of the heat pump, is around 4.5.
Pressure drops are not yet taken into account, as stated
in 3.1. The battery cooling is not yet active, because its
temperature rises from the initial temperature of 0°C to
a maximum of only about 20°C by the end of the
range.

 Annual average advantage 5.2

Assuming that the air conditioning function of the
thermal module provides a similar efficiency to that of
a conventional air conditioning system, there will be
neither an efficiency decrease nor an increase in the
summer.

Figure 5. Average temperature profiles in different
European cities (VDI 4710 Part 4 March 2014, Table
B62, B99, B23 reproduced with the permission of the
Verein Deutscher Ingenieure e.V.)

To calculate the annual average advantage of the
developed thermal management system, the advantage
as a function of the ambient temperature was
determined. Using the VDI Norm 4710 (cf. Figure 5),
which provides annual statistical meteorological data
for European cities, it is possible to weight the

Session 2D: Automotive Applications 1

DOI
10.3384/ecp15118127

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

131

respective advantage according to the average annual
amount of time during which it applies.

The results are shown in table 2, not taking into
account any user behavior during different seasons or
times of day.

 City
Annual average

consumption decrease

Oslo 15 %

Strasbourg 12.4 %

Barcelona 8.4 %

Table 2. Annual average consumption decrease using a
holistic thermal management system rather than
conventional electric heating

 Extending Range with a High Temperature 5.3
Fuel Cell

The methanol tank capacity is 11 liters, which equates
to approximately 11 kWh of additional electric energy.

Figure 6. Comparison of the consumption of a
conventional PTC heating element and a heat pump
system at an ambient temperature of 0°C

With reference to the results of 5.1 the range can be
extended to 143 km with a conventional heating
element and to 153 km with the holistic thermal
management system based on a heat pump. Here there
is only a 7% advantage, because in both cases we use
the waste heat of the fuel cell to heat the cabin: no
additional heat has to be generated. Figure 6 illustrates
this behavior. The average consumption of the thermal
management system drops from about 5 kWh/100 km
to 1.7 kWh/100 km when using a PTC element. By
using a heat pump system this drop is from 1.1 to 0.4
kWh/100 km.

 Preconditioning Battery 5.4

Another simulative investigation concerned the use of
the preconditioning of a battery, which can be energy-
intensive due to the high thermal mass of the battery.
Since the battery’s inner resistance is higher at low
temperatures, it will heat up itself on sufficient power

demand. However, power output is limited at low
temperatures, which might result in lower acceleration
and also lower maximum velocity of the vehicle.
Another issue is so-called lithium plating: the
deposition of lithium on the anode as explained in
(Korthauer, 2013). This leads to irreversible damage
and occurs when charging the battery below 0°C.

Figure 7. Comparison of consumption of a conventional
PTC heating element and a heat pump system at an
ambient temperature of -5°C

Taking this restriction into account by disabling the
regenerative brake at temperatures below 0°C shows
that preconditioning can decrease the total
consumption. Figure 7 shows the simulation outputs
with an ambient temperature of -5°C: Using a thermal
management system with a PTC heating element, the
total consumption can be decreased by about 4% by
preconditioning the battery. While the amount of
consumption of the thermal management system rises,
the amount of recuperated energy rises more. The same
effect can be observed using a heat pump system to
precondition the battery, which leads to a decrease of
the total consumption by nearly 6%.

6 Test Bench / Validation

A test bench for the heat pump has been developed and
constructed to establish a validated, lossy model of the
system including real heat transfers and pressure drops.
The inner and outer coolant circuit can be thermally
conditioned, allowing measurement at stationary
temperatures. Several realistic scenarios, such as winter
or summer conditions, can then be reproduced. The
measurement includes temperature, pressure, mass
flows and power signals while varying the compressor
speed in different reproduced scenarios. This allows
adaptation of the simulation model.
A dSpace system is used as a central control unit,
which also has the opportunity to extend the test bench
to a hardware-in-the-loop test bench. When testing the
thermal management system, electric components such
as motor and power electronics can be replaced by
models, which calculate the output heat depending on

Model-based Development of a Holistic Thermal Management System for an Electric Car with a High
Temperature Fuel Cell Range Extender

132 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118127

the driving cycle. Controlled heating elements then
physically provide the calculated amount of heat.

7 Conclusion and Outlook

Modelica and the environment Dymola are powerful
tools to support the development process in the early
stage. With the help of these simulations, the potential
advantages of the thermal management system for
electric vehicles have been shown and the concept
verified. A test bench has been constructed to adapt the
simulation model of the refrigerant cycle to pressure
drops and realistic heat transfer. The model-based
development of the thermal management system
eventually leads to the buildup in hardware, which will
be connected to the components of the powertrain
within the demonstrator. The model of the system can
also be used to develop an advanced control system
using dynamic optimization, which will replace the
existing classical control approach. The functional
mock-up interface (FMI), providing a simple
possibility to exchange models between supported
CAE-software, will play a major role within this
undertaking. Finally, with a test on a dynamometer the
functionality will be certified and the advantages of the
systems will be proven.

References

D. Andre et al, “Characterization of high-power lithium-ion
batteries by electrochemical impedance spectroscopy.
II:Modelling”, Journal of Power Sources, 2010

L. Berg, “Range Extender mit Methanol-Fuel-Cell”, HZwei,
Hydrogeit Verlag, April 2015, p.30

J.C. Chen, “A Correlation for Boiling Heat Transfer to
Saturated Fluids in Convective Flows“, Ind. Eng. Chem.
Process Design and Development 5, p. 322, 1966

M. Gräber et al., “Using Functional Mock-up Units for
Nonlinear Model Predictive Control”, 9th International
Modelica Conference, Munich, 2009

G. Hundy et al., “Refrigeration and Air-Conditioning”,
Butterworth-Heinemann, 2008

A. Jeckel, „Thermische Anforderungen von
Hochvoltbatterien in elektrischen Antriebssträngen“, VDI
Wissensforum Thermomanagement für elektromotorisch
angetriebene PKWs, 2013

R. Korthauer, “Handbuch Lithium-Ionen-Batterien”,
Springer Vieweg, 2013, p.166

W. Levine, “Control System Fundamentals“, CRC Press,
1999, p. 166

H. Martin, “Pressure Drop and Heat Transfer in Plate Heat
Exchangers”, “VDI Heat Atlas”, Chapter N6, 2010

C. Richter “Proposal of New Object-Oriented Equation-
Based Model Libraries for Thermodynamic Systems”

C. Schweiger et al., “The PowerTrain Library: New
Concepts and New Fields of Application”, 4th
International Modelica Conference, Hamburg, 2005

M.M. Shah, “A general correlation for heat transfer during
film condensation in pipes”, International Journal of Heat
and Mass Transfer 22, p.547, 1979

Verein Deutscher Ingenieure, VDI Norm 4710, Part 4 March
2014, Table B62, B99, B23

Session 2D: Automotive Applications 1

DOI
10.3384/ecp15118127

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

133

134 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Predicting the Effect of Gearbox Preconditioning on Vehicle

Efficiency

R. Gillot* A. Picarelli* M. Dempsey*

*Claytex Services Ltd. Edmund House, Rugby Road, Leamington Spa, CV32 6EL
{romain.gillot, alessandro.picarelli, mike.dempsey} @claytex.com

Abstract

Under extreme climatic conditions, the vehicle fuel
consumption can be far from the certified value. Given the
growing concern for polluting emissions, it is necessary to
investigate a way to improve the overall vehicle efficiency
and thus reduce the emissions and fuel consumption gap. One
solution is to pre-warm the gearbox in order to make it work
at an optimal temperature to achieve the best efficiency
possible. Indeed, low lubricant temperature is a source of
reduced vehicle efficiency due to the lubricant viscosity
rising exponentially at very low temperature.
Using the Powertrain Dynamics library, a vehicle model with
a detailed equation based gearbox model taking into account
the temperature-dependent losses is developed.
Keywords: gearbox, pre-warming, efficiency, fuel
consumption, oil temperature

1 Introduction

Responding to the ever growing need to reduce vehicle fuel
consumption and pollutant emissions, new technologies have
been developed and successfully implemented in a large
number of vehicles over the last few years. However, if
engine efficiency has recently dramatically increased thanks
to ongoing design improvements and new technologies, the
question is how much further we can push the limits to
improve efficiency in use and at what price.

One way to achieve better performance from the powertrain
is to improve its efficiency. To do so, we have to keep in mind
that our vehicles are rarely operated in their optimal
efficiency region due mainly to the road layouts, road traffic,
driver behaviour, short range operation and the climatic
conditions. We can at least seek to counteract the effects of
the latter on vehicle efficiency. Vehicle transmission oil
viscosity increases exponentially at low temperatures,
affecting the vehicle transmission efficiency. Until the oil has
fully warmed-up, which can take a rather long time under
extreme cold weather conditions, the transmission losses are
very high due to drag on the gears, clutches and bearings
caused by the viscous oil. Poor range and fuel economy can
result in customer dissatisfaction compounded by the fact
that the vehicle is only being used exploiting a small
percentage of its certified power. The idea is then to put the
transmission (and in future other subsystems such as engine
and traction battery as part of a larger study) in the best

conditions whatever the weather is in order to increase its
efficiency. Farrant et al. showed the benefits of powertrain
preconditioning during a cold start (Farrant P.E. et al. (2005).

In this paper we build a vehicle model in Dymola using
components from the Powertrain Dynamics Library. We then
precondition the transmission lubricant to several
temperatures and run the vehicle model over the standard
NEDC and ARTEMIS drive cycles. The ARTEMIS drive
cycle combines an urban and a highway portion. The models
involved in this study are predictive equation based models
in order to show how the efficiency would benefit from
higher oil temperatures without the constraints of
map/empirical based models. The benefits of preconditioning
are then highlighted as well as the costs of doing so.

2 The Vehicle Model

The vehicle includes a predictive thermal model of the
transmission to quantify the thermal dynamics of the system
including losses such as bearing and gear drag losses. The
heat release from friction is evaluated in each area of the
model. All gearbox components (moving and non-moving)
are interlinked via mechanical and/or thermal ports so that
the effects of each component in the system on the others can
be evaluated. This physical relationship modelling forms the
basis for predicting the oil temperature and viscosity in the
whole subsystem.

Figure 1. Vehicle model experiment complete with driver
model, road and atmosphere (environment) models

The vehicle model is built on the VehicleInterfaces library
standard from Modelica Association. All models use
Multibody components and are designed for easy assembly
and efficient computation (Dempsey M. et al. 2009). A Driver

DOI
10.3384/ecp15118135

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

135

model is included to exercise the vehicle model over a
specific drive cycle in order to evaluate its efficiency and
performance. A road model and an atmosphere model are
also used in the experiment and interface with the vehicle
model.

Figure 2. Detailed view of the vehicle model with all the
subsystems:1-Ancillaries, 2-Engine, 3-Gearbox, 4-driveline, 5-
Chassis, 6-Brakes, 7-Controllers

The model above (Figure 2) is a view of the vehicle one level
lower than the previous one (Figure 1).
The main subsystems are: Engine, Transmission, Driveline
and Chassis.
The engine model uses a performance map giving an output
torque depending on pedal position and engine speed. A fuel
tank is included to enable the calculation of the instantaneous
and average fuel consumptions. The engine used in this
experiment is a two-litre four-cylinder petrol engine.
The transmission model will be discussed in detail in the next
section.
The driveline model can be set to include compliance,
stiffness and damping characteristics so that the same vehicle
can also be used for detailed driveability studies.
The chassis model has a pitch degree of freedom and
longitudinal motion as well as models for tyres,
aerodynamics and suspension.

3 The Transmission Model

3.1 Overview

In this study focus is on a six-speed automatic transmission
which includes a dynamic torque converter model with
predictive thermal effects, gear sets with bearing friction and
bearing drag models, gear mesh models with temperature-
dependent efficiency, a shift actuation system and a heat port
(thermal connector) to port the generated heat to other vehicle
subsystems.

Figure 3. 6-speed automatic transmission gear set with thermal
mass and heat dissipation network: 1-clutch actuation flanges,
2-data records for the epicyclic gear sets

The green connections in Figure 3 represent translational
mechanical flanges to apply the clamp load to the clutches
and brakes. The red connector is the heat port which us to
thermally link all the components together in order to transfer
the heat throughout the system and compute the temperatures
at various points in the model.
The top left corner of Figure 3 is the thermal network for oil
and casing. For each one of these components, a thermal
conductor lies between the thermal masses representing the
heat transfer to the oil and the casing respectively and the
remainder of the gearbox’s thermal network. It is a systems
modelling thermal model and we must also point out that the
distribution of oil in the system is not considered in this
paper.

3.2 Dynamic Torque Converter

In automatic transmissions, the torque converter couples the
engine to the gearbox. Despite the availability of a steady-
state (mapped) torque converted model, here we choose to
use an equation based dynamic version since the transient
response is of prime importance. There are three main
components: the impeller connected to the engine, the turbine
connected to the gearbox and the stator connected to the
gearbox housing via a one-way clutch. The impeller is a
centrifugal pump (Shin S., Bae I. et al, 2000, Jandasek V.J.,
1994).
When the oil inside the torque converter is cold it affects the
efficiency as the high viscosity decreases the impeller
performance.
The moment-of-momentum equation is applied to the three
control volumes. For example for the impeller:
 ���� � � 	���	�

	�� ���
�� �	
� 	� ����� �	��
�� �	
� 	� ������	 �	��
 �� is the impeller rotational speed, �� is the impeller torque,
Q is the volume flow rate, I is the fluid inertia, � is the
density, S is a design constant for the impeller, R is the
impeller radius, A is the flow area and �� is the impeller exit
angle. We have similar equations for the turbine and stator.
The conservation of energy equation is:

������ � �	���� � �	���� �� �	���� 	�

	��
����� �	
����� �	
����� �	
������ �	
�������	
�������
�	��

	
� ��
������ �	
�������

�	��
	
� ��
������ �	
�������

�	��
	
� ��
������ �	
������� �	��

 �� represents the losses, �� is the fluid inertia length.

1
2

1 2 3 4

5 6

7

Predicting the Effect of Gearbox Preconditioning on Vehicle Efficiency

136 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118135

��
	�2 !"��	��#�$,�&�$,�� �	#�$,�&�$,�� �	#�$,�&�$,�� �
�	�'2 !"��	��&�∗� �	&�∗� �	&�∗��

Where #�$,� is the shock loss coefficient for the impeller and
&�$,�� is the shock velocity. f is a fluid friction factor and &�∗�
is the fluid velocity relative to blades.
We know the fluid viscosity significantly affects the torque
converter efficiency, this is why we need to include the
thermal effects in the model.

A formula in (Hydraulic Institute, 2010) gives a performance
factor (B) in order to calculate a correction factor to re-
evaluate the impeller efficiency when using a viscous fluid.

)
 *+&,��-./012345-.-6�/
	12347-.89/:-.�/ ;

Where V is the fluid viscosity, H is the impeller head, Q is
the fluid flow rate and N is the impeller shaft speed. We can
now use this performance parameter to determine the
correction factors #7 for the head, #< for the volume flow
rate and #= for the efficiency.

Figure 4. Correction factors C?, C@ and CA plotted against the
performance factor B.

These correction factors allow us to modify the losses to
account for the thermal effects.
First we introduce the volume flow’s corrected value:
 ��,�$BCDEF	B��BG��

	�2 !"��	��#�$,�&�$,�� �	#�$,�&�$,��
�	#�$,�&�$,�� �
�	�'2 !"��	��&�∗� �	&�∗� �	&�∗�#<� �

We also need to add a new term to the losses to correct the
impeller efficiency:

���
	 �����#= � 1�
	

These corrections result in the turbine rotational speed to
converge more slowly towards the impeller angular velocity
as can be seen in Figure 5.

Figure 5. Impeller and turbine speeds vs. time [s] with and
without taking into account the thermal effects.

When the oil is cold and has a high viscosity the flow’s axial
velocity inside the torque converter is reduced and so the
fluid inertia transmitted to the turbine is not as good and it
takes longer to reach the coupling point. The overall torque
converter efficiency is then affected.

3.3 Roller bearings

The roller bearings are important components as they can
achieve very good efficiencies under appropriate conditions.
However, when the oil viscosity is high their efficiency
dramatically drops. Since all the components in the
transmission model are thermally linked, the heat released by
other parts of the model (clutches, torque converter, etc.) can
affect the bearing behaviour through warming up of the
transmission fluid and gradually help to improve the overall
system efficiency.

The bearing friction torque is given by:
 I�C�G��J=
 '� ∗ KLM'' ∗
 � I�BEF� � INCEO

The friction coefficient coeff depends on the type of rollers
(ball, pin, taper pin, etc.) and typically varies between 0.001
and 0.0024.
The friction torque due to the seals is not detailed here as it
has only a small contribution and does not vary significantly
with temperature.

Session 2D: Automotive Applications 1

DOI
10.3384/ecp15118135

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

137

Figure 6: Friction torque of a roller bearing depending on the oil

temperature

The drag torque formula (SKF website) demonstrates the
importance of the oil viscosity:

INCEO
 4 ∗ &D ∗ *CJFF ∗ #Q ∗) ∗ RDS ∗ ��

�1.093 W 1049 ∗ �� ∗ RD8 ∗ X� ∗ RD� ∗ '�Y Z
4[.89\

∗
�

v is the kinematic viscosity at operating temperature. #Q and *CJFF depend on the bearing geometry and
dimensions. &D is the drag loss factor.
� is calculated with the bearing dimensions and the oil level
(see picture below).
n is the bearing rotational speed. '� depends on the bearing geometry and the oil level.

The oil level is the distance above the lowest contact point
between the rolling element and the outer ring.

3.4 Clutches

There are several clutches utilised throughout the
transmission model. There is a lock-up clutch in the torque
converter model and three other clutches are used in the gear
set along with two brakes which use the same type of model.
Clutches are modelled by multiple rotating plates pressed
together via a normal force (via the green flange in the next
picture).

The friction torque between the clutch plates is calculated as
follows:

I�C�G��J=
] ∗ :� ∗ �^� � ^�� ∗ _ ∗ `CBF ∗ �aJS � a�S�2b

where] is the oil viscosity, ^� and ^� are the pressure and
shear stress flow factors respectively, introduced by Patir and

Cheng (1979). h is the oil film thickness which reduced under
applied pressure (Dempsey M. et al. 2012). :� is the number
of friction plates.

The heat generated by the friction between the clutch plates
is expelled through the heat port and stored into a heat
capacitor which is linked to further thermal models in the
system. The heat capacitor accounts for the thermal mass of
driven and driving plates. The temperature of the clutch
plates can thus be evaluated as well as the thermal losses to
the clutch surroundings.

Figure 7. Clutch model with heat port (red) and mechanical
actuation flange (green)

During slipping, clutches and brakes can generate
considerable amounts of heat in the gearbox which
contributes to lower the oil viscosity thus affecting the whole
transmission efficiency. However, the friction torque is only
significant for a small amount of time.

Figure 8. Friction torque and relative angular speed (top) and
heat power loss (bottom) vs. time [s]

Predicting the Effect of Gearbox Preconditioning on Vehicle Efficiency

138 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118135

Figure 9. Evolution of the temperature at the clutch plates vs.
time [s]

During operation, the clutch temperature can rise very
quickly. We can see on the graph above (Figure 8) that heat
is released when both the relative angular velocity and the
torque transmitted are non-zero which essentially happens
during the engagement and disengagement phase.

3.5 Gears

We can divide the gear losses into speed-dependent and load-
dependent losses. Speed-dependent losses consist of windage
losses and oil churning losses. Load-dependent losses consist
of sliding friction losses and rolling friction losses.
The windage losses are induced by oil droplets that are in
suspension in the gearbox housing and create a thin mist
which increases the gear frictional resistance.
The churning losses are due to the oil being trapped in the
gear mesh and to the gear rotating in the lubricant. They
depend on the gear rotational speed, the oil viscosity, the gear
geometry and the proportion of the gear submerged.
The sliding and rolling friction losses are dependent on the
gear rotational speed and on the instantaneous coefficient of
friction.
We are mostly interested in the churning losses since they are
closely related to the oil properties.

The churning losses for tooth surface are given by
(Heingartner P., Mba D., 2003):

cdF
	
7.37'O� ∗] ∗ ��8 ∗ f�S.9 ∗ g� ∗ (
�

h���i
)

�O10�8

'O� is the gear dip factor that is to say the ratio of the gear
dipping into oil. D is the outside diameter, i is the helix angle
and
� is the roughness factor.
The oil viscosity µ plays a major role in the amount of
churning losses and thus we can easily see the importance of
the temperature on these. n is the gear rotational speed and
all the other parameters in the formula are geometrical
dimensions.
Two other similar formulae exist to calculate the churning
losses for smooth outside diameters and smooth sides of discs
(i.e. shafts and gear side faces respectively).

Figure 10: Example of oil churning losses with respect to oil

temperature with different dip factors.

The churning losses increase at low temperatures and this is
even a bigger difference when the dip factor is high as a larger
part of the gear is dragged through oil.

4 Results

Prior to the calculation of vehicle fuel economy, a quick
estimation of the cost to per-warm the gearbox can be made.
If we apply a heat flow of 100 Watts, it takes 886 seconds to
heat the gearbox from -10 degC up to + 90 degC. At an
average price at the time of the study (in England) was £0.15
per kWh, the electricity needed will cost £0.0037. Even if the
objective here is not to make money out of this solution, the
cost has to be evaluated and the results clearly shows that it
should not be a financial problem for the customer. This type
of preconditioning is more suited in vehicles such as plug-in
hybrids or EVs (Electric Vehicles) or indeed conventional
vehicles operating in cold climates where the customer
might, by default, plug the vehicle in to recharge the battery
and/or precondition the cabin.

4.1 NEDC

The NEDC Cycle is used to homologate vehicles including
Euro 6 standard. It is made up from an urban section repeated
four times and an extra-urban section. It covers a distance of
11 023 meters and lasts for 1180 seconds. It is often criticised
for not representing real-life driving conditions (too light
duty). However it has to be considered as it is used for
homologation but also because we are interested in slow
urban driving conditions to attest the maximum savings
possible (slower gearbox warm-up).

Session 2D: Automotive Applications 1

DOI
10.3384/ecp15118135

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

139

Figure 11. Average fuel consumption NEDC (l/100km) under
different start temperatures: -10deg (blue), +23deg (red),
+40deg (green), +90deg (magenta) vs. time [s]

We can see that the greatest saving occurs at the beginning
of the cycle, in the urban portion at low load. While the oil
temperature reaches its ideal value, the average fuel
consumption with a pre-warmed gearbox converges towards
the average fuel consumption with a non-pre-warmed
gearbox.

If the ambient temperature is +23 degC, pre-warming the
transmission fluid to +90 degC allows a fuel economy
improvement of 1.71% (150 mL).
If the ambient temperature is now -10 degC, pre-warming the
transmission fluid to +90 degC yields a fuel economy benefit
of 7.66% (660 mL).

Figure 12. Oil temperature with different start values: -10deg
(blue), +23deg (red), +40deg (green), +90deg (magenta) vs.
time [s]

The oil temperature reaches its ideal value when starting at
40 degC only towards the end of the drive cycle while the
others do not even come close, this explains the significant
fuel savings.

4.2 ARTEMIS Cycle

The ARTEMIS drive cycle is based on a statistical study and
thus fits better to the real usage of the vehicles. It is made of
an urban part and a highway portion. It covers a distance of
33605 meters and lasts for 2061 seconds. In comparison with
the NEDC drive cycle, ARTEMIS is much more aggressive.

Figure 13. Average fuel consumption ARTEMIS (l/100km) under
different start temperatures: -10deg (blue), +23deg (red), +40deg
(green), +90deg (magenta) vs. time [s]

The potential fuel economy benefit from pre-warming the
transmission is less obvious on this cycle. Indeed, as it is
more aggressive, the components take less time to heat-up
and so the benefit in pre-warming disappears more rapidly.

If the ambient temperature is +23 degC, pre-warming the
transmission fluid to +90 degC yields a fuel economy
improvement of 0.24% (37 mL).
If the ambient temperature is now -10 degC, pre-warming the
transmission fluid to +90 degC yields a fuel economy benefit
of 1.84% (182 mL).

Figure 14. Oil temperature with different start values: -10deg
(blue), +23deg (red), +40deg (green), +90deg (magenta) vs.
time [s]

This graph (Figure 14) shows that the oil takes less time to
reach its ideal value with the ARTEMIS drive cycle than with

Predicting the Effect of Gearbox Preconditioning on Vehicle Efficiency

140 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118135

the NDEC drive cycle. This is due to the ARTEMIS cycle
being more aggressive.

An interesting occurrence that can be noticed in both drive
cycles is that the overall vehicle efficiency does not increase
much after the oil reaches +23 degC. The fuel economy when
submitted to an initial temperature of +90 degC instead of
+23 degC is only 1.71% for the NEDC cycle and 0.24% for
the ARTEMIS cycle. This tells us that we could consider pre-
conditioning the gearbox to only +23 degC as the benefits
after this value are much less worth the cost.

4.3 Applied Example

Let’s consider a real-life example to give us a concrete idea
of the potential savings that could be achieved at a larger
scale.
In Göteborg, Sweden (1 million people live in its urban area):

• 100 000 people commute to work every day
• 60 000 people commute by car every day
• 12 km (7.5 miles) / 24 minutes is the average

commute ride inside Göteborg
• 51 km (31.7 miles) /50 minutes is the average

commute ride outside Göteborg

If we make the assumption of 50 000 commuting trips per
day, it gives us a saving a 25 000 litres of fuel and 62 tons
of	#j� per day.

5 Conclusions

The benefits of gearbox preconditioning have been studied
and show that this strategy could be a real possibility in the
future. A device to pre-warm the gearbox and the way for the
customers to choose when to use it have still to be explored
though.
As the differences in the results between the NEDC and
ARTEMIS drive cycles showed us, the best potential savings
could be achieved in a busy urban environment where the
transmission fluid would usually take a long time to reach its
ideal working temperature.

Pre-warming of other subsystems like traction batteries
would allow even greater fuel economy and performance
benefits and will be considered in further work. In the case of
electric vehicles it is even a necessity to heat up the battery
in extremely cold climates due to the performance
degradation of the battery at very low temperatures. It has
been shown (Tikhonov K., Koch V.R) that the battery
discharge can reach 60% when the air temperature drops
from 22 °C (72 °F) to -40 °C (-40 °F). To the evident issue
when driving more than a couple of hours adds up the bad
perception of the user if the engine can only deliver half of
the 100bhp at cold start.

References

Dempsey M. et al. (2009) Investigating the Multibody Dynamics of

the Complete Powertrain System, Como, Italy, Proceedings of the
7th Modelica Conference

Dempsey M. et al. (2006) Coordinated automotive libraries for

vehicle system modelling, Vienna, Austria, Proceedings of the 5th
International Modelica Conference

Dempsey M. et al. (2012) Predicting the launch feel of automatic

and dual clutch transmissions, Munich, Germany, Proceedings of
the 9th International Modelica Conference

Farrant P.E. et al. (2005) The Application of Thermal Modelling to

an Engine and Transmission to Improve Fuel Consumption

Following a Cold Start, Toronto, Canada, Vehicle Thermal
Management Systems Conference and Exhibition.

Heingartner P., Mba D., (2003) Determining power losses in the

helical gear mesh, Chicago, United States, International Power
Transmission and Gearing Conference.

Hydraulic Institute, (2010) Effects of liquid viscosity on

rotodynamic (centrifugal and vertical) pump performance.

Jandasek V.J., (1994) Design of Single-stage, Three-element

Torque Converter, Design Practice: Passenger Car Automatic

Transmissions, Third Edition, AE-18, SAE, pp.75~102

Shin S., Bae I. et al, (2000) The Effect of Blade Geometry on the

Performance of an Automotive Torque Converter, FISITA World
Automotive Congress, Seoul, Korea

SKF website: http://www.skf.com/group/products/bearings-units-
housings/ball-bearings/principles/friction/skf-model/drag-
losses/drag-losses-in-oil-bath/index.html

Tikhonov K., Koch V.R., Li-ion Battery Electrolytes Designed For

a Wide Temperature Range, Covalent Associates, Inc.

Session 2D: Automotive Applications 1

DOI
10.3384/ecp15118135

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

141

142 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Model Based Development of Future Small Electric Vehicle by

Modelica
Yutaka Hirano 1 Shintaro Inoue 1 Junya Ota 1

1Toyota Motor Corporation, Japan, {yutaka_hirano, shintaro_inoue_aa,

junya_ota}@mail.toyota.co.jp

Abstract

For future low carbon mobility society, new-type small
electric vehicles (EVs) are developed actively in recent
period. To reduce the energy consumption in various
actual driving conditions, considering overall running
resistance from tire characteristics, mechanical losses
and electrical losses is necessary. In this paper, model-
based development of system performance of a new
EV is described. Full vehicle model considering both
vehicle dynamics and energy consumption was
developed using Modelica. Research for both structure
and specification of components of the vehicle and also
of the control were performed to find the solution to
satisfy both energy consumption and vehicle dynamics
by using the full vehicle model. Finally trade-off
between vehicle stability and energy consumption and
also between driver workload and energy consumption
by using direct yaw moment control was indicated.

Keywords: Model Based System Development, Vehicle

Dynamics, Energy Consumption, Electric Vehicle

1 Introduction

To satisfy needs for future low-carbon mobility society,
development of many new small electric vehicles
(EVs) is increasingly active in recent years. Those
vehicles are often smaller and lighter than conventional
vehicles and are often equipped with low RRC (Rolling
Resistance Coefficients) tires for less energy
consumption. On the other hand, low RRC tires tend to
have less cornering performance than conventional
tires in general. Because of light weight and low RRC
tires, those vehicles become to have reduced dynamic
stability against external disturbances such as side
wind. To analyze and cope with all the problems about
energy consumption and vehicle stability, a holistic
approach of vehicle system design considering multi-
physics of mechanics, electrics, aerodynamics, control
and so on is necessary.

For this purpose, authors made an integrated model
of the total vehicle system using acausal multi-domain
physical modeling language Modelica (Hirano, 2014).
By using Modelica, it is only necessary to define
physical relationship written as equations in each
component model and connect those component
models as same as assembling the components to make
the model of the whole system by hierarchical way.

This feature of Modelica is very powerful for model-
based system development because it enables to
modify the whole vehicle model very easily by using
the results of experiments and physical investigations
of each component. It is just necessary to replace the
existing equations of the component model to the
modified ones and replace the component model to the
revised one by object-oriented way.

In the previous paper (Hirano, 2014), authors
showed the capability of new construction of the new
EV using new type tire based on ‘Large and Narrow
concept’ and torque vectoring differential gear. For the
model based development of the new EV, various kind
of running resistance, vehicle dynamic performance
and proper design of electric regeneration system were
studied.

In this paper, a multi-physics full vehicle model of
the new EV is expanded to consider the detailed loss of
motors and inverters. Also front and rear suspension
model which has same 3D mechanical design as the
real experimental vehicle was made and verified. By
technical investigations using this full vehicle model,
structure, specifications and control of the new EV
system were researched about vehicle dynamics and
energy consumption.

2 Characteristics of Target EV

Table 1. Specifications of new experimental EV

 New EV Conventional
car

Vehicle Weight 750 kg 1240 kg
Yaw Moment Inertia 869 kgm2 2104 kgm2

Wheelbase 2.6 m 2.6 m
Front : Rear Weight

Distribution
0.48 : 0.52 0.62 : 0.38

Height of CG 0.38 m 0.55 m
Aerodynamic Drag
×Frontal Area

0.392 m2 0.644 m2

Tire RRC 5×10-3 8.8×10-3
Tire Normalized CP 16.1 20.4

The proposed experimental EV has specifications as
shown in Table 1. Compared with a conventional
small-class passenger car, the new EV has
characteristics of lighter vehicle weight, smaller yaw
moment of inertia, lower height of the center of gravity

DOI
10.3384/ecp15118143

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

143

(CG) and lower RRC value of tires. Because of these
characteristics, this new EV is expected to have better
handling and lower energy consumption than
conventional vehicles. On the other hand, because of
lighter weight and lower value of tire normalized CP
(Cornering Power), this new EV seems more sensitive
against external disturbances such as crosswind and
road irregularity than the conventional cars. To cope
with this problem, direct yaw moment control (DYC)
was applied by using a new integrated transaxle unit
for rear axle which has a main electric motor and also
torque-vectoring differential (TVD) gear unit with a
control motor.

3 Full Vehicle Model

3.1 Structure of the Full-Vehicle Model

To consider total balance of energy consumption,
handling, stability, ride comfort and NVH (noise,
vibration, harshness) of the vehicle, a full vehicle
model including mechanics, electronics, vehicle
dynamics and control was developed based on
commercially available Vehicle Dynamics Library
(Modelon, 2014). The vehicle dynamics model was
built as a full 3-dimentional (3D) multi-body-dynamics
model of all of vehicle body, suspension, tires and
power train. Aerodynamics was also considered in the
vehicle dynamics model. Component models of control
systems such as TVD gearbox, electric motor and
inverter were newly developed and connected with the
full vehicle model. The control logic for DYC was also
implemented as a controller block model. Additionally,
driving environment such as road shape, side wind and
air parameters (density, temperature, etc.) can be
defined as the environment model. Figure 1 shows the
top level of model hierarchy of the full vehicle model.

Figure 1. Top level structure of full vehicle mode

3.2 Mechanical Power by Driving Resistances

Power consumption of each system was calculated
simultaneously to investigate the good balance of
energy consumption and vehicle performances. At first,
total mechanical power of driving resistances acting on
the vehicle was calculated by following equations
(Kobayashi et al., 2013).

Total driving resistance power:

sxsyarrrv PPPPP  (1)

Rolling resistance power:
VMgP rrr   (2)

Aerodynamic resistance power:

VVACP Dar  2/2 (3)

Cornering drag resistance power:

VgMA
C

d

C

d
P y

pr

r

pf

f

sy 





















 /2 (4)

Longitudinal resistance power:
VMgMAP xsx )sin( (5)

Here

 r : tire rolling resistance coefficient (RRC) ,
 g: acceleration of gravity [m/s2],,
 M: vehicle mass [kg],
 V: vehicle speed [m/s],
  : air density [kg/m3],
 A: vehicle frontal area [m2],

 DC : aerodynamic resistance coefficient,

fd : front weight distribution ratio,

 rd : rear weight distribution ratio,

pfC : front normalized cornering power [1/rad],

prC : rear normalized cornering power [1/rad],

pC : average normalized cornering power [1/rad],

yA : lateral acceleration [m/s2],

 xA : longitudinal acceleration [m/s2],

  : road inclination [rad].
Total mechanical power of driving resistances can

be calculated by equation (1) to equation (5) by using
state variables of vehicle motion.

3.3 TVD Gear Train Model

For the TVD gear train, a driveline structure
referencing the MUTE project of the Technische
Universität München (TUM) (Höhn et al., 2013) was
selected and the TVD model was constructed using
commercially available Power Train Library (DLR,
2013) .

Model Based Development of Future Small Electric Vehicle by Modelica

144 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118143

Figure 2. Torque vectoring differential (TVD) driveline

Figure 2 shows the configuration of the gear trains.
This gear trains have a complex configuration
constructed from several planetary gear sets. Torque
from the main motor is distributed equally to the left
and right wheel through the differential gear. Sun gear
3 is connected to carrier 2 in the control gear portion,
and this configuration generates differences in torque
between the left and right wheel by increasing or
decreasing the torque distributed to the wheel on one
side by torque input of the control motor.
Specifications of the motors are shown in Table 2.

Table 2. Motor specification

 Main Motor Control Motor
Max Torque 65 Nm 40 Nm
Max Speed 10,000 rpm 1,050 rpm
Max Power 15 kW 2 kW

Figure 3. Modelica model of TVD gear train

Figure 3 shows a diagram of Modelica model of the
torque vectoring gear train. The model is provided with
elements that define the relational expression between
the torque and speed of each gear engagement portion.
Furthermore, these elements are capable of factoring in
the overall gear torque loss by defining the torque loss
for each element by following equations[7].

   
   
   
   
















0,097.0/11

0,097.01

0,097.0/11

0,097.01

Δ

AABA

AABA

AABA

AABA

τωτ
τωτ
τωτ
τωτ

τ

　　

　　　

　　

　　　

(6)

where, τA is the sun gear torque and ωAB is the difference
in the speed of the sun gear and the carrier of the
planetary gear.

Figure 4 shows a simulation result to investigate the
torque distribution ability of the TVD. It became clear
that this TVD unit has capability of distributing the
driving torque between right and left wheels according
to the input torque of the control motor and the torque
distribution ratio can be bigger than ordinary LSD
(limited slip differential) gear set if the mechanical
strength is enough to cope with the maximum torque.
The torque distribution ability is thus only limited by
mechanical strength of the gear sets and the ability of
the control motor.

Figure 5 shows an example of calculation result of
each gear speed of the TVD. It was confirmed that this
result coincide with the actual motion.

Figure 4. Torque distribution ability of TVD

Figure 5. Example of TVD gear speed calculation

support by PowerTrain Library
Torque Vectoring Gear Box

left

right

controlMotor

Brake

mountA

differential Part2 Part1

mountB6

mountB3

Rdif

w

S4

w

P4

w
C34

w
P3

w

S3

w
R2

w
C2

w
S2

w
R1

w
C1

w
S1

w

add1add1

+

+1

-1add2add2

+

+1

-1

Rdif_rpm

S4_rpm

S3_rpm

R2_rpm

C2_rpm

S2_rpm

R1_rpm

C1_rpm

S1_rpm

P4_rpm

P3_rpm

C34_rpm

C4_RightTyre

S4_LeftTyre

Session 2D: Automotive Applications 1

DOI
10.3384/ecp15118143

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

145

3.4 Electrical Model of Motor and Inverter

Figure 6. Equivalent circuits of each motor

Figure 7. Electrical motor model by Modelica

Figure 8. Motor characteristics

Both the main and control motors installed in the target
EV are permanent magnet synchronous motors. The
equivalent circuits of these motors can be expressed as
shown in Figure 6 as d-axis and q-axis direct current
(DC) circuits (Park, 1933). It is not necessary to
describe the explicit equations here since modeling can
be performed simply by laying out each device as
shown in Figure 7 using freely available electric circuit
library of Modelica Standard Libraries (MSL).
Concurrently copper loss LCu and iron loss LFe of each
motor are calculated using following equations (Inoue
et al., 2014).

 2 2 2
Cu a a a d qL R I R i i   (7)

   222
2 2

e d od a q oq
od oq

Fe

c c

L i L iv v
L

R R

       

(8)

,d od cd q oq cqi i i i i i    (9)
0

1
0

d od od d oda
a

q oq oq q oqc

v i v L iR
R p

v i v L iR

          
             

          
(10)

0 0

0
od ode q

oq oqe d e a

v iL

v iL


 

      
       
      

(11)

where, vd and vq are the voltage of the d and q axis,
respectively, id and iq are the current of the d and q axis,
respectively, ωe is the electric angular velocity, Ra is
the winding unbalance voltage attenuation, Rc is the
equivalent iron loss resistance, Ld and Lq are the
inductance of the d and q axis, respectively, and ȥa is
the inter-linkage magnetic flux. Also the motor
characteristics of efficiency according to motor torque
and rotational speed are considered as shown in Figure
8.

The inverter can be handled simply as a component
that generates loss Linv proportionally to the current
vectors of the motors as follows.

Inv aL I (12)

3.5 Mechanical Model of Suspension and Body

3D multi-body dynamic system (MBS) models of
suspension, steering and body were installed to
calculate vehicle dynamics characteristics. Suspension
model was constructed as an assembled model of each
suspension linkage, joints and force elements such as
spring, damper and bushing. Non-linear tire model
based on ‘Magic Formula’ model (Pacejka02) was
used to calculate combined lateral force and
longitudinal force of each tire. Steering model
considered the characteristics of viscous friction of
steering gear box and steering shaft as well as steering
shaft stiffness. By these detailed models, it became
possible to analyze the effects of steering angle change
and camber angle change caused by vehicle roll, side
force and tire aligning torque.

Figure 9 shows a comparison of simulation results
and experimental test results about camber angle
change by wheel bump displacement and steering
angle change by tire aligning moment. It was
confirmed that the simulation results matched with the
experimental results with good consistency.

Figure 10 shows an analysis result about the effect
of suspension characteristics to cornering compliance
coefficient normalized by the effect of tire slip angle
change for one example of a front double wish-born
suspension. It became clear that the effect of the tire
aligning torque to tire toeing angle is relatively large
than other design indexes.

Also 6 degree-of-freedom motion of the vehicle
body was calculated by considering all the reaction
forces and torques acting at suspension upper support
and all of the connection portions of the linkages.
Additionally 3D MBS model of TVD gear unit mounts
was applied in the vehicle dynamics model. And
rotational stiffness of the drive shafts was also
considered. This feature enabled calculation of the
body motion (mainly pitching motion) caused by the

Model Based Development of Future Small Electric Vehicle by Modelica

146 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118143

reaction of driving torque and oscillation caused by
resonance of tire rotational stiffness, drive shaft
stiffness and differential gear mount stiffness.

Figure 9. Example of suspension characteristics

Figure 10. Effect of suspension characteristics to
cornering compliance coefficient. (Normalized by the
effect of tire slip angle.)

3.6 Model of DYC Controller

The control element generates the torque command
values of the main motor and control motor. These
command values are then input into the motor models.
Two kinds of DYC controller were researched. Yaw
rate feedback control to let the vehicle yaw rate follow
the desired yaw rate for stabilizing crosswind
disturbances comprises the control laws shown in

Figure 11. Slip angle feedback controller shown in
Figure 12 aims to let the vehicle slip angle to zero to
stabilize the vehicle attitude while cornering and lane
change.

Figure 11. Yaw rate feedback controller of DYC

Figure 12. Slip angle feedback controller of DYC

In both controllers, the main motor performs
feedback control by proportional and integral (PI)
control of the vehicle speed because the vehicle speed
is dominant for the total driving torque supplied by the
main motor. The control motor performs feedback
control by PI control of the yaw rate and vehicle slip
angle respectively. As shown in Figure 4, control
motor changes the distribution of left wheel torque TRL
and right wheel torque TRR. Therefore the vehicle
motion can be changed by yaw moment generated by
the torque difference between left wheel and right
wheel. In general, the vehicle motion can be estimated
by single track model of vehicle dynamics described by
equation (13) and (14).

N

I
I

ca

I

ca
MV

c

MV

c

VI

caca

I

caca

MV

caca

MV

cc

dt

d

z
r

f

z

rr

z

ff

rf

z

rrff

z

rrff

rrffrf































































































1

1

0

22

2










(13)

N = w(TRL – TRR) / rt

(14)

Here,
 : Vehicle slip angle [rad]
 : Yaw rate [rad/s]
M : Vehicle mass [kg]
V : Vehicle speed [m/s]
Iz : Vehicle yaw moment of inertia [kgm2]
af : Length between front axle and CG [m]
ar : Length between rear axle and CG [m]
l : Wheel base = af +ar [m]
cf : Front tire cornering power [N/rad]
cr : Rear tire cornering power [N/rad]
f : Front tire steering angle [rad]

Session 2D: Automotive Applications 1

DOI
10.3384/ecp15118143

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

147

r : Rear tire steering angle [rad]
 : Direct yaw moment [Nm]
rt : Tire radius [m]
w : Tread [m]

3.7 Model of Energy Consumption by Electric

Drives

Energy consumption in mechanical part (= gear train),
electrical part (= motor, inverter) are calculated by
using following equations.





2

1j

ejmjme LLPP (15)

 zsxsyarrrzvm IPPPPIPP  (16)

)(95.0 CMmj TTL  (17)

InvjFejCujej LLLL  (18)
Here, Pe is the sum of the energy consumption, Pm

is the total mechanical work using driving resistance
power defined by equation (1), Lmj is the TVD
mechanical loss, and Lej is the electrical loss of motor
and inverter. LCuj is copper loss, LFej is iron loss and
LInvj is switching loss of inverter respectively. Here,
j=1 refers to the main motor and j=2 refers to the
control motor. Since it is difficult to accurately
calculate the TVD mechanical loss including all kinds
of friction, the calculation assumes a constant overall
efficiency of 95% of main motor torque TM and control
motor torque Tc.

Figure 13 shows the calculation results using the full-
vehicle model in steady-state cornering with a turning
radius of 60 m and a vehicle speed of 40 km/h. The
calculated results using the full-vehicle model closely
matched the theoretical results calculated based on
Equations (15) and (16), thereby confirming the validity
of this model. It is shown that electrical loss increases
much when large DYC torque is applied.

Figure 13. Comparison of energy consumption

4 Simulation Results

4.1 Steady State Cornering

The simulation of steady state cornering assumed
running condition of a turning radius R of 135 m and a
vehicle speed V of 60 km/h. Figure 14 shows the

relationship between the vehicle slip angle and energy
consumption in the β=0 control. Figure 15 shows the
same relationship for the yaw rate feedback control.
Here, the target yaw rate was calculated by following
equation.

R

V
K gainyaw  _

* (19)

In the case of both controls, the turning resistance
became lower as the slip angle and steering angle
decreased. As a result, the power of the main motor
decreased (point “i” in Figure 14 and Figure 15). In
contrast, application of TVD generated mechanical loss,
which resulted in an overall increase in energy
consumption due to the energy consumption of the
control motor (point “ii” in Figure 14 and Figure 15).
Furthermore, the TVD mechanical loss was lower than
the electrical loss. This result indicates that, in this
configuration, a reduction in motor/inverter electrical
loss is extremely important for reducing energy
consumption. Finally, further examination of the β=0
control in Figure 14 shows that a very slight vehicle
slip angle remains when the control is applied (point
“iii” in Figure 14). Focusing on the TVD control motor
torque shows that, in an ideal condition without TVD
or motor/inverter loss (Figure 16), the vehicle slip
angle is zero because the power of the control motor
does not exceed the maximum possible output torque
of 40 Nm. However, after factoring in each type of loss,
the control motor power becomes saturated (point “iv”
in Figure 16). In this way, integrating different
physical models into a single model enables
quantitative studies of the effects of each type of loss
on vehicle dynamics and control.

Figure 14. Energy consumption with β=0 control

Model Based Development of Future Small Electric Vehicle by Modelica

148 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118143

Figure 15. Energy consumption with yaw rate feedback
Control

Figure 16. Relationship between vehicle slip angle and
control motor torque with β=0 control

4.2 Winding Road Driving

Actual driving conditions generally feature many turns
and the proposed EV is also likely to be driven while
utilizing controls to actively enhance dynamic
performance. Therefore, to simply evaluate
performance under real-world driving conditions, a
study was performed on winding roads to simulate
actual continuous steady-state cornering. The study
simulated an actual 8.1 km winding road course, which
combines straight sections and gradients.

First, the course was constructed using the
commercially available CarMaker software. Driving
behavior was predicted using a driver model of
CarMaker assuming a constant speed of 60 km/h.
Developed Modelica model of TVD was connected
with CarMaker using FMI (Functional Mockup
Interface). Only vehicle speed was set in the driver
model and lateral acceleration was calculated during
the simulation. By using CarMaker as a virtual driving
test platform, it became possible to combine the good
realistic driver model of CarMaker and the detailed
drive train model made by using Modelica.

Finally, the energy consumption and steering wheel
angle by the driver model were predicted using the
time-series data for lateral acceleration in Figure 17.

Figure 18 shows the time-series data for the total
energy consumption and steering wheel angle with a
yaw gain ratio of 1.5. (Abbreviation of ‘W/O Control’
means ‘Without Control’.) Although yaw gain control
causes an increase in total energy consumption, the
steering wheel angle decreases. These prediction
results facilitate the identification of the optimum
control gain with respect to a set system configuration,
assuming real-world driving conditions.

Figure 17. Time-series data for lateral acceleration

Figure 18. Time-series data (upper: energy consumption,
lower: steering wheel angle)

5 Conclusions

This paper described the development of a full-vehicle
model to quantitatively evaluate the relationship
between vehicle dynamics with DYC input and energy
consumption for a small EV. The following
conclusions were obtained.
(i) TVD drivelines with several planetary gear

sets and motor/inverters with multiple
electrical elements can be constructed simply
in one model using Modelica.

(ii) The model was able to quantitatively identify
the breakdown of energy consumption
increases and decreases for achieving the
target vehicle dynamics. In addition, it was
found that reducing motor loss makes a larger

3

4

5

6

7

8

9

10

0 100 200 300 400 500

-3

-2

-1

0

1

2

3

0 100 200 300 400 500

Time [s]

St
ee

ri
ng

 W
he

el
 A

ng
le

 [
ra

d]
E

ne
rg

y
C

on
su

m
pt

io
n

[k
W

]
W/O Control
With Control

Total 0.077 kWh/km
Total 0.080 kWh/km

W/O Control
With Control

Average 0.33 rad/s
Average 0.22 rad/s

Session 2D: Automotive Applications 1

DOI
10.3384/ecp15118143

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

149

contribution to lower energy consumption than
reducing TVD mechanical loss.

(iii) The real-world energy consumption and
driver’s workload (steering wheel angle)
through DYC was predicted on a simulated
course based on actual winding roads.

For future works, it is planned to consider the effect

of drive shaft stiffness for TVD control. Also
controlling tire slip by motor torque as well as
maximizing regeneration by breaking is essential to
expand the capability of electric control of optimal tire
slip control. This work will also be useful to design a
proper system configuration of mechanical break and
electric break and also designing proper torque
blending control.

References

DLR, PowerTrain Library Users Guide (Version 2.1.0), 2013

 Y. Hirano, S. Inoue and J. Ota, Model-based Development
of Future Small EVs using Modelica, Proceedings of

Modelica Conference 2014, 2014.

B. Höhn et al., Torque Vectoring Driveline for Electric
Vehicle, Proceedings of the FISITA 2012 World

Automotive Congress, Vol. 191, pp. 585-593, 2013.

S. Inoue, J. Ota, Y. Hirano, T. Kobayashi, A. Kawaguchi and
H. Sugiura, Study on Full-Vehicle Model Integrating
Vehicle Dynamics and Energy Consumption, Proceeding

of 12th International Symposium on Advanced Vehicle

Control (AVEC’14), 20149329, 2014.

T. Kobayashi, E. Katsuyama, G. Sugiura, E. Ono, M.
Yamamoto, A research about driving force distribution
control and energy consumption while cornering,
Proceeding of 2013 JSAE Annual Congress (Spring), 352-
20135393, 2013 (in Japanese).

Modelon, A.B., Vehicle Dynamics library Users Guide
(Version 1.8), 2014.

R.H.Park, Two-reaction Theory of Synchronous Machines:
Part II, AIEE Trans., Vol.52, pp.352-355, 1933.

C. Pelchen et al., Modeling and Simulating the Efficiency of
Gearboxes and of Planetary Gearboxes, Proceedings of

2nd International Modelica Conference, pp. 257-266,
2002.

Model Based Development of Future Small Electric Vehicle by Modelica

150 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118143

Modeling of Torque Vectoring Drives for Electric

Vehicles: a Case Study

Franciscus L.J. van der Linden Jakub Tobolář

German Aerospace Center (DLR), Institute of System Dynamics and Control, 82234 Wessling, Germany
{Franciscus.vanderLinden,Jakub.Tobolar}@dlr.de

Abstract

This paper shows some aspects of the implementa-
tion of a gear model with losses, nonlinear elasticity
and forcing errors in the Modelica language utilizing
concept of replaceable functions. Using such gear
model for a torque vectoring drive modeling, a case
study about a powertrain dynamic behavior in a sim-
plified vehicle model is carried out. The total vehicle
model is analyzed in several detail stages of the pow-
ertrain reaching from a fixed efficiency with constant
spring stiffness to a model using nonlinear losses and
nonlinear tooth stiffness. Subsequently, the simula-
tion results of such levels of modeling detail proving
tendency to drive line oscillation are presented and
discussed.

Torque Vectoring Drive, Gearing, Vehicle Dynam-
ics

1 Introduction

To design the gearing solution for an electrical ve-
hicle, different gear topographies are typically ana-
lyzed utilizing computer simulations in an early de-
sign stage. To perform such studies efficiently, it is
important that the gearing topographies can easily
be designed and integrated into the vehicle models
which are used for maneuverability tests assessing
the driving quality.

A solution enabling such gear topography design
and vehicle integration was introduced recently by
(van der Linden, 2015). To prove the usability of
that concept also for more complex gearing topogra-
phies, an electric vehicle powertrain configuration
with controlled torque vectoring device was chosen
in this paper – a future-oriented solution particu-
larly suitable to actively influence the dynamic be-
havior of the vehicle, such as using active yaw rate
control. Such a torque vectoring drive (TVD) con-
figuration is used e. g. in experimental cars like the
VISIO.M (Gwinner et al., 2014) and allows for very
high vectoring torques with a small electric motor.

Figure 1. Torque vectoring drive consisting of a differ-
ential, superimposing unit and spur gear train. Note that
only single planets are shown for simplification of the cal-
culations.

A graphical overview of the gearing solution is shown
in Figure 1.

After giving an overview of some implementation
aspects of the method in Section 2, the present study
will continue with a TVD model decription in Sec-
tion 3. Here, a gear with constant elasticity and
constant efficiency will be first introduced as a ref-
erence model. For further investigations, the model
complexity will be successively increased with dif-
ferent loss models as well as nonlinear elasticity and
backlash in the gearing. Utilizing a simple vehicle
model, briefly referred in Section 4, the simulation
results will be discussed in detail in Section 5.

2 Gear model description

The gear models used in this analysis base on previ-
ous work which consisted of the simulation of elas-
tic ideal gears (van der Linden, 2012). These mod-
els have been extended with various loss models
and elasticity models according to (van der Linden,

DOI
10.3384/ecp15118151

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

151

2015). An overview of the forces and torques calcu-
lated in this publication are shown in Figure 2. The
forces and torques (FxA, FyA, τA, FxB , FyB and τB)
in this Figure are calculated using the integral of
the forces of a complete cycle of the meshing tooth.
By supplying also an internal gear force element,
epicyclic gears can be modeled as well. Since the
derivation of all the theory goes beyond the scope
of this paper, only brief outline is given in the fol-
lowing sections. For a detailed description, please
refer to the abovementioned paper. Since the de-
rived model of gear teeth contact is purely planar, it
is implemented using the PlanarMechanics toolbox
(Zimmer, 2012). This allows the use of standard pla-
nar parts and enables a good transferability of forces
and torques into the 3D world

2.1 Friction force implementation

Since in gear dynamics different friction models are
often used, a decision was made to implement the
friction using a replaceable function structure.

The friction is implemented using a state machine
to be able to handle friction during the Forward,
Backward and Stuck mode. To switch between these
modes, two transition modes are used: StartForw

and StartBackw. A tearing variable sa is used in
the Stuck mode to calculate the forces to keep the
model stuck. This approach is similar to the friction
implementation of (Otter et al., 1999). The gear
friction force Ft is calculated using specialized func-
tions based on e. g. gear meshing speed, operational
mode of the gear contact, contact angle and the radii
of the gear wheels.

The concept of replaceable functions allows for a
quick selection between the different friction mod-
els: no friction, viscous friction, specified efficiency,
Coulomb friction, friction according to the DIN 3990
specifications (DIN 3990 Teil 4, 1987) and a friction
implementation from Niemann and Winter (1989).
The DIN 3990 friction and the friction to Niemann
and Winter both define the friction as a function of
the speed and loading of the gear.

Furthermore, a continuous friction model which is
not based on a state machine is implemented. This
implementation uses a regularized friction model to
smooth the discontinuity of the gear friction. It is
implemented using

Ft = µ|Fn|tanh
|vmesh|

vmesh,0

. (1)

In this equation, vmesh is the relative speed of the
gears at the meshing point and vmesh,0 the character-
istic meshing speed which is chosen small compared
to the nominal meshing speed. Using this regular-
ization, event chattering of gear systems with many
gear contacts can be avoided. However, it must be

noted that in this case no stiction can take place, as
the friction is zero at zero speed.

In this paper, a fixed friction coefficient will be
used as this method is heavily used in the design of
gear transmissions for powertrain analysis, together
with the friction implementation to the DIN 3990
norm due to a good match with measured friction
results in a previous publication (van der Linden,
2015).

2.2 Elasticity implementation

Similar to the variability of friction methods used
in the modeling of gears, also the gear elasticity is
described in many ways. In most cases, a nonlinear
relation between normal forces Fn and deformation
of the gear at contact is present. To incorporate
the different stiffness models known from literature,
also the elasticity is implemented using another set
of replaceable functions. These functions calculate
the normal contact force Fn from multiple model
inputs like the mesh deformation and speed, gear
radii, thickness of the wheels and wheel positions.
The position of the gear wheels makes it possible
to include a position dependent gear stiffness which
can be used to simulate the effect of meshing teeth
or the effect of a damaged tooth.

2.3 Forcing error implementation

To simulate forcing errors like misalignment of
the gear wheels, manufacturing errors or damaged
tooth, a position dependent forcing error is added
to the overall gear deformation. In Figure 3, the
deformation between the gears is given by ∆AB =
∆AB,0 + ∆AB,e. In this equation, ∆AB,e is the elas-
tic deformation of the gear contact as discussed in
Section 2.2. Adding the forcing distance ∆AB,0 gives
the total gear deformation.

Also in this case, replaceable functions are used
to implement several cases: a forcing error defined
by the misalignments of the gears, a forcing error
defined by a Fourier-series and a table-based inter-
polation. All these methods define the forcing error
as a function of the position of each gear wheel.

2.4 Graphical representation of gears

The graphical representation of the gears is
an important way to check proper geome-
try of the gear. Therefore, visualizers from
Modelica.Mechanics.MultiBody.Visualizers are
used to visualize the gear wheels. The results of
such exemplary 3D representations can be seen in
Figure 1 and Figure 5. The parameters needed for
the visualization, such as gear radius or thickness,
are directly taken from the gear model parameters.

Modelling of Torque-Vectoring Drives for Electric Vehicles: a Case Study

152 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118151

dA
lA

dB lBFn

Ft

F

φgear

φcontact

φB

αA

x

y

αB

φA

Gear BGear A

τA

τB

FyA

FxA

FyB

FxB

Figure 2. Free body diagram of two involute gears. In the figure ωA < 0 and Gear A drives Gear B.

∆AB,e

∆AB,0

Figure 3. Forcing error excitation using a position de-
pendent forcing distance ∆AB,0

2.5 Implementation of constraint equa-

tions

The gear model as depicted in Figure 2 needs a de-
fined distance between point A and point B for a
correct calculation of the forces and torques. How-
ever, when a constraint equation is defined in each
gear contact model, epicyclic gear sets result in mod-
eling problems since the planet–sun distances and
sun–ring distance is defined double, thus leading to
an overconstrained system. Therefore, these con-
straints cannot be defined in the model itself, but
must be defined using the PlanarMechanics library.
This mimics the behavior of real gears: a gear con-
nection itself has no constraining equations. The
gear wheel positions are defined by the bearing ar-
rangement of the transmission.

An example of a simple epicyclic gear set is shown
in Figure 4 and Figure 5. The structure of the model
is similar to the gear construction. Hence, each bear-
ing, mass and carrier is modeled in Modelica just like
in a real system.

Figure 4. Modelica model of simple epicyclic gear con-
figuration

Figure 5. Graphical representation of the epicyclic gear
configuration shown in Figure 4.

Session 2D: Automotive Applications 1

DOI
10.3384/ecp15118151

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

153

3 Construction of a torque vec-

toring drive in Modelica

The models as described in Section 2 are used to
build a complete torque vectoring drive consisting
of a Ravigneaux differential, superimposing gear and
spur gear train.

3.1 Ravigneaux differential

The Ravigneaux differential is used to allow for dif-
ferent speeds of the car tires. Compared to common
open differentials with bevel gears, using a Ravi-
gneaux differential allows for a smaller construction
envelope combined with lower losses. The Model-
ica representation of the differential is shown in Fig-
ure 6. The Ravigneaux differential uses four gear
instances, together with a carrier which houses two
connecting planets.

For simplicity reasons, only one set of planets is
used in this analysis. When using all planet sets
of a full Ravigneaux gear, the system would – in
the case of rigid gear connections – lead to an over-
determined system. In the case of elastic gears, the
different gear stages which can switch between fric-
tion modes can lead to heavy event chattering of the
planets.

To compensate the stiffness reduction caused by
the lower number of modeled planets, thicker gears
with higher masses are incorporated.

The reduction of number of planets would lead
to an unbalanced gear model as long as the masses
of the planets are considered as well. But since the
model in Figure 6 is purely rotationally coupled (see
rotational flanges on both left and right side), this
effect does not apply. On the contrary, if the bear-
ing forces are studied, this planet number reduction
will lead to wrong results. In this case, all planet
masses should be added to balance the system and
they must be rotationally coupled with the planet
which is driven by the gear connections.

3.2 Superimposing gear

The superimposing gear uses the input torque to cre-
ate a torque difference between the output flanges.
Also in this case, only a single planet is modeled
instead of all planets. The stiffness and mass are
compensated to mimic all planets as depicted in Sec-
tion 3.1. In Figure 7, the setup of the gear is shown.
For the superimposing gear, four gear instances are
needed.

3.3 Overall TVD model

Connecting the Ravigneaux differential, superim-
posing gear and spur gear train together, a complete

Figure 6. Ravigneaux differential

Figure 7. Superimposing gear

Modelling of Torque-Vectoring Drives for Electric Vehicles: a Case Study

154 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118151

Table 1. TVD model configurations under investigation

Configuration Description
Fixed eta Constant spring constant, con-

stant gear efficiency
Fixed eta with
Backlash

Nonlinear spring constant and
backlash, constant gear effi-
ciency

DIN 3990 eta
with Backlash

Nonlinear spring constant and
backlash, efficiency using to
DIN 3990

TVD is generated as shown in Figure 8. To repre-
sent the connection elasticity between the drives, ro-
tational stiffness-damping elements are added from
the Modelica standard library.

In the overall TVD model, ten gear connections
are included.

In the simulations which are presented in Sec-
tion 5, three different configurations are analyzed
according to Table 1.

The spring constant of the gear instances is
set to 20×106 N/m/mm (Newton per meter per
millimeter gear width), and the gear damping to
20×103 Ns/m/mm for all gear connections. The
coupling between the superimposing gear, Ravi-
gneaux gear and spur gear train have a stiffness of
107 Nm/rad and a damping of 105 Nms/rad, respec-
tively.

4 Vehicle model

To analyze the TVD model in typical vehicle driv-
ing maneuvers, a vehicle model has to be utilized.
For the sake of simplicity, a planar vehicle model
was introduced which moves in the horizontal plane,
thus enabling longitudinal, lateral and yaw motion
only. Additionally, a six degrees of freedom mass
(i. e. three positions and three rotations) was joined
to the planar vehicle body. By taking into account

Figure 8. Complete TVD consisting of Ravigneaux dif-
ferential, superimposing gear and spur gear train

the forces on this mass, wheel load variation due
to vehicle mass transformation between wheels dur-
ing braking, accelerating and cornering are enabled.
The tire models allow slip and are based on the work
of Zimmer and Otter (2010).

A small size electric vehicle with rear-wheel drive
is considered for simulation. Its mass is about
1000 kg with wheelbase of 2.6 m and track of 1.45 m.

The powertrain of the vehicle consists of TVD as
described above, the main motor which applies the
main driving torque, and a differential motor which
divides torques to the wheels of one axle. Utilizing
the differential motor control, the torque vectoring
functionality can be realized. Finally, driveshaft el-
ements are considered as well to additionally incor-
porate their elasticity. An overview of the model is
shown in Figure 9. To mimic the electrical time con-
stant of the motors, a first order system with a time
constant of 10−3 s for both motors is used.

5 Simulation results

Using the vehicle model with a free steering setup
(free steering wheel), an acceleration maneuver is
simulated. The main motor torque is given as a
ramped signal, and the differential motor torque as
a changing signal as shown in Figure 10.

5.1 Elastic drive shafts

The wheel torque of the right driveshaft during the
maneuver is shown in Figure 11. It can be observed
that the results of the constant efficiency and the
DIN 3990 efficiency are differs significantly. The
fixed efficiency cases (97% per gear stage) show a
behavior which is intuitively expected of the TVD:
the differential torque of the differential motor is am-
plified and split between the two axles.

Introducing the DIN 3990 friction model, the re-
sults yield – in contrast to the constant efficiency
– an oscillating output torque. This is caused by
the fact that due to the pre-load of the differential,

Figure 9. Vehicle model with motor configuration and
driveshaft elasticity. The right bottom section of the di-
agram (with the planarToMultibody element) enables an
animation where the drive is fixed to the car.

Session 2D: Automotive Applications 1

DOI
10.3384/ecp15118151

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

155

0 2 4 6 8 10

−50

0

50

Time/ s

T
o
rq

u
e/

N
m

Figure 10. Motor torques during maneuver. The main
motor toque () has a ramp of 1 s to 15 Nm , the differ-
ential motor () is controlled with a changing reference
torque.

0 2 4 6 8 10
−400

−200

0

200

Time / s

T
o
rq

u
e

/
N

m

Figure 11. Wheel torques of the right driveshaft (refer-
ence stiffness) with different friction and elasticity models:
A fixed efficiency without backlash (), fixed efficiency
with backlash () and a friction law to the DIN 3990
standard ().

combined with low rotational velocities, lead to high
friction. Due to this high friction combined with the
pre-load, the gear can get in the stuck mode (this
phenomenon is also described and measured for air
path actuators by Ahmed et al. (2012)).

The combination of the drivetrain elasticity with
high friction leads to a stick-slip problem resulting
in highly varying torques. Note that without fur-
ther measurements and / or experience on TVD, it
cannot be concluded which of the friction models
correctly represents the real system.

Analyzing the speed of the differential motor de-
picted in Figure 12, the stick-slip problem is also
evident. High rotational accelerations are caused by
the fast variation of the motor speed, which can lead
to high loads on the rotor of the motor. This can
lead to fatigue damage of the motor.

0 2 4 6 8 10
−20

0

20

Time / s

S
p
ee

d
/

ra
d

s−
1

Figure 12. Speed of the differential motor using drive-
shafts with the reference stiffness. Different friction and
elasticity models are shown: A fixed efficiency without
backlash (), fixed efficiency with backlash () and
a friction law to the DIN 3990 standard ().

0 2 4 6 8 10
−400

−200

0

200

Time / s

T
o
rq

u
e

/
N

m

Figure 13. Wheel torques of the right driveshaft with
different friction and elasticity models. A ten times in-
creased stiffness of the driveshafts is used. A fixed effi-
ciency without backlash (), fixed efficiency with back-
lash () and a friction law to the DIN 3990 standard
().

5.2 Stiff driveshafts

Using driveshafts with a significant higher stiffness
and damping, the stick-slip problems described in
Section 5.1 can be avoided. In presented example
with increased stiffness, a ten times higher friction
and damping has been used w.r.t. the nominal sit-
uation. The wheel torques of the right rear wheel
(see Figure 13) behave as expected, also for TVD
using the DIN 3990 friction model. Moreover, the
high peaks in motor velocity of the differential gear
are eliminated, cf. Figure 12 and Figure 14.

5.3 Simulation of eccentricities

Eccentricities are common in most gear wheels and
are often caused by manufacturing tolerances. To
simulate a non-perfect drive, an eccentricity of 10 µm
is added to both gear wheels of the first stage of
the spur gear train. This eccentricity excites the

Modelling of Torque-Vectoring Drives for Electric Vehicles: a Case Study

156 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118151

0 2 4 6 8 10

−5

0

5

Time / s

S
p
ee

d
/

ra
d

s−
1

Figure 14. Speed of the differential motor using drive-
shafts with ten times increased stiffness. Different friction
and elasticity models are shown: a fixed efficiency with-
out backlash (), fixed efficiency with backlash ()
and a friction law to the DIN 3990 standard ().

0 2 4 6 8 10
−130

−128

−126

−124

Time / s

T
o
rq

u
e

/
N

m

Figure 15. Wheel torques with and without gear eccen-
tricities: All simulation results have a fixed efficiency and
a nonlinear stiffness. The different lines show a simula-
tion without eccentricity(), simulation with the nom-
inal stiffness () and a simulation with an increased
stiffness().

gear train leading to vibrations. In this simulation,
a constant torque of 5 Nm is applied to the differ-
ential motor to keep the Ravigneaux differential out
of the stuck mode. The main drive motor is driven
with a constant load for a constant acceleration.

In Figure 15, the wheel torques of a simulation
with a stiff driveshaft with eccentricity, an elastic
driveshaft with eccentricity and an elastic driveshaft
without eccentricity are given. Analyzing the sim-
ulation results, it is clear that this eccentricity has
a high-frequent impact on the wheel torques. With
a nominal driveline, the torque variations are lower
at high velocities as for a stiff driveline. A detailed
view of this vibration is shown in Figure 16. The
high frequent vibrations of the gear seem to excite
the drivetrain for the nominal stiffness drivetrain.

3 3.05 3.1 3.15 3.2 3.25

−128

−126

−124

Time / s

S
p
ee

d
/

ra
d

s−
1

Figure 16. Speed of the differential motor with and
without gear eccentricities: All simulation results have a
fixed efficiency and a nonlinear stiffness. The different
lines show a simulation without eccentricity(), simu-
lation with the nominal stiffness () and a simulation
with an increased stiffness().

6 Discussion

During performed simulations, we realized that –
due to the large number of switching components
and high gear stiffness – the proposed model chal-
lenges common numerical solvers like DASSL or
Radau IIA. Finding consistent restart conditions af-
ter an event can be hard, since this often directly
triggers a next event in an adjacent gear connection.

In some cases, it is therefore advisable to use a
regularized friction model as presented in Section
2.1. Such friction models can help to avoid events
and make a simulation progress even if very com-
plex gearing configurations are analyzed. However,
most of these problems can be avoided by modeling
the real-life world more accurately. As an exam-
ple, in this paper, spring-damper models between
the differential, superimposing gear and spur gear
train have been added to mimic the stiffness of the
connections. This avoided many problems with the
simulation results.

7 Conclusion

In this paper, different techniques for gear modeling
were presented and adopted for a torque vectoring
drive which was analyzed in complete car model sim-
ulations. Applying such gear modeling techniques,
which include losses, nonlinear elasticity and forcing
errors, a various level of gear detail can be selected
which proved to significant influence the simulation
results.

The higher level of modeling detail is particularly
important when investigating torque and speed os-
cillation issues which can be useful for e. g. driveline
design. Then, simple fixed efficiency based friction
models are insufficient. In contrast, DIN 3990 or

Session 2D: Automotive Applications 1

DOI
10.3384/ecp15118151

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

157

similar friction models are required to capture such
effects. Furthermore, it was shown that both insuf-
ficient torsional stiffness of the drive shafts and stick
slip in the gear lead to such large torque oscillations
within a complete driveline.

The influence of gear eccentricities on the drive-
line was shown for driveshafts of different elasticity.
It is shown that the a higher stiffness of this shaft
increases the load on this axle. This shows that a
trade-off must be made between the load caused by
eccentricities and the load caused by the stick-slip
effect, as a high driveshaft elasticity lowers the load
caused by stick-slip effects, but increases the load
caused by a stiffer shaft.

The drawback of some presented models can be
an increased simulation effort due to large number
of events. For such cases, the regularized friction
model proved to be possible alternative.

It is worth mentioned that the model and the sim-
ulation results were not validated so far. Especially,
the damping coefficient is largely unknown and not
well researched at the moment. It is advisable to
push the experimental research to get a usable esti-
mate of the gear damping properties in the future.

References

F. S. Ahmed, S. Laghrouche, and M. El Bagdouri.
Overview of the modelling techniques of actuator non-
linearities in the engine air path. Proceedings of the
Institution of Mechanical Engineers, Part D: Journal
of Automobile Engineering, 227(3):443–454, September
2012. ISSN 0954-4070. doi:10.1177/0954407012453905.

DIN 3990 Teil 4. Tragfähigkeitsberechnung von Stirn-
rädern; Berechnung der Freßtragfähigkeit, 1987.

Philipp Gwinner, Michael Otto, and Karsten Stahl.
Lightweight Torque-Vectoring Transmission for the
Electric Vehicle VISIO.M. In COFAT 2014,
March 2014. URL http://mediatum.ub.tum.de/doc/

1226683/1226683.pdf.

Gustav Niemann and Hans Winter. Maschinenelemente:
Band 2: Getriebe allgemein, Zahnradgetriebe - Grund-
lagen, Stirnradgetriebe (German Edition). Springer,
1989. ISBN 3-540-11149-2.

M Otter, H Elmqvist, and S E Mattsson. Hybrid
modeling in Modelica based on the synchronous data
flow principle. In Computer Aided Control Sys-
tem Design, 1999. Proceedings of the 1999 IEEE
International Symposium on, pages 151–157, 1999.
doi:10.1109/CACSD.1999.808640.

Franciscus L. J. van der Linden. Modelling of Elas-
tic Gearboxes Using a Generalized Gear Contact
Model. In Proceedings of the 9th International
MODELICA Conference, pages 303–310, Munich,
November 2012. Linkoping University Electronic Press.
doi:10.3384/ecp12076303.

Franciscus L. J. van der Linden. Modeling of geared
positioning systems: An object-oriented gear contact
model with validation. Proceedings of the Institution
of Mechanical Engineers, Part C: Journal of Mechan-
ical Engineering Science, June 2015. ISSN 0954-4062.
doi:10.1177/0954406215592056.

Dirk Zimmer. A Planar Mechanical Library for Teach-
ing Modelica. In Proceedings of the 9th Interna-
tional Modelica Conference, pages 681–690, Munich,
November 2012. Linköping University Electronic Press.
doi:10.3384/ecp12076681.

Dirk Zimmer and Martin Otter. Real-time mod-
els for wheels and tyres in an object-oriented
modelling framework. Vehicle System Dynam-
ics, 48(2):189–216, February 2010. ISSN 0042-
3114. doi:10.1080/00423110802687596. URL
http://www.tandfonline.com/doi/abs/10.1080/

00423110802687596.

Modelling of Torque-Vectoring Drives for Electric Vehicles: a Case Study

158 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118151

Co-Simulation of Hybrid Systems with SpaceEx and Uppaal

Sergiy Bogomolov1 Marius Greitschus2 Peter G. Jensen3 Kim G. Larsen3

Marius Mikučionis3 Thomas Strump2 Stavros Tripakis4

1IST Austria, Austria
2University of Freiburg, Germany

3Aalborg University, Denmark
4Aalto University, Finland, and University of California, Berkeley, USA

Abstract

The Functional Mock-up Interface (FMI) is an indus-

try standard which enables co-simulation of complex

heterogeneous systems using multiple simulation en-

gines. In this paper, we show how to use FMI in

order to co-simulate hybrid systems modeled in the

model checkers SPACEEX and UPPAAL. We show how

FMI components can be automatically generated from

SPACEEX and UPPAAL models. We also validate the co-

simulation approach by comparing the simulations of a

room heating benchmark in two cases: first, when a sin-

gle model is simulated in SPACEEX; and second, when

the model is split in two submodels, and co-simulated us-

ing SPACEEX and UPPAAL. Finally, we perform a mea-

surement experiment on a composite model to show a

potential for statistical model checking using stochastic

co-simulations.

Keywords: FMI, hybrid system, timed automaton

1 Introduction

Despite advances in model checking and other for-

mal verification techniques, simulation remains the

workhorse for system analysis. A plethora of simulation

tools are available today, from academia as well as from

industry. These tools support a large variety of model-

ing languages, targeted at different types of systems from

various disciplines (e.g., mechanical, electrical, digital,

continuous or discrete, or mixes thereof). Unfortunately,

these tools can rarely interoperate. This is a problem

because modern cyber-physical systems are highly com-

plex and multidisciplinary, requiring specialized model-

ing languages and tools from several domains.

The Functional Mock-up Interface1 (FMI) is a stan-

dard developed to address this problem. FMI defines

an XML schema for describing simulation components

and a C API that these components must implement.

The components are called functional mock-up units,

1See https://www.fmi-standard.org/ for more details.

or FMUs. An FMU is typically generated automati-

cally (exported) from some simulation tool, and corre-

sponds to a (sub-)model designed in that tool. The sub-

models/FMUs are then imported into a host simulator.

The host commands the simulation by calling the API

methods of the FMUs, thus effectively achieving integra-

tion of the original simulation environments. FMI sup-

ports two integration modes: (a) model exchange, where

the host simulator is handles the numerical integration;

and (b) co-simulation, where each FMU implements its

own numerical integration mechanism (or any other in-

ternal mechanism to advance its state in time). Because

each mode imposes its own requirements on FMUs (for

instance, in model exchange, the FMUs must provide the

host with information such as state derivatives, which are

not necessary for co-simulation) the FMI APIs for the

two modes are different.

In this paper, we use FMI in order to connect two

state-of-the-art modeling and verification tools for cyber-

physical systems: SPACEEX (Frehse et al., 2011) and

UPPAAL (Larsen et al., 1997). SPACEEX is a tool

for modeling and verifying hybrid systems (Alur et al.,

1995). UPPAAL is primarily a model-checker for timed

automata (Alur and Dill, 1994), however, it also supports

statistical model-checking of hybrid systems (David

et al., 2011).

Our goal is to integrate these two tools for co-

simulation. That is, we want to be able to: (a) build a

sub-model of the system (e.g., the model of the plant un-

der control) in SPACEEX; (b) build another sub-model

(e.g., the controller) in UPPAAL; (c) automatically gen-

erate an FMU for each sub-model; (d) import the FMUs,

connect and co-simulate them in a host environment.

The motivations for connecting SPACEEX and

UPPAAL in this manner are numerous. First, although

both SPACEEX and UPPAAL support simulation of hy-

brid systems, each tool offers its own modeling lan-

guage, which is not compatible with that of the other

tool. Translating from one language to the other is lim-

ited to common features supported by the tools. For

example, even though the frameworks CIF (Agut et al.,

DOI
10.3384/ecp15118159

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

159

2013; Beohar et al., 2010) and HSIF (Pinto et al., 2006)

solve the complexity problem of one format translation

to another by performing at most two translations, the

approach still suffers from the fact that UPPAAL features

like committed locations and C-like function code are not

supported in SPACEEX and UPPAAL has limited support

for ODEs. Moreover, by using co-simulation, we are

able to take advantage not just of the specific strengths

of the language of each tool, but also of their native sim-

ulation engines, since each FMU is internally running

essentially a “copy” of the simulation algorithm of the

original tool.

As host environment we use the tool Ptolemy2.

Ptolemy is a modeling and simulation environment for

heterogenous systems (Eker et al., 2003). Recently, sup-

port has been implemented in Ptolemy for using it as

a host environment for co-simulation based on FMI.

FMUs (developed by other tools) can be imported into

Ptolemy, connected using Ptolemy’s graphical user in-

terface, and co-simulated using an implementation of

the co-simulation algorithm described by Broman et al.

(2013). This algorithm has desirable properties, such as

determinacy, namely, the fact that the results of the simu-

lation are independent of arbitrary factors such as names

of the FMUs, order of creation, or order of evaluation in

the diagram.

The contributions of this paper are the following:

1. We show how FMUs can be generated automati-

cally from models of hybrid and timed automata

built in SPACEEX and UPPAAL. There are several

subtleties involved in this, as hybrid and timed au-

tomata are models designed primarily with verifi-

cation in mind, whereas FMI is designed for sim-

ulation and therefore imposes certain properties on

FMUs, such as determinism.

2. We report on the implementation and case studies.

In particular, we apply our co-simulation frame-

work to a room heating benchmark (Fehnker and

Ivancic, 2004).

3. We validate the co-simulation algorithm proposed

by Broman et al. (2013) by comparing the results

of the case study in two settings: (a) when the case

study is modeled and simulated in a single tool, and

(b) when the various components of the case study

are modeled in two tools and co-simulated using

our framework. We show that our co-simulation

framework computes the same simulation trajecto-

ries as the setting (b) provided that the maximum

simulation step size of co-simulation is sufficiently

small.

4. We demonstrate how stochastic simulations can be

included into the composite model with hybrid sys-

tems and applied a simple statistical measurement

2See http://ptolemy.eecs.berkeley.edu/.

to show the potential for statistical model checking

using FMI co-simulations.

The rest of the paper is organized as follows. In

Sec. 2, we introduce the necessary background on FMI

for this work. Afterwards, we present our translation

of SPACEEX and UPPAAL models into FMUs in Sec. 3.

This is followed by the case study in Sec. 4. We discuss

related work in Sec. 5. Finally, we conclude the paper in

Sec. 6.

2 Background on FMI

Conceptually an FMU can be seen as a (timed) state

machine. This machine has a set of input variables (or

ports), a set of output variables, and a set of internal

states. The machine interacts with its environment only

by means of a clearly defined set of interface methods.

These methods are specified in the FMI standard. For

the purposes of this paper, and following the formaliza-

tion presented by Broman et al. (2013), the key interface

methods of FMI (for co-simulation) are:

• A method to initialize the state of the FMU. If S is

the set of states of the FMU, then init ∈ S.

• A method set to set a given input variable to a cer-

tain value. The signature of set is set : S×U ×
V→ S, where U is the set of input variables of the

FMU, and V is the set of all possible values (for

simplicity we ignore typing and use a single uni-

verse V of values for all variables). Given state s,

input variable u ∈ U , and value v ∈ V, set(s,u,v)
returns the new state obtained after setting u to v.

• A method get which returns the value of a given

output variable. Its signature is get : S×Y → V,

where Y is the set of output variables of the FMU.

Given state s and output variable y ∈ Y , get(s,y)
returns the value of y in s.

• A method doStep which advances the state of

the machine in time. Its signature is doStep :

S×R≥0 → S×R≥0, where R≥0 is the set of non-

negative real numbers. The behavior of doStep is

explained below.

As said above, an FMU is essentially a state machine:

the get method corresponds to the output function of the

machine, while the doStep method corresponds to the

transition function. The difference is that doStep takes

as input a time step h ∈ R≥0: in that sense, an FMU is a

timed state machine.

The behavior of doStep is as follows. Given state

s ∈ S, and time step h ∈ R≥0, a call to doStep(s,h) is

interpreted as the co-simulation algorithm “asking” the

FMU to perform a simulation step of length h. For a

Co-Simulation of Hybrid Systems with SpaceEx and Uppaal

160 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118159

number of reasons, including numerical integration is-

sues, the FMU may “accept” or “reject” this request. If it

rejects, it means that it was not able to advance time by h

(but may have been able to advance time by a smaller de-

lay h′ < h). Formally, doStep(s,h) returns a pair (s′,h′)
where s′ ∈ S is a state and h′ ∈ R≥0 is a time step, such

that:

• either h′ = h, which is interpreted as F having ac-

cepted h, and having moved to a new state s′;

• or 0 ≤ h′ < h, which is interpreted as F having re-

jected h, but having made partial progress up to h′,

and having reached a new state s′.

It is worth noting that FMUs are deterministic ma-

chines, in the sense that for a given sequence of inputs

(i.e., a sequence of input values and time steps), the se-

quence of states and outputs that the machine produces

is unique. This is because there is a unique initial state

init ∈ S, and set,get,doStep are all total functions.

Moreover, the fact that these functions are total implies

that the machine is able to accept any input at any time,

therefore, it is implicitly input-enabled.

We also rely on zero-time steps in a sense of allowing

doStep(s,h) calls with h = 0 (despite that version 2.0 of

the FMI standard forbids this), because they are essential

for modeling discrete transitions like instantaneous mode

switches in hybrid automata models.

In addition to the above, each FMU comes with a set

of input-output dependencies, D ⊆ U ×Y . D specifies

for each output variable which input variables it depends

upon (if any): (u,y) ∈ D means that output variable y de-

pends on input variable u. This information is used to

ensure that a network of FMUs has no cyclic dependen-

cies, and also to determine the order in which all network

values are computed during a simulation step (Broman

et al., 2013).

FMI specifies the methods that every FMU must im-

plement, but it does not specify the co-simulation algo-

rithm (also called a master algorithm). In fact, devising

such an algorithm with good properties is not a trivial

problem, and has been the topic of previous work (Bro-

man et al., 2013). In that work, two co-simulation algo-

rithms were proposed and proved to have desirable prop-

erties, such as termination of a simulation step, and de-

terminacy. The determinacy property says that the re-

sults of a simulation do not depend on the order in which

the algorithm chooses to call doStep over a set of FMUs.

This ensures that the simulation results are well-defined

and are not influenced by arbitrary factors such as FMU

names, order of creation, geometrical position in the dia-

gram of a graphical model, etc., as is often the case with

simulation tools.

In a nutshell, the co-simulation method proposed

by Broman et al. (2013) relies on the following princi-

ple. First, the co-simulation algorithm chooses a default

time step, hmax, called the maximum step size. Second,

the algorithm saves the state of each FMU in the model

(FMI specifies methods for an FMU to export and import

its state, although these are optional). Assuming there

are n FMUs, F1, ...,Fn, the algorithm maintains n states,

s1, ...,sn. Third, the algorithm calls Fi.doStep(si,hmax)
on each FMU Fi, and collects the returned time steps

h′1, ...,h
′
n. There are two cases: either all FMUs accepted

the proposed time step, i.e., h′1 = h′2 = · · · = h′n = hmax,

in which case this simulation step is over, and the algo-

rithm proceeds to the next one; or at least one FMU Fi

rejected hmax, i.e., h′i < hmax for some i. In the latter

case, the algorithm computes the minimum of h′1, ...,h
′
n,

hmin = min{h′1, ...,h
′
n}, restores the saved state of each

FMU, and tries again with new step size hmin.

Assuming that the FMUs satisfy the reasonable

“monotonicity” property that if they were able to ad-

vance time by h′i then they are also able to advance time

by any smaller step, and by the fact that hmin is smaller

than all h′i, the second attempt is guaranteed to succeed.

That is, hmin will be accepted by all FMUs. As a result,

at most after two attempts, a co-simulation step is suc-

cessful, and the algorithm proceeds with the next step,

repeating the same procedure as above.

The FMI standard sets out a framework where FMUs

share the notion of time and exchange variable values via

input-output ports: outputs from one FMU are mapped as

inputs to other FMU(s) and so on. The output port val-

ues are said to be owned and controlled by the emitting

FMU, whereas the inputs are computed and provided

by another (outputting) FMU. The framework foresees

that before producing an output an FMU may first need

some input values and thus input-output dependency in-

formation is introduced. Overall the I/O port connec-

tivity graph derived from the model of interconnected

FMUs, together with the local I/O dependencies of each

individual FMU, result in a global I/O dependency graph

for the entire model (Broman et al., 2013).

Time and I/O values are synchronized by the co-

simulation algorithm: the time is agreed by repeatedly

consulting each FMU and the I/O values are propagated

according to dependencies. The co-simulation algorithm

assumes that each FMU provides a static dependency list

of its ports before simulation starts, and that the result-

ing global I/O dependency graph is acyclic, and therefore

there exists a schedule for computing the value of every

input port before the value of a dependent output port is

requested (Broman et al., 2013).

3 Translating Models into FMUs

The behavior of individual FMUs is provided by the

model-checker’s simulation engines based on the guide-

lines described by Tripakis (2015). In particular, the

report distinguishes continuous and discrete dynamics.

The continuous behavior is modeled by differential equa-

tions over continuous variables whose values can be

Session 3A: FMI 2

DOI
10.3384/ecp15118159

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

161

shared among FMUs by the means of port connec-

tions. The output ports of an FMU are mapped to the

owned/controlled variables which are read and written

to, whereas input ports map to read-only variables within

the FMU.

The discrete behavior is modeled by discrete transi-

tions in the timed/hybrid automata control flow struc-

ture. The discrete transitions are designed to be exe-

cuted with micro-steps of zero delay. Transitions can

also be decorated with event labels and each tool sup-

ports its own kind(s) of synchronizing compositions in-

ternally and therefore the discrete transition synchroniza-

tion is also handled individually within the tools. Tri-

pakis (2015) provides the means of discrete transition

synchronization by allocating two special port variables:

one for incoming (input) synchronization and one for

outgoing (output) synchronization. The domain of dis-

crete input (output) ports coincides with the set of input

(output) labels plus a special value absent which denotes

no synchronization or an internal discrete transition.

3.1 Uppaal

UPPAAL uses timed automata models (Alur and Dill,

1994), extended with discrete variables over structured

types to describe behaviors of a timed system. In timed

automata, the continuous dynamics is controlled by real-

valued clock variables (with derivatives set to one) and

discrete states complemented with integer variables –

both of which are candidates for exchange via FMU

input-output ports. Statistical model checking (SMC) ex-

tensions (David et al., 2011, 2015) allow a finer control

of the clock derivatives by means of ordinary differential

equations, moreover the discrete transitions are stochas-

tic where the execution is determinized by probability

distributions over time and over branching edges. The

stochastic semantics of a parallel composition is simi-

lar to the FMI co-simulation algorithm (Broman et al.,

2013): the way the minimum delay is negotiated and

thus the timed composition within the FMI framework

is straightforward, and task is to find a systematic way of

handling discrete synchronizations. UPPAAL also sup-

ports the maximal progress or ASAP semantics on edges

labeled with urgent channels.

UPPAAL supports the notion of discrete I/O synchro-

nization natively by means of input and output channel

labels. Thus, its discrete input and output transitions can

be mapped directly to the input/output port variables of

an FMU that is dedicated to transfer the synchroniza-

tion label name. Nonetheless, we distinguish the fol-

lowing kinds of transitions: internal (transitions without

I/O channel synchronization or internally synchronized

transitions for which channels are not marked as input or

output), input transitions (labeled by an input synchro-

nization where the channel name is marked as an FMU

input), and output transitions (labeled by an output syn-

chronization where channel is marked as an FMU out-

put). The marked outputs are controlled by the UPPAAL

simulation and are executed asynchronously irrespective

of whether the receiving FMU is ready to synchronize.

Meanwhile, the input transitions are executed only when

there is a corresponding input label set on a discrete input

port. At most one (internal, input or output) transition is

allowed at a time, hence fine-grained simulation control

can be achieved by the co-simulation algorithm.

UPPAAL FMUs do not introduce I/O dependencies be-

tween continuous variables because the models do not

use algebraic expressions to compute variable values. In-

stead of algebraic expressions the automata use discrete

transitions to update the variable values. However, only

one discrete transition is allowed at a time, therefore all

discrete outputs have dependencies on the inputs dedi-

cated to synchronization labels which restrict the selec-

tion of a particular discrete transition and hence specific

variable update.

3.2 SpaceEx

SPACEEX (Frehse et al., 2011) uses hybrid automata to

describe system behavior where the continuous variable

derivatives are constrained by differential equations. The

continuous variables are candidates for input and output

exchange via FMU ports. The discrete transitions of hy-

brid automata can be decorated with labels. Synchro-

nization may involve multiple participating processes,

but there is no notion of input and output – all processes

are equal contributors, therefore the simulator needs to

implement the input/output semantics required by FMI.

We use a special label naming notation to mark input and

output labels (see Fig. 6). The transitions with input la-

bels are only executed when the discrete input variable of

FMU is set to the corresponding label name. Meanwhile,

the transitions with an output label are controlled by

SPACEEX’ simulation, and are executed asynchronously

by setting the discrete output variable with the label

name irrespectively of whether the receiving FMU can

synchronize with it. We ensure the SPACEEX FMU de-

terminism by enforcing the must-semantics of discrete

transitions in a hybrid automaton. In other words, a dis-

crete transition is taken as soon as its guard is enabled.

Finally, we resolve the non-determinism between input,

output, and internal transitions in the following way: in-

put transitions have priority over output transitions and

output transitions are preferred over the internal ones.

Both UPPAAL and SPACEEX translations simulate the

source models as they are without intermediate transfor-

mations, except of the following additions: 1) input en-

abledness is ensured by broadcast channels in UPPAAL

modeling and asynchronous I/O is implemented for

SPACEEX synchronization labels, 2) for determinization

SPACEEX uses maximal progress whereas UPPAAL uses

stochastic semantics with a possibility of urgent channels

for maximal progress.

Co-Simulation of Hybrid Systems with SpaceEx and Uppaal

162 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118159

x = 1
a!

x = 1
b!

a?

b! x = 1
c!

b?

c! x = 1
d!

c?

d!

A1 A2 A3 A4

Figure 1. An example of four timed automata chain.

3.3 Discussion on Co-Simulation Semantics

In this section, we discuss the co-simulation seman-

tics and contrast it to those typically used by a model-

checking tool. In particular, we demonstrate by exam-

ple how the FMI co-simulation algorithm resolves in-

put/output dependencies and contrast it with execution

analysed in a model checker. Our goal is to offer insights

in the differences of the two semantics.

Consider a system model shown in Fig. 1 which con-

sists of four timed automata composed in parallel. La-

bels of the form a! denote sending output a, whereas a?

denotes receiving an input a. The variable x is a clock

measuring time starting from zero. The constraint x = 1

is a guard which allows the corresponding transition of

the automaton to occur only if the guard is satisfied, i.e.,

in this case only when x equals 1. The automata synchro-

nize in a chain: the first can output a to the second one,

the second one can output b to the third one and so on.

In principle, the system can be loaded into an FMI

model in any combination: individually (one automaton

per FMU) or collectively (multiple automata per FMU),

but before an FMU can be loaded into an FMI model, it

must declare its input/output dependencies. According

to Broman et al. (2013) each automaton should expose

an input/output variable which will contain the synchro-

nization label value. Automaton A1 in the example above

will have only an output variable, which may have values

{a, absent}. Automaton A2 will have an input variable

ranging over {a, absent} and an output variable ranging

over {b, absent}, and so on. The special value absent de-

notes that currently there is no synchronization. Timed

automata must declare a dependency between its input

and output label variable in order to avoid simultaneous

input and output synchronizations.

In addition, it is assumed that each FMU is input-

enabled, meaning that it can handle (i.e., it is able to

receive) any declared input at any time. If a component

is not input-enabled and an input synchronization is trig-

gered then simulation is aborted, to avoid such situation

we allow only broadcast channels, which do not block

the sender process and receiver may simply ignore the

synchronization if has no receiving edge.

Suppose the automata from Fig. 1 are loaded within

separate FMUs and connected according to synchroniza-

tion labels. That is, the output of FMU(A1) is connected

to the input of FMU(A2), the output of FMU(A2) is con-

nected to the input of FMU(A3), and so on. The co-

simulation algorithm would detect that it has to fulfill in-

puts values for the FMU(A4), FMU(A3), and FMU(A2)

in order to proceed, therefore the input/output value

propagation will have to start with FMU(A1) and then

proceed to the FMU(A2) etc.. Once the values of all in-

put and output variables are propagated, the algorithm

proceeds with advancing each FMU in time by calling

doStep(). It is this dynamic behavior in time which in-

terests us in this example.

In particular, observe that A2,3,4 automata are non-

deterministic in the sense that, according to UPPAAL se-

mantics, at time x = 1 an automaton can either delay, or

take an outputting transition, or synchronize on inputs.

For instance, at time x = 1, A2 can either emit b, or re-

ceive a (which will be available in this case, because it is

sent by A1 at exactly that time), or let the time pass. In

timed automata semantics, all these options are possible

at the individual component level. Moreover, not only in-

dividual components can be non-deterministic, but their

composition is non-deterministic as well, based on so-

called interleaving semantics. This means that when

multiple automata are enabled at a given time, the choice

of which one to execute is arbitrary. Non-determinism

is a useful abstraction and thus model reduction tech-

nique in verification and model-checking. The same is

true when these tools are used for simulation, i.e. differ-

ent simulations in UPPAAL may yield different results.

In FMI, the situation is very different, as all FMUs are

treated as deterministic components, and their composi-

tion, ensured by the co-simulation algorithm, is guaran-

teed to yield deterministic results as well. Interestingly,

in this example, if all automata decide to output at time

x = 1, some of them will succeed outputting in parallel,

while others will be preempted by incoming inputs. In

particular, the master algorithm will request FMU(A1)
to produce its output, and thus FMU(A2) will be busy

handling an input and will not be producing output at

that time. Since FMU(A2) is not sending anything, then

FMU(A3) will be free to produce an output and hence

preempt FMU(A4).

As witnessed from above, such FMI system selects a

particular sequence of steps (which is expected) but is

not able to simulate all possible execution orders as in

original semantics even if we allow FMUs to determinize

their actions by themselves, which means that FMI sim-

ulations are selecting a particular subset of all possible

behaviors and some behaviors may not be reproducible

in FMI. Also FMI simulations may contain parallel syn-

chronizations (e.g. actions A1

a
֌ A2 and A3

c
֌ A4 at

the same computation step) which are possible only in

several steps in timed automata semantics (action a and

only then action c within zero-time), hence the interme-

diate state between a and c actions might not be acces-

sible in FMI without very fine grained control over indi-

vidual doStep() calls in one zero-time computation step.

However, the successor state of such parallel executions

can be matched with a state after multiple transitions in

the given automata semantics, hence the FMI simulation

Session 3A: FMI 2

DOI
10.3384/ecp15118159

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

163

states in between system computation steps are included

in the original semantics, albeit definite proof requires

more formal insight to examine all scenarios.

4 Case Study

We have implemented the FMI standard in the

UPPAAL (Larsen et al., 1997) and SPACEEX (Frehse

et al., 2011) model checkers by providing model export

to FMU3. In this section, we present and evaluate the

performance of the resulting FMI framework on a case

study inspired by the well-known room heating bench-

mark originally proposed by Fehnker and Ivancic (2004).

Our model consists of a room with a heater (Fig. 2) and

a controller (Fig. 3) which regulates the heater behavior.

We model the room and the controller as a SPACEEX and

UPPAAL FMU, respectively (see Fig. 4). Our bang-bang

controller turns the heater on and off as soon as some

temperature thresholds Tlow and Thigh have been reached.

The as-soon-as-possible behavior is enforced by using

urgent channels which effectively make the controller

deterministic. The room temperature T evolves accord-

ing to the following differential equation:

Ṫ = k · (Tenv − t)+hpower

Ṫenv = 0

ḣpower = 0

In other words, the room temperature depends linearly

on the difference between the current room temperature

T and outside temperature Tenv. We assume the outside

temperature Tenv and heater power hpower to be constant.

The constant k defines the heat exchange rate between

the room and outside environment. If the heater is off,

the heater power is set to zero.

4.1 Evaluation

We evaluate our FMU framework by comparing simula-

tion trajectories of the FMUs with the ones produced by

a SPACEEX model consisting of both the controller and

room components. We consider three different simula-

tion step values: 1 (see Fig. 5a), 0.1 (see Fig. 5b) and

0.01 (see Fig. 5c). Considering the simulations, we ob-

serve that the FMU trajectories overshoot the controller

constraints in the sense that the controller exhibits a de-

layed reaction when the room temperature crosses the

temperature thresholds. The behavior is justified by the

fact that the method call doStep for every FMU relies

only on the local information about the state evolution

when making decisions, e.g., the controller FMU does

not have any information about the room temperature

evolution beyond the value which can be provided when

3A package containing the benchmarks is available for download

at http://swt.informatik.uni-freiburg.de/tool/spaceex/

co-simulation.

off

Ṫ = k · (Tenv −T)

Ṫenv = 0

ḣpower = 0

on

Ṫ = k · (Tenv −T)+hpower

Ṫenv = 0

ḣpower = 0

hon? hoff ?

Figure 2. Room component modelled in SPACEEX. The com-

ponent switches between “on” and “off” modes. The temper-

ature variable T is exported as output and synchronizations la-

bels hon and hoff as inputs.

off on

T ≤ Tlow

hon!

T ≥ Thigh

hoff !

Figure 3. Controller in UPPAAL uses urgent channels to en-

sure as-soon-as-possible transition trigger. Temperature T is

an input and labels hon and hoff are outputs.

the method doStep is called. Therefore, the controller

FMU detects that the guard is enabled only a simulation

iteration later after this event has already happened. We

observe that the impact of the overshooting can be made

arbitrary small by choosing a small enough simulation

step (see Fig. 5c vs. Fig. 5a and Fig. 5b).

We note that the overshooting problem is inherent

to the considered master algorithm and can be cir-

cumvented by incorporating additional cross-component

knowledge into the master algorithm. Overall, our exper-

iments validate that on this case study our co-simulation

framework based on SPACEEX and UPPAAL provides

equivalent simulation results compared to the setting

where all components are modelled in one tool.

4.2 Supervisory Control Example

In this section, we show how supervisory control systems

similar to the benchmarks presented by Fehnker and

Ivancic (2004) can be modeled using the FMI paradigm.

Compared to Section 4.1, we consider a model of the

building with two rooms sharing a common wall and

a heater. In this setting, the room temperature is influ-

FMU

FMU

Controller

Room

hmode

hmodeT

T

Figure 4. SPACEEX and UPPAAL FMUs connected using the

room temperature T and heater mode hmode.

Co-Simulation of Hybrid Systems with SpaceEx and Uppaal

164 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118159

 18

 19

 20

 21

 22

 23

 0 2 4 6 8 10 12 14

FMI
SpaceEx

(a) Maximum step size 1.

 18

 19

 20

 21

 22

 23

 0 2 4 6 8 10 12 14

FMI SpaceEx

(b) Maximum step size 0.1.

 18

 19

 20

 21

 22

 23

 0 2 4 6 8 10 12 14

FMI SpaceEx

(c) Maximum step size 0.01.

Figure 5. Simulation trajectories: each red x is a data point re-

ported by SPACEEX, and blue + reported by the co-simulation.

enced by both the outside temperature and heat transfer

between the rooms. Figure 6 shows a hybrid automaton

from SPACEEX modeling the room temperature dynam-

ics. The difference from the previous example here is an

extra term (Tother−t)∗0.2 denoting a contribution from

another room. Another room is modeled analogously ex-

cept that it responds to heater2_on and heater2_off sig-

nals instead of heater1_on and heater1_off.

Our controller consists of two parts: local bang-bang

controller and a supervisor shown in Fig. 7. In order to

model the transitions of the heaters between the rooms,

we assume that the controllers can be turned on/off by

the supervising controller. Therefore, the local controller

has an extra mode besides On and Off which stands for

the controller being currently deactivated. The supervis-

ing controller has two kinds of stochastic behavior: it can

pick any pair of rooms (one recipient and another donor)

to transfer the heater, and it can choose the timing of

transfer. When a pair of rooms is selected (by choosing

concrete room identifiers for rec and donor variables) the

donor is disabled by moving from location decide to lo-

cation move and the recipient is enabled by going from

move to idle. The supervisor may stay in location idle

arbitrary long, but the exact duration is decided by an ex-

ponential probability distribution of rate 1 which means

the duration of 1/1 time units on average. Similarly the

supervisor may stay in decide and move but the duration

will be 1/10000 on average, i.e. denoting that the heater

is moved rather quickly.

Figure 8 shows the overall component connectivity di-

agram where the supervisor is reading temperatures from

each room and controls the local movable heater con-

trollers. The movable heaters then may either turn on the

heat in their room or let them cool off giving the heat to

Figure 6. Hybrid automaton for a heated room connected to

another room. Inputs are temperatures Tenv, Tother and labels

IN_heater1_on and IN_heater1_off, while output is tempera-

ture t. We use the prefix IN to mark input labels.

(a) Local bang-bang controller which can be moved (disabled).

The inscribed U means urgent location where time delay is

not allowed. The inputs are temperature variable T[id] and

labels enable[id] and disable[id], while outputs are labels

heater1_on and heater1_off.

(b) Supervising controller moves the heaters between rooms by

reading inputs on T[i] and sending outputs on labels enable[i]

and disable[i] where i is the room index.

Figure 7. Two layers of UPPAAL controllers.

Session 3A: FMI 2

DOI
10.3384/ecp15118159

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

165

outside. The individual heated rooms are then connected

to the outside temperature and to each other denoting the

heat exchange. The splitter FMUs are repeaters needed

to connect multiple components to the same signal.

In the following, we discuss the behavior of the result-

ing composed model. Figure 9 shows the temperature

dynamics in each room. In particular, the plot shows that

in the beginning the temperature drops until the super-

visor detects a room temperate below T get = 17◦, then

around 6 time units a heater raises the temperature in

room 1. The local controller keeps rising the tempera-

ture until it goes over 22◦ bound at around 7.5 time units.

Notice that the temperature in room 2 also rises due to

heat exchange between the rooms. Around 10 time units

the supervisor decides to hand over the heater to room 2.

At 14 time units the heater is switched back to room 1

and so on. We can conclude that even though the tem-

perature drops well below 18◦ overall it seems that the

controllers manage to sustain the temperature at the sim-

ilar level without loosing control (without dropping to

outside temperature level).

4.3 Stochastic Simulations and SMC

The following is a demonstration of statistical model

checking (SMC) using the FMI framework. We show

how the performance of two stochastic controllers simu-

lated by UPPAAL can be compared using SMC approach

together with the heated room simulation provided by

SPACEEX. Figure 10 shows two controllers: (a) reacting

within 1 time unit to 18.0◦ and 22.0◦ temperature bounds

and (b) reacting within 2 time units to 19.0◦ and 21.0◦

temperature bounds. The channels used in these con-

trollers are not urgent and therefore the delay between

temperature detection and heater activation is decided

stochastically based on uniform distribution over the al-

lowed delay by invariants, i.e. the concrete delay will be

chosen from [0,1] for the first controller and from [0,2]
for the second one. The On and Off locations do not have

any invariant and therefore in principle the process may

stay there forever. In such cases UPPAAL uses an expo-

nential (Poisson) probability distribution to decide a par-

ticular time delay and hence asks to provide a rate of the

exponential. The higher the exponential rate, the shorter

the delays, hence we can provide a high rate to ensure

that the detecting transition is fired arbitrary quickly.

In our setup, we would like to know which controller

is better at keeping the room temperature within 18.0◦

and 22.0◦ bounds. In order to answer this question we

setup two FMI models for each controller with an equal

room, run 100 simulations with 100 time units in length

and 0.05 granularity, compute the amount of time spent

outside the temperature range for each simulation and

then compute the confidence intervals for both models.

Table 1 shows a summary of amounts of time during

which the temperature was either below or above the

range. The estimated time duration use confidence in-

terval (CI) notation which means that if we repeat the

measurement experiment then the real mean (which is

unknown) will fall into the interval with a probability of

95%. The results show that the second controller was

more successful at maintaining the lower bound of the

temperature, but was more overshooting beyond the up-

per bound. In total, the first controller kept the tempera-

ture in good range longer by 8.57 time units on average,

which is much larger than confidence interval, hence the

first controller is better.

Table 1. Time with temperature outside the range (95% CI).

Controller Time below Time above Total

Wide and fast 7.56±0.20 32.69±3.36 40.26±0.59

Narrow and slow 2.40±0.19 46.43±0.82 48.83±0.79

5 Related Work

The FMI standard and corresponding documentation are

constantly evolving, as new versions of the standard are

developed. The web site4 also contains a list of tools

supporting FMI. Descriptions of FMI can also be found

in the academic literature (Blochwitz et al., 2011).

Discussions about the limitations of FMI can be found

in the works by Broman et al. (2013, 2015). Broman

et al. (2013) also formalize the main methods of FMI

(get, set, doStep) by establishing a contract (pre-

/post-conditions) for each method and propose a mas-

ter algorithm (i.e., a co-simulation algorithm). Further-

more, the authors proves its termination, determinacy,

and other properties. However, the paper does not dis-

cuss how FMUs can be created. A different, master-slave

based, co-simulation approach is proposed by Bastian

et al. (2011), but formal properties such as determinacy

are not discussed in this work.

Broman et al. (2015) defines a suite of test models that

should be supported by a hybrid co-simulation environ-

ment, giving a mathematical model of an ideal behav-

ior, plus a discussion of practical implementation con-

siderations. Furthermore, the paper describes a set of ba-

sic modeling components in the spirit of Ptolemy actors

(constant, gain, adder, integrator, etc.). Finally, the au-

thors provide a kind of denotational description for each

component (input and output signals), but no encoding

into FMUs is discussed.

The FMU generation problem for various formalisms

is discussed by Tripakis (2015). This work only refers

to a generic model of timed machines which does not

include the particularities of UPPAAL’s timed automata.

In addition, hybrid automata are not considered in this

work.

Recently, the co-simulation algorithm presented

by Broman et al. (2013) has been implemented in the

4https://www.fmi-standard.org/

Co-Simulation of Hybrid Systems with SpaceEx and Uppaal

166 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118159

how the non-deterministic models can be determinized

using stochastic semantics and included into FMI co-

simulation. We also provided an example how statisti-

cal model checking can be performed using numerous

FMI simulations which is an essential feature evaluating

stochastic behavior. The integration of model-checkers

into co-simulation frameworks provides further possibil-

ities of analyzing early design models like conformance

monitoring by checking that a simulation trace of a re-

fined (e.g. hybrid) model is included in a more a ab-

stract (e.g. timed automata) specification. We envision

our work being a further step towards integrating tools

developed in the formal methods community into the in-

dustrial system design and modeling workflow of cyber-

physical systems.

7 Acknowledgments

We are grateful to Christopher Brooks, Fabio Cremona,

and Edward Lee from UC Berkeley, for their work on

the Ptolemy framework. This work was partly sup-

ported by the European Research Council (ERC) under

grant 267989 (QUAREM), by the Austrian Science Fund

(FWF) under grants S11402-N23 (RiSE) and Z211-N23

(Wittgenstein Award), by the German Research Foun-

dation (DFG) as part of the Transregional Collabora-

tive Research Center “Automatic Verification and Anal-

ysis of Complex Systems” (SFB/TR 14 AVACS), by

EU FET project SENSATION, the Sino-Danish Cen-

ter IDEA4CPS and the Center DiCyPS of the Dan-

ish Innovation Foundation, by Academy of Finland, by

the National Science Foundation (awards #1329759 and

#1139138), and by the Industrial Cyber-Physical Sys-

tems Research Center (iCyPhy) supported by IBM and

United Technologies Corporations.

References

D.E. Nadales Agut, Dirk A. van Beek, and J.E. Rooda. Syn-

tax and semantics of the compositional interchange for-

mat for hybrid systems. The Journal of Logic and Alge-

braic Programming, 82(1):1 – 52, 2013. ISSN 1567-8326.

doi:10.1016/j.jlap.2012.07.001.

R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-

H. Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine.

The algorithmic analysis of hybrid systems. Theoretical

Computer Science, 138(1):3–34, 1995.

Rajeev Alur and David L. Dill. A theory of timed automata.

Theoretical Computer Science, 126:183–235, 1994.

Stanley Bak, Sergiy Bogomolov, and Taylor T. Johnson.

HYST: a source transformation and translation tool for hy-

brid automaton models. In Proceedings of the 18th Inter-

national Conference on Hybrid Systems: Computation and

Control, HSCC, Seattle, WA, USA, April 14-16, 2015, pages

128–133. ACM, 2015.

Jens Bastian, Christoph Clauß, Susann Wolf, and Peter Schnei-

der. Master for Co-Simulation Using FMI. In 8th Interna-

tional Modelica Conference, 2011.

Harsh Beohar, D. E. Nadales Agut, Dirk A. van Beek, and

Pieter J. L. Cuijpers. Hierarchical states in the compo-

sitional interchange format. In Luca Aceto and Pawel

Sobocinski, editors, Proceedings Seventh Workshop on

Structural Operational Semantics, SOS 2010, Paris, France,

30 August 2010., volume 32 of EPTCS, pages 42–56, 2010.

doi:10.4204/EPTCS.32.4.

T. Blochwitz, M. Otter, M. Arnold, C. Bausch, C. Clauß,

H. Elmqvist, A. Junghanns, J. Mauss, M. Monteiro, T. Nei-

dhold, D. Neumerkel, H. Olsson, J.-V. Peetz, and S. Wolf.

The Functional Mockup Interface for Tool independent Ex-

change of Simulation Models. In 8th International Model-

ica Conference, Dresden, Germany, March 2011. Modelica

Association.

D. Broman, C. Brooks, L. Greenberg, E. A. Lee, S. Tripakis,

M. Wetter, and M. Masin. Determinate Composition of

FMUs for Co-Simulation. In 13th ACM & IEEE Interna-

tional Conference on Embedded Software (EMSOFT’13),

2013.

D. Broman, L. Greenberg, E. A. Lee, M. Masin, S. Tripakis,

and M. Wetter. Requirements for Hybrid Cosimulation

Standards. In Hybrid Systems: Computation and Control

(HSCC), 2015.

Alexandre David, Kim G. Larsen, Axel Legay, Marius

Mikučionis, Danny Bøgsted Poulsen, Jonas van Vliet, and

Zheng Wang. Statistical model checking for networks of

priced timed automata. In Uli Fahrenberg and Stavros Tri-

pakis, editors, Formal Modeling and Analysis of Timed Sys-

tems, volume 6919 of Lecture Notes in Computer Science,

pages 80–96. Springer Berlin Heidelberg, 2011.

Alexandre David, Kim G. Larsen, Axel Legay, Marius

Mikučionis, and Danny Bøgsted Poulsen. Uppaal SMC tu-

torial. International Journal on Software Tools for Technol-

ogy Transfer, 2015.

J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuen-

dorffer, S. Sachs, and Y. Xiong. Taming heterogeneity – the

Ptolemy approach. Proceedings of the IEEE, 91(1):127–

144, January 2003.

Ansgar Fehnker and Franjo Ivancic. Benchmarks for hybrid

systems verification. In In Hybrid Systems: Computation

and Control (HSCC), pages 326–341. Springer, 2004.

Y. A. Feldman, L. Greenberg, and E. Palachi. Simulating

Rhapsody SysML Blocks in Hybrid Models with FMI. In

10th Modelica Conference, pages 43–52, 2014.

Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott

Cotton, Rajarshi Ray, Olivier Lebeltel, Rodolfo Ripado,

Antoine Girard, Thao Dang, and Oded Maler. SpaceEx:

Scalable Verification of Hybrid Systems. In Shaz Qadeer

Ganesh Gopalakrishnan, editor, 23rd International Con-

ference on Computer Aided Verification (CAV), LNCS.

Springer, 2011.

Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a

nutshell. International Journal on Software Tools for Tech-

nology Transfer, 1(1-2):134–152, 1997.

Co-Simulation of Hybrid Systems with SpaceEx and Uppaal

168 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118159

Alessandro Pinto, Alberto L. Sangiovanni-Vincentelli, Luca P.

Carloni, and Roberto Passerone. Interchange formats for

hybrid systems: review and proposal. In Hybrid Systems:

Computation and Control, HSCC. Springer, 2005.

Alessandro Pinto, Luca P. Carloni, Roberto Passerone, and Al-

berto Sangiovanni-Vincentelli. Interchange format for hy-

brid systems: Abstract semantics. In Joao P. Hespanha and

Ashish Tiwari, editors, Hybrid Systems: Computation and

Control, volume 3927 of LNCS, pages 491–506. Springer

Berlin Heidelberg, 2006.

Uwe Pohlmann, Wilhelm Schäfer, Hendrik Reddehase, Jens

Röckemann, and Robert Wagner. Generating Functional

Mockup Units from Software Specifications. In 9th Mod-

elica Conference, pages 765–774, 2012.

Stavros Tripakis. Bridging the Semantic Gap Between Het-

erogeneous Modeling Formalisms and FMI. In Interna-

tional Conference on Embedded Computer Systems: Archi-

tectures, Modeling and Simulation – SAMOS XV, 2015.

Session 3A: FMI 2

DOI
10.3384/ecp15118159

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

169

170 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Automated Deployment of Modelica Models in Excel via Functional

Mockup Interface and Integration with modeFRONTIER

John Batteh1 Jesse Gohl1 Anand Pitchaikani1

Alexander Duggan2 Nader Fateh2

1Modelon Inc., USA, {john.batteh,jesse.gohl,anand.pitchaikani}@modelon.com
2ESTECO North America Inc., USA, {duggan,fateh}@esteco.com

Abstract

This paper describes a method for automated
deployment of Modelica models as simulators in
Microsoft Excel using Functional Mockup Interface
(FMI) and FMI Add-in for Excel. Using existing
interfaces, integration with modeFRONTIER is
demonstrated and illustrated with several different
example models in different physical domains to
highlight the range of applications and types of
analyses that can be covered with the automated
toolchain. This toolchain can be applied to any FMU
and streamlined with automation enabled by the
supporting annotations.

Keywords: Modelica, Functional Mockup Interface,

automation, simulator, optimization, robust design,

Microsoft Excel

1 Introduction

Model-based methods for development of physical and
control systems have been applied across engineering
domains to streamline development, reduce time to
market, and manage cost and innovation. As integrated
systems become increasingly complex with multi-
domain interactions spanning a range of disciplines, the
role of virtual models and analysis techniques in the
product development process continues to grow in
importance.

To meet the demand for increased model-based
engineering, the ability to efficiently develop and
deploy models across an enterprise is a key enabler.
Models are no longer handled only by domain experts
in CAE departments but are being deployed to
engineers who may not have intimate knowledge of the
underlying models but still are required to use models
effectively to support engineering processes. With the
proliferation of models throughout the enterprise, the
desire for simulators outside of the original model
development environment is natural and a key enabler
for increased acceptance and usage of models. While it
is clearly in the best interest of model users to receive
models in a format of their choosing, this desire
requires careful balancing of the time and effort

required to deploy the simulators, typically time spent
by highly-skilled and resource-constrained model
developers. Automated simulator deployment can
certainly help bridge the gap between the model
development and deployed simulator environments.

Open standards such as the Modelica modeling
language and Functional Mockup Interface (FMI) for
model exchange and co-simulation can streamline the
modeling and deployment process by providing
standard, non-proprietary interfaces between tools. In
addition to the ability to share and integrate models
from a variety of tools as FMUs, the FMI co-
simulation standard provides a convenient way to
deploy models outside of the original development
environment as simulators. FMI-based simulators are
increasingly common and rapidly gaining acceptance
across industries due to the flexibility offered in
simulation platforms, IP protection, and also due to the
potential for flexible licensing of the deployed
simulators. While FMI capability exists in nearly every
Modelica-based modeling platform, the rapid adoption
of FMI continues and also allows for FMI-based
simulators even outside of traditional CAE tools.
Common platforms for FMI-based simulators include
both open source and commercial offerings in a range
of environments including Python (PyFMI) and
MATLAB/Simulink (FMI Toolbox for
MATLAB/Simulink).

Another key aspect for the efficient utilization of
deployed models is the ease with which different
engineering analyses can be created and executed.
modeFRONTIER (ESTECO SpA, 2015) is a process
integration and design optimization tool widely used in
industry. The process integration platform allows
multiple third party CAE tools to be coupled together
to create an automated chain. With state of the art
analyses capabilities and algorithms for multi-objective
and multi-disciplinary optimization, robust design,
sensitivity, and statistical engineering methods,
modeFRONTIER offers sophisticated features to
automate the design simulation process and facilitate
analytic decision making. The software’s advanced
post-processing modules include sophisticated data

DOI
10.3384/ecp15118171

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

171

visualization and statistical tools to facilitate
understanding and gain deep insights into study results.

 This paper outlines a toolchain for automated
deployment of models as FMUs as simulators in
Microsoft Excel. The automation relies on a set of
annotations in the FMU, and these annotations are fully
described. By including the annotations in the
Modelica code such that they are present in the
generated FMUs, an automated, streamlined path from
a Modelica model to a simulator in Excel is
demonstrated. Integration of the automated simulators
in Excel with modeFRONTIER brings a powerful suite
of analysis and optimization capabilities to the
simulator toolchain. Following a description of the
toolchain and automation enablers, several different
examples demonstrate the entire toolchain from
Modelica model to deployed simulator in Excel using
FMI Add-in for Excel and integrated with
modeFRONTIER. These applications also highlight a
range of different analysis and optimization capabilities
provided by modeFRONTIER, including parameter
estimation, multi-objective optimization, and robust
design.

2 Toolchain Overview

This section provides a description of the entire
automation toolchain. The toolchain supports any
FMU annotated as described. This section describes
the annotation requirements and demonstrates the
inclusion of the annotations in the Modelica code to
provide an automated path from Modelica model to
deployed simulator in Excel with FMI Add-in for
Excel (Modelon AB, 2015) and additional integration
with modeFRONTIER for analysis and optimization.
The entire workflow is shown in Figure 1 and
described in detail in the following sections.

Figure 1. Workflow overview

2.1 Annotations

The toolchain automation is based on a set of
annotations to identify parameters and outputs in the
FMU for use in the simulator and subsequent analyses.
These annotations can be provided in the Modelica
code to provide a direct path for automated deployment
of Modelica models as FMI-based simulators in Excel.

To identify relevant variables for the automation, the
approach is to add a special substring to the variable
descriptions per the markup specification in the
XenGen package from Xogeny (2015). The general
syntax for the markup syntax is shown below:
"Description

{[GroupName|][Style:][LabelString]}"

Figure 2 shows sample annotations as implemented

in Modelica code (as described in the markup
specification, items in [] are optional) to identify an
output variable and also a parameter. The overall steps
are as follows for Modelica models:

• Annotate Modelica model to identify parameters
and outputs per markup syntax

• Create FMU from Modelica model (if required,
ensure export license usage)

When the Modelica code is annotated, the variable
description flows directly to the FMU and is available
in the variable description XML file. Thus, there is a
direct path to support downstream automation that is
implemented and maintained directly in the source
before FMU generation. Alternatively, the FMU XML
could be edited to add the annotations in cases where
the original code is not accessible for markup (or even
when the FMU generator is not Modelica-based). The
downstream processes in the toolchain leverage only
the FMU with annotations.

Figure 2. Sample annotations in Modelica code

2.2 Automated Simulator in Excel

FMI Add-in for Excel (Modelon AB, 2015) provides
the ability to load and simulate FMUs in Microsoft
Excel. The standard workflow involves choosing the
parameters and outputs to be used for experimentation
via the experiment sheet which is populated with the
chosen variables and ready for batch simulation. Both
the final values and dynamic traces are available for
post-processing. FMI Add-in also provides scripting
capability for controlling the tool from macros.

Leveraging the scripting capability, automation has
been added to provide automated deployment of FMUs
as simulators in Excel. The automation is implemented
in a workbook and provides “one click” simulation
capability in Excel. This capability was first introduced
to provide a dynamic simulator for small modular
reactors (Hale 2014). From the main page in the
workbook shown in Figure 3, the user simply points to
the FMU, and the automation loads the FMU and
creates an experiment sheet that includes the annotated
parameter and output variables (Figure 4a). On initial
load of the FMU, the workbook also runs the default
simulation and plots all outputs (Figure 4b).
Subsequent simulations as either single runs or batch

Automated Deployment of Modelica Models in Excel via Functional Mockup Interface and Integration with
modeFRONTIER

172 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118171

simulations are controlled by the user from the
experiment sheet. Automated plotting including the
ability to compare results across cases is provided in
the automation worksheet. FMI Add-in for Excel
offers a convenient platform in Excel for FMI-based
deployment and simulation with a flexible, familiar
front end for users.

Figure 3. Automated workbook main page

(a) Experiment sheet for batch simulation

(b) Plotting sheet comparing cases

Figure 4. Sample experiment and plot sheets from
workbook automation

2.3 Integration with modeFRONTIER

As an analysis and optimization tool, modeFRONTIER
integrates with many different CAE tools and modeling
formalisms (lumped parameter, CFD, FEA, etc.).
Currently modeFRONTIER does not include native
FMU capability. Since modeFRONTIER includes a
widely-used Excel interface, adding FMU simulation
capability easily via FMI Add-in for Excel is a natural
extension. Integration between FMI Add-in for Excel
and modeFRONTIER leverages the existing Excel
interface in modeFRONTIER and does not require any
customization thereby maintaining a consistent
workflow and user interface. With existing capabilities
to interact with Excel sheets, modeFRONTIER
leverages the deployed simulator in Excel via FMI
Add-in for Excel to set parameters, simulate the FMUs,
and extract data from the experiment sheet. The
experiment sheet in FMI Add-in for Excel is treated no
differently than any other Excel sheet with which
modeFRONTIER can interact. A macro to trigger the
simulation is provided in the automated worksheet.
Both modeFRONTIER and FMI Add-in for Excel can
parallelize the simulation runs across available
machine cores for maximum utilization of computing
resources. Figure 5 shows the Excel node
configuration for a sample deployed simulator in FMI
Add-in for Excel. The node configuration provides
modeFRONTIER with the cell locations (or named
ranges) for inputs and outputs along with the workbook
location and macro to trigger the simulation. Multiple
Excel nodes with FMUs can be coupled in a workflow
(note that this coupling does not provide transient
coupling between FMUs, but this coupling can be
enabled in other FMI co-simulation master tools from
which a single FMU can be created for use in an Excel
node).

This off-the-shelf integration between FMI Add-in
for Excel and modeFRONTIER provides FMU
simulation capabilities to support a wide variety and
rapidly growing list of third party tools with FMI
support.

Figure 5. Excel node configuration in modeFRONTIER
as applied to a deployed simulator in FMI Add-in for
Excel

Session 3A: FMI 2

DOI
10.3384/ecp15118171

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

173

3 Application Examples

This section of the paper describes several different
example models to illustrate the integration and
analysis capabilities of modeFRONTIER and Modelica
models deployed as FMU-based simulators with FMI
Add-in for Excel. Co-simulation FMUs for all models
are created using Dymola (Dassault Systemes, 2015).
A brief overview of each model will be provided along
with a description of the analysis problem, formulation
of the workflow in modeFRONTIER, and key results.

3.1 HIV Virus Dynamics

As a simple first example of a dynamic system, a
model of the dynamics of the HIV virus in human
blood (Soetart and Petzoldt, 2010) has been
implemented in Modelica. The model is similar to the
standard predator-prey model for the number of
uninfected (T) and infected (I) cells and the number of
free virions (V). The schematic of the pathways is
shown in Figure 6. The model is implemented directly
in Modelica as it consists of three differential equations
and has a number of parameters which are typically
estimated based on clinical data from patients.

Figure 6. HIV dynamics model showing creation,
destruction, and transition paths between cells (Soetart
and Petzoldt, 2010)

modeFRONTIER uses a graphical workflow to set up
and execute analysis and optimization tasks. These
workflows can involve a single simulation node or
multiple simulation nodes connected together to
construct more complex, multidisciplinary tasks
involving multiple tools and modeling formalisms.
Figure 7 shows the workflow used to execute the HIV
dynamics model correlation application. The Excel
node with the FMU simulation is in the middle and
labeled “FMIE”. The inputs/parameters are shown at
the top of the diagram. The workflow starts by
executing a Design of Experiments (DOE) for initial
data. The outputs are shown at the bottom of the
diagram along with any constraints or post-processing
calculations for the algorithms. This application uses
ESTECO’s proprietary FAST (Montrone, 2014)
strategy to estimate the model parameters to best fit
data. The data fitting is applied to the transient T

curve. The FAST strategy applies an algorithm to
response surface models (RSM) to accelerate the fitting
procedure. In this case, the SIMPLEX (Poles, 2003)
algorithm was applied.

Figure 7. modeFRONTIER workflow for model
correlation graphically representing the problem
statement with inputs, outputs, target objective,
constraints, and process flow

The optimization convergence history and dynamic T
curves can be seen in Figure 8 and Figure 9,
respectively. The initial T curve and the curve after
fitting to the target data are shown in Figure 10.

Figure 8. Optimization history showing only improved
designs

Figure 9. History as the T curve converges to the target
data

Automated Deployment of Modelica Models in Excel via Functional Mockup Interface and Integration with
modeFRONTIER

174 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118171

Figure 10. Initial T curve and fit curve to target data

3.2 Hydraulic Crane

Figure 11 shows a model of a crane system with a
hydraulic system with motors for the movement of the
crane and load. The base motor, winch motor, and
hoist jack are all position controlled in closed loop to
meet a desired trajectory for the crane and load. A
screenshot of the animation of the model from Dymola
is shown in Figure 12 with a trace for the movement of
the load.

Figure 11. Crane model with hydraulic system

Figure 12. Crane animation

This application is formulated as a multi-objective
optimization problem for modeFRONTIER via the
workflow shown in Figure 13. The objective is to
minimize the total tracking error and pump mechanical
energy required to move the load. The total error
objective function is the summation of the winch angle,
base angle, and hoist position errors. Potential
variables for optimization include the pump
characteristics, actuator characteristics, and actuator
control parameters. The input variable bounds are
listed in Table 1.

Figure 13. modeFRONTIER workflow for crane
optimization showing inputs fed into Excel plugin and
outputs with objective functions applied

Table 1. Input variable bounds

Name Description

Lower

Bound

Upper

Bound Units

pumpDisp

Pump

Displacement 1.00E-04 0.005 m3

FC_GMax

threeWay

FC_Gmax 1.00E-11 1.00E+08 m3/(s.Pa)

FC_flowRate

threeWay

FC_flowRate 0.001 0.05 m3/s

pumpSpeed

Pump

SpeedSet 50 300 rad/s

PR_GOpen

Pump

PR_Gopen 1.00E-12 1.00E-05 m3/(s.Pa)

ESTECO’s proprietary HYBRID (Turco, 2011)

algorithm was used along with a Multi-Objective
Genetic Algorithm (MOGA-II) (Poles, 2003). The
HYBRID algorithm combines the global exploration
capabilities of a genetic algorithm with a gradient
based method. Using both HYBRID and MOGA-II
algorithms gave improved coverage of the pareto front
as shown in Figure 14.

A uniformly distributed Latin Hypercube design of
experiments of 10 points was used as the starting
population for both algorithms. HYBRID generated a
total of 700 designs; MOGA-II generated a total of
1300 designs. The pareto results in Figure 14 illustrate

Session 3A: FMI 2

DOI
10.3384/ecp15118171

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

175

the trade-off between the error and pump energy
objectives.

Figure 14. Pareto results from two separate optimizations
using HYBRID and MOGA-II algorithms

Further analysis was done using modeFRONTIER’s

Multivariate tool (Stefano, 2009) to detect clusters in
the pareto data. Hierarchical clustering was performed
on the pareto points combining the results from both
algorithms. Three clusters were identified and are
represented as the three bands shown in Figure 15. The
width of the band represents a 90% confidence
interval. A different local response of the system is
expected for each cluster. Rather than choosing a
single design point from among the pareto set, a cluster
can be chosen. This approach narrows down the
number of candidate designs while also offering
variability within the confidence interval region. In this
case, we have three clusters where the energy and error
objectives are distinctly different. Each cluster’s
corresponding configuration can be seen in Figure 15.

Figure 15. Clustering results on the pareto points
showing three distinct pareto solutions (band width
represents 90% confidence interval)

3.3 Heat Exchanger Performance with Blockage

Heat exchanger performance under non-uniform
boundary conditions is a critical analysis need for
vehicle thermal management (Batteh et al, 2014).
Blockage due to heat exchanger stacking, geometric
interference with the vehicle body, or even fouling can
drastically affect heat exchanger performance.

Figure 16 shows a heat exchanger test bench
implemented with Modelon Heat Exchanger Library
(Modelon AB, 2015). Non-uniform air side boundary
conditions are provided across the face of the heat
exchanger model using the Modelon DataAccess
package. DataAccess provides XML reading capability
and preserves dynamic file access even with the model
exported as an FMU. Figure 17 shows the simple
blockage pattern simulated for the cooler where the
first 25% of the cooler is completely blocked.

Figure 16. Heat exchanger test bench with non-uniform
boundary conditions via XML

(a) Unblocked cooler

(b) Cooler with 25% blockage at flow entrance

Figure 17. Heat exchanger blockage pattern

The goal of this application is to identify the

velocity scale factor required for the blocked cooler
such that the heat transfer performance matches that of
the unblocked cooler under the same boundary
conditions. For this case, the desired heat flow rate
Qdesired is 38.31kW. In addition, a robustness constraint
is applied to ensure that the heat transfer does not drop
by more than 1% for a 5% reduction in airflow. The
workflow for modeFRONTIER is shown in Figure 18.
This problem is executed in modeFRONTIER as a
robust design optimization (RDO) using the SIMPLEX
algorithm. A schematic showing the heat transfer
distribution as a function of airflow distribution is
shown in Figure 19 for an unfeasible and feasible
solution based on the problem definition to illustrate
the approach used for robust design optimization.

Automated Deployment of Modelica Models in Excel via Functional Mockup Interface and Integration with
modeFRONTIER

176 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118171

Figure 18. modeFRONTIER workflow for heat
exchanger robust design application showing the
stochastic input Vscale and reliability objective SSE_Q
with constraint Constr_Vdelta

Figure 19. Schematic of feasible and unfeasible run from
robust design optimization

The results of the robust design optimization are

shown in Figure 20. Note the series of runs around the
Vscale value of 1.88 which provides the required heat
transfer but falls just at the constraint boundary. The
value of Vscale that meets both the heat transfer
requirement and the robustness constraint is slightly
higher. While a relatively straight forward application
with only a single design variable, this problem
becomes significantly more complex with several
design constraints and multiple design variables.

Figure 20. Convergence of the robust design optimization
runs for the heat exchanger blocking problem

3.4 Hybrid Vehicle Electric Range

Vehicle range is a key metric for hybrid vehicles with
electric-only mode. In addition to key vehicle
parameters which affect the loads and losses, critical
battery parameters strongly affect vehicle range.
Battery performance is affected by both battery
temperature and battery age. As batteries age, their
capacity decreases while the internal resistance
increases and leads to larger heat losses. Particular
battery formulations typically have an optimal
temperature operating range and performance degrades
when the temperature strays above or below the range.

Figure 21 shows a series hybrid truck model
implemented with the Modelon Vehicle Powertrain
package which uses the PowerTrain Library (DLR,
2015). The battery model is a table-based model that
provides open circuit voltage and internal resistance as
a function of current and battery State-Of-Charge
(SOC). However, the model has been enhanced to
include temperature scaling in the battery tables and an
approximate aging model that increases internal
resistance and decreases capacity based on an aging
factor.

Since actual vehicle populations in the field will
have some sort of aging distribution based on usage,
the resulting vehicle electric range for the fleet will be
a distribution. It is important to understand the impact
of aging and temperature on vehicle electric range and
also analytically determine fleet population
distributions.

Session 3A: FMI 2

DOI
10.3384/ecp15118171

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

177

Figure 21. Series hybrid truck model

One approach to analytically determine populations

is to assume a distribution and then run Monte Carlo
simulations to estimate the fleet output distribution.
modeFRONTIER can certainly perform Monte Carlo
analyses. However, for this simple example, it is
possible to run the simulations over the battery aging
factor and then simply construct the distributions
offline, thereby saving computational resources. The
modeFRONTIER workflow for the electric vehicle
range mapping is shown in Figure 22. For a given
battery sink temperature, Latin Hypercube sampling is
used to span the battery age factor. The simulations
are run starting with a battery SOC=1 until the SOC is
depleted via repeated execution of the New European
Driving Cycle (NEDC) cycles. Due to numerical
effects around zero SOC, the simulation is terminated
at an epsilon SOC (0.05). In real practice, to prevent
damage, a battery is never over charged or discharged.
When studying relative effects (e.g. battery age on
vehicle range), the absolute minimum SOC is not
critical.

Figure 22. modeFRONTIER workflow for electric
vehicle range application

Vehicle simulation results are shown in Figure 23
for a battery with no aging (BatteryAge=0), mid aging
(BatteryAge=0.5), and extended aging (BatteryAge=1).
As battery aging increases, vehicle range decreases
substantially and battery temperatures increase due to
higher internal resistance and the passive cooling
strategy employed in this model. The modeFRONTIER
runs showing vehicle Range over the full BatteryAge
distribution are shown in Figure 24.

(a) Vehicle range (km)

(b) Battery SOC (-)

(c) Battery internal resistance (Ohms)

Automated Deployment of Modelica Models in Excel via Functional Mockup Interface and Integration with
modeFRONTIER

178 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118171

(d) Lumped battery temperature (K)

Figure 23. Simulation results for BatteryAge=0 (blue),
BatteryAge=0.5 (red), and BatteryAge=1 (green)

Figure 24. modeFRONTIER runs showing Range over
BatteryAge distribution

With the results from modeFRONTIER over the
entire age range, any arbitrary vehicle age distribution
can be assumed and the fleet range distribution
calculated. Figure 25 shows the calculated distribution
for a normal BatteryAge distribution with a mean=0.5
and standard deviation=0.05. Similar calculations
could be done over a range of different drive cycles,
battery ages, and temperatures to estimate more
complex fleet populations.

Figure 25. Fleet population assuming normal distribution
with BatteryAge=0.5 and standard deviation=0.05

4 Conclusions

This paper demonstrates a method for automated
deployment of models as FMU-based simulators in
Microsoft Excel using FMI Add-in for Excel. A
method for annotating the Modelica code using the
XenGen markup syntax supports the automation to
provide a streamlined path from a Modelica model to a
deployed simulator in Excel. Integration of the
automated simulators in Excel with modeFRONTIER
brings a powerful suite of analysis and optimization
capabilities to the simulator toolchain. Several
different examples demonstrate the entire toolchain
from Modelica model to deployed simulator in Excel
using FMI Add-in for Excel and integrated with
modeFRONTIER. These applications also highlight a
range of different analysis and optimization capabilities
provided by modeFRONTIER, including parameter
estimation, multi-objective optimization, and robust
design. This toolchain can be applied to any FMU and
streamlined with automation enabled by the supporting
annotations.

References

John Batteh, Jesse Gohl, and Chandrasekar Sureshkumar.
Integrated Vehicle Thermal Management in Modelica:
Overview and Applications, Proceedings of the 10

th

International Modelica Conference, Lund, Sweden, pp.
409-418, March 2014. doi: 10.3384/ecp14096409.

Dassault Systemes. Dymola 2015 FD01, 2015.

DLR, PowerTrain Library, v.2.3.0, 2015.

ESTECO SpA. modeFRONTIER 2014 Update 1, 2015.
http://www.esteco.com/

Richard Hale, Sacit Cetiner, David Fugate, Lou Qualls, John
Batteh, and Michael Tiller. Dynamic Modeling of Small
Modular Nuclear Reactors using MoDSim, Proceedings of

the 10
th
 International Modelica Conference, Lund,

Sweden, pp. 989-998, March 2014. doi:
10.3384/ecp14096989.

Modelon AB, FMI Add-in for Excel, v1.3.5, 2015.
http://www.modelon.com/products/fmi-add-in-for-excel/.

Modelon AB, Heat Exchanger Library, v1.2, 2015.
http://www.modelon.com/products/modelica-
libraries/heat-exchanger-library/.

T. Montrone, A. Turco, R. Enrico. FAST Optimizers:
General Description. ESTECO Technical Report 2014-

001, Trieste, Italy, 2014.

S. Poles. The SIMPLEX Method. ESTECO Technical Report

2003-005, Trieste, Italy, 2003.

S. Poles. MOGA-II an Improved Multi-Objective Genetic
Algorithm. ESTECO Technical Report 2003-006, Trieste,
Italy, 2003.

Karline Soetaert and Thomas Petzoldt. Inverse Modelling,
Sensitivity and Monte Carlo Analysis in R using Package
FME. Journal of Statistical Software, 33(3), pp. 1-28,
February 2010.

Session 3A: FMI 2

DOI
10.3384/ecp15118171

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

179

D. Stefano. Multivariate Analysis algorithms in
modeFRONTIER v4. ESTECO Techinical Report 2009-

001, Trieste, Italy, 2009.

A. Turco. Hybrid – description. ESTECO Technical Report

2011-003, Trieste, Italy, 2011.

Xogeny, XenGen package, 2015.
https://github.com/xogeny/XenGen

Automated Deployment of Modelica Models in Excel via Functional Mockup Interface and Integration with
modeFRONTIER

180 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118171

An Open-Source Graphical Composite Modeling Editor and

Simulation Tool Based on FMI and TLM Co-Simulation

Alachew Mengist1, Adeel Asghar1, Adrian Pop1, Peter Fritzson1, Willi Braun2, Alexander Siemers3,
Dag Fritzson3

1PELAB – Programming Environment Lab, Dept. Computer Science, Linköping University, Sweden,
{alachew.mengist,adeel.asghar,adrian.pop,peter.fritzson}@liu.se

2Dept. Mathematics and Engineering, University of Applied Sciences, Germany, willi.braun@fh-bielefeld.de
3SKF, Göteborg, Sweden, {alexander.siemers,dag.fritzson}@skf.com

Abstract

A common situation in industry is that a system model
(here a composite model) is composed of several sub-
models which may have been developed using
different tools. FMI is one important technology for
exporting/importing models between tools and/or
connecting them via co-simulation. TLM based
modeling and co-simulation is another important
technique for modeling, connecting, and simulation of
especially mechanical systems, which is simple,
numerically stable, and efficient. A number of tool-
specific simulation models, such as Modelica models,
SimuLink models, Adams models, BEAST models,
etc., have successfully been connected and simulated
using TLM based co-simulation. However, previously
there was no general open source tool for creation,
graphic editing, and simulation of composite models
connected via FMI or TLM based co-simulation. In
this paper we present a graphical composite model
editor based on OpenModelica which is integrated with
the OpenModelica and the SKF TLM co-simulation
frameworks to support both FMI and TLM based
composite model editing and simulation. The editor
supports creating, viewing and editing a composite
model both in textual and graphical representation. The
system supports simulation of composite models
consisting of sub-models created using different tools.

Keywords: Graphic Editing, Composite Modeling,

Modelica, FMI, TLM, XML, Simulation, Co-Simulation

1 Introduction

Industrial products often consist of many components
which have been developed by different suppliers
using different modeling and simulation tools.
Modeling and simulation support is needed in order to
integrate all the parts of a complex product model. FMI
(Blochwitz et al, 2011), (FMI-Standard.org, 2014),
both model exchange and co-simulation, is one such
important technology. TLM (Transmission Line
Modeling) based co-simulation (Siemers et al, 2005), is
another important technology, which is simple,
numerically stable, and efficient.

This has successfully been demonstrated by
integrating and connecting several different simulation
models, especially for mechanical applications. Such
an integrated model consisting of several model parts
is here called a composite model since it is composed
of several sub-models. Another name used for such a
model is meta-model, since it is a model of models. In
earlier work (Siemers et al, 2005), (Siemers and
Fritzson, 2006) Modelica (Fritzson, 2014) with its
object oriented modeling capabilities and its
standardized graphical notations has demonstrated the
possibilities for meta-modeling/composite modeling of
mechanical systems using TLM.

 The availability of a general XML-based composite
modeling language (Siemers et al, 2005) is an
important aspect of our FMI and TLM based modeling
and co-simulation framework. However, modelers
developing composite models are likely to take
advantage of the additional availability of tools that
assist them with respect to the composite modeling
process (i.e., the process of creating and/or editing a
composite model, here represented and stored as
XML).

We introduce a graphical composite model editor
which is an extension and specialization of the
OpenModelica connection editor OMEdit (Asghar et
al, 2010). In the context of this work a composite
model is composed of several sub-models including the
interconnections between these sub-models. The
graphical editor presented in this paper enables users to
create a composite model in XML. It is also integrated
with the OpenModelica FMI-based model-exchange
and co-simulation and the SKF TLM-based co-
simulation framework.

This paper is structured as follows. In Section 2 a
brief background of OpenModelica is given along with
an overview of the SKF TLM based co-simulation
framework. Section 3 defines the different modes of
operation. The composite model XML schema is
explained in Section 4. In Section 5 the composite
model editor and an overview of its interaction with the
other system components are discussed. An industrial
application is shown in Section 6. Conclusions and
future work are presented in Section 7.

DOI
10.3384/ecp15118181

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

181

2 Background

2.1 OpenModelica

OpenModelica is an open source Modelica-based
platform for modeling, simulation, and optimization.
The OpenModelica connection editor OMEdit is a
graphical Modelica model editing tool. It supports
model creation, textual and graphical model editing
including connections drawing, simulation and
plotting. This editor has been extended to become a
composite model editor as described in this paper.

2.2 FMI-Based Model Exchange and Co-

Simulation Framework in OpenModelica

OpenModelica currently supports FMI 1.0 and FMI 2.0
for model exchange and most of FMI 2.0 for co-
simulation. Other tools can access this functionality
e.g., by dynamically linking OMC or by invoking it
using a message-passing interface.

The OpenModelica graphic editor and simulator
supports connection of several FMUs into a composite
model and simulating this model.

Simulation of composite models with algebraic
loops involving FMUs is also supported.

2.3 TLM (Transmission Line Modeling)

The TLM (Transmission Line Modeling) technique is
based on the fact that propagation of signals takes time
in many physical systems, e.g., propagation of pressure
waves in hydraulic systems, sound wave propagation,
and force propagation in mechanical systems. Thus
there is a certain physical communication delay
between different parts of the system which can be
used to partially de-couple these parts and allow them
to be independently simulated and coupled in a
numerically stable way via co-simulation techniques.

The TLM approach has been known since a long
time (Auslander, 1968), (Burton et al, 1993), (Johns
and O’Brien 1980). A general presentation of the
theory and methods of TLM-based simulation is given
in (Krus et al, 1990).

The HOPSAN (HOPSAN, 1985) software is one of
the first general TLM implementations with its own
graphical modeling language. A newer version,
HOPSAN-NG, (Axin et al, 2010), has recently been
developed.

Moreover, a TLM implementation for the Modelica
language has recently been developed as part of
OpenModelica (Chapter 7, Sjölund, 2015).

2.4 TLM-Based Co-Simulation Framework

As mentioned, a general framework for composite
model based co-simulation has previously been
designed and implemented (Siemers et al, 2005). The
design goals for the simulation part of that framework
were portability, simplicity to incorporate additional
simulation tools, and computational efficiency. It is

also the framework used for TLM-based composite
model co-simulation described in this paper.

The TLM composite model co-simulation is
primarily handled by the central simulation engine of
the framework called the TLM simulation manager. It
is a stand-alone program that reads an XML definition
of the coupled simulation as defined in (Siemers et al,
2005). It then starts external model simulations and
provides the communication bridge between the
running simulations using the TLM (Nakhimovski,
2006) method.

The external models only communicate with the
TLM simulation manager which acts as a broker and
performs communication and marshalling of
information between the external models. The
simulation manager sees every external model as a
black box having one or more external interfaces. The
information is then communicated between the external
interfaces belonging to the different external models.
Additionally the simulation manager opens a network
port for monitoring all communicated data.

TLM simulation monitor is another stand-alone
program that connects to the TLM simulation manager
via the network port. The TLM simulation manager
sends the co-simulation status and progress to the TLM
simulation monitor via TCP/IP. The simulation
monitor receives the data and writes it to an XML file.

3 Modes of Operation

3.1 Textual Format

The user defines the list of sub-models with their
corresponding connections as an XML file according
to the composite model specification described in
Section 4. The user should be able to easily save the
file, load a new one, or edit the textual version even
while using the GUI. The simulator reads the
composite model XML file and performs the
simulation.

3.2 Graphical User Interface Format

The user can define the list of sub-models and their
connections using the GUI which allows them to drag
and drop the sub-models to the editor and make
connections between them. The GUI automatically
generates the composite model code which is stored in
an XML format described in Section 4.

4 Composite Model XML Schema

The composite model XML-Schema for validating the
co-simulation composite model is designed according
to its specification described in (Siemers et al, 2005).
The following is a sample composite model XML
representation:

<?xml version="1.0" encoding="ISO-8859-
1"?>
<Model Name="Pendulum">

An Open-Source Graphical Composite Modeling Editor and Simulation Tool Based on FMI and TLM
Co-Simulation

182 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118181

 <SubModels>
 <SubModel Name="shaft1"
StartCommand="StartTLMOpenModelica"
ExactStep="0" ModelFile="shaft1.mo"
Position="0.0,0.0,0.0"
Angle321="0.0,0.0,0.0">
 <InterfacePoint Name="tlm"
Position="0.0,0.0,0.5"
Angle321="0.0,0.0,0.0"/>
 </SubModel>
 <SubModel Name="shaft2"
StartCommand="StartTLMOpenModelica"
ExactStep="0" ModelFile="shaft2.mo"
Position="0.0,0.0,0.5"
Angle321="0.0,0.0,0.0">
 <InterfacePoint Name="tlm"
Position="0.0,0.0,0.0"
Angle321="0.0,0.0,0.0"/>
 </SubModel>
 </SubModels>
 <Connections>
 <Connection From="shaft1.tlm"
To="shaft2.tlm" Delay="1e-4" Zf="1e4"
Zfr="1e2" alpha="0.2"/>
 </Connections>
 <SimulationParams StartTime="0"
StopTime="5"/>
</Model>

In order to use graphical notations in the composite
model editor, the composite model XML file needs to
describe annotations for each sub-model and
connections between them. We propose to extend the
composite model specification by including the
Annotation element in the SubModel and
Connection elements.

<Annotation Origin="{-50,54}" Extent="{-
10,-10,10,10}" Rotation="0"
Visible="true"/>

The contents of our composite model XML root
element, namely Model is depicted in Figure 1. Inside
the root element there can be a list of connected
SubModels and TLM Connections.

SimulationParams element is also inside the root
element. It has an attribute Name representing the
name of the composite model.

Figure 1. The Model (root) element of the Composite
Model Schema.

The SimulationParams element specify the start
time and end time for the co-simulation

The SubModel element, presented in Figure 2,
represents the simulation model component that
participates in the co-simulation. The required attribute
for a SubModel are Name of the sub-model,
ModelFile (file name of the submodel) and
StartCommand (the start method command to
participate in the co-simulation). Each SubModel also
contains a list of interface points. InterfacePoint
elements are used to specify the TLM interfaces of
each simulation component (sub-model).

Figure 2. The SubModel element from the Composite
Model Schema.

The Connection element of the composite model xml
schema is shown in Figure 3.

Figure 3. The Connection element from the Composite
Model Schema.

The Connection element defines connections
between two connected interface points, that is, a
connection between two TLM interfaces. Its attributes
From and To define which interface of which sub-
models are connected. Other attributes of the
Connection element specify the delay and maximum
step size.

5 Composite Model Graphical Editor

One of the primary contributions of this effort is our
focus on interoperability in modeling and simulation.
Our effort leverage OpenModelica for graphical
composite model editing as well as FMI support and
SKF’s co-simulation framework for TLM Based co-
simulation.

As mentioned, the implementation of this graphical
composite model editor is an extension of OMEdit
(Asghar et al, 2010) which is implemented in C++
using the Qt graphical user interface library.

Session 3A: FMI 2

DOI
10.3384/ecp15118181

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

183

Figure 4. An overview of the interaction between the
composite model (meta-model) graphic editor and the
other components.

The full graphical functionality of the composite
modeling process can be expressed in the following
steps:

• Import and add the external models to the
composite model editor,

• Specify startup methods and interfaces of the
external model,

• Build the composite models by connecting the
external models,

• Set the co-simulation and TLM parameters in the
composite model.

An overview of the different components that the
graphical composite model editor relies on is shown in
Figure 4.

The graphical composite model editor
communicates with the OpenModelica compiler to
retrieve the interface points for the external model and
SKF’s co-simulation framework to run the TLM
simulation manager and simulation monitor. Each tool
component is descried in the following subsections.

Figure 5. A screenshot of the modeling page area.

In the graphic composite model editor the modeling
page area is used for visual composite modeling or text
composite modeling. This allows users to create,
modify, and delete sub-models. A screenshot of the
modeling page area is shown in Figure 5.

5.1 Visual Modeling

Each composite model has two views: a Text view and
a Diagram view. In the Diagram view, each simulation
model component (sub-model) of the TLM co-
simulation can be dragged and dropped from the
library browser to this view, and then the sub-model
will be automatically translated into a textual form by
fetching the interface name for the TLM based co-
simulation. The user can complete the composite
model (see Figure 6) by graphically connecting
components (sub-models).

Figure 6. A screenshot of visual composite modeling
after a connection has been made.

The test model (see Figure 7) is a multibody system
that consists of three sub-models: Two OpenModelica
Shaft sub-models (Shaft1 and Shaft2) and one
SKF/BEAST bearing sub-model that together build a
double pendulum. The SKF/BEAST bearing sub-
model is a simplified model with only three balls to
speed up the simulation.

Shaft1 is connected with a spherical joint to the
world coordinate system. The end of Shaft1 is
connected via a TLM interface to the outer ring of the
BEAST bearing model. The inner ring of the bearing
model is connected via another TLM interface to
Shaft2. Together they build the double pendulum
with two shafts, one spherical OpenModelica joint, and
one BEAST bearing.

An Open-Source Graphical Composite Modeling Editor and Simulation Tool Based on FMI and TLM
Co-Simulation

184 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118181

Figure 7. A screenshot of visual composite modeling of double pendulum.

5.2 Text Modeling and Viewing

The text view (see Figure 8) allows users to view the
contents (sub-models, connections, and simulation
parameters) of any loaded composite model. It also
enables users to edit a composite model textually as
part of the composite modeling construction process.
To facilitate the process of textual composite modeling
and to provide users with a starting point, the text view
(see Figure 8) includes the composite model XML
schema elements and the default simulation
parameters.

Figure 8. A screenshot of textual composite modeling.

5.3 Composite Model Validation

Since model validation is part of the composite
modeling process the composite model editor (see
Figure 9) supports users by validating the composite
model to ensure that it follows the structure and
content rules specified in the composite model schema
described in Section 4. In general the composite model
editor validation mechanism supports users to verify
that:

• The basic structure of the elements and attributes
in the composite model matches the composite
model schema.

• All information required by the composite model
schema is present in the composite model.

• The data conforms to the rules of the composite
model schema.

Figure 9. A screenshot of a composite modeling
validation message.

5.4 OpenModelica Runtime Enhancement

To support TLM-based co-simulation the
OpenModelica runtime has been enhanced. The added
functionality supports single solver step simulation so
that the executed simulation model can work together
with the TLM manager. New flags to enable this
functionality in the simulation executable are now
available:

• -noEquidistantOutputFrequency

• -noEquidistantOutputTime

Session 3A: FMI 2

DOI
10.3384/ecp15118181

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

185

The new flags control the output, e.g., the frequency of
steps and the time increment.

5.5 Communication with the SKF TLM Based

Co-Simulation Framework

The graphic composite model editor in OpenModelica
provides a graphical user interface for co-simulation of
composite models. It can be launched by clicking the
TLM co-simulation icon from the toolbar, see
Figure 10.

Figure 10. TLM co-simulation setup.

The editor runs the TLM simulation manager and
simulation monitor. The simulation manager reads the
composite model from the editor, starts the co-
simulation, and provides the communication bridge
between the running simulations. Figure 11 shows the
running status of the TLM co-simulation.

Figure 11. TLM co-simulation.

The simulation monitor communicates with the
simulation manager and writes the status and progress
of the co-simulation in a file. This file is read by the
editor for showing the co-simulation progress bar to
the user. The editor also provides the means of reading
the log files generated by the simulation manager and
monitor.

During the post-processing stage, simulation results
are collected and visualized in the OMEdit plotting
perspective as shown in Figure 12.

Figure 12. Results of TLM co-simulation.

6 Industrial Application of Composite

Modeling with TLM Co-Simulation

SKF has successfully used the TLM co-simulation
framework to simulate composite models. For
example, Figure 13 shows one such application with an
MSC.ADAMS (MSC-Software, 2015) car model
containing an integrated SKF BEAST (Stacke,
Fritzson, and Nordling, 1999) hub-unit sub-model
connected via TLM-connections.

7 Conclusions and Future Work

This paper presents a general open-source graphical
editor and simulation tool for composite modeling and
simulation as well as its integration with SKF’s TLM-
based co-simulation framework for TLM based co-
simulation and the OpenModelica FMI co-simulation.

The graphical editor combines a number of features
to support end-users with respect to the creation of
composite models and co-simulation. These include
adding, removing, and connecting components (sub-
models) both textually and graphically, as well as
integrated co-simulation and visualization of
simulation results.

An Open-Source Graphical Composite Modeling Editor and Simulation Tool Based on FMI and TLM
Co-Simulation

186 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118181

The composite model editor is currently in an early
stage of development but already supports external
non-Modelica models represented in XML form
(essentially black boxes with interfaces) inside the
component tree which can be used for composite
model composition.

Future development includes 3D visualization in
composite modeling as well as being able to use both
FMI-connections and TLM-connections in the same
composite model, since they currently can only be used
separately (either FMI or TLM within a specific
composite model).

Future work also involves the development of a
proposal for integrating TLM-based co-simulation as
an option in the FMI standard, as well as participating
in the standardization work in the SSP project in the
Modelica Association (System Structure and
Parameterization of Components for Virtual System
Design abbreviated SSP), hopefully resulting in
standardization of and extended version of the
composite model XML schema.

A detailed comparison of TLM and FMI co-
simulation is outside the scope of this paper. However,
especially for mechanical applications TLM provides
very simple and easy-to-use interface definitions, as
well as in general numerically stable co-simulation.
These are important reasons for continued use and
improvement of TLM-based tools and future
standardization and incorporation into the FMI
standard.

Acknowledgements

The work has been supported by Vinnova in the ITEA2
MODRIO project, by EU in the INTO-CPS project,
and by the Swedish Government in the Swedish
Government in the ELLIIT project. The Open Source

Modelica Consortium supports the OpenModelica
work. The TLM based co-simulation framework is
provided by SKF.

References

Adeel Asghar, Sonia Tariq, Mohsen Torabzadeh-Tari, Peter
Fritzson, Adrian Pop, Martin Sjölund, Parham Vasaiely,
and Wladimir Schamai. An Open Source Modelica
Graphic Editor Integrated with Electronic Notebooks and
Interactive Simulation. In Proc. of the 8th International

Modelica Conference 2011, pp. 739–747. Modelica
Association, March 2011.Linköping University, Sweden,
2010.

David M. Auslander. Distributed System Simulation with
Bilateral Delay-Line Models. Journal of Basic

Engineering, Trans. ASME: 195–200, 1968.

Mikael Axin, Robert Braun, Petter Krus, Alessandro
dell’Amico, Björn Eriksson, Peter Nordin, Karl Pettersson,
and Ingo Staack. Next Generation Simulation Software
using Transmission Line Elements. In Proceedings of the

Bath/ASME Symposium on Fluid Power and Motion

Control (FPMC), September 2010.

Torsten Blochwitz et al. The Functional Mockup Interface
for Tool independent Exchange of Simulation Models. In

Proceedings of the 8th International Modelica

Conference., Dresden, Mar. 2011. doi:
10.3384/ecp11063105.

James D. Burton, Kevin A. Edge, and Clifford R. Burrows.
Partitioned Simulation of Hydraulic Systems Using
Transmission-Line Modelling. In ASME WAM, 1993.

FMI-Standard.org. Functional Mock-up Interface for Model
Exchange and Co-Simulation Version 2.0, July 25, 2014.
https://www.fmi-standard.org/.

Peter Fritzson. Principles of Object Oriented Modeling and
Simulation with Modelica 3.3: A Cyber-Physical
Approach. 1250 pages. ISBN 9781-118-859124, Wiley

IEEE Press, 2014.

Figure 13. A composite model of an MSC.ADAMS car model with an integrated SKF BEAST hub-unit sub-model (green),
connected via TLM connections for co-simulation.

Session 3A: FMI 2

DOI
10.3384/ecp15118181

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

187

HOPSAN. The HOPSAN Simulation Program, User’s
Manual. Linköping University, 1985. LiTH-IKP-R-387.

Peter B. Johns and Mark O’Brien. Use of the transmission
line modelling (TLM) method to solve nonlinear lumped
networks. The Radio and Electronic Engineer, 50(1/2):59–
70, 1980.

Petter Krus, Arne Jansson, Jan-Ove Palmberg, and Kenneth
Weddfelt. Distributed Simulation of Hydromechanical
Systems. In Proc. of the Third Bath International Fluid

Power Workshop, 1990.

MSC-Software, MSC.ADAMS – interactive motion
simulation software, http://www.mscsoftware.com
(accessed: 22th of May 2015).

Iakov Nakhimovski. Contributions to the Modeling and
Simulation of Mechanical Systems with Detailed Contact
Analysis, Dissertation No. 1009, Linköpings universitet,
Sweden, 2006.

Alexander Siemers, Iakov Nakhimovski, and Dag Fritzson.
Meta-modelling of Mechanical Systems with Transmission
Line Joints in Modelica. In Proceedings of the 4th

International Modelica Conference, Hamburg, Germany,
2005.

Alexander Siemers, Peter Fritzson, and Dag Fritzson, Meta-
Modeling for Multi-physics Co-simulations applied for
OpenModelica. In: Proc. of ANIPLA 2006 International

Congress on ‘Methodologies for Emerging Technologies

in Automation’, University of Rome La Sapienza,
November 13–14–15, 2006.

Alexander Siemers and Dag Fritzson. A meta-modeling
environment for mechanical system co-simulations. In
Proc. of the 48th Scandinavian Conference on Simulation

and Modeling (SIMS 2007), Gothenburg (Särö), Sweden,
October 2007.

Alexander Siemers, Contributions to Modelling and
Visualisation of Multibody Systems Simulations with
Detailed Contact Analysis, Dissertation No. 1337,
Linköpings universitet, Sweden, 2010

Lars-Erik Stacke, Dag Fritzson, and Patrik Nordling,
BEAST—A Rolling Bearing Simulation Tool, Proc. Instn
Mech. Engrs, part K, Journal of Multi-body Dynamics,
1999.

An Open-Source Graphical Composite Modeling Editor and Simulation Tool Based on FMI and TLM
Co-Simulation

188 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118181

The Modelica language and the FMI standard

for modeling and simulation of Smart Grids

Olivier Chilard1 Jérémy Boes2 Alexandre Perles2 Guy Camilleri2 Marie-Pierre Gleizes2

Jean-Philippe Tavella1 Dominique Croteau1

1EDF Research and development, 1 avenue du général de Gaulle, 92140 Clamart France
{olivier.chilard, jean-philippe.tavella, dominique.croteau }@edf.fr

2Institut de Recherche en Informatique de Toulouse (IRIT), SMAC, Toulouse University, Université Paul Sabatier, France,

{Jeremy.Boes, Alexandre.Perles, Guy.Camilleri, Marie-Pierre.Gleizes}@irit.fr

Abstract
The smart power grids will extensively rely on

network control to increase efficiency, reliability, and
safety. In this context, the simulation of such complex
systems is becoming an essential tool to support the
development of Smart Grids.

This paper presents an overview of the EDF R&D
Modelica library GridSysPro (GSP), which provides
electrical components adapted to Smart Grid simulation;
and a multi-agent approach for supporting the co-
initialization process of complex network of FMUs.

Keywords: Smart Grid, Co-Simulation, Modelica.

Introduction
The smart power grids will extensively rely on

network control to increase efficiency, reliability, and
safety; to enable plug-and-play asset integration, such as
in the case of distributed generation and alternative
energy sources; to support market dynamics as well as
reduce peak prices and stabilize costs when supply is
limited. In turn, network control requires an advanced
communication infrastructure with support for safety
and real-time communication (Figure 1).

Simulating such complex systems is required for the
development of Smart Grids. Several simulation tools
are available on the market but these tools have two
major drawbacks:

• They are generally not designed to import
models developed for other tools.

• They are not adapted to large scale complex
system of systems or cyber-physical systems
as smart grids which require time-
consuming calculation.

One solution to bypass these drawbacks is to use a co-
simulation platform which can connect together several
simulators and FMUs (Functional Mock-up unit).

EDF R&D is funding the development of its own co-
simulation platform dedicated to the Smart Grids in
partnership with LORIA-INRIA. A first release of this
tool named MECSYCO is available under the Affero

GPL license v3 (http://mecsyco.loria.fr/). The next
published version (at the end of 2015) will upgrade
MECSYCO with the coupling of different types of
discrete-time or continuous-time simulators (including
the FMUs) divided in three domains:

• The physics domain (process) : FMUs
exported according to the FMI 2.0 standard
from Dymola with models built from the EDF
Modelica library GridSysPro or historical tools
widely used at EDF (e.g. EMTP-RV) now
compatible with the FMI standard;

• The telecommunication domain: NS-3,
OMNeT++ or OPNeT ;

• The Information System domain with
models designed with UML/SysML oriented
tools.

MECSYCO is based on the Multi-Agent concept (one
agent per simulator to describe a heterogeneous multi-
model) and on the DEVS formalism (to conceive a
decentralized execution algorithm respecting the
causality constraints).

This paper provides first an overview of the EDF
R&D Modelica library GridSysPro (GSP) composed of
electrical components mapped on the zone related to the
process of a Smart Grid (Figure 1). Besides that, to
comply with the modeling of large scale electrical
networks, a solution to co-initialize several
interconnected FMUs exported from Dymola is
described.

DOI
10.3384/ecp15118189

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

189

Figure 1 : The Smart Grid Architecture Model (SGAM)

1 GridSysPro Library

Modeling of electrical networks has always been a
major scientific challenge for analysis and design.

Models are often used for studies of stability and
control, for the analysis and optimization of power flow
or for harmonic analysis and their distortion.

The common approach in electrical network
simulation is based on classification of the phenomena
according to their time scales (Figure 2). For each class
of phenomena, particular mathematical models are
developed (Figure 3).

Figure 2 : Power system dynamics

Figure 3 : Model representations for different time scales

1.1 Objectives of GSP

GridSysPro (GSP) is a Modelica library which allows
stationary power load flow calculation, short circuit
analyses and transient stability simulations.

The goal of stationary power load flow analysis is
to find all branch currents and all nodal voltages
amplitude and their angles according to electrical
constraints applied at each injection node. It can help to
calculate the use of power system resources and the
power quality with respect to the voltage bandwidth
constraints. In the real world, such analysis may be done
for anticipating the effects of future operation decisions.
In the simulated Smart Grid, the power flow analysis is
a vital function to get the line currents and node voltages
in the real power system. With this information,
compliance to operating limitations such as those
stipulated by voltage ranges and maximum loads, can be
examined. In this way, the location of congestions and
power outage situations can be identified. Moreover, the
stationary power flow analysis is required to help the
self-healing function, after the isolation step of the
faulted section, to re-establish service to as many
customers as possible from alternative sources/feeders
in accordance with the operating limitations. Due to the
ability to determine losses and reactive-power
allocation, load-flow calculation also supports the
planning engineer in the investigation of the most
economical operation mode of the network.

Short circuit analysis recalculates the power flow
after the occurrence of a fault in a power network. The
faults may be a three-phase short circuit, a one-phase
grounded, a two-phase short circuit, a two-phase
grounded, a one-phase break, a two-phase break or a
more complex fault.

The goal of transient stability simulation of power

systems is to analyze the stability of a power system in
a time window of a few seconds to several tens of
seconds. Stability in this aspect is the ability of the
system to quickly return to a stable operating condition
after being exposed to a disturbance such as for example
a tree falling over an overhead line resulting in the
automatic disconnection of that line by its protection

The Modelica Language and the FMI Standard for Modeling and Simulation of Smart Grids

190 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118189

systems. In engineering terms, a power system is
deemed stable if the rotational speeds of motors and
generators, and substation voltage levels can return to
their normal values in a quick and stable manner.

1.2 Overview of the GridSysPro library

According to the objective retained, GSP allows the
modeling of both transmission (HV) and distribution
(MV/LV) electrical networks. The first version of GSP
provides the following components:

• lines,
• transformer with or without load tap changer

and different winding coupling,
• generators,
• adapted blocks in order to build different types

of controllers like voltage and speed regulators,
• generic load which can represent different types

of consumption according to sensitive factor as
parameters related to voltage and frequency,

• electrical faults, analysers and breakers.

Figure 4 : Packages of GSP

Data and an Icon, which correspond respectively to
external parameters and a graphical representation, are
inherited by each main electrical component.

Component models are stored in hierarchically
structured packages. The blue ones provide all
elementary functions and models required to describe
the main components (green) needed for network
modeling.

1.3 Principles retained for the development of

GSP

Because of electromagnetic transients are not
considered in the GSP development (Figure 2 and
Figure 3), power systems are described in a form using
system of algebraic-differential equations. Thus the
behavior of each passive component of the grid is
defined by algebraic equations (complex number
formulations) while the one related to electrical and
mechanical parts of machines are determined by a
system of differential equations.

In order to simulate large-scale three phases balanced

and unbalanced networks, passive components have
been defined by three single phase Quadruples Y(QY).

Figure 5 : model of a passive component

The algebraic equation of a QY is defined according to
the equation (1) where only the variables of the positive
and negative pins (p, n) are considered.

[[[[]]]] 







⋅⋅⋅⋅====









vn

vp
y

in

ip

.

.

.

.
 (1)

Thus GSP passive components are described by three
generic QY objects connected to two composite
connectors containing three pins. The latter are related
respectively to the positive, negative and zero sequence
circuits. More precisely, the three phases a, b and c of
each passive component are broken down into three sets
of balanced single-phase phasors 1, 2 and 0 according
to the transformation of Fortescue (2).




















⋅⋅⋅⋅⋅⋅⋅⋅

















⋅⋅⋅⋅⋅⋅⋅⋅







====











 −−−−

××××

××××

××××××××

××××××××

××××××××
−−−−

××××

××××
n

abc

p

abc
n
abc

p

abc

V

V

F

F
P

Y

Y

Y

P
F

F

I

I
1

33

33

02222

22222

22221
1

33

33

0

0

00

00

00

0

0

 (2)
with:

[[[[]]]]
















⋅⋅⋅⋅====
















0

2

1

I

I

I

F

I

I

I

c

b

a [[[[]]]]
















⋅⋅⋅⋅====
















0

2

1

V

V

V

F

V

V

V

c

b

a












⋅⋅⋅⋅====

















n

p

pn

pn

pn

I

I
P

I

I

I

120

120

0

2

1

Session 3A: FMI 2

DOI
10.3384/ecp15118189

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

191

Therefore, the components of a grid, as lines, cables
and transformers are represented by three decoupling
circuits (Figure 5). Thus, the behavior of each object
differs only by the definition of the y-parameter matrix
(1Y , 2Y , 0Y) of each QY model. Besides that an
analyzer VIPQ can be used in order to provide voltage,
current and power flow per phase (a, b, c).

During the initialization which is equivalent to a load

flow calculation:
• generators are represented as either PQ or

PV node as slack node depending on the
attribute: LoadFlow_type. For each
dynamic state variable on which derivative
is applied one equation is given in the initial
equation section,

• loads are defined as constraint of
consumption.

1.4 Illustrations and validations

Some validations of GSP have been done where load
flow and dynamic behaviors have been tested and
compared respectively with OpenDSS and ObjectStab.

The OpenDSS is an electrical power system
simulation tool developed by EPRI (USA Electric
Power Research Institute) primarily for electric utility
power distribution systems. It supports nearly all
frequency domain (sinusoidal steady‐state) analyses
commonly performed on electric utility power
distribution systems.

The ObjectStab package is a free Modelica Library
for power systems voltage and transient stability
simulations limited to single phase description of
Network and dedicated to students. For GSP validation
the use case of ObjectStab validated with EUROSTAG
(common tool used by utilities for transient stability
simulations) has been retained.

All these tests have been successful and the one
related to the load flow simulation is presented here
after.

The considered MV Network is a typical outgoing
feeder of EDF energized by its MV primary substation
(Figure 6). In order to simplify the description of
networks a Network Management Tool developed by
EDF R&D under MATLAB has been used. This NMT
allows an automatic generation of the Modelica model
of a network from the CIM XML file. More precisely
the IEC 61970/61968 (CIM) provides a Common
Information Model to support the information exchange
between different EMS (Energy Management System).
Its large data model provides the possibility to model
physical (like cables, switches) and abstract objects (like
documents, schedules, and consumer data) in the energy
domain. The databases of EDF’s electrical networks
have been built according to the CIM standard.
Therefore NMT and Dymola/GridSysPro allow an
automatic Modelica implementation of EDF grids.

Figure 6 : the outgoing MV feeder retained for the

GSP test

The Load flow simulations results are provided in
Figure 7. These latter correspond to the voltage
amplitude profile along the considered MV network
from the primary substation to the end points of the grid.

The results obtained respectively by OpenDSS and
GridSysPro are identical.

Figure 7 : The voltage amplitude profile obtained with

OpenDSS and GSP

2 Co-initialization with FMUs exported

from GSP

One solution to comply with the simulation of very
large scale electrical networks described from GSP is to
export the latter as several FMUs to be interconnected
and simulated inside a co-simulation platform like
MECSYCO. The segmentation of electrical networks
into a set of FMUs is a design choice that depends on
models and solvers properties (their execution cost…).

However, in this case the load flow calculation is
distributed into each FMU and a master has to be
developed in order to coordinate the calculation of each
boundary variables related to input and output of each
FMU.

2.1 Co-initialization with an Adaptive

MultiAgent System (AMAS)

A graph of connected FMUs can be expressed in
general way as following ��������������� 	 〈��
〉����������. Each

Length (m)

V
o

lt
a

g
e

 (
p

u
)

P
U

(p
u

)

OpenDSS
GSP

The Modelica Language and the FMI Standard for Modeling and Simulation of Smart Grids

192 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118189

FMU can be viewed as a function owning inputs and
providing outputs. FMUs are connected through some
of their inputs assigned to outputs of other FMUs,
defining the calculation graph of the global problem. In
this view, the vectors ����������. and ��������������� represent all
inputs and outputs of all FMU, while 〈��
〉 is the
aggregation of all FMU functions on which the input
vector ���������� is applied. Trying to co-initialize multiple
FMU is equivalent to verifying the following property:
��������������� 	 〈��
〉���������� 	 ����������.

Thus, the co-initialization problem is in its general
formulation equivalent to the search of fixed points in
mathematics. Indeed, given a set E and an application
�:� → �, a point x is a fixed point if ���� 	 �. E can
be a metric space in n dimensions. When the FMUs
graph owns many cycles, the problem of co-
initialization corresponds to a complex fixed point
search problem.

In this paper, we propose to explore the potentialities
of a multi-agent approach for solving this type of fixed
point search problem. For this, we choose to apply the
AMAS (Adaptive Multi-Agent Systems) theory
developed by SMAC team in (Georgé, Gleizes, &
Camps, 2011). This theory has shown its suitability for
solving complex and dynamic problems in many
applications (Jorquera, Georgé, Gleizes, & Régis,
2013), (Brax, Andonoff, Gleizes, & Glize, 2013),
(Capera, Gleizes, & Glize, Mechanism Type Synthesis
based on Self-Assembling Agents, 2004).

In this section, we will very briefly present some
important concepts of Multi-Agent Systems and the
AMAS theory. The AMAS theory will then be used as
a guide in the design of a multi-agent system able to
solve the fixed point search problem presented above.
Finally, we will present some results of the application
of this multi-agent system on a GSP generated case
study.

2.2 Multi-Agent Systems

A multi-agent system is a set of autonomous entities
called agents, interacting in a common environment,
acting to solve in coherent way a common task. This last
point is important because it implies the unity of the
MAS. Even if each agent has its own individual goal, in
some situations their goal can possibly be in conflict
with the others.

According to (Wooldridge & Jennings, 1995) and
(Ferber, 1999) , an agent is a physical or a software
entity which:

• is autonomous,
• exists in an environment that it can perceive and on

which it can act,
• has a partial representation of this environment,
• is able to communicate with other agents,
• has resources,

• has skills and can offer services.
The behavior of an agent results from its

perceptions, its knowledge, its skills, and naturally its
goals. It follows a life cycle in three stages repeated
infinitely throughout its execution:

• the stage of perception during which the agent
acquires new information on the environment,

• the stage of decision in the course of which the agent
chooses the next actions to be made,

• the stage of action during which the agent performs
the actions chosen in the previous stage.
An essential characteristic of agents is their

autonomy: they decide themselves to act or not and the
nature of their actions.

2.3 Adaptive Multi-Agent System Theory

The Adaptive Multi-Agent System (AMAS) theory
appears suitable for the fixed point search problem (see
(Capera, Georgé, Gleizes, & Glize, 2003) (Whitehead,
2008)).

Due to their distributed structure, AMAS are flexible
and self-adaptable to several strategies of simulators
control. The first aim of the AMAS theory is to design
Multi-agent System having a coherent collective
activity that achieves the right task. This property is
named “functional adequacy" and the following
theorem is proved: “For any functionally adequate
system, there is at least a cooperative interior medium
system which fulfills an equivalent function in the same
environment". Therefore, it focuses on the design of
cooperative interior medium systems in which agents
are in cooperative interactions. The specificity of the
theory: “the emergence” resides in the fact that the
global function of the system is not coded within the
agents. Agents have only a partial knowledge. The
global function of this system emerges from the
collective behavior of the different agents composing it.
Each agent possesses the ability of self-organization i.e.
the capacity to locally rearrange its interactions with
others depending on the individual task it has to solve.
Changing the interactions between agents can indeed
lead to a change at the global level. This induces the
modification of the global function. This capacity of
self-organization enables to change the global function
without coding this modification at the upper level of the
system. Self-organization in AMAS is based on the
capacity an agent possesses to be locally “cooperative”.

Therefore AMAS agents locally cooperate in order
to satisfy their own goals as well as they try to help other
agents to achieve their goals. This notion of local goals
is crucial for reaching a global solution, and is
represented by a measure of criticality. This measure
denotes the agent difficulty to reach its goals. It is used
in a local way by agents in order to result in a system
where the satisfaction of all agents is balanced.

Session 3A: FMI 2

DOI
10.3384/ecp15118189

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

193

Moreover, an agent will modify its behavior if it
thinks that its actions are useless or detrimental to its
environment. Such situations are called Non-
Cooperative Situations (NCS). Some behavioral rules,
specific to NCS’s, help agents to solve or avoid these
situations. By solving NCS’s, in regard to their own
local goals, cooperative agents collectively find a
solution to the global problem. Therefore one can
consider the behavior of an AMAS as emergent.

2.4 AMAS for co-initialization (Fixed Point

Search Problem)

In this part, we present the use of the AMAS theory
as a guide for the design of a multi-agent system
dedicated to the co-initialization (solving the fixed point
search problem). Following the AMAS theory, we start
by identifying agents, their neighborhood, their
criticality and their perceptions and actions. After, we
will very roughly describe the behavior of agents.

2.4.1 Agents

The objective of the co-initialization is to reach a state
of the FMUs graph in which every input of every FMU
is equal to the output of other FMU connected in input.
We chose to represent in the form of agent the
connections between FMUs. In other words, if an agent
represents one link between only two FMUs then the
extremities of the link must be equal. More exactly, we
place an agent at every output of every FMU, as in
Figure 8

In this figure, the following equalities have to be
satisfied: ����� 	 ��, ����� 	 �� and ����� 	 ��.
Therefore, the proposed system is only composed of one
agent type corresponding to links between FMUs.

2.4.2 Neighborhood

The neighborhood of an agent is defined as the set of
all agents being directly influenced by it. Therefore, the
neighborhood of an agent α corresponds to all agents in
output of the FMU to which α is connected in input, as
well as the agent α itself. For example (Figure 6), the
neighborhood of the agent A is composed of agent A
and B whereas the neighborhood of the agent C consists
of three agents A, B and C.

2.4.3 Criticality Measure

The fixed point search problem is solved if, after
having acted, every agent observes on its inputs a value
equal to the one that it had assigned on its outputs in the
previous step. In other words, the problem is solved if,
for every agent: |!�"��# − ���"��#%�| 	 0 which
constitutes the own objective of all agents of this system.

The criticality represents the difficulty that an agent
has to satisfy its own objective. In this case, the
criticality measure is obvious: '(!�!')*!�+ 	 |!�"��# −
���"��#%�|. Following AMAS theory, all agents will try
to decrease their criticality to 0 what will solve the fixed
point search problem.

2.4.4 Perceptions and Actions

An agent A corresponding to the output S of a FMU,
perceives on its input the value of S. A also perceives
the values of criticality of all agents of its neighborhood.
Finally, A perceives the value of partial derivatives
(Jacobian matrix) of all FMU functions to which it is
connected.

The agent A can modify its own output, which is
assigned a value to all FMU inputs to which S is
connected. The agent action can thus be of three types:
increase, decrease, or not change its value of output.

2.4.5 Agent Behavior

Our system is homogeneous, meaning that all agents
possess the same behavior algorithm. The objective of
each agent is to decrease the level of criticality of its
neighborhood (including itself). The action of an agent
can have a beneficial effect (which imply a decrease of
the criticality), harmful (which causes an increase of the
criticality), or indifferent (which does not provoke a
variation of criticality) on each agent of its
neighborhood.

Thanks to the observation of the sign of Jacobian
matrix of all FMU connected to its output, each agent
can, to a certain extent, know the effect of its action.

An agent has to form an idea of the amplitude and the
direction in which it will vary the value of its output in
order to decrease the criticality of its neighborhood as
fast as possible. This information is represented by two
internal variables, managed dynamically:

• δ is a positive real value corresponding to the
amplitude of the variation,

• σ is an integer in {-1;0;1}, it indicates the direction
of the variation.

At each life cycle, an agent modifies its output value
in the following way:

ttt
aoo += −1

Where ta is calculated from the amplitude σ and the
direction δ. Indeed, we apply a variation in the direction
σ with amplitude equal to δ. Thus :

Figure 6 : To the left, an example of FMU graph. To

the right, the same graph with cooperative agents
Figure 8 To the left, an example of FMU graph. To the

right, the same graph with cooperative agents.

The Modelica Language and the FMI Standard for Modeling and Simulation of Smart Grids

194 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118189

else),ramdom(-

0 if



 ≠≠≠≠⋅⋅⋅⋅

====
δδδδδδδδ

σσσσδδδδσσσσ
ta

If δ=0, the variation is randomly decided between −δ
and δ, both values being equiprobable. The presence of
random can be justified by the fact that all agents
perceive, decide and act simultaneously by following
the same behavior. If the latter was purely determinist,
the system would have to cope with the problem of the
bar of El Farol (Whitehead, 2008), resulting in a non-
desirable synchronization of actions, and thus an
ineffective exploration of the search space and a
convergence outside the solution.

According to their perceptions and following
cooperative rules, agents adjust their δ and σ variables
in order to decrease the criticality of themselves and
their neighbors. Thus, the overall criticality tends to
decrease over time, while the AMAS converges toward
a solution. Due to the size of this paper, we will not
describe the adjustment mechanism of agents.

2.4.6 A case study: FMU graph generated with GSP

In this case study, we consider three FMU: A, B and
C having respectively two, four, and two outputs. Thus
there are 8 agents in the AMAS system which will
initialize the network. In the Figure 9, the neighborhood
graph of agents is presented. Agents are assigned to
outputs of the considered FMU network. Each FMU was
exported according to the FMI 2.0 standard from
Dymola with EDF Modelica library GSP.

Figure 9: Neighborhood Graph

From a theoretical point of view, for solving the fixed
point search problem, the criticality of all agents should
reach the value 0. However, in practice, due to
numerical aspects, it may be reasonable to reach a value
close to 0. In this case study, the fixed point search was
stopped if agent criticalities reach a value lower than 10-
4.
The Figure 10, shows the criticality curves of the eight
agents. The total number of system cycles is indicated
in abscissa and criticality values in ordinate. The best

solution is reached after around 49000 cycles, with a
residue (error) of 3.74 0 10%2.

Figure 10: AMAS System Convergence

In this case study, the AMAS system converges with
low criticality values (lower than 10-4). Therefore, the
presented system is able to co-initialize the FMU
network with a reasonable precision.

Moreover, the AMAS algorithm was previously used
in quite different domains with several thousands of
agents (corresponding here to the number of parameters
of the FMUs). The resolution principle is totally local
and depends mainly on two characteristics of the
application:

1. The number of agents influencing quasi-
linearly the solving time,

2. the branching factor the agents (equivalent to
the mean number of its neighbors). For a
given class of problem (here co-initialization
of FMUs), the number of cycles is stable.

Consequently the duration of the co-initialisation
problem depends roughly linearly of the number of
FMU.

3 Conclusions and perspectives

This paper presents an overview of the Modelica
library GridSysPro (GSP) composed of electrical
components mapped on the zone related to the process
of a Smart Grid. Beside that to comply with the
modeling of large scale electrical networks a solution to
co-initialize several interconnected FMUs exported
from GSP/ Dymola, is described. More precisely the
interconnection of several FMUs requires the
determination of initial values of all FMU inputs (co-
initialization). This problem is complex and can be
formulated as a fixed point search problem. We
proposed the use of the AMAS (Adaptive Multi-Agent
System) theory for designing a system able to solve this
problem. We illustrate the suitability of the proposed
system in a case study generated from GSP.

The previously presented version of GridSysPro
includes several components allowing it to represent and
simulate an electrical network. Nowadays, we are
moving toward the concept of Smart Grid which is an
evolution of the electrical network allowing notably bi-
directional exchanges of energy and information
through lines and an intelligent and autonomous control.

Session 3A: FMI 2

DOI
10.3384/ecp15118189

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

195

That is why an interesting perspective could be to
integrate a set of advanced features to this library as part
of the initiative on FMU, co-initialization and Modelica.

As an example, the first advanced feature that will be
integrated is an autonomous voltage regulation system.
This feature is expected, on the one hand, to be able to
build a coordinated regulation between medium voltage
and low voltage networks and, on the other hand, to deal
with the massive integration of decentralized generators.

As previously seen, the Adaptive Multi-Agent
System theory seems adapted to solve this kind of
problem, notably by the amount of elements interacting
in the system and by the need to support the topology
changes.

The proposed approach splits the problem into two
steps. Firstly, informed agents get the voltage and power
values from sensors they are linked with and cooperate
with others in order to help them find the missing values.
And secondly, agents communicate in order to find the
set of voltage set-points to guarantee the compliance
with the contractual voltage range at consumption
points. Such an approach of this problem allows
building a voltage regulation regardless of the size of the
network.

4 References

Julien Vaubourg, Yannick Presse, Benjamin Camus,
Christine Bourjot, Laurent Ciarletta, Vincent
Chevrier, Jean-Philippe Tavella, Hugo Morais,
Boris Deneuville, & Olivier Chilard (PAAMS
2015). SmartGrid Simulation with
MECSYCO.

Brax, N., Andonoff, E., Gleizes, M.-P., & Glize, P.
(2013). Self-adaptive Aided Decision-making
- Application to Maritime Surveillance.
International Conference on Agents and

Artificial Intelligence (ICAART), (pp. 419-
422). Barcelona: INSTICC - Institute for
Systems and Technologies of Information,
Control and Communication.

Capera, D., Georgé, J.-P., Gleizes, M.-P., & Glize, P.
(2003). The AMAS Theory for Complex
Problem Solving Based on Self-organizing
Cooperative Agents. International Workshop

on Theory And Practice of Open

Computational Systems, pp. 389-394.
Capera, D., Gleizes, M.-P., & Glize, P. (2004).

Mechanism Type Synthesis based on Self-
Assembling Agents. Journal of Applied

Artificial Intelligence, 921-936.
Ferber, J. (1999). Multi-agent systems: an introduction

to distributed artificial intelligence. Addison-
Wesley Reading.

Georgé, J.-P., Gleizes, M.-P., & Camps, V. (2011).
Cooperation. (G. Di Marzo Serugendo, M.-P.
Gleizes, & A. Karageorgos, Eds.) Self-

organising Software, 193--226.
Jorquera, T., Georgé, J.-P., Gleizes, M.-P., & Régis, C.

(2013). A Natural Formalism and a
MultiAgent Algorithm for Integrative
Multidisciplinary Design Optimization.
IEEE/WIC/ACM International Conference on

Intelligent Agent Technology (IAT), Atlanta,

USA, 17/11/2013-20/11/2013 (pp. 146 - 154).
IEEE Computer Society.

Whitehead, D. (2008). The el farol bar problem
revisited : Reinforcement learning in a
potential game. ESE Discussion Papers, 186.

Wooldridge, M., & Jennings, N. R. (1995). Intelligent
agents: Theory and practice. Knowledge

engineering review, 10(2), 115-152.

The Modelica Language and the FMI Standard for Modeling and Simulation of Smart Grids

196 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118189

Coupled modeling of a District Heating System with Aquifer

Thermal Energy Storage and Absorption Heat Transformer

Carles Ribas Tugores1 Henning Francke2 Falk Cudok3

Alexander Inderfurth1 Stefan Kranz2 Christoph Nytsch-Geusen1
1Fachgebiet für Versorgungsplanung und Versorgungstechnik, Berlin University of the Arts, Germany,

{c.ribastugores,a.inderfurth}@udk-berlin.de
2Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences,

{kranz,francke}@gfz-potsdam.de
3Institute of Energy Engineering, Technische Universität Berlin, Germany, falk.cudok@tu-berlin.de

Abstract

Aquifer thermal energy storages (ATES) are a
promising technology for seasonal thermal energy
storage which can bridge the gap between constant
production and seasonally varying demand. This paper
presents first simulation results of an energy concept
proposed for the university campus Berlin-
Charlottenburg, which is characterized by the
combination of an ATES system as a seasonal thermal
energy storage and an absorption heat transformer
(AHT), which supplies 50 buildings of the campus
with heating energy. Furthermore, the paper deals with
the modeling of the different subsystems, described in
Modelica; energy production, storage, consumption
and distribution and their integration in a coupled
Modelica system model.

Keywords: Modelica, ATES, geothermal, absorption

heat transformer, district heating, FVM

1 Introduction

Some thermal energy systems such as the ones
including combined heat and power plants (CHP),
which provide electrical base loads or solar thermal
energy show a strong time mismatch between
consumption and production. This mismatch can be
compensated by the addition of a thermal energy
storage (TES) to the system (see Figure 1).

The selection of a TES mainly depends on the
required storage period, the economic viability and the
operating condition (Dinçer & Rosen 2002). Among
the possibilities for low-medium temperatures
(10…90 °C), the sensible heat storage tank with water
is the most common choice (Dinçer & Rosen 2002).
This is mainly due to their simplicity, low cost, good
performance and the favorable thermal properties of
water, namely high specific heat capacity and relative
high density. However, this solution is designed to
compensate the daily variation. If seasonal variations
are to be compensated, a larger storage is needed. In
this scenario the utilization of natural aquifers as

seasonal thermal energy storage (ATES) is an
interesting possibility with low cost in relation to its
high storage capacity.

Figure 1. Seasonally fluctuating energy demand (dashed)
covered by combined heat and power plant (CHP, solid)
and previously stored CHP surplus recovered from
aquifer thermal energy storage (ATES), topped up by a
boiler.

An ATES uses groundwater in an aquifer to store
thermal energy for several months, mainly for heating
and cooling of buildings. The aquifer is an
underground layer where water can flow through the
permeable material. Common ATES systems consist of
two wells (or well groups), a cold well and a warm
well. When charging the ATES system with heat,
groundwater is produced from the cold well, heated up
and re-injected into the aquifer through the warm well.
To discharge the ATES, the flow direction of water is
reversed and heat is extracted (see Figure 2). The heat
is typically recovered at a temperature lower than the
original injection temperature due to heat exchange
with the porous matrix and adjacent layers.

In order to avoid triggering the precipitation of
dissolved minerals and potentially reducing aquifer
permeability, the injection temperature should be kept
below a certain limit �injmax, which depends on the fluid
chemistry. This upper temperature limit does not
always meet the requirements of the consumers,

boiler

E
ne

rg
y

pr
od

uc
ti

on
/c

on
su

m
pt

io
n

ATES dis-
charge via AHT

ATES
charge

base load CHP

 Time 1a

DOI
10.3384/ecp15118197

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

197

making it necessary to raise the temperature to suitable
temperatures for the existing heating systems. In this
regard the absorption heat transformer (AHT) is an
appropriate technological solution that is able to use
thermal energy at an intermediate temperature level to
heat a fluid at a high temperature level.

Figure 2. ATES principle with two wells.

The ATES technology has already been implemented
in several projects such as in Rostock (Schmidt et al.
2000) or the German parliament buildings in Berlin
(Sanner et al. 2005). There is, however, still potential
to improve this technology itself as well as a need to
investigate its match with other thermal technologies.
Hence, the main goal of the joint project "Efficiency
and reliability of energy systems in urban districts with
seasonal energy storage in aquifers", is the
development of a design concept, regardless of
location, that assists the designer in the implementation
of feasible and efficient ATES systems.

This paper presents the first results of the
simulations of an energy concept proposed for the
university campus Berlin-Charlottenburg and a brief
description of the implemented models in Modelica.
The main feature of the system is the combination of
an ATES system as a seasonal thermal energy storage
with an AHT.

1.1 Joint Project

The interdisciplinarity of the topic requires the
participation of different research groups. Research
groups from Helmholtz Centre Potsdam - GFZ German
Research Centre for Geosciences (GFZ), Technische
Universität Berlin (TUB) and Berlin University of the
Arts (UdKB) are involved in the project in order to
properly cover its different aspects.

The International Centre for Geothermal Research at
GFZ covers research in a holistic approach along the
whole chain of geothermal technologies from the
geothermal reservoir to the provision of power, heat,
and chill. One part of this work deals with simulation,
evaluation and design of ATES systems.

At the department of Energy Engineering of TUB
the work focuses on the development of an absorption
device, which features a great flexibility in terms of

operating modes. It can work as absorption heat pump,
absorption chiller (heat pump type I) or absorption heat
transformer (heat pump type II). For that purpose, an
experimental set-up is currently being installed that
allows a better understanding of this technology.
Furthermore, theoretical models of this absorption
device are implemented in Modelica and presented
here.

At the research group of UdKB the focus is on the
energy consumption of urban districts, the energy
supply systems and the provision with renewable
energy. One main task is the development of a method
to model a whole district, including buildings and
installations, renewable energy production, as well as
the distribution networks for cooling and heating, with
strongly simplified low-order building models that
allow to study such complex systems with low
computational effort.

Besides the tasks described above, all project
partners collaborate on the presented case study, the
university campus Berlin-Charlottenburg, which on
one hand serves to face the challenges of a real-world
project, such as the data collection related to the
buildings and the obtainment of a drilling license. On
the other hand, different energy concepts can be
studied based on a realistic scenario.

1.2 Energy Concept

From a thermal point of view, the presented system can
be divided into three temperature ranges, at which the
different subsystems either extract or inject heat: high
temperature (above 70 °C), intermediate temperature
(between 40 and 70 °C) and ambient temperature (see
Figure 3). Thermal energy at the high temperature
range is produced by combined heat and power plants
(CHP), boilers and the AHT. This thermal energy is
used to supply the buildings via a district heating
network (DHN). The intermediate temperature range
includes the hot well of the aquifer and the return
temperature of the DHN.

Figure 3. Energy concept schema with main thermal
energy flows.

The system works as sketched in Figure 1 and Figure
3. The CHP produces a constant amount of energy to

Boiler CHP

DHN

AHT

P
ro

du
ct

io
n

C
on

su
m

pt
io

n

Intermediate temperature

Buildings

High temperature

ATES

charge discharge

20 °C

20…30 °C 50…60 °C

warm well cold well

Coupled modeling of a District Heating System with Aquifer Thermal Energy Storage and Absorption Heat
Transformer

198 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118197

cover the electric base load of the district. Its thermal
energy is used to supply the buildings. In case there is a
surplus of thermal energy, i.e., the amount of produced
thermal energy is higher than the current demand of the
DHN, this energy is used to charge the aquifer. If the
thermal energy produced by the CHP does not cover
the heat demand of the buildings, then, if available,
thermal energy will be drawn from the aquifer. This
heat energy then powers the AHT. In case the thus
supplied thermal energy is still insufficient, either
because of the limited capacity of the AHT or the
depletion of the ATES (production temperature below
minimum usable temperature), a boiler covers the
remaining demand gap.

2 Modeling

The university campus Berlin-Charlottenburg is used
as a case study for developing the modeling approach.
In a first step, a model with simplified components and
boundary conditions was developed in order to
investigate the interaction of the sub-models.

The system model is assembled from component
models from the MSL - Modelica Standard Library
(Modelica-Association 2014), the Annex60 library
(Wetter & Treeck 2014), the BuildingSystems library
(Nytsch-Geusen 2014) and models specifically
implemented for this project. The used models from
the different libraries has fluid ports and input/output
connectors as interfaces. Fluid ports are used to
connect models mimicking the hydraulics of the real
system while input and output connectors are mainly
used for control signals.

The following subsections explain the overall
system and its subsystems in more detail.

2.1 Overall System

Figure 4 shows the hydraulic configuration of the
Modelica model, with dashed and solid lines
representing heat and mass flows, respectively. At the

left and mid side of the diagram there is the thermal
energy production system, composed by several
production units, CHP, boiler and AHT, as well as per
the seasonal thermal energy storage, ATES. At the very
right side of the diagram there is the main consumption
system, the building model, and its interface to the
thermal energy production system, the DHN. The main
components are either connected directly or via heat
exchangers (HXs).

The control strategy of the model is explained below
with help of Figure 4. �̇boiler, the mass flow rate through the boiler and
HX3 is adjusted by a PI controller so that the DHN can
extract the required energy in order to raise the supply
mass flow rate, �̇DHN, to a certain set temperature. In
this simulation it is set to a constant value of 90 °C.

The CHP model calculates, according to its inlet
temperature and its constant heat production rate, the
exact mass flow rate �̇CHP that can be heated up to a
set temperature. In this simulation it is set to a constant
value of 95 ºC.

Taking into account that the boiler and CHP has the
same set temperature, then, if the mass flow rate in the
CHP �̇CHP is higher than the mass flow rate flowing
through the boiler �̇boiler (used to heat up the DHN),
more energy is produced by the CHP than requested by
the DHN. In this case, the excess part of �̇CHP, which
is not needed to heat the DHN (�̇surplus = �̇CHP −�̇boiler and �̇T2 = 0), is used to charge the aquifer
(�̇charge > 0). In the opposite case the mass flow rate
requested by the CHP is lower than the one requested
to heat up the DHN (�̇CHP < �̇boiler), the mass flow
rate leaving the heat exchanger of the DHN �̇boiler is
split, one fraction goes to the CHP, �̇CHP, and the rest
flows through the parallel branch, which is connected
to the AHT (�̇T2 = �̇boiler − �̇CHP and �̇surplus =

0).
In this case, the AHT is switched on given that two

conditions are fulfilled. A minimum mass flow rate

�̇ 0

�̇ ���
�̇ DHN

�̇DHN �̇T1

�̇ charge

�̇ discha
rge

 �̇ boiler
 �̇ T2

�̇ surplu
s

�̇ CHP

CHP

HX1

Boiler

HX3 AHT

ATES

Buildings

HX4

DHN

Ambient
air

HX2

Figure 4. System schema of the Modelica model with main mass (solid) and thermal energy (dashed) flows.

Session 3B: Building Energy Applications 2

DOI
10.3384/ecp15118197

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

199

�̇T2 and a minimum characteristic temperature
difference ΔΔ� (see 2.4). These conditions are not
fulfilled when the ATES temperature is too low or
when the ambient temperature limiting �0 is too high.
During the operation of the AHT energy is extracted
from the ATES and used to drive the AHT
(�̇discharge > 0 and �̇T1 > 0).

2.2 Combined Heat and Power Plant and Boiler

Boiler and CHP are represented by simple models,
because the major interest of the simulation lies on
ATES, AHT, DHN and buildings as thermal
consumers.

The CHP works under stationary conditions and can
be therefore considered as a constant heat source. The
CHP is modeled with a prescribed heat flow. Assuming
an electrical output of the CHP to cover the electric
base load of 10 MW and a CHP ratio electricity/heat of
0.6 leads to a constant heat production rate of 15 MW.

The boiler’s task is to ensure that the buildings' heat
demand is fulfilled. We neglect any limitations and
assume that this is always achieved. The boiler is
modeled with a prescribed output temperature. The
boiler's power is not limited and its output temperature
is set to 95 °C.

2.3 Aquifer Thermal Energy Storage

The ATES model consists of two well models coupled
by the produced/injected flow. This flow is heated or
cooled in a heat exchanger which connects the ATES
with the energy system. Both sides of the heat
exchanger have equal mass flow rates. Well mass flow
can be increased via a bypass in order to limit the
injection temperature to �injmax. In the presented
scenario we assume �injmax = 60 °C. In reality, well
mass flow rate is limited by friction pressure losses in
the well and in the aquifer with being a function of
well diameter and rock permeability. However, as
pressure loss is not considered here, well mass flow
rate is limited by a prescribed value, representing the
storage size together with the aquifer thickness.

The aquifer around the wells is modeled as two
independent radially symmetric discs or rings with an
inner radius �if (interface well/aquifer) and an outer
diameter �∞. They are thermally insulated in the
vertical direction. Thermodynamic equilibrium
between rock and fluid, i.e., a common temperature is
assumed. Eq. (1), the PDE1 for convective-conductive
transient radial heat flow in porous media (Bear &
Bachmat 1990) written in polar coordinates provides
the temperature �(�, �) for a given Darcy flux, which
is determined by the radial distribution of the mass

flow entering/leaving the well �̇ as �(�) =
�̇�f2π��.

1 partial differential equation

��� ∂T∂t
=

1� ��� �eff� ���� − �f���f ���� (1) � is the thickness of the aquifer. The effective
thermal conductivity �eff is calculated from the thermal
conductivity of the rock � and the dispersion length �: �eff = � + �|�|��f �f (2) �̅ is the bulk density, the average of fluid density �f
and rock density �s, weighted with their respective
volume fraction. The specific bulk heat capacity ��� is
calculated likewise. �̅ = � ∙ �s + (1 − �) ∙ �s ��� = � ∙ ��f + (1 − �) ∙ ��s

(3)
(4)

At the outer boundary temperature is kept at the
domain’s initial value �∞: �(�, � = 0) = �∞ (5) �(� = �∞, �) = �∞ (6) �∞ is set to a large value so that the boundary is
outside of the thermally influenced region. To verify
this condition eq. (7) is monitored by an assert
statement: �������∞ = 0 (7)

At the inner boundary temperature is set to injection
temperature during injection or else heat flow is set to
zero.

 �(�if) = �inj during injection�������if = 0 else
 (8)

The PDE is solved on the spatially discretized 1D
domain using the FVM method (see Appendix).

The aquifer model has been successfully validated
against a 3D FEM model simulated in COMSOL.

The aquifer model parameters are given in Table 1.
Water properties are provided by the MSL.

Table 1. Aquifer model parameters � thickness 10 m
 initial temperature 20 °C �rock rock density 2650 kg/m³ � rock thermal conductivity 3 W/(m·K) �p,rock rock specific heat capacity 800 J/(kg·K) � porosity 0.3 �if radius interface well/aquifer 0.1 m �∞ radius of outer boundary 200 m

2.4 Absorption Heat Transformer

The AHT is a thermally driven heat pump of type II,
which splits a heat flow at intermediate temperature
level in two heat flows at high and low temperature
levels (see Figure 5). The gain of the AHT is the output
heat flow �̇2 at the high temperature level �2. The
effort is the driving heat flow �̇1 at the intermediate

Coupled modeling of a District Heating System with Aquifer Thermal Energy Storage and Absorption Heat
Transformer

200 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118197

temperature level �1 (equation (13)). With this device it
is possible to provide heat for heating (e.g. the district)
at �2 driven by heat from the ATES at �1 without using
additional energy.

Figure 5. Black box scheme of an absorption heat
transformer (Heat flows at different temperature levels).

The AHT is modeled following the steady-state
approach of the characteristic equation. This approach
was often applied and explained by absorption chiller
(Albers et al. 2008; Puig-Arnavat et al. 2010). Cudok
& Ziegler (2015) discuss the method of the
characteristic equation for general apply to AHT and
absorption heat pump (type I) and chiller.

The heat flows �̇0 and �̇2 are described by the
characteristic temperature difference ΔΔ� or respective
the temperatures levels �2, �1 and �0. The heat flow �̇1
results from the energy balance eq. (12). To define a
concrete AHT device the parameters, s2, s0, ΔΔ�min,2, ΔΔ�min,0 and � are needed. ΔΔ� = � ∙ (�1 − �0) − (�2 − �1) (9) �̇2 = �2 ∙ (ΔΔ� − ΔΔ�min,2) (10) �̇0 = �0 ∙ (ΔΔ� − ΔΔ�min,0) (11) �̇1 = �̇0 + �̇2 (12)

COP =
�̇2�̇1 (13)

The AHT switches off when the characteristic
temperature difference ΔΔ� drops below a minimum
value chosen to prevent the model from leaving the
valid operating range, here this minimum value is set to
3 K, or when the mass flow rate �̇AHT is lower than a
minimum value. This minimum mass flow rate is
determined by the available gain heat flow �̇2 of the
AHT (equation (10)) and the assumed condition of a
maximal temperature rise, which value set to 15 K is
added to ensure normal operating conditions for the
AHT. To switch off the device it is bypassed.

The AHT is controlled by the mean temperature at
the low temperature level �0 (equation (9)), which is
variable but limited by the current ambient
temperature.

For the system simulation the AHT is parameterized
in such a way that it has a nominal power of 2 MW
under the following operating conditions; �2 = 75 °C, �1 = 60 °C, �0 = 5 °C.

2.5 Buildings

For use in the system model the approx. 50 buildings
of the university campus Berlin-Charlottenburg with a
total of 434020 m² heated floor space are aggregated
into one substitute building model to ensure fast
computation times of this component (see Figure 6).

Figure 6. Building stock of the university campus Berlin-
Charlottenburg (green), which is aggregated in one
substitute building model. The blue and red cylinder
indicate a possible location for the ATES.

The aggregation is done via a parameter identification
method that uses optimization strategies, described in
(Inderfurth et al. 2015). This method takes measured
heat consumption data of all considered buildings into
account. By repeated simulation of the substitute
building model and comparing simulated and measured
consumption important parameters like thermal
capacities, thermal transmittances, window areas, etc.
are gradually fitted to the building model. This process
ensures that the substitute model together with its fitted
parameter set accurately represents the thermal
characteristic of the city district. The underlying low-
order building model consists of four thermal
capacities (internal capacities, external wall, base plate
and room air), four window models to account for solar
heat gains, several wall constructions, air change with
the building's environment and an internal heat source
accounting for internal heat gains through electrical
consumption. All component models are provided by
the BuildingSystems library for building performance
simulation (Nytsch-Geusen 2014).

The low-order building model calculates the ideal,
instantaneous heating demand of the aggregated
buildings by calculating heat gains and losses to the
environment through thermal conduction, air change as
well as short and long wave radiation. The maximum
heating power of the implemented ideal heater is
reasonably limited to 30 MW. A previous study with
measured heat consumption and weather data
concludes that the maximum instantaneous heating
load of the campus is around 23 MW.

+

- �̇0

�1

- �̇2 �̇1

�2

�0

Session 3B: Building Energy Applications 2

DOI
10.3384/ecp15118197

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

201

2.6 District Heating Network

The district heating network's design is based on the
information collected about the buildings' contracted
heating power, the buildings' installations and their
current operating temperatures. The DHN has been
designed following a standard methodology
(Krimmling 2011). The proposed district network has a
tree structure and is simplified following the
aggregation method described in Larsen et al. (2001).
This method allows calculating the global heat loss and
energy transport delay but not the pressure loss. The
method has shown good results even after taking strong
assumptions and extreme simplification of the
distribution networks (Larsen et al. 2001, 2003). One
of the strongest assumptions used by the aggregation
method is that the ratio between mass flow rates in a
pipe-branch is constant and proportional to the nominal
power of the downstream consumer's nominal mass
flow rate. Under this assumption the DHN is simplified
step by step and the consumption points with it. Thus,
once the DHN is reduced to one pipe/substation there
is no need to redistribute the total energy demand of
the city district between the different consumption
points. In the present model the number of pipes was
reduced from 75 to 1.

The thermal pipe model itself consists of a water
volume with a lumped heat capacity from the pipe's
metal and a heat transfer model that computes the heat
transfer between pipe and surroundings. The heat
transfer model for district heating pipes is described
with equations (14) and (15) (Bøhm 2000). �̇s = (�1 − �2)��s − �g� + �2(�s − �r) (14) �̇r = (�1 − �2)��r − �g� − �2(�s − �r) (15) �s, �g and �r stand for supply, undisturbed ground and
return temperature respectively. �1 is the overall
length-specific coefficient of heat transfer (HTC)
between the pipe and the environment. �2 is the HTC
between the supply and return pipe. They are described
by equation (16) and (17). �1 =

�g + �i
(�g + �i)2 − �m2 (16)

�2 =
�m

(�g + �i)2 − �m2 (17)

The values of the ground thermal resistance �g, the
thermal resistance of insulation and casing �i, and the
thermal resistance associated to the interaction between
the two pipes �m, can be found in Bøhm (2000).

For the calculation of heat flows it is assumed that
the heat exchange between supply and return pipes is
very low, �1 ≫ �2. Hence, the right terms in equation
(14) and (15) are neglected, leading to a simpler
equation. Furthermore the heat conductivity of the
ground and isolation material are kept constant.

The undisturbed ground temperature, �g, at a depth �
at time � is calculated with the equation (18) (Kusuda
& Achenbach 1965). Here �� is the mean temperature
of the ground surface for the entire year, A the annual
amplitude of the ground surface temperature, �0 a time
shift that corresponds to the time at which the surface
ground temperature has its minimum value, �� − �, and � is the thermal diffusivity of the soil. Equation (18)
assumes a sinusoidal surface temperature with an
oscillation period of one year. For the simulation, the
time shift �0 is set to 180 days and the equation is
evaluated at the center of the pipe, � = 1 m. �g(�, �)

= �� + �e
�–�� �365d∙��

 cos� 2�
365d

��– �0–
�
2
�365d�� ��

(18)

The pipe model is parameterized with a length 781
m and an overall length-specific HTC �1 =

0.42 W/mK. The pipe is discretized in five elements.

3 Simulation

The modeling and simulations of the proposed system
are mainly conducted to study the interaction between
subsystems and towards a correct dimensioning of the
different subsystems.

3.1 System under simplified weather conditions

For the simulation, in order to facilitate understanding
of the system’s behavior, simplified boundary
conditions are used to create a seasonal behavior free
of daily variations. Hence, synthetic weather data was
defined with a sinus curve with a period of one year for
the ambient temperature and an amplitude of 25°C.
Solar irradiation was neglected.

The simulation has been run for a period of eight
years in Dymola using the solver DASSL with a
tolerance value of 10-5.

Like Figure 1, Figure 7 shows the fluctuating
thermal energy demand (negative values) and
production (positive values) of the different
subsystems.

At the beginning of the simulation the ATES has not
been charged yet. Hence the AHT cannot be switched
on and the district's thermal energy demand is covered
by the CHP and the boiler. Later, when the thermal
energy demand falls below CHP's thermal energy
production, the surplus energy is used to charge the
ATES. Thus, in the next heating period there is thermal
energy stored in the aquifer, which can be used via the
AHT until the fluid temperature from the aquifer
reaches a certain minimum value at which the
characteristic temperature difference ΔΔ� is smaller
than its selected minimum value (see 2.4).

The cycle repeats in the following years with the
AHT operating period as well as the amount of thermal
energy produced extending as shown in Table 2.

Coupled modeling of a District Heating System with Aquifer Thermal Energy Storage and Absorption Heat
Transformer

202 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118197

Figure 7. Thermal energy produced (positive values) and
used by the different subsystems: Absorption heat
transformer (AHT), combined heat and power plant
(CHP), boiler, aquifer thermal energy storage (ATES) and
district.

Table 2. AHT operation time in hours and energy
produced in MWh after each seasonal discharge cycle.

Discharge
cycle

AHT's operation
time in hours

AHT's Energy
produced in MWh

1 2477 4511
2 2554 4764
3 2568 4770
4 2580 4775
5 2588 4780
6 2596 4784
7 2602 4788

The AHT operation phase extends because the amount
of thermal energy in the warm well after each charge
cycle increases during the warm-up phase. The warm
well injection temperature is limited to �injmax = 60 °C
and the initial aquifer temperature is 20 °C, while the
AHT extracts heat with a rather small temperature
difference of 15 K. Hence, the stored heat is not
recovered completely and the cold well injection
temperature is much higher than the initial aquifer
temperature until the cold side is warmed up. It means
that during the warm-up phase, the extracted fluid from
the cold well and reinjected through the warm well into
the aquifer undergoes a smaller temperature. Hence
more mass is heated up to the injection temperature
than the previous charge cycle. Thus the thermal
energy stored into the warm well increases year after
year until the warm-up phase is over.

Figure 8 shows the ratio of recovered heat �out to
injected heat into the aquifer �in for different injection
temperatures �inj in the warm well, calculated as heat
recovery factor (HRF) by the following equation
(Kranz & Bartels 2009): ���(��) =

�out�in =
∫ min(0, �̇w) ∙ (ℎw − ℎc)
��0 ��∫ max(0, �̇w) ∙ (ℎw − ℎc)
��0 �� (19)

�̇w is the mass flow rate into the warm well, ℎw/c is
the specific fluid enthalpy at the warm/cold well head. �� is the end time of the i-th discharge cycle.

The HRF is between 0 and 1 if the warm well
temperature is always above cold well temperature and
the cold well injection temperature is above the initial
aquifer temperature.

Figure 8. Aquifer heat recovery factor (HRF) for
different injection temperatures ���� in the warm well.

As explained above, the HRF increases over time
because the cold side of the aquifer is warmed up in the
first cycles. This is a common behavior of an ATES
system. Furthermore, a higher injection temperature
yields higher recovery factors.

3.2 System under real weather conditions

Simulating the system with synthetic weather boundary
conditions, as described above, is vital for the
fundamental understanding of the functionality of the
described, complex system. However, to deduce
meaningful results for real-world applications, the
system model has to be simulated with actual weather
input.

Usually real weather data used as input for
simulations has larger gradients than synthetic,
sinusoid weather data, as well as hourly spacing of
samples, which requires interpolation.

Simulations with actual, measured weather data and
the described system model have been performed
successfully. Results will be presented in subsequent
publications.

4 Discussion

The simulation results with simplified boundary
conditions show that the stored energy cannot be used
completely to drive the AHT, which yields low values
of HRF. It is caused by a relatively high minimum
value of the driving temperature �1 over which the
AHT can operate. This minimum temperature is
obtained from equation (9) evaluated at ΔΔ� =ΔΔ�min = 3 °C and specific values of �0 (see Figure 9).

Figure 9 shows that in order to use low values of the
AHT’s driving temperature �1, temperatures �0 and �2
must be low as well. �0 is related to the ambient
temperature (see chapter 2.4), in this regard it is

-30

-20

-10

0

10

20

0 365 730 1095 1460 1825 2190 2555 2920

T
he

rm
al

 p
ow

er
 in

 M
W

Time in days

District Boiler ATES discharge
ATES charge CHP AHT Q₂

0%

5%

10%

15%

20%

1 2 3 4 5 6 7

H
R

F

Discharge cycle

Tinj = 57 °C Tinj = 60 °C Tinj = 66 °C

Session 3B: Building Energy Applications 2

DOI
10.3384/ecp15118197

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

203

interesting to favour the utilization of the AHT during
the coldest months and at night. The minimum value �2
is determined by the temperature range of the DHN. In
this regard, low temperature DHN are favourable.
Furthermore, the AHT should preheat the fluid before
the CHP brings it to the temperature required by the
DHN.

Figure 9. Minimum value of �1 in dependency of �2 for
two different values of �0 assuming ΔΔ�min = 3 °C and � = 1.1.

The simulation results also show that the cold side of
the aquifer needs several cycles to reach stable
conditions. In order to shorten this warm-up phase with
low HRF, it would be interesting to use a low cold well
injection temperature so that less energy is needed
warming up the cold side of the aquifer. Alternatively,
one could reduce the distance between cold and warm
well (Kranz et al. 2015). Modeling the interaction of
the two wells would require a more detailed 2D/3D
model for the aquifer.

Furthermore, the results show how a higher injection
temperature yields higher HRF. In this regard, it is
important to properly asses which is the upper
temperature limit for safe operation of the ATES.
Furthermore, if the warm well production temperature
is sufficiently high to be used for preheating the return
temperature of the DHN, this direct heat transfer is
recommended.

The results obtained with real weather data
highlights the importance of a correct sizing of the
CHP. An oversized CHP reduces and shorts the period
of times in which the AHT can work, causing the
system to recover just part of the stored energy in the
aquifer, thus obtaining low HRF. On the other hand,
too small CHP produces less surplus energy and can
make the utilization of an ATES system a nonsense.

5 Conclusions and Future Work

Modelica proved to be a proper framework for the
development of models for the different subsystems by
different research group as well as for their subsequent
integration in a more complex model thanks to the use
of common interfaces. Furthermore, Modelica and
DYMOLA proved suitable for simulation of complex
energy systems.

The simulation results show the expected thermal
behavior of the different subsystems.

Different factors limiting the efficiency of the ATES
system were pointed out. In this regard, a possibility to
increase the HRF of the ATES was proposed.

Furthermore, the benefit of seasonal storage is
shown as in the case study heat is recovered from the
ATES which would otherwise have been lost as waste
heat. Assessing the low values of the calculated HRF
one has to allow for the simplified system design with
simple boundary conditions, which has a lot of
potential for improvement.

We are working towards the modeling of a more
sophisticated system, including cooling demand, heat
demand at different temperature levels and its pertinent
distribution networks. Furthermore, we envisage
increasing the level of modeling detail by adding new
models for solar production, absorption heat pump type
I and an absorption chiller, a as well as a 2D/3D
aquifer model and more sophisticated control strategy.

Acknowledgements

The research described in this article is conducted
within the research project ATES: Aquifer Thermal
Energy Storage (Effizienz und Betriebssicherheit von
Energiesystemen mit saisonaler Energiespeicherung in
Aquiferen für Stadtquartiere) funded by the Federal
Ministry for Economic Affairs and Energy in Germany
(BMWi 03ESP409A/B/C).

Nomenclature � Annual temperature amplitude K
AHT Absorption Heat Transformer -
ATES Aquifer Thermal Energy Storage - � Duehring factor -
CHP Combined Heat and Power -
COP Coefficient Of Performance -
DHN District Heating Network - � Dispersion length m � Thickness of the aquifer m
HRF Heat Recovery Factor -
HTC Heat Transfer Coefficient -
HX Heat exchanger - �X Heat kWh �̇X Heat flow rate kW � Porosity

m3
m3 �g Ground’s thermal resistance
mK

W
 �i Insulation’s thermal resistance

mK

W
 �m Thermal resistance between pipes

mK

W
 �� Mean annual temperature K � Temperature K

15

25

35

45

55

40 50 60 70 80 90

T
₁ in °C

T₂ in °C

T₀ = 10 °C T₀ = 0 °C

Coupled modeling of a District Heating System with Aquifer Thermal Energy Storage and Absorption Heat
Transformer

204 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118197

�1
Overall length-specific HTC
between pipe and environment

W

mK
 �2

Overall length-specific HTC
between supply and return pipe

W

mK
 ��f /��s/���

Specific heat capacity of
fluid/rock/bulk

J

kgK
 ℎw/c Specific fluid enthalpy at the

warm/cold well head

J

kgK
 �if Radius of interface well/aquifer m �∞ Radius of outer aquifer boundary m � Slope parameter

W

K
 � Time s �0 Time shift d � Rock thermal conductivity

W

mK
 �eff Effective thermal conductivity

W

mK
 �̇ Mass flow rate into the well

kg

s
 � Darcy flux/velocity

m

s
 � Depth m � Thermal diffusivity

m2
d

ΔΔ� Characteristic temperature
difference

K

ΔΔ�min,X Loss parameter K �f/�s/�� Density of fluid/rock/bulk
kg

m3 �� End time of i-th discharge cycle s

Appendix – Discretized heat transfer equation

The equation by Bear & Bachmat (1990) was
formulated in polar coordinates and reduced to the
radial component to yield eq. (1), which describes the
conductive-convective transient radial heat flow in
porous media: ��� ∂T∂t

=
1� ��� �eff� ���� − �f���f ���� . (1)

Figure 10. Radially equidistant discretization of aquifer

In order to solve eq. (1) numerically, the radially
symmetric aquifer was subdivided in equidistant
sections as shown in Figure 10 and the equation was
discretized as follows.

First, it is integrated over the ring segment �
assuming constant �, �� and �f: � ����� ������ �� = � �1� ��� �eff� ���� –�f���f ������ �������

�̅���� ����� = 2π� � � ��� �eff� � ���� –�f����f ������+
�− �� .

By substituting �f��2�� = �̇ one obtains �̅���� ����� = ��2π��eff� ���� − �̇������−�+ .

Finally, the discretized equation is obtained using the
symmetric first order difference quotient and an
upstream velocity scheme for the convective term: �̅���� ����� = 2π��eff ��+

��+1–����+1– �� – �–
��– ��–1 ��– ��–1

�

– ṁ�� ����+1–�� if � < 0��–��–1 if � > 0
 ,��

where � = 2���, �eff and � are functions of � and
hence segment specific (index � has been omitted for
brevity). �̅, ��� and � may be varying or constant.

References

Albers, J., Kuehn, A., Petersen, S., & Ziegler, F.Control of
absorption chillers by insight: the characteristic
equiation. Krakau. 2008

Bear, J., & Bachmat, Y.Introduction to modeling of transport

phenomena in porous media, Vol. 4. Springer
Science & Business Media. 1990

Bøhm, B.On transient heat losses from buried district heating
pipes. International journal of energy research.
2000

Cudok, F., & Ziegler, F.Absorption heat converter and the
charakteristic equation method. International

Congress of Refrigeration. Yokohama, Japan. 2015

Dinçer, I., & Rosen, M. A.Thermal Energy Storage: Systems

and Applications. John Wiley & Sons, Ltd. 2002

Inderfurth, A., Nytsch-Geusen, C., & Ribas Tugores,
C.Parameter identification for low-order building
models using optimization strategies. 14th

international Conference of the Building

Performance Simulation Association (IBPSA).
Hyderabad, India. 2015

Kranz, S., & Bartels, J.Simulation and data based
identification of parameters affecting seasonal
ATES efficiency. Effstock 2009, pp. 1–8.
Stockholm, Sweden. 2009

Kranz, S., Bloecher, G., & Saadat, A.Improving Aquifer
Thermal Energy Storage Efficiency. World

Goethermal Congress. 2015

Krimmling, J.Energieefiziente Nahwärmesysteme.
Fraunhofer IRB. 2011

r∞

rif

r2

r3
r4

outer boundary

of well V2

φ

r

Tif

T2 T3 T4 ………

�2+
�2−

u T∞

λ+ λ-

Session 3B: Building Energy Applications 2

DOI
10.3384/ecp15118197

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

205

Kusuda, T., & Achenbach, P. R.Earth temperature and

thermal diffusivity at selected stations in the united

states. National Bureau of Standards Gaithersburg
MD. 1965

Larsen, H. V., Bøhm, B., & Wigbels, M.A comparison of
aggregated models for simulation and operational
optimisation of district heating networks. Energy

Conversion & Management. 2003

Larsen, H. V., Pálsson, H., Bøhm, B., & Ravn, H.
F.Aggregated Dynamic simulation model of district
heating networks. Energy Conversion &

Management. 2001

Modelica-Association.Modelica Standard Library. 2014

Nytsch-Geusen, C. Modelica Library Building Systems.
2014

Puig-Arnavat, M., L—pez-Villada, J., Bruno, J. C., &
Coronas, A.Analysis and parameter identification
for characteristic equations of single- and double-
effect absorption chillers byÊmeans of
multivariable regression. International Journal of

Refrigeration, 33/1: 70–78. 2010 . DOI:
http://dx.doi.org/10.1016/j.ijrefrig.2009.08.005

Sanner, B., Kabus, F., Seibt, P., & Bartels, J.Underground
Thermal Energy Storage for the German Parliament
in Berlin, System Concept and Operational
Experiences. World Geothermal Congress 2005.
Antalya, Turkey. 2005

Schmidt, T., Kabus, F., & Müller-Steinhagen, H.The Central
Solar HHeati PLant with Aquifer Thermal Energy
Store in Rostock, Germany. TERRASTOCK.
Stuttgart, Germany. 2000

Wetter, M., & Treeck, C. van.IEA EBC Annex 60, New
generation computational tools for building and
community energy systems based on the Modelica
and Functional Mockup Interface standards. 2014

Coupled modeling of a District Heating System with Aquifer Thermal Energy Storage and Absorption Heat
Transformer

206 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118197

Energy-Efficient Design of a Research Greenhouse with Modelica

Dipl.-Ing. Torsten Schwan1 Dipl.-Ing. René Unger1 B.A. Jörg Pipiorke2
1EA Systems Dresden GmbH, Germany, {torsten.schwan,rene.unger}@ea-energie.de

2ITI GmbH, Germany, pipiorke@itisim.com

Abstract

Greenhouses, especially for research applications, have
high requirements on indoor climate control. The
technical systems for heating, cooling, and moistening
are more complex than in typical dwelling houses or
office blocks and are highly dependent on local
weather conditions. Increasing the energy efficiency
and integrating renewable power into these systems is a
sophisticated engineering task which requires extensive
investigation.

This paper describes a combined approach to model
and simulate building operation and HVAC system
behavior of a research greenhouse with Modelica. This
includes the presentation of some important modelling
paradigms as well as system concept validation with
some interesting simulation results.

Keywords: Green Building, Building Simulation,

Solar Cooling, Greenhouse Design

1 Introduction

Greenhouses are used to cultivate a great variety of
plants from all over the world during the whole year.
Therefore indoor temperature and humidity have to be
controlled at a certain plant-specific level regardless of
environmental conditions. Furthermore, the cultivation
of plants requires a sufficient amount of light. This
way, greenhouses are built with excessive glass
surfaces to optimally use solar radiation for the
required lighting. However, buildings with large glass
surfaces often overheat especially during summer time.
To ensure a sufficient indoor temperature level even in
times of high solar input and without losing humidity,
this building type requires huge amounts of cooling
energy which has to be provided by the building
internal HVAC (i.e. Heating, Ventilation, Air
Conditioning) system.

An optimal HVAC system design for greenhouses
requires extensive analysis. Besides building physics
(e.g. heat losses through walls and windows,
ventilation) required plant-specific indoor temperature
and humidity as well as solar radiation level highly
affect heating and cooling system requirements.
Furthermore, increasing energy prizes and today’s
demands for environmental protection require
alternative system solutions. To reduce running costs
as well as ecological footprint a suitable combination

of local renewable energy production, highly efficient
building materials, and intelligent control algorithms is
needed.

A multi-domain system simulation helps to consider
all these aspects in one evaluation and optimization
framework. This paper describes how SimulationX and
the Modelica-based Green Building library were used
to analyze, to evaluate, and to validate an innovative
approach of greenhouse HVAC system design.
Because main overall energy consumption of a
greenhouse is used for cooling, the presented work
mainly considers cooling energy system design.

The key concept is the usage of solar heat for indoor
cooling, since the cooling system is mostly needed
when it is sunny. Therefore, an absorption cooling
machine supplied by two different types of solar
thermal collectors and district heating is used to
generate the required cooling energy.

The simulation approach is basically divided into
two parts. The initial simulation of building physics
and operation is followed by an accurate simulation of
HVAC system behavior including optimized system
control algorithms.

This paper gives an overview about some interesting
aspects of building operation and HVAC system
modeling. It presents a short description of the
developed greenhouse building physics model
including all inner loads, like assimilation lighting and
humidification, as well as required control algorithms
for lighting, shading and temperature control. Special
emphasis is put on the identification and modelling of
suitable parameters representing plant growth which is
necessary to model indoor humidity behavior.

Furthermore, the contribution presents how to model
the designed HVAC system with Green Building
library components. Additionally necessary extensions
of library components are presented. Finally, the paper
compares some interesting results regarding parameter
variation and adapted system configurations.

2 Building and HVAC System Concept

The planned greenhouse will be built in the city
center of Leipzig, a major city in Eastern Germany. As
a center of biological research, scientists and students
of University of Leipzig will use it to identify and
evaluate effects of global warming on indigenous

DOI
10.3384/ecp15118207

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

207

vegetation, and to perform further research-relevant
experiments.

The planned building basically consists of a solid
social building with basement and first floor as well as
a glass-covered greenhouse section with an overall
basic area of about 1.000 m2. The greenhouse is
divided into twelve cubicles to cultivate twelve
different plant species at the same time. Temperature
and humidity control thus require individual settings in
each cubicle.

Planner’s basic idea was to reduce the overall
ecological footprint about 50% in comparison to a
conventional greenhouse concept. This way, two
different types of the building had to be compared
regarding heat, cold and electricity demand.

Both building concepts, reference and alternative,
mainly differ regarding greenhouse section

construction as well as planned HVAC system.
Basically, the alternative greenhouse section
construction substitutes single with insulating glazing.
Furthermore, each glass surface in each cubicle can be
shaded individually by a two-part shading system.

Temperature and humidity control is supported by a
mechanical ventilation system using automatic top-
hung windows in the roof ridge.

The planned HVAC system is divided into heating
and cooling systems. Instead of a conventional oil-fired
condensing boiler the alternative building uses locally
available district heating as heat supply. This is a
comparatively simple and energy-efficient but not that
innovative solution.

Real innovation is planned regarding cooling system
design. The reference building uses a chilled water unit
cascade with dry chillers as cold supply. Opposite to

Social building

Greenhouse

Section

Figure 1: Floor plan of greenhouse section and social building (GEFOMA, 2015)

Energy-Efficient Design of a Research Greenhouse with Modelica

208 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118207

that, the alternative cooling system is based on an
absorption chiller. This uses solar thermal collectors
for heat source with district heating as backup.
Furthermore, a small cascade of chilled water units
provides peak cooling power in times of higher cooling
demand.

Because of low required recooling temperatures
(maximum 32°C even at ambient temperatures of
35°C) the absorption chiller uses a hybrid cooler as
heat exchanger. Hybrid chillers provide lower
recooling temperatures by additional cooling with
latent heat of water evaporation.

As an extended research topic two different types of
solar thermal collectors, direct flow and heat pipe, are
integrated in the presented HVAC system concept. The
collector surface area is evenly distributed between the
two systems. Both collector systems have advantages
and disadvantages at different operation points. This
way, simulated solar gains will be compared to later
measurements in a subsequent monitoring campaign
after building completion.

Furthermore, greenhouses often require cooling
energy even when ambient temperature is
comparatively low, e.g. sunny winter days. In this case,
dry and hybrid chillers can directly provide cooling
energy without further use of electricity (Chilled Water
Units) or heat (absorption chiller), i.e. free cooling.
Because hybrid chillers produce lower recooling
temperatures at same ambient temperature level,
presented HVAC system concept prefers this system to
provide free cooling. This way, free cooling is possible

to 10°C ambient temperature and 55% relative
humidity.

3 Building Operation

Greenhouses widely differ from normal buildings.
Besides excessive glass surfaces and extended control
algorithms for window shading, heating and ventilation
the cultivation of different plant species requires
specific levels of indoor temperature and humidity.
This way, building simulation has to put special
emphasis on indoor climate. The calculation of inner
heat gains by persons or electric components is not
suitable anymore. Furthermore, greenhouses mainly
require cooling energy. Cooling load calculation is a
complex task by itself (VDI, 2007).

Basically, characteristics of cultivated plant species
have major influences on resulting building behavior.
They are mainly responsible for all relevant
hygrothermal requirements in each cubicle, like indoor
temperature, lighting, and humidity.

To include these major influencing characteristics
into the simulation, a set of suitable plant
characteristics have to be identified. The basic idea is
to find one or two plant species with an average
behavior of plants based on the following parameters:
 Indoor temperature (day and night),
 Relative humidity,
 Light intensity and illumination duration,
 Duration of measurement, and
 Plant transpiration.

Chilled Water
Units

Hybrid Chiller Dry Chiller

Solar Thermal Collectors

District Heat Heat Storage

Consumption

Absorption

Chiller

Cold

Storage

Figure 2: HVAC system concept (GEFOMA, 2015)

Session 3B: Building Energy Applications 2

DOI
10.3384/ecp15118207

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

209

These characteristics were scrutinized together with
the specialists of University of Leipzig, the desired
building operator. This way, two different kinds of
parameter sets could be identified:
1. Global climate change on root characteristics:

a. 15°C/18°C by day, 8°C by night
b. 50% relative humidity
c. 1000 lx light intensity during 16h per

day
d. 4 months measurement

2. Underground and aboveground germination:
a. 22°C by day, 15°C by night
b. 60% relative humidity
c. 10.000 lx light intensity during 16h

per day
d. 3 months measurement

These characteristics adequately describe building
requirements regarding lighting and indoor
temperature. Apparently, the University of Leipzig will
mainly use the greenhouse to cultivate indigenous plant
species. That way, cooling energy demand will be
comparatively high during summer time.

Together with indoor temperature, the relative
humidity describes the hygrothermal reference
behavior in each cubicle. However, the definition of a
desired humidity set point is not sufficient to define
relevant requirements to ventilation and humidification
system. The transpiration of plants as a major influence
on moisture is missing.

Figure 3: Correlation between light intensity and

transpiration for a specific plant species (Bertram et. al.,
2004)

To model the transpiration of plants the simple
correlation between light intensity and transpiration
was used (c.f. Figure 3). This way, values between
0.028 and 0.4378

���2� / ��2 could be identified for

different relevant plant species as additional model
input parameters.

4 Green Building Library

The building and HVAC system were modeled
using SimulationX and the Green Building library.
This library was developed by EA Systems as a
versatile simulation environment for renewable energy

systems and energy management design (c.f. Schwan
et. al., 2012). By adapting an approach widely used
in the automotive industry, several elements for the
production of renewable energy and heating systems
were created as well as storages and electrical or
thermal consumers. Most of the models represent
real world objects like vehicles, electrical inverters
or valves. Granularity and complexity of each
element are thus in the same range while preserving
a flexible yet easy modeling process (i.e. physical as
well as phenomenological models). The modeling
focus lies on the interactive behavior of different
energy system components with varying complexity
in the context of building energy supply, either
thermal or electrical (i.e. electrical systems modeled
using RMS values). Although the building itself can
be modeled as a complex thermal and electrical
energy consumer by using a number of thermal
zones, a detailed thermal building simulation for
different thermal conditions in one room, for
example, requires a more specialized tool, like
EnergyPlus (Green Building, for example, uses
constant average temperatures in thermal zones).

With its specific focus on a wide range of energy
system components, Green Building library
significantly distinguish from other well-arranged
Modelica Building libraries, like Modelica Buildings
library (Wetter, 2009) which are more intended to
accurately model building physics behavior. This
way, Green Building became the tool of choice
because this project’s main aim was to compare
different types of HVAC systems with less accuracy
requirements on thermal building behavior.

5 Building and HVAC System Modeling

The developed basic greenhouse building model
consists of 38 thermal zones, each represented by one
Building Zone model of the Green Building library.
These thermal zones individually represent each room
in the planned greenhouse, 7 zones for the basement
and 16 zones for the first floor of the social building as
well as 15 zones for the glass-covered greenhouse
section (12 cubicles, 3 corridors).

However, the basic Green Building models are
optimized for calculation speed, providing a simplified
set of equations to describe simple thermal behavior in
a building zone (e.g. solar gains, ventilation losses,
transmission losses through walls and windows, etc.).
Therefore a hygrothermal building zone model was
developed based on this basic model component.

The new model includes lighting and shading
control depending on solar radiation as well as
ventilation control depending on indoor humidity
conditions. Furthermore, physical effects representing
plant-specific hygrothermal behavior were added as
well:

Energy-Efficient Design of a Research Greenhouse with Modelica

210 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118207

 Evaporation heat of irrigation and humidification
 Condensation at cubicle walls and ceilings
 Transpiration of plants
 Ingress/input of moisture via persons

To compare both building concepts, the reference
and the alternative building, two different building
models were developed. Figure 4 shows the complete
building model of the alternative building including all
hygrothermal zones, weather conditions and grid as
well as ventilation, lighting and shading control.

Each model additionally includes time schedules
representing presence of research members in each
zone (normally during the week between 8 a.m. and 6
p.m.) as well as electrical energy consumption via
different relevant system components (e.g.
refrigerators, server technology, autoclave, etc.).

The reference building model only uses additional
lighting and ventilation control to keep required indoor
temperature and humidity levels and to fulfill plant-
specific lighting demand in each cubicle.

Furthermore, the alternative building model includes
shading control for both planned energy screens. The
first screen decreases solar irradiation in times of high
indoor temperatures and second screen reduces heat
losses via glass surfaces during night in times of low
outdoor temperatures.

Both models only consider building physics,
operation and hygrothermal behavior. There is no
directly connected HVAC system model. However, the
resulting time transient characteristics for heat, cold
and electrical energy demand can further be used as
input data sets for detailed HVAC systems simulation.

A direct link to the HVAC system models would be
possible as well. However, the building model already

runs about 24h to simulate one year because of the
required high accuracy regarding zoning, input data
and analyzed physical effects (hygrothermal behavior).
Because of relations between temperature control in
each zone and available heat/cold from the HVAC
system, linked models would increase simulation time
to non-acceptable values.

This way, the HVAC system models are modeled
separately. These models are again divided into heating
and cooling system models. This is possible because
building system simulation provides independent
results for heat and cold demand. This approach further
reduces simulation time.

Figure 5 shows the developed HVAC system model
for cooling supply of the alternative building. Because
of its structure, it can easily be compared to the
original planner’s system concept in Figure 2. All
relevant components are individually modeled with
existing or adapted Green Building model components.

However, Green Building library mainly considers
heating system (e.g. Heat Pump, CHP) and electric
components (e.g. batteries and eVehicles) as well as
renewables (e.g. photovoltaics, solar thermal
collectors). This way, some additional components
based on Green Building modelling paradigms
(Schwan et. al., 2011) had to be developed.

The main component of the cooling system concept
is an absorption chiller. This component uses heat in
internal chemical processes to produce cooling energy.
This process is periodically reversed using external
heat. Compared to conventional cooling systems, like
chilled water units, the required amount of electricity
can be significantly reduced. The absorption chiller
model describes physical behavior based on a set of
suitable pre-calculated operating points. This way full

Figure 4: Building model of alternative greenhouse concept

BaseŵeŶt – SoĐial BuildiŶg

First Floor – SoĐial BuildiŶg

CuďiĐles – GreeŶhouse

Session 3B: Building Energy Applications 2

DOI
10.3384/ecp15118207

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

211

year simulations are possible, because the model runs
very fast. Internal processes are transferred into a
phenomenological behavior which is described as a
black-box system.

Figure 6: Sample characteristics of absorption chiller

(Yazaki, 2015)
Basically, the new absorption chiller model has

three interfaces to other system components, heating
power input, recooling power output, and cooling
power output. Each interface is divided into flow and
return pipe with separate temperature levels but equal
medium volume flow rate. The overall system behavior

is simulated depending on the temperature difference
between each flow and return as well as externally
controlled volume flows. Heating power input and
cooling power output are defined by linearly
interpolated Modelica CombiTimeTables. These tables
are directly filled with OEM-specific system data, e.g.
cooling power characteristics shown in Figure 6.

This way, system validation was quite simple
because internal processes were neglected and
alternatively substituted by already validated data sheet
values. A short set of simulation runs with constant
input data sets (e.g. flow and return temperatures)
proved developed model approach and showed the
right system behavior at different characteristic
operating points.

Another new model represents the
phenomenological behavior of chilled water units.
These system components produce cooling energy via
external cooling and a certain amount of electrical
energy. They mainly work as inverted heat pumps.
This way, the newly developed chilled water unit
model basically uses already existing Green Building
Heat Pump functionality. However, the corresponding
controllers are redesigned to use cold instead of heat
demand as reference control value. Basic model layout

EŶviroŶŵeŶt
Dry Chiller Ϯ

Dry Chiller ϭ

Chilled Water UŶit Ϯ

Chilled Water UŶit ϭ

Hyďrid Chiller

 Free CooliŶg

AďsorptioŶ Chiller
Cold

Storage
CooliŶg

Load

DistriĐt HeatiŶg Heat Storage

Solar ColleĐtors

Figure 5: HVAC system model of alternative building (only cooling supply)

Energy-Efficient Design of a Research Greenhouse with Modelica

212 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118207

and required tests are in accordance with previously
presented absorption chiller model.

Both cooling system components require external
coolers. Dry coolers only heat ambient air with heat
from the cooling medium. Therefore, an external set of
fans provide a specific amount of air to keep recooling
temperature at a certain level.

Hybrid coolers additionally use evaporation heat of
water to further cool down the cooling medium. They
are especially needed in combination with absorption
chillers because these components only work
efficiently up to a maximum recooling temperature of
32°C. Otherwise, absorption chillers would switch off
just in times of highest cooling demand.

The overall HVAC system model in Figure 5
includes both the physical system behavior of relevant
cooling system components as well as associated
control algorithms:
 Priority control of solar heat supply for the

absorption chiller (solar collector temperature
greater than 78°C)

 Flow temperature control via district heating
supply (absorption chiller temperature greater 75°C
and smaller 95°C)

 Priority control of the cooling system (base load
via the absorption chiller, peak load via the chilled
water units)

 Integration of free cooling in times of low outdoor
temperature via hybrid chiller

6 Simulation Results

The presented HVAC system design was developed
using existing theoretical and empirical knowledge of
greenhouse layout. The basic idea of the alternative
building concept was to reduce overall energy
consumption for heating and cooling about 50%
regarding the reference building concept.

However, solar aided cooling systems cannot be
designed and calculated without adequate simulation
models. The basic task of the system simulation was to
validate both building concepts regarding intended
energy saving potentials.

But before developed simulation models could be
used to validate actual system concept, the models had
to be validated regarding sufficient calculation results
and relevant standards respectively tools. Therefore,
the planner’s original calculation results were used.
The simulation results of greenhouse specific
HORTEX 4.1 simulation tool (i.e. based on DIN EN
ISO 13790 and DIN EN ISO 13789) showed an overall
heating load of 287 kW for the reference and 196 kW
for the alternative construction type. In comparison to
that the simulation results of the developed Green
Building models have been nearly at the same level
(reference: 273 - 283 kW, alternative: 194 - 201 kW
depending on chosen operation strategy, c.f. Table 1

and Figure 7). This way, developed models can be used
for further validation analysis.

The first simulation results only describe the effects
of different building operation strategies regarding
overall heat and cold demand. Basically, three different
operation strategies were analyzed with both building
models (c.f. Figure 4):
 V1: All-year high cooling requirements
 V2: Reduced cooling requirements during summer

time
 V3: All-year reduced cooling requirements

(maximum indoor cubicle temperature 25°C)
All three strategies mainly refer to cooling

requirements of the twelve cubicles. The presented
temperature levels (c.f. section 3) are always set as
minimum temperature level for heating system control.
But cooling system control can be different.

Table 1: Comparison of heat and cold demand
Variant Heat Demand

[MWh/a]
Cold Demand
[MWh/a]

V1 Reference 541.9 309.5
V1 Alternative 364.1 223.6
savings 32.8 % 27.8 %

V2 Reference 532.7 140.0
V2 Alternative 355.0 106.8
savings 33.4 % 23.7 %

V3 Reference 522.7 85.5
V3 Alternative 335.7 34.0
savings 35.8 % 60.2 %

Table 1 shows a short comparison between different

simulation results of heat and cold demand for all three
operation strategies and both building types as well as
resulting saving potentials.

Because all three strategies do not affect the heating
system control strategy, the resulting heat demand for
all strategies is about the same. Small differences are
caused by the inner heat storage capacity of the
building.

Furthermore, the simulation results show that
modern greenhouse glazing as well as extended
shading and lighting control algorithms are not
sufficient regarding desired energy savings.

However, different cooling system control strategies
significantly affect the greenhouse’s overall cooling
demand. Table 1 shows that the higher cooling
requirements reduce the energy saving potential of
modern construction and control systems. If cooling
demand is mainly caused by outer conditions (e.g.
solar radiation, high outdoor temperatures – V3), these
measures can reduce cooling demand about 60%. If
cooling energy is mainly used to provide cold in the
evening when the cubicles have to be cooled down (c.f.
section 3), saving potential is significantly lower.

Session 3B: Building Energy Applications 2

DOI
10.3384/ecp15118207

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

213

Figure 7: Heating load of alternative building and cooling

strategy V1
Figure 7 and Figure 8 show the heating and cooling

load curves with 15 minutes resolution which were
calculated in the building simulation and are used as
input data sets in following HVAC system simulation.

Figure 8: Cooling load of alternative building and cooling

strategy V1
They are additionally used to proof HVAC system

concept regarding individual components’
requirements. Both characteristics represent worst-case
scenarios for HVAC system operation, i.e. maximum
heating and cooling load. Because the heat supply is
covered by district heating, the required 200 kW
heating power can easily be provided using a correctly
dimensioned heat exchanger.

However, the maximum cooling power of HVAC
system is mainly based on overall system
characteristics. This way, the sum of the installed
cooling power at suitable operating points of each
component has to fulfill the total cooling power
requirements in an adequate way. The overall installed
cooling power in a worst-case-operating point (high
recooling temperatures, low heating temperatures for
absorption chiller) is about 215 kW. Figure 8 indeed
shows a maximum cooling power demand of about 270
kW. However, this maximum cooling power is only
required two or three times in a year and only for a few
hours. Together with planned building internal cooling
storage of 10 m3, the existing HVAC system concept
should be able to fit all cooling requirements. Further
system extensions are not necessary.

The final results of the simulations show that the
alternative heating system concept can reduce overall
ecological footprint about 68% in comparison to the
reference system. This way 580 MWh oil-based
heating will be replaced by 363 MWh from the district
heating. Additionally, the specific carbon dioxide
emissions are only half compared to the oil heating
because the district heating system is heated by
cogeneration power plants.

Evaluation of cooling system simulation requires
more extensive analysis. The existing cooling system
concept is divided into two parts, a high temperature
(heat) part and a low temperature (cooling) part. Both
parts are mainly connected via an absorption chiller.

The heat supply for absorption chiller is based on
two different types of solar thermal collectors with an
overall gross collector area of 194.7 m2. Both
collectors provide about 65 MWh heat over the whole
year (55% direct flow and 45% heat pipe collectors).
The difference between the collectors results from
different efficiency characteristics and a comparatively
high minimum flow temperature of 75°C.

The resultant solar collector utilization rate of 335
kWh/m2 is quite good as normal rates are between 200
and 600 kWh/m2. On the one hand, the required high
flow temperatures significantly reduce collector
efficiency. On the other hand the cooling system’s heat
demand perfectly matches solar heat availability.

Both solar collectors provide heat to the connected
10 m3 heat storage. Figure 9 shows resultant heat
storage temperatures over the whole year. Because of
the comparatively low heat demand of the absorption
chiller during the winter time heat storage temperatures
partly exceed maximum temperatures of 95°C. During
these sunny winter days, solar collectors are shut
down. This significantly reduces overall solar collector
efficiency. Opposite to that solar heat is completely
used by absorption chiller during summer time.

Figure 9: Simulated heat storage temperatures

Furthermore, Figure 9 shows a comparatively low

temperature spread between bottom and top level of the
storage tank. This behavior is caused by the storage
tank mounted horizontally in the social building
basement due to limited ceiling height of 3m. The low
temperature spread further reduces solar collector and

Energy-Efficient Design of a Research Greenhouse with Modelica

214 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118207

absorption chiller efficiency because of the high return
temperatures and high required volume flow rates. An
alternative storage configuration with several cascaded
storage tanks will help to solve this problem.

Figure 10: Simulated cooling storage temperature

The evaluated cooling system can provide enough

cooling energy to keep cooling storage temperature at
an adequate level (below 20°C) over the whole year. In
cold winter times free cooling provides almost all
cooling energy.

The basic cooling energy demand is supplied by the
absorption chiller over the whole year. In times of
higher cooling demand both peak power chilled water
units are successively switched-on. Further cooling
energy peaks are compensated by a 10 m3 sized
cooling storage.

Again, the temperature spread in cooling storage is
comparatively low. This is for the same reason as for
the heat storage, horizontal mounting. Again, a cascade
solution can significantly improve that situation.

Finally, the simulation results were used to validate
desired saving potentials of the alternative system
concept versus the reference.
 Heat:

o Solar collectors: 65 MWh/a
o District heating: 145 MWh/a
o Absorption chiller: 208 MWh/a

 Cold:
o Free Cooling: 19 MWh/a
o Absorption chiller: 159 MWh/a
o CWU 1: 41 MWh/a
o CWU 2: 5 MWh/a

 Electrical energy:
o Absorption chiller: 0.8 MWh/a
o Hybrid cooler: 6 MWh/a
o CWU 1 + dry cooler: 13 MWh/a
o CWU 2 + dry cooler: 2 MWh/a

A priority control algorithm ensures that solar

thermal collectors are mainly used to provide heat to
the absorption chiller. However, the major heat
demand is covered by the district heating because of

the high regeneration temperature requirements of the
chiller.

The alternative HVAC system concept mainly
replaces high electrical energy consumption of the
reference system (chilled water units) with a higher
district heating consumption supported by solar energy.
However, simulation results show an overall reduction
of ecological footprint of about 51% for the alternative
concept versus the reference. This way, the alternative
system concept fulfills the desired energy saving
potential.

7 System Optimization

The basic task of system simulation was to validate the
building planner’s concept of 50% reduction of
ecological footprint. However, extensive analysis of
the model and the results made further optimizations
possible.

One of these system optimization approaches
directly affects overall solar thermal collector
efficiency. Figure 9 shows that heat storage
temperature exceeds the maximum level of 95°C
mainly in winter time. This reduces solar collector
efficiency because the system has to be shut down.
However, more heat is still needed inside the building
during that time periods, e.g. to heat social building.
The main idea of optimization is to use solar thermal
collectors for both, heating and cooling.

To test the potential, the required heating system
components were added to the cooling system.
Simulation results show that solar collector gains
increase about 27% in the described system
configuration. That way, the overall collector
utilization rate can be increased from 335 kWh/m2 to
432 kWh/m2, a tremendous improvement of system
efficiency.

However, extended use of solar energy also for
heating reduces cooling system performance because
the additionally required heat is provided by district
heating. Ecological footprint of cooling system is
reduced to 48.5% in comparison to the reference
concept. The overall energy saving potential thus only
increases from 62.7% to 64% (70% for heating).

8 Conclusion

This paper describes an innovative approach to
integrate building and HVAC system simulation with
Modelica in ordinary building planning process.

As assistance to existing design processes, the
simulation results help to validate the planners’ ideas.
Furthermore, modeling and simulation knowledge can
be used to provide further system optimization.

Designing complex HVAC systems with an
increasing share of renewables and storage systems is
no viable without any kind of system simulation. With
its interdisciplinary background and easy-to-
understand modeling approach, Modelica can help to

Session 3B: Building Energy Applications 2

DOI
10.3384/ecp15118207

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

215

improve future building planning process. The
efficiency of this simulation approach makes it more
and more suitable even for smaller sized projects.

For building simulation Modelica’s most important
benefits are the wide range of suitable model libraries,
its capability in combining different physical domains
in one mathematical model description, and
nevertheless the easy-to-understand modelling
paradigms. This way, Modelica can help to close the
gap between no more suitable static building
calculation and numerical system simulation in
building systems engineering.

Acknowledgements

The presented modeling and simulation results were
developed in closed co-operation with GEFOMA
GmbH Großbeeren and Saxonian Real Estate and
Construction Management, Public Company.

References

T. Schwan. Monitoring Concept and Validation of HVAC
System Concept of Heat and Cold Supply for an
Innovative Research Greenhouse in Leipzig. Project
report, 2015.

GEFOMA Großbeeren GmbH. IDIV greenhouse
construction in Leipzig. Planning documents, 2015.

VDI – Verein Deutscher Ingenieure. Cooling Load
Calculation of Air-conditioned Rooms. VDI 2078
standard, 2007.

A. Bertram, D. Wilms, A. Bettig, R. Rehrmann. Increase of
energy-efficiency of energy screens. Final report,
University of Applied Sciences Osnabrück, 2004.

T. Schwan, R. Unger, B. Bäker, B. Mikoleit, C. Kehrer.
Optimization of local renewable energy systems using
automotive simulation approaches. 12th Conference of
International Building Performance Simulation
Association, Sydney, 2011.

T. Schwan, R. Unger, B. Bäker, B. Mikoleit, C. Kehrer:
Optimization-Tool for local renewable energy usage in the
connected system: Building-eMobility; 8th International
Modelica Conference, Dresden, 2011.

T. Schwan, R. Unger, B. Bäker, B. Mikoleit, C. Kehrer, T.
Rodemann: "Green Building" - Modelling renewable
building energy systems and electric mobility concepts
using Modelica, 9th International Modelica Conference,
Munich, 2012.

T. Schwan, R. Unger, C. Lerche, C. Kehrer: Model-Based
Design of Integrative Energy Concepts for Building
Quarters using Modelica. 10th International Modelica
Conference, Lund, 2014.

T. Schwan, R. Unger: AUTOmoble EnergieArchitektur –
Final research project report. Dresden University of
Technology, Dresden, 2013.

M. Wetter: A Modelica-based model library for building
energy and control systems, 11th International IBPSA
Conference, Glasgow, 2009.

Yazaki: Data sheet of absorption chiller machine WFC-SC
30. Data sheet, 2015.

Energy-Efficient Design of a Research Greenhouse with Modelica

216 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118207

Production Planning for Distributed District Heating Networks

with JModelica.org

Håkan Runvik1 Per-Ola Larsson1 Stéphane Velut1 Jonas Funquist2 Markus Bohlin3 Andreas
Nilsson3 Sara Modarrez Razavi3

1Modelon AB, SE-223 70 Lund, Sweden, {hakan.runvik,per-
ola.larsson,stephane.velut}@modelon.com

2 Vattenfall R&D, 169 92 Stockholm, Sweden, jonas.funkquist@vattenfall.com
3SICS Swedish ICT, SE-164 29 Kista, Sweden, markus.bohlin@sics.se

Abstract

The short term production planning optimization
problem for a district heating system is solved in two
steps by integrating physics-based models into the
standard approach. In the first step the unit
commitment problem (UCP) is solved using mixed
integer linear models and standard mixed-integer
solvers. In the second step the economic dispatch
problem is solved, utilizing the unit statuses from the
UCP. This step involves dynamic optimization of non-
linear physics-based models. Both optimizations aim at
maximizing the production profit.

The modeling has focused on distributed
consumption and production. Optimization results
show that modeling of the district heating net impacts
the production planning in several ways, with results
such as reduction of production peaks and delay of
costly unit start-ups.

The physics-based modeling and dynamic
optimization techniques provide a flexible way to
formulate the optimization problem and include
constraints of physically important variables such as
supply temperature, pressures and mass flows.

Keywords: district heating, physical modeling,

distribution, optimization

1 Introduction

1.1 Background

The goal of production planning is to determine the
most profitable scheduling of the different production
units in a network, without violating operational
constraints. It can be viewed as an optimization
problem, which contains both continuous and discrete
variables.

The operational statuses (on or off) of the different
production units form the discrete decision variables of
the optimization problem. The continuous decision
variables are production unit loads and pump speeds.

The formulation also includes non-linear parts, such
as turbine characteristics and steam properties. This

results in an optimization problem referred to as a
mixed integer non-linear problem (MINLP).
Currently, there are no known algorithms with
predictable and robust performance for solving this
kind of problem.

The predicted customer heat load during the
optimization interval is the main input to the
production planning problem. The prediction is often
generated from weather forecasts and cannot be known
exactly in advance. In this paper manually generated
predictions are used, mostly assuming perfect
predictions, but formulations where uncertainties are
included are also investigated. The implemented
optimization model is based on the units and network
distribution of the Uppsala district heating network,
with special emphasis on the modeling of the
cogeneration plant KVV.

The standard method to circumvent the difficulties
of solving a MINLP problem in a production planning
formulation is to simplify the modeling considerably.
By linearizing plant models and reducing the network
model to only contain energy flows, a linear
optimization formulation is obtained instead. This kind
of problem is called a Mixed Integer Linear Problem
(MILP) and can be solved using standard techniques.
Previous work based on linear plant models include
(Arroyo and Conejo, 2004), where a method to
formulate start and stop trajectories is presented and
(Rolfsman, 2004), where a heat storage strategy based
on the variations in electricity price is presented. In
(Rong, et al, 2008) an improved algorithm for the unit
commitment problem is presented.

1.2 Proposed Approach

The separation of the optimization problem into the
Unit Commitment Problem (UCP) and the Economic
Dispatch Problem (EDP) part presents an alternative
solution to the problem of creating a robust
optimization formulation of the production planning
problem. The two optimization problems are solved in
series, a method previously implemented in (Velut et

DOI
10.3384/ecp15118217

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

217

al, 2013). The modeling and optimization efforts are
conducted in the following manner:
 UCP: A linear optimization formulation is obtained

by approximating the district heating network
using piecewise linear models. The problem is
solved using a MILP solver with the status signal
for each production unit being the main result.

 EDP: A representation of the district heating
network is created using physical modeling.
Smoothened versions of the status signals from the
UCP are implemented in the model, so that only
continuous variables are present in the
optimization formulation. By solving the
optimization problem, the load for each unit is
decided.

There are several benefits with including physical
modeling in the optimization formulation. The
optimization model becomes highly accurate when
physical laws such as mass and energy balances are
used to describe the units of the network. It also makes
it possible to optimize physically relevant variables
that effect the plant economics such as supply
temperatures and mass flows. The possibility to impose
constraints on these variables, based on the physical
and operational limitations of the real system is another
advantage.

In order to solve the EDP, the optimization problem
is discretized into a Non-Linear Programming (NLP)
problem using the so-called collocation method
(Magnusson, 2012). Different solvers for NLP
problems exist, in this work the open-source solver
IPOPT (Interior Point Optimizer), see (Wächter and
Biegler, 2006), was used. In previous projects the
authors have used this method for dynamic
optimization of a carbon capture plant (Åkesson et al,

2011) and, more notably, for short-term production
planning of district heating (Velut et al, 2013).

2 Modeling

2.1 Uppsala District Heating Network

The production units and network distribution of the
Uppsala district heating network were used as models
when the production planning setup was created in this
work. The main production unit in this network is the
cogeneration plant KVV located at the production site
Boländerna. The KVV has a production capacity of
approximately 250 MW heat and 130 MW electricity.
Other important units in the system include several oil
boilers, a waste incineration plant, and an accumulator.

2.2 Discrete Optimization Model

The models used in the UCP are formulated in Python
using the Pyomo modeling language. The models are
linear and coarse and are mainly describing energy and
energy flows.

2.2.1 Cogeneration Plant KVV

The KVV is modeled using a polytope in the space of
electricity, heat and return temperature, which is
displayed in Figure 1. This means that for each return
temperature the polytope provides an area in the
electricity-heat plane which the electricity and heat
production is confined to. The KVV model in the EDP,
which is summarized in section 2.3.1, was used to
generate the polytope. The fuel consumption ���� for
a certain electricity production ௘ܲ� and heat production ܳ��� is calculated using the efficiency ���� according
to ���� = ܳ��� + ௘ܲ����� (1)

Figure 1. Polyhedron representing the operating regions
of the cogeneration plant.

2.2.2 Other Production Units

For units that only produce heat, the relation between
produced heat ܳ௨௡�௧ and fuel consumption �௨௡�௧ is
given by �௨௡�௧ = ܳ௨௡�௧�௨௡�௧ (2)

2.2.3 Accumulator

The accumulator works as an integrator, where the
stored energy ܧ��� is determined by ܧ���[�] = �]���ܧ − 1] − ℎܳ���[� − 1] (3)

where ܳ���[� − 1] is the energy flow to or from the
accumulator and ℎ is the sampling period.

2.2.4 Pipe Model

In order to represent the influence of the transportation
of the district heating water, a pipe model containing a
fixed time delay and a heat loss model is used. The
heat loss from a pipe section, ܳ̇, is determined using
the outdoor temperature and is based on the following
formula, describing the heat transferred from an
underground cylinder with temperature �0, when the
ground temperature is �� (Sundén, 2006).

Production Planning for Distributed District Heating Networks with JModelica.org

218 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118217

ܳ̇ = 2���ሺ�0 − ��ሻ�� ቆ2�� + √4ቀ��ቁ2 − 1ቇ
(4)

The other parameters of this equation is summarized in
Table 1.

Table 1. Heat transfer parameters.

Parameter Interpretation � Pipe length � Pipe diameter � Pipe depth � Soil heat transfer coefficient

2.3 Continuous Optimization Models

The EDP modeling was performed in Dymola, where
Modelica models representing the different units and
components of the district heating network, were
created.

Two different water media models are implemented,
an advanced model using polynomials to approximate
IF97 reference functions, and a simple model where
the specific heat capacity and density of the water are
constant. The advanced medium model is used in the
vapor cycle of the KVV, while the simple medium
model is used to represent the district heating water.

2.3.1 Cogeneration Plant KVV

The goal of the modeling of the KVV is to capture how
the produced heat and electricity depends on the plant
load, return water temperature and mass flow. For this
reason the modeling efforts have been directed towards
the vapor cycle. The entire cycle is however not
included in the model, instead boundary conditions

have been implemented using the following
assumptions:
 The boiler outlet vapor characteristics (pressure

and enthalpy) are constant and the mass flow is
proportional to the plant load.

 The condensate leaving the condensers is at
saturation pressure.

 Bleed streams from low pressure turbines are
represented by a lumped pressure drop and a fixed
pressure boundary.

A schematic illustration of the model of the KVV is
displayed in Figure 2. A summary of the main
components used in this model is presented below.
 Turbine: An isentropic efficiency parameter is used

to calculate the outlet enthalpy and the mechanical
work, while Stodola’s law determines the relation
between mass flow and pressure drop. The
electrical output is calculated using mechanical and
electrical efficiencies.

 Condenser: By considering the difference between
incoming water temperature and the saturation
temperature a heat flow rate to the district heating
water is calculated. This heat flow rate determines
the condensation rate and consequently the
bleeding flow from the turbine stages.

 Control volume: Dynamic mass and energy
balances are used to model a control volume. The
equations are formulated using pressure and
enthalpy as states, which requires partial
derivatives of density with respect to enthalpy and
pressure.

 Pressure loss: A quadratic loss function is used to
relate the mass flow to the pressure drop.

 Reheater: An ideal representation of the reheating

Figure 2. Schematic overview of the cogeneration plant model.

Session 3B: Building Energy Applications 2

DOI
10.3384/ecp15118217

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

219

in the plant, as the outlet temperature is constant
and determined by a parameter value.

2.3.2 District Heating Network Models

The models used to represent all units in the district
heating network, except for the KVV, are summarized
below.
 Heat production unit: The heat production from

other units than the KVV is modeled empirically,
adding heat to the district heating water
proportionally to the firing power.

 Customer model: The mass flow through each
customer is determined by the customer load
model. The difference between the supply
temperature and the predefined return temperature,
which is based on the outdoor temperature,
provides the mass flow based on the heat demand.

 Accumulator: A finite volume approximation is
used where buoyance effects are neglected, i.e. no
mixing is assumed when the accumulator is not
charging or discharging. Heat losses are also
neglected.

2.3.3 Pipe model

The production units and the customers are connected
using pipe models. These are modeled using a
combination of a standard finite volume
implementation and a fixed delay of the temperature
profile. The two components are connected in series,
together with a heat loss component using the same
heat dissipation equation as in the UCP pipe.

The goal of combining a fixed delay with a finite
volume model is to capture the main characteristics of
the pipe without having to use a model with very many
pipe segments, something that would increase the
complexity of the optimization problem considerably.
It is a compromise between using only a fixed delay,
which would result in incorrect delay times when the
mass flow is varying, and using a fixed volume
implementation with few volume segments, which
would result in numerical dissipation. The ratio
between the fixed delay and the finite volume pipe
volume is decided based on the range of mass flows
that will occur in each pipe and the accepted delay time
error for the boundaries of this range.

2.4 Network Representation

The distribution of the customers and production units
in the Uppsala district heating network is modeled
using a one-dimensional approach. The network
description is based on the setup presented in (Saarinen
and Boman, 2012), where the customer distribution as
a function of the delay time is determined. Compared
to that model the setup in the optimization models is
simplified further and only includes three customers. In
Figure 3 a schematic representation of the implemented
network structure is displayed.

Figure 3. Schematic representation of network structure
used in the discrete (upper structure) and the continuous
optimization (lower structure).

3 Optimization Tools

3.1 Discrete Optimization

The UCP problem was formulated in Python using the
Pyomo modeling language. Two different solvers were
used for solving the UCP, the commercial solver
Gurobi (Gurobi Optimization, 2015) and the open
source package GLPK (Makhorin 2012).

3.2 Continuous Optimization

The optimization problem for the EDP was formulated
using the Optimica language, extending the Modelica
models describing the system. The open-source
JModelica.org platform (Modelon AB, 2014) was used
to translate the formulation into an NLP and this
problem was solved using the Interior Point Optimizer
(IPOPT), see (Wächter and Biegler, 2006). FMUs were
used for initial trajectory simulations.

4 Optimization Formulation

4.1 Cost Function

In both the EDP and the UCP the goal is to maximize
the economical profit. Incomes from selling heat and
electricity, fuel costs and maintenance costs are
therefore the main parts of the cost functions in the two
optimization formulations. Only constant heat,
electricity and fuel prices are considered and additional
costs, such as pump costs are not considered in the
model. In the UCP costs for starting and shutting down
production units are also included in the cost function.

Additional terms must be added to the cost functions
for numerical reasons. In the UCP one can easily
obtain multiple solutions. To avoid this problem a
small cost penalizing production unit load changes
have been added. In the EDP a minor cost on input
derivatives must be implemented for regularity
reasons.

4.2 Degrees of Freedom

In the UCP the heat production and the status of each
unit are decision variables, as well as the KVV
electricity production and the energy flow to or from
the accumulator.

Production Planning for Distributed District Heating Networks with JModelica.org

220 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118217

The decision variables for the EDP are similar to
those in the UCP, but with a few key differences.
Firstly, the status of each unit is fixed in the EDP.
Secondly, it is not the heat production of each unit that
is the decision variable, but the load change. This is
achieved by introducing equations of the form �௨௡�௧ሺ�ሻ = ∫ �̇௨௡�௧ሺ�ሻ��௧ (5)

The same formulation is used for the accumulator, but
here another difference is also preset, as it is not the
energy flow, but rather the district heating water mass
flow that is controlled.

4.3 Constraints

Constraints represent an important part of the
optimization formulation. In this section the most
important constraints in the UCP and EDP
formulations are presented.

All production units in the UCP and the EDP have
constraints on their productions and their production
change rates, corresponding to the limitations of the
real plants. For the accumulator there are similar
constraints defining the minimal and maximal amount
of energy that can be stored, and how fast the energy
level can change. To prevent emptying of the
accumulator at the end of the optimization interval, an
additional constraint of the form ܧ���[��] ≥ (6) [0�]���ܧ

is used in the UCP. Here �0 and �� represents the
endpoints of the optimization interval. In the EDP an
accumulator constraint based on the UCP accumulator
energy at the end of each optimization interval is used.

When a production unit changes status the heat
production must follow specific start and stop
trajectories, denoted ܳ௨௡�௧,�௧��௧[�] and ܳ௨௡�௧,�௧�௣[�],
respectively. In the UCP this is implemented using
constraints of the form ⁡⁡⁡⁡⁡ܳ௨௡�௧[�] = ܳ௨௡�௧,�௧��௧[�],⁡⁡⁡⁡�∈ [��௧��௧ , ��௧��௧+ ��௧��௧ௗ௘���] (7)

 ܳ௨௡�௧[�] = ܳ௨௡�௧,�௧�௣[�],⁡⁡⁡⁡�∈ [��௧�௣, ��௧�௣ + ��௧�௣ௗ௘���] (8)

where ��௧��௧ௗ௘��� and ��௧�௣ௗ௘��� are the durations of
the constraints.

In the EDP the trajectories must not be followed
exactly. Instead upper and lower constraints are used to
confine the production to be close to the trajectory are
used.

In the EDP more constraints are present, limiting
e.g. mass flows, temperatures and pressures in different

components. For a more detailed description, see
(Larsson et al, 2014).

5 Optimization Example

Several test cases of varying complexity were
developed to evaluate the production planning strategy.
In this paper the main results from the most realistic
case are presented.

5.1 Optimization Settings

A sampling interval of 30 minutes for UCP
optimization and 20 minutes for EDP optimization is
used in all optimization cases. The optimization
interval is between one and four days in the UCP and
between 20 and 24 hours in the EDP. The difference in
optimization horizon is a result of the different
objectives of the optimization problems; the UCP
results determine long term plans while the EDP
handles faster dynamics.

The customer load profile consist of a base load
with two load peaks per day, representing the typical
heat demand of a residential area.

5.2 Test Case

In this test case, the heat load profile is increasing
linearly, with load peaks superimposed. The load
profile during the first day of the scenario is displayed
in Figure 4. The problem setup involves three
production units, the accumulator, and customers. One
of the production units, the waste incineration plant
AFA is running with maximal load throughout the
optimization. The KVV is also running at all times, but
the load is a decision variable. The final producer is the
Husbyborg oil boiler. This unit is initially turned off,
but must eventually be started as the customer heat
demand is increasing.

Figure 4. Customer load profile during day one.

Two subcases are considered, in the first one a
point-wise network representation with one customer is
implemented and in the second one a distributed
network is used. The optimization interval is four days

Session 3B: Building Energy Applications 2

DOI
10.3384/ecp15118217

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

221

for the UCP. For the EDP, this period is divided into
five separate optimizations for the first subcase, and six
optimizations in the second subcase.

5.2.1 Optimization Results

The results from the test case are displayed in Figure 5
to Figure 8. The most important result is the difference
in start-up time for the oil boiler, depending on which
network topology that is considered. By including the
distribution of the customers in the optimization
formulation it is possible to delay the start-up with nine
hours, from hour 30.5 to hour 39.5. The difference is
explained by the reduced production peaks caused by
the difference in time delay between the different
customers.

Figure 5. Customer load and heat production for different
units using a point-wise network. Results from the
discrete (UCP) and the continuous (EDP) optimizations
are compared.

Figure 6. Customer load and heat production using a
distributed network. Results from the discrete (UCP) and
the continuous (EDP) optimizations are compared.

Figure 7. Accumulator usage in the point-wise network
case. Results from the discrete (UCP) and the continuous
(EDP) optimizations are compared.

Figure 8. Accumulator usage in the distributed network
case. Results from the discrete (UCP) and the continuous
(EDP) optimizations are compared.

One can also see that there are some differences in

the behavior of the EDP results compared to the UCP.
Especially the signal describing the heat production of
the oil boiler contains oscillations in the EDP results,
which are not present in the UCP results. The
oscillations are a result of the more detailed
optimization model used in the EDP, which includes
faster dynamics, and the shorter optimization horizon
used for the EDP. The more detailed modeling makes
it possible to utilize effects such as heat storage in the
pipes and mass flow dependent delay times. This
results in an optimal strategy that contains faster load
variations.

The shorter optimization horizon introduces some
transient behavior at the end of each optimization
interval for the EDP, as the optimization attempts to
use the free heat stored in the network. To counteract
this, the final part of each optimization was
disregarded, but nonetheless some transient behavior
based on this effect can be observed. By implementing

Production Planning for Distributed District Heating Networks with JModelica.org

222 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118217

the EDP as an MPC, disregarding more of the
optimization results, this unwanted effect would be
removed. However, the EDP results are in general of
higher quality than the UCP results due to the more
detailed modeling. This means that they are more
physically relevant, and also more optimal for the
actual structure of the district heating network.

Another notable feature of the optimization results is
that the accumulator is used to compensate for the load
variations, while the production plants are mostly
running at constant load.

The continuous formulation of the problem above
contains 307 variables and 33 states, while the
transcribed NLP formulation contains approximately
70 000 variables. Using a standard laptop with 8 GB
RAM and four 2.6 GHz CPUs, the optimization
problem was solved in less than ten minutes.

5.3 Conclusions from Other Test Cases

 The district heating water mass flow is typically
maximized and the supply temperature is
correspondingly minimized. This results in a
maximization of the KVV electricity production.

 Pump limitations, customer supply temperature
and condenser pressure can all be limiting the
district heating highlighting the benefits of
thorough physical modeling of the system.

 By introducing a pipe model to represent the
customer distribution the mass flow dependency of
the delay time can be captured.

 The importance of the delay time between
customer and producer is highly depending on
whether temperature or mass flow changes are
used to compensate for heat load variations. When
only the mass flow changes the delay time is
irrelevant as water is incompressible.

 The possibility to use the network as an
accumulator follows from physical modeling of the
distribution network.

6 Conclusions

In this paper an extension of the approach for short-
term production planning presented in (Velut et al,
2013) has been proposed. The economic dispatch
problem is solved with JModelica.org, using non-linear
optimization of physical models. The method have
been investigated using data from the district heating
network in Uppsala, Sweden.

The derived optimization strategy involves
minimization of the district heating water supply
temperature and, correspondingly, maximization of the
mass flow. By considering constraints on variables
such as pump speed, condenser pressure and customer
temperature the limitations of the real system have
been included in the formulation and the effect of these
constraints can be seen in the optimization results.

The network distribution is included in the
optimization model using physical pipe models and a
simplified topology. By using this network model the
different time delays for different customer groups is
included in the model. In computation experiments, the
distributed customer increased the economic profit by
lowering production peaks and utilizing heat
accumulation in the network.

Acknowledgements

Grateful acknowledgments to Värmeforsk, “The
Swedish Thermal Engineering Research Institute” and
Energimyndigheten, “The Swedish Energy Agency”,
for providing financial support (project 38155).

References

J. Arroyo and A. Conejo. Modeling of start-up and shut-
down power trajectories of thermal units. Power Systems,

IEEE Transactions on, 19(3): 1562–1568, August 2004.
doi: 10.1109/TPWRS.2004.831654

Gurobi Optimization. 2015. Accessed 29 April 2015
<http://www.gurobi.com>.

P.-O. Larsson, S. Velut, H. Runvik, S. Modarres Razavi, A.
Nilsson, M. Bohlin och J. Funkquist. Decision Support for
Short-Term Production Planning of District Heating using
Non-linear Programming. Värmeforsk, 2014.

Fredrik Magnusson. Collocation Methods in JModelica.org.
Master’s thesis. 2012

Andrew Makhorin. 2012. GNU Project. Accessed 22
October 2014. < https://www.gnu.org/software/glpk/>.

Modelon AB, 2014. Accessed 22 October 2014.
<http://www.jmodelica.org>.

B. Rolfsman. Combined heat-and-power plants and district
heating in a deregulated electricity market. Applied

Energy, 78(1):37 – 52, 2004. doi:10.1016/S0306-
2619(03)00098-9

A. Rong, H. Hakonen, and R. Lahdelma. A variant of
dynamic programming algorithm for unit commitment of
combined heat and power systems. European Journal of

Operational Research, 190(3):741–755, November 2008.
doi:10.1016/j.ejor.2007.06.035

L. Saarinen, and K. Boman. Optimized district heating
supply temperature for large networks. Värmeforsk, 2012.

Bengt Sundén. Värmeöverföring. Studentlitteratur, 2006

S. Velut, P.-O. Larsson, J. Windahl, K. Boman, and L.
Saarinen. Non-linear and Dynamic Optimization for Short-
term Production Planning. Värmeforsk, 2013.

A. Wächter and L. T. Biegler. On the implementation of an
interior-point filter line-search algorithm for large-scale
nonlinear programming. Mathematical Programming, vol.
196, no 1, pp. 25-68, 2006. doi: 10.1007/s10107-004-
0559-y

J. Åkesson, C. Laird, K. Lavedan, K. Prölss, H.
Tummescheit, S. Velut and Y. Zhu. Nonlinear Model
Predictive Control of a CO2 Post-Combustion Unit.
Chemical Engineering Technology, vol. 35, no 3, pp. 445-
454, 2011. doi: 10.1002/ceat.201100480

Session 3B: Building Energy Applications 2

DOI
10.3384/ecp15118217

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

223

224 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Hardware-in-the-Loop-Simulation of a Building Energy and

Control System to Investigate Circulating Pump Control Using

Modelica

Georg Ferdinand Schneider1 Jens Oppermann2 Ana Constantin3 Rita Streblow3 Dirk Müller3

1Fraunhofer Institute for Building Physics, Systems Integration Group, Fürther Straße 250, 90429 Nürnberg,
Germany, georg.schneider@ibp.fraunhofer.de

2WILO SE, Group Research and Technology, Nortkirchenstraße 100, 44263 Dortmund, Germany,
Jens.Oppermann@wilo.com

3RWTH Aachen University, Institute for Energy Efficient Buildings and Indoor Climate, Matthieustraße 10,
52074 Aachen, Germany, {aconstantin,rstreblow,dmueller}@eonerc.rwth-aachen.de

Abstract

This paper presents an application of the hardware-in-
the-loop-method to a building energy and control sys-
tem. We focus on investigating the interaction of a real
circulating pump with the hydronic network of a vir-
tual building energy and control system. For real-time
simulation the building envelope is modelled using the
Modelica-based library AixLib. With the presented setup
model-based designed control algorithms are tested dir-
ectly on real hardware. The performance of the presented
and implemented setup is evaluated by comparing sim-
ulated results with experimental hardware-in-the-loop-
simulation data. The main focus of this work is to eval-
uate the application of the method towards bridging the
gap between model-based design and commissioning of
energy efficient control for heating ventilation and air
conditioning (HVAC) components.
Keywords: Hardware-in-the-loop (HIL); Building En-

ergy and Control System; Model-Based Design

1 Introduction

There is an ongoing research effort towards developing
tools and processes to improve the design of building en-
ergy and control systems (BECSs) in order to reduce the
environmental impact of existing and future buildings
while improving their indoor comfort (Wetter, 2011a).
With the ongoing reduction of the energy demand for
heating and cooling of buildings, e.g. better insula-
tion, research is focussing on increasing the energy effi-
ciency of auxiliary HVAC equipment such as circulating
pumps. Additional pressure is put on equipment manu-
facturers by the European Union by introducing mandat-
ory eco-design requirements for energy-using products
(EU, 2009).

To achieve these efficiency goals is an inherently difficult
task as BECS typically are comprised out of heterogen-
eous components which have to be regarded simultan-
eously on different temporal and spatial scales (Wetter,
2011a). An approach to design control algorithms for
components of these systems in an integrated way is the
application of model-based design methods. Equation-
based object-oriented modelling languages, e.g. Model-
ica, allow modelling these systems consistently (Wetter,
2011a). In Modelica ready-to-use libraries exist to per-
form whole building energy simulation for model-based
design (e.g. Constantin et al., 2014; De Coninck et al.,
2014; Wetter et al., 2014).
However, difficulties occurring during the transition pro-
cess from design to commissioning stage of model-based
control algorithms remain unsolved. The transition pro-
cess can be time and cost consuming and a feedback of
newly generated information to the design process is sel-
dom possible.
Increasing circulating pump efficiency is mainly driven
by implementing control algorithms into the applica-
tion controller of pumps, which consider the interaction
between the pump and its surrounding BECS. For the
case of control algorithms for circulating pumps we ob-
served the following obstacles:

• An error-prone reimplementation of the designed
control algorithms is necessary at each iteration, as
operating systems and programming languages dif-
fer between simulation environments and real hard-
ware application controllers;

• Testing of control algorithms for circulating pumps
requires detailed measurements of pump proto-
types in test-buildings over time periods of days and
weeks.

Hardware-in-the-loop-(HIL-) simulation is a method to
bridge the gap between simulation and real hardware

DOI
10.3384/ecp15118225

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

225

by coupling simulated and real parts of a system. The
HIL-method is well-known in science and technology
and several applications based on Modelica are repor-
ted, e.g. in automotive, food and microcontroller indus-
tries (Winkler and Gühmann, 2006; Gäfvert et al., 2008;
Bonvini et al., 2009). In the buildings industry the HIL-
method is frequently used for testing and commissioning
of building control systems (e.g. Xu et al., 2004). Chen
et al. (2012) present a multi-domain test setup to invest-
igate building control and HVAC-systems with simulated
boundary conditions. Applying the HIL-method to a cir-
culating pump in the buildings domain is, to the best of
our knowledge, a novelty.
The contribution aspect of this paper is the presentation
of a successful application of the HIL-method to a BECS
to investigate control algorithms for HVAC components.
By this for the application of a circulating pump,

• model-based designed algorithms may be tested
directly on real hardware without reimplementation
and

• different building types can be examined on a single
hardware setup by using different models.

After the introduction we present a brief description of
the HIL-method in section 2. A HIL-concept for a BECS
is presented in section 3. Finally, in section 4 we eval-
uate the performance of an implementation of the HIL-
concept by a comparison of measured data and simulated
results.

2 Methodology

This section gives a brief overview of the HIL-method.
In HIL-simulation real hardware is coupled to virtual
components of a system which are simulated in real-time
(Maclay, 1997). The loop comprises of providing the
measured behaviour of real components as boundary
conditions to virtual models of a system and emulating
the simulated reaction at every time step to the hardware
components.
The HIL-method offers several advantages in its
application (Maclay, 1997). Despite the decreased
development times in today´s development cycles it
is necessary to keep the established high standards in
safety and quality of products and processes. HIL sup-
ports and simplifies research and development processes
of complex systems by giving the possibility to test
components of heterogeneous systems without danger
for humans, environment or plants by malfunctioning or
unexpected behaviour (Maclay, 1997). HIL-simulation
often is easily applicable as models available from
model-based development processes may be reused for
HIL-simulation with minor changes. Nevertheless the
accuracy of the used models has to be carefully assessed
for a successful application of the method. When
developing an application of the method it is necessary

to evaluate the dynamic performance of the designed
emulation facilities to ensure a proper feedback of the
simulated behaviour to the real components.
A HIL-system can be divided into three parts: simula-
tion, emulation and hardware level (Chen et al., 2012).
At the simulation level models of the virtual components
are provided and simulated in real-time. The emulation
level actually enables the coupling of real and virtual
system components. It includes devices and facilities
to measure the hardware behaviour and to emulate
the simulated behaviour of the virtual components.
A real-time capable data interface is necessary to ex-
change data between the data acquisition devices which
measure the physical quantities and the simulation
environment at run time. At the hardware level real com-
ponents of a complex system are installed in an emulator.

3 Application of HIL-Method

In this section we demonstrate the application of the
HIL-method to a BECS to investigate control algorithms
for circulating pumps. The details and a real setup of a
HIL-concept for a circulating pump are presented. With
the proposed HIL-setup it is possible to examine the in-
teraction of a real circulating pump in a hydraulic net-
work of a virtual BECS. In our specific case both the
model of the BECS and the algorithms for circulating
pump control are implemented in one simulation envir-
onment. The coupling of the simulation environment and
the hardware allows to directly execute the control al-
gorithms on a real pump. A scheme of the realized HIL-
concept is presented in Figure 1.

emulation

level
simulation level

pb, Tb

pa, Ta

e
m

u
la

to
r

hardware level

pa,Ta

pb,Tb

Figure 1. Scheme of the developed HIL-concept of a real
pump in a virtual BECS. The boundary conditions pressure pa,b
and temperature Ta,b up- and downstream of the pump are ex-
changed via a data interface (arrows).

We divide the HIL-system in a hardware, emulation and
simulation level. At the hardware level a real pump is

Hardware-in-the-Loop-Simulation of a Building Energy and Control System to Investigate Circulating Pump
Control Using Modelica

226 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118225

installed in a hydraulic circuit at a testbench. The bound-
ary conditions of the pump are characterized by pressure
pa,b and the temperature Ta,b up- and downstream of the
pump. The downstream boundary conditions are meas-
ured and given as input to a BECS model at the sim-
ulation level. The upstream values are calculated by a
real-time simulation of the BECS and are emulated at
the emulation level to the real pump.
The following sections describe the simulation, emula-
tion and hardware level of the proposed HIL-concept in
detail.

3.1 Simulation Level

We choose the Modelica-based library AixLib to
model one and multiple family dwellings for simu-
lation in Dymola (Dymola, 2013). The library is
open source and accessible from an online reposit-
ory (https://github.com/RWTH-EBC/AixLib). We util-
ize ready-to-use models of the library to describe the
building envelope. To model the HVAC and control sys-
tem we use in this application models from the library
described in Müller and Hosseini Badakhshani (2010).
The full details of the used models is not in the scope of
this paper. For a detailed description please refer to the
mentioned references. The main modelled aspects are:

• Each room model has one air node modelled as a
single, perfectly mixed air volume;

• The air volume exchanges heat to its enclosures by
convective, conductive and radiative heat transfer;

• A wall model consists of layers with different
physical properties each; transient heat conduction
through each layer is approximated using a one di-
mensional approach;

• The model of the heating system consists of radiat-
ors with thermostatic valves for each room, pipes, a
boiler with night setback and an expansion tank;

• A weather file providing weather data of a typical
reference year (TRY) for locations within Germany
(DWD, 2013);

• User occupancy, ventilation and infiltration are con-
sidered.

Figure 2 illustrates schematically the structure and com-
ponents of the modelled BECS of a one family dwell-
ing. The models of AixLib are currently under evalu-
ation by using a set of standardized tests provided by
the American Society of Heating, Refrigerating and Air-
Conditioning Engineers to validate building simulation
models (ASHRAE, 2004). Additionally, we statically
validated the building model by comparing the simulated
results with results of the design heat load calculated ac-
cording to EN 12831 (CEN, 2003) using the commercial
tool SOLAR-COMPUTER (Solar-Computer, 2012).
For the HIL-system we adapt models developed for

generation & service distribution envelope external

pump

boiler

ventilation

infiltration

weather

user

schedule

ET

p
ip

e

pipe
room

room

radiator

radiator

Figure 2. Scheme of the building model. Pump model
(dashed, red) is substituted by two boundary conditions with
inputs for the case of HIL-simulation (ET – expansion tank).

model-based design of control algorithms for circulating
pumps by modifying them for HIL purposes. To cla-
rify the model structure the top level of the simulation
model is presented in a scheme in Figure 3. It comprises
of a building envelope and HVAC system model and the
weather input. Instead of a pump model two hydraulic
boundary conditions (fluid source, fluid sink) are imple-
mented. Together with the building models a TCP\IP-
based data interface is implemented and simulated as
well as the pump control algorithms. Via the data inter-
face the value for the current pressure difference ∆p, the
current volume flow rate of the hydraulic circuit Q, the
current set point of the pump ypump and the set point for
the motor-driven valve yvalve are exchanged at runtime.
The number of equations of the resulting model is typic-
ally in the range of ten thousand.
To simulate the described models in real-time we use Dy-
mola with default settings and its capability to synchron-
ize with an external Dynamic Data Exchange (DDE)
server for (soft) real-time simulation.

3.2 Emulation Level

The emulation system acts as an interface between the
real hardware and the virtual components. It performs
two tasks: first, it offers facilities to measure physical
quantities and transmit the values to the simulation
environment; second, it has the capability to convert
the simulated values back into real physical quantities
(Chen et al., 2012).
In this section we present a solution to emulate the
hydraulic boundary conditions and a data interface
which couples the LabVIEW-based testbench software
(NI, 2015) and Dymola. A scheme of the system is
displayed in Figure 4. We assume negligible temperature
drop across the pump and therefore the facilities for the
temperature emulation are not discussed here.

Session 3B: Building Energy Applications 2

DOI
10.3384/ecp15118225

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

227

M

P

P

yvalve

Δp, Q

personal computer

DA/SU LabVIEW
Dymola/

Modelica
Δp

Q

yvalve

Δp, Q

Figure 4. Scheme of the testbench setup (DA/SU – data ac-
quisition/ switch unit). Data exchange between LabVIEW and
Dymola/Modelica via a TCP\IP-based interface, ∆p – pressure
difference, Q – volume flow rate in hydraulic circuit, yvalve –
set point motor-driven valve.

Emulation of Hydraulic Boundary Conditions:

To establish a loop the pressure difference ∆p across the
pump is measured for one time step by a differential
pressure sensor with precision of 1 % of the measured
value and is given to the simulation as input. Then the
model is simulated for this time step and the corres-
ponding total volume flow rate Qset of the building is
calculated. This volume flow rate needs to be converted
into a physical quantity by the testbench.
To perform this task we measure the volume flow rate Q
in the hydraulic circuit of the testbench by a magnetic
flow meter with a precision of 0.5 % of the measured
value and a response time of 0.125 s. We implement a
feedback control with the simulated total volume flow
rate as set point. A PI-controller with limited output
implemented from the Modelica Standard Library is
used to control the volume flow rate Q through an
adjustable, motor-driven valve with a nominal stroke of
5.5 mm, a resolution of 1:100 and a positioning speed of
13.6 mm/s.
The dynamic performance of the described volume
flow rate control system can be assessed from results
of an exemplary step response presented in Figure 5.
Measurements are performed at a sample rate of 1 s.
From the results we measure a static deviation of
± 3.5 l\h and a settling time of 200 s.
We assess the dynamics and the precision of the system

to be sufficient for the considered application. Time
constants in thermal systems of buildings are in the
range of 1000 seconds which is one magnitude larger
than the determined settling time.

0 50 100 150 200 250 300 350 400
350

400

450

500

550

600

650

700

750
↑

→
Time in s

V
o

lu
m

e
 f

lo
w

 r
a
te

 i
n

 l
/h

Q Q
Set

Figure 5. Step response of volume flow rate control system,
Qset – Set point of PI-control, Q – measured volume flow rate
in hydraulic system, sampling rate: 1 s.

Socket-Based Data Interface:

A prerequisite of the development of the HIL-testbench
is the usage of a proprietary, LabVIEW-based data inter-
face to enable access to the low-level pump control with
the possibility to execute model-based designed control
algorithms without any reimplementation. A disadvant-
age of this platform at the point of implementation is that
no ready-to-use data interface to exchange data at run
time to the simulation environment was available.
We followed a straightforward approach and implemen-
ted a real-time capable socket-based data interface to en-
able data exchange with the simulation environment at
run time. The data interface is based on the Winsock
API (Microsoft, 2015) which allows to exchange char-
acter strings via network sockets. The interface is imple-
mented in C and uses a set of functions to exchange char-
acter strings using the TCP/IP protocol. To include the
additional C code we use the external C construct of

ypump

Q

building

envelope

yvalve

weather

input

data

interface

PI-

control

pump

control

fluid

source

HVAC

Δp
Q

QS fluid

sink

Figure 3. Scheme of the top level of a Modelica model for HIL-simulation, ∆p – pressure difference, Q – volume flow rate in
hydraulic circuit, QS – simulated volume flow rate, ypump – set point pump, yvalve – set point motor-driven valve.

Hardware-in-the-Loop-Simulation of a Building Energy and Control System to Investigate Circulating Pump
Control Using Modelica

228 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118225

Modelica and compile the code with the Modelica code
of the model.
Solutions for data interfaces for co-simulation and HIL
already exist (e.g. Bellmann, 2009; Wetter, 2011b). We
discovered in our application that the own implement-
ation of a socket-based data interface allows a tailored
design of the interface featuring a good integration
within the proprietary LabVIEW-based software. The
developed TCP\IP-based data interface allows exchan-
ging data with sampling rates of up to 100 ms between
the simulation and the LabVIEW-based testbench soft-
ware. We assess the sampling rates of the data inter-
face to be sufficient for the usage in the presented HIL-
system.

3.3 Hardware Level

The proposed HIL-system is implemented in a real test-
bench in the labs of WILO SE (see Figure 6). The hard-
ware level includes a real pump which is installed in a
hydraulic circuit of a testbench. The testbench includes
facilities to measure the pressure difference across the
pump and the volume flow rate in the hydraulic circuit.
It includes an adjustable valve to emulate the hydraulic
boundary conditions of the simulated building. Both
the simulation in Dymola and the LabVIEW-based soft-
ware to control the facilities for data acquisition run on
a desktop PC placed near the testbench. We use Dymola
with default settings and its capability to synchronize
with an external Dynamic Data Exchange (DDE) server
for (soft) real-time simulation on a Windows 7 (64-bit)
platform. The LabVIEW-based software is used to oper-
ate the data acquisition and switch unit as well as provid-
ing a proprietary interface to the low-level pump motor
control.

personal

computer

real

pump

data

acquisition/

switch unit

adjustable

valve

cooling

device

heating

device

volume-

flow

sensor

pressure

sensor

Figure 6. An implementation of the HIL-concept in a real test-
bench.

4 Results

To check the plausibility and evaluate the performance
of the proposed HIL-setup for a circulating pump we
present the results of a comparison between measured
data from a HIL-simulation with calculated results of a
full simulation in this section. Note, here HIL-simulation

relates to a simulation of a building where the simulation
is coupled to a real pump and full simulation relates to
a simulation where the building is simulated including a
model for a pump. In both cases we model a one family
dwelling as described in section 3.1.

4.1 HIL-Simulation

In this section results for HIL-simulations are presented
where a constant and a variable pressure difference
control scheme are applied to control the pump. The
set point of the pump head is set to 58.84 kPa and
21.083 kPa for the constant and variable pressure
difference control scheme, respectively. In this specific
test case the outside air temperature is set to -12 °C and
no solar radiation is considered. These specific boundary
conditions are used to calculate the maximum needed
power of the heating system. We model occupant actions
by a ventilation schedule which assumes that the air is
exchanged in every room once in the morning and once
in the evening for half an hour. The rooms are ventilated
separately with an offset of half an hour. The average air
exchange by infiltration is assumed to be 0.5 h-1 over the
whole day and during ventilation the thermostatic valves
are closed. The set points of the room temperatures and
basic parameters of the building model are reported in
Table 1. A night control mode for the heating system
is implemented which lowers the feed temperature of
the heating medium between 10pm and 6am from 75 °C
to 46 °C. The described boundary conditions apply for
both control schemes.

Constant Pressure Difference Control Scheme

The results for a real-time HIL-simulation of a constant
pressure difference control scheme for one day are
presented in Figure 7. The measured volume flow rate
and pump head in the hydraulic circuit, Qm and Hm and
the corresponding simulated values Qs and Hs of the
full simulation are depicted. For better understanding
the deviations of the volume flow rates the results of the
simulated room temperature TRoom and the set temperat-
ure TSet for the thermostatic valve of an exemplary room
in the lower floor are presented in Figure 9.
Due to the set boundary conditions the volume flow
rates Qm and Qs of the building vary between 100 and
800 l/h during the day. Gradients of about 700 l\h2

occur when the thermostatic valves are reopened after
the ventilation phases from 9am to 10am and 6pm to
8pm (see Figure 7 and 9). Oscillations of the head Hm
are caused by the PI-control yielding a feedback of the

Session 3B: Building Energy Applications 2

DOI
10.3384/ecp15118225

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

229

2 6 10 14 18 22
0

100

200

300

400

500

600

700

800

Time in h

V
o

lu
m

e
 f

lo
w

 r
a
te

 i
n

 l
/h

↑

→

2 6 10 14 18 22
50

60

70

Time in h

H
e
a
d

 i
n

 k
P

a↑

→

Q
m

Q
s

H
m

H
s

Figure 7. Comparison of a real-time HIL-simulation with full simulation for one day applying a constant pressure difference
control scheme to the pump. Qm, Hm measured values for HIL-simulation, Qs, Hs simulated values for full simulation, volume
flow rate and head of the pump, respectively, sampling rate: 1 s.

2 6 10 14 18 22
0

100

200

300

400

500

600

Time in h

V
o

lu
m

e
 f

lo
w

 r
a
te

 i
n

 l
/h

↑

→

2 6 10 14 18 22
10

20

30

Time in h

H
e
a
d

 i
n

 k
P

a↑

→

Q
m

Q
s

H
m

H
s

Figure 8. Comparison of a real-time HIL-simulation with full simulation for one day applying a variable pressure difference
control scheme to the pump. Qm, Hm measured values for HIL-simulation, Qs, Hs simulated values for full simulation, volume
flow rate and head of the pump, respectively, sampling rate: 1 s.

Hardware-in-the-Loop-Simulation of a Building Energy and Control System to Investigate Circulating Pump
Control Using Modelica

230 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118225

Table 1. Selected parameter of the building model of a one
family dwelling according to energy saving ordinance from
1984. Design heat load calculated according to EN 12831
(CEN, 2003).

Parameter Value

Total length 11.49 m
Total width 8.74 m
Total area 100.42 m2

Room height 2.6 m
Number of floors 2
Infiltration rate 3 h-1

Ventilation rate 0.5 h-1

Set temperature bathroom 24 °C
Set temperature hallway 18 °C
Set temperature other rooms 22 °C
Design heat load 8.97 kW
Design volume flow rate 1.1 m3/h
Design head 22.56 kPa
Location Mannheim/ Germany

volume flow rate oscillations to the pump head Hm.
The results provide evidence that the volume flow rate
control system faces no difficulties in emulating the
simulated gradients. To quantify the quality of the
emulation we compare the measured and simulated
values by calculating a root mean squared error and a
relative mean error of 17.79 l/h (2.40 %) and 307.92 Pa
(0.44 %) for the volume flow rates and pump heads,
respectively.

2 6 10 14 18 22
−10

−5

0

5

10

15

20

25
↑

→Time in h

T
e
m

p
e
ra

tu
re

 i
n

 °
C

T
Room

T
Set

Figure 9. Simulated room temperature TRoom and set temper-
ature TSet of one room of the building for one day with constant
pressure control scheme applied and sampling rate: 1 s.

Variable Pressure Difference Control Scheme

For a variable pressure difference control scheme we
present the results of a one day HIL-simulation in Fig-
ure 8. Volume flow rates and pump heads Qm and Hm
refer to the measured values in the hydraulic circuit of

the testbench and Qs and Hs to the simulated values for
the full simulation, respectively. The corresponding res-
ults for the simulated room temperature TRoom and the
set temperature TSet for the thermostatic valve of an ex-
emplary room in the lower floor are given in Figure 10.
Temperature trajectories in Figure 9 and 10 are from the
same room.
As the boundary conditions remain equal for the constant
and the variable pressure difference control scheme, the
trajectories of the volume flow rates Qm and Qs in Fig-
ure 7 and 8 show a similar pattern. Of interest are the
pump head trajectories Hm and Hs, shown in Figure 8,
which are lowered from set point 21.08 kPa to about
17.16 kPa from 11am and 6pm where the volume flow
rate and respectively the heating demand is low com-
pared to the ventilation times (see Figure 10). While
maintaining the thermal comfort by keeping the room
temperature TRoom above the set temperature TSet dur-
ing day time (Figure 10), the variable pressure difference
control scheme reduces the pump head. This yields a
decrease of the amount of energy needed to operate the
pump.
To compare the measured and simulated values we cal-
culate a root mean squared error and a relative mean er-
ror of 14.49 l/h (3.04 %) and 735.48 Pa (3.86 %) for the
volume flow rates and pump heads, respectively.

2 6 10 14 18 22
−10

−5

0

5

10

15

20

25
↑

→Time in h

T
e
m

p
e
ra

tu
re

 i
n

 °
C

T
Room

T
Set

Figure 10. Simulated room temperature TRoom and set temper-
ature TSet of one room of the building for one day with variable
pressure control scheme applied and sampling rate: 1 s.

4.2 Discussion

For HIL-simulation specific hardware exists which en-
sures simulation in hard real-time, e.g. by real-time cap-
able operating systems. The HIL-simulations presented
in this work have been conducted on a generic desktop
PC running on Windows 7 using the described models
(see section 3.1) without other than the reported adjust-
ments. Our findings indicate that with sampling rates and
feedback control in the range of seconds, soft real-time
simulation is sufficient. This concurs with the findings

Session 3B: Building Energy Applications 2

DOI
10.3384/ecp15118225

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

231

presented by Gäfvert et al. (2008). An implication of
this is that for the presented application no additional in-
vestments in the simulation infrastructure are necessary
for HIL.
We assume that increasing the complexity of the models,
e.g. investigate multiple-family dwellings, will not cause
any problems since solutions times for one time step of
the building model are well below the sampling time of
the HIL-system. In our application the sampling time is
limited to one second. This is related to the proprietary
LabVIEW-based testbench software, mainly caused by a
overhead generated from data handling algorithms in an
integrated database.
The comparison of simulated results and measured data
provide evidence that the solutions for the emulation of
the hydraulic boundary conditions as well as the imple-
mented data interface presented in this work show a suf-
ficient performance for the investigated application with
calculated mean relative errors less than 4 %.
Real hardware signals have a significant impact on the
robustness of control algorithms. In Figure 7 simu-
lated results for volume flow rate and pump head are
continuous, whereas discrete data acquisition and meas-
urement noise alter the measured signals. In contrast
to the transition of model-based designed control al-
gorithms which have not been tested on real hardware,
HIL-simulation assisted transition offers the additional
benefit to deduce improvements and increase the robust-
ness of model-based designed algorithms as these sig-
nals are considered already during the design process
and prior to commissioning. The quality of the emula-
tion systems needs to be evaluated carefully to exclude
an influence of these devices on the measurements.
HIL-simulation in the described context offers the be-
nefit that, in contrast to measurements in real building
energy and control systems, the boundary conditions of
test scenarios can be chosen freely by the modeller and
be reproduced almost equally on a testbench for multiple
testing.

5 Conclusion

In this paper we present the application of the HIL-
method to a building energy and control system to in-
vestigate circulating pump control. The presented work
evaluates how HIL-simulation of building energy control
systems using Modelica can be used to bridge the gap
between design and commissioning stage of control al-
gorithms for HVAC components, e.g. circulating pumps.
We describe in detail the solutions found for the emula-
tion of the hydraulic boundary conditions and a socket-
based data interface. HIL-simulations are performed on
an implementation of the concept. The quality of imple-
mentation is evaluated with results obtained from HIL-
simulations where a constant and a variable pressure con-
trol scheme are applied to the pump. For a comparison

of measured data against simulated results we calculate
a root mean squared error and a relative mean error of
17.79 l/h (2.40 %) and 307.92 Pa (0.44 %) for the volume
flow rates and the pump heads applying a constant pres-
sure difference control scheme, respectively. For results
obtained by applying a variable pressure difference con-
trol scheme we calculate a root mean squared error and a
relative mean error of 14.49 l/h (3.04 %) and 735.48 Pa
(3.86 %) for the volume flow rates and the pump heads,
respectively.
With the HIL-system presented in this paper, obstacles
of the transition from design to commissioning stage of
circulating pump control are solved at once:

• Model-based designed algorithms are tested dir-
ectly on real hardware without reimplementation in
an application controller;

• The usage of object-oriented model libraries al-
lows to investigate different types of buildings and
HVAC systems by exchanging component models
on one hardware setup.

If correctly applied cost and time savings are expec-
ted for manufacturers as the methodology significantly
speeds up and simplifies the transition process. Addi-
tionally, the methodology offers the benefit of enabling
the feedback of insights to the design process from run-
ning newly developed control algorithms on real hard-
ware.
A possibility to accelerate the still required reimplement-
ation of the developed algorithms is using automated
code generation techniques. HIL-simulation is a addi-
tional tool in the transition process. Nevertheless, to
complete product development thorough testing and a
quality insurance process are still necessary.
Results presented in this paper partly rely on propriet-
ary code especially for the HVAC-system models. A fu-
ture development could comprise of an open source lib-
rary providing ready-to-use models for HIL of thermal
and hydraulic components of building energy and con-
trol systems.
The methodology of this work has been tested with mod-
els for one family dwelling with a limited complexity.
Future work could focus on expanding to more complex
building models in terms of the number of modelling
equations.

6 Acknowledgements

This research is part of a master thesis which took place
at WILO SE supervised by the Institute for Energy Ef-
ficient Buildings and Indoor Climate. We would like
to thank WILO SE for financial support of the research
activities.

Hardware-in-the-Loop-Simulation of a Building Energy and Control System to Investigate Circulating Pump
Control Using Modelica

232 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118225

References

ASHRAE, 2004. Standard Method of Test for the Eval-
uation of Building Energy Analysis Computer Programs,
July 2004. American Society of Heating, Refrigerating and
Air-Conditioning Engineers, Atlanta, USA.

T. Bellmann. Interactive Simulations and Advanced Visual-
ization with Modelica. In F. Casella, editor, Proceedings

of the 7th Modelica Conference, pages 541–550. Linköping
University Elektronic Press, Como, Italy, September 20-22
2009. doi:10.3384/ecp09430056.

M. Bonvini, F. Donida, and A. Leva. Modelica as a Design
Tool for Hardware-in-the-Loop Simulation. In F. Case-
lla, editor, Proceedings of the 7th International Mod-

elica Conference, pages 378–385. Linköping University
Elektronic Press, Como, Italy, September 20-22 2009.
doi:10.3384/ecp09430119.

CEN, 2003. Heating Systems in Buildings - Method for Cal-
culation of the Design Heat Load; German Version, DIN
EN 12831, 2003. European Commitee for Standardization
(CEN), Brussels, Belgium.

K. Chen, R. Streblow, D. Müller, A. Benigni, C. Molitor, and
A. Monti. Hardware-in-the-Loop Simulationsverfahren für
Hausenergiesysteme. In Proceedings of the Fourth German-

Austrian IBPSA Conference. IBPSA-Germany, Berlin Uni-
versity of the Arts, September 2012.

A. Constantin, R. Streblow, and D. Müller. The Model-
ica HouseModels Library: Presentation and Evaluation of
a Room Model with the ASHRAE Standard 140. In
H. Tummescheit and K.-E. Årzén, editors, Proceedings of

the 10th International Modelica Conference, pages 293–
299. Linköping University Elektronic Press, Lund, Sweden,
March 10-12 2014. doi:10.3384/ecp14096.

R. De Coninck, R. Baetens, D. Saelens, A. Woyte,
and L. Helsen. Rule-Based Demand-Side Manage-
ment of Domestic Hot Water Production With Heat
Pumps in Zero Energy Neighbourhoods. Journal of

Building Performance Simulation, 7(4):271–288, 2014.
doi:10.1080/19401493.2013.801518.

DWD, 2013. Test reference year, Deutscher Wetter Dienst
(DWD), Offenbach, Germany, http://www.dwd.de/TRY,
Accessed: 25.04.2015.

Dymola, 2013. Dassault Systemes AB,
Lund, Sweden, http://www.3ds.com/products-
services/catia/portfolio/dymola.

EU, 2009. Directive 2009\125\EC of the European Parliament
and of the Council Establishing a Framework for the Setting
of Eco-Design Requirements for Energy-Related Products,
October 2009.

M. Gäfvert, T. Skoglung, H. Tummescheit, J. Windahl,
H. Wikander, and P. Reuterswärd. Real-Time HWIL Sim-
ulation of Liquid Food Process Lines. In B. Bachmann,
editor, Proceedings of the 6th International Modelica Con-

ference, volume 2, pages 709–715. The Modelica Associ-
ation and University of Applied Sciences Bielefeld, Biele-
feld, Germany, March 3-4 2008.

D. Maclay. Simulation Gets Into the Loop. IEEE Review, 43
(3):109–112, May 1997.

Microsoft, 2015. Winsock library by
Microsoft http://msdn.microsoft.com/en-
us/library/ms740673%28VS.85%29.aspx, Accessed:
15.04.2015.

D. Müller and A. Hosseini Badakhshani. Gekoppelte Gebäude-
und Anlagensimulation mit Modelica. In Proceedings of the

3rd German-Austrian IBPSA Conference, September, 22-
24, Vienna, Austria 2010.

NI, 2015. LabVIEW, National Instruments, Austin, USA,
http://www.ni.com/labview/.

Solar-Computer, 2012. SOLAR-COMPUTER GmbH, Göttin-
gen, Germany, http://www.solar-computer.de.

M. Wetter. Building Performance Simulation for Design and

Operation, chapter A View on Future Building System
Modeling and Simulation, pages 1–28. Taylor & Francis,
2011a. ISBN 978-0-415-47414-6.

M. Wetter. Co-Simulation of Building Energy and Control Sys-
tem with the Building Controls Virtual Test Bed. Journal

of Building Performance Simulation, 4(3):185–203, 2011b.
doi:10.1080/19401493.2010.518631.

M. Wetter, W. Zuo, T. S. Nouidui, and X. Pang.
Modelica Buildings Library. Journal of Build-

ing Performance Simulation, 7(4):253–270, 2014.
doi:10.1080/19401493.2013.765506.

D. Winkler and C. Gühmann. Hardware-in-the-Loop Simula-
tion of a Hybrid Electric Vehicle Using Modelica/ Dymola.
In Proceedings of the 22nd International Battery, Hybrid

and Fuel Cell Electric Vehicle Symposium and Exhibition,
pages 1054–1063, Yokohama, Japan, 2006.

P. Xu, P. Haves, and J. Deringer. A Simulation-Based Testing
and Training Environment for Building Controls. In Pro-

ceedings of SimBuild 2004, Boulder, USA, 2004.

Session 3B: Building Energy Applications 2

DOI
10.3384/ecp15118225

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

233

234 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Automatic GPU Code Generation of Modelica Functions

Hilding Elmqvist1, Hans Olsson1, Axel Goteman1,2, Vilhelm Roxling1,2,

Dirk Zimmer3, Alexander Pollok3

1
Dassault Systemes, Lund, Sweden, {Hilding.Elmqvist, Hans.Olsson}@3ds.com

2
Lund Institute of Technology, Lund, Sweden, {axel.goteman, vilhelm.roxling}@gmail.com

3
Institute of System Dynamics and Control, DLR, Germany, {Dirk.Zimmer, Alexander.Pollok}@dlr.de

Abstract

Modelica users can and want to build more realistic
and complex models. This typically means slower

simulations. In the past, the speed of single CPUs has

increased significantly to partly compensate, but more
recently, there has been a shift to multi-core

architectures. This is taken to the extreme in Graphics
Processing Units (GPUs).

This paper discusses code generation for GPU cores.

This is important when the model has regular structure,
for example, discretization of PDEs. The behavior of

each cell can then be partly described by a function

call. The evaluation of such calls can then be made in
parallel on the GPU cores. The same function is thus

executed on every GPU core, but operates on different
data; the data of its cell.

Our GPU code generator automatically generates

code for Modelica functions, i.e. no additional
language constructs are needed. The function is just

annotated as suitable for execution on a GPU.

Keywords: Modelica functions, Multi-core, GPU, CFD

1 Introduction

Modelica users can and want to build more realistic

and complex models. This typically means slower

simulations. The speed of CPUs has of course
increased enormously to partly compensate. But now

it’s important to utilize the many cores available in
modern computer architectures.

The paper (Elmqvist, et al., 2014) presents an

algorithm for automatic partitioning of model
equations onto CPU cores. This technique is now

available in Dymola 2016 (Dassault Systemes, 2015).
This paper discusses code generation for GPU

(Graphics Processing Unit) cores. This is important

when the model has regular structure, for example,
discretization of PDEs. The behavior of each cell can

then be partly described by a function call. The

evaluation of such calls can then be made in parallel on
the GPU cores. The same function is thus executed on

every GPU core, but operates on different data; the

data of its cell.
We believe GPU code generation should be

transparent for the user. The user only needs to give a

hint that a certain function is suitable for GPU
execution. In addition to the simplification for the user,

it enables better portability of Modelica code, since if a
tool does not support GPU code generation, it can

simply ignore the annotation. The drawback might be

that the user does not have full control of how the GPU
and its memory are utilized; i.e. might not be able to

get optimal speed.

Another important advantage with automatic GPU
code generation is that built-in operators such as matrix

multiplication and overloaded operators can also
benefit. In addition, it allows reuse of normal Modelica

library functions and automatically generating GPU

code for them.
(Gebremedhin, et al., 2012) proposes an extension to

Modelica called ParModelica, which introduces special
kernel function and parallel function declarations

and special variable declaration prefixes to indicate

what memory to use for the variables: parglobal,

parlocal, etc.

The outline of this paper is as follows. First a

general introduction to GPU architecture and
programming is given. Then follows principles of

automatic GPU code generation from Modelica
functions. Finally several examples are presented.

The speed-up factor varies for the different problem

formulations. The best speed-up so far for this early
Dymola prototype is about 5 times. It should be noted

that this was achieved on a laptop with NVIDIA’s
Quadro K2100M GPU chip and an Intel Core i7-4800

MQ processor.

2 GPU Architectures and Programming

Models

In this section, a short introduction to GPU

architectures is made, bringing up some of the
fundamentals and the aspects that are considered most

important for this paper, concerning performance.

DOI
10.3384/ecp15118235

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

235

After that follows a short introduction to CUDA, the
programming model used in this project, where some

more performance considerations are brought up,

ending with a hands-on example and some practical
details for the code generation. Some of the aspects are

directed to the user, to get an idea of the kind of code

that could be accelerated by the GPU, and some
aspects are rather for the auto generation.

A thorough introduction to the topics is made by
(Kirk, 2013) and (Goteman, et al., 2015).

2.1 GPU Architectures

The most fundamental difference between CPU’s and
GPU’s, is that the CPU’s are general purpose
processors, designed to perform well on sequential
code, whereas a GPU is designed to process massively

parallel tasks, only. The large cache memories and
control logics of a CPU are not provided for the cores

of a GPU. Instead, the manufacturers focus on putting

as many cores as possible on the chip, letting the
threads share cache and control logic between them. A

GPU today may have thousands of cores. That is

possible, since GPU’s only have to work on SIMD
(singe instruction, multiple data) instructions. That

means that, when feeding the GPU a task, that task is
the same for every thread. The only difference is which

data the task is to be performed on. Now, a task is often

a sequence of instructions that, as we will come to
later, in code is expressed as a function. This function

may contain e.g. an if-statement that causes divergence

in terms of execution among the threads. The reason
that threads may take different paths at such branching

points is that the conditions may depend on thread
specific data (such as position in a grid, temperature at

that position, etc.). We’ll come back to this in a bit.
A GPU is designed to process a large amount of

threads as fast as possible, and it is important to see the

distinction between that and to process every single

thread as fast as possible. The GPU is not supposed to

work on all threads at once, which generally is not

possible, as the number of cores is too low for it. It is
designed to have multiple times more threads loaded

into registers, than it can execute. This allows for

efficient thread scheduling, which means that
whenever a thread is idle because of a long latency

operation, such as a global memory access, the cores
can switch to work on other threads that are ready and

waiting for execution.

GPU’s are good at thread scheduling, but all time
spent on long latency operations cannot be hidden. To

fully utilize a GPU, you’ll want to let the cores work
with floating point operations as much as possible. And

even if today’s chips have a bandwidth to global
memory (RAM) of more than 200 GB/s, global
memory accesses has to be considered for good

performance. A good way to analyze this is to consider

the number of floating point operations per global

memory access for a thread, often called the CGMA
(Compute to Global Memory Access) ratio. It should

obviously be kept as high as possible. If it is too low,

there is no way to keep the cores busy, independently
how the threads are scheduled. That is because, if the

limited amount of data that can be delivered to the

cores per time unit is lower than the rate at which the
operations on the data can be executed, the data

transferring has become a limiting factor. So already
on a high level, as a user, it can be advantageous to

have the CGMA ratio-thinking in mind when

considering letting a function be computed on the
GPU.

The threads are partitioned on many levels, and this
partitioning can differ between different hardware

architectures. But most architecture has a lowest

partitioning level, at which the parts are called warps.
On warp level, no divisions between threads are made.

That means that if one thread in a warp has a long

latency operation (or just any operation, for that
matter) in an if-statement, but not the others, all threads

in the warp will have to wait for that one thread. But
the waiting is at least limited to the warp, which on

most current architectures consists of 32 threads. That

means that having if-statements does not necessarily
mean a big difference in performance. The divergence

can be organized to be minimized within warps, but as
it can be hard to know how warps are arranged, and

where the divergence will appear, divergent code

should generally be avoided.
The last, and most important, aspect to bring up, is

the process of transferring data between the CPU

memory and the GPU memory. It is the main
bottleneck of a GPU. The transfer speed is relatively

low, and the transfer is often related to a lot of
overhead work. That implies that there is no point to

send work to the GPU, unless there is a lot of it. So if it

is possible to avoid memory transfers of this kind, e.g.

by not repeatedly transferring constant data, it should

be done.

2.2 The NVIDIA CUDA Programming Model

CUDA is a parallel computing platform and

programming model invented by NVIDIA. In this
project, the extension CUDA C/C++ has been used,

making it possible to program CUDA enabled GPU’s
in a C/C++ environment, with a few extensions.

In CUDA, a function that should be executed, or

launched, in parallel is called a kernel. The kernel is
launched for a number of threads, which are divided

into blocks, creating a grid of blocks. The blocks are
the level on which threads are loaded to registers for

execution, meaning that when a block is loaded, it will

not unload before all its threads are executed. Thus
threads can only be synchronized within a block.

Synchronization here means putting points in the code

where the threads should wait and synchronize with

Automatic GPU Code Generation of Modelica Functions

236 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118235

other threads before continuing execution. Recall that
all threads are not executed at once.

Because all the threads in a block are loaded and

unloaded into registers at once, there are limitations on
the number of threads in a block. E.g. NVIDIA Quadro

K2100M, the chip used for most experiments in this

project, has a maximum block size of 1024 threads.
The blocks are executed on Streaming Multiprocessors

(SM’s), and an SM can usually accommodate a number
of blocks. It is on the SM level that warps are

scheduled for execution, and it is therefore important to

load as many threads as possible to each SM. On
K2100M, each SM can have a maximum of 2048

threads loaded at once, and there are three SM’s,
giving a total of 6144 thread slots. So in order to fully

utilize this chip, considering the scheduling of warps,

at least 6144 threads should be launched. It may be
interesting to know that each SM has 192 cores, giving

a total of 576 cores, which equals the number of

threads that can actually execute in parallel.
If all 6144 slots for threads are loaded during an

entire kernel execution, the kernel is said to have 100
% occupancy. Of course this rarely happens since some

blocks are bound to finish sooner than others. For good

performance, the occupancy should be kept as high as
possible, to allow for as much warp scheduling as

possible. If a kernel on K2100M would be launched
with blocks of 768 threads, the SM’s would still only
have place for two whole blocks, resulting in a lower

occupancy. Or if a kernel is complex, each thread may
require more registers, forcing down the number of

threads loaded into an SM, thus decreasing the

occupancy. There are more aspects that can affect the
occupancy, and it is definitely a term that is good to

know when considering GPU performance in general.

2.2.1 Example: vector addition

It may be of interest to see how all this could look in

practice. First a few notes about CUDA C/C++:
1.) Generally, when inside a kernel, i.e. when code

is executed on the GPU, no data that is not

allocated on GPU memory can be accessed.
2.) Built-in primitives such as int and float,

pointers, and structs can be copied to the GPU

as arguments to the kernel (without deep copy).
Large sets of data, like arrays, have to be copied

using some CUDA API function.
3.) A kernel’s return type must be of type void.
4.) A kernel may call other functions on the GPU,

called device functions.
5.) Only a subset of C/C++ is supported.

6.) Thrust is a C++ STL based library for CUDA.
 Two arrays can be added on the CPU in the

following function:

void vectorAddCPU(const double *a, size_t n,

 const double *b, double *c){

 for(size_t i=0; i<n; ++i){

 c[i] = a[i]+b[i];
}

}

It is clear that this is a very parallel task. n threads

could be launched, where each thread should have an

individual variable i in some way. The simplest way to
recognize that something is parallelizable is usually

when it is placed in a for-loop, or in nested for-loops,
and it does not depend on previous iterations. Below is

a kernel for vector addition:

__global__

void vectorAddGPU_kernel(const double *a, size_t n,
 const double *b, double *c){

 size_t i=threadIdx.x+ blockIdx.x*blockDim.x;

 if(i<n){
 c[i]=a[i]+b[i];

}

}

Note the keyword __global__ needed before the return
type. First the thread is identifying itself using the

thread specific variable threadIdx, the variable

blockDim, and the block specific variable blockIdx.
Those are variables of the simple type dim3, having

three members: x, y and z. This helps to arrange threads
according to your problem in up to three dimensions.

In this case the problem is obviously one dimensional.

The if-statement is needed to prevent memory access
violations in cases where more threads are launched

than needed. That is usually the case when many

blocks are launched, since all blocks have the same
size.

 However, some operations are needed to call the
kernel:

void vectorAddGPU(const double *a, size_t n, const

double *b, double *c){

 // Allocate GPU memory.
 double *a_d, *b_d, *c_d;

 cudaMalloc(&a_d, n*sizeof(double));

 cudaMalloc(&b_d, n*sizeof(double));
 cudaMalloc(&c_d, n*sizeof(double));

 // Copy a and b to GPU.
 cudaMemcpy(a_d, a, n*sizeof(double),

 cudaMemcpyHostToDevice);
 cudaMemcpy(b_d, b, n*sizeof(double),

 cudaMemcpyHostToDevice);

 // Define grid and block dimensions

 dim3 block = dim3(1024,1,1);

 dim3 grid = dim3((n+1023)/1024,1,1);

 // Launch kernel
 vectorAddGPU_kernel

Session 3C: Modelica Language & Compiler Implementation 1

DOI
10.3384/ecp15118235

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

237

 <<<grid,block>>>(a_d, n, b_d, c_d);

 // Copy result back to the CPU.

 cudaMemcpy(c, c_d, n*sizeof(double),
 cudaMemcpyDeviceToHost);

 // Free GPU memory
 cudaFree(a_d);

 cudaFree(b_d);
 cudaFree(c_d);

}

First memory is allocated on the GPU for the three

vectors, using the CUDA API function cudaMalloc().
Then a and b are copied to the allocated memory, using

the CUDA API function cudaMemcpy(). Then the
blocks and the grid are defined, and the kernel is

launched. Note the CUDA syntax to specify the kernel

launch settings. When the addition is completed on the
GPU, the result in c has to be copied back, again using

cudaMemcpy(). Last of all the GPU memory has to be
freed with the CUDA API function cudaFree().

3 GPU Code Generation

The basis for our code generator for Modelica

functions is that we recognize that specially marked

functions (annotation(gpuFunction=true)) satisfy
certain for-loop patterns, and for those functions

automatically generate GPU-code. The GPU-code
consist of a wrapper that allocates variables, copies

default values, executes the main body (automatically

calling generated CUDA kernel-functions), and then
copy back outputs. Any functions called in a kernel

function are mapped to device functions.

3.1 Variable allocations

All array variables of the function must either have

unknown size (only allowed for inputs), or a size given
as a simple arithmetic function of other sizes and

integer literals. The unknown array sizes are also
propagated to the kernel function. (For performance

reasons – and to catch errors – it is good to have as few

unknown sizes as possible.) The arrays are allocated on
the GPU and existing values copied to the GPU; this

allows non-input variables to be assigned a default

value in a binding expression. Protected arrays are
treated as outputs of the kernel function.

3.2 Loop patterns

The first pattern for the algorithm is that the entire

algorithm is a (possibly nested) for-loop with range
1:size(array, literal) and inside the loop any algorithmic

code satisfying certain assumptions. The code inside

the for loop(s) is mapped to a kernel function; and the
(nested) for-loop(s) are replaced by a parallel launch of

the kernel function – and checking the index in the
kernel function. As an example, consider the function:

function vectorAdd

 input Real a[:];

 input Real b[size(a,1)];

 output Real c[size(a,1)];

algorithm

 for i in 1:size(a,1) loop

 // Kernel part

 c[i]:=a[i]+b[i];

 end for;

 annotation(gpuFunction=true);

end vectorAdd;

This Modelica function is translated to the previously

given vectorAddGPU and vectorAddGPU_kernel code.

3.3 Time integration on the GPU

The second pattern (intended to handle time-integration

on the GPU) is a for-loop (with arbitrary index) that
contains one or more instances of the first pattern. Each

instance of the first pattern is then mapped to a kernel
function and called at the appropriate place. The rest of

the body may contain assignments; and any array

assignment is mapped to a device-to-device copy. The
main benefit of this pattern is that we do not need to

copy back outputs from the GPU until the end of the

function, and device-to-device copy is normally a lot
faster.

As an example, consider the following partial
differential equation with v(0,0)=0:

 ��ሺ�, �ሻ�� = �(�ሺ�, �ሻ)��ሺ�, �ሻ�� = �ሺ�, �ሻ

One way of solving such PDEs is to discretize in the x
direction and use an ODE solver for the resulting

equations. However, fine grained spatial discretization
requires short time increments and it might then be

better to use a fixed step size Euler method for time

integration.
The function IntegrateF below implements such a

solution.

function IntegrateF

 input Real v[:];

 output Real next_v[size(v,1)]:=v;

 input Real dt;

 input Integer nSteps;

protected

 Real temp_v[size(v,1)];

algorithm

 // Loop in wrapper-code

 for step in 1:nSteps loop

 // Handled using device-to-device copy:

 temp_v:=next_v;

 for i in 1:size(v, 1) loop

Automatic GPU Code Generation of Modelica Functions

238 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118235

 // Kernel part

 next_v[i]:=temp_v[i]+dt*(if i>1 then

 F(temp_v[i-1]) else 0);

 end for;

end for;

end IntegrateF;

For the function IntegrateF the main code is similar to

vectorAddGPU. The difference is that the called GPU

function part is replaced by a loop as follows:

dim3 block0=dim3(1024, 1, 1);
dim3 grid0=dim3((x0_0dim0+1023)/1024,1,1);
 {
 int st;
 for(st=1; st<=nSteps; st+=1) {
 cudaMemcpy(tem_vGPU, next_vGPU,
 temp_vGPUs*sizeof(double),
 cudaMemcpyDeviceToDevice);
 IntegrateFcuda<<<grid0,block0>>>(
 vGPU, vdim0,next_vGPU,
 dt,nSteps, temp_vGPU);
 }
 }

i.e. the time integration loop is executed on the CPU.
There is synchronization between each iteration, i.e. all

launched kernel calls must have completed. Note that
the statement temp_v:=next_v is translated to a copy

call on the GPU memory.
The copying can be avoided by swapping arguments

to the kernel calls. It is possible to manually avoid it

(note: next_v is initialized to v) – assuming an even
number of steps:

algorithm

 // Loop in wrapper-code

 for step in 1:2:nSteps loop

 for i in 1:size(v, 1) loop

 // Kernel part: first kernel function

 temp_v[i]:=next_v[i]+dt*(if i>1 then

 F(next_v[i-1]) else 0);

 end for;

 for i in 1:size(v, 1) loop

 // Kernel part: second kernel function

 next_v[i]:=temp_v[i]+dt*(if i>1 then

 F(temp_v[i-1]) else 0);

 end for;

end for;

Automating the entire generation of time integration
code from the model code would be a possibility for

the future, by using synchronous partitions and
specifying a solver method associated with the clock.

3.4 For-expressions

An alternative pattern to nested for-loops would be
arrays assigned in for-expressions; it would simplify

some of the assumptions below, but for performance

reasons we would likely need to fuse the loops from
multiple for-expressions.

3.5 Assumptions for kernel code

The assumptions on the inner code are (these could be

automatically verified, but this is not yet included in

the prototype):

 All array indices are valid; based on the array

sizes.

 Any right-hand-side variable is not assigned in

the inner code. (An exception can be made for
scalar temporaries that are initialized in the

inner code.) This explains why we need two

arrays next_v and temp_v in the example
above.

 Each left-hand-side array element is only

assigned once.

 Currently only access to scalar variables, and

scalar element of arrays in the right hand side,

i.e. slices are not supported.

4 Application examples

4.1 Matrix Operations

(Gebremedhin, et al., 2012) uses matrix multiplication
as one bench mark example for an extension to

Modelica called ParModelica which introduces special

kernel function and parallel function declarations
and special variable declaration prefixes to indicate

what memory to use for the variables: parglobal,

parlocal, etc.
In our approach, such a matrix multiplication

function can be coded in Modelica as follows. Note
that the only new element compared to Modelica

version 3.3 (Modelica, 2014) is the annotation.

function Multiply

 input Real A[:,:];

 input Real B[size(A,2),:];

 output Real C[size(A,1),size(B,2)];

protected

 Real temp;

algorithm

 for i in 1:size(A,1) loop

 for j in 1:size(B,2) loop

 temp := 0;

 for k in 1:size(A,2) loop

 temp := temp + A[i, k]*B[k, j];

 end for;

 C[i, j] := temp;

 end for;

 end for;

 annotation(gpuFunction=true);

end Multiply;

It is translated to two functions. The kernel function
which runs on the GPU is shown below:

Session 3C: Modelica Language & Compiler Implementation 1

DOI
10.3384/ecp15118235

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

239

#include <stddef.h>
__global__
void Multiply_cuda(
 double const * A, size_t Adim0,
 size_t Adim1,
 double const * B, size_t Bdim1,
 double * C)
{
 double temp;
 temp=0;
 int i = 1+threadIdx.x +
 blockDim.x*blockIdx.x;
 int j = 1+threadIdx.y +
 blockDim.y*blockIdx.y;
 if ((i<=Adim0) && (j<=Bdim1)) {
 temp = 0;
 {
 int end_ = Adim1;
 int k;
 for(k = 1; k <= end_; k += 1) {
 temp = temp +
 A[(i-1)*Adim1+(k-1)] *
 B[(k-1)*Bdim1+(j-1)];
 }
 }
 C[(i-1)*Bdim1+(j-1)] = temp;
 }
 return;
}

The other function runs on the CPU to allocate
memory for the GPU, copy data to and from the GPU

and to invoke the kernel function:

extern "C"
void Multiply(
 double const * A, size_t Adim0,
 size_t Adim1,
 double const * B, size_t Bdim1,
 double * C)
{
 /* GPU Memory declaration */
 static double * AGPU=0;
 static size_t AGPUS=0;
 size_t AGPUs;
 static double * BGPU=0;
 static size_t BGPUS=0;
 size_t BGPUs;
 static double * CGPU=0;
 static size_t CGPUS=0;
 size_t CGPUs;
 /* GPU Memory size */
 AGPUs=Adim0*Adim1;
 BGPUs=Adim1*Bdim1;
 CGPUs=Adim0*Bdim1;

 /* GPU Memory allocation */
 if (AGPU&&(AGPUS<AGPUs))
 {AGPUS=0; cudaFree(AGPU); AGPU=0;}
 if (!AGPU)
 {AGPUS=AGPUs;cudaMalloc((void**)&AGPU,
 AGPUS*sizeof(double));}

 if (BGPU&&(BGPUS<BGPUs))
 {BGPUS=0; cudaFree(BGPU); BGPU=0;}
 if (!BGPU)
 {BGPUS=BGPUs;cudaMalloc((void**)&BGPU,

 BGPUS*sizeof(double));}

 if (CGPU&&(CGPUS<CGPUs))
 {CGPUS=0;cudaFree(CGPU);CGPU=0;}
 if (!CGPU)
 {CGPUS=CGPUs;cudaMalloc((void**)&CGPU,
 CGPUS*sizeof(double));}

 /* GPU Memory copy to */
 cudaMemcpy(AGPU, A,AGPUs*sizeof(double),
 cudaMemcpyHostToDevice);
 cudaMemcpy(BGPU, B,BGPUs*sizeof(double),
 cudaMemcpyHostToDevice);
 cudaMemcpy(CGPU, C,CGPUs*sizeof(double),
 cudaMemcpyHostToDevice);
 /* Call GPU function */
 dim3 block=dim3(32, 32, 1);
 dim3 grid=dim3((Adim0+31)/32,
 (Bdim1+31)/32, 1);
 GPUfunction_cuda<<<grid,block>>>(AGPU,
 Adim0, Adim1,BGPU, Bdim1,CGPU);
 /* GPU Memory copy from */
 cudaMemcpy(C, CGPU,CGPUs*sizeof(double),
 cudaMemcpyDeviceToHost);

}

4.1.1 Timing

Timing of the function Multiply for matrix

multiplication was done for different sizes (n) of square
matrices. Table 1 summarizes the execution times on

CPU and on GPU and the speedup factor.

Table 1: GPU Speed-up for matrix multiplication. The

speedup values show the CPU/GPU time ratio.

N CPU[s] GPU[s] Speedup

50 0.000453 0.000438 1.03

100 0.00362 0.0018 2.01

200 0.0275 0.00996 2.76

500 0.506 0.142 3.56

1000 6.37 1.11 5.74

Note that the CPU-performance for large matrices is

sensitive to caches; which for n being a power of 2 can
increase the CPU time by up to a factor of 3; the

chosen dimensions avoid that effect.

4.2 Cold Plate

As a second application example, a cold-plate is

modeled. These are, for instance, used to cool power-
electronics. The dissipated heat is transported away

from the source by conduction and convection. In this
two-dimensional example, a single fluid pipe is

surrounded by two rectangular conducting plates. For

the sake of clarity, we created a simple monolithic
model that can mentally be split up into three kinds of

cells: thermal conduction cells, fluid volume cells, and
fluid flow cells. This is illustrated in Figure 1.

Automatic GPU Code Generation of Modelica Functions

240 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118235

Figure 1: Illustration of a simple cold plate model, split

up into thermal (T), fluid volume (V), and fluid flow (f)-

cells.

Overall, the behavior of the cells is similar to models in
the Modelica.Fluid and Modelica.Thermal.

HeatTransfer domains. The number of cells in both
dimensions is configurable, tuning the number of

variables and states. In the thermal conduction cells,

heat is stored and conducted to the four neighboring
thermal cells or fluid volume cells. This is a slight

simplification, as the resulting dynamic is anisotropic.
In the fluid volume cells, balance equations for mass

and energy are established.

Fluid is transported between the volume cells by
flow-cells. These calculate the mass flow based on the

pressure values of the neighboring volume cells by the
function Modelica.Fluid.Pipes.BaseClasses.Wall-

Friction.Detailed.massFlowRate_dp(). This calculation

is quite involved and is therefore done in parallel by
the GPU as shown in the following Modelica code, i.e.

since the kernel function calls massFlowRate_dp,

CUDA code is generated as a device function.

function WallFriction

 input Real dp[::];

 input Real d[size(dp,1)-1];

 input Real da;

 input Real db;

 input Real v[size(dp,1)-1];

 input Real va;

 input Real vb;

 input Real celllength;

 input Real diameter;

 input Real roughness;

 input Real m_flow_small;

 output Real m_flow[size(dp,1)];

algorithm

 for i in 1:size(dp,1) loop

 m_flow[i] := if i == 1 then

 massFlowRate_dp(dp[1], da, d[1],

 va, v[1], celllength, diameter, roughness, m_flow_small)

 else if i == size(dp,1) then

 massFlowRate_dp(dp[i], d[i-1], db,

 v[nX], vb, celllength, diameter, roughness, m_flow_small)

 else

 massFlowRate_dp(dp[i], d[i-1], d[i],

 v[i-1], v[i], celllength, diameter, roughness, m_flow_small);

 end for;

 annotation(gpuFunction=true);

end WallFriction;

As initial conditions, the temperature of all cells was
set to 295K. A constant pressure gradient of 0.01bar

was applied and the inlet temperature was set to

373.15K, resulting in a heating transient. Since the
fluid transport is rather stiff, a small step-size has to be

applied when using the RK2 method for integration.

Table 2: GPU Timing [s] and speed-up for cold plate

model

nx ny CPU GPU CPU/GPU

256 256 17.2 12.1 1.42

512 512 91.7 42.9 2.13

500 200 26.0 18.1 1.43

1000 100 28.6 20.2 1.41

2000 200 103.0 65.2 1.57

As a result of the parallelization, a speed-up by a factor
of 2 was achieved in one case. Note, that the step size
and simulated time are different for the different grids.

The presented example only showed a very simple

model of a cold plate with a straight flow of cooling
liquid. Nevertheless, we think that the measured

performance gains can be roughly transferred to more

complex designs.

4.3 Shallow Water

For wave power plants or off-shore constructions such
as wind-turbines and oil-platforms, as well as for free

floating objects such as ships, the interaction with the
water surface is a key component for system

simulations. For this purpose, the shallow water

equations represent a set of partial differential
equations (PDEs) that enable an efficient

approximation of the surface dynamics (Vreugdenhil,

1994). The PDE for a 2D-surface in its simplest form is
shown below: �ℎ�� = −�⁡ ቆ����� + ݕ���� ቇ

 ����� = ⁡−��ℎ��

 ����� = ⁡−��ℎ�ݕ

In this model, the velocity of the water flowing within

the 2D surface is described by �� and⁡��. A gradient

Session 3C: Modelica Language & Compiler Implementation 1

DOI
10.3384/ecp15118235

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

241

(i.e. a difference between inflow and outflow) then

causes the surface height ℎ to raise or fall. Spatial

gradients in the surface height then cause a

counteracting acceleration of the water flow. � and �
are parameters of the model. H is chosen as L/4, where

L is the length of the side of the surface area, and g is
set to 9.81 m/s

2
 to model gravity realistically.

The PDE is transformed into an ODE by discretizing

the space using finite differences and a staggered grid
for the velocity and surface height, as depicted in

Figure 2. The resolution of this grid can be set by using

the parameter n.

Figure 2: A staggered grid: black points symbolize the

height grid �. Blue represents �� and green ⁡�࢟. For a size

of n, the grid contains in total 3n
2
+2n points.

Using this discretization, the computation can be

written in form of a GPU function that performs a loop
over the staggered grid:

function ShallowWater

 input Real h[:,:];

 input Real vx[size(h, 1) + 1,size(h, 2)];

 input Real vy[size(h, 1),size(h, 2) + 1];

 input Real dx;

 input Real L;

 input Real g;

 output Real der_h[size(h, 1),size(h, 2)];

 output Real der_vx[size(vx, 1),size(vx, 2)];

 output Real der_vy[size(vy, 1),size(vy, 2)];

protected

 Real H=L/4;

algorithm

 for iy in 1:size(h, 2) loop

 for ix in 1:size(h, 1) loop

 der_h[ix, iy] := H*(vx[ix, iy] - vx[ix + 1, iy] +

 vy[ix, iy] – vy[ix, iy + 1])/dx;

 der_vx[ix, iy] := if ix > 1 then

 g*(h[ix - 1, iy] – h[ix, iy])/dx else 0;

 der_vy[ix, iy] := if iy > 1 then

 g*(h[ix, iy - 1] – h[ix, iy])/dx else 0;

 end for;

 end for;

 annotation(gpuFunction=true);

end ShallowWater;

This Modelica function is then included in a complete
Modelica model. This model also describes the

boundary conditions (closed boundary with zero

velocity) and the initial state (zero velocity with a
surface height that forms a Gaussian bell curve in the

center). In addition, the model generates data for

visualization.
The model can be simulated using, for example, a

Runge-Kutta method of second order (RK2) with fixed

step size of 40ms. Figure 3 shows the simulation result

for n=64 after the Gaussian bell has “dropped” and
created a typical circular wave front that grows until it
is reflected at the boundaries.

Figure 3: Dymola animation of a circular wave front in

the shallow water model.

Given its large number of states, the model is well-
suited for parallel computation on a GPU. On the other

side, the actual computation of an element is relatively

cheap in comparison to the required communication
overhead with its neighbor cells.

To improve performance, the time integration was

performed directly on the GPU, using the explicit Euler
method (using code similar to the previously described

function integrateF). The states could then be sampled
from the GPU memory at a desired rate. Table 3

presents the results of our performance measurements.

For larger models it becomes greater than a factor of 5.
In the table, nSteps is the number of iterations between

each sample, and the results shows how important it
can be to avoid unnecessary copying.

Table 3: GPU Speed-up for the shallow water simulation,

using inlined integration. The values show the CPU/GPU

time ratio.

nSteps\n 32 64 128 256

1 0.36 0.77 0.91 1.00

10 0.46 0.94 1.19 1.42

100 0.77 1.89 3.03 3.19

1000 1.01 3.06 5.30 5.12

1 2 n...
1

2

n

...

1 2 n n+1
1

2

n

n+1

Automatic GPU Code Generation of Modelica Functions

242 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118235

The values in the table show the CPU/GPU time ratio

of the simulations. n is the number of cells in one

dimension. The CPU simulations are made by the same
Modelica code, doing inline integration on the CPU

instead.

Using GPU parallelization, PDEs for shallow water
simulation can be better performed in combination

with classic system simulation. In this way, the
practical application range of Modelica can be

extended.

5 Conclusions

Modelica models are getting more and more complex

which means that simulations must be performed more
efficiently. This paper demonstrates a technique to

generate GPU code for Modelica functions in order to
speed-up simulations by parallel execution on many

GPU cores. No Modelica extensions are needed, only

an annotation indicating that a certain function might
be suited for execution on the GPU.

In our prototype implementation, and using the GPU
of a laptop, a speed-up of 5 could be achieved in some

cases.

Acknowledgements

This work has partly been performed as a master thesis
project at Lund Institute of Technology. The first

author served as an industrial advisor and Michael
Doggett as the formal supervisor.

This paper is partly based on research performed
within the ITEA2 project MODRIO. Partial financial

support of the Swedish VINNOVA is highly

appreciated.
Helpful discussions with Sven Erik Mattsson are

appreciated. The cold plate model originated from

input of Daniel Bender.

References

Dassault Systèmes (2015): Dymola 2016.

http://www.Dymola.com

Elmqvist H., Mattsson S.E., Olsson H. (2014): Parallel

Model Execution on Many Cores. Proceedings of the 10th

International Modelica Conference March 10-12, 2014,

Lund, Sweden.

Gebremedhin M., Hemmati Moghadam A., Fritzson F.,

Stavåker K. (2012): A Data-Parallel Algorithmic Modelica

Extension for Efficient Execution on Multi-Core

Platforms. Proceedings 9th Modelica Conference, Munich,

Germany, September 3-5, pp. 393-404. Download:

http://www.ep.liu.se/ecp/076/041/ecp12076041.pdf

Goteman A., Roxling V. (2015): GPU Usage for Parallel

Funcions and Contacts in Modelica, master’s thesis Lund
Institute of Technology, Lund, Sweden. (To be published)

Kirk D.B., Hwu W. (2013): Programming Massively Parallel

Processors, 2nd edition.

Modelica (2014): Modelica, A Unified Object-Oriented

Language for Systems Modeling.

Language Specification, Version 3.3, Revision 1, June 11,

2014.

https://www.modelica.org/documents/ModelicaSpec33Rev

ision1.pdf

Vreugdenhil C.B. (1994), Numerical Methods for Shallow-

Water Flow, Kluwer Academic Publishers, ISBN

0792331648

Session 3C: Modelica Language & Compiler Implementation 1

DOI
10.3384/ecp15118235

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

243

244 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Constructs for Meta Properties Modeling in Modelica

Hilding Elmqvist1, Hans Olsson1, Martin Otter2
1Dassault Systemes, Sweden, {Hilding.Elmqvist, Hans.Olsson}@3ds.com

2Institute of System Dynamics and Control, DLR, Germany, Martin.Otter@dlr.de

Abstract

This article proposes two new language constructs for
meta-properties modeling in Modelica: (1) Accessing
all instances of a given class and (2) extracting in a
convenient way the desired information from such
instances by allowing to pass type compatible model
instances as arguments to functions. In several
applications the usefulness of the proposed features are
shown. In particular global properties of a model can
be computed, such as total power, total mass, total
center of mass, or kinetic and potential energy of a
multi-body system. An important application is to bind
behavioral models and requirement models in a
convenient way, for example checking requirements
for all instances of a class in a behavioral model,
without changing the behavioral model.

Keywords: Array comprehension, array constructors,

component iterators, binding, instance binding, class

binding, total mass, total center of mass, total power.

1 Introduction

This article proposes two new Modelica language
constructs to (a) access all instances of a given class
and (b) to extract in a convenient way the desired
information from such instances. The primary goal for
these developments have been the enhancement of
requirements modeling in Modelica, as proposed for
example by (Jardin et al., 2011; Bouskela et al., 2015)
and using it concretely in combination with the
Modelica_Requirements library (Otter et. al., 2015).
The difficulty here is to extract observations from a
behavioral model (a) in a convenient way, (b) without

changing the behavioral model, and (c) binding these
observations to requirement models to assess the
behavioral model.

Due to their generality, these new language
constructs allow also other applications which cannot
be expressed in a practical way with current Modelica.
Most important, global properties, such as total center
of mass of a mechanical system, or total power or
energy of a system, can be calculated.

The language elements proposed in section 2 are
supported in a Dymola prototype (Dassault Systèmes,

2015) and all the examples in this paper have been
tested with it.

2 Proposals for new Language Elements

2.1 Component iterators

In section 10.4.1 of the Modelica Specification 3.3
(Modelica Association, 2014), array constructors with
iterators are defined. For example,

Real v[:] = {i*i for i in 1:10};

generates a vector v with 10 elements and every
element is the square of its index. Section 11.2.2.2
“Types as Iteration Ranges” states “The iteration range
can be specified as Boolean or as an enumeration
type”. It is proposed to generalize this scheme, so that a
class name can be used as iterator expression and in
every iteration the loop-variable is one instance of this

class. The loop iterates over all instances of this class
available in the simulation model, for example:

Real u[:] = {c.v for c in Class};

This construct can be used for example in the
following way:

record Observation

 constant String name;
 parameter Real m;
 parameter Real v2[3];
 Real r2;
end Observation;

model Class

 parameter Real p=2;
 parameter Real v[3] = {-1,2.5,6};
 Real r;
 Real w[3];
 Boolean b;
 Integer i;
 …

end Class;

model Submodel
 Class c1(p=3, v={1,-4,8});
 Class c2;
end Submodel;

model Model
 Submodel s1; Submodel s2;
 Integer i2[:] = {c.i+3 for c in Class};
 Observation obs[:] =
 {Observation(m=c.p, v2=c.v, r2=c.r,
 name=c.getInstanceName())
 for c in Class};
 Integer i3[:] = {c.i for c in ClassNotPresent};
end Model;

DOI
10.3384/ecp15118245

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

245

In every iteration of the for loops, the iterator variable c
adopts the name of an instance of class Class present in
Model (the complete model is inspected, independently
where the iterator expression is present). The built-in
operator c.getInstanceName() is expanded as the instance
name of c. If no instance of a class is present in a
model, such as for ClassNotPresent, then an array with
zero dimensions is generated.1

Therefore, the above model is equivalent to the
following expanded form (showing that the extension
can be formally defined by a rewriting rule):

model ModelExpanded

 Submodel s1;
 Submodel s2;

 Integer i2[:] = {s1.c1.i+3, s1.c2.i+3,
 s2.c1.i+3, s2.c2.i+3};
 Observation obs[:] = {
 Observation(m=s1.c1.p, v2=s1.c1.v, r2=s1.c1.r,
 name="ModelExpanded.s1.c1"),
 Observation(m=s1.c2.p, v2=s1.c2.v, r2=s1.c2.r,
 name="ModelExpanded.s1.c2"),
 Observation(m=s2.c1.p, v2=s2.c1.v, r2=s2.c1.r,
 name="ModelExpanded.s2.c1"),
 Observation(m=s2.c2.p, v2=s2.c2.v, r2=s2.c2.r,
 name="ModelExpanded.s2.c2")};
 Integer i3[0] ;
end ModelExpanded;

It is also proposed to extend the array constructor with
guards to be able to restrict the set of instances using a
built-in operator instanceIn(..):

model ModelWithGuard

 Submodel s1;
 Submodel s2;
 Integer i2[:] = {c.i+3 for c in Class
 if c.instanceIn(s1)};
end ModelWithGuard;

Here c takes the values “s1.c1” and “s1.c2”.
Naturally, there are restrictions of this new concept

of component iterators, in particular:
• As class in the iterator only the specialized classes

are possible that allow to construct component
instances: model, block, connector, record,
operator record (but not package, function, operator
function).

• Component iterators can only be used in the
specialized classes model and block.

• Component instances in functions are ignored (not
returned) by component iterators.

1 In order that it is possible to write generic code without
knowing which classes are present in the simulation model, no
error must be generated when a class is not present that is used
as iterator.

2.2 Model instances as arguments to functions

It is proposed to generalize the calling mechanism of
Modelica functions so that model, block, connector,
record and operator record instances can be passed as
arguments to functions, provided the instance is a
subtype of the corresponding record function argument.
Example:

model Submodel
 Real r1;
 Real r2;
 Integer i2
 Pin p1, p2;
protected
 Integer i1;
 …

end Submodel;

record Record

 Real r1;
 Integer i2;
end Record;

function get
 input Record rec;
 output Real result;
algorithm
 result :=rec.r1 + rec.i2;
end get;

model Model
 Submodel s1;
 Real r=get(s1);

 end Model;

Note that input argument rec of function get expects an
instance of record Record when calling the function.
However, an instance of model Submodel is passed
when calling this function. The semantics is that the
function extracts the values of all elements of s1 that
are also present in record rec. The function call in the
example is therefore equivalent to the Modelica 3.3
function call:

model ModelExpanded

 Submodel s1;
 Real r = get(Record(r1=s1.r1, i2=s1.i2));
end ModelExpanded;

Again, this language extension can be formally
specified as rewriting rule. Since the rewriting is done
locally, it seems like a minor convenience
improvement. As the requirements binding
applications in section 4 will show, this is not the case:
The essential advantage is to define the elements that
are extracted from a model only once (in the above
example in the definition of function get) and the user
of the function does not need to know which elements
are extracted. If this function is used for many models,
manually applying the rewriting would be no longer
practical and would be error prone.

To summarize, the proposed language element is a
short hand notation that is especially very convenient,
if the record input argument to a function has many
elements and the function is called many times for
many model instances.

3 Application: Total Properties

In this section several applications are sketched how
the language constructs from section 2 can be used in
applications where total properties of a system model
shall be computed.

Constructs for Meta Properties Modeling in Modelica

246 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118245

3.1 Total mass

In a 3-dimensional mechanical system it is sometimes
required to compute the total mass of a system. For
example, to determine the complete mass of a vehicle,
satellite, or robot from a behavioral model and
compare it with the measured weight of the built
system and/or with a CAD model. This allows to detect
modeling errors, but it might also be needed to check a
requirement (for example, the total aircraft weight must
be at most xx kg).

When using the Modelica.Mechanics.MultiBody
library, there are only two model classes where the
mass of a body are defined:
• MultiBody.Parts.Body
• MultiBody.Parts.PointMass
All other specialized parts, like Parts.BodyShape, use
an instance of Parts.Body and need therefore not to be
handled specially. Model TotalMass computes the
total mass of all bodies in a system.

model TotalMass "Compute total mass of system"

 import Modelica.Mechanics.MultiBody.Parts;
 import SI = Modelica.SIunits;
 final parameter SI.Mass m_total =
 sum({b.m for b in Parts.Body})
end TotalMass;

The assumption made here is that model Parts.Body has
a parameter with name m. The sum of the m elements
of all instances of Parts.Body is assigned to parameter
m_total. This model can be, for example, used to
compute the total mass of the r3 robot from the
Modelica Standard Library (see also Figure 1):

model TotalMassOfRobot "Compute total mass of r3 robot"

 import Modelica.Mechanics.MultiBody.Examples;
 extends TotalMass;
 extends Examples.Systems.RobotR3.fullRobot;
end TotalMassOfRobot;

Figure 1. Animation of robot r3.

Simulating and inspecting the result file gives
 m_total = 134.3 kg
If the result is not as expected, it might be difficult to
figure out the error in a larger system. It is then helpful
to print out all the found masses, as performed in the
next model:

model TotalMassWithLog Total mass with log"

 import Modelica.Utilities.Streams.print;
 import Modelica.Mechanics.MultiBody.Parts;
 import SI = Modelica.SIunits;

 final parameter SI.Mass m_total = sum(mObs[:].m);
protected
 record MassObservation

 String name "Name of body";
 SI.Mass m "Mass of body";
 end MassObservation;
 parameter MassObservation mObs[:] =
 {MassObservation(name=b.getInstanceName(),
 m=b.m)
 for b in Parts.Body};
equation
 when initial() then

 // print body names (mObs[:].name) and values

 end when;
end TotalMassWithLog;

Since the name of the body and its mass shall be
extracted, a local record MassObservation is introduced
and filled with the array comprehension language
element. The built-in operator getInstanceName(),
returns the names of the found body instances. When
using the model for the r3 robot, the following message
is printed during initialization:

... Body masses:
mechanics.b0.body: 1 kg
mechanics.b1.body: 1 kg
mechanics.b2.body: 56.5 kg
mechanics.b3.body: 26.4 kg
mechanics.b4.body: 28.7 kg
mechanics.b5.body: 5.2 kg
mechanics.b6.body: 0.5 kg
mechanics.load.body: 15 kg
Total mass: 134.3 kg

3.2 Position vector to total center of mass

In space applications there is sometimes the need to
determine the position of the total center of mass of a
satellite, rocket, or space station. One reason is, for
example, that a path planning software computed the
desired trajectory (of the total center of mass) and the
detailed mechanical model of the system shall start at a
point on this trajectory. Another reason is when a robot
is mounted on a free flying satellite system (as for
example planned for repair operations). Then,
movements of the robot do not change the position of
the total center of mass, and a control system for
grasping has to take this effect into account (and needs
to know the total center of mass). With the definitions
of Figure 2:

Session 3C: Modelica Language & Compiler Implementation 1

DOI
10.3384/ecp15118245

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

247

Figure 2. Computation of the total center of mass.

the well-known equation to compute the position of the
total center of mass is (under the assumption that all
absolute position vectors are resolved in the inertial
frame): ��������

=
∑�� ∙ ����∑�� (1)

Model TotalCenterOfMass computes the absolute
position of the total center of mass of all bodies in a
system (rCM_total):

model TotalCenterOfMass
 import Modelica.Mechanics.MultiBody.Frames;
 import Modelica.Mechanics.MultiBody.Parts;
 import SI = Modelica.SIunits;

 SI.Mass m_total = sum(obs[:].m) "Total mass";
 SI.Position rCM_total[3] =
 {sum(m_rCM[:,j])/m_total for j in 1:3}
 "Total center of Mass";
protected
 record FrameObservation

 SI.Position r_0[3];
 Frames.Orientation R "Orientation matrix";
 end FrameObservation;

 record BodyObservation

 SI.Mass m "Mass of body";
 SI.Position r_CM[3] "Vector frame_a to CM";
 FrameObservation frame_a;
 end BodyObservation;

 function getObservations

 input BodyObservation obs;
 output BodyObservation result=obs;
 algorithm annotation(Inline=true);
 end getObservations;

 BodyObservation obs[:] =
 {getObservations(b) for b in Parts.Body};
 Real m_rCM[size(obs,1),3](unit="kg.m");
equation
 for i in 1:size(obs,1) loop

 m_rCM[i,:] =obs[i].m*(obs[i].frame_a.r_0 +

 Frames.resolve1(obs[i].frame_a.R, obs[i].r_CM));
 end for;
end TotalCenterOfMass;

The computation is performed in the following way:

1. The variables that shall be extracted from every
body are defined in the protected section. These
are the mass m, the local position vector r_CM
from frame_a to the center of mass of the body, the
absolute position vector frame_a.r_0 from the
inertial frame to frame_a and the orientation matrix
frame_a.R transforming the inertial frame into
frame_a. All these variables are defined in a record
that has the same structure and uses the same
names as used in model Parts.Body.

2. The central declaration of obs extracts the desired
information from all instances of model Parts.Body:
 obs[:] = {getObservations(b) for b in Parts.Body};
There are two possibilities, either a record
constructor is used to extract the body variables (as
in TotalMassWithLog), or a function is used as
above (getObservations(b)) and one Parts.Body
instance is passed to the function. With the new
semantics of section 2.2, the tool extracts all
variables from the instances and copies them into
instances of the BodyObservation record.

3. Once the variables from all instances of Parts.Body
are extracted, it is rather straightforward to
compute the desired position vector to the total
center of mass. This requires to transform all body-
fixed position vectors obs[i].r_CM into the inertial
frame, add the absolute position vectors at the
body frames obs[i].frame_a.r_0, and use equation
(1).

This model can be, for example, used to compute the
position vector to the total center of mass of the r3
robot, see Figure 1:

model TotalCenterOfMassOfRobot
 "Compute total center of mass of r3 robot"

 import Modelica.Mechanics.MultiBody.Examples;
 extends TotalCenterOfMass;
 extends Examples.Systems.RobotR3.fullRobot;
end TotalCenterOfMassOfRobot;

A simulation produces the result in Figure 3.

Figure 3. Simulation results to compute the position
vector to the total center of mass of the r3 robot.

Constructs for Meta Properties Modeling in Modelica

248 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118245

4 Application: Requirements Binding

In this section a class of applications is discussed how
to bind requirement models in a convenient way to
behavioral models using the language constructs from
section 2.

4.1 Overview

In (Jardin et al., 2011) a concept was developed to
model properties and requirements in Modelica. This
was significantly enhanced in (Bouskela et al., 2015)
and a sophisticated Modelica library for this approach
was developed in (Otter et al., 2015).
In industry, requirements are usually defined in natural
language, such as2

• When in operation, pumps shall not cavitate
(= the pressure in a pump must be larger than a
minimum pressure)

• In flight, with only one engine running, the air

distribution circuit shall provide nominal

performance.

• After three failures of starting an engine, the APU

(Auxiliary Power Unit) must be started.

The basic idea is to provide a suitable Modelica library
to model such requirements in a formal way with
Modelica, see (Otter et al., 2015) for details. There are
the following key requirements from industry
(Bouskela et al., 2015):

1. The requirement models are developed
independently from the behavioral models that
shall be checked. The reason is (a) that
requirements shall be formally specified before
designing the system (and therefore a behavioral
model is not yet available), and (b) that
requirements are defined from system architects
which are not the simulation specialists building
up the behavioral models. As a consequence, the
variables used in requirement models need not be
the same (not even the data type) as the
(corresponding) variables in the behavioral model.

2. When associating requirement models to
behavioral models (in order to check the
behavioral models), it is usually not possible or not
allowed to change or adapt the code of the
behavioral models.

Based on these restrictions there is a fundamental issue
how to extract variables from a behavioral model
(these variables are called “observation” variables
below) and assign them as inputs to the requirement
models. This process is called “Binding” in the sequel.
In (Jardin et al., 2011) Modelica buses have been used
for the “Binding”. This violates the restrictions above
since the behavioral model must be modified and the

2 These and further examples from this section are from
(Bouskela et al., 2015) or (Otter et al., 2015)

variable names in the behavioral and requirement
models must be identical. Furthermore, in larger use
cases of EDF and Dassault Aviation it turned out that
this is not a practical approach because it is also much
too inconvenient to use.

There have been also other proposals how to define
the “Binding”, such as (Schamai, 2013). Still, until
now, no satisfactory approach is known to be used
conveniently in Modelica. In the rest of this section it
is shown that the proposed new language elements of
section 2 provide a convenient and powerful way to
define the “Binding”.

4.2 Instance binding

The goal is to check the following requirement for all
pumps present in a system:

When in operation, a pump shall not cavitate.

This requirement can be checked with the following
model3:

record PumpObservation

 constant String name "Name of pump";
 Boolean inOperation "= true, if in operation";
 Boolean cavitate "= true, if pump cavitates";
end PumpObservation;

model PumpRequirements

 import Modelica.Utilities.Streams.print;
 input PumpObservation obs[:];
equation
 for i in 1:size(obs,1) loop

 when obs[i].inOperation and obs[i].cavitate then

 print("... warning: pump " + obs[i].name +
 " is cavitating during operation");
 end when;
 end for;
end PumpRequirements;

The requirement definition above is independently of
the construction of the pump and how the values of the
Boolean variables inOperation and cavitate are
determined from the behavioral model. For a concrete
pump, here from:

 Modelica.Fluid.Machines.PrescribedPump

a function is used to map observation variables of an
instance of PrescribedPump to the variables needed by
the requirement model:

function fromPrescribedPump

 input PrescribedPumpObservation obs;
 input String name;
 input Modelica.SIunits.Pressure p_cavitate=0.99e5;
 output PumpObservation result(
 name = name,
 inOperation = obs.N_in > 0.1,
 cavitate = obs.port_a.p <= p_cavitate or
 obs.port_b.p <= p_cavitate);

3 In case of violation, only a warning message is printed. In
(Otter et al., 2015) a more involved handling is performed.

Session 3C: Modelica Language & Compiler Implementation 1

DOI
10.3384/ecp15118245

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

249

protected
 record PortObservation

 Modelica.SIunits.Pressure p;
 end PortObservation;
 record PrescribedPumpObservation

 Real N_in(unit="1/min");
 PortObservation port_a;
 PortObservation port_b;
 end PrescribedPumpObservation;
algorithm
 annotation(GenerateEvents=true);
end fromPrescribedPump;

Here PrescribedPumpObservation is a record declared
internally in the function that defines which variables
shall be extracted from an instance of the
PrescribedPump model. In this case, these are N_in, the
speed of the pump shaft, as well as port_a.p and
port_b.p, the pressures at the pump ports. This record is
used as input argument together with the name of the
pump. As output argument, an instance of the
PumpObservation record is used and via a record
constructor the variables from the
PrescribedPumpObservation are mapped to the
PumpObservation output argument.

When using the record constructor, relations are
present, such as obs.N_in > 0.1. With a normal function,
this would lead to an error during translation, because
(a) relations in functions do not generate events, (b)
this function is called in the continuous-time part of
Modelica and (c) in Modelica it is not allowed that
Boolean variables can change during continuous-time
integration. This problem is resolved with the
annotation GenerateEvents=true. This is a standard
Modelica annotation and defines that relations in this
function generate events. The effect is that the Boolean
variables can only change at event points.

The PumpRequirements model and the mapping
function from a PrescribedPump to this model is now
evaluated with example BatchPlant_StandardWater
form the Modelica Standard Library. A screen shot of
this model is shown in Figure 4. This model has two
instances of model PrescribedPump, named P1 and P2
(at the bottom of the diagram). This system is checked
with the following model:

model CheckPumpsOfBatchPlant
 import Modelica.Fluid.Examples.AST_BatchPlant;
 extends AST_BatchPlant.BatchPlant_StandardWater;

 PumpRequirements req(obs=
 {fromPrescribedPump(P1,"P1"),
 fromPrescribedPump(P2,"P2")});
end CheckPumpsOfBatchPlant;

As can be seen, an instance of the PumpRequirements
model is defined. The pump instances P1 and P2 from
the BatchPlant_StandardWater model are passed as
arguments to function fromPrescribedPump. With the
proposed language feature of 2.2, observation variables

Figure 4. Example model BatchPlant_StandardWater
form the Modelica Standard Library.

are extracted from the pumps and are transformed as
needed from the requirement models.

Note, as required the behavioral model (=
BatchPlant_StandardWater) is not modified and the
observation variables used in the behavioral model and
the requirement model might be different. Simulation
results are shown in Figure 5.
As can be seen, one of the pumps is cavitating once. As
a result, the log window contains a warning message:

... warning: pump P1 is cavitating during operation

There is always the need to specify for one or more
individual instances specific requirements (for
example, “at least one pump present in room A must

always be in operation”4), and then the approach
above, also called instance binding, has to be applied.

However, there are also requirements that hold for
many instances, and the instance binding may then
become inconvenient. In the next section this case is
handled by “class binding”.

4 In this case a vector of pumps must be passed to the require-
ment model consisting of the pump instances present in room A.

Constructs for Meta Properties Modeling in Modelica

250 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118245

Figure 5. Simulation results for the requirements model
of BatchPlant_StandardWater of Figure 4.

4.3 Class binding

In case a requirement holds for all instances of a class,
the array of observations need not be defined manually
but can be generated with the array comprehension for
classes of section 2.1. The previous example can then
be defined as:

model CheckPumpsOfBatchPlantWithForLoop

 import Modelica.Fluid.Examples.AST_BatchPlant;
 extends AST_BatchPlant.BatchPlant_StandardWater;

 PumpRequirements req(obs=
 {fromPrescribedPump(p, p.getInstanceName())
 for p in Modelica.Fluid.Machines.PrescribedPump});
end CheckPumpsOfBatchPlantWithForLoop;

Note, that this model generates requirement checks for
any number of pumps in the circuit. With the planned
guard on for-loops, it would also be possible to limit
the for-loop to instances of the desired class in a
specific sub-model.

4.4 Advanced class binding

Class-binding becomes more involved if instances for
two or more classes have to be treated simultaneously.
Here is a sketch of two different approaches based on
the scenario defined in (Bouskela et al, 2015):

A pump might be built up from several components,
for example with a centrifugal pump and with an
electric motor that drives the centrifugal pump.
However, the requirements from section 4.2,
PumpRequirements, are always the same, independently
of the underlying technology of the pump.

Assume that a cooling circuit is defined by two
subsystems that contain each three pumps built up by
centrifugal pump and electric motor components:

model Subsystem

 CentrifugalPump P1;
 ElectricMotor M1;

 CentrifugalPump P2;
 ElectricMotor M2;

 CentrifugalPump P3;
 ElectricMotor M3;
 ….
end Subsystem;

model CoolingSystem

 Subsystem subsystem1;
 Subsystem subsystem2;
end CoolingSystem;

The goal is to check the pumps. In order to do this one
has to collect observation variables, say, from P1 and
M1 and pass them to PumpRequirements. This is
straightforward for instance binding, but more
complicated if code for any number of instances shall
be implemented.

The essential difficulty is that information is
missing: It is not known from the Subsystem definition
whether P1 and M1 or P1 and M2 or P1 and M3 form the
pump. It might be possible to deduce this information
from the connection of the components but it seems
quite complicated to provide language elements to the
user such that he/she can implement code to deduce the
connection structure. Furthermore, even then there
might be not a unique solution because the motor M1
might not be directly connected to P1 (but via another
auxiliary component), or two motors might be
connected to P1, but only one of them is relevant for
the requirement model.

The solution proposed here is to add more
information. If it is not allowed or not possible to
modify the behavioral model, the only way is to list the
instances that belong together. This is performed in the
following model:

model CheckCoolingSystem

 extends CoolingSystem;
 constant String pumpMotorAssociations[:,3]=

 ["subsystem1", "P1", "M1";
 "subsystem1", "P2", "M2";
 "subsystem1", "P3", "M3";
 "subsystem2", "P1", "M1";
 "subsystem2", "P2", "M2";
 "subsystem2", "P3", "M3"];

 constant Integer motorIndices[:]=

 associateCPumpsAndEMotorsByNames(
 {p.getInstanceName() for p in CentrifugalPump},
 {m.getInstanceName() for m in ElectricMotor},
 pumpMotorAssociations, getInstanceName());

 PumpRequirements req(obs=

 fromCPumpAndEMotor(
 {fromCPump(p) for p in CentrifugalPump},
 {fromEMotor(m) for m in ElectricMotor},
 motorIndices));
end CheckCoolingSystem;

Session 3C: Modelica Language & Compiler Implementation 1

DOI
10.3384/ecp15118245

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

251

Array pumpMotorAssociations has three columns: The
first column contains the path name of the subsystem
in which the pump is present, such as "subsystem2". The
second and third columns contain the names of the
centrifugal pump and the electric motor that form the
pump, such as "P3", "M3". This array has to be
manually constructed for the circuit at hand.

With function associateCPumpsAndEMotorsByNames
the association of centrifugal and electric motor
instances is determined once during translation of the
model and the result is assigned to the constant Integer
array motorIndices, such that if centrifugal pump i is
associated with electric motor j, then motorIndices[i]=j.

In order to map the observations from the behavioral
model to the PumpRequirements model several new
mapping functions are needed. For example, function
fromCPumpAndEMotor can be implemented as:

function fromCPumpAndEMotor
 input PumpObservation_cavitate pObs[:];
 input PumpObservation_inOperation mObs[:];
 input Integer motorIndices[size(pObs,1)];
 output PumpObservation obs[size(pObs,1)];
algorithm
 for i in 1:size(pObs,1) loop

 obs[i].cavitate := pObs[i].cavitate;
 obs[i].inOperation :=
 mObs[motorIndices[i]].inOperation;
 end for;
end fromCPumpAndEMotor;

As can be seen, the motorIndices vector is used to
extract observation variables from the electric motor
observations mObs[motorIndices[i]] that are associated
with the corresponding centrifugal pump observations
pObs[i].

In case it is possible to modify the behavioral model
to be checked (here: CoolingSystem), another approach
might be more convenient and less error prone: Every
component gets an additional unique Integer
identification number, called “id”. A centrifugal pump
and an electric motor belong together and form one
pump, if both have the same “id”. It is not allowed that
any other pump in the circuit has the same “id”. The
circuit can then be modelled in the following way:

model SubsystemWithID
 CentrifugalPumpWithID P1 (id=1);
 ElectricMotorWithID M1(id=1);
 CentrifugalPumpWithID P2 (id=2);
 ElectricMotorWithID M2(id=2);
 CentrifugalPumpWithID P3 (id=3);
 ElectricMotorWithID M3(id=3);
end SubsystemWithID;

model CoolingSystemWithID

 SubsystemWithID subsystem1;
 SubsystemWithID subsystem2(P1(id=4),M1(id=4),
 P2(id=5),M2(id=5),
 P3(id=6),M3(id=6));
end CoolingSystemWithID;

The checking of the requirements can be performed as:

model CheckCoolingSystemWithID

 extends CoolingSystemWithID;

 constant Integer motorIndices[:]=

 associateCPumpsAndEMotorsByID(
 {p.id for p in CentrifugalPumpWithID},
 {m.id for m in ElectricMotorWithID});

 PumpRequirements req(obs=
 fromCPumpAndEMotor(
 {fromCPump(p) for p in CentrifugalPumpWithID},
 {fromEMotor(m) for m in ElectricMotorWithID},
 motorIndices));
end CheckCoolingSystemWithID;

Since the information about the association of
centrifugal pump and electric motor is within the
behavioral model, the code for the requirement check
in CheckCoolingSystemWithID is generic. Function
associateCPumpsAndEMotorsByID determines the same
index vector motorIndices as before. The
implementation of this function is however simpler:

function associateCPumpsAndEMotorsByID
 input Integer pumpIds[:];
 input Integer motorIds[:];
 output Integer motorIndices[size(pumpIds,1)];
algorithm
 for i in 1:size(pumpIds,1) loop

 for j in 1:size(motorIds,1) loop

 if motorIds[j] == pumpIds[i] then

 motorIndices[i] :=j; break;
 elseif j == size(motorIds,1) then

 assert(false, "id's are wrong");
 end if;
 end for;
 end for;
end associateCPumpsAndEMotorsByID;

In order to provide better diagnostics in case of an
error, it is useful to pass the instance names of the
centrifugal pumps and of the electric motors also to
this function. For simplicity this was not done above.
Furthermore, it should also be checked, that the id’s are
unique.

5 Summary

This paper proposes two new Modelica language
elements to extract information from a model in a
convenient way. This opens up new applications of
Modelica that could not be practically handled before.
The language elements and the sketched applications
have been evaluated and tested with a Dymola
prototype.

Acknowledgements

This paper is based on research performed within the
ITEA2 project MODRIO. Partial financial support of
the Swedish VINNOVA and the German BMBF is
highly appreciated.

Constructs for Meta Properties Modeling in Modelica

252 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118245

Helpful discussions with Daniel Bouskela, Nguyen
Thuy, Audrey Jardin (EDF), Eric Thomas, Maxim
Payelleville (Dassault Aviation), Wladimir Schamai
(Airbus Defence and Space), Peter Fritzson, Lena
Buffoni (PELAB), Alfredo Garro and Andrea Tundis
(UNICAL) on the “Requirements Binding” application
of section 4 are appreciated.

References

Bouskela D., Thuy N., Jardin A. (2015): D2.1.1 – Modelica

extensions for properties modelling, Part II: Modeling

Architecture for the Design Verification against System

Requirements. Internal report, ITEA2 MODRIO project,
March 2015.

Dassault Systèmes (2015): Dymola 2016.
http://www.Dymola.com

Jardin A., Bouskela D., Thuy N., Ruel N., Thomas E.,
Chastanet L., Schoenig R., Loembé S. (2011): Modelling

of System Properties in a Modelica Framework.
Proceedings 8th Modelica Conference, Dresden, Germany,
March 20-22., pp. 579-592. Download:
http://www.ep.liu.se/ecp/063/065/ecp11063065.pdf

Modelica Association (2014): Modelica, A Unified Object-

Oriented Language for Systems Modeling.

Language Specification, Version 3.3, Revision 1, June
11, 2014. Download:
https://www.modelica.org/documents/ModelicaSpec33Rev
ision1.pdf

Otter M., Thuy N., Bouskela D., Buffoni L., Elmqvist H.,
Fritzson P., Garro A., Jardin A., Olsson H., Payelleville
M., Schamai W., Thomas E., Tundis A. (2015): Formal

Modeling and Automatic Verification of Requirements.
Proceedings 11th Modelica Conference, Versailles,
France, Sept. 21-23.

Schamai, W. (2013): Model-Based Verification of

Dynamic System Behavior against Requirements:

Method, Language, and Tool. Ph.D. Thesis, No. 1547,
University of Linköping. Download: http://liu.diva-
portal.org/smash/record.jsf?pid=diva2:654890

Session 3C: Modelica Language & Compiler Implementation 1

DOI
10.3384/ecp15118245

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

253

254 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Flattening of Modelica State Machines: A Practical Symbolic

Representation

Bernhard Thiele1 Adrian Pop1 Peter Fritzson1

1PELAB, Linköping University, Sweden, {bernhard.thiele,adrian.pop,peter.fritzson}@liu.se

Abstract

Modelica 3.3 introduced dedicated built-in language sup-
port for state machines that was inspired by semantics
known from Statechart and mode automata formalisms.
The specification describes the semantics of these con-
structs in terms of data-flow equations that allows it to
be related to the Modelica DAE representation which is
the conceptual intermediate format of Modelica code af-
ter instance creation (flattening). However, a complete
transformation of state machine constructs into data-flow
equations at the stage of flattening requires an early com-
mitment to implementation details that potentially hin-
ders model optimizations at subsequent translation phases.
Also, due to the required substantial model transformation
the semantic distance between the original source model
and the flattened representation is rather large. Hence, this
paper proposes a more versatile symbolic representation
for flattened state machine constructs that preserves the
state machine’s composition structure and allows postpon-
ing optimizations to subsequent compiler phases.
Keywords: state machine, mode automata, flattening,

compilation

1 Introduction

The scope of the Modelica specification is briefly stated in
(Modelica Association, 2012, Section 1.2):

The semantics of the Modelica language is
specified by means of a set of rules for trans-
lating any class described in the Modelica lan-
guage to a flat Modelica structure. A class must
have additional properties in order that its flat
Modelica structure can be further transformed
into a set of differential, algebraic and discrete
equations (= hybrid DAE). Such classes are
called simulation models.

A typical compilation process for a Modelica language
tool is structured as depicted in Figure 1. Flat Modelica

is an intermediate representation which is further elabo-
rated into a representation from which optimized simula-
tion code can be generated. Conceptually, flat Modelica

Front-end
 parsing &
 instantiation

Modelica model

Flat Modelica
"Hybrid DAE"

Simulation
executable

Back-end
 sorting &
 optimization &
 code generation

C code

C Compiler

Figure 1. Outline of a typical compilation process for a Model-
ica language tool.

is closely related to a hybrid DAE (hybrid Differential Al-
gebraic Equation) representation. This relationship is dis-
cussed in (Modelica Association, 2012, Appendix C). The
mapping from flat Modelica to a hybrid DAE is a power-
ful concept, since it provides a mathematical foundation
for the semantics of flat Modelica.

Modelica 3.3 introduced dedicated built-in language
support for clocked state machines that was inspired by
semantics known from Statechart (Harel, 1987) and mode

automata formalisms (Maraninchi and Rémond, 2003),
particularly the mode automata variant implemented in the
Lucid Synchrone 3.0 language (Pouzet, 2006).

The Modelica specification describes the semantics of
state machines by a set of rules that allows relating state
machines to purely data-flow based Modelica code (Mod-
elica Association, 2012, Chapter 17)1. Hence, state ma-
chine constructs are reduced to data-flow equation con-
structs for which the flattening process is already de-
scribed in other parts of the language specification.

From this perspective it is natural to perform a com-
plete transformation of state machine constructs to data-

1A more accessible presentation of Modelica state machines with
additional examples can be found in (Fritzson, 2014, Chapter 13).

DOI
10.3384/ecp15118255

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

255

flow equations during the flattening process, so that the
resulting flat Modelica can be directly related to a flat hy-
brid DAE. However, a complete transformation of state
machine constructs into data-flow equations at the stage
of flattening requires an early commitment to implementa-
tion details. This commitment makes model optimizations
more difficult at subsequent translation phases. Addition-
ally, the required substantial model transformation renders
the semantic distance between the source code and the flat-
tened representation rather large which reduces the value
of flat Modelica as a traceable human checkable interme-
diate model representation.

2 State Machine Flattening in Cur-

rent Tools

At the time of writing, only Dymola2 provides full sup-
port for Modelica state machines. A presentation about
an early (incomplete) prototype implementation for Open-
Modelica3 was given in the OpenModelica Annual Work-
shop (Thiele, 2015). The flat Modelica code resulting
from State Machines in Dymola resembles the code gen-
erated by the above-mentioned OpenModelica prototype.

The simple state machine example presented in the
original Modelica state machine paper by Elmqvist et al.
(2012) is reused for illustrating the relation between the
state machine Modelica code and the generated flat Mod-
elica representation. Figure 2 shows the graphical repre-
sentation of that state machine as well as a plot of its vari-
able i for 30 seconds of simulation. The state machine

inner Integer i(start=0);

state1

outer output Integer i;

i = previous(i) + 2;

state2

outer output Integer i;
i = previous(i) - 1;

i > 10

i < 1

(a) Graphical representation.

0 10 20 30
0

5

10

time [s]

i

(b) Plot of variable i.

Figure 2. Simple state machine.

extension is based on Modelica’s synchronous language
elements extension. The discrete-time equations within a
state machine are based on clocked variables and all vari-
ables and equations within it must be associated with the
same clock. The semantics are:

• Equations are active at clock ticks generated by the
clocks associated with the equations. If no clock is
associated a default clock is used. In the example of
Figure 2 the default clock used is a periodic clock
with 1.0s sampling period.

2http://www.dymola.com/
3https://www.openmodelica.org/

• The variable i is a shared variable between the two
states state1 and state24.

• The example uses “delayed” transitions5, hence the
transitions do not fire immediately if the associated
condition on i evaluates to true. Instead they fire at
the subsequent clock tick.

• Furthermore, the transitions are declared as “reset”
transitions6. Reset transitions reinitialize the “states”
of their target states, i.e., set the values of the state
variables “owned” by those states to their start values
and reset nested state machines. Within the consid-
ered example state1 and state2 declare access to the
outer state variable i. Outer variables are not reset if
entering the state. Hence, for the considered example
it makes no difference whether or not a transitions is
a “reset” transition.

The Modelica model (ignoring annotations) that corre-
sponds to the graphical representation of Figure 2 is dis-
played in Listing 1.

Listing 1. Modelica model corresponding to Figure 2.

model SimpleSM "Simple state machine"

inner Integer i(start=0);

block State1

outer output Integer i;

equation

i = previous(i) + 2;

end State1;

State1 state1;

block State2

outer output Integer i;

equation

i = previous(i) - 1;

end State2;

State2 state2;

equation

transition(state1,state2,i > 10,

immediate=false,reset=true,

synchronize=false,priority=1);

transition(state2,state1,i < 1,

immediate=false,reset=true,

synchronize=false,priority=1);

initialState(state1);

end SimpleSM;

The flat Modelica representation generated by Dy-
mola 2015 FD01 is reproduced in a slightly reformatted
form (to save space) in Listing 2. Note that there is a dis-
crepancy between the number of variables (three) and the

4The “outer” prefix declares that an element instance with the same
name, but using prefix “inner” within the enclosing instance hierarchy
is referenced.

5 Delayed transitions are depicted by a perpendicular line close to
the “from"-state. For immediate transitions this line is close to the “to”-
state.

6Reset transitions are depicted by a filled arrow head (otherwise an
open arrow head is used).

Flattening of Modelica State Machines: A Practical Symbolic Representation

256 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118255

Listing 2. Flat Modelica model generated from the simple state
machine model defined in Listing 1.

model SimpleSM

Integer i(start = 0);

Integer state1.i = i;

Integer state2.i = i;

// Equations and algorithms

// Component state1

// class SimpleSM.State1

equation

state1.i = previous(state1.i)+2;

// Component state2

// class SimpleSM.State2

equation

state2.i = previous(state2.i)-1;

// Component

// class SimpleSM

equation

transition(state1,state2,i > 10,

false,true,false ,1);

transition(state2,state1,i < 1,

false,true,false ,1);

initialState(state1);

end SimpleSM;

number of equations (four). This imbalance is solved by
the state machine semantics that require that outer output
variables of each state are solved for and that for each such
variable a single definition is formed. Hence, after substi-
tuting the alias variables in the example and merging outer
variables this can be reduced to one variable and one equa-
tion, e.g.,

i := if activeState(state1) then

previous(i)+2

elseif activeState(state2) then

previous(i)-1 else previous(i)

The last else branch can never be reached in this particular
example, but it illustrates that a state variable will simply
keep its current value if there is no state active in which an
equation for that variable is defined.

Deducing the equation transformation above from the
flat Modelica representation is an essential step for relat-
ing flat Modelica to a valid DAE representation. Arguably,
the information about this necessary equation transforma-
tion is present in the flat Modelica in a highly implicit
fashion which is not only elusive for human perception,
but also difficult to reason about mechanically.

One can deduce that state1 and state2 are states and
that state1.i and state2.i are variables declared in the
respective states. However, in the flat representation it is
not obvious that they are shared variables and that two of
their defining equations need to be merged into a single

definition to form a valid system of equations (otherwise
there is one equation too many).

As an example of this ambiguity in the flat representa-
tion consider the invalid model from Listing 3 that actu-
ally has one equation too many, but still has (apart from
some comments) the same flattened representation as the
simple state machine model from Listing 1 (compare the
respective flat Modelica representations in Listing 4 and
Listing 2). Trying to simulate the model from Listing 3

Listing 3. Invalid Modelica code that has a similar flat represen-
tation as the (valid) code from Listing 1.

model InvalidSM "Invalid model, but

instructive flat representation"

inner Integer i(start = 0);

block State1

input Integer i; // no shared variable!

end State1;

State1 state1(i=i);

block State2

input Integer i; // no shared variable!

end State2;

State2 state2(i=i);

equation

// one equation too many

state1.i = previous(i) + 2;

state2.i = previous(i) - 1;

transition(state1,state2,i > 10,

immediate=false,reset=true,

synchronize=false,priority=1);

transition(state2,state1, i < 1,

immediate=false,reset=true,

synchronize=false,priority=1);

initialState(state1);

end InvalidSM;

in Dymola fails with a (correct) error message complain-
ing about more Integer equations than Integer variables
(Dymola still generates the flat Modelica representation
for the model since the model can be instantiated, but it
cannot be translated due to the overconstrained equation
system).

The important point is that solely by inspecting the flat
Modelica representation that Dymola generates it is not
obvious whether it corresponds to a valid or an invalid
model: the flat Modelica representation in Listing 4 is,
apart from additional comments, similar to the flat Mod-
elica representation in Listing 2.

This example should illustrate that it is quite intricate to
give the correct semantics of flat Modelica state machine
representations generated by current Modelica tools. The
example used the flat Modelica representation generated
by Dymola 2015 FD01, but similar reasoning applies to
the flat Modelica generated by the first prototypical sup-
port for state machines implemented in OpenModelica. A
deliberately simple example was used in order to keep the
discussion comprehensible.

To give the correct semantics of state machines encoded
in the considered flat Modelica representation, it is neces-
sary to deduce structural information regarding the state
machine composition, e.g.,

Session 3C: Modelica Language & Compiler Implementation 1

DOI
10.3384/ecp15118255

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

257

Listing 4. Flat Modelica model generated from the (invalid)
model defined in Listing 3.

model InvalidSM

Integer i(start = 0);

Integer state1.i = i;

Integer state2.i = i;

// Equations and algorithms

// Component state1

// class InvalidSM.State1

// extends InvalidSM

equation

state1.i = previous(i)+2;

// end of extends

// Component state2

// class InvalidSM.State2

// extends InvalidSM

equation

state2.i = previous(i)-1;

// end of extends

// Component

// class InvalidSM

equation

transition(state1,state2,i > 10,

false,true,false ,1);

transition(state2,state1,i < 1,

false,true,false ,1);

initialState(state1);

end InvalidSM;

• associate assignment equations for state variables to
corresponding states,

• recover the hierarchical state machine structure,

• identify shared variables,

• identify in which equations shared variables are used
in an assignment context, and finally,

• deduce which assignment equations need to be
merged.

However, experience from the first prototypical imple-
mentation in OpenModelica suggest that it is hard to auto-
matically reconstruct this information. from the flattened
representation without propagating further structural in-
formation about the model from the front-end to the back-
end. This crucial additional information is not visible in
the flat Modelica representation. The following sections
will therefore discuss a symbolic representation for flat-
tened state machine constructs that makes such structural
information explicitly available within the flat Modelica
model.

3 Practical Symbolic Representation

Different approaches have been experimented with in or-
der to find an adequate symbolic representation. One im-
portant requirement is that the representation should be
flexible enough for future incorporation of continuous-
time equations. Hence, it should be general enough to al-
low for multi-mode DAE/ODE modeling resembling the
style that was advocated by Elmqvist et al. (2014) and
Bouissou et al. (2014). In a first approach it was in-
vestigated whether symbolic representations developed in
the context of hybrid automata modeling and verification
(Alur et al., 1993) could be adapted and reused in a Mod-
elica context.

The basic idea in this first approach was to generate flat
state machine representations and use interconnection re-

lations to describe parallel and hierarchical compositions.
This idea was motivated by a versatile notion of composi-
tion described by Tabuada (2009) in the context of hybrid
system modeling. However, the representations became
large (depending on the example about twofold the size
compared to the representation proposed below), appeared
rather artificial in the context of Modelica, and required
many decisions during the flattening process that seem to
be better postponed to the back-end.

Therefore, a more lightweight approach is proposed. It
is based on the following basic ideas:

• Preserve the state machine hierarchy by introducing
the notions of stateMachine and state.

stateMachine Consists of a set of mutually exclu-
sive states that are related by transitions (flat
state machine).

state Consists of variable declarations and equations
associated to that state. May have nested state
machines.

• Generate the equations necessary for merging shared
variables from mutual exclusive states.

The resulting representation has the property that the num-
ber of equations and variables must be equal for a valid
system.

Instead of the terms “stateMachine” and “state” one
might prefer to use “automaton” and “mode” which cap-
ture that a system operates in a certain mode and that the
automaton logic allows to change the active mode. How-
ever, the proposed terms correspond to the terms that are
used in the state machine chapter of the Modelica 3.3 spec-
ification.

3.1 Simple State Machine Example

With the proposed extension, the flat representation of the
simple state machine example from Listing 1 translates
to the flat Modelica displayed in Listing 5. Note that
two auxiliary variables $state1.i, $state2.i have been

Flattening of Modelica State Machines: A Practical Symbolic Representation

258 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118255

Listing 5. Extended flat Modelica model proposed to be gener-
ated for the simple state machine model defined in Listing 1.

class SimpleSM

Integer i(start=0);

stateMachine smOf.state1

state state1

Integer $state1.i;

equation

$state1.i = previous(i) + 2;

end state1;

state state2

Integer $state2.i;

equation

$state2.i = previous(i) - 1;

end state2;

end smOf.state1;

equation

i = if activeState(state1) then $state1.i

elseif activeState(state2) then $state2.i

else previous(i);

transition(state1,state2,i > 10,

false,true,false ,1);

transition(state2,state1,i < 1,

false,true,false ,1);

initialState(state1);

end SimpleSM;

introduced. They are substitutes for state1.i, state2.i
in the respective states and are used in the generated vari-
able merging equation. However, in case state1.i and
state2.i appear as argument in a previous(..) operator
the variable i is substituted instead.

The “$” prefix shall denote an auxiliary variable that is
related to the subsequent variable name, but not strictly
identical (e.g., i = state1.i = state2.i, but i 6=
$state1.i 6= $state2.i).

Compared to the flat Modelica representation of List-
ing 2, the semantics of the simple state machine example
is more explicitly represented in the flat Modelica of List-
ing 5 which re-enables the possibility to interpret the flat
Modelica representation in a meaningful manner. Note
that Listing 5 has the desirable property that the number of
equations equals the number of unknowns since the vari-
able merging equation (i.e., the equation for i) is made
explicitly visible.

3.2 Hierarchical State Machine Example

The hierarchical state machine example shown in Figure 3
is motivated by the example given by Maraninchi and Ré-
mond (2003). The state machine receives a stream of input
values i and j and computes the variables x, y, and z. For
this example the input values have been set to the constant
values i=true and j=false.

Listing 6 shows how information about the structural
composition for the hierarchical state machine from Fig-

inner Integer x(start=0);
inner Integer z(start=0);
inner Integer y(start=0);

a

outer output Integer x;
inner outer output Integer y;
inner outer output Integer z;
x = previous(x) + 1;

c

outer output Integer y;
y = previous(y) + 1;

d

outer output Integer y;
y = previous(y) - 1;

e
outer output Integer z;
outer input Integer y;
z = previous(z) + y;

f
outer output Integer z;
outer input Integer y;
z = previous(z) - y;

y == 10

y == 0

z > 100

z < 50

b

outer output Integer x;
x = previous(x) - 1;

(z > 100 and i) or j

x == 0

// assume constant state machine inputs:

input Boolean i=true;

input Boolean j=false;

Figure 3. Hierarchical and parallel composition example moti-
vated from Maraninchi and Rémond (2003).

ure 3 is preserved in the proposed flat Modelica represen-
tation. The complete listing for the flat Modelica repre-
sentation is given in Appendix A.

3.3 Summary of Rules

The rules for mapping from state machines specified in
Modelica to the proposed flat representation can be sum-
marized as follows:

• Any class instance x that appears as argument in
an initialState(..) or transition(..) operator re-
sults in a section state x ... end x; in the flat Mod-
elica representation.

• Any class instance x that appears as argument
in an initialState(..) operator results in a sec-
tion stateMachine smOf.x ... end smOf.x; in the
flat Modelica representation7.

• States that are connected by transition relations are
collected in a stateMachine section. The identifier
of the stateMachine section encodes the component
reference of the initial state of that state machine.
Hence, a stateMachine section collects states that be-
long to the same flat state machine.

• For any outer output or inner outer output vari-
able declaration x, an auxiliary variable $x is intro-
duced and all occurrences of x are replaced by $x un-
less x appears as argument in a previous(..) opera-
tor in which case x is replaced by its corresponding
most inner component reference8.

7The name following the “stateMachine” construct has no significant
semantics and could be also omitted, e.g., “stateMachine . . . end;”.

8Hence, it is replaced by the most inner component reference and
not by a references to an intermediate “inner outer output” declaration.

Session 3C: Modelica Language & Compiler Implementation 1

DOI
10.3384/ecp15118255

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

259

Listing 6. Preservation of state machine composition informa-
tion for the hierarchical state machine from Figure 3.

class HierarchicalSM

stateMachine smOf.a

state a

stateMachine smOf.a.c

state a.c

...

end a.c;

state a.d

...

end a.d;

end smOf.a.c;

stateMachine smOf.a.e

state a.e

...

end a.e;

state a.f

...

end a.f;

end smOf.a.e;

...

end a;

state b

...

end b;

end smOf.a;

...

end HierarchicalSM;

• outer variables that are not declared as output are re-
placed by their corresponding inner component ref-
erences.

• Equations for merging shared variables are intro-
duced according to the following rules:

– For any inner (or inner outer) variable that is
referenced by an outer (or inner outer) vari-
able declaration in one or more states (within
the same hierarchy) of a stateMachine section,
a merging equation is formed at the instance
level in which the stateMachine is defined.

– The merging equation assigns the inner vari-
able the value of the corresponding auxiliary
variable of the currently active state in the fol-
lowing form:

x = if activeState(a) then $a.x

elseif activeState(b) then $b.x

else previous(x);

Further on, it is possible to improve the comprehen-
sibility of the state machine representation by collect-
ing all transitions and merging equations associated to a
stateMachine section within that associated section (note
that this is a pretty-print consideration and not a require-
ment for giving an unambiguous semantics).

4 Implementation

The proposed flattening for state machines has been im-
plemented in the OpenModelica compiler. The process is
depicted in Figure 4. State machines are first flattened in

Front-end

 parsing &
 instantiation

Modelica state-
machine model

Flat model
equations AST

Back-end

Data-flow AST

Reuse existing
equation
transformation &
code generation

Simulation
executable

State machine

instantiation

State machine

elaboration

Figure 4. Outline of the state machine compilation process.

the compiler front-end according to the approach that was
outlined in Section 3. After that, the state machine struc-
tures are further elaborated in the back-end where they are
translated to basic data-flow equations (by transforming
the abstract syntax tree (AST)). The translation to data-
flow equations is inspired by the state machine compila-
tion approach described by Colaço et al. (2005) and is a
fairly direct encoding of the equations provided in the Se-

mantics Summary of (Modelica Association, 2012, Sec-
tion 17.3.4).

The current back-end implementation does not lead to
very efficient code, e.g., translation of the simple state ma-
chine example from Listing 1 to data-flow equations leads
to 24 (mostly Boolean) data-flow variables (and equations)
in the back-end (see Appendix B). However, this can be
optimized to produce fewer variables and equations in fu-
ture versions of the compiler without having to change the
underlying symbolic representation produced by the front-
end. The advantage of the current back-end implementa-
tion is the possibility to reuse most of the existing equation
transformation and code generation facilities without fur-
ther modification.

The current prototype needs a workaround to compen-
sate for the not yet implemented support for Modelica’s
clocked synchronous language extension (Modelica As-
sociation, 2012, Chapter 16). The “hack” in the back-end
is to wrap all state machine related equations in a when-
equation with a sampling period of one second and replace

Flattening of Modelica State Machines: A Practical Symbolic Representation

260 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118255

all previous(..) operators by pre(..) operators, similarly
to following code snippet:

when sample(0.0, 1.0) then

i = if smOf.state1.activeState == 2

then -1 + pre(i)

else 2 + pre(i);

end when;

This restriction can be lifted easily as soon as the clocked
synchronous language elements are fully supported by our
compiler. Meanwhile the workaround allows to experi-
ment with state machine implementations in parallel and
independently to ongoing work related to synchronous
languages elements support.

5 Conclusion

This paper proposed a dedicated symbolic representation
for flattened Modelica state machines. The representation
explicitly preserves crucial structural and relational infor-
mation in the human readable flat Modelica representa-
tion. Hence, the proposed representation avoids ambigu-
ities and can be interpreted straightforwardly by human
inspection. This is in contrast to the ambiguous and hard
to interpret flat representations of state machine models
which are generated by existing tools. Furthermore, this
representation is well suited for further computational pro-
cessing in the back-end, because it becomes unnecessary
to elaborately re-construct important structural informa-
tion solely from the basic data-flow equations that are typ-
ically available at that later compiler phase.

At the same time the proposed representation strives to
avoid an early commitment to implementation details for
the specified state machine logic, i.e, it refrains from per-
forming a full translation of the state machine constructs to
basic clocked synchronous data-flow equations in the flat-
tened representation. In that way it allows one to postpone
implementation decisions, that would potentially hinder
code optimization techniques, to later translation stages.

The approach has been implemented in the OpenMod-
elica compiler and successfully tested on a number of state
machine models.

Acknowledgements

This work has been supported by Vinnova in the ITEA2
MODRIO project, by EU in the INTO-CPS project, and
by the Swedish Government in the ELLIIT project. The
Open Source Modelica Consortium supports the Open-
Modelica project.

References

R. Alur, C. Courcoubetis, T. Henzinger, and P. Ho. Hybrid au-
tomata: An algorithmic approach to the specification and ver-

ification of hybrid systems. Hybrid systems, 736:209–229,
1993.

Marc Bouissou, Hilding Elmqvist, Martin Otter, and Albert Ben-
veniste. Efficient Monte Carlo simulation of stochastic hybrid
systems. In Hubertus Tummescheit and Karl-Erik Årzén, ed-
itors, 10th Int. Modelica Conference, Lund, Sweden, March
2014. doi:10.3384/ecp14096715.

Jean-Louis Colaço, Bruno Pagano, and Marc Pouzet. A con-
servative extension of synchronous data-flow with state ma-
chines. In Proceedings of the 5th ACM International Confer-

ence on Embedded Software, EMSOFT ’05, pages 173–182,
New York, NY, USA, 2005. ACM. ISBN 1-59593-091-4.
doi:10.1145/1086228.1086261.

Hilding Elmqvist, Fabien Gaucher, Sven Erik Mattsson, and
Francois Dupont. State Machines in Modelica. In
Martin Otter and Dirk Zimmer, editors, 9th Int. Mod-

elica Conference, Munich, Germany, September 2012.
doi:10.3384/ecp1207637.

Hilding Elmqvist, Sven Erik Mattsson, and Martin Otter. Mod-
elica extensions for Multi-Mode DAE Systems. In Hu-
bertus Tummescheit and Karl-Erik Årzén, editors, 10th

Int. Modelica Conference, Lund, Sweden, May 2014.
doi:10.3384/ECP14096183.

Peter Fritzson. Principles of Object Oriented Modeling and Sim-

ulation with Modelica 3.3: A Cyber-Physical Approach. Wi-
ley IEEE Press, 2014. ISBN 9781-118-859124.

David Harel. Statecharts: a visual formalism for complex sys-
tems. Science of Computer Programming, 8(3):231–274,
1987. ISSN 0167-6423. doi:10.1016/0167-6423(87)90035-9.

Florence Maraninchi and Yann Rémond. Mode-Automata: a
new domain-specific construct for the development of safe
critical systems. Science of Computer Programming, 46:219–
254, 2003.

Modelica Association. Modelica—A Unified Object-Oriented
Language for Systems Modeling v3.3. Standard Specifica-
tion, May 2012. Available at http://www.modelica.org/.

Marc Pouzet. Lucid Synchrone Tutorial and Reference Manual,
2006.

Paulo Tabuada. Verification and Control of Hybrid Systems A

Symbolic Approach. Springer US, 2009. doi:10.1007/978-1-
4419-0224-5.

Bernhard Thiele. State Machines in OpenModelica - Cur-
rent Status and Further Development. In OpenModelica

Annual Workshop, Linköping, Sweden, 2. February 2015.
Open Source Modelica Consortium (OSMC) and Linköping
University (LiU). URL http://www.modprod.liu.se/
openmodelica-2015?l=en.

Session 3C: Modelica Language & Compiler Implementation 1

DOI
10.3384/ecp15118255

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

261

A Flat Modelica for the Hierarchical

State Machine Example

The complete listing of the flat Modelica representation of
the hierarchical state machine example from Section 3.2.

class HierarchicalSM

Integer x(start = 0);

Integer z(start = 0);

Integer y(start = 0);

input Boolean i = true;

input Boolean j = false;

stateMachine smOf.a

state a

Integer $a.y;

Integer $a.z;

Integer $a.x;

stateMachine smOf.a.c

state a.c

Integer $a.c.y;

equation

$a.c.y = 1 + previous(y);

end a.c;

state a.d

Integer $a.d.y;

equation

$a.d.y = -1 + previous(y);

end d;

end smOf.a.c;

stateMachine smOf.a.e

state a.e

Integer $a.e.z;

equation

$a.e.z = previous(z) + y;

end a.e;

state a.f

Integer $a.f.z;

equation

$a.f.z = previous(z) - y;

end a.f;

end smOf.a.e;

equation

$a.z = if activeState(a.e) then $a.e.z

elseif activeState(a.f) then $a.f.z

else previous(z);

$a.y = if activeState(a.c) then $a.c.y

elseif activeState(a.d) then $a.d.y

else previous(y);

initialState(a.e);

transition(a.e, a.f, $a.z > 100,

false, true, false, 1);

transition(a.f, a.e, $a.z < 50,

false, true, false, 1);

transition(a.c, a.d, $a.y == 10,

false, true, false, 1);

transition(a.d, a.c, $a.y == 0,

false, true, false, 1);

$a.x = 1 + previous(x);

initialState(a.c);

end a;

state b

Integer $b.x;

equation

$b.x = -1 + previous(x);

end b;

end smOf.a;

equation

z = if activeState(a) then $a.z

else previous(z);

x = if activeState(a) then $a.x

elseif activeState(b) then $b.x

else previous(x);

transition(a, b, z > 100,

false, true, false, 1);

transition(b, a, x == 0,

false, true, false, 1);

initialState(a);

end HierarchicalSM;

B Back-End Equations

The state machine elaboration in the back-end translates
the state machine representation from the front-end to ba-
sic data-flow equations (see Figure 4). The intermediate
system of equations can be retrieved from the back-end
by using debugging functions. The listing below shows
the equation system which is generated for the simple state
machine example from Listing 1. For better readability the
debug output has been reformatted to resemble the typi-
cal flat Modelica style. Obviously, the behaviour of the
simple state machine can already be described by a frac-
tion of the actually generated equations. However, such
optimizations are not performed in the current prototype
implementation.
model SimpleSM

// parameters

Integer smOf.state1.tPriority[2] = 1

Boolean smOf.state1.tSynchronize[2] = false

Boolean smOf.state1.tReset[2] = true

Boolean smOf.state1.tImmediate[2] = false

Integer smOf.state1.tTo[2] = 1

Integer smOf.state1.tFrom[2] = 2

Integer smOf.state1.tPriority[1] = 1

Boolean smOf.state1.tSynchronize[1] = false

Boolean smOf.state1.tReset[1] = true

Boolean smOf.state1.tImmediate[1] = false

Integer smOf.state1.tTo[1] = 2

Integer smOf.state1.tFrom[1] = 1

Integer smOf.state1.nState = 2

// variables

Integer i(start=0);

Boolean state2._active;

Boolean state1._active;

Boolean smOf._state1._init(start=true);

Boolean smOf._state1._stateMachineInFinalState;

Boolean smOf._state1._finalStates[2];

Boolean smOf._state1._finalStates[1];

Boolean smOf._state1._nextResetStates[2];

Boolean smOf._state1._nextResetStates[1];

Boolean smOf._state1._activeResetStates[2];

Boolean smOf._state1._activeResetStates[1];

Boolean smOf._state1._nextReset;

Integer smOf._state1._nextState;

Boolean smOf._state1._activeReset;

Integer smOf._state1._activeState;

Integer smOf._state1._fired;

Boolean smOf._state1._selectedReset;

Integer smOf._state1._selectedState;

Boolean smOf._state1._reset;

Boolean smOf._state1._active;

Boolean smOf._state1._cImmediate[2];

Boolean smOf._state1._c[2];

Boolean smOf._state1._cImmediate[1];

Flattening of Modelica State Machines: A Practical Symbolic Representation

262 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118255

Boolean smOf._state1._c[1];

equation

when {sample(1.0, 1.0), initial()} then

state2.active = smOf.state1.active

and smOf.state1.activeState == 2;

state1.active = smOf.state1.active

and smOf.state1.activeState == 1;

smOf.state1.active = true;

smOf.state1.reset = pre(smOf.state1.init);

smOf.state1.init = false;

smOf.state1.stateMachineInFinalState =

smOf.state1.finalStates[

smOf.state1.activeState];

smOf.state1.finalStates[2] = max(

if smOf.state1.tFrom[2] == 2 then 1 else 0,

if smOf.state1.tFrom[1] == 2 then 1 else 0

) == 0;

smOf.state1.finalStates[1] = max(

if smOf.state1.tFrom[2] == 1 then 1 else 0,

if smOf.state1.tFrom[1] == 1 then 1 else 0

) == 0;

smOf.state1.nextResetStates[2] =

if smOf.state1.active then

if smOf.state1.selectedState == 2 then false

else smOf.state1.activeResetStates[2]

else pre(smOf.state1.nextResetStates[2]);

smOf.state1.nextResetStates[1] =

if smOf.state1.active then

if smOf.state1.selectedState == 1 then false

else smOf.state1.activeResetStates[1]

else pre(smOf.state1.nextResetStates[1]);

smOf.state1.activeResetStates[2] =

if smOf.state1.reset then true

else pre(smOf.state1.nextResetStates[2]);

smOf.state1.activeResetStates[1] =

if smOf.state1.reset then true

else pre(smOf.state1.nextResetStates[1]);

smOf.state1.nextReset = if smOf.state1.active

then false

else pre(smOf.state1.nextReset);

smOf.state1.nextState =

if smOf.state1.active

then smOf.state1.activeState

else pre(smOf.state1.nextState);

smOf.state1.activeReset =

if smOf.state1.reset then true

else

if smOf.state1.fired > 0 then

smOf.state1.tReset[smOf.state1.fired]

else smOf.state1.selectedReset;

smOf.state1.activeState =

if smOf.state1.reset then 1

else

if smOf.state1.fired > 0 then

smOf.state1.tTo[smOf.state1.fired]

else smOf.state1.selectedState;

smOf.state1.fired = max(

if

if smOf.state1.tFrom[2] ==

smOf.state1.selectedState then

smOf.state1.c[2]

else false

then 2 else 0,

if

if smOf.state1.tFrom[1] ==

smOf.state1.selectedState then

smOf.state1.c[1]

else false

then 1 else 0);

smOf.state1.selectedReset =

if smOf.state1.reset then true

else pre(smOf.state1.nextReset);

smOf.state1.selectedState =

if smOf.state1.reset then 1

else pre(smOf.state1.nextState);

smOf.state1.c[2] =

pre(smOf.state1.cImmediate[2]);

smOf.state1.cImmediate[2] = i < 1;

smOf.state1.c[1] =

pre(smOf.state1.cImmediate[1]);

smOf.state1.cImmediate[1] = i > 10;

i = if smOf.state1.activeState == 2

and smOf.state1.active then -1 + pre(i)

else if smOf.state1.activeState == 1

and smOf.state1.active then 2 + pre(i)

else pre(i);

end when;

end SimpleSM;

Session 3C: Modelica Language & Compiler Implementation 1

DOI
10.3384/ecp15118255

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

263

264 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Exploiting Repeated Structures and Vectorization in Modelica

Joseph Schuchart1 Volker Waurich2 Martin Flehmig1

Marcus Walther1 Wolfgang E. Nagel1 Ines Gubsch2

1Center for Information Services and High Performance Computing, TU Dresden, Germany
2Chair of Construction Machines and Conveying Technology, TU Dresden, Germany ,

{forename.surname}@tu-dresden.de

Abstract

Large and highly-detailed Modelica models are fre-

quently modeled by utilizing repeated structures, which

is a repetition of various elements that are linked together

in an iterative manner. While the Modelica language

standard supports the representation of repeated struc-

tures, most Modelica compilers do not exploit their ad-

vantages for efficient simulations. Instead, all repeated

equations are flattened and all array variables are ex-

panded. This leads to unnecessarily long compile times

and higher memory consumption. Another aspect that

has been yet inadequately considered and is closely con-

nected to repeated structures is vectorization. The vec-

tor units of modern CPUs can be engaged to perform

SIMD (Single Instruction, Multiple Data) operations, ex-

ecuting the same instruction on multiple data points in

parallel. This reveals a high potential for faster simu-

lations. This paper discusses the advantages of utiliz-

ing repeated structures for modeling in order to achieve

both faster compilation and simulation times. The po-

tentials of preserving for loops throughout compilation

are demonstrated using a basic implementation in the

OpenModelica Compiler. The effect on the simulation

time by enabling vectorization is demonstrated for an ap-

propriate model.

Keywords: SIMD, Vectorization, OpenModelica, Trans-

lation, Repetitions

1 Introduction and Related Work

The Modelica language is capable of describing large

models with few lines of code by using repetitions of

submodules. In general, submodels can be connected in

an iterative manner by using for loops to express the

repeated model structure. Models that contain repeti-

tions are common in physical and technical modeling,

e.g., models of battery packs and chain gears. Repeated

structures can also be introduced by discretizing model

elements, e.g., electrical wires or hydraulic pipes. Fig-

ure 1 represents a discretized model of an electrical wire.

The underlying model is a distributed RC-model which

Figure 1. Distributed RC-model of an electrical wire using N

repeated model elements.

is typically used to describe transmission behavior in

electrical circuits. The circuit of resistor and capacitor

is repeated N-times. Hence, all equations and variables

which are defined in the resistor and capacitor model will

appear N-times in the DAE system. Modelica compilers

usually flatten the repeated equations without utilizing

the information on repetitions. This can be explained by

the fact, that the algorithms which transform the acausal

DAE system into a causal, solvable ODE system have not

been adopted to make use of repeated structures. There-

fore, the symbolic manipulation handles an unnecessar-

ily large amount of equations and variables and – as a

consequence – the generated code does not contain any

for loops anymore.

The potential of preserving repeated modules has al-

ready been illustrated (Zimmer, 2009). Zimmer de-

scribes the obvious potential of aggregating repeated

modules and gives a basic method to approach the prob-

lem. He also highlights further issues regarding the sym-

bolic algorithms in the compiler backend as will be ex-

plained later. In contrast to this work, the present paper

will focus on iterated repetitions provided by for loops

rather than by detecting modules. Another approach for

addressing the topic has been proposed by Höger (Höger,

2011). By means of separate compilation of Modelica

source code and subsequent linking, precompiled partial

models can lead to smaller programs. Höger explains

DOI
10.3384/ecp15118265

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

265

the benefits of compiling source code before flattening

the model but indicates problems related to the symbolic

manipulation.

As has been stated already, symbolic manipulation for

attaining a causal model needs further considerations.

The main issues are related to index-reduction, typically

performed by the Pantelides algorithm (Pantelides, 1988)

and ordering of all equations and variables in a block-

lower-triangular form, typically done by using the Tar-

jan algorithm (Tarjan, 1972). Arzt has provided a basic

approach to adapt the Pantelides algorithm in order to

exploit repeated structures (Arzt et al., 2014). Repeated

equations and variables are collected in repetitive mod-

ules which share the same matching and derivation pat-

tern. A prototypic implementation proved the ability to

keep compilation time constant but has not yet been in-

troduced into a usable Modelica compiler.

Preserving repeated structures throughout symbolic

transformation can lead to decreased compilation times

and memory consumption. It also reveals the potential

for exploiting the vector units of a CPU efficiently by

providing the underlying compiler with opportunities for

creating vectorized code.

The remainder of the paper is structured as follows:

In Section 2, a basic implementation for preserving re-

peated structures through the backend will be illustrated

and the benefits of modeling for loops in causal sec-

tions are presented in Section 3. Section 4 describes the

means and requirements to exploit vector computation

and presents the impact on the simulation time of an ex-

ample model. Finally, conclusions and an outlook are

contained in Section 5.

2 Preserving Repeated Structures

Throughout Compilation

Acausal Modelica models have to be transformed

symbolically to attain a solvable, causal differential-

algebraic system of equations (i.e., DAE system). Thus,

every variable has to be assigned to a specific equation

and a computation order has to be determined. The

assignment between equations and variables is called

matching and the ordering in a sequence of single equa-

tions and algebraic loops (i.e., systems of equations) is

typically done by Tarjan’s strongly connected component

algorithm. If necessary, the index of the DAE system has

to be reduced by performing the Pantelides algorithm.

Besides these mandatory manipulations, there are even

more Modelica-specific algorithms to improve the com-

putable model, e.g., removal of trivial equations or tear-

ing methods. These algorithms are well probed and stan-

dard in Modelica model compilation but only a few of

them have been extended to handle repeated objects like

the Modelica for loops. The mentioned algorithms can

be applied easily to expanded for loops and array vari-

Figure 2. Compilation process in the OpenModelica Compiler.

Figure 3. Flat model representation as a bipartite graph. Green

squares represent equations and orange squares represent vari-

ables. Squares in a grey box can be gathered in a compact

for loop notation or as an array-variable. Two vertices have

a connecting edge if the variable appears in the equation. A

removing of trivial equations has already been applied.

ables as it is the current default implementation in the

OpenModelica Compiler.

The workflow of the compilation process in the Open-

Modelica Compiler is depicted in Figure 2. After parsing

the mo-file, all model elements are instantiated and a list

of equations and variables, the flat DAE, is generated.

This flat DAE representation is the basis for all further

manipulations like index-reduction, causalization, and

additional optimizations. The compiler backend creates

a solvable model which is used to generate C or C++

code in order to compile an executable. If the for equa-

tions in the Modelica model should be used throughout

the compilation procedure, the instantiation has to output

a valid representation of the iterated equations for the re-

peated model elements. This is ongoing work within the

frontend development and therefore is not covered by the

presented paper.

In order to demonstrate the effects of retaining loops

throughout compilation, a basic implementation in the

compiler backend has been created. The instantiation

still generates a flat DAE. However, the compiler back-

end now collects the flattened equations and array vari-

ables and establishes compacted for equations by com-

paring the terms of equations in order to find similarities.

If a continuous iteration can be identified, an equivalent

for equation is set up. For the wire model presented in

Figure 1, the bipartite graph depicted in Figure 3 illus-

trates the compact notation of for equations.

Exploiting Repeated Structures and Vectorization in Modelica

266 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118265

As can be seen, the bipartite graph in Figure 3 has a

repetitive structure. For this model, the number of rep-

etitions is 5. The same structure can be expressed using

the compact notation of for loops. There are two kinds

of for loop equations that are passed through the com-

pilation process. On the one hand, there is the repetition

of several equations with differently indexed variables:

f o r i in 1 : 5 loop

r e s i s t o r [i] .LossPower =

r e s i s t o r [i] . v ∗ r e s i s t o r [i] . i ;

end f o r ;

On the other hand, it is possible to have a single equa-

tion with a repetition of terms, e.g., in a summation

that is represented by the sum-operator, for example:

g r o u n d . p . i + s i n e V o l t a g e . p . i + l o a d _ R . n . i

+ sum ((i−>1 : 5) + c a p a c i t o r [i] . n . i) = 0 . 0

2.1 Symbolic Transformation of Repeated

Structures

The following section outlines the procedure of preserv-

ing for equations throughout model compilation. It ba-

sically covers the removal of trivial equations, matching,

and identification of the computation sequence. The im-

plemented prototype is only able to handle systems of

maximum index one and without algebraic loops. Since

this is a hard restriction, the fallback solution is to scalar-

ize the DAE-system completely at any stage of compila-

tion. At least the removal of trivial equations can benefit

from the compact notation in that case. The results will

include a benchmark for the removal of trivial equations

exploiting for equations.

Since the information about repeated model elements

is currently not available from instantiation, it has to be

collected from the completely flattened DAE system.

To collect equations in for constructs, all flat equa-

tions have to be filtered for equations containing iterated

variables. If an equation contains solely iterated vari-

ables, other equations which share the same algebraic

terms without considering the array indexes are gathered

as a for loop. Among these equations, the array indexes

are compared and examined to determine the start and

end index of the iteration. A linear iteration with a step

of one is assumed. Equations containing several iterated

instances of the same array variable are checked for pos-

sible terms like a summation of iterated variables. Since

this process can be avoided by instantiating for equa-

tions and unexpanded arrays directly, the collection of

for equations will not be taken into account for subse-

quent benchmarks.

Hence, the basis for the presented method is a flat

DAE including both scalar variables and unexpanded

array-variables which have to be matched to either single

equations or for equations. Figure 4 depicts an overview

of the procedure.

Figure 4. Overview of the process of collecting for equa-

tions.

Classify equations: In order to reduce the prob-

lem size, all DAE-equations are classified into the

three groups for-equations (containing only unexpanded

array-variables), non-array-equations (containing only

non array-variables), and mixed-equations (containing

scalar array-variables). Variables are classified as either

array-variables or non-array-variables.

Removal of trivial equations: The removal of trivial

equations is comprised of both the removal of simple

equations like a = b, a = -b, or a = const and a re-

placement of the respective alias variables to maintain

the balance of equations and variables. This is a com-

mon optimization in model compilation in order to re-

duce the system size. Trivial equations have a prominent

fraction among all model equations (from 44% to 73%)

so this optimization is an eminent operation for an effi-

cient model compilation. The scalar implementation for

removing of trivial equations is applied on the mixed and

non-array equations. Trivial equations do occur in for-

equations as well and the removal and replacement of

alias variables can be adopted. The scalar implementa-

tion has to find N trivial equations for N repeated equa-

tions whereas the implementation for the compact for

equations only has to detect a single trivial assignment

to assign N alias variables.

Partial slicing of ranges: The goal of the upcoming

matching is to assign variables explicitly to all equa-

tions. It is settled that a scalar equation can only solve

a scalar variable and an N-dimensional for equation can

only solve an N-dimensional array-variable. Therefore,

it has to be ensured that every for equation is connected

to array-variables of the same dimension range. Be-

sides that, it is possible, that a certain scalar variable is

solved in one of the mixed-equations or that it has to be

replaced by its alias variable. Hence, the unexpanded

array-variables have to be sliced in ranges of their com-

Session 3C: Modelica Language & Compiler Implementation 1

DOI
10.3384/ecp15118265

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

267

Figure 5. Bipartite graph with balanced dimensions.

plete dimension and single scalar array elements. First

of all, the scalar array variables which have been re-

placed and the scalar array variables which occur in the

mixed-equations have to be sliced from the unexpanded

array. As a second step, a balance of dimension ranges

between for equations and adjacent array-variables has

to be established in the bipartite graph. This is per-

formed by traversing all array-variables and compare the

dimensions of the adjacent for equations. It has to be

checked whether the dimensions have to be adjusted by

slicing scalar equations or variables. Figure 5 depicts

the partially sliced system of the wire model. As can

be seen, every N-dimensional equation is connected to

N-dimensional array variables (or scalar variables which

have to be matched to a scalar equation instance).

Matching: If the bipartite graph is completely bal-

anced with respect to the dimensions, matching can be

performed as usual. Every equation node with only one

adjacent variable node will be matched to this particu-

lar variable node. Thus, a matched variable can be taken

as known and all edges can be removed from the graph.

The order of matching assignments corresponds to the

computation sequence. The current implementation of-

fers a basic compilation of models containing repetitions.

At the moment, no index-reduction algorithm is realized

and no algebraic loops are allowed to occur. Further-

more, interruptions in the iteration space are not yet han-

dled. However, these features are usually not required in

electrical and hydraulical transmission elements. When

compiling the electrical wire model, an ODE system is

generated which contains a constant number of equa-

tions. Only the number of iterations inside the for loops

is dependent on the number of discretized elements.

Figure 6. Task graph representation of causal ODE system

with compact for-equation notation.

2.2 Results

Figure 6 depicts the task-graph of the causalized system

for the wire model. A task graph represents the computa-

tion sequence of equations and algebraic loops which are

displayed as nodes connected by edges refering to data

dependencies (Walther et al., 2014). A node depicts a

single equation to be solved in order to compute the suc-

cessive equations. A bold task represents a vector task

containing a for loop.

As can be seen, the compact notation is preserved

throughout symbolic transformation. This results in

faster compilation due to a reduced problem size. Fig-

ure 7 shows the number of equations which have to be

processed in the compiler. By using the compact for

notation, the number of equations can be kept at a con-

stant size for different numbers of repetitions. Apply-

ing the removal of trivial for equations and subsequent

scalarization of the DAE reduces the problem size sig-

nificantly, as is shown with the green bars.

Figure 8 shows the time to translate the model from a

flattened DAE-system to a solvable system. Obviously,

the symbolic transformation for the default compilation

of a flattened DAE-system does not scale linearly. The

translation using the compact for notation results in a

nearly constant compilation time. In order to reveal the

advantages by using for notation for the removal of triv-

ial equations, a third bar is depicted. The green bars show

the compilation time if the removal of trivial equations

has been performed on the for equations and the system

is scalarized completely afterwards. This can be consid-

ered the minimal solution to exploit repeated equations.

The task graph representation is the basis for the gen-

eration of program code. Like in Modelica, for loops

are a first level language concept in C and C++. By

adopting the code generation to the new for loop tasks,

the size of the generated code and the compiled exe-

cutable are reduced, as depicted in Figure 9.

Exploiting Repeated Structures and Vectorization in Modelica

268 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118265

Figure 7. Comparison of number of equations to process the

symbolic transformation for the default implementation, the

vectorized compilation and completely scalarized system after

removing of trivial for equations.

Figure 8. Comparison of symbolic transformation time be-

tween default implementation, complete vectorized compila-

tion and completely scalarized system after removing of trivial

for equations.

Figure 9. Comparison of executable size between default im-

plementation and vectorized compilation.

The difference in size of the executables is little since

the declaration of system equations is only one small part

of the overall program code. Nevertheless, it is a an evi-

dent implication of the compact for loop notation.

The wire model does not contain algebraic loops or

complex function calls. Hence, it can be simulated very

fast which is why no simulation time comparison has

been done. The benefit of vectorization for improving

simulation times will be presented in the Section 4.

3 Causal For Loop Statements in

Modelica

Loop statements in Modelica models can both occur in

algorithm and equation sections. In algorithm sections

like Modelica functions, they are trivially passed

through the model compilation since they do not have

to be causalized or manipulated. Therefore, causal for

loop statements can be forwarded directly to the code

generation and vectorization can be applied. This can

lead to improved simulation performance so using for

loops should be a common modeling best practice.

One exemplary model is Fluid.Examples

.BranchingDynamicPipes from the Modelica Stan-

dard Library 3.2.1. This model makes heavy use of prop-

erty computations defined in the Media library. Various

Modelica functions are defined that compute the prop-

erty values for the employed medium. One function used

when simulating moist air is Media.Air.MoistAir

.saturationPressureLiquid. The default im-

plementation to calculate the saturation pressure is:

p s a t : = exp (((

a [1] ∗ r1 ^n [1]

+ a [2] ∗ r1 ^n [2]

+ a [3] ∗ r1 ^n [3]

+ a [4] ∗ r1 ^n [4]

+ a [5] ∗ r1 ^n [5]

+ a [6] ∗ r1 ^n [6])

∗ T c r i t i c a l) / T s a t) ∗ p c r i t i c a l ;

Since a major part of this expression consists of

operations on contiguous memory elements, this compu-

tation can be vectorized. The function can be rewritten

to compute the saturation by means of a for loop:

f o r i in 1 : 6 loop

aux : = aux + a [i] ∗ r1 ^n [i] ;

end f o r ;

p s a t : = exp ((aux ∗ T c r i t i c a l) / T s a t)

∗ p c r i t i c a l ;

This is just one example of how Modelica functions

can utilize for statements. Due to the extensive use of

for statements in this model, vectorization can have dis-

tinct effects on simulation performance, as will be ex-

plained in the following section.

4 Vectorization

In many cases, modern CPU architectures provide vec-

tor units that allow parallel execution of the same in-

Session 3C: Modelica Language & Compiler Implementation 1

DOI
10.3384/ecp15118265

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

269

struction on multiple data elements which is known as

SIMD (Single Instruction, Multiple Data). SIMD paral-

lelization often requires less hardware for parallel com-

putation than multiple full cores do. Hence, if used cor-

rectly, the exploitation of available SIMD instruction sets

promises improved performance without requiring ad-

ditional hardware. It also improves energy-efficiency,

since more computation can be done per clock cycle and

thus per Watt.

There are various ways of generating vector code.

While low-level techniques, like vector intrinsics and

assembly code (Intel), could in theory be employed in

the code generation of a Modelica compiler backend, it

requires much more caution and effort by the develop-

ers of the Modelica compilers. Recent developments on

the C/C++ compiler infrastructures have brought power-

ful tools to developers that make it easier to exploit the

computational power of vector units. Moreover, relying

on the compiler to efficiently vectorize code also guar-

antees compatibility with future hardware, which other-

wise would require extensions to the Modelica compiler

in order to support new hardware platforms. Thus, the

presented work focuses on automatic compiler vectoriza-

tion in order to ensure correctness, portability, and ease

of maintenance.

4.1 Compiler-based Vectorization

Vectorization is based on the SIMD principle, which re-

quires the same instruction to be executed on different

data points. This is usually the case, if the application

makes use of loop control structures that iterate over a

vector of data points. Modern compilers, e.g., the GNU

compiler collection (GCC), the Intel compiler, and other

compiler products and frameworks, incorporate sophis-

ticated analysis and optimization logic to detect vector-

izable loops and emit the respective instructions for the

available hardware (Maleki et al., 2011). However, cer-

tain constraints have to be met in order to allow the com-

piler to correctly and efficiently vectorize a loop (Cor-

den, 2012), including:

Absence of data dependencies: An iteration N of the

vectorized loop may not consume the result of a

previous iteration N − 1 (read-after-write depen-

dency). The same holds true for write-after-read

dependencies, although modern compilers apply

heuristics to detect vectorizable patterns such as re-

ductions, e.g., in the example code in Section 3.

Aligned memory accesses: Modern CPU and memory

architectures provide access to memory through

caches, with the cache line size commonly at 64 B,

which are loaded at once into the cache. Using non-

unit-stride memory accesses might require loading

multiple cache lines, which in turn could impact

performance and thus outweigh the benefits of vec-

torization.

Linear iteration space and known step size: in order

to correctly transform loops into vector statements,

the step size and trip count have to be known at least

at runtime. This excludes infinite loops, loops that

are not bound by an explicit index variable, as well

as loops with early exits.

Restricted function calls: Calling functions inside

loops prevents the compiler from properly vec-

torizing the loop, unless these functions can

be transformed into vectorized code, e.g., tran-

scendental functions such as pow() or exp(),

or functions that have been otherwise marked

as vectorizable, e.g., using OpenMP SIMD

statements (OpenMP, Sect. 2.8.2).

Avoiding branches: Branches commonly create condi-

tionally diverging code paths which cannot be vec-

torized easily. With today’s larger vector units, the

compiler might be able to use mask registers to

restrict operations to parts of a vector. However,

branches should be avoided in general for best per-

formance.

4.2 Modern Vector Architectures

Modern x86 CPUs are equipped with 128 up to 256-bit

wide vector units and support for the Advanced Vector

eXtensions (AVX and AVX2), which enable the paral-

lel computation of up to four double or eight single pre-

cision floating point values. Other architectures, e.g.,

the ARM architecture with its NEON instruction set,

also support vector instructions.1 Without actually using

these instructions, developers only make use of a frac-

tion of the theoretical peak performance available. Up-

coming generations of Intel CPUs will provide support

for the AVX-512 instruction set, which once more dou-

bles the width of the vector registers to 512 bit or eight

parallel double precision floating point operations in par-

allel (Intel).

4.3 Results

As described in Section 3, several functions from

the Modelica Standard Library that are used by the

model BranchingDynamicPipes to contain vectoriz-

able loops have been adjusted. These loops make heavy

use of the pow() function, which has been vectorized by

the compiler.

To compare the effects of vectorization on the runtime,

we compiled the model into C++ code and translated it

using different compiler settings (see Table 1). Since the

modifications to the Modelica code were minor (com-

bining unrolled loops into for statements with short trip

1http://www.arm.com/products/processors/

technologies/neon.php, accessed 2015-05-19

Exploiting Repeated Structures and Vectorization in Modelica

270 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118265

(a) Absolute runtimes

(b) Relative Speedup

Figure 10. Resulting runtimes and speedup without optimiza-

tions, with standard compiler optimizations and with vector-

ization for different compilers.

counts), the behavior of the code did not change. The dif-

ference in performance between a loop and its unrolled

counterpart are negligible if the loop body is computa-

tionaly heavy, as is the case with the pow() function.

Hence, changing the compiler flags that control the vec-

torization is sufficient for a fair comparison.

It should be noted that none of the compilers used ac-

tually perform vectorization if optimizations are disabled

(-O0). Since this is the default configuration in Open-

Modelica, measurements for runs without any optimiza-

tion are included, too.

The following measurements were performed on a

single socket system equipped with 8 GB of RAM

and an Intel Core i7-4770 (Haswell microarchitecture)

eight core CPU with HyperThreading disabled. The

CPU supports the AVX2 instruction set mentioned in

Section 4.2. The system was running an up-to-date

Ubuntu GNU/Linux version 14.04 with kernel 3.13.0-

45-generic.

The differences in runtime between runs using no op-

timization, optimization level two (-O2) without vec-

torization and optimization level two with vectorization

are presented in Figure 10a. The corresponding relative

speedups are displayed in Figure 10b. The difference be-

tween a run without optimizations and with default op-

timizations is significant, ranging from 1.9 for the GNU

compiler to 3.4 for the Intel compiler. By enabling vec-

torization, the code compiled with the GNU compiler

provides a reduction in runtime of 37.5 % on top of the

default level two optimizations and a factor of 2.95 com-

pared to the run without any optimizations. For the Intel

compiler, the speedup gained by enabling level two op-

timizations is much more significant, around factor 3.5.

However, the speedup from vectorization is only 20 % on

top of that, totaling to a factor of 4.23.

It should be noted that only a fraction of the code has

been vectorized, namely the functions from the Media

library that form the most compute intensive kernels in

this model (see Section 3). On top of that it should be

noted that for all optimized runs the FMA feature had to

be disabled. Fused-Multiply-Add (FMA) is an instruc-

tion that combines one multiplication and one addition,

avoiding rounding of intermediate results and potentially

doubling the arithmetic throughput. However, it also has

been observed to impact the numerical behavior of the

application, potentially increasing run-times of the solver

component.

5 Conclusion and Outlook

The presented work aims to motivate the use of for

loops as a modeling best practice in Modelica. The ben-

efits from exploiting these repeated structures have been

demonstrated. Passing for loop constructs through the

compilation process accelerates the symbolic transfor-

mation, the program compilation as well as the model

execution. The size of the generated code and executable

can be reduced. Furthermore, it also enables the utiliza-

tion of vector-units to perform SIMD operations effec-

tively. The simulation time can be reduced clearly when

applying automatic vectorization on for loops.

The demonstrated loop-preserving compilation fea-

tures are still limited in their functionality. First of all,

an instantiation providing compact for equations would

replace the costly collection of similar equations which

is currently performed in the OpenModelica Compiler

backend. In order to extend the range of manageable

models, the implementation has to be extended to sup-

port index-reduction and algebraic loops. Also the in-

terruption of repeated structures, nested-loops, or non-

linear iterations are potential research topics. Moreover,

loop fusion is another worthwhile research target that can

provide higher arithmetic density by reusing intermedi-

ate values and improving vectorization efficiency.

As has been mentioned earlier, certain features of

modern CPU instruction sets can lead to small numer-

ical differences in the numerical behavior of the appli-

cation, leading to significant consequences for the to-

tal simulation performance. Further investigations will

be conducted to allow the full exploitation of available

hardware features while avoiding increased simulation

times.

Session 3C: Modelica Language & Compiler Implementation 1

DOI
10.3384/ecp15118265

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

271

GCC Intel

Version 4.9.2 15.0.3 20150407

Optimization Flags

No Opts -O0 -O0

Haswell novec -O2 -fno-tree-loop-vectorize

-march=haswell -mno-fma -ffast-math

-O2 -no-vec -no-simd

Haswell vec -O2 -ftree-loop-vectorize -mno-fma -ffast-math

-mveclibabi=svml -march=haswell

-O2 -xCORE-AVX2 -fno-fma

Table 1. Compiler versions and flags overview.

Acknowledgments

The presented work is part of the HPCOM project, that

is funded by the Federal Ministry of Education and Re-

search (BMBF) under the support code 01IH13002B.

Parts of the work have been funded by the Intel Parallel

Computing Center at the Center for Information Services

and High Performance Computing at the TU Dresden.

References

Matthias Arzt, Volker Waurich, and Jörg Wensch.

Towards Utilizing Repeating Structures for Constant

Time Compilation of Large Modelica Models. In

Proceedings of the 6th International Workshop on

Equation-Based Object-Oriented Modeling Lan-

guages and Tools, EOOLT ’14, pages 35–38, New

York, NY, USA, 2014. ACM. ISBN 978-1-4503-

2953-8. doi:10.1145/2666202.2666207. URL

http://doi.acm.org/10.1145/2666202.

2666207.

Martyn Corden. Requirements for Vector-

izable Loops, 2012. URL https://

software.intel.com/en-us/articles/

requirements-for-vectorizable-loops.

Accessed 2015-05-19.

Christoph Höger. Separate Compilation of Causalized

Equations -Work in Progress. Proceedings of the 4th

International Workshop on Equation-Based Object-

Oriented Modeling Languages and Tools, EOOLT

2011, Zurich, Switzerland, September 5, 2011, pages

113–120, 2011.

Intel. Intel Architecture Instruction Set Extensions

Programming Reference. Intel, October 2014.

URL https://software.intel.com/

sites/default/files/managed/0d/53/

319433-022.pdf. Accessed 2015-05-19.

Saeed Maleki, Yaoqing Gao, Maria J. Garzaran, Tommy

Wong, and David A. Padua. An evaluation of

vectorizing compilers. In Parallel Architectures

and Compilation Techniques (PACT), 2011 Interna-

tional Conference on, pages 372–382, Oct 2011.

doi:10.1109/PACT.2011.68. URL polaris.cs.

uiuc.edu/~garzaran/doc/pact11.pdf.

OpenMP. OpenMP Application Program Interface.

OpenMP Architecture Review Board, Jul 2013. URL

http://www.openmp.org/mp-documents/

OpenMP4.0.0.pdf.

Constantinos C. Pantelides. The Consistent Initializa-

tion of Differential-Algebraic Systems. SIAM Jour-

nal on Scientific and Statistical Computing, 9(2):213–

231, 1988. doi:10.1137/0909014. URL http://

dx.doi.org/10.1137/0909014.

Robert E. Tarjan. Depth-First Search and Linear Graph

Algorithms. SIAM Journal on Computing., pages

146–160, 1972. URL langevin.univ-tln.fr/

cours/PAA/extra/Tarjan-1972.pdf.

Marcus Walther, Volker Waurich, Christian Schubert,

Ines Gubsch, Andreas Hofmann, and Lars Mikelsons.

Equation based parallelization of Modelica models. In

Proceedings of the 10th International Modelica Con-

ference, 2014.

Dirk Zimmer. Module-Preserving Compilation of Mod-

elica Models. Proceedings of the 7th International

Modelica Conference; Como; Italy; 20-22 September

2009, (2):880–889, 2009.

Exploiting Repeated Structures and Vectorization in Modelica

272 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118265

High Fidelity Multibody Vehicle Dynamics Models for Driver-in-

the-Loop Simulators

Mike Dempsey Garron Fish Juan Gabriel Delgado Beltran
Claytex Services Limited, UK, mike.dempsey@claytex.com

Abstract

Modern Driver-in-the-Loop simulators are sophisticated
engineering tools that have been developed within
Motorsport to support the development and
optimization of race cars in Formula 1, NASCAR and
Indycar. At the heart of the simulator is the vehicle
model which has to accurately capture the behavior of
the whole car. Modelica based vehicle models are used
by many of the top teams because it enables a multi-
domain vehicle model to be used in the simulators and
support all the other simulation activities within the
team. These technologies are now being deployed into
road car applications which presents a number of
additional challenges. One of the major differences is
the need to include bushes within the suspension. This
paper presents a number of the recent developments in
Modelica based vehicle dynamics models for both
Motorsport and road car applications including new
suspension models with bushes, integration with tools to
provide high fidelity LiDAR road data and real-time
simulation of these models.

Keywords: Driver-in-the-Loop, vehicle dynamics, real-

time, nonlinear bush models

1 Introduction

In the last few years driving simulators have been
developed that can be used for more than basic
procedural simulation such as driver training, evaluating
human factors such as fatigue and stress, ergonomics
and testing new man-machine-interfaces. The latest
generation of systems make it possible to simulate a
mathematical model of a car, over an exact replica of a
road surface, with identical scenery and visual
reference, with a human driver, in a safe, controlled,
environment (Hoyle, 2014). These developments have
been led by motorsport teams and organisations due to
the restrictions in testing imposed by the governing
bodies and the increasing complexity of the cars.

There are many technological developments that
have enabled this including new software, new motion
platforms, high fidelity real-time vehicle models and
high precision LiDAR track data. LiDAR is an acronym
for Light Detection and Ranging and typically this
means that the whole track has been scanned with a laser
to accurately measure the surface. In many cases the

motorsport organisations have developed their own in-
house Driver-in-the-Loop (DiL) system, often
integrating many different technologies coming from
different suppliers (Toso, 2014). Some of these systems
are being commercialised by the motorsport
organisations to help them capitalise on the
technological developments they have made in the
development of these systems.

For Automotive OEM’s the appeal of high fidelity
driving simulators is that they can move the testing of
new vehicle designs and parts into the virtual world and
start the assessment of design decisions with
professional drivers before committing to the
production of a prototype. This approach also allows
the design process to be accelerated because, for
example, a change to a damper characteristic can be
applied in seconds rather than having to wait while the
mechanics strip and rebuild all 4 dampers to a new
specification and refit them to the car.

This paper focuses on the recent enhancements in the
vehicle models and the related interface to track data.

2 Integration with High Fidelity Road Data

2.1 Overview

rFpro have developed a tool called TerrainServer, that is
capable of feeding 1cm resolution LiDAR data into a
vehicle model at up to 5kHz, on standard PC hardware,
enabling the vehicle model to be run in real-time. It was
initially developed to support DiL simulators but it is
equally capable of supporting offline simulation
enabling the same track data to be used in both
environments.

A Modelica library, also called TerrainServer, has
been developed that provides an interface to the rFpro
Terrain Server. This library enables Modelica based
vehicle models to access high fidelity LiDAR data, and
is compatible with the Modelica Standard Library and
the Vehicle Dynamics Library.

The TerrainServer Modelica library provides a new
tyre contact model, ground contact model, external
functions to access rFpro Terrain Server and a new
closed loop driver model. Figure 1 shows a full vehicle
model, created using the Vehicle Dynamics Library
enhanced with the TerrainServer interface and
associated closed-loop driver model.

DOI
10.3384/ecp15118273

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

273

Figure 1: Vehicle model with TerrainServer interface

2.2 Tyre contact model

rFpro TerrainServer provides a number of different
ways to use the LiDAR data with the most sophisticated
tyre contact method referred to as a volumetric
intersection sampling. Using this method the tyre is
approximated as a cylinder and the resulting contact
point is calculated by integrating the points within the
tyre volume to return the contact patch centre and the
averaged surface normal (rFactor Pro, 2014), see Figure
2. The returned data can be used in two different ways
within the tyre contact model to suit different types of
tyre model.

In method 1, the returned data is used to define the
tyre contact point in the model. This can result in the
surface normal not passing through the wheel centre and
can also induce slip velocities due to the movement of

the contact patch centre as new data points enter and
leave the tyre volume. As the spacing of the LiDAR
data is reduced and the precision of the points improves
this effect is reduced and provides an accurate contact
point to the tyre model.

The problem with this approach is the interaction
between the calculation of the contact point using the
detailed road surface and the single point of contact tyre
models typically used for handling simulation such as
Pacejka. These tyre models work on the assumption that
the road surface near the contact patch can be
approximated by a flat plane and that the contact point
lies within the tyre central plane (Pacejka 2012). This
means that the smallest considered wavelength of the
decomposed surface vertical profile is large with respect
to the contact length and its amplitude small. The high
fidelity track data used in rFpro TerrainServer provides
data to the tyres that breaks this assumption, however a
way to handle this has been developed.

In method 2, the returned data is used to define a
plane underneath the wheel and the contact point is
calculated as being the closest point to the wheel centre
that lies within the ground plane and tyre central plane.
This is illustrated in Figure 3 where the calculated plane
and contact point are shown in green. This approach
allows the assumptions in the single point of contact tyre
models to remain valid, i.e. the road is treated as a flat
plane underneath the tyre. This reduces the movement
of the contact patch due to the entry and exit of points
into the tyre volume and also ensures that the surface
normal always passes through the wheel centre. The
compromise in this approach is that the real surface
detail available from the LiDAR data cannot be used to
full effect by tyre models like the Pacejka model.

Figure 2: Calculation of the contact patch centre and
average surface normal in rFpro TerrainServer

Figure 3: Calculation of the effective tyre contact point
using method 2 where the rFpro data is used to define a

plane underneath the tyre

High Fidelity Multibody Vehicle Dynamics Models for Driver-in-the-Loop Simulators

274 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118273

3 Closed-loop driver model

3.1 Overview

A new closed-loop driver model has been developed for
use with TerrainServer. The driver is a path following
driver model with the trajectory defined in a new Path
object that defines the driving line and speed profile to
be followed. The driving line and speed profile would
typically be captured from a session on the driving
simulator with a professional driver, it can then be
repeated and analysed offline to explore setup changes.
This new driver model has several key differences to the
existing model provided in the Vehicle Dynamics
Library which include the way the target path is defined,
how the preview points are determined and how the
longitudinal tracking is implemented.

The path is defined as positions in the world
coordinate system as a function of a distance along the
path. A speed profile that is also a function of the
distance along the path is included. The driver model
looks at the path information to decide what steering,
pedal and gear shift commands are necessary.

3.2 Path planning

The model uses 3 preview points: 2 are used in the
longitudinal tracker and the lateral tracker can use either
1 point or average all 3. In the longitudinal tracker one
point is used as the input to a PI controller to determine
the throttle and brake pedal positions. This preview
point should be close to the current driver position to
achieve accurate tracking of the speed profile. The
second point is used in a mode correction block to
enable the driver model to anticipate a switch between
acceleration and braking rather than waiting for the PI
controller to respond after passing the transition point.

The lateral tracker calculates the angle from the
vehicles current position and heading direction to the
position of the preview point. From this angle it
determines a steering angle that needs to be applied.
Filters are used to limit the rate at which the driver can
adjust the steering and pedals to keep the responses
appropriate for the type of driver that is being
represented.

The lateral tracking preview point is a variable
distance ahead of the driver’s current location and can
be adjusted according to many factors including vehicle
speed, lateral offset from the defined trajectory,
curvature of the path and yaw velocity, see Figure 4.
The preview distance and corresponding adjustments
are implemented to give the driver model the ability to
plan ahead and adjust the control strategy to suit the road
and vehicle state just as a real driver does when driving
the car.

The typical configuration of the driver model is that
the preview point will move further ahead of the driver
as the vehicle speed increases and this provides the basic
preview distance. If the lateral tracking of the driver

model is not good, or the vehicle is unable to follow the
path then the lateral offset will increase and the preview
distance will also be increased. This is to avoid the
driver trying to then turn too sharply when he is unable
to follow the path. To avoid cutting sharp corners the
preview distance is reduced as the curvature of the path
increases. A large curvature value means a tight corner
and to keep the lateral tracking performance within
reasonable limits we make sure that the preview points
are not too far ahead of the driver. The rate at which the
preview point moves relative to the driver is limited to
avoid large jumps in the position which would induce
large, and unrealistic, changes in the steering command.

Figure 4: Preview distance calculation

3.3 Generating the target path

The path is generated by filtering the data recorded from
the driving simulator to specify the minimum distance
and the minimum time between points. This means that
at low speeds the points that define the path will be at
least the minimum distance apart but at higher speeds
the points will be more spread out, for example at 50m/s
with a minimum time of 0.2s the points will be 10m
apart. This filtering is done to generate a smooth path
for the driver model to follow.

Two ways of processing the recorded data are
provided in the Modelica TerrainServer library. When
using the Tabular path model the data is processed into
a single continuous path that can be followed. There is
also a Racing Lap path where the data is processed to
extract an out lap and a single flying lap from the data.
The start and end of the flying lap has to be blended
together and blended with the out lap so that the flying
lap can be looped allowing multiple laps to be simulated.

The driver model can also be exported and compiled
as a model that can be run within the driving simulator
environments. This enables an automatic driver to be
used to verify the correct operation of the driving
simulator platform and new vehicle models prior to a
test with a human driver.

Session 3D: Automotive Applications 2

DOI
10.3384/ecp15118273

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

275

3.4 Exploring driver behavior

Using the various tuning parameters within the driver
model we can explore how different driving styles
influence the loads on the vehicle. For example by
keeping the preview points close to the driver’s position
and having a high proportional gain and low integral
gain in the longitudinal PI controller we can define a
very aggressive driver that will work the steering wheel
and pedals at a high frequency to follow the desired path
very closely.

At the other extreme we can configure the driver so
that the preview points are further ahead of the vehicle,
and with a low proportional gain and high integral gain
we get a much more relaxed driver behaviour but the
path tracking performance will not be very good. For
this relaxed driving profile we still need to keep 1 of the
longitudinal preview points relatively close to the
vehicle to ensure that he can still switch between
acceleration and braking at the appropriate points and
avoid large velocity overshoots which would not suit
this style of driver behaviour.

Figure 5 shows a comparison of these two different
driving styles on a short section of a test track. The
aggressive driver has better lateral and longitudinal
tracking than the relaxed driver, and achieves this
through faster actuation of the pedals and steering
wheel.

Through careful selection of the driver model
parameters we have used this driver model in transient
lapsim analysis. In these applications the driving line
has been recorded from a simulator session with the
professional driver, the use of the driver model then
enables setup changes to be evaluated. This approach to
lapsim analysis allows the full transient behaviour of the
car to be considered which is not possible using quasi-
static approaches.

4 Road car suspension models

4.1 Overview

A new set of suspension models has been developed for
the simulation of road car suspensions. The new family
of models provides kinematic and elastic suspension
models where the bushes can be simple linear models,
nonlinear models or sophisticated elastomer models
including frequency and amplitude dependent effects.
Figure 6 shows the animation view of a rear multilink
suspension in Dymola with two variants: the top image
uses ideal joints and the lower one includes bushes.

The suspension models are defined using a template
based approach with replaceable components allowing
the links with ideal joints to be easily swapped for links
with bushes at either ends. The bushes can then easily
be redeclared to have the appropriate characteristics.

Figure 5: Comparison of aggressive (in blue) and relaxed
(in red) driver model parametrizations. The plots show
velocity tracking error, lateral tracking error, steering

wheel angle and accelerator pedal position

Figure 6: Kinematic Multilink suspension (top) and
elastic Multilink suspension model (bottom)

High Fidelity Multibody Vehicle Dynamics Models for Driver-in-the-Loop Simulators

276 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118273

The templates provide support for the easy integration
of flexible bodies based on reduced Finite Element
models to define the structural compliance of links,
control arms, and uprights. Figure 7 shows an example
of the quarter car template for a front McPherson strut
suspension using bushes and a flexible body for the
lower control arm. The upright can also be easily
replaced with a flexible body as it defines separate
attachment points for the wheel centre, damper strut,
lower ball joint, track rod and anti-roll mechanism.

Figure 7: McPherson strut suspension with bushes and

FE based lower control arm

4.2 Bush models

In road car applications the suspension bushes have a
big effect on the ride and handling of the car, and have
to be tuned to provide the right compromise between
noise, vibration and harshness (NVH) and the desired
handling characteristics. To support the tuning of these
bushes at all stages of the design process a number of
different characteristic models are provided including
simple linear bushes and more sophisticated models
with frequency and amplitude dependent characteristics.

In MultiBody simulation the modelling of elastomer
mounts, such as suspension bushes, is usually done
using a simple spring-damper element. This approach
works satisfactorily provided the stiffness and damping
terms are tuned to accurately capture the dynamic
stiffness of the elastomer at the operating point being
studied. In the case of superimposed oscillations with
differing frequency and amplitudes, which an accurate
road input would induce, then this approach is not
adequate and more complex elastomer models have to
be used (Persson, 2003) .

A sophisticated elastomer model has been
implemented that allows the frequency and amplitude
dependency to be captured whilst maintaining a
relatively low computation cost (Pfeffer, 2002) and an
automatic calibration method simplifies the
parametisation of the model. Figure 8 shows how this

model is implemented in Modelica. It consists of a
nonlinear force-displacement spring element that
captures the static characteristic of the elastomer. In
parallel with the spring element, is a linear damper and
then a component array of frictional elements and
spring-damper elements in series. The frictional
elements are used to capture the amplitude dependent
effects and the spring-damper in series, often referred to
as a Maxwell model, are used to capture the frequency
dependent effects.

Figure 8: Elastomer with frequency and amplitude
dependent characteristics

To parameterise the model the elastomer needs to be
measured to get the static and dynamic stiffness and loss
angle characteristics. Using this information,
optimisation can be used to tune the model parameters,
provided the user first decides on the sizes for the
component arrays. The number of Maxwell models
included determines the ability of the model to cover the
frequency range of interest, with 1 Maxwell model it is
possible to accurately represent the bush at one of the
measurement points but at other frequencies the
dynamic stiffness and loss angle will be incorrect, as
shown in Figure 9. In the example shown, the
parameters for the Maxwell model were calculated from
the measurement data at 21Hz using the following
method. The measurement results for dynamic stiffness
and loss angle can be used to calculate the complex
stiffness of the bush: �ௗ�௡ = �ௗሺcos� + ݆ sin�ሻ (1)

Where kd is the dynamic stiffness and α is the loss angle.
The complex stiffness of the bush, without frictional
elements, at a specific frequency can be calculated
according to: �ௗ�௡ = �௘ + �.�. ݆ + ����௪௘�� (2)

Where ke is the elastic stiffness, c is the damping, w is
the frequency in rad/s, and kmaxwell is the complex
stiffness of the Maxwell model. From equations 1 and
2 we can calculate the stiffness contribution that must

Session 3D: Automotive Applications 2

DOI
10.3384/ecp15118273

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

277

come from the Maxwell model. The complex stiffness
of the Maxwell model is given by: ����௪௘�� = �� (�. ݆1 + �� . �. ݆) ��

(3)

Where km is the stiffness of the spring and tr is the time
response of the Maxwell model. km*tr is the damping of
the Maxwell model. Equations 1-3 can be solved as a
nonlinear system consisting of 2 unknowns km and tr to
calculate the properties of a single Maxwell model tuned
to work correctly at the selected frequency.

Figure 9: Dynamic stiffness and loss angle for a tuned
model with varying numbers of Maxwell models

By increasing the number of Maxwell models in parallel
to 3 and through the use of optimization to determine the
parameter values it is possible to get the bush model to
have a greater accuracy over a larger frequency range.
Figure 9 shows the results of tuning the parameters to
give a good fit between 1 and 46Hz. This would mean
that the bush works well in the frequency ranges
necessary to simulate primary and secondary ride
effects. To cover a wider frequency range then
additional Maxwell models would be needed but this
increases the difficulty of the optimization problem, and
as each Maxwell model adds 1 state to the model it also
increases the computation time.

5 Real-time simulation

One of the key advantages of a Modelica based
approach for vehicle dynamics analysis is the ability of
Dymola to export simulation code that is capable of

running in real-time. This has been used in Motorsport
for running vehicle models as part of a Driver-in-the-
loop simulator for several years (Dempsey, 2012).
Typically though a race car does not include bushes in
the suspension which makes the vehicle dynamics
model simpler and easier to run in real-time even with
structural compliance effects included. To run a suitably
detailed road car vehicle dynamics model in real-time
we need to take advantage of new capabilities in
Dymola 2016 to parallelize a model (Elmqvist, 2014;
Andreasson 2014).

Utilizing this approach we have been able to partition
the model into a number of separate computation tasks:
the body; front suspension; the left and right rear
suspensions; and 4 tyre models. The model used is a
saloon car with double wishbone front suspension and a
multilink rear suspension. The front suspension uses
ideal joints but includes compliance effects in the
upright and the rear suspension includes bushes at the
inboard and outboard ends of every link, see Figure 10.
The powertrain model includes a mapped engine model,
a 6 speed automatic gearbox with torque converter and
it is front wheel drive. The model has been optimized to
eliminate events and uses elastic friction models for the
brakes and losses within the powertrain. The whole
vehicle model consist of 243 states, of which 17 relate
to the brakes and powertrain systems and the remainder
are related to the suspension and tyres.

Figure 10: Animation view of the vehicle model

The model is partitioned into separate tasks using the
decouple blocks available in Dymola as shown in Figure
11 for the rear suspension. The decouple blocks are
used to break down the size of the implicit nonlinear
system of equations related to the inline integration
method. In the full vehicle model, if the decouple blocks
are not used there is a large implicit nonlinear system of
equations of size 139 but when these blocks are used this
is broken up in to a set of 4 nonlinear systems of
equations of sizes 21, 6, 38, and 38. The two systems of
size 38 are related to the left and right rear suspensions.
These smaller systems of equations are easier to
calculate, and most importantly the jacobian used by the
implicit inline integration method is much smaller and
easier to compute.

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

0 50 100 150 200

D
yn

a
m

ic
 S

ti
ff

n
e

ss
 (

k
N

/m
)

Frequency (Hz)

Measured Data 1 Maxwell models 3 Maxwell Models

0

2

4

6

8

10

12

14

0 50 100 150 200

Lo
ss

 A
n

g
le

 (
d

e
g

)

Frequency (Hz)

Measured data 1 Maxwell models 3 Maxwell Models

High Fidelity Multibody Vehicle Dynamics Models for Driver-in-the-Loop Simulators

278 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118273

Figure 11: Rear suspension model including decouple
blocks to partition the model into separate tasks for the

left and right suspension

By splitting the model into these subtasks we have been
able to run the model in real-time using a inline implicit
Runge Kutta solver with a 1ms time step. Figure 12
shows the turnaround time for the model during a few
laps of the Motorland Circuit of Aragon when running
the vehicle with rFpro on a PC workstation. This track
model uses high fidelity LiDAR data to define the
surface which is provided to the model by rFpro
TerrainServer as described in 2.1. The PC runs
Windows 7 (64 bit) with an Intel Core i7 5960X
processor overclocked to 4.2 GHz. There are very
occassional overruns but these are small in magnitude,
around 0.2ms, and infrequent which means they can be
easily tolerated by the DiL system.

When configuring a model for use in real-time
simulation there is always a trade-off to be made

between performance and accuracy compared to
running the model with a variable step solver. It is
important to verify that the change in simulation results
are minor when partioning the models and to find the
best compromise between computation time and
accuracy. Figure 13 shows a comparison of the
simulation results obtained with this model driving at
55kph with a sinusoidal steering input. It shows that the
variations found with the different real-time solver
settings are small when comparing the results to those
achieved with a variable step solver.

Figure 13: Comparison of lateral acceleration (top), yaw
rate (middle) and roll angle (bottom) for the model

running with Dassl compared to using Implicit Runge
Kutta 2nd order fixed step solver at rates of 1ms, 2ms and

with the decoupled model running at 1ms

6 Conclusions

The integration between the driver-in-the-loop system,
rFpro and Modelica has been extended to enable the
same track data to be used for offline and real-time
simulation. This means the analysis work in Dymola
can use the same high fidelity track data that is available
to the driver-in-the-loop simulator. A new closed loop
driver model has also been developed for use with these
high fidelity tracks and it allows different driver
behaviour to be assessed as well as comparing the
handling effects of vehicle setup changes. These
capabilities are available in a commercial Modelica
library called TerrainServer.

Figure 12: Turnaround time for the vehicle model
running in rFpro on a track using LiDAR data

Session 3D: Automotive Applications 2

DOI
10.3384/ecp15118273

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

279

New suspension models have been developed to
support the transfer of these technologies from
motorsport into road car applications. These new
models enable higher fidelity suspension models to be
created, and when coupled with the latest enhancements
in Dymola, support parallelisation across multiple cores
enabling a full MultiBody vehicle model with bushes in
the suspension to be run in real-time at 1 kHz using
standard PC hardware. These models will be available
in future commercial Modelica libraries.

References

J.Andreasson, H. Elmqvist, J. Griffin, D. Henriksson, S.E.
Mattson, H. Olßon, Real-Time Simulation of Detailed
Vehicle Models using Multiple Cores, 12th International

Symposium on Advanced Vehicle Control, September 22-
26, 2014, Tokyo, Japan

M. Dempsey, A.Picarelli, G.Fish, Using Modelica models for
Driver-in-the-loop simulators, Proceedings of the 9th

International MODELICA Conference, September 3-5,
2012, Munich, Germany, doi: 10.3384/ecp12076571.

H. Elmqvist, S.E. Matsson, H. Olßon, Parallel Model
Execution on Many Cores, Proceedings of the 10th

International Modelica Conference, March 10-12, 2014,
Lund, Sweden, doi:10.3384/ecp14096363

C. Hoyle, How Mobile Lidar is Revolutionising Automotive
Testing, LiDAR News Magazine, Vol. 4 No. 7, Spatial
Media, 2014

H. Pacejka, Tire and Vehicle Dynamics (Third edition),
Butterworth-Heinemann, 2012, doi:10.1016/B978-0-08-
097016-5.01001-9

A. Persson and F. Karlsson, Modelling Non-Linear Dynamics
of Rubber Busings – Parameter Identification and
Validation, Division of Structural Mechanics, Lund
University, 2003, http://lup.lub.lu.se/student-
papers/record/3566697

P. Pfeffer and K. Hofer, Simple Non-Linear Model for
Elastomer and Hydro-Mountings, ATZ worldwide 5/2002
Volume 104, 2002

rFactor Pro, HD Terrain Server User Guide, September 2014

Toso, A. and Moroni, A., Professional Driving Simulator to
Design First-Time-Right Race Cars, SAE Technical Paper
2014-01-0099, 2014, doi:10.4271/2014-01-0099.

High Fidelity Multibody Vehicle Dynamics Models for Driver-in-the-Loop Simulators

280 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118273

Modeling and Validation of a Multiple Evaporator Refrigeration

Cycle for Electric Vehicles

Andreas Varchmin1 Manuel Gräber2 Jürgen Köhler1

1Technische Universität Braunschweig, Institut für Thermodynamik (a.varchmin@tu-bs.de)
2TLK-Thermo GmbH

Abstract

Multiple evaporator vapor compression cycles become

relevant for thermal systems in electric vehicles since

batteries and other electric components demand cool-

ing for a secure operation. In difference to most other

applications with parallel evaporators cooling demands

and temperature levels vary between the different sec-

ondary fluids. This leads to a more complex system be-

havior that needs to be described for optimality and con-

trol analysis. In this paper a dynamic model for an auto-

motive air conditioning cycle with an additional evapo-

rator for battery cooling is developed and validated. A

battery model library for calculating temperatures and

waste heat flows of battery cells and modules is pre-

sented. Multi-evaporator effects and their consequences

are discussed. Reasonable actuating and control vari-

ables are chosen and a discussion regarding possible con-

trol schemes is given.

Keywords: Multi-Evaporator Cycle, Parallel Evapora-

tors, Vapor Compression Cycle, Electric Vehicle, Rela-

tive Gain Array

1 Introduction

Battery electric vehicles (BEV) or plug-in hybrid electric

vehicles (PHEV) require a more complex thermal system

and vapor compression cycle than conventional vehicles.

In many cases heat needs to be gained, respectively led

away, at more than one spot. One important spot is the

battery that needs to be in a reasonable and safe tempera-

ture zone. Depending on the ambient conditions the heat

gathered at the battery or the power electronics can be

used for operating a heat pump.

For maximum lifetime battery temperatures should lie

between 15◦C and 35◦C and show small temperature

gradients over battery cells and modules (Pesaran et al.,

2013). Maintaining these temperatures leads to the ne-

cessity of active battery cooling. The most common way

of active cooling are cooling plates under or between bat-

tery cells. These plates are flown through with a cooling

liquid like a water-glycol-mixture but can also be used to

directly evaporate a refrigerant. Based on a typical air-

conditioning unit that owns an evaporator for air cooling

a second evaporator is needed to cool battery and possi-

bly power electronics, too.

A heat pump might be necessary for heating the cabin

at low temperatures. In conventional vehicles heat from

the engine’s exhaust is used for heating. In BEVs the bat-

tery is the only source of energy which is, due to energy

densities of current batteries, small compared to conven-

tional vehicles. A regular electric heater would heavily

shorten the vehicle’s range. Therefore switchable vapor

compression cycles that can function as air condition-

ing or heat pump have been designed (Ahn et al., 2015).

When operating as heat pump the cycle might gain heat

from the ambient but also, if available, from battery, elec-

tric motor or power electronics. In this case a second

evaporator is also necessary.

Multiple evaporator vapor compression cycles are

known in different applications. In supermarket refrig-

eration cycles a high number of evaporators are con-

nected in parallel so that every cabinet can be cooled in-

dependently. Mostly thermostatic expansion valves are

used to regulate the fluid flow in every cabinet. Further-

more there are systems with more than one compressor

unit to create two pressure levels for refrigerators and

freeze cabinets. These two pressure levels are connected

in parallel as well (Titze et al., 2013). Another multi-

evaporator application are HVAC systems in buildings.

Especially in commercial buildings so called variable re-

frigerant flow systems are increasingly used with multi-

ple evaporators for locally distributed cooling zones (El-

liott et al., 2011). Usually parallel evaporators are used

in these applications. Vapor Compression Cycles with

serial connected evaporators exist in fewer applications,

e.g. in simple fridge freezers.

In contrast to the described systems the operation of

vapor compression cycles in vehicles is a lot more tran-

sient. Furthermore the temperatures of the different sec-

ondary fluids can be apart whereas temperatures in su-

permarket cabinets, respectively cooling zones in build-

ings, share a nearly identical temperature. Since the ther-

mal system needs to be as compact as possible, only one

pressure level for both evaporators is practicable (see fig-

DOI
10.3384/ecp15118281

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

281

ure 1). This makes the optimal operating point less ev-

ident and leads to advanced control schemes. Model-

ing approaches for automotive air conditioning cycles in

Modelica with particular attention to evaporators have

been published by Limperich et al. (Limperich et al.,

2005).

For a better understanding and for fast controller

design a simulation model for an automotive multi-

evaporator system is developed in this paper. It is con-

centrated on battery and cabin cooling instead of heat

pump operation in electric vehicles. Measurement data

obtained from a test bench is used for validation of the

model and the system is analyzed for a suitable controller

design. Fundamental effects and interdependencies of

the evaporators are shown. Gained knowledge is then

used to control the multi-evaporator system under condi-

tions of a transient real-life driving cycle.

Structure of the Paper

In section 2 a model of an automotive air conditioning

system with parallel evaporators for cabin and battery

cooling is described. In section 3 follows a description

of an electric-thermal model of a lithium-ion battery for

calculating temperatures and heat flows of cells and mod-

ules. An overview of a test bench containing three plate

heat exchangers is given in section 4. All secondary flu-

ids in this system are liquids since measurement data can

be obtained easily and fast for this configuration. Sec-

tion 5 shows the interaction of actuating and control vari-

ables as superheats or cooling capacities. Moreover the

parallel evaporator model is validated with measurement

data. Section 6 analyzes the interdependencies of actuat-

ing and control variables. With the help of relative gain

arrays (RGA) possible controller schemes are discussed.

In section 7 simulation results for the parallel evaporator

system are shown. Section 8 summarizes the paper and

proposes possibilities for future work.

2 Automotive Air Conditioning Sys-

tem with Additional Evaporator

for Battery Cooling

In the following a dynamic model of a parallel evaporator

vapor compression cycle for electric vehicles including

battery cooling is described, see figure 1. A description

of the implied control scheme is given in section 6. The

system has two parallel paths on the low pressure side

and consists of a compressor, three heat exchangers, two

electronic expansion valves (EXV) and a receiver. As

refrigerant R134a is used. The compressor is a variable

speed scroll compressor. The receiver is located on the

high pressure level behind the condenser so that there is

zero subcooling in mostly all operating points since the

receiver separates gas from the liquid. This does not lead

to the most efficient behavior because small degrees of

subcooling normally have a positive impact on the coef-

ficient of performance (COP). The condenser is a multi

port extruded tube (MPET) heat exchanger, situated at

the vehicle’s front end. Ambient air is used as the con-

denser’s secondary fluid, leading the heat out of the cy-

cle. In modern cars often condensers with an integrated

receiver and an additional subcooling zone are used for

optimal COPs. Behind the receiver the refrigerant path

is divided and leads to an EXV each. In the first path

there is located one MPET heat exchanger for cooling

the cabin air. In the parallel path a plate heat exchanger

is used for cooling the battery. Due to evaporating tem-

peratures falling occasionally under 0◦C a 50/50 mixture

of water and glycol flows through the secondary path of

this evaporator. Nearly all model approaches are based

on the model library TIL (see Richter (2008)). Physi-

cal properties are calculated with TILMedia (see Schulze

(2013)).

Tair

Evaporator 2

Condenser

Evap. 1
AEXV,1

n

Tsh,1

Tsh

+ -

AEXV,2

Tsh,2

Tbat

n

PI

PI

PI

PI

Figure 1. Vapor Compression Cycle for a Battery Electric Ve-

hicle including Battery Cooling

The compressor is modelled dynamically with a loss-

based approach, including leakage and friction losses

(Schedel et al., 2013). The model is fitted to the com-

pressor found in the test bench described in section 5.

The EXV model is based on Bernoulli’s principle and is

therefore a static model. For modelling the heat exchang-

ers a finite volume approach with a variable number of

Modeling and Validation of a Multiple Evaporator Refrigeration Cycle for Electric Vehicles

282 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118281

volumes is used. One volume is described by three cells

for refrigerant, liquid and wall material. The liquid and

air cells contain transient balances for mass and energy,

the refrigerant cell additionally owns a momentum bal-

ance. The pressure time derivative is constant over all

refrigerant cells of one pressure level. This can be inter-

preted as a neglection of sonic effects which is appropri-

ate for systems that are not characterized by fast dynam-

ics (Gräber et al., 2010). The receiver model owns one

volume with a transient mass and energy balance and has

a varying filling level.

The valve openings AEXV,1, AEXV,2 and the compressor

speed n are actuating variables of the primary (refriger-

ation) cycle. Typical control variables would be the two

superheats Tsh,i, the first evaporator’s air outflow temper-

ature Tair and the battery temperature Tbat . Alternatively

the cooling capacities Q̇i of both evaporators could be

used. Referring to section 6 it becomes apparent that in

difference to a standard refrigeration cycle the numbers

of actuating variables and control variables of the pri-

mary cycle are not equal.

3 Battery Model

To integrally describe thermal systems of electric vehi-

cles as the one discussed in this paper, the behavior of the

battery needs to be represented. Important approaches

and equations are published in the Modelica Energy Stor-

age Library (Einhorn et al., 2011). For a good suitability

and usability regarding automotive systems an electric-

thermal battery model library has been developed. The

library is designed as an add-on to the component library

TIL and provides models for battery cells, modules and

systems. It is focused on describing temperatures, waste

heats and cooling approaches.

In the library battery systems can be discretized down

to cell level. Cells can be connected in series or

parallel. Each discretization element owns a state of

charge (SOC), an electric equivalent circuit, a dynamic

energy balance and calculates arising heat flows. The

state of charge is coupled with the open circuit voltage.

The equivalent circuit can be switched between a model

with a single ohmic resistance and an impedance based

model. Heat results from different processes inside the

battery cells. Losses can be divided in irreversible and

reversible heat flows:

Q̇irr =−I2Ri (1)

Q̇rev = T ∆S
I

nF
(2)

The irreversible heat is dependent from the electric cur-

rent, that is defined by the power demand of the motor

and from the impedance which itself is dependent from

cell temperature and SOC. The reversible heat is de-

pendent from entropy differences that occur at the elec-

trodes, e.g. because of lithium intercalations in lithium-

ion cells. The equation is only exact for isothermal pro-

cesses but may also be used when temperature changes.

∆S is the molar entropy change while n represents the

number of electrons per reaction and F the Faraday con-

stant. These differences are cell dependent and are func-

tions of the SOC. This approach is described extensively

by Viswanathan et al. (Viswanathan et al., 2009). They

have also published data for various cell types in the

same paper.

The model used in the automotive system described

in the previous section is adapted to a battery system in

a BEV with 300 prismatic lithium-ion cells. The mod-

ules are chilled by cooling plates underneath and contain

twelve cells each, at which each three cells are connected

in parallel. Water-glycol is used as cooling liquid.

4 Test Bench

The test bench contains a refrigeration cycle similar to

the one described in section 2. It is dimensioned to fit

an automotive air conditioning and cooling application.

One diffference is that all three heat exchangers are plate

heat exchangers receiving and giving off heat by sec-

ondary loop cycles filled with water (condenser) or re-

spectively water-glycol mixture (evaporators) as shown

in figure 2. This originates from easier and more accu-

rate measuring when handling liquids instead of gases.

Both evaporators have same dimension and are of the

same type. Another difference to the system model is

that a battery is not included since it is focused on the

multiple evaporator behavior. Anyway the inflow liquid

temperatures of the evaporators Tliq,1 and Tliq,2 can be

manipulated by electric heaters. Furthermore the mass

flow rates ṁliq,1 and ṁliq,2 are controlled as well.

The scroll compressor works with direct current and

variable speed. The EXV is driven by a stepper motor

with constant adjusting speed. At various positions tem-

peratures and pressures are measured. The refrigerant

mass flow rate is measured behind the compressor in the

pure gas zone. The primary cycle of the test bench is

pictured in figure 3.

All temperatures are measured with thermocouples.

The liquid mass flow rates are measured with magnetic

flow meters while the refrigerant mass flow rate behind

the compressor is measured by coriolis principle. This

means that the cooling capacitiy measuring of the evapo-

rators are based on the liquid side when both evaporators

are in use. The quality of stationary measurements can

be controlled with the help of results that are gathered by

only one evaporator operating. In this case one cooling

capacity can be obtained based on the refrigerant side us-

ing the more accurate coriolis flow meter and compared

to the measurements based on the liquid side.

Session 3D: Automotive Applications 2

DOI
10.3384/ecp15118281

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

283

very well with a maximum deviation of 160 W. Results

for capacity 1 vary up to 365 W.

×10−7
0

5

10

15

20

25

T
sh
[K
]

Expev1

Expev2

Simev1

Simev2

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

AEXV,1[m
2] ×10−7

0

500

1000

1500

2000

2500

3000

Q̇
[W

]

Expev1

Expev2

Simev1

Simev2

Figure 5. Superheats and Cooling Capacities of both Evapora-

tors Depending on Valve Opening AEXV,1 with Constant Valve

Opening AEXV,2 = 3.7 ·10−7m2

Figure 5 also shows superheats and cooling capaci-

ties. The compressor speed and the valve opening area

AEXV,2 = 3.7 ·10−7m2 are set constant but AEXV,1 is var-

ied. At low opening areas the superheats again reach

a maximum value of the superheat. Anyway both su-

perheats drop because of a rising low pressure. At

AEXV,1 = 4.5 ·10−7m2 the simulated superheat 1 starts to

fall faster, the measured superheat 1 starts falling faster

at 5.0 · 10−7m2. Both reach zero superheat with nearly

the same opening difference. The measured values of

superheat 2 fall as well (to 3 K) while the simulations

state that values still reach maximum superheat. The

first evaporator’s cooling capacity rises with higher open-

ings of its corresponding valve. The second evaporator’s

capacity falls slightly since mass flow rates through the

second path drop. Apart from one measurement point

at AEXV,1 = 4.7 · 10−7m2 which may be due to a non-

stationary operation while measuring, simulation results

of the capacities fit to measurement data very well. Sum-

marizing it can be stated that a valve opening area influ-

ences the evaporator in its own path more than the other

one and that superheats share the same trend while cool-

ing capacities go in different directions.

0

5

10

15

20

25

T
sh
[K
]

Expev1

Expev2

Simev1

Simev2

5 10 15 20 25 30

Tliq,in,1[
◦C]

0

500

1000

1500

2000

2500

3000

Q̇
[W

]

Expev1

Expev2

Simev1

Simev2

Figure 6. Changing of Superheats and Cooling Capacities with

Varying Liquid inflow Temperature Tliq,in,1

The investigation shown in figure 6 deals with a

changing boundary condition, precisely the secondary

fluid inflow temperature of evaporator 1. The tempera-

ture changes from 5◦C to 30◦C while the temperature

of the second liquid stays constant at 15◦C. Deviant

secondary fluid temperatures of more than a few Kelvins

would not be typical for building or supermarket

applications but occur in vehicles, e.g. if the cabin is

already cooled down while battery and power electronics

produce a lot of waste energy. In fact in many cases it

will be more efficient to operate the battery at temper-

atures up to 35◦C, needing smaller cooling capacities,

while the cabin temperature is controlled to around

20◦C. It can be seen that superheat 1 rises with rising

temperature as one could have expected. Superheat 2

drops because the low pressure level is lifted with higher

evaporating temperatures. The same behaviors are

observed for cooling capacities. The evaporator with

higher secondary fluid temperature transports more heat.

The overall heat capacity reaches a maximum at same

secondary fluid temperatures, meaning also a maximum

efficiency. Simulation results of evaporator 1 fit very

well to measurement data while the reaction to deviant

Session 3D: Automotive Applications 2

DOI
10.3384/ecp15118281

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

285

temperatures is not optimal at evaporator 2. It needs to

be considered that small deviations of the exchanged

heat lead to high deviations in superheat. Only a small

part of the heat is used for superheating while most of it

vaporates the refrigerant.

Some of the occuring main effects can be summarized:

• The Compressor speed influences both evaporators

but has more effect on the evaporator with higher

cooling capacity. It nearly has no effect on the

lower cooling capacity.

• Changes in EXV opening areas lead both super-

heats in the same direction while cooling capacities

move in opposite directions. EXVs has a higher in-

fluence on the evaporator in its corresponding path.

• Different secondary fluid temperatures lead to dif-

ferent cooling capacities. Control variables shift

to opposite directions when one temperature is

changed.

With regard to the validation results it can be stated

that the occurring effects are represented in the paral-

lel evaporator model, also the ones that may not be

clearly self-explanatory. In further work more investiga-

tions have been done with deviant actuator variables and

boundary conditions that also lead to interesting effects.

Deviations between simulation and experiment data are

similar to the ones shown here.

6 System Analysis

The previous sections shows effects of a multi-

evaporator system that need to be analyzed systemati-

cally. With the help of the validated model the interde-

pendencies can be quantified.

A good overview of design and operation of a vapor

compression cycle with a single evaporator is given by

Jensen and Skogestad (2007). They state that a simple

vapor compression cycle is optimally designed if there

is no superheating and a small degree of subcooling. To

reach zero superheating, which means an optimal heat

transfer in the evaporator, a low-pressure receiver can be

used in simple cycles. In a multiple evaporator cycle a

low-pressure receiver would ensure a secure operation of

the compressor but not lead automatically to an optimal

operation point. An overall superheat of zero does not

mean zero superheat in each of the evaporators. It will be

more likely that the outflow refrigerant of one evaporator

has a high degree of superheat while the other evapora-

tor’s outflow state lies inside the two-phase region. Both

superheats need to be controlled and the advantage of a

low-pressure receiver disappears. In automotive air con-

ditioning systems reaching a small degree of subcooling

is often done by a condenser unit with integrated receiver

and a short subcooling zone. This paper concentrates on

evaporators so that for an easier test bench setup there

is no subcooling zone behind the high-pressure tank (see

figure 2).

From an operation view the compressor work (here

speed) and the valve openings can be manipulated. The

active refrigerant mass is adjusted by the receiver. Since

both superheats need to be controlled and it is desirable

to control both cooling capacities (or the outflow tem-

peratures Tliq,1) one actuating variable is missing to reg-

ulate all four control variables independently. In many

multi-evaporator systems, e.g. in the ones mentioned in

the introduction, the cooling capacities do not need to be

controlled seperately because the temperature setpoints

of the different secondary fluids are equal. In the case

of similar thermal load the control variables can be con-

trolled together.

One obvious way to control the cooling capacities

seperately is manipulating a secondary fluid mass flow

rate ṁliq (e.g. through pump speed). The mass flow

changes the effective heat transfer in the corresponding

evaporator. This leads to an optimization problem be-

tween pump work and primary cycle’s efficiency. More-

over the mass flow rates are often given by other condi-

tions. In the system analysed here manipulating the bat-

tery cooling liquid mass flow rate seems to make sense.

The described interdependencies between the control

variables demand special controller designs. Reason-

able approaches could be a decoupling control that pre-

vents change in other process variables when one vari-

able is changed or a dynamic feedforward control that

has knowledge about the physical behavior as described

in previous work (Varchmin et al., 2014). However

development of advanced control schemes is not the

main focus of this paper. Hence, Single-Input-Single-

Output (SISO) controllers are used for the automotive

system described in section 2, even if a decoupling seems

to be recommended as it is shown in the following.

n = 3000rpm n AEXV,1 AEXV,2 ṁliq,2

Q̇1 0.38 0.56 0.05 0.01

Q̇2 0.33 0.04 0.61 0.02

Tsh 0.05 0.03 0.4 0.52

Tsh,1 0.24 0.36 -0.06 0.45

n = 6000rpm n AEXV,1 AEXV,2 ṁliq,2

Q̇1 0.66 0.14 0.07 0.12

Q̇2 0.33 0.02 0.32 0.32

Tsh -0.12 -0.06 0.81 0.38

Tsh,1 0.13 0.9 -0.2 0.17

Table 1. Relative Gain Arrays of Two Evaporator System at

Different Compressor Speeds

Modeling and Validation of a Multiple Evaporator Refrigeration Cycle for Electric Vehicles

286 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118281

For Multi-Input-Multi-Output (MIMO) systems

steady-state interactions, e.g the ones shown in the

previous section, can be represented in relative gain

arrays (RGA). These matrices show normalized steady-

state gain information and are therefore a measure

of interactions (Grosdidier et al., 1985). In table 1

two RGAs derived by the validated model are shown.

RGAs quantify system behavior and may be used to

develop SISO (as well as MIMO) controller schemes,

i.e. to obtain reasonable pairs of actuating and control

variables (Skogestad and Postlethwaite, 2007). The

arrays are different for every operation point, only for a

linear system one array would be valid globally. Gain

scheduling could be used to adapt controller parameters

to nonlinear behavior in dependence of the current

operating point.

The displayed arrays are valid for two different com-

pressor speeds, i.e. cooling capacities, at small super-

heats. Instead of the superheat of evaporator 2 the overall

superheat in front of the compressor is chosen as a con-

trol variable. Firstly the overall superheat is most rele-

vant for a secure compressor operation and secondly the

RGAs are less coupled in this case. Optimal actuator-

control pairs for the operation points are printed in bold.

It can be seen that the system is highly nonlinear and that

actuating variables that are a good choice in one point

may be a useless choice in another. While the reactions

to changes of compressor speed n stay similar (first col-

umn) the reactions of the other actuating variables differ

a lot. E.g. the mass flow rate ṁliq would be best paired

with cooling capacity Q̇1 for n = 6000rpm (value 0.32)

bus has nearly no effect for n = 3000rpm (0.02).

The RGAs do not give any information about the sys-

tem dynamics. Similar time constants complicate SISO

control and may lead to instabilities. This may be due

to two controllers having influence on the same control

variables that wind up to not desired behavior because

they disturb each other simultaneously. This problem

will be discussed in combination with advanced con-

troller designs in future work.

7 Simulation Results

System analysis leads to a control scheme for the auto-

motive system that is shown in figure 1. Four SISO Con-

trollers implemented as PI controllers are used for reach-

ing reasonable setpoints. As discussed table 1 shows

possible pairs of actuating and control variables. Values

change for different compressor speeds and so a com-

promise between the operation points needs to be found.

Speed n and opening area AEXV,1 can be chosen without

issues for Q̇1 and Tsh,1 because of high values in both

matrices. It seems best to choose opening area AEXV,2

for Q̇2 and the liquid mass flow rate ṁliq,2 for the overall

superheat Tsh because of satisfying values for these pairs

in both matrices. A problem for this configuration is that

in some operating points the battery would not be able

to provide enough heat to ensure a sufficient superheat.

The secondary liquid cycle would need to be designed

for very high heat flows that do not occur very often.

Therefore the controller scheme of the lower matrice in

table 1 is chosen although the dependency between ṁliq,2

and Q̇2 is not very strong for slow compressor speeds.

It may be a benefit that at high battery temperatures the

compressor speed will probably lie over 3000 rpm so that

there would be a sufficient coupling again.

The model is simulated with a transient real-life driv-

ing cycle (leading from Braunschweig to Wolfsburg) as a

boundary condition (see figure 7). The ambient temper-

ature is 30◦C and all components possess this tempera-

ture at the start of the simulation. The air flowing into

the cabin has a temperature of 10◦C and the setpoint for

the superheats is 7K. For the battery temperature con-

troller a setpoint of 30◦C is chosen whereat it is consid-

ered that this point will not be reached at all times. The

inner battery temperature has a high time constant since

the battery owns a great heat capacity and the heat needs

to be conducted through the cell until it is led away by

the liquid cycle. Only by predictive control it could be

controlled perfectly.

Results are shown in figure 7 (b)-(f). At the begin-

ning of the cycle the compressor speed is high to cool

down the air and evaporator masses (c). After about

one minute the compressor slows down to approximately

3000 rpm. The temperature of the inflowing air reaches

its setpoint of 10◦C quite fast and remains at this level

for the whole cycle (d). The battery temperature rises

slowly until around 800 s (f). From that time on the driv-

ing cycle reaches higher velocitys and drive power rises.

This leads to a faster rising battery temperature. Hence,

the cooling liquid mass flow rate is set higher (b). This

shows effect at about 800 s so that the battery temper-

ature slope is eased and in the following negative. As

discussed previously the main target of battery cooling is

not reaching a certain setpoint but limiting the maximum

temperature to 35◦C. Superheats stay in a secure range

except for a small peak at 50 seconds. The overall super-

heat rises between 200 and 1000 seconds (e). The EXV

in the battery cooling path reacts to this deviation (not

displayed) but can not balance perfectly since the mass

flow rate of the battery cooling liquid is also rising until

1000 seconds.

8 Conclusion

In this paper a dynamic model for an air conditioning cy-

cle with an extra evaporator for battery cooling has been

developed. A library with physical models for battery

cells and modules has been described. Multi-evaporator

effects were shown and explained. The developed cycle

model has been validated with the help of a test bench

containing plate heat exchangers. Elaborated intedepen-

Session 3D: Automotive Applications 2

DOI
10.3384/ecp15118281

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

287

0 400 800 1200 1600
0

20

40

60

80

100

120

140

V
el

o
ci

ty
[k

m
/h

]

(a)

0 400 800 1200 1600
2000

3000

4000

5000

6000

7000

8000

S
p
ee

d
n
[r

p
m
]

(c)

0 400 800 1200 1600
0

5

10

15

20

T
[K
]

(e) Set point

Tsh

Tsh,1

0 400 800 1200 1600

Time [s]

0

2

4

6

8

10

12

14

V̇
li

q
,2
[l
/m

in
]

(b)

0 400 800 1200 1600

Time [s]

6

7

8

9

10

11

T
[◦

C
]

(d)

Set point

Tair,in f low

0 400 800 1200 1600

Time [s]

26

28

30

32

34

T
[◦

C
]

(f)Set point

Tbattery

Figure 7. Simulation Results of the Automotive System due to a Driving Cycle

dencies were examplewise quantified by relative gain ar-

rays. One of the results is that in difference to a standard

vapor compression cycle only three actuating variables

of the primary cycle exist for four control variables. This

leads to an optimization problem instead of simple op-

timality conditions. Based on this analysis a SISO con-

troller scheme was derived and simulation results were

presented. With the developed model different battery

types and cooling approaches can be tested. Furthermore

advanced control schemes can be tested and a system ef-

ficiency analysis can be performed.

Future work will deal with analysis of multi-

evaporator system dynamics and the arising optimization

problem. Moreover advanced multivariable controller

designs could be developed for an optimal and secure

operation.

Acknowledgements

This work has been supported by the German Ministry

BMBF in the Reflex Thermo project.

References

J.H. Ahn, H. Kang, H.S. Lee, and Y. Kim. Perfor-

mance characteristics of a dual-evaporator heat pump sys-

tem for effective dehumidifying and heating of a cabin

in electric vehicles. Applied Energy, 146:29–37, 2015.

doi:10.1016/j.apenergy.2015.01.124.

M. Einhorn, F.V. Conte, C. Kral, C. Niklas, H. Popp, and

J. Fleig. A modelica library for simulation of elecric energy

storages. 8th International Modelica Conference, Dresden,

Germany, 2011.

M.S. Elliott, C. Estrada, and B.P. Rasmussen. Cascaded super-

heat control with a multiple evaporator refrigeration system.

American Control Conference, San Francisco, USA, 2011.

M. Gräber, K. Kosowski, C. Richter, and W. Tegethoff. Mod-

elling of heat pumps with an object-oriented model li-

brary for thermodynamic systems. Mathematical and Com-

puter Modelling of Dynamical Systems, 16:195–209, 2010.

doi:10.1080/13873954.2010.506799.

P. Grosdidier, M. Morari, and B.R. Holt. Closed-loop prop-

erties from steady-state gain information. Industrial and

Engineering Chemistry Fundamentals, 24:221–235, 1985.

doi:10.1021/i100018a015.

J.B. Jensen and S. Skogestad. Optimal operation of simple re-

frigeration cycles. part i: Degrees of freedom and optimality

of sub-cooling. Computers and Chemical Engineering, 31:

712–721, 2007. doi:10.1016/j.compchemeng.2006.12.003.

D. Limperich, M. Braun, and G. Schmitz. System simulation

of automotive refrigeration cycles. 4th International Mod-

elica Conference, Hamburg, Germany, 2005.

A.A. Pesaran, M. Keyser, K. Smith, G.H. Kim, and S. San-

thanagopalan. Tools for designing thermal management of

batteries in electric drive vehicles. Large Lithium Ion Bat-

tery Technology & Application Symposia Advanced Auto-

motive Battery Conference, Pasadena, USA, 2013.

C. Richter. Proposal of New Object-Oriented Equation-Based

Model Libraries for Thermodynamic Systems. PhD thesis,

Technische Universität Braunschweig, 2008.

Modeling and Validation of a Multiple Evaporator Refrigeration Cycle for Electric Vehicles

288 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118281

F. Schedel, G. Suck, S. Försterling, W. Tegethoff, and J. Köh-

ler. Effizienzbewertung von wärmepumpen in hybrid-

fahrzeugen mit hilfe der verlustbasierten modellierung von

scrollverdichtern. DKV-Tagung, Hannover, Germany, 2013.

C. Schulze. A Contribution to Numerically Efficient Modelling

of Thermodynamic Systems. PhD thesis, Technische Uni-

versität Braunschweig, 2013.

S. Skogestad and I. Postlethwaite. Multivariable Feedback

Control: Analysis and Design. Wiley, 2007.

M. Titze, N. Lemke, A. Hafner, and J. Köhler. Entwicklung

und simulation luftaufbereitungs- und kälteanlageanlage im

supermarkt mit wärmerückgewinnung. DKV-Tagung, Han-

nover, Germany, 2013.

A. Varchmin, M. Gräber, W. Tegethoff, and J. Köhler. Super-

heat control with a dynamic inverse model. 10th Interna-

tional Modelica Conference, Lund, Sweden, 2014.

V.V. Viswanathan, D. Choi, D. Wang, W. Xu, S. Towne,

R. Williford, J.-G. Zhang, J. Liu, and Z. Yang. Ef-

fect of entropy change of lithium intercalation in cath-

odes and anodes on li-ion battery thermal manage-

ment. Journal of Power Sources, 195:3720–3729, 2009.

doi:10.1016/j.jpowsour.2009.11.103.

Session 3D: Automotive Applications 2

DOI
10.3384/ecp15118281

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

289

290 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Modeling the Effects of Energy Efficient

Glazing on Cabin Thermal Energy & Vehicle

Efficiency

A. S. Gravelle* Dr S. Robinson* A. Picarelli †

*Jaguar Land Rover Plc, JLR Research, Vehicle Efficiency, United Kingdom
† Claytex Services Limited, Edmund House, United Kingdom

Abstract

Automotive manufacturers are continually
seeking to improve overall vehicle
efficiency, one particular area of high
energy consumption is the vehicle’s
HVAC system which can have a
significant impact on fuel economy or
range in electrically powered vehicles.
 Presented in this paper is the work
undertaken to understand the ability to
model an automotive cabin for a luxury
SUV in the Modelica environment
including how energy efficient glazing can
be modelled to determine improvements in
heating or cooling efficiency at extreme
ambient temperatures which will have an
effect on fuel economy. The effect of air
conditioning systems on fuel economy are
typically not measured on cycle therefore
the real world effect on energy
consumption should be quantified.

The whole vehicle model and its sub-
systems including the cabin and HVAC
models are built using the Dymola
(DYnamic MOdelling LAboratory) multi-
domain physical systems engineering tool,
the modelling approach to each subsystem
will be discussed in this paper. The air
conditioning system model has been
created using 1d thermo-fluid physical
models. The cabin has been modelled as a

multi-zone 1d thermo-fluid model with
layering effects.

1. Introduction

1.1. Project Background

Typically in global climates where high
ambient temperatures and high solar
irradiance exist temperatures inside the
automotive cabin can reach as high as
60°C after soaking the vehicle. Therefore
the energy consumption required to bring
the cabin temperature down to a
comfortable level (between 20-25°C) can
be significant. In order to do this the load
on the air conditioning compressor is high
enough to have a big impact on fuel
economy.

The pulldown test is typically used to
correctly size the HVAC components by
applying the highest load to the AC
system. Incorrect sizing of the HVAC
system has a negative effect on thermal
comfort and energy consumed when
installed in the vehicle. If a vehicle has
been soaked in a hot climate between
12pm-3pm this has a significant impact on
pulldown energy requirements and time to
comfort in the cabin. The final soak
temperature is primarily dominated by:

DOI
10.3384/ecp15118291

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

291

surface area of the glazing, cabin volume,
solar properties of the glazing, thermal
conductivity & specify heat capacity of
materials and the amount of solar radiation
from the sun. The pulldown test consists
of three 30 minute sections at: 50kph,
100kph and zero vehicle speed with idle
engine speed.

In the case of low emissivity (lowE) or
Infra-red reflective (IRR) glazing these
have a positive effect on reflecting long
wave radiation and the final soak
temperature will be lower and therefore
pulldown energy requirement and time to
comfort will be reduced. As a result the
AC system may be downsized due to the
cabin now requiring significantly less
energy to get to the optimum temperature.
 For the models developed a baseline
vehicle was developed with standard
production glazing and validated against
physical climatic wind tunnel test data,
therefore results generated with energy
efficient glazing were from the model only.

The pulldown test was run with 1000W/m²
irradiance from solar lamps directly above
the test vehicle, whereas in the warmup test
no solar irradiance was applied to the
vehicle. 43⁰C and -18⁰C temperatures
were selected to be representative of the
extremes of temperatures experienced
across the globe. The AC compressor on
the test vehicle was fitted with a specially
made torque transducer so that changes in
compressor torque related to cabin thermal
energy could be related back to fuel
consumption in the test results.

2. Efficient glazing effect on

energy consumption

2.1. Baseline and energy efficient

glazing parameters

For assessing the effect of glazing and
insulation on occupant comfort and energy
consumption in the modelling
environment, relevant input parameters
were required for the glazing model in
Dymola including: transmission,
absorption and emissivity characteristics.
Glazing parameters are calculated directly
from the supplier spectral data and
conductive properties.

Table 1: Glazing input parameters for

Dymola model

Scale:

lwef = Long wave emission factor

k = Thermal conductivity [W/m.K]

swaf = Short wave absorption factor

swtf = Short wave transmission factor

As can be seen from the data in Table 1.0
lowE coated glazing has a much lower
emissivity value compared to standard
glazing which limits the infra-red heating
into the cabin. The IRR windshield has a
higher emissivity than with LowE coatings
but the reflective capability of long wave
radiation is much better in IRR glazing,

Baseline Car lwef swaf swtf
Front Windshield H M M
Panoramic Roof H H L
Front Side Window H M M
Rear Side Window H M M
Rear Windshield H M M
Prototype Car lwef swaf swtf
Front Windshield (IRR) M L L
Panoramic Roof (LowE) L H VL
Front Side Window (LowE) L M M

Modeling the Effects of Energy Efficient Glazing on Cabin Thermal Energy & Vehicle Efficiency

292 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118291

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

300 400 530 700 800 1100 1300 1600 1800 2100 2300 2500

T
ra

n
sm

is
si

o
n

 [
%

]

Wavelength

Figure 1: Expected solar transmittance for LowE side windows &

baseline (standard) side windows

Standard Sidelight - Transmittance [%]

LowE Sidelight - Transmittance [%]

IRR glass also has a much lower
transmittance of heat into the cabin.

In both vehicle configurations the same
glazing was used for the rear side windows
and rear windshield as well as considering
the effect that glazing targets lower solar
energy transmission. Glazing that has a
reduced U value was also considered, U
value being the amount of heat loss per m²
of material:

Rth = Thermal resistance (m²/K)/W

t = Thickness of the glazing (m)

λ = Thermal conductivity (W/m.K)

U = U value (W/m².K)

U value is directly linked to thermal
conductivity therefore reducing it should
minimise the impact of solar gain during
hot climates and prevent loss of heat from
the cabin in cold climates. For simulations
where low U value glazing is considered, a
fixed value of 1.4W/m².K has been used.

2.2. Effects of glazing properties on

the cabin environment

In testing both vehicle configurations
(baseline & advanced glazing) an overall
constant solar load of 1000W/m² was used

to mimic the typical values for maximum
direct solar radiation (excluding the
scattering effect). In reality the solar load
is not constant but varies with factors such
as: time of day, latitude, altitude, time of
year, azimuth angle and vehicle tilt angle.
The largest contributor to heat flux into the
cabin is in the infrared section of the
spectral curve. Therefore glazing that
targets filtering of the infrared portion of
the spectrum are most beneficial to
lowering cabin soak temperatures. Figure
1.0 displays the comparison in solar
transmittance of the baseline and LowE
glazing for the front side windows used in
the test vehicle.

The data shows that the transmittance of
the infra-red portion of the spectrum above
800nm is significantly lower in the LowE
glazing compared with the baseline
glazing.
 The infra-red portion of the spectrum
contributes to a significant proportion of
cabin heating. The coating side reflectance
is significantly higher in the LowE glazing
meaning less solar load is emitted into the
cabin. Spectral data for the IRR
windshield used in the prototype vehicle
shows the percentage of transmitted light at
the infra-red section of the spectrum is very
low (0.6-0.01%).

��ℎ = � � = 1��ℎ

Figure 2: Experiment level of integrated AC & cabin model

Session 3D: Automotive Applications 2

DOI
10.3384/ecp15118291

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

293

 The main outcome of the simulations is to
compare the effectiveness of LowE and
IRR glazing to test data. Typically LowE
glazing is able to absorb more thermal
energy and emit less radiation however
IRR glass may have lower absorption
capability but are able to reflect a
significantly higher proportion of thermal
energy which needs to be compared.

3. The HVAC & cabin

simulation model

3.1. Multi-zone cabin model

The first step was to develop a physical
model of the cabin and the AC system for
the test vehicle being used and
parameterise each model with data that is
representative to the test vehicle. The
cabin model was developed around an 8
zone (4 upper and 4 lower occupant zones)
cabin from the Dymola Human Comfort
library with some modifications to
accommodate some of the parameters
required for the vehicle.

Figure 2.0 shows the experiment level (top
layer) of the model which includes the test
data inputs which is fed into the cabin
zones, a weather model transmitting
ambient conditions to the outside panels of
the car and initialization conditions.
 There were two versions of this model
developed, one that allowed the vent flows
from test data to be directly used in the
cabin for validation of the cabin model and
the 2nd included integrating the HVAC
system model to the cabin so that the vent
flows are generated by the model and
power consumption of the AC compressor
can be determined. The AC system was
used so that optimisations could be run
looking at the effect of different parameters
on the cabin temperature in different zones.
 The inputs block which feeds the test
data into the cabin model includes data
such as: engine temperature, trunk
temperature, solar load, zonal temperatures
and ambient temperature. The experiment
also shows two orifices connected to a
fluid boundary seen at the bottom right of
the screenshot which represent the cabin
air exhausts at the back of the car.

B

C. Test

Start
Temps

B. Scalable
Cabin Model

A. Test Data
Inputs Model

C

A

D

D. Weather model

Test data fed into relevant zones of
the cabin.

Figure 2: Experiment level of integrated AC & cabin model

Modeling the Effects of Energy Efficient Glazing on Cabin Thermal Energy & Vehicle Efficiency

294 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118291

The weather model feeds in the external
ambient conditions to the outside surfaces
of the glass and door panels such as:
temperature, humidity air velocity & solar
conditions.
A simplistic diagram of the cabin model
itself is displayed in Figure 3.0 where in
the centre of the model is the air exchange
between zones. Vent air flows are fed in
typically from the front occupant volumes
and air exchange is permitted between
upper and lower zones and travels in 1D
across the volumes. Each zone has a port
volume and a heat port, the volume
represents the zonal cabin volume in that
region and the heat port is connected to a
heat sink which connects directly to the
glazing & trim partitions.
 The cabin volumes can be simplistic (1
upper and lower zone only) or very
detailed (12 zone cabin with 1 x upper,
middle & lower zone per occupant space).

The cabin model allows for calculation of
thermal comfort where for each ‘zone
column’ there is a comfort analysis in that
region i.e. for head, chest or legs using
parameters such as skin temperature,
metabolic rate and clothing. For each of
the partitions in the cabin model data
records are used to capture the glazing and
trim material thermal properties and also
the spectral properties if relevant/available.
The values detailed in Table 1.0 are
applied here and also the azimuth and tilt
angles of the partition as well as the
positioning and thickness of each relative
material within the partition stack.
 Due to the complexity of modelling the
characteristics of the behaviour of glazing
with LowE coating or an IRR layer, for the
lowE and IRR glazing the entire glass was
modelled with one set of properties as a
single layer for both inside and outside
surfaces. The trim partitions such as doors,
ceiling and floor used multiple layers
depending on the structure.

Figure 3: Schematic of cabin model with connected partition models

Session 3D: Automotive Applications 2

DOI
10.3384/ecp15118291

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

295

The thermal energy gain into the cabin is a
combination of the direct solar
transmittance [1], radiant heat release [2]
and convective heat transfer [3],
categorized by the below equations:
 = () 1
 = ()
 = ሺ ሻ

3.2. Air conditioning system model

The AC system model was built up using
templates from the Dymola Air Conditioning
library and was fed with the ambient
temperature, condenser airflow and
initialization values for the AC compressor.
The condenser, evaporator and thermal
expansion valve ‘TXV’ are modelled
physically with geometrical data for the
components and the boundary conditions for
the condenser and evaporator are the
refrigerant states in and out of the component
and the ambient conditions either side of the
heat exchanger.

The TXV was modelled using 4 quadrant valve
data and based around a TXV within the
Dymola AC library. Data from the supplier
was used to parameterise the TXV.

For iterations using the AC loop the cabin
zonal temperatures are derived from the
evaporator air off temperature modelled within
the AC loop and valves are used to represent
the relevant air duct paths into the cabin.
 The mean cabin temperature was the
average of all 8 zonal temperatures which
applies to both test data and simulations. The
relative humidity of the ambient air also has a
large effect on the load of the AC system
which is considered in the models.
The AC compressor is of variable
displacement and uses tabular efficiencies to
calculate the mass flow and power
consumption of the compressor:

 Volumetric – Volumetric efficiency of the

compressor.

 Isentropic – Relating to enthalpy changes

across the compressor.

 Effective – Mechanical Efficiency of the

compressor

Figure 4: Air Conditioning System Model

Modeling the Effects of Energy Efficient Glazing on Cabin Thermal Energy & Vehicle Efficiency

296 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118291

One of the biggest limitations found when
modelling the compressor was the ability to
parameterize the model at part load conditions
due to the difficulty in obtaining data with the
required boundary conditions during testing.
 The compressor is of variable swash plate
angle type such that the displacement can be
varied for different load conditions and to
prevent icing on the evaporator as opposed to a
de-clutching method. Typically the
displacement of the compressor reduces when
the ratio of pressures between suction and
discharge reduce which is controlled by the
ambient conditions.

The displacement of the compressor was
varied via the use of a PID controller which
uses the target evaporator air-off temperature
or cabin temperature as the SP value and the
model temperature as the PV value to adjust
displacement.

3.3. Vehicle model

In order to assess the effect of energy
consumption from the compressor torque
relating to vehicle traction power a vehicle
model which integrates the entire AC loop and
cabin was generated. Originally a detailed
engine warm-up model was included, however
these models significantly increased simulation
time and were excluded, Fig 5 shows the
model that was used for analysis of fuel
economy during the climate cycle assessment.

Driver Model: The driver model feeds in the
test cycle profile speed, required accelerator
pedal position and brake pedal position to the
control bus. Any particular drive cycle can be
used, i.e. NEDC, Artemis Urban, WLTP.

Engine Model: Is table based and uses MEP
and BSFC table data to calculate the fuel flow
which is dependent on throttle angle and crank
speed and is controlled by the engine controller
(ECU)

Transmission Model: Six speed automatic
gearbox with torque converter and lockup
clutch.

Chassis Model: A simplified model which
includes the final drive ratio, friction brakes,
wheels, vehicle mass, vehicle resistance
(including aero and rolling resistance).

HVAC model: The HVAC model consists of
the multi-zone cabin and AC loop where the
AC compressor is connected to the accessory
flange of the engine. Gearing has been used to
represent the AC pulley ratio in relation the
engine crankshaft.
Controllers: The engine controller uses a
fuelling strategy for idle, overrun and max
engine speed and the transmission controller
determines the upshift and downshift points
based on transmission speed as well as when to
engage or disengage the lock-up clutch.

4. MODEL RESULTS & ANALYSIS

4.1. Correlation of Dymola model to test

data

Once the entire cabin and air conditioning
model was developed, a comparison of the
baseline model with the test data was
conducted. A comparison of the final
temperatures between test data and simulation
is as follows:

Figure 5: Vehicle Simulation Model

Session 3D: Automotive Applications 2

DOI
10.3384/ecp15118291

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

297

0 1000 2000 3000 4000 5000
25

30

35

40

45

50

55

60

65

70

Time [s]

T_mean_simulated T_mean_test

0 1000 2000 3000 4000 5000
-20

-10

0

10

20

30

40

50

e [s]

ted test

0 1000 2000 3000 4000 5000
-20

-10

0

10

20

30

40

50

Time [s]

T_mean_simulated T_mean_test

 Pulldown: 1.5°C
 Warmup: 2.9°C
 43°C Soak: 0.5°C

At the start of the pulldown the cabin
temperature drops very quickly due to the AC
compressor running at very high displacement
to be able to achieve the set point temperature.
Towards the end of the pulldown the cabin
temperature increases quite considerably, this
is because the engine is running at idle speed
with the vehicle stationary therefore the
rotational speed of the compressor is lower and
the airflow over the condenser is significantly
reduced and thereby yields reduced cooling
power. For the warmup test the heat rejection
from the engine is much lower at idle so the
coolant temperature passing through the heater
core is much lower resulting in a temperature
drop.

Figure 7 highlights simulation data for the
differences in cabin temperature between
different glazing types with a 43⁰C ambient
applied, the data in this graph is purely
simulation based. The reduction in cabin
temperature with energy efficient glass fitted
to the vehicle results in a quicker time to
comfort than if standard glass were fitted to the
car.
The results from the pulldown can be seen in
Figure 7 and shows that applying specialised
glass coatings has a big effect on lowering
cabin temperature.
The most efficient setup in pulldown is to use
IRR glazing with a low U value to limit solar
gain and conductive heat transfer into the
cabin.

.

4.2. Simulation results – Energy

consumption

Figure 8 compares the vehicle running a
pulldown with standard and energy efficient
glazing for two different ambient temperatures.
The energy delta of the AC compressor
between standard and efficient glazing is
greater at the higher ambient temperature.
Therefore suggesting the greatest benefit of
LowE and IRR coated glass is at the extremes
of ambient temperatures.
 Table 5.0 shows the associated benefits in
fuel economy from a conventional diesel
powered vehicle during a pulldown test in a
43⁰C ambient temperature with 1000W/m² of
solar load.

Figure 6: Comparison of test data vs.
simulation data for pulldown & warmup tests

Figure 7: Comparison of various glazing
types and effect on cabin temperature

Modeling the Effects of Energy Efficient Glazing on Cabin Thermal Energy & Vehicle Efficiency

298 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118291

As can be seen at higher the ambient
temperature the glazing has a bigger benefit in
terms of fuel economy.

The benefit during the 1st 30 minutes is greater
at 43⁰C than at 50⁰C due to the compressor
running at full displacement for the 50⁰C test
for both standard and energy efficient glazing,
which means there is no FE benefit during the
1st 30 minutes for all configurations.
 One observation from the simulations was
that the highest contributor of heat flow into
the cabin is from the front windshield and the
panoramic roof due to their tilt angle relative
to the sun, therefore optimising glazing in
these areas has the biggest impact on reducing
the heat flux into the cabin and reducing the
load on the AC compressor.
 The glazing has been considered the path of
lowest thermal resistance in terms of
conduction due to its thickness, therefore
applying very low U values to the glazing
should have a significant impact.

5. CONCLUSIONS

After generating the base cabin, HVAC and
vehicle models it has been concluded that
Dymola provides a model with suitable fidelity
to estimate the energy benefit of novel cabin
technologies. The multi-domain systems
integration approach to concept studies that

Dymola provides allows the whole system to
be evaluated and optimised. Understanding of
the physical interaction between these systems
is therefore possible. The systems integrated in
this study include cabin and occupant models,
AC loop, vehicle powertrain and environment.
The following conclusions are established
from this work:

1. A high fidelity model of the AC system

and cabin model has been developed
which allows replaceable components so it
can be configured for use in other vehicle
platforms.

2. The baseline model correlates well with

the baseline test data which was used for
validation purposes, therefore the model
can be used as a development tool for the
vehicle efficiency research team to use and
potentially pass onto the mainstream.

3. Simulations show that the glazing in the

panoramic roof and front windshield had

Figure 8: AC compressor torque comparing standard vs. efficient glazing

Table 5: Fuel economy gains for energy
efficient glazing

Condition FE (% gain)
50⁰C Ambient benefit 3.3
43⁰C Ambient benefit 2.7
35⁰C Ambient benefit 1.4

Session 3D: Automotive Applications 2

DOI
10.3384/ecp15118291

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

299

the largest effect on solar gain and fuel
economy producing FE savings as high as
5% for a 43⁰C pulldown depending on
conditions.

4. The reduction in cabin temperature for

energy efficient glazing compared to
baseline windows for a 3 hour solar soak
was in the order of 3-4°C, also for the
pulldown this allowed a 3°C reduction in
cabin temperature.

5. For the -18⁰C warmup test the LowE

glazing alone had no impact on increasing
the average cabin temperature, reducing
the U value of the improved the warmup
capability of the cabin. However the
mode of heat transfer in this case is mostly
convective.

6. ACKNOWLEDGMENTS

The authors would like to thank all the people
that helped generate the content of this paper:
Dr. Jonathan Parsons MInstP for providing
glazing spectral properties calculated from
supplier data, MIRA test facility center for
experimental data and Claytex services for
modeling support on the project.

7. BIBLIOGRAPHY

[1] Michigan Scientific Corporation, “User
Manual for Pulley Torque Measurement
System”, Milford, MI, USA, September 2013

[2] Green Rhino Energy, “Defining Standard
Spectra for Solar Panels”,
http://www.greenrhinoenergy.com/solar/radiati
on/spectra.php

[3] A. S. Gravelle, “A multi-domain thermo
fluid approach to optimising HVAC systems”,
IMA conference proceedings, Engineer’s
House, Bristol, September 2014

[4] S Shendge, P Tilekar, S Dahiya and S
Kappor, “Reduction of MAC Power

Requirement in a Small Car” SAE Paper 2010-
01-0803, April 2010

[5] S Gasworth, T Tankala, “Effect of Glazing
Thermal Conductivity on Cabin Soak
Temperature” SAE Paper 2012-01-1207, April
2012

[6] T Han, Kuo-Huey Chen, “Assessment of
Various Environmental Thermal Loads on
Passenger Compartment Soak and Cool-down
Analyses” SAE Paper 2009-01-1148,

[7] D Turler, D Hopkins, H Goudey,
“Reducing Vehicle Auxiliary Loads Using
Advanced Thermal Insulation and Window
Technologies” SAE Paper 2003-01-1076

Modeling the Effects of Energy Efficient Glazing on Cabin Thermal Energy & Vehicle Efficiency

300 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118291

A Framework for Nonlinear Model Predictive Control in

JModelica.org

Magdalena Axelsson1 Fredrik Magnusson2 Toivo Henningsson1

1Modelon AB, Lund, Sweden, {magdalena.axelsson, toivo.henningsson}@modelon.com
2Department of Automatic Control, Lund University, Sweden fredrik.magnusson@control.lth.se

Abstract

Nonlinear Model Predictive Control (NMPC) is a control
strategy based on repeatedly solving an optimal control
problem. In this paper we present a new MPC frame-
work for the JModelica.org platform, developed specif-
ically for use in NMPC schemes. The new framework
utilizes the fact that the optimal control problem to be
solved does not change between solutions, thus decreas-
ing the computation time needed to solve it. The new
framework is compared to the old optimization frame-
work in JModelica.org in regards to computation time
and solution obtained through a benchmark on a com-
bined cycle power plant. The results show that the new
framework obtains the same solution as the old frame-
work, but in less than half the time.
Keywords: Nonlinear Model Predictive Control, JMod-

elica.org, Optimization, IPOPT

1 Introduction

Model Predictive Control (MPC) is an optimization-
based control strategy based on the repeated on-line solu-
tion of an open-loop optimal control problem at discrete
time points. Feedback is incorporated by measuring the
state at each of these discrete timepoints and using the
measured state as the initial state in the optimal control
problem. From each optimization the first input in the
optimal control sequence computed is applied to the sys-
tem. Two of the main advantages of MPC compared to
other control methods are that

• it easily extends to multivariable systems with mul-
tiple inputs and outputs.

• it intrinsically handles constraints on all system
variables.

In general, one distinguishes between linear and non-
linear model predictive control (LMPC/NMPC). In the
case of linear MPC, where the system model and any
constraints imposed upon the system are linear and the
cost is quadratic, the optimal control problem can be

cast as a quadratic program. Quadratic programs can
be solved efficiently on-line. In case of nonlinear MPC,
the optimal control problem is instead cast as a NonLin-
ear Program (NLP), which is more computationally de-
manding to solve. The long computation time of the op-
timization, along with the risk that sometimes an optimal
solution is not found at all, are two of the main limiting
factors for successful application of NMPC in industry.
(Allgöwer et al., 2004).

JModelica.org is an open-source platform for simu-
lation, optimization and analysis of complex dynamic
systems described by Modelica models (Åkesson et al.,
2010). In recent research its use has been proposed for
the solution of the optimal control problem for NMPC
applications in several different fields, including (Cavey
et al., 2014) where a JModelica.org/NMPC scheme was
successfully implemented to control the heating system
in a building, (Berntorp and Magnusson, 2015) where
the use of JModelica.org was proposed to solve the
NMPC optimal control problem in a hierarchical pre-
dictive control scheme for the lane keeping of a vechi-
cle and (Larsson et al., 2013) where a case study of the
start up of a combined cycle power plant using a JMod-
elica.org/NMPC scheme was made. Features and perfor-
mance for NMPC application using JModelica.org has
been evaluated in (Hartlep and Henningsson, 2015).

The optimization algorithm in JModelica.org is cur-
rently embedded into an open-loop framework, which is
well suited for solving dynamic optimization problems
once. This paper describes a new optimization frame-
work, the MPC framework, developed specifically for
the repeated solution of the optimal control problem in
NMPC schemes (Axelsson, 2015). The new MPC frame-
work is built around the same optimization algorithm as
the open-loop framework, but for efficiency it exploits
the fact that the optimal control problem to solve has
the same structure in each consecutive optimization. The
main goals of the new MPC framework has been to de-
crease the average computational time for one optimiza-
tion as much as possible while streamlining the setup of
NMPC schemes, making JModelica.org faster and easier
to use for NMPC applications.

DOI
10.3384/ecp15118301

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

301

The rest of the paper is outlined as follows. Section 2
gives general background on Nonlinear Model Predictive
Control and optimization using JModelica.org. Section
3 presents the new MPC framework implemented in this
paper. Section 4 compares the MPC framework to the
existing open-loop framework in terms of performance
on an NMPC setup of a combined cycle power plant.
The section also evaluates the effects of warm starting
the NLP solver. Finally, Section 5 summarizes the paper
and further work discussed.

2 Background

2.1 MPC

This subsection presents the type of optimal control
problems that are considered in this paper, and a basic
MPC control algorithm. A common problem in MPC
and how it can be solved is also discussed.

2.1.1 Optimal Control Problem

An optimal control problem includes a model of the sys-
tem that is to be controlled, an objective function and, if
desired, constraints on variables in the system.

The objective function, also commonly referred to as
the cost function, expresses what is to be minimized
in the optimization. For MPC problems the objective
function is typically formulated to penalize deviations
of some variables from their set points. The variables
that have set points are called the controlled variables

and may be any of the different types of variables in the
system. For ease of notation we introduce w as the con-
trolled variables

w = (xcontrolled,ycontrolled,ucontrolled) (1)

where xcontrolled ⊂ x,ycontrolled ⊂ y and ucontrolled ⊂ u.
In practice all processes are subject to constraints.

These include physical constraints, such as actuators that
have a limited working range and slew rate as well as
constructive, safety and environmental constraints im-
posed on the process to make sure it is operating in a safe
and desired manner. Examples of constraints included in
the second category are maximum and/or minimum lev-
els in tanks, temperatures, pressures, flow rates etc.

The purpose of an optimal control problem is to find
the input that minimizes the objective function, while up-
holding the constraints imposed upon the system. A typ-
ical optimal control problem for MPC applications, ex-
pressed in continuous time, can have the form

minimize

f (w) =
∫ t f

t0

(wref −w(t))T Q(wref −w(t))dt (2a)

with respect to

x(t) ∈ R
nx , y(t) ∈ R

ny , u(t) ∈ R
nu ,

subject to

F(ẋ(t),x(t),y(t),u(t)) = 0, (2b)

x(t0) = x0, (2c)

xL ≤ x(t)≤ xU , (2d)

yL ≤ y(t)≤ yU , (2e)

uL ≤ u(t)≤ uU , (2f)

g(ẋ(t),x(t),y(t),u(t))≤ 0, (2g)

G(ẋ(t f),x(t f),y(t f),u(t f))≤ 0, (2h)

∀t ∈ [t0, t f]

where (2a) is the objective function where w are the
controlled variables, wref are their set points and Q is a
weighting matrix. The Modelica model, expressed by a
set of Differential Algebraic Equations (DAE) describing
the system dynamics, is included in (2b) where x(t) are
the differentiated variables, y(t) are the algebraic vari-
ables and u(t) are the control variables. We rely on Mod-
elica compilers to perform index reduction and thus only
consider DAE systems of index at most 1, so the differ-
entiated variables correspond to the system state. The
initial conditions (2c) define the initial state x(t0) of the
system. Here x0 are the initial condition parameters. Ad-
ditionally, (2d)-(2h) are the constraints imposed upon the
system, where(2d)-(2f) are variable bounds with lower
limit {x,y,u}L and upper limit {x,y,u}U , (2g) is path
constraints and (2h) is terminal constraints. The optimal
control problem is considered over a prediction horizon
of Hp = t f − t0 seconds.

2.1.2 Control Algorithm

The general idea with MPC is that the optimal control
problem (2) is solved on-line at each sample point tk. The
solution to (2) will determine the input that is to be ap-
plied to the system until the next sample point tk+1. The
time between two sample points is called the sample pe-
riod.

The control algorithm states that at each sample point
tk, the following steps should be carried out:

1. Obtain an estimate of the initial state xest(tk).

2. Set the initial condition parameters x0 = xest(tk), the
start time t0 = tk and the final time t f = t0 +Hp.

3. Solve (2).

4. Apply u1 to the system, where u1 is the first value
in the resulting control sequence. Hold the input
constant through the entire sample period.

A Framework for Nonlinear Model Predictive Control in JModelica.org

302 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118301

To be able to solve (2) we need to know the initial state
of the system. Typically however, all the states are not
measurable. It is therefore assumed that a state estimator
is used to estimate the initial state in step 1. A Mov-
ing Horizon Estimator is an example of an optimization-
based state estimator for nonlinear systems. An MHE
framework is currently being developed for JModel-
ica.org (Larsson, 2015).

2.1.3 Constraint softening

A common problem in MPC is that (2) is infeasible for
the estimated initial conditions. This can happen if the
process is running close to a limit and a particularly large
disturbance occurs, or if the model is not good enough
and the process behaves differently than predicted. Infea-
sibility caused by constraint violations can be prevented
by softening the constraints. This means that rather than
to regard constraints as hard limits which may never be
crossed, we soften them by allowing them to be crossed,
but only if necessary. One way of softening a constraint
is by adding a new variable, a so-called slack variable, to
the problem. This slack variable is heavily penalized in
the cost function and is defined in such a way that it needs
to be non-zero if the constraint is violated. With a large
enough constraint penalty this gives the solver an incen-
tive to keep the slack variable at a small value, mean-
ing that the original constraint is upheld (Maciejowski,
2002). The MPC framework supports automatic soften-
ing of variable bounds using this method. More details
on the automatic softening will be presented in Section
3.3.1.

2.1.4 Other NMPC tools

Another framewoork that may be used for NMPC appli-
cations based on Modelica models is the one described
in (Franke et al., 2003). The framework described in
that article uses multiple shooting to discretize the prob-
lem and HQP (Franke et al.), to solve the resulting NLP.
One drawback with this tool, compared to the MPC
framework described here, is that it implements a quasi-
Newton type algorithm, meaning only first order deriva-
tives are utilized.

ACADO toolkit is another tool suitable for NMPC ap-
plications on embedded hardware (Houska et al., 2011).
However, ACADO toolkit does not have a Modelica in-
terface and models are instead written in C++.

2.2 Optimization in JModelica.org

This subsection presents how optimization problems are
solved in JModelica.org. It briefly explains the theory of
the discretization and solution process, as well as how
the open-loop optimization framework in JModelica.org
works.

2.2.1 Discretization

The optimization algorithm in JModelica.org can solve
different types of dynamic optimization problems, in-
cluding the optimal control problem for MPC applica-
tions but also parameter estimation and parameter op-
timization problems. The optimization problems to be
solved are expressed using Optimica (Åkesson, 2008); a
Modelica extension including language constructs to e.g.
formulate the objective function and constraints.

The optimization problem needs to be discretized in
order for numerical solvers to solve it. To discretize the
problem we let a finite number of discrete time points
on the prediction horizon represent the trajectories of all
variables in the optimization problem.

The optimization algorithm in JModelica.org uses di-
rect collocation to transcribe the infinite-dimensional op-
timization problem into a finite-dimensional NLP (Mag-
nusson and Åkesson, 2015). The collocation methods
supported in JModelica.org are Radau and Gauss collo-
cation. They both start with dividing the prediction hori-
zon into ne collocation elements. In each element, nc

number of collocation points are placed. The total num-
ber of collocation points thus becomes ne ·nc, and it is in
these points that we consider the optimization problem.
This means that each time-dependent variable in the orig-
inal optimization problem, yields a set of ne ·nc optimiza-
tion variables in the NLP, one at each collocation point.
The collocation points approximate the system trajecto-
ries by polynomials through interpolation. This in turn
means that each constraint or equation in the original
optimization problem, which include a time-dependent
variable, is transcribed into a set of ne · nc constraints or
equations in the NLP, one at each collocation point. The
structure of the resulting NLP is dependent on the struc-
ture of the original optimization problem and the collo-
cation options chosen.

2.2.2 Solving the NLP

JModelica.org uses the third party NLP solver IPOPT
(Interior Point OPTimizer) to solve the resulting NLP
(Wächter and Biegler, 2006). IPOPT implements a
primal-dual interior point method to find a solution to
the NLP, which after transcription has the general form

minimize

f (z) (3a)

with respect to

z ∈ R
nz ,

subject to

zL ≤ z ≤ zU (3b)

ge(z) = 0, (3c)

gi(z)≤ 0, (3d)

Session 4A: Optimization Applications and Methods

DOI
10.3384/ecp15118301

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

303

where z are the optimization variables and (3b) their
bounds. All constraints have been categorized depend-
ing on whether they are equality constraints ge (3c) or
inequality constraints gi (3d). An optimal solution to
the NLP requires the Karush-Kuhn-Tucker (KKT) con-
ditions to be satisfied (Boyd and Vandenberghe, 2004).
The KKT conditions can be derived from the Lan-
grangian function, which is defined as

L(z,λ ,ν) = f (z)+λ ·ge(z)+ν ·gi(z), (4)

where λ ∈ R
nge and ν ∈ R

ngi are the Lagrange multi-
pliers. The Lagrange multipliers are also treated as iter-
ation variables in the solution process. To separate them
from the optimization variables z, the Lagrange multipli-
ers are often called the dual variables while z are called
the primal variables.

As an interior point method IPOPT considers the aux-
iliary barrier problem formulation

min
z

Jµ(z) = f (z)−µ
nz

∑
i=0

ln(zi) (5a)

s.t. g(z) = 0 (5b)

where µ is the barrier parameter (Wächter, 2009). This
transformation from (3) to (5) is handled internally in
IPOPT and for ease of notation it has here been as-
sumed that the variables z only have lower bounds of
zero. Given a value of the barrier parameter µ > 0, which
tends to zero during the solution procedure, the barrier
objective function J will go towards infinity if any vari-
able z approaches its bound of zero. The initial value
of the barrier parameter µinit determines how far away
from the constraints that the intermediate solution will
be pushed. For an initial guess very close to the optimal
solution, a small value of µinit might decrease the itera-
tions needed to get to the optimal solution, while for a
less accurate initial guess a larger value of µinit typically
gives faster convergence.

Given a good enough initial guess of the optimization
variables the solver will converge to a local optimal so-
lution of the NLP. An initial guess closer to the optimum
will also in most cases reduce the number of iterations
needed to get there. For MPC applications, it is typically
a good idea to use the solution to the last optimization as
the initial guess for the next.

Since the dual variables are iteration variables as well,
they also need an initial guess. IPOPT has a method to
compute an initial guess for the dual variables automat-
ically. However, in the same way as for the primal vari-
ables, it might be a good idea to use the previous result of
the dual variables as initial guess instead. Providing an
initial guess of both primal and dual variables is called
warm starting the solver and will be evaluated in section
4.3.

JModelica.org is interfaced with IPOPT through
CasADi (Computer algebra system with Automatic Dif-

ferentiation)(Andersson, 2013). CasADi is an open-
source, symbolic framework for automatic differentia-
tion. It is used in JModelica.org for two main reasons;
to give all optimization variables and expressions a sym-
bolic representation using CasADi Interface (Lennernäs,
2013) and to calculate function derivatives. Scripts for
JModelica.org are written in Python.

2.2.3 Optimization framework

Solving an optimization problem using the open-loop
framework in JModelica.org is done in three steps:

1. Pre-processing: In the pre-processing step, the op-
timization problem is transcribed into an NLP by
means of direct collocation as described in the pre-
vious section. All optimization variables in the re-
sulting NLP are given a symbolic representation us-
ing CasADi and a solver object is created and ini-
tialized.

2. Solution: The solution step is handled completely
by the third-party NLP solver IPOPT and includes
the iterative steps that the solver takes to find a so-
lution to the NLP.

3. Post-processing: The NLP solver returns the re-
sult for all optimization variables in one long vec-
tor. The post-processing step includes processing
the result so that it is presented to the user in a con-
venient way, which includes creating a result object
and writing the result to file.

The total computation time to solve an optimization
problem is thus the time for each of these steps com-
bined.

3 MPC framework

This section presents the new MPC framework imple-
mented in this paper. It includes a comparison to the
open-loop framework as well as a presentation of how it
is used and a few of the features included in it.

3.1 Compared to open-loop framework

The MPC framework was created to make the total com-
putation time for solving the optimal control problem
shorter, while making JModelica.org easier to use for
MPC applications. The reason the computation time is
shorter using the MPC framework compared to directly
using the open-loop framework is that the MPC frame-
work utilizes the fact that the structure of the discretized
optimal control problem is the same in each consecutive
optimization. This allows performing the discretization
only once, and reusing the resulting NLP for all opti-
mizations. Solving the optimal control problem using
the MPC framework is done in these steps:

A Framework for Nonlinear Model Predictive Control in JModelica.org

304 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118301

0. Initialization: In the initialization step, the optimal
control problem is transcribed into an NLP as in the
pre-processing step of the open-loop framework.

1. Pre-processing: The initial condition parameters as
well as the start and final time of the optimization
horizon are updated. A new initial guess for the
optimization variables is also set.

2. Solution: The solution step includes the same
things as this step in the open-loop framework, with
the difference that warm start of the solver can be
enabled.

3. Post-processing: All u1 values are extracted from
the result and returned to the user.

Step 0 is only done once, off-line, when an MPC ob-
ject is created, while steps 1-3 are executed in each op-
timization. Since the time-consuming discretization has
been moved to initialization the pre-processing time in
the MPC framework is significantly decreased. The post-
processing time is also decreased due to the MPC frame-
work not creating a result object after each optimization
but rather only returning the computed u1 values instead.

The open-loop framework hardcodes the values of
Modelica parameters, including initial conditions. To en-
able the update of the initial conditions in Step 1 for the
NLP constructed in Step 0, the initial conditions are in-
stead introduced as symbolic NLP parameters. Defining
the initial conditions as parameters x0 thus makes it pos-
sible to update their values between optimizations.

3.2 Example

The MPC framework includes features that simplify the
use of JModelica.org for MPC purposes. After the setup,
the MPC object requires very little interaction from the
user as most things are handled internally. The only
information that has to be supplied to the MPC object
is the next initial state. The Python code excerpt be-
low gives an example on how the MPC framework is
used. Here it is assumed that the optimization problem
opt_problem, the optimization options options,
the sample period sample_period and the predic-
tion horizon horizon have already been defined. A
detailed description of how to do this is found in (Axels-
son, 2015). The Optimica code for the benchmark sys-
tem used in this article will be presented in Section 4.2.

The first line of this example shows how to utilize the
support for automatically softening variable bounds, in
this case for the variable plant.sigma. In this exam-
ple, artificial measurement data is created by simulating
an FMU of the system from the initial state and one sam-
ple period forward in time, with the optimal input ob-
tained from the optimization.

Define variable bounds to be softened

cvc = {’plant.sigma’: 1e5}

Create the MPC object

MPC_object = MPC(opt_problem, options,

sample_period, horizon, constr_viol_costs=cvc

)

Set initial state

x_k = {}

for name in op.get_state_names():

x_k["_start_"+name] = opt_problem.get("

start"+name)

for k in range(nbr_opt):

Update the state and optimize nbr_opt times

MPC_object.update_state(x_k)

u_k = MPC_object.sample()

Simulate for one sample period with the

optimal input u_k

sim_model.reset()

sim_model.set(x_k.keys(), x_k.values())

sim_res = sim_model.simulate(

start_time = k*sample_period,

final_time = (k+1)*sample_period,

input=u_k, options=sim_opts)

Extract state values at end of sim_res

x_k = MPC_object.extract_states(sim_res)

Add measurement noise to states

Get result and extract variable profiles

opt_res = MPC_object.get_complete_results()

opt_plant_sigma = opt_res[’plant.sigma’]

3.3 Features

3.3.1 Softening Variable Bounds

The need for constraints to be softened was discussed in
Section 2.1.3. The MPC framework has a method that
automatically softens variable bounds. The softening is
done before the discretization, and will thus be described
in continuous time. For each variable bound that is to be
softened, a slack variable is added to the problem formu-
lation. That means that if a variable z has both an upper
limit zU and a lower limit zL, the same slack variable,
zslack, will be used when softening both bounds. The
softening is done in four steps:

1. A new input, the slack variable zslack, is added to
the optimization problem. The slack variable is
bounded to be larger than 0 and the nominal value
is set to 0.0001 times the nominal value of the base
variable. That is,

zslack ≥ 0 (6)

zslack, nominal = 0.0001 · znominal (7)

2. The slack variable times a constraint violation
penalty Pz is added to the cost function. That is,
the cost function f (w) is changed to:

f (w)+Pz ·
∫ t f

t0

zslack(t)dt (8)

Session 4A: Optimization Applications and Methods

DOI
10.3384/ecp15118301

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

305

Once discretized, this formulation will be equiva-
lent with adding the 1-norm of the slack variable
times the constraint violation penalty.

3. The old variable bounds are transformed into path
constraints on the form

z ≤ zU + zslack (9)

z ≥ zL − zslack (10)

These four steps are done for all variables that have
bounds to be softened. If a variable has only either an
upper or a lower bound, step 3 is modified accordingly.
Ideally, if the initial condition has not violated the con-
straint, the slack variable should be zero or very close to
zero at all times. However, choosing the nominal value
of the slack variable has to be done with care to avoid
numerical issues. This is why we have made the nominal
value of the slack variable proportional to the nominal
value of the base variable. The factor of 0.0001 included
in the calculation of the slack nominal value was decided
through testing.

3.3.2 Unsuccessful Optimization

Since finding a solution to the NLP is not guaranteed,
it is important to have a fallback method in case of un-
successful optimization. Using the MPC framework, if
the solver terminates without finding a solution to the
given problem the input returned will be the second in-
put u2 in the input sequence of the previous optimiza-
tion (which was successful). If the next optimization af-
ter that is unsuccessful as well, the third input u3 in the
input sequence in the last successful optimization is re-
turned, and so on. This way of returning optimal inputs
from the last successful optimization continues until the
solver finds a feasible solution again, or until there are no
more values in the last successful optimization to return.

This is the default fallback method in case of unsuc-
cessful optimizations the MPC class uses. However, it is
straightforward to detect if an optimization was success-
ful or not, so it is possible for the user to create a custom
fallback method instead.

3.3.3 Next initial guess

Having a good initial guess for the optimization variables
is important to decrease the risk of not finding a solution
and to speed up the solution process. Defining a new ini-
tial guess of the optimization variables prior to each op-
timization is handled internally in the MPC framework.
There are three different methods of computing the ini-
tial guess in the MPC framework:

1. Extracting it from a result object. This method uses
the same methods that are used by the open-loop
framework to extract an initial guess of the opti-
mization variables from the trajectories of a result

object. This method is quite time-consuming and
requires that a result object, from which to extract
the initial guess, is available.

2. Shifting the result vector. The NLP solver returns
the solution of an optimization in one vector con-
taining the value of each variable at each of the
collocation points. The result vector is on the
same form as the vector corresponding to the ini-
tial guess, but offset by one sample period in time.
Looking at the result vector, this method discards
all the values included in the first sample period
and shifts the rest of the values to cover the voids.
This means that all the values corresponding to the
second sample period in the result vector will be
shifted to the values corresponding to the first sam-
ple period in the initial guess vector. The values of
the last sample period in the initial guess vector are
all set to the value of the last collocation point from
the result vector. On a uniform mesh, this method
yields the same initial guess as method 1 and is less
time-consuming.

3. Using the result vector without shifting it. This
method sets the new initial guess to the result from
the previous optimization directly, without shifting
it. Using this method will yield the least accurate
initial guess, since all values will be offset by one
sample period in time, but it is the least time con-
suming method of the three.

The default method of computing the next initial guess
in the MPC framework is method 2, mainly because it is
faster than method 1 and yields a better initial guess than
method 3.

3.4 Limitations

Because the MPC framework reuses the NLP for each
optimization it is not as flexible as the open-loop frame-
work. There are currently some collocation options that
are not compatible or will not work as desired with the
MPC framework and there are also some restrictions re-
garding the formulation of the optimal control problem.
These are described in more detail in (Axelsson, 2015).

4 Results

4.1 Test setup

In this section we will evaluate the performance of the
MPC framework through two different tests. The first
test is to evaluate how the performance of the NLP solver
is affected by the warm start options chosen. The second
test is a benchmark where the aim is to compare the re-
sults of the MPC framework to the open-loop framework.
For both tests we provide some or all of the following
statistics:

A Framework for Nonlinear Model Predictive Control in JModelica.org

306 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118301

• Optfail. The sample number of the optimizations
which were unsuccessful. For IPOPT it is as-
sumed that the return statuses ’Solve_Succeeded’
and ’Solved_To_Acceptable_Level’ denote a suc-
cessful optimization. All other return statuses are
regarded as unsuccessful.

• Iterations. The average number of iterations in
IPOPT for one sample.

• Tpre. The average pre-processing time for one sam-
ple.

• Tsol. The average solution time in IPOPT for one
sample.

• Tpost. The average post-processing time for one
sample.

• Ttot. The average total computation time for one
sample.

All tests are run using the MA27 solver for IPOPT
(HSL, 2013).

4.2 Test problem

The system we are going to evaluate the performance
of the MPC framework on is a Combined-Cycle Power
Plant (CCPP) (Casella et al., 2011), during start-up. The
aim of the MPC controller is to take the system from
an off state to full capacity. The plant is considered to
be at full capacity once the evaporator pressure p has
reached 8.35 MPa and the plant load load has reached
100%. During the start-up there is an upper bound on
the thermal stress σ in the steam turbine, which may not
exceed 260 MPa. The MPC framework will soften this
bound automatically as discussed in section 3.3.1. We
are going to extend the model with an integrator at the
input by connecting the plant load with a new state vari-
able u and thus having u̇ as the input in the optimization
problem. This yields a plant load which is piecewise lin-
ear, rather than piecewise constant. This also allows for
setting variable bounds on u̇. Variable bounds on u and u̇

are

0 ≤ u ≤ 1,

0 ≤ u̇ ≤ 0.1/60.

The Optimica code for this system is presented below.

optimization Startup(objectiveIntegrand=((

plant.p-8.35e6)/1e6)^2 + 0.5*(u-1)^2,

startTime=0,finalTime=4000)

parameter Real sigma_max = 2.6e8;

CombinedCycle.Optimization.Plants.CC0D_WarmStartUp

plant(sigma(max=sigma_max));

Modelica.Blocks.Interfaces.RealInput du(min=0,

max=0.1/60);

RealConnector u(start=0.15,fixed=true,min=0,max

=1);

equation

der(u) = du;

connect(u, plant.load);

end Startup;

On the first line, the keyword
objectiveIntegrand is used to define the
Lagrange part of the cost function, while startTime
and finalTime denote the beginning and end of the
prediction horizon. A model of the plant is instansiated,
plant, and an upper variable bound is added to sigma
using the keyword max. The following two lines show
how to add variable bounds to the inputs, u and du,
and how to connect them to the model. Additional
constraints are not present in this example, but could
be added under a new section started with the keyword
constraint.

To emulate noise a normally distributed disturbance,
with the mean 0 and the standard deviation 0.001 times
the current state value, will be added at each sample point
to all the states except for the extra state u.
With the addition of u as a state, and the extra input
σslack which the MPC framework will add to the problem
when softening the bound on σ , the resulting optimiza-
tion problem has 10 states, 123 algebraic variables and
2 inputs. With the MPC and collocation options chosen,
presented in Table 1, the resulting NLP has 4564 opti-
mization variables after the discretization.

Table 1. The MPC and collocation options used for all tests on
the CCPP system.

MPC options value

Sample period 100 [s]
Prediction horizon 1000 [s]

Collocation options value

ne 10
nc 3

4.3 Warm start test

The warm start test aims to evaluate whether we can
improve the robustness and speed of the solver by
providing an initial guess of the dual variables to
the solver. The options we consider in IPOPT are
’warm_start_init_point’, which indicates whether an ini-
tial guess of the dual vairables will be provided by the
user or should be estimated by IPOPT, and ’mu_init’,
which is the initial value of the barrier parameter. For the
cases where an initial guess of the dual variables will be
provided, the guess will be the result from the previous
optimization. Note that since there is no implemented
support for shifting the dual variables yet, they will be

Session 4A: Optimization Applications and Methods

DOI
10.3384/ecp15118301

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

307

implicitly offset by one sample period in time. The re-
sult of this test is presented in Table 2.

Table 2. Summary of the results for the warm start test. The
two leftmost columns define which options were used, while
the other three are the results obtained. Warm start on means
that an initial guess of the dual variables was provided to the
solver while warm start off means that the solver estimated it’s
own initial guess for them.

Warm start µinit Optfail Iterations Tsol
[k] [nbr] [s]

Off 1e-1 - 32 0.282
Off 1e-2 - 34 0.289
Off 1e-3 5, 24 32 0.282
Off 1e-4 - 34 0.282

On 1e-1 - 31 0.266
On 1e-2 - 31 0.261
On 1e-3 - 32 0.262
On 1e-4 - 30 0.259

From the data in Table 2 it can be seen that provid-
ing an initial guess of the dual variables decreases both
the number of iterations needed to find a solution and
the solution time slightly. The robustness also seems to
be improved since optimal solutions were found for all
samples in the case where warm start was on, while two
unsuccessful optimizations were noted when warm start
was off. The best average solution time was in the case
where warm start was on and µinit = 10−4.

Figure 1. The solution time for each of the samples in the
warm start test. The upper plot is for warm start being turned
off and the µinit values as specified by the legend and the lower
plot is for warm start being turned on.

In Figure 1 the solution time for each of the samples is
plotted for all the options tested. Since 8 different option
combinations were tested, the results have been split into
two separate plots, one where warm start is turned off and
one where warm start is turned on. The barrier parame-
ters impact on the solution time is especially noticable

in the region between sample number 15 and 25, where
the largest deviations are present. The overall conclusion
from this test is that turning the warm start on i.e. pro-
viding an initial guess of the dual variables to the solver,
has a positive effect on the solution time and robustness.
This even though the dual variables provided are offset
by one sample period in time. The gain of warm starting
the solver might improve even more if a shift method for
the dual variable was to be implemented.

4.4 Benchmark

In this section the results of using the MPC framework
will be compared to the results of using the open-loop
framework for an MPC setup. We will look specifically
at the result trajectories as well as the different aver-
age times for one sample (pre-processing, solution, post-
processing and total).

To get equivalent problem formulations the variable
bound on σ is softened manually for the case where the
open-loop framework is used. The manual softening is
done in exactly the same way as the MPC framework
does it. The collocation and MPC options chosen are
the same in both cases and the resulting NLP:s shall thus
be identical in both cases. For the case running with the
MPC framework warm start of the solver is activated and
the barrier parameter is set to µinit = 10−4, since those
were the options that gave the best results in the warm
start test. The results are summarized in Table 3.

Table 3. Results from the benchmark of the CCPP system.

Optfail Tpre, Tsol, Tpost, Ttot,
[k] [s] [s] [s] [s]

MPC fw. - 0.053 0.267 0.012 0.332
OL fw. 12 0.901 0.295 0.044 1.241

From the data in Table 3 it can be concluded that using
the MPC framework compared to using the open-loop
framework has decreased the total average computation
time by 70%. This is also clearly illustrated in the total
computational time per sample plot in Figure 2. Look-
ing closer at the average times we can conclude that the
majority of the time saved is in the pre-processing step,
which was what we had expected since the time consum-
ing discretization has been moved outside the MPC loop.
The post-processing time is also decreased due to the
MPC framework not creating a result object after each
optimization.

Figure 3 shows the CCPP system simulated with the
optimal inputs obtained, where we can conclude that the
results obtained in both cases are almost identical.

A Framework for Nonlinear Model Predictive Control in JModelica.org

308 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118301

Figure 2. Total computation time for each sample in the bench-
mark, using the MPC framework and the open-loop framework
respectively.

Figure 3. The CCPP system simulated with the optimal inputs
obtained in both cases. The dashed cyan lines are the set points
while the dashed red line is the variable bound.

5 Conclusions

This paper describes the implementation of a new MPC
framework in JModelica.org, which significantly de-
creases the total average computation time of solving
an NMPC optimal control problem. The main reason
the computation time has been shortened is due to the
MPC framework reusing the NLP for all optimizations,
rather than creating a new NLP each time the optimal
control problem is solved. For the benchmark presented
in this paper, using the MPC framework compared to us-
ing the open-loop framework, the total average computa-
tion time went from 1.24 s to 0.33 s, a relative decrease
of 70%. The benchmark also shows that the same results
were obtained with both frameworks.

In addition to being faster than the open-loop frame-
work, the MPC framework is also easier to use since a lot
of things are handled internally. This includes the initial

guess being set and the prediction horizon being shifted
automatically as well as the built in fall back method in
case of unsuccessful optimization and a method that au-
tomatically softens variable bounds.

Further work includes adding support for nominal tra-
jectories and external data, two of the collocation options
that do not work correctly when reusing the NLP. Nomi-
nal trajectories are used for scaling the optimization vari-
ables and external data could be used to define set point
trajectories, rather than constant set points, for the con-
trolled variables. A shift method for the dual variables
could also be implemented to, hopefully, decrease the
solution time in the solver further. The automatic soft-
ening of variable bounds method could be extended to
support automatic softening of constraints as well as dif-
ferent softening schemes.

Acknowledgments

Fredrik Magnusson acknowledges support from the
Swedish Research Council through the LCCC Linneaus
Center and is also a member of the eLLIIT Excellence
Center at Lund University.

References

"HSL. A collection of Fortran codes for large scale scientific
computation.", 2013. URL http://www.hsl.rl.ac.

uk/.

Johan Åkesson. Optimica—an extension of modelica support-
ing dynamic optimization. In 6th International Modelica

Conference 2008, 2008.

Johan Åkesson, Karl-Erik Årzén, Magnus Gäfvert, Tove
Bergdahl, and Hubertus Tummescheit. Modeling and opti-
mization with Optimica and JModelica.org—languages and
tools for solving large-scale dynamic optimization prob-
lems. Computers and Chemical Engineering, 34(11):1737–
1749, November 2010.

Frank Allgöwer, Rolf Findeisen, and Zoltan K Nagy. Nonlin-
ear model predictive control: From theory to application. J.

Chin. Inst. Chem. Engrs, 35(3):299–315, 2004.

Joel Andersson. A General-Purpose Software Framework for

Dynamic Optimization. PhD thesis, Arenberg Doctoral
School, KU Leuven, October 2013.

Magdalena Axelsson. Nonlinear Model Predictive Control in
JModelica.org. Master’s thesis, Department of Automatic
Control, Lund University, Sweden, August 2015.

Karl Berntorp and Fredrik Magnusson. Hierarchical predictive
control for ground-vehicle manuevering. In 2015 American

Control Conference, 2015.

Stephen Boyd and Lieven Vandenberghe. Convex Optimiza-

tion. Cambridge University Press, New York, NY, USA,
2004. ISBN 0521833787.

Session 4A: Optimization Applications and Methods

DOI
10.3384/ecp15118301

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

309

Francesco Casella, Filippo Donida, and Johan Åkesson.
Object-oriented modeling and optimal control: A case study
in power plant start-up. In 18th IFAC World Congress, 2011.

Mats Vande Cavey, Roel De Coninck, and Lieve Helsen. Set-
ting up a framework for model predictive control with mov-
ing horizon state estimation using jmodelica. In 10th Inter-

national Modelica Conference 2014, 2014.

R. Franke, E. Arnold, and H. Linke. HQP: a solver for non-
linearly constrained large-scale optimization. URL http:

//hqp.sourceforge.net/.

Rüdiger Franke, Manfred Rode, and Klaus Krüger. On-line
optimization of drum boiler startup. 2003.

Christian Hartlep and Toivo Henningsson. NMPC Application
using JModelica.org: Features and Performance. In 11th

International Modelica Conference 2015, 2015.

B. Houska, H.J. Ferreau, and M. Diehl. ACADO Toolkit
– An Open Source Framework for Automatic Control and
Dynamic Optimization. Optimal Control Applications and

Methods, 32(3):298–312, 2011.

Per-Ola Larsson, Francesco Casella, Fredrik Magnusson, Joel
Andersson, Moritz Diehl, and Johan Å kesson. A frame-
work for nonlinear model-predictive control using object-
oriented modeling with a case study in power plant start-up.
In Computer Aided Control System Design (CACSD), 2013

IEEE Conference on, 2013.

Tor Larsson. Moving Horizon Estimation in JModelica.org.
Master’s Thesis ISRN LUTFD2/TFRT--5982--SE, Depart-
ment of Automatic Control, Lund University, Sweden,
2015.

Björn Lennernäs. A CasADi based toolchain for JModel-
ica.org. Master’s thesis, Department of Automatic Control,
Lund University, Sweden, June 2013.

J.M. Maciejowski. Predictive Control with Constraints.
Prentice-Hall, 2002.

Fredrik Magnusson and Johan Åkesson. Dynamic optimization
in jmodelica.org. Processes, 3(2):471–496, 2015.

Andreas Wächter. Short tutorial: getting started with ipopt in
90 minutes. Combinatorial Scientific Computing (U. Nau-

mann, O. Schenk, HD Simon, eds.), 34(56):118, 2009.

Andreas Wächter and Lorenz T Biegler. On the implemen-
tation of an interior-point filter line-search algorithm for
large-scale nonlinear programming. Mathematical pro-

gramming, 106(1):25–57, 2006.

A Framework for Nonlinear Model Predictive Control in JModelica.org

310 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118301

A Toolchain for Solving Dynamic Optimization Problems Using

Symbolic and Parallel Computing

Evgeny Lazutkin Siegbert Hopfgarten Abebe Geletu Pu Li

Group Simulation and Optimal Processes, Institute for Automation and Systems Engineering, Technische
Universität Ilmenau, P.O. Box 10 05 65, 98684 Ilmenau, Germany.

{evgeny.lazutkin,siegbert.hopfgarten,abebe.geletu,pu.li}@tu-ilmenau.de

Abstract

Significant progresses in developing approaches to dy-
namic optimization have been made. However, its prac-
tical implementation poses a difficult task and its real-
time application such as in nonlinear model predictive
control (NMPC) remains challenging. A toolchain is de-
veloped in this work to relieve the implementation bur-
den and, meanwhile, to speed up the computations for
solving the dynamic optimization problem. To achieve
these targets, symbolic computing is utilized for calcu-
lating the first and second order sensitivities on the one
hand and parallel computing is used for separately ac-
complishing the computations for the individual time in-
tervals on the other hand. Two optimal control problems
are solved to demonstrate the efficiency of the developed
toolchain which solves one of the problems with approx-
imately 25,000 variables within a reasonable CPU time.
Keywords: nonlinear optimization, combined multiple

shooting and collocation, symbolic manipulation, paral-

lel computing, satellite problem, combined cycle power

plant

1 Introduction

Over the last decades nonlinear model predictive control
(NMPC) has been increasingly popular for the control of
complex systems (Mayne, 2014). To carry out NMPC,
the first step is to formulate a nonlinear optimal control
problem. By using a discretization scheme over a pre-
diction horizon, it is then transformed into a constrained
nonlinear programming (NLP) problem. Finally, the re-
alization of NMPC is made by repeatedly solving this
problem online with an NLP solver which requires ap-
propriate function values and gradients. Although many
theoretical progresses on NMPC have been achieved, its
implementation for real-life applications is certainly not
trivial. Therefore, a toolchain is developed in this work
based on open-source software tools to relieve the bur-
dens in the implementation of NMPC.

A schematic description of implementing NMPC is

shown in Fig. 1. Based on the current process state
x(k) obtained through the state observer or measurement,
resp., the optimal control problem is solved in the opti-
mizer in each sample time. The resulting optimal control
strategy in the first interval u(k) of the moving horizon
is then realized through the local control system. There-
fore, an essential limitation of applying NMPC is due to
its long computation time taken to solve the NLP prob-
lem for each sample time, especially for the control of
fast systems (Wang and Boyd, 2010). In general, the
computation time should be much less than the sample
time of the NMPC scheme (Schäfer et al., 2007). Al-
though powerful methods are available, e.g. multiple-
shooting (Houska et al., 2011; Kirches et al., 2012)
and collocation on finite elements (Biegler et al., 2002;
Zavala et al., 2008; Word et al., 2014) with simultane-
ous characteristics, control parametrization (Balsa-Canto
et al., 2000; Barz et al., 2012) with sequential character-
istics, and quasi-sequential technique, (Hong et al., 2006;
Bartl et al., 2011), the computation speed is not swift
enough for very fast systems such as mechanical, elec-
trical and mechatronic systems. Therefore, it is highly
desired to further enhance the computation efficiency for
solving nonlinear dynamic optimization problems.

The combined multiple-shooting with collocation
(CMSC) method (Tamimi and Li, 2010) and the modified
multiple-shooting and collocation (MCMSC) method
(Lazutkin et al., 2014) are proved to be highly efficient.
The efficiency of this method is considerably improved
in this work with the following targets:

• to reduce the computation time by using symbolic
methods for calculating gradients, Jacobians, and
Hessians,

• to further accelerate the computation by using par-
allel computing facilities, especially for real-time
applications.

To achieve these aims, this work develops a toolchain
as described in subsequent sections. In section 2
the problem will be formulated. Section 3 illustrates
the interior-point solution method with symbolic com-
putations of first- and second-order derivatives. The

DOI
10.3384/ecp15118311

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

311

toolchain, its components, functionality, and some code
examples are presented in section 4. The efficiency of
the toolchain is demonstrated in section 5 by applying it
to a satellite control and a large-scale dynamic optimiza-
tion of a combined cycle power plant. Conclusions of the
paper are given in section 6.

2 Problem description

The nonlinear optimal control problem (NOCP) reads

min
uuu(t)

{
J = M

(
xxx(t f), t f

)
+
∫ t f

t0

L(xxx(t),uuu(t), t)dt

}

s. t. fff (ẋxx(t),xxx(t),uuu(t), t) = 000 , t0 ≤ t ≤ t f ,

xxx(t0) = x0, xxx(t f) fixed or free,

ggg(xxx(t),uuu(t), t)≤ 000, (1)

xxxmin ≤ xxx(t)≤ xxxmax,

uuumin ≤ uuu(t)≤ uuumax,

with t ∈ [t0, t f] - time, t0, t f - initial, final time, xxx(t) ∈
R

nx - state variable vector, uuu(t) ∈ R
nu - control vari-

able vector, xxx0 - initial state vector, xxx f - final state vec-
tor, fff ∈ R

nx+nu → R
nx - implicit differential equation,

J - performance index with Mayer and Lagrange term
M : Rnx+1 → R and L : Rnx+nu → R, resp., belonging
to corresponding function spaces, ggg - additional equal-
ity and/or inequality constraints, xxxmin,xxxmax,uuumin,uuumax, -
componentwise lower and upper bounds for states xxx(t)
and controls uuu(t), resp.

Envisaging the application of the modified combined
multiple shooting and collocation (MCMSC) method, a
transformation of the infinite-dimensional NOCP (1) to a
finite-dimensional nonlinear programming (NLP) prob-
lem is needed. Due to the multiple-shooting technique a
division of the whole time horizon [t0, t f] into N time in-
tervals, so called shooting intervals has to be performed.
The controls are assumed to be constant in each shooting
interval and are parametrized, i.e. the control vector is
composed as VVV = [vvv0 vvv1 . . . vvvN−1]

T , nu = nv. The states
are also discretized and parametrized at the shooting in-
terval boundaries, i.e. the vector XXX p = [xxxp,0 xxxp,1 . . . xxxp,N]
is constructed and equality constraints for continuity rea-
sons are taken into account. All other restrictions are
correspondingly discretized.

This leads to the NLP notation

min
XXX p

,VVV

{
M (xxxp,N)+

N−1

∑
i=0

∫ ti+1

ti

L(xxx(t),vvvi)dt

}

s. t. xxxp,i+1 = xxx(ti+1;xxxp,i,vvvi) , i = 0, . . . , N −1,

xxxp,0 = xxx0,

ḡgg(XXX p
,VVV)≤ 000, (2)

x̄xxmin ≤ XXX p ≤ x̄xxmax

ūuumin ≤VVV ≤ ūuumax .

Optimizer

Solving optimal
control problem

Local
control system

State
observer

Process

u(k) x(k)

Figure 1. Nonlinear model predictive control (NMPC) scheme

Due to the combined character of the approach to be ap-
plied the model equations are not directly integrated in
the NLP formulation (2) but solved to obtain the state
variables xxxp,i+1 by a collocation scheme. For detailed
description of the NOCP and its transformation to an
NLP refer to (Tamimi and Li, 2010, 2009; Lazutkin et al.,
2014).

3 Solution method

3.1 Solution of the resulting NLP problem

For simplicity reasons the NLP problem (2) is rewritten
in the compact form

min
ωωω

{J(ωωω)}

s. t. EEE(ωωω) = 000 , (3)

SSS(ωωω)≤ 000 ,

where ωωω contains all optimization variables, EEE all equal-
ity, and SSS all inequality constraints.

The NLP (4) can be solved using an interior-point
optimization solver (e. g. Ipopt (Wächter and Biegler,
2006)). Hence, the barrier function formulation of the
NLP reads

min
ω,z

{
J(ωωω)−µ

nS

∑
j=1

ln(z j)

}

s. t. EEE(ωωω) = 000, (4)

SSS(ωωω)+ zzz = 000,

with a slack variable zzz and the corresponding Lagrange
function

L (ωωω ,zzz,λλλ) = J(ωωω)−µ
nS

∑
j=1

ln(z j)+(λλλ E)T EEE(ωωω)

+(λλλ S)T (SSS(ωωω)+ zzz) (5)

A Toolchain for Solving Dynamic Optimization Problems Using Symbolic and Parallel Computing

312 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118311

for a fixed value of the barrier parameter µ . The vector
λλλ

T = [(λλλ E)T
,(λλλ S)T]∈R

nE+nS contains multipliers asso-
ciated with the nE + nS equality constraints. The iteration
scheme of the interior-point algorithm is

ωωω l+1 = ωωω l +αl ·∆ωωω l , zzzl+1 = ωωω l +αl ·∆zzzl ,

λλλ l+1 = λλλ l +αl ·∆λλλ l , l = 0,1, . . . (6)

The different search directions ∆ωωω l , ∆zzzl , ∆λλλ
E
l , ∆λλλ

S
l are

obtained applying the Newton method to the KKT opti-
mality conditions of problem (4). Let ZZZ = diag(zzz) and
eeeT = (1, . . . ,1) ∈ R

nS . Thus, the following system needs
to be solved at each iteration step

KKK ·




∆ωωω l

∆zzzl

∆λλλ
E
l

∆λλλ
S
l


=−




∇ωωωL (ωωω l ,zzzl ,λλλ l)

−µeeeT ZZZ−1
l +λλλ

S
l

EEE(ωωω l)
SSS(ωωω l)+ zzzl


 , where (7)

KKK =




∇ωωωωωωL (ωωω l ,zzzl ,λλλ l) 000 ∇EEE(ωωω l) ∇SSS(ωωω l)

000 −µZZZ−2
l 000 IIInS

∇EEE(ωωω l)
T 000 000 000

∇SSS(ωωω l)
T InS

000 000




According to (7) the gradient ∇J(ωl), Jacobians
∇EEE(ωωω l), ∇SSS(ωωω l), and Hessian matrices ∇2J(ωωω l),
∇2EEE i(ωωω l), i = 1, . . . ,nE , ∇2SSS j(ωωω l), j = 1, . . . ,nS are re-
quired and made available either analytically or approxi-
mately to the optimization solver. In the subsequent dis-
cussions the expression

HHH = ∇ωωωωωωL (ωωω l ,zzzl ,λλλ l)

= ∇2J(ωωω)+
nE

∑
i=1

λλλ
E
i ∇2EEE i(ωωω)+

nS

∑
j=1

λλλ
S
j ∇2SSS j(ωωω) (8)

will be referred as the analytic Hessian (AH).

3.2 First- and second-order sensitivities

A collocation method is used in each shooting interval
within the framework of the MCMSC approach. The
states are approximated inside each shooting interval by
a linear combination of the Lagrange polynomials (9) us-
ing a shifted Legendre collocation scheme,

x̂(t) =
nc

∑
j=1

(
nc

∏
k=1,k 6= j

t − tk

t j − tk

)
· xc

j , (9)

with x̂(t) - a polynomial approximation of a single state
variable, xc

j - the unknown collocation-coefficient at the
j-th collocation point, {t1, . . . , tnc} - collocation points in
the shooting interval [tq, tq+1]. A shifted scheme means,
that the last collocation point tnc is shifted to the right
interval border – a necessity for continuity reasons – and
the other ones are also shifted accordingly.

The derivative of the collocation polynomial reads

dx̂(t)

dt
=

nc

∑
j=1

(
dl j(t)

dt

)
xc

j (10)

with l j(t) =
nc

∏
k=1,k 6= j

t − tk

t j − tk

The parametrized states can be put into a vector XXX p,q

and the controls into a vector VVV q, where q = 1,2, . . . ,N.
The components of the vectors XXX p,q and VVV q are included
in the decision variables XXX p and VVV , respectively, in the
NLP formulation. Furthermore, the vector XXXc,q repre-
sents all collocation coefficients in the shooting interval
q. Hence, the discretized nonlinear differential equation
system results in the nonlinear algebraic equation system

GGGq = ẆWW ·XXXc,q +ẆWW 0 ·XXX
p,q

−
(t f − t0)

N
·FFF(XXXc,q

,VVV q) = 000 (11)

with q = 1,2, . . . ,N, q - index of shooting interval, N -
number of shooting intervals, FFF - discretized fff , ẆWW and
ẆWW 0 - derivative matrices of the Lagrange polynomials.

At each iteration step of the optimization procedure,
for given values XXX p,q and VVV q, (11) is solved by a New-
ton method. The results will be XXXc,q as well as the first-
and second-order sensitivities These results are utilized
in the SQP solver for calculation of the functions EEE, SSS,
the Jacobians ∇EEE, ∇SSS, and the Hessian HHH.

Neglecting the shooting interval index q and writing
(11) in a compressed form delivers

GGG(XXXc(XXX p
,VVV),XXX p

,VVV) = 000 . (12)

To obtain the first-order sensitivities, Eq. (12) has im-
plicitely to be differentiated and provides

∂GGG

∂XXXc

∂XXXc

∂
[
XXX pT VVV T

]T −
∂GGG

∂
[
XXX pT VVV T

]T = 000 . (13)

Eq. (13) represents a linear equation system. Typically,
∂GGG
∂XXXc and ∂GGG

∂ [XXX pT VVV T]
T have sparsity structures that can be

exploited in determination of ∂XXXc

∂ [XXX pT VVV T]
T .

Using (13), analytic expressions are derived in order
to calculate the second-order sensitivities. Hence, this
equation is re-written here in the following compact form

ΦΦΦ(XXXc(XXX p
,VVV),XXX p

,VVV ,

∂XXXc

∂
[
XXX pT VVV T

]T (XXX
p
,VVV)) = 000 . (14)

The derivative ∂XXXc

∂ [XXX pT VVV T]
T indicates the dependencies of

the first-order sensitivities on the decision variables XXX p

and VVV . Applying the differentiation operator ∂

∂ [XXX pT VVV T]
T

to (14) the equations for second-order sensitivities will
be available in matrix form and can be computed using
LU decomposition.

Session 4A: Optimization Applications and Methods

DOI
10.3384/ecp15118311

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

313

4 Toolchain

As mentioned above in order to offer a comfortable and
user-friendly way of modeling and optimizing physical
systems, to unburden the user from automatable tasks
like gradients and sensitivities calculations, to acceler-
ate the implementation time as well as the computa-
tion time for solving the optimization problem, the im-
plementation of the MCMSC method within an open-
source toolchain is proposed. This toolchain consists of
amongst others physically-based object-oriented model-
ing, using the modeling language Modelica with the ex-
tension Optimica, and the large scale nonlinear optimiza-
tion solver Ipopt.

4.1 Components

Compared with block-oriented modeling, the object-
oriented modeling approach provides a more comfort-
able and flexible alternative for physical systems. As a
result this work uses the modeling language Modelica
(Fritzson, 2014). Not only for simulation purposes but
also for the formulation of different optimization tasks
the platform JModelica.org is utilized. Besides the stan-
dard Modelica features JModelica.org contains the ex-
tension Optimica (Åkesson, 2008) including the possi-
bility to formulate optimal control problems and other
optimization tasks (Åkesson et al., 2010).

One essential tool utilized in many respects is the au-
tomatic differentiation tool CasADi (Andersson et al.,
2011, 2012a,b). Hence, it is applied for the calculation
of first- and second-order derivatives, symbolic manipu-
lations of the objective and the constraints.

The standard multi-processing Python module (Hell-
mann, 2011) is a next module within the toolchain to
perform parallel computations.

After adopting the optimization model to the MCMSC
framework, Ipopt (Wächter and Biegler, 2006) is respon-
sible for the solution of large scale nonlinear optimiza-
tion problems. The interoperation of the toolchain within
the optimizer (see Fig. 1) is illustrated in Fig. 2.

4.2 Functionality

After establishing an optimization model and imple-
menting it by means of Modelica and the extension Opti-
mica, the JModelica.org compiler transforms the model
into a symbolic one. From the transformed model, i.e.,
model equations, variables, etc. are accessible by the
Python scripting language.

The proposed MCMSC approach belongs to the cate-
gory of quasi-sequential methods, i.e. the interior-point
optimizer Ipopt solves in every iteration the state equa-
tions (11) and calculates the sensitivities (13) for given
parametrized states and controls of each shooting inter-
val. If the advantageous feature of an analytical Hessian
symbolically calculated by CasADi is used, also in ev-

Modelica

Libraries

Optimica

Objective

Model

Constraints

JModelica.org
Compiler

Optimization model

Symbolic Optimization model

CasADi

Ipopt

Transformed symbolic
optimization model

Evaluation

BFGSCa sADi

analytic
Hessian numeric

Multi-processing

Newton method

Ca sADi

Objective
Constraints

Collocation coefficients

Optimization
results

G
ra

di
en

ts

Ja
co

bi
an

s
Se

ns
iti

vi
tie

s

Figure 2. Parallelized MCMSC toolchain

ery iteration only the numerical values of the variables
mattering have to be updated. It is also possible that nu-
merical Hessians approximated through a BFGS formula
which usually incurs more computational effort.

The MCMSC framework consists of three main parts,
i.e. the optimizer, the calculation of state trajectories by
means of a Newton method, and the sensitivity computa-
tions. Ideally, both the Newton method and the sensitiv-
ity calculation are recommended to be executed in par-
allel in each shooting interval. Depending on the com-
puter architecture (multi-core, etc.) the user can define
the number of processes. On the one hand, one gains
computing time improvements via parallelization. On
the other hand, the communication effort increases, the
more parallel threads occur. There is a maximum speed
up depending on the size of the optimization problem and
the computer architecture.

Concerning the first-order sensitivities computations
from (13), an LU decomposition and the direct solver for
sparse matrices CSparse (Davis, 2006) are applied and
interfaced to CasADi. The second-order derivatives, if
used, are transformed to a linear equation system and
also solved by CasADi. This symbolic tool is further-
more responsible for the generation of the Jacobians, the
gradients of the objective function, and the symbolic ma-
nipulations of the objective functions and the constraints.

The entire approach of the parallelized MCMSC
method is realized in the Python scripting language using
standard multi-processing module without any additional
software packages.

A Toolchain for Solving Dynamic Optimization Problems Using Symbolic and Parallel Computing

314 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118311

Table 1. Classes and functions

(C)lass/(F)unction name Functionality
loading(object) auxiliary functions to prepare the optimization problem for Ipopt
initialization loads options and uses JModelica.org to extract

the optimization problem from Modelica/Optimica.
extract prepares the optimization problem
define_collocation constructs Lagrange polynomials and derivative matrices
construct_vars creates vectors of discretization
discretize implicit DAE discretization
create_solvers creates for each interval the Newton solver

and solvers for first-order derivatives
interval_simulation simulates the DAE system for given parameters
constr_vec constraints vector for Ipopt
jacobian_of_constraint_vector Jacobian for Ipopt
create_cost objective for Ipopt
prep_ipopt required information for Ipopt,

e.g. number of non-zeros in Jacobians, boundaries
prep_sys_for_multiproc divide the system according to the number of cores
optimize solve the optimization problem by Ipopt
exact_hessian construct exact Hessian and corresponding linear solvers
scaling scale the problem

4.3 Source code examples

Different classes and functions shown in Tab. 1 are
realized dedicated to certain purposes. In particu-
lar, there are several important issues in the MCMSC
toolchain. A brief description is given below with
some source code fragments. Using JModelica.org the
formulated optimization problem can be easily trans-
ferred for further manipulations using the function
transfer_optimization_problem, which has
two attributes: name is an optimization problem file and
file_path is a path to this file. Let OP be the sym-
bolic representation of the dynamic optimization prob-
lem, which includes all required information. To see the
list of functions and methods for the OP variable, users
have to refer to the JModelica.org source code files.

The proposed toolchain requires a lot of functions
from CasADi. For simplification, functionality of
this software will be made completely available in the
toolchain by importing all CasADi classes.

The first essential aspect is to get information about
the declared variables (differential and algebraic states,
controls, parameters) in the optimization problem for-
mulation. The following has been implemented by the
developer:

Differential states

DIFF = OP.getVariables(...

OP.DIFFERENTIATED)

Algebraic states

ALG = OP.getVariables(...

OP.REAL_ALGEBRAIC)

Derivatives

DER = OP.getVariables(OP.DERIVATIVE)

Controls

INPUT = OP.getVariables(OP.REAL_INPUT)

Parameters

P_I = OP.getVariables(...

OP.REAL_PARAMETER_INDEPENDENT)

P_D = OP.getVariables(...

OP.REAL_PARAMETER_DEPENDENT)

In order to extract model dynamics, the OP variable has
specific function to get DAEs, which returns a residual
between left and right hand sides of the equations.

DAE = OP.getDaeResidual()

For further manipulations with the extracted DAE, the
symbolic function using CasADi has to be established.
To achieve this goal, all variables should be aggregated
into an input vector.

MX_DAE = MXFunction(LIST_DER + ...

LIST_DIFF + LIST_ALG + ...

LIST_INPUT + P_I + P_D, [DAE])

MX_DAE.init()

Since JModelica.org works with the MX data type
and the proposed toolchain accepts currently the SX data
type, the MXFunction can be converted to SXFunction:

SX_DAE = SXFunction(MX_DAE)

SX_DAE.init()

For further information about data types in CasADi
refer to the manual.

Session 4A: Optimization Applications and Methods

DOI
10.3384/ecp15118311

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

315

The function SX_DAE should be called with two argu-
ments, the SX symbolic expression (converted from MX)
and the scaled DAE system (with respect to the interval
length).

SX_DAE_NUM = SX_DAE.call(...

SX_INPUTS_DAE)[0]

SX_DAE_FUNCTION = SXFunction(...

[vertcat(SX_INPUTS_DAE)], ...

[LENGTH*SX_DAE_NUM])

SX_DAE_FUNCTION.init()

This function SX_DAE_FUNCTION is involved in the
discretization procedure, since it declares the variable or-
der and accepts symbolical evaluation.

For the discretization of the model equations, addi-
tional variables should be introduced,

Piecewise control

CTRL = SX.sym("c",N_INT*N_C)

Parameterized states

P_S_P = SX.sym("ps",(N_INT+1)*(N_D))

Collocated differential

and algebraic states

S_P = SX.sym("s", ...

N_INT*((N_D + N_A)*NCP))

where N_INT is the number of shooting intervals de-
fined by the user, N_D, N_A, and N_C are the numbers
of differential, algebraic, and control variables.

For each shooting interval, certain variables are
chosen from vectors CTRL, P_S_P, and S_P. The
SX_DAE_FUNCTION is called with these variables and
the evaluation results are placed into RES variable. This
procedure should be called for each interval.

RES = SX_DAE_FUNCTION.call(...

[vertcat([der, diff, alg, ctrl, ...

p_i_v, p_d_v])])[0]

As mentioned before, the state trajectories and sensi-
tivities have to be calculated for each interval. For this
purpose, the toolchain uses Newton and LU solvers from
CasADi.

Newton solver

interval_dae - discretized DAE

system for one interval

variables - states at collocation

points

parameters - parametrized states

and controls

F = SXFunction(...

[vertcat([variables]), ...

vertcat([parameters])], ...

[vertcat([interval_dae])])

solver = ImplicitFunction("newton",F)

solver.setOption("linear_solver", ...

"csparse")

solver.setOption("abstol",1e-12)

solver.init()

LU solver

NCP - number of collocation points

SYSTEM_INDEX = (N_D + N_A)*NCP

Full Jacobian

partial_jacobian=interval_dae.jac()

dGdX_sym = partial_jacobian[...

range(SYSTEM_INDEX), ...

range(SYSTEM_INDEX)]

LHS = MX.sym(’LHS’, ...

dGdX_sym.sparsity())

dGdXp_dU_sym = partial_jacobian[...

range(SYSTEM_INDEX), ...

SYSTEM_INDEX:SYSTEM_INDEX+N_D+N_C]

RHS = MX.sym(’RHS’, ...

dGdXp_dU_sym.sparsity())

LUSolver = solve(LHS,RHS,"csparse")

FRHS = MXFunction(...

[LHS,RHS],[LUSolver])

FRHS.init()

The optimization constraints vector and the corre-
sponding Jacobian matrix, objective function and its gra-
dient are also constructed by means of CasADi using
symbolic manipulation. For the sake of brevity, these
details are not discussed here.

Corresponding to the number of the user-defined pro-
cesses in the case of a multi-core CPU, shooting intervals
can be equally distributed between them.

After problem initialization, the Ipopt instance is cre-
ated to solve the optimization problem:

import pyipopt

nlp = pyipopt.create(args)

x_opt = nlp.solve(initialGuess)

5 Examples

Showing the efficiency of the proposed approach a small-
scale and a large-scale problem are presented. All com-
putations are performed on a stand-alone personal com-
puter with Intel R© I7 4.4 GHz, 6 cores, 16 GB RAM with
Ubuntu 14.04.1 Server x64 operational system.

5.1 Satellite control problem

This nonlinear optimal control problem is devoted to the
calculation of the optimal control and the concluding op-
timal torques according to a Bolza functional that bring
the satellite to rest after an initial tumbling motion. The
problem is listed e.g. in (Rudquist and Edvall, 2009).

The optimal states are shown in Figs. 3 and 4, where
the state x8 represents the integrand of the Lagrange
term. The optimal controls are contained in Fig. 5. The
time horizon corresponds to 100 seconds and is divided

A Toolchain for Solving Dynamic Optimization Problems Using Symbolic and Parallel Computing

316 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118311

0 10 20 30 40 50 60
0.1

0.0

0.1

0.2

0.3

0.4

0.5

x
1

0 10 20 30 40 50 60
0.00

0.05

0.10

0.15

0.20

0.25

x
2

0 10 20 30 40 50 60
0.02

0.00

0.02

0.04

0.06

0.08

0.10

x
3

0 10 20 30 40 50 60
0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

x
4

Figure 3. Optimal states x1(t) to x4(t)

0 10 20 30 40 50 60
0.0100

0.0101

0.0102

0.0103

0.0104

0.0105

x
5

0 10 20 30 40 50 60
0.00475

0.00480

0.00485

0.00490

0.00495

0.00500

0.00505

x
6

0 10 20 30 40 50 60
0.0010

0.0015

0.0020

0.0025

0.0030

x
7

0 10 20 30 40 50 60
0.000

0.005

0.010

0.015

0.020

0.025

x
8

Figure 4. Optimal states x5(t) to x8(t)

into 60 intervals. Figs. 3 - 5 show the correct results. The
optimal objective value is in every scenario J∗ = 0.4639.

Data being constant through all scenarios are listed in
Tab. 2. In case of the utilization of the analytical Hes-
sians the number of non-zero elements in the Hessian of
the Lagrangian equals to 3,960.

Tab. 3 shows the speed-up in different scenarios. In
this small-scale problem the effect of parallelization is
not substantial, but the number of iterations can be re-
duced and thus the computation time is less in most
cases.

In a first case, comparing the speed-up by paralleliza-

tion within the same computation scheme for the Hessian

(column s1), i. e. considering the first and the second row
in the column s1 in BFGS, AH, and AHC case, resp., the
speed-up factors s1 reach from 1.08 (AHC), 1.33 (BFGS)
to 1.56 (AH).

In the second case, comparisons are dedicated to the
non-parallelized versions (column s2) contrasting the
Hessian calculation methods to each other. Unsurpris-
ingly, no speed-up is achieved (AH/nc = 1/s2 = 0.71) due
to the fact that the symbolic calculations take time to es-

0 10 20 30 40 50 60
0.000

0.005

0.010

0.015

0.020

0.025

u
1

0 10 20 30 40 50 60
0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

u
2

0 10 20 30 40 50 60
0.000

0.005

0.010

0.015

0.020

0.025

0.030

u
3

Figure 5. Optimal controls u1(t) to u3(t)

Table 2. Satellite control problem dimensions

Number of . . . Value
intervals 60
non-zeros in Jacobians of eqs. 5,768
non-zeros in Jacobians of ineqs. 0
non-zeros in Hessian of Lagrangian 3,960
equality constraints 480
inequality constraints 0
variables 668
variables incl. Newton variables 2,108

Table 3. Speed-up by parallelization and utilization of analytic
Hessian

Hess. nc It. tΣ [s] s1 s2 s3

BFGS
1 8 0.515 1.00 1.00 N/A
6 8 0.355 1.33 N/A 1.00

AH
1 5 0.723 1.00 0.71 N/A
6 5 0.462 1.56 N/A 0.77

AHC
1 5 0.346 1.00 1.49 N/A
6 5 0.320 1.08 N/A 1.11

Hess.: BFGS - approximated Hessian, AH - analytic
Hessian (updated in every iteration of the optimizer),
AHC - analytic Hessian (calculated once in iteration 0);
nc - no. of CPU cores (nc = 1: no parallelization), It.
- no. of iterations, tΣ - total CPU time (mean value of
100 runs), si, i = 1,2,3 - speed-up factors, N/A - not
applicable

Session 4A: Optimization Applications and Methods

DOI
10.3384/ecp15118311

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

317

tablish the analytic Hessian. But, calculating the Hessian
only once in the start iteration and leaving it constant
through the iteration process also delivers the correct
result with the risk that search direction could be non-
descent, and the speed-up amounts to 1.49 (AHC/nc =
1/s2 = 1.49).

The third case considers the parallelized versions (col-

umn s3), also contrasting the Hessian calculation meth-
ods to each other. The computation with the BFGS ap-
proximation constitutes the reference. As to be expected
in this small-scale example, one gets also no speed-up
in the parallelized versions (AH/nc=4/s3 = 0.77) from
BFGS approximation to analytic Hessian calculation.
However, confronting BFGS with AHC, the speed-up ac-
counts to 1.11 (AHC/nc = 4/s3 = 1.11).

5.2 Combined cycle power plant start-up

control problem

Another example, a combined cycle power plant (CCPP)
was chosen for several reasons. Firstly, this is an exam-
ple of interest in the liberalized energy market, because
classical power plants have to be adopted to the opera-
tion of electrical energy supply networks with renewable
energies. Thus, they are more often set into operation
or shutdown than in the past. Secondly, it is a high-
dimensional problem compared with other academic ex-
amples. Thirdly, the example is used for the verification
of the achieved results. In (Casella and Pretolani, 2006)
the system was introduced. The plant is composed of a
gas turbine unit, heat recovery steam generator, a steam
turbine, and a condenser. The start-up time is limited
due to the following facts: a maximum load change rate
of the gas turbine, the thermal stress in the thick com-
ponents (e.g. steam turbine shafts), and limited control
variables.

Several authors used the object-oriented implemented
model for the optimal control of the start-up process. In
(Casella et al., 2011a) a simplified model is used. The
contribution (Casella et al., 2011b) reports on a solution
using JModelica.org, CppAD for automatic differentia-
tion, and Ipopt for the NLP solution. The integration
of CasADi and JModelica.org is described in (Anders-
son et al., 2011), where the CCPP system is also used
as a benchmark system, but the solution is achieved by
a direct collocation approach. An approach with Open-
Modelica and an optimization language specification,
CasADi as the automatic differentiation tool, and dif-
ferent optimization methods including direct collocation
and direct multiple shooting, is shown in (Shitahun et al.,
2013). A parallel multiple shooting and a collocation op-
timization, performed with OpenModelica, is explained
in (Bachmann et al., 2012). That paper discusses multi-
ple shooting, multiple collocation, and total collocation
methods using up to 8 cores of a multi-core CPU with
OpenMP support. In (Ruge et al., 2014) the authors out-
line a toolchain including modeling with OpenModelica,

0 10 20 30 40 50 60
0.6

0.8

1.0

1.2

1.4

1.6

1.8

E
v
a
p
o
ra

to
r

p
re

ss
u
re

0 10 20 30 40 50 60
Time intervals

0.0

0.2

0.4

0.6

0.8

1.0

Lo
a
d

Figure 6. Optimal pressure and load

Table 4. CCPP problem dimensions

Number of . . . Value
intervals 60
non-zeros in Jacobians of eqs. 7,210
non-zeros in Jacobians of ineqs. 104,940
non-zeros in Hessian of Lagrangian 3,960
equality constraints 610
inequality constraints 9,540
variables 670
variables incl. Newton variables 24,790

but using automatic differentiation by ADOL-C.
The approach and toolchain discussed in our paper

uses a modified combined multiple shooting and col-
location (MCMSC) method, CasADi for automatic dif-
ferentiation, JModelica.org for modeling and formula-
tion of the optimization problem by means of Optimica,
and Ipopt as NLP solver. Thus, a direct comparison to
the contributions mentioned above is not possible due to
different models, approaches, time horizons, tools, and
computers used. Therefore, the only direct comparison
between MCMSC and collocation method on finite ele-
ments using JModelica.org is given in Tab. 5.

Exemplarily, one of the essential optimal states (evap-
orator pressure) and the control (normalized load) are
shown in Fig. 6 above and below, resp., over 60 time
intervals corresponding to 4,000 seconds operation time,
indicating the right behavior.

Data being constant through all scenarios are listed in
Tab. 4. Using the analytical Hessians the number of non-
zero elements in the Hessian of the Lagrangian equals to
3,960. Tab. 5 shows the acceleration of computation time
in most cases.

Concerning this large-scale problem, the gain
achieved by parallelization within the same computation

method for the Hessian (column s1) is better than in the
small-scale problem above. Comparing the first and the
second row in the column s1 in each case (BFGS, AH,

A Toolchain for Solving Dynamic Optimization Problems Using Symbolic and Parallel Computing

318 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118311

Table 5. Speed-up by parallelization and utilization of analytic
Hessian – comparison with collocation approach

MCMSC approach

Hess. nc It. tO [s] tSN [s] s1 s2 s3

BFGS
1 47 5.578 8.887 1.00 1.00 N/A
6 47 5.585 4.509 1.97 N/A 1.00

AH
1 35 2.032 27.612 1.00 0.32 N/A
6 35 2.038 12.530 2.20 N/A 0.36

AHC
1 34 1.044 7.112 1.00 1.25 N/A
6 34 1.066 5.114 1.39 N/A 0.88

Collocation approach

Hess. nc It. tC [s] sCMP

BFGS 1 54 11.446 1.13

AH 1 60 7.892 0.54
AHC 1 77 6.299 1.02

Hess.: BFGS - approximated Hessian, AH - ana-
lytic Hessian (updated in every iteration), AHC -
analytic Hessian (calculated once in iteration 0); nc -
no. of CPU cores, It. - no. of iterations, tO - CPU time
for optimization by Ipopt (not parallelizable), tSN - CPU
time for sensitivity calculation and Newton solver, tC
- CPU time for pure collocation on finite elements;
(all CPU times are averages of 100 runs), si, i = 1,2,3
- speed-up factors, sCMP - speed-up factor between
collocation (CM) and parallelized MCMSC method,
N/A - not applicable

and AHC, resp.), the speed-up factors s1 reach from 1.39
(AHC), 1.97 (BFGS) to 2.20 (AH) referred to tSN .

In the second case, the non-parallelized versions (col-

umn s2) are under consideration referring the Hessian
calculation methods to each other. Here, a speed-up is
only achieved in the AHC case (AHC/nc = 1/s2 = 1.25).

The third comparison evaluates the parallelized ver-

sions (column s3), again contrasting the Hessian calcu-
lation methods to each other. Here, no speed-ups are
achieved. Nevertheless, considering the optimization
time tO in the AH and AHC case compared with the
BFGS case, it is significantly reduced by factors of 2.74
and 5.24, resp., because of conducive matrix structures.

To have at least one comparison on the same com-
puter of the MCMSC method with collocation method
(CM) on finite elements used in JModelica.org the lower
part in Tab. 5 was added. In the parallelized version
of the MCMSC method both the BFGS (BFGS/nc =
6/tO + tSN = 10.094) and the AHC scenario (AHC/nc =
6/tO + tSN = 6.180) are faster than the non-parallelized
version of the CM.

The investigations and presented results show that the
presented parallelized MCMSC approach is a power-
ful solution technique solving optimal control problems
within the proposed toolchain. The number of iterations
are reduced compared with both the non-parallelized
cases and the collocation approach, but the effort in one

iteration is typically higher if the analytic Hessian is
used. The approach can most advantageously be applied
to large-scale optimization problems.

6 Summary and Conclusions

An optimal control problem needs to be solved online
in NMPC. This poses a challenge in the implementation
of the numerical algorithms and the enhancement of the
computation efficiency for the dynamic optimization ap-
proach. In this work, a toolchain for solving nonlinear
dynamic optimization problems is developed based on
the combined multiple shooting and collocation method.
The toolchain is implemented in open-source software
and both the first and the second-order sensitivities are
automatically computed. As a result, the user needs only
to provide the defined optimal control problem for im-
plementing NMPC. In addition, parallel computing is re-
alized for performing the computations in the individual
time intervals, thus leading to a reasonable reduction of
the computation time. The results of two case studies
show the capability of the toolchain for efficiently solv-
ing small to large-scale dynamic optimization problems.

In future, it is planned to offer a web-based optimiza-
tion service for solving nonlinear dynamic optimization
problems using the proposed approach.

7 Acknowledgments

The authors are grateful for the support of the ITEA2/
EUREKA Cluster programme by the European Com-
mission (project no. 11004, Model Driven Physical Sys-
tems Operation (MODRIO)) and for the financing by
German Ministry of Education and Research (BMBF,
Förderkennzeichen: 01IS12022H).

References

J. Åkesson. Optimica – an extension of Modelica supporting
dynamic optimization. In Proc. 6th Int. Modelica Conf.,
pages 57–66. Modelica Association, March 3-4 2008.

J. Åkesson, K.-E. Årzén, M. Gåfvert, T. Bergdahl, and
H. Tummescheit. Modeling and optimization with Optimica
and JModelica.org-languages and tools for solving large-
scale dynamic optimization problems. Comput. Chem. Eng.,
34(11):1737–1749, 2010.

J. Andersson, J. Åkesson, F. Casella, and M. Diehl. Integration
of CasADi and JModelica.org. In Proc. 8th Int. Modelica

Conf., pages 218–231, 2011. doi:10.3384/ecp11063.

J. Andersson, J. Åkesson, and M. Diehl. Dynamic optimiza-
tion with CasADi. In 51st IEEE Conference on Deci-

sion and Control, pages 681–686, 10-13 December 2012a.
doi:10.1109/CDC.2012.6426534.

Session 4A: Optimization Applications and Methods

DOI
10.3384/ecp15118311

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

319

J. Andersson, J. Åkesson, and M. Diehl. CasADi: A symbolic
package for automatic differentiation and optimal control.
Lect. Notes Comput. Sci. Eng., 87:297–307, 2012b.

B. Bachmann, L. Ochel, V. Ruge, M. Gebremedhin, P. Fritz-
son, V. Nezhadali, L. Eriksson, and M. Sivertsson. Parallel
multiple-shooting and collocation optimization with Open-
Modelica. In Proc. 9th Int. Modelica Conf., pages 659–668,
2012.

E. Balsa-Canto, J. R. Banga, A. A. Alonso, and V. S. Vas-
siliadis. Efficient optimal control of bioprocesses using
second-order information. Ind. Eng. Chem. Res., 39(11):
4287–4295, 2000. doi:10.1021/ie990658p.

M. Bartl, P. Li, and L. T. Biegler. Improvement of state profile
accuracy in nonlinear dynamic optimization with the quasi-
sequential approach. AIChE J., 57(8):2185–2197, 2011.
doi:10.1002/aic.12437.

T. Barz, R. Klaus, L. Zhu, G. Wozny, and H. Arellano-Garcia.
Generation of discrete first- and second-order sensitivities
for single shooting. AIChE J., 58(10):3110–3122, 2012.

L. T. Biegler, A. M. Cervantes, and A. Wächter. Advances in
simultaneous strategies for dynamic process optimization.
Chem. Eng. Sci., 57(4):575–593, 2002.

F. Casella and F. Pretolani. Fast Start-up of a Combined-Cycle
Power Plant: a Simulation Study with Modelica. In Proc.

5th Modelica Conf., pages 3–10, 2006.

F. Casella, F. Donida, and J. Åkesson. Object-Oriented Mod-
eling and Optimal Control: A Case Study in Power Plant
Start-Up. In Prepr. 18th IFAC World Congress. Milano.

Italy, pages 9545–9554, 2011a.

F. Casella, M. Farina, F. Righetti, R. Scattolini, D. Faille,
F. Davelaar, A. Tica, H. Gueguen, and D. Dumur. An
optimization procedure of the start-up of Combined Cycle
Power Plants. In Prepr. 18th IFAC World Congress. Milano.

Italy, pages 7043–7048, 2011b.

T. A. Davis. Direct methods for sparse linear systems. SIAM,
2006.

P. Fritzson. Principles of object-oriented modeling and simula-

tion with Modelica 3.3: A cyber-physical approach. Wiley-
IEEE Press, 2014.

D. Hellmann. The Python standard library by example.
Addison-Wesley Professional, 1st edition edition, 2011.

W. R. Hong, S. Q. Wang, P. Li, G. Wozny, and L. T. Biegler.
A quasi-sequential approach to large-scale dynamic op-
timization problems. AIChE J., 52(1):255–268, 2006.
doi:10.1002/aic.10625.

B. Houska, H. J. Ferreau, and M. Diehl. An auto-generated
real-time iteration algorithm for nonlinear MPC in the mi-
crosecond range. Automatica, 47(10):2279–2285, 2011.

C. Kirches, L. Wirsching, H. G. Bock, and J. P. Schlöder. Effi-
cient direct multiple shooting for nonlinear model predictive
control on long horizons. J. Process Contr., 22(3):540–551,
2012.

E. Lazutkin, A. Geletu, S. Hopfgarten, and P. Li.
Modified multiple shooting combined with collocation
method in JModelica.org with symbolic calculations. In
Proc. 10th Int. Modelica Conf., pages 999–1006, 2014.
doi:10.3384/ECP14096999.

D. Q. Mayne. Model predictive control: Recent developments
and future promise. Automatica, 50(12):2967–2986, 2014.

P. E. Rudquist and M. M. Edvall. PROPT - Matlab Optimal
Control Software. User’s Guide. TOMLAB Optimization,
2009.

V. Ruge, W. Braun, B. Bachmann, A. Walther, and K. Kul-
shreshtha. Efficient Implementation of Collocation Meth-
ods for Optimization using OpenModelica and ADOL-C.
In Proc. 10th Int. Modelica Conf., pages 1017–1025, 2014.
doi:10.3384/ECP140961017.

A. Schäfer, P. Kühl, M. Diehl, J. Schlöder, and H. G. Bock.
Fast reduced multiple-shooting method for nonlinear model
predictive control. Chem. Eng. Process., 46(11):1200–
1214, 2007.

A. Shitahun, V. Ruge, M. Gebremedhin, B. Bachmann,
L. Eriksson, J. Andersson, M. Diehl, and P. Fritzson.
Model-Based Dynamic Optimization with OpenModel-
ica and CasADi. In 7th IFAC Symp. on Advances in

Automotive Control, volume 1, pages 446–451, 2013.
doi:10.3182/20130904-4-JP-2042.00166.

J. Tamimi and P. Li. Nonlinear model predictive control
using multiple shooting combined with collocation on fi-
nite elements. In 7th IFAC Int. Symp. on Advanced

Control of Chemical Processes, pages 703–708, 2009.
doi:10.3182/20090712-4-TR-2008.00114.

J. Tamimi and P. Li. A combined approach to nonlinear model
predictive control of fast systems. J. Process Contr., 20(9):
1092–1102, 2010.

A. Wächter and L. T. Biegler. On the implementation of a
primal-dual interior point filter line search algorithm for
large-scale nonlinear programming. Math. Program., 106
(1):25–57, 2006.

Y. Wang and S. Boyd. Fast model predictive control using
online optimization. IEEE T. Contr. Syst. T., 18(2):267–278,
2010.

D. P. Word, J. Kang, J. Åkesson, and C. D. Laird. Efficient
parallel solution of large-scale nonlinear dynamic optimiza-
tion problems. Comput. Optim. Appl., 59(3):667–688, 2014.
doi:10.1007/s10589-014-9651-2.

V. M. Zavala, C. D. Laird, and L. T. Biegler. Interior-point de-
composition approaches for parallel solution of large-scale
nonlinear parameter estimation problems. Chem. Eng. Sci.,
63(4834-4845):19, 2008.

A Toolchain for Solving Dynamic Optimization Problems Using Symbolic and Parallel Computing

320 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118311

NMPC Application using JModelica.org: Features and

Performance

Christian Hartlep1 Toivo Henningsson2

1Siemens AG, Germany, christian.hartlep.ext@siemens.com
2Modelon AB, Sweden, toivo.henningsson@modelon.com

Abstract

In the past JModelica.org was successfully applied for
generating optimal trajectories. Using it for Nonlinear
Model Predictive Control (NMPC) is the natural next
step and sets high requirements on calculation time. To
improve real time capabilities warmstarting of the opti-
mization and elimination of algebraic variables based on
Block Lower Triangular (BLT) form were implemented.
In performance comparisons, using the example of steam
temperature control, a speed-up of the optimization time
by a factor of five and of two respectively was measured.
The increased efficiency allows application of NMPC to
faster systems than before.

Keywords: NMPC, BLT, IPOPT, JModelica.org

1 Introduction

A complete computational framework for Nonlinear
Model Predictive Control (NMPC) demands various fea-
tures provided by the FMI standard and its tool implem-
tation, here JModelica.org by Modelon AB. This in-
cludes FMI2.0 linearization and elimination of algebraic
variables based on the Block Lower Triangular (BLT)
form, which recently became available. In the field of
optimization it is intended to apply Modelica tools to
large systems with safety and real-time restrictions. Ef-
fective equation pre-processing and efficient solving is
demanded. For the latter warmstarting of optimizations
improved real-time capabilities significantly. In this ar-
ticle the performance impact of different features is ana-
lyzed using the example of steam temperature control.

In Section 2 the NMPC framework is described with
a focus on how JModelica.org tools are used for it. Re-
cent enhancements for this particular application are dis-
cussed theoretically in Section 3 and analyzed regarding
performance in Section 4. Finally Section 5 gives a short
summary.

2 NMPC Loop Implementation

JModelica.org offers a basic framework for NMPC,
which is described in (Axelsson et al., 2015). Here it is
not used due to specific requirements for the intended ap-
plication. This section gives an overview of this NMPC
framework and how JModelica.org tools are used in it.

2.1 General Framework

The NMPC framework consists mainly of an observer
and an optimizer, which interact with the plant as shown
in Figure 1. In the top part the observer is depicted,
which simulates the observer model based on the cor-
rected state x̂+k+1 of the previous time step and the current
boundary conditions pk. It generates a predicted state
x̂−k+1 and predicted plant output ŷk+1, which is given to
the corrector. For Kalman filter based observers and Lu-
enberger observer the filter gain calculation requires lin-
earization. In dependence of the difference between pre-
dicted and actual plant output yPlant

k the corrected state
x̂+k+1 is generated and used as initial state for the NMPC
optimization. The NMPC generates the discrete future
control input trajectory uk,tra j. In a post-processing step
a simulation is performed to obtain continuous time con-
trol inputs uNMPC(t) for the plant. This allows excluding
components which are relevant for the plant internal con-
trollers but not the optimization. For this paper the plant
is replaced by a simulation of a more complex model
compared to the optimization model.

2.2 Observer

It is the observer’s task to provide state estimates based
on the estimated state of the previous time step and the
plant outputs. Extended Kalman Filter (EKF) and Luen-
berger observer require the linearized state space repre-
sentation for the calculation of the filter gain and a sim-
ulation of the nonlinear system. An Unscented Kalman
Filter requires only the latter. The specific implementa-
tion is described in detail in (Bonvini et al., 2012). Imple-
menting the EKF and Luenberger became more efficient
recently due to the broad availability of FMI2.0 with

DOI
10.3384/ecp15118321

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

321

its ability to provide directional derivatives. Compared
to the previous JModelica.org Model Unit (JMU)-based
implementation the observer could be implemented more
efficiently because simulation and linearization are han-
dled by the same object. Benefits are reduced memory
consumption and no need for transferring the predicted
system state between the two objects.

2.3 Optimizer

Finding the optimal control inputs is handled by the
JModelica.org optimization tool chain, which interfaces
CasADi (Andersson, 2013) and IPOPT (Wächter and
Biegler, 2006). It imports optimization problems written
in Modelica/Optimica and discretizes them from contin-
uous time to discrete time using collocation (Magnusson
and Åkesson, 2012). Automatic generation of Jacobian
and Hessian of the optimization problem is included. Re-
cently, elimination of algebraic variables based on the
BLT form of the resulting optimization problem was im-
plemented to improve optimization solution time. Fur-
thermore time-critical reoptimizations became faster due
to reusage of the collocation and solver object and more
importantly warmstarting of the optimization by provid-
ing primal and dual variables of the previous NMPC it-
eration. Both features are thoroughly explained in the
next section. Another beneficial optimization feature is
custom distribution of mesh elements which allows ap-
propriate sizing of the optimization problem. At the be-
ginning of the time horizon the element size is mainly
determined by the required update interval, whereas at
the horizon end only numerical accuracy remains impor-
tant. An example of mesh relocation is given in (Zhao
and Tsiotras, 2011).

3 JModelica.org Enhancements to

Better Support NMPC Applica-

tions

This section describes some recent enhancements to the
optimization tool chain in JModelica.org that are useful
to improve convergence speed and robustness in the con-
text of NMPC.

3.1 Warm Starting

The aim of warm starting is to reduce solution time and
improve convergence robustness for repeated solution of
similar optimization problems, such as the ones found in
e.g. NMPC. In JModelica.org, these effects are achieved
by two means: reusing the discretization and reusing the
latest solution to improve the initial guess. To explain
what the former means, we first give a short background
on the discretization scheme, collocation.

observer
corrector

observer
predictor

NMPC

plant

post-
proccessing

uNMPC(t)
pk

x̂−k+1

ŷk+1

x̂+k+1

uk,tra j

yPlant
k

observer

NMPC internal

optimization
simulation
linearization

usage of features:

Figure 1. Structure of NMPC loop with signal exchanges and
particular usage of JModelica.org feature

3.1.1 Collocation

When formulating an NMPC problem in Modelica/Opti-
mica, modelling is naturally done in continuous time. To
solve an optimization problem, we first discretize it by
approximating it by a (large but sparse) Nonlinear Pro-
gram (NLP) using collocation.

The time horizon is partitioned into elements (time in-
tervals), and each time varying variable is approximated
by a low order polynomial over each element. Each poly-
nomial piece is described by sample values at a number
of collocation points within the element.

3.1.2 Reusing the discretization

Creating the discretization can take a significant part of
total solution time, sometimes even dominating it. To en-
able reuse, it must be valid not only for a single problem
instance, but be parametrized by the degrees of freedom
that can change from one time step to the next.

NLP parameters are introduced for

• Initial states.

• Parameters in the original model.

• External signals fed into the model, which can be
used e.g. for time varying reference signals, or mea-
surement signals in Moving Horizon Estimation.

• Scaling factors for equations.

NMPC Application using JModelica.org: Features and Performance

322 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118321

The first three can be changed by the user between suc-
cessive optimizations, while the last is typically deter-
mined automatically at the start of each optimization.

3.1.3 Reusing the latest solution

In NMPC, it is not only the optimization problems that
are similar between time steps, but usually also their so-
lutions. This feature can be exploited to minimize the
amount of work for the nonlinear solver to find the solu-
tion to the next problem. We do this by

• Reusing primal and dual variables from the last so-
lution to create the initial guess for the next. The
primal variables represent the actual solution to the
optimization problem, i.e. the trajectories of all
variables, and can be shifted in time. If the last opti-
mization failed, the solution from the last successful
optimization can be used instead.

The dual variables represent the cost of violating
the constraints that are active in the optimization
problem (see e.g. (Boyd and Vandenberghe, 2004)).
Primal-dual optimization algorithms such as IPOPT
converge both the primal and dual variables simul-
taneously, so fast convergence requires a good ini-
tial guess for the dual variables as well. Since it is
not obvious that shifting is applicable to dual vari-
ables, they are reused as is.

• Reusing the nonlinear solver state itself, which may
contain factorizations etc. that might be reused
from one time step to the next.

For IPOPT, which is an interior point solver, we also
need to adjust the initial value of the barrier parameter
µ so as not to push the initial guess too far away from
the constraints.

3.2 Elimination of Algebraic Variables

Modelica models often contain very many algebraic vari-
ables. In simulation, values for all algebraic variables
must be explicitly solved at each time step. In optimiza-
tion based on collocation, on the other hand, it possible
to leave algebraic variables and the constraints that de-
fine them in the NLP, which will also contain constraints
for the dynamics of the states.

Still, one can usually solve for some algebraic vari-
ables explicitly in terms of other, non-eliminated vari-
ables. Doing so brings a number of potential benefits for
solving the NLP:

• Fewer decision variables to converge, to provide
scalings and initial guesses for.

• Smaller matrices to factorize; factorization typi-
cally dominates the NLP solution time.

• Reduced sensitivity to the detailed formulation of
the original Modelica model. Many formulations
will yield equal NLPs, since intermediate variables
introduced by the modeler can often be eliminated,
producing the same results as if the intermediate
was manually replaced by its definition.

Some variables might be left better uneliminated, how-
ever, if they can only be solved for iteratively or the elim-
ination reduces sparsity too much in the NLP.

When importing a model for optimization in JModel-
ica.org, an option has been introduced to eliminate al-
gebraic variables. Suitable variables and equations are
identified from the Block Lower Triangular (BLT) form
of the model (the BLT form is constructed using Tarjan’s
Algorithm (Duff and Reid, 1978), starting from a perfect
matching of the algebraic equation system).

The BLT form consists of an ordering of the equa-
tions and algebraic variables (non-states) in the algebraic
equation system that must be solved to carry the solu-
tion of the system dynamics forward. It also contains a
grouping of these equations and variables into diagonal
blocks. To solve the entire equation system, each diago-
nal block can be solved in sequence, solving the system
comprised of the block’s equations for its unknowns. If a
block requires the value of a variable outside of the block
to solve it, that variable will already have been solved for
in a previous block.

It is quite common for an algebraic variable to be ex-
pressed as an explicit function of one or more states and
algebraic variables that can be computed before it. The
relation between the algebraic variable and other vari-
ables will then be expressed by a scalar (1×1) BLT block
with a single equation that the compiler can solve analyt-
ically; this is currently the only case used for elimination
of algebraic variables. Elimination means that a variable
will be calculated on the fly whenever needed, instead of
requiring a nonlinear equation solver to iterate to find a
solution for it. Variables with bounds are not eliminated
since this will not reduce the size of the NLP.

As a simple example, consider the dynamic optimiza-
tion problem

min
c,x,u

∫ 1

t=0
cdt

s.t. c = x2 +u2, ẋ = u, x(0) = 1

where c, x, and u are to be determined as real valued
functions of time. The algebraic equation system is com-
prised of the two constraints c = x2 +u2 and ẋ = u, with
unknowns c and ẋ. The state derivative ẋ can only be
solved from the latter equation, which leaves c to be
solved from the former. This gives a BLT form with two
scalar blocks.

The instantaneous cost c can be seen as an interme-
diate variable, and the BLT correctly identifies the op-
portunity to eliminate it, by matching it with the scalar

Session 4A: Optimization Applications and Methods

DOI
10.3384/ecp15118321

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

323

equation c = x2 + u2. Using this equation to explicitly
solve for and eliminate the algebraic variable c results in
the optimization problem

min
x,u

∫ 1

t=0
x2 +u2 dt

s.t. ẋ = u, x(0) = 1

which is smaller, with fewer equality constraints to sat-
isfy and variables to converge.

In this case, the elimination of c yields additional
benefits. The cost function in an optimization problem
should be convex in a vicinity of the optimum (in this
case, x2 +u2 is convex everywhere). Eliminating the in-
termediate variable c exposes this structure to the opti-
mizer. In contrast, the original constraint c = x2 + u2 is
non-convex even at the optimum, so keeping it will likely
make it harder for the optimizer to find its way.

4 Performance Comparisons for

Steam Temperature Control

In this section the performance impact of the discussed
features is analyzed for the steam temperature control in
a combined cycle power plant.

4.1 Test Setup

This section gives an overview of the optimization and
plant models as well as the chosen scenario.

4.1.1 Soft- and Hardware

As software tools JModelica.org 1.16 (Magnusson and
Åkesson, 2015), CasADi 1.9 with optimizer IPOPT 3.12
and HSL MA27 (HSL, 2013) as linear solver were used.
The tests were carried out on a Intel i7 2620M (2.7 GHz)
processor with Windows 7 x86.

4.1.2 Optimization Model

Figure 2 shows the optimization model with its three
superheaters, four water injectors and two temperature
sensors. Heat is transfered from flue gas (solid line) to
two different steam lines (dash-dotted lines). The top
and bottom superheater are part of the high pressure line
(thickest dash-dotted line) and the middle one is part of
the reheat line (thick dash-dotted line). It is the con-
trol target to provide a required steam temperature at
the temperature sensors with minimal entropy produc-
tion by changing the water valve openings. The opti-
mization problem becomes nonlinear due to nonlinear
water steam tables, nonlinear heat transfer functions in
superheaters and the nonlinear objective function. In to-
tal the model includes six numerical states representing
the physics, four control inputs and two outputs.

Figure 2. Optimization model for steam temperature control
with superheaters, valves and temperature sensors

4.1.3 Plant Model

The performance of the NMPC loop is not tested on a
real life plant but on a much more detailed model, which
has been validated against measurement data of a real
plant. This detailed plant model not only includes more
heat exchangers than the model used for optimization
(seven heat exchangers instead of three), but also inter-
mediate piping between the heat exchangers as well as
the underlying valve opening controllers for the injec-
tion valves. This results in a system of equations having
about 14000 equations and 700 numeric states.

4.1.4 Test Scenario

As test scenario a plant startup is used because it in-
cludes various changes of setpoints and boundary con-
ditions, which are not known in advance for the opti-
mizer. Since the plant state changes drastically during
this phase prediction accuracy is impaired especially at
the beginning. The scenario is stopped before the plant
reaches full load to capture only the dynamic behaviour
and hence more challenging phases. Otherwise the re-
sults would be skewed in favour of the warmstart option.

In Figure 3 the resulting trajectories are plotted. The
first two plots show measured, estimated and setpoint
temperature for high pressure and reheat steam line re-
spectively. The bottom subplot depicts the valve open-
ings for intermediate (Int) and final injectors for each
steam line. For the reheat part oscillations are visible,
introduced by the stiff filter tuning. Such a filter tuning
should not be used for a real plant but is beneficial for the
performance test due to the stronger initial state update,
which acts as disturbance for the optimizer.

4.2 Performance Comparison

For the application of NMPC low calculation time is re-
quired. Therefore features described in Section 3 are

NMPC Application using JModelica.org: Features and Performance

324 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118321

0.0

0.2

0.4

0.6

0.8

1.0

n
o
rm

a
li

ze
d

H
P

 t
e
m

p
e
ra

tu
re

s

setpoint

measured

estimated

0.0

0.2

0.4

0.6

0.8

1.0

n
o
rm

a
li

ze
d

R
H

 t
e
m

p
e
ra

tu
re

s

setpoint

measured

estimated

0.0 0.2 0.4 0.6 0.8 1.0

normalized time

0.0

0.2

0.4

0.6

0.8

1.0

n
o
rm

a
li

ze
d

va
lv

e
 o

p
e
n

in
g

s

HPFinal HPInt RHFinal RHInt

Figure 3. Test scenario for reheat (RH) and high pressure (HP)
heat exchanger temperature control

tested here.

4.2.1 Criteria

Optimization performance is compared with regards to
maximum and mean overall optimization time topt , maxi-
mum and mean IPOPT solution time tsol , mean iterations
niter, mean time per iteration. The overall optimization
time includes setting initial trajectory and boundaries,
JModelica.org preprocessing, optimization and JModel-
ica.org post-processing. The gathered performance data
is collected in Table 1.

4.2.2 Warmstart

Enabling the warmstart option improves performance
in almost all performance criteria (see line 1 and 2 in
Table 1) without changing the calculated trajectories.
Warmstarting IPOPT reduced the average number of it-
erations and hence IPOPT solution time showed a reduc-
tion of 44%. Most notably is the reduction of the mean
overall optimization time by 80% due to reusing of the
solver object. An overview of the overall optimization
time distribution is given in Figure 4. The distribution
for warmstart is more narrow, which is visible in a reduc-
tion of the standard deviation from 0.4 s for the normal
start to 0.25 s. Thus the optimization time became more
predictable. Also the number of outliers is lower in the

warmstart distribution.

0 2 4 6 8

topt in s

0

50

100

150

200

o
cc

u
re

n
ce

s

warmstart

normal start

Figure 4. Comparison of total optimization time between nor-
mal optimization start and warmstart

4.2.3 BLT Elimination

Using BLT elimination improved performance and ro-
bustness in this case (see line 2 and 3 in Table 1). The
most visible effect is the reduction of the number of vari-
ables by a factor of two (from 10359 to 5263, as reported
by IPOPT). The smaller problem dimension translates
into faster solution time and overall optimization time
by about the same factor. The expected improvement
in robustness was observed since 16 of 310 optimiza-
tion were unsuccessful with disabled BLT, whereas all
optimizations were successful with enabled BLT. Higher
time per iteration shows that the original problem formu-
lation was suboptimal.

4.2.4 Scaling of Computational Cost

Scaling of computational cost is compared for different
scopes of included components. The smaller comparison
model includes only the last high pressure superheater of
the high pressure line (the top one in Figure 2) and water
injectors before and after. This system has two numerical
states, two control inputs and one control output.

Number of variables in IPOPT is 3.6 times higher for
the model with both steam lines compared to the version
with only one steam line. For the tests BLT and warm-
start are enabled and the results are summarized in line 4
of Table 1. The average overall optimization, average
solution time and average time per iteration are 2.9, 3.6
and 2.4 times higher respectively for the larger model.
These values are slightly lower than the increase in opti-
mization problem size which means computational cost
increases less than linear.

4.2.5 Code Analysis

In the last part of the analysis distribution of computa-
tion time to different subtasks, which are performed in

Session 4A: Optimization Applications and Methods

DOI
10.3384/ecp15118321

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

325

Modelled Steam Lines BLT warmstart max(topt) t̄opt max(tsol) t̄sol n̄iter n̄iter/t̄sol

1 Reheat and High Pressure on off 8.06 s 7.00 s 1.04 s 0.81 s 20.76 38.9 ms
2 Reheat and High Pressure on on 3.03 s 1.37 s 2.09 s 0.45 s 10.37 43.5 ms
3 Reheat and High Pressure off on 15.14 s 2.78 s 13.98 s 1.00 s 17.64 56.6 ms
4 only High Pressure on on 1.06 s 0.48 s 0.59 s 0.13 s 7.21 18.0 ms

Table 1. Performance comparison of different optimization setups

_compute_bounds_and_init
68.2%

solve_nlp

12.4% export_result_dymola

15.3%

get_result_object4.1%

Figure 5. Percentage-wise breakdown of overall optimization
time to different subtasks

every NMPC loop iteration, is analyzed. The result is
visualized in Figure 5 for the computationally most ex-
pensive subtasks. All remaining subtasks take less than
2% together of the overall optimization time. Warm-
start and BLT are enabled. About 32% of the overall
optimization time is spent inside the optimize command
of JModelica.org. Hence significant improvements in
real time capabilities are possible going forward. Most
time is spent for setting the initial trajectory (_com-
pute_bounds_and_init). This step is not necessary for
every NMPC loop iteration, but in case of an unsuccess-
ful last optimization it is better to use the values of the
last converged solution instead of the values that are still
stored from the previous optimization. Therefore it is
relevant for the analysis. Another time demanding task
is exporting the result to a text file readable by Dymola.
Whereas it is helpful for debugging the optimization re-
sult it could be omitted for time critical operations.

5 Summary

In conclusion the newly implemented features warmstart
and BLT elimination in JModelica.org increased per-
formance considerably for NMPC applications. JMod-
elica.org with its Python interface proved to be viable
choice for implementing an NMPC loop and was suc-
cessfully tested for steam temperature control. Espe-
cially the warmstarting of the optimization improved
tool capabilities in the field of NMPC application due
to smaller optimization overhead and faster convergence.
Variable elimination based on BLT reduced the optimiza-
tion problem size and also gave a robustness improve-
ment in the tests.

6 Acknowledgement

We would like to thank German Ministry BMBF for par-
tially funding this work within the ITEA2 project MOD-
RIO, as well as Siemens AG for providing further re-
sources. For their critical responses and help we thank
Prof. Pu Li, Kilian Link, Stephanie Gallardo Yances and
Karin Dietl.

References

HSL, a collection of fortran codes for large-scale scientific
computation, 2013. URL http://www.hsl.rl.ac.

uk/.

Joel Andersson. A General-Purpose Software Framework for

Dynamic Optimization. PhD thesis, Arenberg Doctoral
School, KU Leuven, Department of Electrical Engineer-
ing (ESAT/SCD) and Optimization in Engineering Center,
Kasteelpark Arenberg 10, 3001-Heverlee, Belgium, Octo-
ber 2013.

Magdalena Axelsson, Frederik Magnusson, and Toivo Hen-
ningsson. A framework for nonlinear model predictive con-
trol in jmodelica.org. Proceedings of the 11th International

ModelicaConference, 2015.

Marco Bonvini, Michael Wetter, and Michael D Sohn. An
fmi-based framework for state and parameter estimation.
Proceedings of the 10th International ModelicaConference,
2012.

Stephen Boyd and Lieven Vandenberghe. Convex Optimiza-

tion. Cambridge University Press, New York, NY, USA,
2004. ISBN 0521833787.

I. S. Duff and J. K. Reid. An implementation of tarjan’s al-
gorithm for the block triangularization of a matrix. ACM

Trans. Math. Softw., 4(2):137–147, June 1978. ISSN 0098-
3500. doi:10.1145/355780.355785. URL http://doi.

acm.org/10.1145/355780.355785.

Fredrik Magnusson and Johan Åkesson. Collocation methods
for optimization in a modelica environment. In Proceedings

of the 9th International Modelica Conference, 2012.

Fredrik Magnusson and Johan Åkesson. Dynamic optimiza-
tion in jmodelica.org. Processes, 3(2):471, 2015. ISSN
2227-9717. doi:10.3390/pr3020471. URL http://www.

mdpi.com/2227-9717/3/2/471.

NMPC Application using JModelica.org: Features and Performance

326 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118321

Andreas Wächter and Lorenz T. Biegler. On the im-
plementation of an interior-point filter line-search algo-
rithm for large-scale nonlinear programming. Mathe-

matical Programming, 106(1):25–57, 2006. ISSN 0025-
5610. doi:10.1007/s10107-004-0559-y. URL http://

dx.doi.org/10.1007/s10107-004-0559-y.

Yiming Zhao and Panagiotis Tsiotras. Density functions for
mesh refinement in numerical optimal control. Journal of

guidance, control, and dynamics, 34(1):271–277, 2011.

Session 4A: Optimization Applications and Methods

DOI
10.3384/ecp15118321

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

327

328 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

A Modelica Library for Manual Tracking

James J. Potter

VTT Technical Research Centre of Finland
Vuorimiehentie 3, Espoo, Finland

Abstract

Many systems require a human to perform real-time con-
trol. To simulate these systems, a dynamic model of
the human’s control behavior is needed. The field of
manual control has developed and validated such mod-
els, and their implementation in Modelica could sup-
port researchers of human-machine systems. This paper
presents a Modelica library with models from the manual
control literature. Python-based tools allow users to per-
form, in real time, the manual tracking tasks they design
in Modelica. Parameter values in the manual controller
models can be automatically tuned to either maximize
tracking performance, or to match recorded control in-
put from a user experiment.
Keywords: manual control, parameter estimation, FMI,

Python, OpenModelica, JModelica.org

1 Introduction

There are many situations where a human operator at-
tempts to make the output of a system follow a desired
trajectory. For example, the top of Figure 1 shows the
task of recording an athlete with a tripod-mounted video
camera. The goal of the camera operator is to keep the
athlete centered in the camera frame. The actual camera
direction is compared to its desired direction (pointed di-
rectly at the athlete), and corrective actions are made by
applying force to the tripod handle. This activity is simi-
lar to eye tracking, where a human keeps a moving object
in the center of his or her vision (Jagacinski, 1977). In
these activities, the human is an active part of a feed-
back control system. Other examples of manual tracking
tasks include aiming a tank turret (Tustin, 1947; Klein-
man and Perkins, 1974), driving an automobile (Bekey
et al., 1977; Hess and Modjtahedzadeh, 1990), and pilot-
ing an aircraft (McRuer and Jex, 1967).

The bottom of Figure 1 shows a simplified diagram of
the task. Blocks represent the camera operator’s control
behavior, and the camera and tripod’s rotational dynam-
ics. The athlete’s direction relative to the tripod is the
reference signal, r(t), the camera’s actual direction is the
camera state, y(t), and the angle between the actual and
desired directions is the error, e(t). The operator’s force

r(t)

y(t)

e(t)

u(t)

Camera

Operator

Camera

Dynamics
r(t) y(t)

u(t)

Figure 1. One-dimensional video camera tracking task.

on the handle is the command input, u(t).
Note that to simulate this system, a model of the hu-

man’s control behavior must be specified. Such mod-
els can be found in the field of manual control, which
uses the tools and techniques of control theory to study
the control behavior of humans. A Modelica library that
captures knowledge from this field would be useful to
modelers of human-machine systems.

This paper presents a library with models of human
control behavior from the manual control literature. In
addition, tools allow users to perform manual tracking
tasks designed in Modelica, and to tune parameter val-
ues in the manual controller models to either maximize
tracking performance, or to match recorded control in-
put from user experiments. The next section gives back-
ground information about manual control and manual
tracking tasks. Then, Sections 3 and 4 present the ▼❛♥✲
✉❛❧❚r❛❝❦✐♥❣ Modelica library and the supporting func-
tions, respectively. Example tracking tasks are described
in Section 5, and conclusions are drawn in Section 6.

2 Manual Tracking

Previous studies have made extensive use of single-axis
manual tracking tasks to investigate the control behav-
ior of humans performing continuous control. In a typ-
ical experimental tracking task, a human operator views

DOI
10.3384/ecp15118329

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

329

r(t)
y(t)

Cursor Target

Figure 2. Display for manual tracking task.

r
1
(t)

r
2
(t)

r
n
(t)

r(t)

TimeTime

Figure 3. Sum of sines forcing function.

a display on a computer screen and uses an input device,
such as a joystick or force stick, to generate control in-
put. An example display is shown in Figure 2. There are
two objects on the screen: one is a target that represents
the reference (desired) state, and the other is a cursor that
represents the actual state of the controlled system. The
human’s goal is to make the cursor follow the target as
closely as possible.

Many situations require humans to perform multi-
axis, multi-loop control tasks, so it might seem that
studying one-dimensional control would be an unrea-
sonable oversimplification. However, it has been found
that multi-axis tracking performance is highly related to
one-axis tracking (Todosiev et al., 1967), and that infor-
mation about the human controller derived from single-
axis tracking tasks can be applied to multi-loop tasks
(McRuer et al., 1975).

2.1 Forcing Functions

In the tracking display of Figure 2, the target’s motion
is prescribed by a forcing function. This function should
appear random to prevent the operator from predicting
future behavior of the target, unless the real-world con-
trol task consists of highly predictable signals. This li-
brary, and much of manual control theory, focuses on the
tracking of unpredictable signals.

From past studies, it has been shown that the sum of 5
or more sine waves is unpredictable to human operators
(McRuer et al., 1965). An example summed-sine forcing
function is shown in Figure 3. The individual sine waves
on the left of Figure 3 are combined to yield the more
complicated function on the right. In equation form,

r(t) =
n

∑
i=1

Aisin(ωit +φi), (1)

y(t)
b

Ku(t)M

Figure 4. Mechanical example of a controlled element.

where Ai, ωi, and φi are the sine wave amplitudes, fre-
quencies, and phase angles, respectively. In general, low-
frequency sine waves are given large amplitudes, and
waves with increasing frequency are given increasingly
small amplitudes (Jagacinski and Flach, 2003). The diffi-
culty of tracking a given forcing function depends heav-
ily on the velocity and acceleration of the target motion
(Damveld et al., 2010).

2.2 Controlled Elements

The controlled element is the dynamic response of the
cursor to control input, and it represents the real-world
system under human control. A simple mechanical ex-
ample is shown in the left side of Figure 4. A rolling
cart with mass M is attached to ground by a damper with
damping coefficient b, and the control input pushes the
cart with a force of magnitude Ku(t). The equivalent
controlled-element transfer function is shown in the right
side of Figure 4. The cart exhibits a lagged velocity re-
sponse with time constant M/b and steady-state velocity
K/b. The units of these parameters depend on the units
chosen for M, b, and K.

Simple models have been used to capture the pri-
mary behavior of certain degrees of freedom in aircraft
(McRuer and Jex, 1967), automobiles, and other compli-
cated systems. Many experiments have used the simplest
controlled elements with position, velocity, and acceler-
ation responses.

2.3 Manual Controllers

Human control behavior while tracking an unpredictable
signal can be modeled using tools and techniques from
control theory. A specific model will be called a man-

ual controller model. These models are generally ei-
ther structural or algorithmic in nature (McRuer, 1980).
Structural models use explicit equations and parameters
to model human control pathways and the human’s re-
sulting input-output response. Algorithmic models use
a more implicit optimal control formulation, where only
the human’s total response is computed. This library in-
cludes only structural models. For a review of both kinds
of models, see Hess (2006).

Structural manual controller models have taken many
forms, but most include one or more of the control path-
ways shown in Figure 5. Nearly all controllers include
the compensatory pathway, which acts on the error e(t)
between the reference and measured state. Manual track-

A Modelica Library for Manual Tracking

330 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118329

Measured

State

y(t)

+ _

Reference

State

r(t)

Feedforward

Compensatory

Pursuit

Neuromuscular

Proprioceptive

Total

Input

u(t)+
+

Disturbance

Input

w(t)

+
++

+

+

Error

e(t)

Control

Input

v(t)

Figure 5. Manual controller signals and control pathways.

ing experiments that display only this error, and not the
reference and measured states independently, are called
compensatory tracking tasks.

If both the reference state and the measured state are
displayed to the human, then they can be used for the
feedforward and pursuit control actions. The presence
of pursuit information does not guarantee pursuit control
will be used, and the absence of pursuit information does
not guarantee pursuit control will not be used.

The neuromuscular filter accounts for the lag imposed
by limb dynamics and neuromuscular delays. The hu-
man senses the filtered input using the proprioceptive

pathway, and compares it to the desired input.
Once the human’s control input is determined, a dis-

turbance input is added. This can be used for a distur-
bance rejection task (Van Paassen and Mulder, 2006), or
to add remnant to the controller model. Remnant ac-
counts for the human’s control input that is not predicted
by the model. Most of the remnant appears to come from
fluctuations in the effective time delay (McRuer, 1980),
nonsteady control behavior, and nonlinear anticipation
or relay-like operations (McRuer et al., 1967). These
effects are larger when tracking conditions are difficult
(Hess, 1979). The remnant has been found to have fairly
constant power with no major peaks, and it tends to be
relatively small when tracking conditions are favorable
(Wade and Jex, 1972).

Perhaps the most influential model has been the
Crossover model proposed by McRuer and Jex (1967).
The Crossover model states that in a compensatory task
(when only e(t) is displayed) for a variety of controlled-
element dynamics, the operator acts to make the overall
human-machine system assume the form:

Y(jω)

E(jω)
=

Ke− jωτ

jω
near ω = K, (2)

where K is the open-loop system gain, and τ is the effec-
tive time delay. Note that the transfer function is written
with the frequency operator jω instead of the Laplace
variable s. This is to emphasize that the model is only in-
tended to apply in the frequency domain, and may not be

accurate for non-sinusoidal inputs such as steps or ramps.
Furthermore, the Crossover model is only meant to char-
acterize the system near the crossover frequency – hence
its name. The control system’s closed-loop response is
generally dominated by its behavior near the crossover
frequency (McRuer and Jex, 1967).

Note that control input does not appear explicitly in
the Crossover model. It is an implicit model that depends
on the controlled-element dynamics. Therefore it is not
included in the ▼❛♥✉❛❧❚r❛❝❦✐♥❣ library, which requires
explicit models to generate the control input. However,
many of these explicit models were originally formed us-
ing the Crossover model as a basis.

3 Modelica Library

The previous section introduced the elements of typical
manual tracking tasks, and this section presents their im-
plementation in the ▼❛♥✉❛❧❚r❛❝❦✐♥❣ Modelica library.
An overview of the library structure is shown in Fig-
ure 6. Packages in the library will be described in order
from least to most complex, ending with the ❚r❛❝❦✐♥❣✲
❚❛s❦s package. An instance of a tracking task requires
instances from the ▼❛♥✉❛❧❈♦♥tr♦❧❧❡rs, ❈♦♥tr♦❧❧❡❞❊❧❡✲
♠❡♥ts, and ❋♦r❝✐♥❣❋✉♥❝t✐♦♥s packages. The ❇❧♦❝❦s
and ■❝♦♥s packages are straightforward, and will not be
discussed.

❋♦r❝✐♥❣❋✉♥❝t✐♦♥s

This package only includes the summed sine wave sig-
nal, which is by far the most common signal used in
manual tracking tasks. Frequency values can be either
in units of Hz (with ❙✉♠❖❢❙✐♥❡s❍③), or radians per sec-
ond (with ❙✉♠❖❢❙✐♥❡s❘❛❞P❡r❙❡❝). If the user wishes to
make a custom forcing function for either the reference
signal or disturbance input, the signal must be contained
in one block with a single output, and it must be stored in
the appropriate package. If these rules are violated, the
Python functions will not be able to parse the text of the
tracking task.

Session 4B: Control Applications 1

DOI
10.3384/ecp15118329

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

331

Figure 6. ManualTracking library overview.

❈♦♥tr♦❧❧❡❞❊❧❡♠❡♥ts

All controlled elements included in the library are shown
in Table 1. There are the basic position, velocity, and ac-
celeration responses. There are also versions of these ba-
sic responses with an added first-order lag, making them
less responsive at first, but eventually reaching the same
steady-state position/velocity/acceleration.

The unstable ❋✐rst❖r❞❡r❉✐✈❡r❣❡♥t controlled element
was used to investigate limitations of a human’s effective
time delay in Jex et al. (1966). The ❱❡❧♦❝✐t②❋❧❡①✐❜❧❡✲
▼♦❞❡ includes a second order mode that can be oscilla-
tory. This controlled element was studied with relatively
high damping in Shirley and Young (1968), and very low
damping in Potter and Singhose (2014).

▼❛♥✉❛❧❈♦♥tr♦❧❧❡rs

Table 2 shows all manual controller models in equation
form. The ▼❛♥✉❛❧❚r❛❝❦✐♥❣ library documentation con-
tains block diagrams of each controller model, and these
block diagrams are sometimes more intuitively useful
than the equations.

McRuer and Jex (1967) describe how the first four
manual controllers are combined with specific controlled
elements to yield the form of the Crossover model. The
model Pr❡❝✐s✐♦♥❖r✐❣✐♥❛❧ was proposed by McRuer and
his colleagues, and various simplified versions with one
of the lead-lag terms removed have been used since then.
These versions mainly differ in how they represent the
human’s neuromuscular filter. The ▼✉❧t✐❝❤❛♥♥❡❧▼♦❞❡❧,
▼✉❧t✐♠♦❞❛❧▼♦❞❡❧, and ❉❡s❝r✐♣t✐✈❡▼♦❞❡❧ each include

Table 1. Controlled elements.

Class Name Transfer Function

P♦s✐t✐♦♥❘❡s♣♦♥s❡ K

❱❡❧♦❝✐t②❘❡s♣♦♥s❡ K/s

❆❝❝❡❧❡r❛t✐♦♥❘❡s♣♦♥s❡ K/s2

P♦s✐t✐♦♥▲❛❣❣❡❞ K/(T s+1)
❱❡❧♦❝✐t②▲❛❣❣❡❞ K/(s[T s+1])
❆❝❝❡❧❡r❛t✐♦♥▲❛❣❣❡❞ K/(s2[T s+1])
❋✐rst❖r❞❡r❉✐✈❡r❣❡♥t K/(T s−1)
❱❡❧♦❝✐t②❋❧❡①✐❜❧❡▼♦❞❡ Kω2/(s[s2 +2ζ ωs+ω2])

pursuit control, but they have different ways of organiz-
ing the human’s control pathways.

The following two models, ❙tr✉❝t✉r❛❧❋♦r✶st❖r❞❡r
and ❙tr✉❝t✉r❛❧❋♦r✷♥❞❖r❞❡r, include proprioceptive
feedback, and are designed to control first-order and
second-order controlled elements, respectively. The
❋❡❡❞❢♦r✇❛r❞▼♦❞❡❧ includes feedfoward control. For
this control pathway, an inverted model of the plant
dynamics is needed, and the controller automatically
uses the block ▼❛♥✉❛❧❚r❛❝❦✐♥❣✳❇❧♦❝❦s✳❋❡❡❞❋♦r✇❛r❞
for this purpose. To change the inverse dynamics block,
or to make the controller use a different block, the Mod-
elica file text must be modified manually.

Once the controller is selected, the next task is to
choose values for controller parameters. Tools described
in Section 4 can help select these values – they are se-
lected either to yield optimal performance, or the closest
fit to experimental control behavior.

A Modelica Library for Manual Tracking

332 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118329

Table 2. Manual controller models.

Class Name
Control Input, V(s)
as a function of Laplace-transformed r(t), y(t), and e(t), defined in Figure 5

❉❡❧❛②❡❞●❛✐♥ E(K)e−τs

❉❡❧❛②❡❞▲❡❛❞ E(K(T s+1))e−τs

❉❡❧❛②❡❞▲❛❣ E

(

K 1
T2s+1

)

e−τs

❉❡❧❛②❡❞▲❡❛❞▲❛❣ E

(

K
T1s+1
T2s+1

)

e−τs

Pr❡❝✐s✐♦♥✶st❖r❞❡r◆▼ E

(

K
T1s+1
T2s+1

)(

1
T3s+1

)

e−τs

Pr❡❝✐s✐♦♥✷♥❞❖r❞❡r◆▼ E

(

K
T1s+1
T2s+1

)(

ω2

s2+2ζ ωs+ω2

)

e−τs

Pr❡❝✐s✐♦♥✸r❞❖r❞❡r◆▼ E

(

K
T1s+1
T2s+1

)(

ω2

(T3s+1)(s2+2ζ ωs+ω2)

)

e−τs

Pr❡❝✐s✐♦♥❖r✐❣✐♥❛❧
(McRuer et al., 1965)

E

(

K
T1s+1
T2s+1

)(

T3s+1
T4s+1

)(

ω2

(T5s+1)(s2+2ζ ωs+ω2)

)

e−τs

▼✉❧t✐❝❤❛♥♥❡❧▼♦❞❡❧
(Nieuwenhuizen et al., 2008)

[

E(K1(T1s+1))e−τ1s +Y

(

K2
s2(T2s+1)

T3s+1

)

e−τ2s
]

ω2

s2+2ζ ωs+ω2

▼✉❧t✐♠♦❞❛❧▼♦❞❡❧
(Zaal et al., 2012)

[

E

(

K1
(T1s+1)2

T2s+1

)

e−τ1s +Y(K2s)e−τ2s
]

ω2

s2+2ζ ωs+ω2

❉❡s❝r✐♣t✐✈❡▼♦❞❡❧
(Hosman and Stassen, 1999)

[

E(K1e−τ1s +K2se−τ2s)+Y

(

K3se−τ3s +K4
s2(T1s+1)

(T2s+1)(T3s+1)

)]

e−τ4s

❙tr✉❝t✉r❛❧❋♦r✶st❖r❞❡r
(Hess, 1980)

E(K1 +K2se−τ1s)
(

ω2(T s+1)
ω2K3s+(s2+2ζ ωs+ω2)(T s+1)

)

e−τ2s

❙tr✉❝t✉r❛❧❋♦r✷♥❞❖r❞❡r
(Hess, 1980)

E(K1 +K2se−τ1s)
(

ω2(T1s+1)(T2s+1)
ω2K3s+(s2+2ζ ωs+ω2)(T s+1)(T2s+1)

)

e−τ2s

❋❡❡❞❢♦r✇❛r❞▼♦❞❡❧
(Drop et al., 2013)

[

E(K1)e
−τ1s +R

(

K2
1

T s+1

)

[FeedForward]e−τ2s
]

ω2

s2+2ζ ωs+ω2

❚r❛❝❦✐♥❣❚❛s❦s

Blocks from the ❋♦r❝✐♥❣❋✉♥❝t✐♦♥s, ❈♦♥tr♦❧❧❡❞❊❧❡✲
♠❡♥ts, and ▼❛♥✉❛❧❈♦♥tr♦❧❧❡rs packages can be useful
by themselves, in any configuration that supports the
user’s model. However, to use the parameter tuning and
user experiment features of this library, a specific config-
uration of the components is required.

A tracking task model should have the standard
form shown in Figure 7, and it should be stored in-
side the ❚r❛❝❦✐♥❣❚❛s❦s package. It includes one block
from the ❋♦r❝✐♥❣❋✉♥❝t✐♦♥s✳❘❡❢❡r❡♥❝❡❙✐❣♥❛❧s, ❋♦r❝✲
✐♥❣❋✉♥❝t✐♦♥s✳❉✐st✉r❜❛♥❝❡■♥♣✉ts, and ❈♦♥tr♦❧❧❡❞❊❧❡✲
♠❡♥ts packages, each connected to the appropriate port
of a ▼❛♥✉❛❧❈♦♥tr♦❧❧❡r block. Several manual tracking
tasks from the literature are provided.

An additional component, the ❚❛s❦❙❡tt✐♥❣s block,
must be included. This block contains important details
of the tracking task: taskDuration is the total length of
the task; previewTime is the amount of time in advance

ControlledElementReferenceSignal

r(t)

w(t)

u(t)

y(t)

u(t) y(t)

DisturbanceInputTaskSettings

ManualController

r(t)

w(t)

Figure 7. Example of tracking task.

to show the target motion; and backgroundVisible de-
termines whether or not pursuit (background) informa-
tion is shown with hatch marks. The last three parame-
ters are only used in the user experiment, and not in the
parameter tuning or simulation functions.

Session 4B: Control Applications 1

DOI
10.3384/ecp15118329

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

333

RunTrackingSimulation.py

RunTrackingExperiment.py

TuneControllerSimulation.py

TuneControllerExperiment.py

Options.py

OMPython

pyfmi

Pygame

matplotlib

csv

Resources/ Resources/Source/ modules

fmi.py

game.py

tools.py
mantra.py

Python 2.7

ManualTracking.mo

Modelicacalls functions in ...

provides information to ...

Figure 8. Software overview.

4 Python Functions

The previous sections have described purely Modelica-
based components that can be run from within a Model-
ica simulation environment. Two additional capabilities
are provided in the ▼❛♥✉❛❧❚r❛❝❦✐♥❣ library: automati-
cally tuning manual controller parameters, and perform-
ing real-time tracking experiments. These features are
implemented in the Python programming language.

An overview of the software is shown in Figure 8. In
the Resources/ directory, there are 5 .py files. Four of
these are function scripts that can be run from a terminal
or Python IDE, and the fifth file is Options.py, where
options are set by the user. The functions do not use in-
put arguments, and instead get them from Options.py.
Variables in this file include: taskModel, the tracking
task model to run; saveFormat, the format with which
to save backup data files; printVerbose, whether or not
to print all runtime messages to the console. The user
may also experiment with different framerates and opti-
mization/simulation methods.
Options.py also contains Boolean input arguments

for each of the four functions: useSaved makes the func-
tions use most recent saved data (in Resources/Temp/

directory) instead of re-running an experiment; plotRe-

sults generates a figure with the resulting trajecto-
ries; and saveResults saves a backup results file in the
Resources/Data/ directory. The results file contains
values for the reference state, measured state, distur-
bance input, and control input at each sample time.

Each of the four main functions call mantra.py,
which reads the ManualTracking.mo file for details
of the tracking task, and then calls functions defined in
fmi.py, game.py, and tools.py. These functions use
standard Python modules, as well as OMPython, pyfmi,
Pygame, and matplotlib. Note that OMPython requires
an installation of OpenModelica (Fritzson et al., 2005).
Additionally, pyfmi has many dependencies that must be
installed first, and it may be more convenient to install
JModelica.org (Åkesson et al., 2010) instead of installing
them individually. After all required Python modules
have been installed, the following functions should run
successfully.

0 10 20 30 40 50 60
10

5

0

5

10

15

0 10 20 30 40 50 60
3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

ReferencemState

MeasuredmState

DisturbancemInput

Cont rolmInput

Timem(s)

Figure 9. Plot of simulation results.

4.1 RunTrackingSimulation

This function simulates the tracking task model speci-
fied in Options.py. The simulation stop time is spec-
ified by taskDuration in the ❚❛s❦❙❡tt✐♥❣s block. All
files are saved into the Resources/Temp/ directory.
Generated files include log files, FMU build files, and
a comma-separated value (CSV) file of simulation re-
sults. If saveResults is true, this CSV file is also saved in
the Resources/Data/ directory. If plotResults is true,
then time-curves of r(t), y(t), w(t), and u(t) are plotted,
as shown in Figure 9. The Python module matplotlib is
required for this feature.

4.2 RunTrackingExperiment

This function allows the user to perform a tracking
task in real time. The tracking task model specified in
Options.py is parsed, and details of the experiment are
extracted from the ❚❛s❦❙❡tt✐♥❣s block. Next, the refer-
ence signal and disturbance input are generated by build-
ing them into separate FMUs, and simulating them for
the duration of the experiment. These signals are not af-
fected by the user input or controlled element state, and
therefore they can be simulated open loop.

A Modelica Library for Manual Tracking

334 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118329

Target

Preview

Background

Hatch Marks

Figure 10. Display of manual tracking experiment.

Next, Pygame looks for any joysticks connected to the
computer. If no joystick is found, then the keyboard ar-
row keys may be used for control input. When a joy-
stick is used, the experiment runs more smoothly and the
parameter-fitting functions work much more effectively.
Therefore, using a joystick for the experiment is highly
recommended.

Then, two scaling factors are automatically calculated.
One is the display gain, which determines how far to
move display objects (in pixels) based on the reference
and measured state magnitudes, which are in unknown
units of length. The other is the input gain, which deter-
mines the magnitude of input to the controlled element
based on the joystick or keyboard input between -1 (full
left) and 1 (full right).

Finally, the user is prompted to start the experiment.
The tracking display is shown in Figure 10. Lines on the
top and bottom of the screen mark the global coordinates,
so that the target motion can be seen independently of
the cursor motion. These lines can be hidden to create
a compensatory task by setting backgroundVisible to
false in the ❚❛s❦❙❡tt✐♥❣s block.

Figure 10 also shows a preview of the target motion.
Future motion is indicated by circles falling from the top
of the screen. The topmost circle shows where the target
will be previewTime seconds in the future. This feature
can be disabled by setting PreviewTime to 0.

If desired, the user may adjust fundamental settings
of the game in the Resources/Source/game.py file.
Modifying these settings may cause errors, so it is a good
idea to save a backup of the game.py file before making
modifications.

4.3 TuneControllerSimulation

This function repeatedly simulates the tracking task with
different parameter values in the manual controller, and
finds values which yield the best tracking performance.
This reflects an important finding in the literature: an
experienced human operator has inherent human limita-
tions1 but behaves in a nearly optimal fashion given these
limitations.

Mathematically, the function tries to minimize the in-
tegrated squared difference between y(t) and r(t). This

1For example, reaction time delay, neuromuscular lag, and ability
to generate derivatives and higher-order leads.

is shown conceptually in Figure 11(a), where c(t) is the
continuous cost to minimize. Because tracking perfor-
mance is not a differentiable function of the controller
parameters, a derivative-free optimization method such
as the Nelder-Mead simplex method (Gedda et al., 2012)
must be used.

Some manual controller models contain many param-
eters, and attempting to tune all of them at once would
be time-consuming and would likely yield poor results.
Therefore, the user is allowed to select a subset of the
parameters using a console prompt like this:

Tunable controller parameters:

1. K -- Proportional gain

2. T2 -- Time constant of phase

lag compensation (s)

3. T1 -- Time constant of phase

lead compensation (s)

Please enter a comma-separated number

list specifying parameters to tune: _

To tune K and T1, for example, the user should type
1,3 and press Enter. The rest of the parameters are
fixed so that they remain the same as in the manual con-
troller component definition, unless they are re-assigned
in the tracking task model.

4.4 TuneControllerExperiment

This function tunes the automatic manual controller to
behave as much as possible like the human controller.
The concept is shown in Figure 11(b). The goal is
to minimize the difference between the experimentally
recorded control input, u(t), and the simulated control
input, û(t).

The input to the manual controller is the reference sig-
nal (and disturbance input, not shown in Figure 11), and
the experimentally recorded controlled element state.
Note that the tracking performance of the tuned con-
troller might be very poor, because it does not attempt to
optimize tracking performance. It simply tries to match
control behavior of the user.

4.5 Notes

• When selecting a controller model, one should con-
sider details of the real-world task and controlled-
element dynamics. The Python functions do not
check the appropriateness of a manual controller for
the given tracking conditions.

• User-created ❘❡❢❡r❡♥❝❡❙✐❣♥❛❧, ❉✐st✉r❜❛♥❝❡■♥✲
♣✉t, ❈♦♥tr♦❧❧❡❞❊❧❡♠❡♥t, and ▼❛♥✉❛❧❈♦♥tr♦❧❧❡r
classes must be stored inside the appropriate
packages. The Python functions only search in
these locations when parsing the tracking task.

Session 4B: Control Applications 1

DOI
10.3384/ecp15118329

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

335

a) Optimize tracking performance

c(t)

Manual

Controller

Controlled

Element

y(t)

+ _

r(t)

b) Match experimental control behavior

Human
Controlled

Element

r(t)

u(t)

+

_ c(t)
Manual

Controller

û(t)

y(t)

Figure 11. Tuning manual controller parameters by minimizing
∫

[c(t)]2dt.

• While the keyboard can be used for control input
in the tracking experiment, a joystick is highly rec-
ommended. The parameter tuning functions work
much better, and the display is smoother.

• Automatic syncing programs (Dropbox in particu-
lar, but possibly others) seem to cause a problem
with the real-time user experiment. Try exiting, or
at least pausing, these programs if the experiment
crashes repeatedly.

5 Example

Basic use of the Modelica library and Python functions
will now be demonstrated. Load the ▼❛♥✉❛❧❚r❛❝❦✐♥❣
library, go to the ❚r❛❝❦✐♥❣❚❛s❦s package, and simulate
one of the example tasks. Plots of ❝♦♥tr♦❧❧❡❞❡❧❡♠❡♥t✶✳②
and r❡❢❡r❡♥❝❡s✐❣♥❛❧✶✳② should resemble the top plot of
Figure 9, with the controlled element following the ref-
erence signal closely, but with a small time delay.

Next, navigate to ManualTracking/Resources/,
and open Options.py. The taskModel variable should
be assigned to one of the example tracking tasks, and
printResults should be set to true. Then run the script
RunTrackingSimulation.py, either from a Python
IDE or from a console window. A few diagnostic mes-
sages should print to the console, and then a figure sim-
ilar to Figure 9 should appear. To reduce the amount of
console output, set printVerbose to false.

If the function executed successfully, then try the real-
time experiment. Run RunTrackingExperiment.py

and wait for the reference signal and disturbance inputs
to be generated. After a short time, the console should
show this prompt:

Press ’Enter’ to bring up the display,

then press any key except ’q’ to start

the experiment: _

After following these instructions, a window simi-
lar to Figure 10 appears. Use either the arrow keys
or a joystick to make the crosshairs follow the tar-
get. Once the experiment is complete, a plot of
the state and input trajectories is shown if printRe-

sults is set to true. To examine the data file used

for this plot, go to the Resources/Temp/ directory,
and look for the comma-separated-value (CSV) file
ExampleTaskName_exp.csv. The data file for the
tracking simulation should also be in the same directory,
saved as ExampleTaskName_sim.csv.

Next, try the manual controller tuning functions. Run
the TuneControllerSimulation.py script. When
prompted, type 1,3 and press enter. The optimization func-
tion prints information about the current parameter guesses and
cost function value to the console. Within a few minutes, the
solver should converge, and parameter values for the parame-
ters should be displayed. A plot shows the simulated tracking
performance using these parameter values.

Instead of tuning parameters to yield the best tracking
performance, they can be tuned to fit experimental track-
ing performance. First, make sure useSaved is set to true
in Options.py, otherwise the user experiment will be run
again. Then run the TuneControllerExperiment.py
script. Just like in the previous example, select the parameters
you would like to tune, and the function should find their opti-
mal values and display the simulated tracking results with the
chosen controller values.

6 Conclusions

This paper presents a Modelica library and supporting func-
tions for studying human control behavior in continuous track-
ing tasks. These tools can increase Modelica’s usefulness
for modeling human-machine systems. For now, further de-
velopment, debugging, and testing on different platforms is
needed. The library is open source and available for download
at http://jjpotterkowski.github.io/.

Acknowledgements

This work was fully supported by an ERCIM “Alain Bensous-
san” post-doctoral research fellowship, hosted by VTT Tech-
nical Research Centre of Finland. The author wishes to thank
A. Ashgar, A. Pop, and M. Sjölund for technical advice related
to OMPython and FMUs.

References

G. A. Bekey, G. O. Burnham, and J. Seo. Control theoretic
models of human drivers in car following. Human Factors,
19(4):399–413, Aug. 1977.

A Modelica Library for Manual Tracking

336 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118329

H. J. Damveld, G. C. Beerens, M. M. van Paassen, and M. Mul-
der. Design of forcing functions for the identification of hu-
man control behavior. AIAA Journal of Guidance, Control,

and Dynamics, 33(4):1064–1081, Jul.-Aug. 2010.

F. M. Drop, D. M. Pool, H. J. Damveld, M. M. van Paassen,
and M. Mulder. Identification of the feedforward compo-
nent in manual control with predictable target signals. IEEE

Transactions on Cybernetics, 43(6):1936–1949, Dec. 2013.

P. Fritzson, P. Aronsson, H. Lundvall, K. Nyström, A. Pop,
L. Saldamli, and D. Broman. The OpenModelica Model-
ing, Simulation, and Software Development Environment.
Simulation News Europe, 44(45), Dec. 2005.

S. Gedda, C. Andersson, J. Åkesson, and S. Diehl. Derivative-
free parameter optimization of functional mock-up units.
In Proc. 9th Int. Modelica Conf., Munich, Germany, Sep.
2012.

R. A. Hess. A rationale for human operator pulsive control
behavior. Journal of Guidance and Control, 2(3):221–227,
May-Jun. 1979.

R. A. Hess. A structural model of the adaptive human pilot.
AIAA Journal of Guidance, Control, and Dynamics, 3(5):
416–423, Sep.-Oct. 1980.

R. A. Hess. Feedback Control Models – Manual Control and

Tracking, chapter 38, pages 1249–1294. John Wiley &
Sons, Inc., Hoboken, NJ, 3 edition, 2006.

R. A. Hess and A. Modjtahedzadeh. A control theoretic model
of driver steering behavior. IEEE Control Systems Maga-

zine, 10(5):3–8, Aug. 1990. doi:10.1109/37.60415.

R. Hosman and H. Stassen. Pilot’s perception in the control
of aircraft motions. Control Engineering Practice, 7:1421–
1428, 1999.

R. J. Jagacinski. A qualitative look at feedback control theory
as a style of describing behavior. Human Factors, 19:331–
347, Aug. 1977.

R. J. Jagacinski and J. M. Flach. Control Theory for Humans:

Quantitative Approaches to Modeling Performance. CRC
Press, New York, NY, 2003.

H. R. Jex, J. D. McDonnell, and A. V. Phatak. A “critical”
tracking task for manual control research. IEEE Transac-

tions on Human Factors in Electronics, HFE-7(4):138–145,
Dec. 1966. doi:10.1109/THFE.1966.232660.

J. Åkesson, K.-E. Årzén, M. Gäfvert, T. Bergdahl, and
H. Tummescheit. Modeling and optimization with opti-
mica and jmodelica.org—languages and tools for solving
large-scale dynamic optimization problems. Computers and

Chemical Engineering, 34(11):1737–1749, Nov. 2010.

D. L. Kleinman and T. R. Perkins. Modeling human perfor-
mance in a time-varying anti-aircraft tracking loop. IEEE

Transactions on Automatic Control, AC-19(4):297–306,
Aug. 1974.

D. T. McRuer. Human dynamics in man-machine systems. Au-

tomatica, 16(3):237–253, May 1980.

D. T. McRuer and H. R. Jex. A review of quasi-
linear pilot models. IEEE Transactions on Human

Factors in Electronics, HFE-8(3):231–249, Sep. 1967.
doi:10.1109/THFE.1967.234304.

D. T. McRuer, D. Graham, E. S. Krendel, and W. Reisner. Hu-
man pilot dynamics in compensatory systems. Technical
Report AFFDL-TR-65-15, Air Force Flight Dynamics Lab-
oratory, Wright-Patterson AFB, OH, 1965.

D. T. McRuer, D. Graham, and E. S. Krendel. Manual con-
trol of single-loop systems: Part I. Journal of the Franklin

Institute, 283(1):1–29, Jan. 1967.

D. T. McRuer, D. H. Weir, H. R. Jex, R. E. Magdaleno, and
R. W. Allen. Measurement of driver-vehicle multiloop re-
sponse properties with a single disturbance input. IEEE

Transactions on Systems, Man, and Cybernetics, SMC-5(5):
490–497, 1975. doi:10.1109/TSMC.1975.5408371.

F. M. Nieuwenhuizen, P. M. T. Zaal, M. Mulder, M. M. van
Paassen, and J. A. Mulder. Modeling human multichannel
perception and control using linear time-invariant models.
Journal of Guidance, Control, and Dynamics, 31(4):999–
1013, Jul.-Aug. 2008.

J. J. Potter and W. E. Singhose. Effects of input shaping on
manual control of flexible and time-delayed systems. Hu-

man Factors, 56(7):1284–1295, Nov. 2014.

R.S. Shirley and L.R. Young. Motion cues in man-vehicle con-
trol: effects of roll-motion cues on human operator’s behav-
ior in compensatory systems with disturbance inputs. IEEE

Transactions on Man-Machine Systems, 9(4):121–128, Dec.
1968.

E. P. Todosiev, R. E. Rose, and L. G. Summers. Human per-
formance in single and two-axis tracking systems. IEEE

Transactions on Human Factors in Electronics, HFE-8(2):
125–129, Jun. 1967.

A. Tustin. The nature of the operator’s response in manual
control, and its implications for controller design. Journal of

the Institution of Electrical Engineers, 94(2):190–206, May
1947.

M. M. Van Paassen and M. Mulder. International Encyclope-

dia of Ergonomics and Human Factors, volume 1, chapter
Identification of Human Control Behavior, pages 400–407.
Taylor and Francis, London, 2 edition, 2006.

A. R. Wade and H. R. Jex. A simple Fourier analysis
technique for measuring the dynamic response of man-
ual control systems. IEEE Transactions on Systems,

Man, and Cybernetics, SMC-2(5):638–643, Nov. 1972.
doi:10.1109/TSMC.1972.4309192.

P. M. T. Zaal, D. M. Pool, M. M. van Paassen, and M. Mulder.
Comparing multimodal pilot pitch control behavior between
simulated and real flight. Journal of Guidance, Control, and

Dynamics, 35(5):1456–1471, Sep.-Oct. 2012.

Session 4B: Control Applications 1

DOI
10.3384/ecp15118329

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

337

338 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Model-based control with FMI and a C++ runtime for Modelica

Rüdiger Franke1 Marcus Walther2 Niklas Worschech3 Willi Braun4 Bernhard Bachmann4

1ABB, ruediger.franke@de.abb.com, 2 TU Dresden, marcus.walther@tu-dresden.de,
3 Bosch Rexroth, niklas.worschech@boschrexroth.de,

4 FH Bielefeld, {willi.braun, bernhard.bachmann}@fh-bielefeld.de

Abstract

Modelica describes physical systems on a high level, us-
ing model objects, multi-dimensional arrays and other
data structures as well as graphical representations.
Modelica models are translated to differential-algebraic
equation systems and compiled to executable code prior
to their execution in numerical solvers. The translation
gives a lot of possibilities for code optimization. This is
particularly important for model-based control applica-
tions.

This paper investigates the exploitation of C++ for Mod-
elica code optimization. C++ supports advanced pro-
gramming concepts and at the same time aims to “leave
no room for a lower-level language … (except for as-
sembly code in rare cases)” (B. Stroustrup: The C++
Programming Language, 2014). The features exploited
here include polymorphism, templates, built-in excep-
tion handling and object destructors.

The ideas have been implemented in the OpenModelica
C++ runtime. The paper describes its enhancement with
new array features and with an FMI 2.0 interface. FMI
serves as interface between modeling tools and control
applications. In particular the new FMI 2.0 meets re-
quirements of numerical optimization solvers in model-
based control.

A publically available application example demonstrates
the achievements. CPU times obtained with the
OpenModelica C++ runtime are significantly faster than
CPU times obtained with the C runtime or with Dymola.

Keywords: Modelica, OpenModelica, FMI, C++,
model-based control, MPC, MHE, SQP, HQP.

1 Introduction

The development of the Functional Mock-up Interface
(FMI) was originally driven by automotive industries.
The goal was to improve simulation model exchange be-
tween component suppliers and OEMs during product
development. The FMI standard supports model ex-
change and co-simulation of dynamic models using a
combination of xml-files and compiled C-code (FMI,
2014).

FMI 2.0 for model exchange introduces major enhance-
ments, like sparse model structures and directional de-
rivatives. These enhancements make FMI applicable be-
yond functional mock-ups for model-based control and
optimization as well, evolving it to a Functional Model
Interface.

Real-time control applications pose further require-
ments, like small code size, high quality of generated bi-
naries and fast execution speed. The C++ runtime of
OpenModelica is focusing on real-time requirements
(Worschech and Mikelsons, 2012). This makes it supe-
rior for model-based control applications.

It must be noted that the real-time applications addressed
here require cycle times of seconds, sometimes going
down to milliseconds or up to minutes. We assume an
execution platform with relatively high performance,
starting from devices like Raspberry PI and ranging up
to distributed server farms. We don’t consider smaller
devices with only few kilobytes of memory or lacking
floating point arithmetic, because we rate engineering
efficiency exploiting high-level technologies like Mod-
elica or C++ more important than extreme hardware sav-
ings.

2 Model-based control with mathematical

programs

Modelica models are typically used for initial-value sim-
ulations. The strict separation of Modelica models from
numerical solvers opens further application areas. The
models may serve as constraints in mathematical pro-
grams as well. Mathematical programming is a technol-
ogy to solve tasks described with constraints and objec-
tive function. This section outlines how Modelica and
Mathematical Programming are brought together for
model-based control.

2.1 Related work and design rationale

The Optimization Library developed by DLR adds a nu-
merical optimization solver to the Dymola modeling and
simulation environment (Pfeiffer, 2012). The focus is on
usability, supporting engineering design simulations. A
mathematical program is formulated with optimization

DOI
10.3384/ecp15118339

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

339

attributes, like bounds or weights, which are added to a
readily compiled simulation model using regular Mod-
elica parameter dialogs. The idea of custom attributes
has been generalized as custom annotations (Zimmer et
al, 2014).

Alternatively to adding an optimization specification on
top of a simulation model, there has been an attempt to
extend the Modelica syntax with the Optimica language
(Åkesson et al, 2010). The approach is conceptionally
questionable because it mixes the physical modeling lan-
guage Modelica with mathematical programs. It is
claimed that this improves the treatment of large-scale
optimization programs for optimal control. The optimi-
zation specific extensions of the Modelica language hin-
der the re-use of simulation technologies like FMI for
optimization. Work basing on Optimica typically in-
volves the development of specific complex tool chains.
Results published so far show feasibility, but no ad-
vantages over earlier simpler approaches, see e.g. (Lazu-
tkin et al, 2014; Magnusson et al, 2014; Ruge et al,
2014). Recent publications report a convergence to-
wards simpler approaches that re-use simulation tech-
nologies, like BLT transformation (Magnusson et al,
2014; Ruge et al, 2014).

The optimization approach used here was developed and
first published many years ago. It combines the ad-
vantages of optimization formulations using custom at-
tributes with the efficient treatment of large-scale opti-
mization programs for optimal control. A front-end for
the optimization solver HQP (Franke and Arnold, 1997)
converts optimal control problems formulated for simu-
lation models to large-scale nonlinear programs treated
internally. The design rationale was to re-use existing
modeling and simulation technologies for optimization,
minimizing additional development effort and depend-
encies on specific tools. The new FMI standard fits well
into the long standing design rationale.

Meanwhile there find many industrial applications of
HQP, including the control of water canal systems
(Wagenpfeil et al, 2014), boom cranes (Neupert et al,
2010) and polymerization reactors (Nagy et al, 2007).
HQP has been integrated with the ABB control system
and is being applied to the model-based optimal control
of power plants worldwide since a decade (Franke and
Vogelbacher, 2006; Franke et al, 2008). Recent applica-
tions address the real-time optimization of large num-
bers of renewable power units in virtual power plants
and smart grids (Franke et al, 2014).

2.2 Treating model-based control with mathe-

matical programs

Many advanced model-based control applications can be
treated as mixed discrete/continuous optimal control
problems. Examples include moving horizon estimation
(MHE) and model predictive control (MPC).

Discrete-time model equations result from the imple-
mentation of control systems on digital computers with
cyclically running tasks. They are described with differ-
ence equations of the form

+࢑)ࢊ࢞ ૚) = (૙)ࢊ࢞									,[(࢑)ࢊ࢛,(࢑࢚)ࢉ࢞,(࢑)ࢊ࢞,࢑]ࢊࢌ = ࢑								,૙ࢊ࢞ = ૙,૚, … ࡷ,
(1)

Here ௗ(݇) are the discrete-time states at intervalݔ ݇
with the corresponding sample time points ,௞ݐ ଴ݐ ଵݐ> < ⋯ < ௄ݐ . The control inputs ௗ(݇) are optimizedݑ
per sample time point. Optimized model parameters
can be treated as additional states that are constant and
have free initial values.

The continuous-time states -describe physical pro (ݐ)௖ݔ
cesses, like devices for energy conversion or storage.
They are defined with continuous-time differential
equations of the form࢚ࢊ(࢚)ࢉ࢞ࢊ = (૙࢚)ࢉ࢞									,൧(࢚)ࢉ࢛,(࢚)ࢉ࢞,൯(࢚)࢑൫ࢊ࢞,࢚ൣࢉࢌ = ,૙ࢉ࢞ ࢚ ∈ ,૙࢚] 	[ࡷ࢚

(2)

Numerical solvers generally require the parameteriza-
tion of continuous-time trajectories with a finite (ݐ)௖ݑ
number of control inputs ௖(݇), such thatݑ (ݐ)௖ݑ =௨݂[ݑ,ݐ௖(݇(ݐ))]. Typically the control inputs describe
the control trajectories piecewise constant or piecewise
linear.

The optimization has to consider physical and legal
limitations that are formulated as constraints of the
form ൧(࢚)ࢉ࢛,൯(࢚)࢑൫ࢊ࢛,(࢚)ࢉ࢞,൯(࢚)࢑൫ࢊ࢞,࢚ൣࢍ ൒ ૙

(3)

Remaining degrees of freedom are covered with the ob-
jective function

෍ ଴݂ ൤݇, ൬ݔௗ(݇)ݔ௖(ݐ௞)൰ , ൬ݑௗ(݇)ݑ௖(ݐ௞)൰൨௄
௞ୀ଴ 			 → 			 minݔௗ(0)ݔ௖(ݐ଴), (଴ݐ)௖ݑௗ(0)ݑ

(4)

Typical objectives are the minimization of costs or the
maximization of results. Multiple objectives can often
be expressed monetary and summed up.

Model-based control with FMI and a C++ runtime for Modelica

340 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118339

2.3 The HQP solver

HQP treats mixed discrete/continuous optimal control
problems as large-scale mathematical programs (Franke
and Arnold, 1997). Continuous-time differential equa-
tions are approximated numerically over given discrete
time intervals, either with fixed polynomials or using a
variable step size solver. Discrete and continuous-time
states and controls are combined into the state vectorݔ = ௗݔ) ௖) and the control vectorݔ, ݑ = ௗݑ) ௖). Thisݑ,
gives the discrete-time optimal control problem:

ܬ = ଴݂(ݔ௄) + ෍ ଴݂(ݔ௞ , ௞)௄ିଵݑ
௞ୀ଴ 			 → 			 minݔ଴ ௞ݑ,

with the discrete-time state equationsݔ௞ାଵ = ݂௞(ݔ௞ , ݇						,(௞ݑ = 0,… ܭ, − 1

and the constraintsܿ௞(ݔ௞ (௞ݑ, ൒ 0,					݇ = 0,… ܭ, − ͳ	ܿ௄(ݔ௄ሻ ൒ 0

(5)

The states and the control inputs of all time intervals
are collected into one large vector of optimization vari-
ables ݒ = ଴ݔ) ,଴ݑ, ,ଵݔ ,ଵݑ … , .(௄ݔ,௄ିଵݑ,௄ିଵݔ

(6)

This results in the mathematical program(ݒ)ܬ ௩→ :ܬ							݊݅݉ ℝ௡ → ℝଵℎ(ݒ) = 0													ℎ: ℝ௡ → ℝ௠೐	݃(ݒ) ൒ Ͳ													݃: ℝ௡ → ℝ௠		
(7)	

HQP treats large-scale nonlinear optimization with Se-
quential Quadratic Programming (SQP). Basing on the
Lagrangianݒ)ܮ, (ߤ,ߣ = (ݒ)ܬ − (ݒ)ℎ்ߣ − :ܮ																								(ݒ)்݃ߤ ℝ௡ × ℝ௠೐ × ℝ௠ → ℝଵ

(8)

the solution must fulfill the Karush Kuhn Tucker (KKT)
conditionsߘ௩ݒ)ܮ, (ߤ,ߣ = (ݒ)ܬߘ − ߣ்(ݒ)ℎߘ − ߤ்(ݒ)݃ߘ = ,ݒ)ܮఒߘ0 (ߤ,ߣ = −ℎ(ݒ) = 0	

(ݒ)݃																															 ൒ Ͳ																																							ߤ ൒ Ͳ																											݃(ݒ)்ߤ = 0	
(9)	

HQP applies Lagrange Newton iterationsߘଶݒ)ܮ, (ߣ ቀ∆ߣ∆ݒቁ = ,ݒ)ܮߘ− ାቁߣାݒቀ	(ߣ 	≔ ቀݒ + ߣݒ∆ + 	ቁߣ∆
(10)	

to find the solution. The Lagrange Newton iteration is
given here for the case m=0. HQP augments the Lagran-
gian to treat inequality constraints with an Interior Point
method.

The Hessian of the Lagrangian ,ݒ)ܮଶߘ ,ߣ is (ߤ formed
numerically applying a rank 2 update in each time inter-
val basing on the progress over subsequent iterations.
This efficient multi-rank update is possible because the
discrete-time model equations make the large-scale non-
linear program partial separable. There are only linear
couplings between subsequent time intervals. This is
also why no analytical second order derivatives are re-
quired.

The Jacobian of the Lagrangian ,ݒ)ܮߘ is obtained (ߤ,ߣ
by forming partial derivatives and by solving sensitivity
equations along with the continuous-time differential
equations of the model in each time interval. There exist
different solvers, including fixed or variable step size
and implicit or explicit.

2.4 Relation to other optimization approaches

The mathematical description given above basically ap-
plies to all optimization approaches mentioned in section
2.1. Only the following details differ:

1. The constraints (3) and optimization objective
(4) may either be formulated as custom attrib-
utes for existing equations or as specific new
equations for optimization (see Optimica).

2. The vector of optimization variables (7) con-
tains optimized control variables and state vari-
ables. This results in large-scale sparse optimi-
zation programs. It has advantages if state con-
straints are present or for long time horizons.
Alternatively the state variables may be hidden,
resulting in smaller dense optimization pro-
grams (see the Optimization Library).

3. Explicit discrete-time state equations and con-
straints in (5) lead to partial separability, local-
izing non-linear terms inside individual time
steps (also referred to as multiple shooting).

Session 4B: Control Applications 1

DOI
10.3384/ecp15118339

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

341

This gives the ability to apply efficient multi-
rank updates to the numerical formation of in-
formation about second order derivatives. Al-
ternatively the discrete-time equations may be
replaced with nonlinear terms spanning two
subsequent time steps (known as collocation
and typically applied with Optimica). The lost
partial separability may be compensated with
analytic second order derivatives.

4. The nonlinear optimization program may be
treated with a Newton method (typically used
with Optimica basing on actual second order de-
rivatives) or with a Quasi-Newton method bas-
ing on numerical updates (also known as SQP
method and used with the Optimization Library
and here).

5. Finally there finds different methods for the
treatment of inequality constraints. Well known
approaches include active set methods (see the
Optimization Library) and interior point meth-
ods used with Optimica and here.

3 FMI for model based control

There exist a couple of different powerful Modelica
tools, each having its particular pros and cons. FMI of-
fers the advantage of being tool independent. This makes
it possible to exploit the best features of different mod-
eling tools depending on the application at hand. Once a
control system can import FMI, it may be used together
with any exporting tool.

Even with one and the same modeling tool the runtime
code can be exchanged without effecting the optimiza-
tion solver, e.g. from C code to C++ code as discussed
below.

FMI 2.0 for model exchange covers many aspects of
hooking a model to an optimization solver, like:

· Initialization mode for steady-state models

· Continuous-time mode for differential equa-
tions

· Change of parameter values at runtime

· Directional derivatives for Jacobian evaluation

· ModelStructure defining the sparse pattern in
modelDescription.xml

· Variable names, physical units and start values
in modelDescription.xml

Two important features are missing in FMI 2.0. Differ-
ential-Algebraic Equation (DAE) systems are not cov-
ered. They must be converted to an explicit system of
differential equations inside the FMU. This is a perfor-
mance penalty for optimization solvers that may treat

DAE constraints themselves. This is why FMI is not
suited for models with many algebraic constraints, like
network models.

Clocked equations are a powerful mechanism to model
discrete systems. Unfortunately the FMI event mode and
the ModelStructure do not cover discrete-time states re-
sulting from clocked equations. This makes the treat-
ment of discrete-time models clumsy.

4 OpenModelica

OpenModelica offers an open development process, in-
cluding published nightly tests and a public discussion
panel. This eliminates hidden problems. It ensures a high
quality and makes OpenModelica well suited for code
export to control applications that shall run 7/24 in pos-
sibly safety critical environments.

Moreover OpenModelica has outstanding support for lo-
calization. The GUI is delivered with 9 translations and
the development environment fully supports UTF-8 for
localized doc strings. This broadens the range of possi-
ble applications beyond nerds.

OpenModelica enables extensions by third parties for
particular needs, like model-based control and real-time
applications. Figure 1 gives an overview of the main
modules and the data flow in the OpenModelica com-
piler (OpenModelica, 2014).

Figure 1: Overview of OpenModelica compiler

The parser generates an abstract syntax tree (Absyn),
which is converted to the simplified intermediate code
(SCode) and instantiated to a Differential Algebraic
Equation system (DAE). The backend DAELow simpli-
fies the equations and algorithms, applies DAE index re-
duction and brings the equations to the Block Lower Tri-
angular (BLT) form.

The SimCode module applies a template mechanism to
generate code for a specific target. There exist multiple
code generators, covering the C runtime, FMU export,
JavaScript and more. The C++ runtime was developed
with particular requirements of real-time simulation in
mind (Worschech and Mikelsons, 2012).

Parse Scode Inst DAELow

SimCode

C

…

FMU

C++

.mo Absyn SCode

functions equations,

algorithms

JS

Model-based control with FMI and a C++ runtime for Modelica

342 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118339

4.1 Common Sub-expression Elimination

Common sub-expressions, like a function called multi-
ple times for the same arguments, may result from ob-
ject-oriented libraries and minimal connector interfaces.

Take Modelica.Fluid as example. Only pressure p and
specific enthalpy h appear in fluid connectors, besides
fluid composition. Connected components may call the
same function to obtain the temperature T(p, h) on each
side of the connection.

A Modelica tool should eliminate common sub-expres-
sions such that they are evaluated only once.

4.2 C++ runtime

Most Modelica tools translate models to C code and sim-
ulate them with a runtime written in C as well.
OpenModelica offers the possibility to generate simula-
tion code for various languages and runtimes. The de-
fault runtime of OpenModelica is also based on C code,
but there is a powerful additional runtime written in C++
that can easily be used. By comparing these two
runtimes, it can be noticed that the C++ code leads to a
higher compilation time, but gives a better runtime per-
formance. Besides that, the C code is less comprehensi-
ble and harder to maintain.

Especially features like memory management and ex-
ception handling need to be implemented manually in C,
messing up the code. Similar code has to be written mul-
tiple times, for example to implement arrays of different
data types like double, int, bool, string, and records.

C++ addresses many of these issues. It not only has
built-in exception handling and object destructors for au-
tomated memory management, it also offers templates
for an advanced reuse of written code. C++ compilers
can instantiate one and the same template multiple times
for different data types. Appropriate use of this feature
also increases type safety. It may even shift effort from
model execution to model translation, making the exe-
cutable code more reliable and efficient.

While reducing source code size and improving type
safety, the additional features of C++ lead to longer com-
pilation times. This restricts its use for interactive ses-
sions. Compilation time is less an issue for online appli-
cations, where a model is compiled once and then runs
endlessly in the real-time control.

4.3 Arrays

“I have never seen a perfect matrix class. In fact, given
the wide variety of uses of matrices, it is doubtful
whether one could exist” (Stroustrup, 2014).

Modelica models use multi-dimensional matrices and ar-
rays to a large extent. Unrolling these arrays during

model translation is not acceptable, as it leads to large
code and long translation times. This is why the simula-
tion runtime needs good support for arrays.

The OpenModelica C++ runtime addresses the wide va-
riety of requirements on arrays with polymorphism. Fig-
ure 2 shows the different array classes.

Figure 2: Inheritance diagram of array classes

BaseArray defines a common interface. It is also used as
type for array arguments to functions.

StatArray implements that interface with an array of
fixed size, known at compilation time. The array data is
stored inside the object itself, in order to improve
runtime performance.

DynArray can be resized at runtime. It stores array data
in dynamically allocated memory. It is typically used in
functions that operate on arrays of variable size, like
input Real[:,:] A.

RefArray is a static array of pointers to simulation vari-
ables. This way the array elements may be distributed to
optimize performance (see section 4.4 below).

ArraySlice holds a reference to a BaseArray and gives
access to a sub-array without necessarily copying the
data. It directly maps the Modelica slice syntax to C++,
e.g. for A[1:3,:].

ArraySliceConst implements a subset of the functional-
ity of ArraySlice, giving read access only. This is needed
for slices of const arrays.

4.4 Performance optimizations with RefArray

The RefArray-type is a simple data structure that can
help to improve the performance of large model simula-
tions. Most Modelica tools generate simulation code that
stores the array elements consecutive in memory. A
solver algorithm is used to calculate all equations respec-
tively equation systems of the model. The execution or-
der of these equations is defined during model transla-
tion in the Modelica compiler itself. Because the array
variables of the model are often unrolled in the backend
of the Modelica Compiler, the single array elements are
not solved in the same equation or equation system, but
interspersed throughout different equations. This can
lead to caching problems, because modern CPU cache
memories follow the principle of locality (Denning,
2005). The hardware will automatically prefetch values
that are stored besides the memory locations that were

BaseArray

StatArray DynArray RefArray

ArraySliceConst

ArraySlice

Session 4B: Control Applications 1

DOI
10.3384/ecp15118339

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

343

used in the last instructions. Thus, the required variables
should be stored as dense as possible in memory in order
to reduce cache misses and enable efficient computation.
With the RefArray-type it is possible to store all varia-
bles that are required to solve one equation as dense as
possible in memory, because all array elements are ref-
erences that can be distributed arbitrarily.

4.5 Array storage order

The storage order of multi-dimensional arrays (row ma-
jor or column major) is generally arbitrary.

Most Modelica runtimes follow the common C conven-
tion of row major order. On the other hand most external
functions require column major order (in particular
LAPACK called from Modelica.Math.Matrices). Thus
transposition operations are necessary on each external
function call (e.g. when a matrix A shall be inverted with
inv(A) and inv calls LAPACK.dgetri).

The C++ runtime stores array data in column major or-
der. External functions can be called without overhead
this way. The C++ array implementation hides the stor-
age layout behind its interface. For example the second
element of the first row is accessed in Modelica with
A[1,2] and in the C++ runtime with A(1,2), inde-
pendent of the internal storage order.

4.6 Mapping of base types

Table 1: Mapping of Modelica base types to C++ types

Modelica type C++ type

Real double

Integer int

Boolean bool

String std::string

Table 1 shows the mapping of Modelica base types to
C++. It is assumed that the C++ compiler maps its de-
fault base types to the most appropriate and efficient bi-
nary representations of the respective hardware plat-
form.

It might be considered a drawback that int will typi-
cally be 32 bit even on a 64 bit architecture. On the other
hand the mapping to standard base types improves plat-
form independence and it simplifies the integration with
other software packages, like numerical FORTRAN rou-
tines. Moreover note that the IEEE 754 representation of
double has 64 bits and can treat exact integers with up
to 53 bits in a platform independent way.

The C++ language is paired with a powerful standard li-
brary. The std::string gives the ability to treat a

character string like a regular base type. This simplifies
the coverage of strings by the C++ runtime.

4.7 Real-time behavior

There are some critical facts that have to be considered
for real-time simulations. First of all, most of the pro-
gram execution time should be spent in user mode and
not in kernel mode, to prevent context switches that are
expensive and can bloat the simulation time. For the gen-
erated simulation code, the most critical part that leads
to these kind of context switches is memory allocation.
Therefore, the C++ simulation runtime allocates the re-
quired memory during initialization and frees it after the
simulation run. One exception was described in section
4.3 with the DynArray type, which is rarely used in the
evaluated simulation models and thus not a problem for
the real time behavior.

Secondly the time integration solver and its event han-
dling are important for real-time simulation. The C++
simulation runtime offers clear interfaces to change the
solver and adapt it for real-time criteria. No further de-
tails are given here because this was already described
in (Worschech and Mikelsons, 2012).

Finally, it should be noticed that C++ object oriented
code can lead to small code size and small binaries,
which is important for real-time simulation as well.

5 Application example

Figure 3: DrumBoiler model in OMEdit

The DrumBoiler example was first introduced in
(Franke et al, 2003). Meanwhile it has been added to the
Modelica Standard Library and was re-formulated using
regular Modelica.Media and Modelica.Fluid. Extended
versions of the model, including also once-through boil-
ers, superheaters, reheaters and turbine stages, have been
installed in many steam power plants worldwide, opti-
mizing boiler startup control and plant performance.

Model-based control with FMI and a C++ runtime for Modelica

344 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118339

The distribution of the optimization solver HQP contains
two optimization examples for the basic DrumBoiler
model: a steady-state set point optimization and a dy-
namic start-up optimization. The FMI based examples
obtain Jacabians with finite differences so far.

Figure 3 shows the model in the OpenModelica editor
OMEdit. The model has three states: drum pressure, liq-
uid water level and integrated error of the feed water
controller. The model contains discrete events for flow
reversal and control limits. These events are irrelevant
here because they are not triggered during the startup op-
timization.

The objective of the startup optimization is to reach
given set points for steam pressure p and flow rate qm:

ܬ = න ்ݓ
۔ۖەۖ
ۓ −(ݐ)ௌ݌ൣ (ݐ)௠,ௌݍ௥௘௙൧ଶൣ݌ − ௠,௥௘௙൧ଶݍ

൤݀ݍி(ݐ)݀ݐ ൨ଶ ۙۘۖ
ۖۗ ௧೑ݐ݀

௧ୀ௧బ 	 → 			 min(ݐ)ݑ	
subject to bounds on the control ݑ = ிݍ) , ௏ܻ௔௟௩௘), i.e.
fuel flow rate and valve position:Ͳ ൑ 					ிݍ					 ൑ Ͳ	ܹܯ	500 ൑ ௏ܻ௔௟௩௘ ൑ ͳ															

Figure 4: Results of the startup optimization example

rate of change bounds:−24	ܹܯ/݉݅݊ ൑ 					 ݐி݀ݍ݀ 					 ൑ 	݊݅݉/ܹܯ	24
as well as an output constraint on thermal and membrane
stress that is a function of drum temperature differences
and pressure:−150 ܰ݉݉ ଶ ൑ 		஽௥௨௠ߪ		 ൑ 150

ܰ݉݉ ଶߪ஽௥௨௠ = 10ିଷ ݀ ஽ܶ௥௨௠݀ݐ + 10ିହ݌஽௥௨௠	

The time horizon spans over one hour. It is split into 60
equally spaced intervals with a length of 60 seconds. The
control trajectories are parameterized piecewise linear.
The continuous-time differential equations are solved in
each interval with two fixed steps of 30 seconds applying
the Implicit Midpoint Rule (IMP).

Figure 4 shows optimization results. The fuel flow rate
and the valve position are controlled such that the con-
straint on thermal stress is fully exploited while ap-
proaching the target operating point. The optimized con-
trol trajectories consisting of 60 linear line segments ap-
pear smooth in the plot.

5.1 Runtime performance

Table 2: CPU times obtained in a VirtualBox running

Linux jessie 3.16, x86_64 on a MacBook Pro Late 2013

with 2.4 GHz Intel Core i5. The gcc version is 4.9.2.

Modelica Tool for

FMU export

CPU time with gcc flag

-O0 -O2 -Ofast

OpenModelica 1.9.3 16.6 s 15.5 s 13.5 s

OpenModelica 1.9.3
+cseCall

6.0 s 5.5 s 5.2 s

Dymola 2015FD01 3.4 s 1.7 s 1.3 s

OpenModelica 1.9.3
+simCodeTaget=Cpp

5.6 s 1.9 s 1.0 s

OpenModelica 1.9.3
+simCodeTaget=Cpp
+cseCall

2.7 s 1.0 s 0.6 s

Table 2 lists CPU times obtained for different FMUs of
the same model. The results for the regular OpenModel-
ica C runtime show that the elimination of common sub-
expressions with the flag +cseCall is crucial for the fluid
model. The Dymola results serve as reference.

The C++ runtime is selected with the flag
+simCodeTarget=Cpp. It uses the same SimCode
input as the C runtime and generates C++ code from it.
The C++ runtime has its own FMI implementation.

The gcc optimization flag has only minor impact on the
OpenModelica C runtime. An improvement by a factor
of 2-3 is seen for Dymola C code. The OpenModelica
C++ runtime shows a speedup by a factor of 4-6 with
compiler optimization. This huge improvement under-
lines that the higher level expressiveness of C++ is actu-
ally exploited by modern compilers.

The CPU times reported here are the average of 10 runs.
The deviations between different runs as well as the im-
pact of the virtualization environment on the CPU times
are minor. This is important because repeated runs in vir-
tual production environments mark a major use case.

Session 4B: Control Applications 1

DOI
10.3384/ecp15118339

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

345

5.2 Reproduction of results

The results reported here can be reproduced on a Posix
compliant machine with reasonable development tools
installed (on a Debian based system these are the pack-
ages: git, gcc, g++, tcl-dev). One might invoke the com-
mands:

 $ git clone https://github.com/omuses/hqp.git

 $ cd hqp

 $./configure

 $ make

 $ cd odc

 $./run drumboiler

The last command evaluates drumboiler.tcl. This
file contains the optimization specification and all solver
settings. They are equal, no matter how the FMU was
generated.

The Tcl script calls the OpenModelica compiler omc
with default settings to generate an FMU from the sim-
ulation model DrumBoiler.mo. Alternatively the
FMU can be generated separately and copied to the odc
directory before running the optimization.

Note that the first run with a newly generated FMU con-
tains an unzip operation. Each run parses the file mod-
elDescription.xml. The impact of the XML par-
ser vanishes if multiple runs are performed in one pro-
cess. The average time of ten runs in one process is ob-
tained with:

$./odc

% time {source drumboiler.tcl} 10

6 Conclusions

FMI 2.0 for model exchange provides an efficient inter-
face for hooking simulation models to optimization solv-
ers and running model-based control applications. The
approach discussed in this paper offers several ad-
vantages over alternative optimization approaches. The
standardized FMI hides details of particular modeling
tools or components thereof, enabling innovations with-
out comprising a whole tool chain. Several Modelica
tools support FMI.

OpenModelica offers a modular environment that can be
customized and, thanks to the open source setup, further
developed for particular needs.

The default C runtime is a good compromise between
fast compilation speeds and high runtime performance.
It is suited for interactive modeling and simulation ses-
sions. It has limitations for model-based control applica-
tions though. Especially the garbage collection can pro-
duce issues.

The C++ runtime is particularly developed for real-time
simulation. It exploits object destructors for determinis-

tic memory management. C++ has a rich syntax to ex-
press programming concepts on a high level. This not
only improves readability by humans, it also enables
more code optimization by C++ compilers. Exploiting
templates, the amount of manually written code is mini-
mized and type safety is increased. For instance an array
class only needs to be implemented once for arbitrary
types of array elements. This boosts development effi-
ciency and reduces the probability of bugs.

Some missing features were added to the C++ runtime
throughout the work reported here. In particular the ex-
isting FMI 1.0 export was upgraded to FMI 2.0 and some
issues were solved in the OpenModelica backend for
FMI export. The array implementation was enhanced, an
external FORTRAN interface was added. The array stor-
age order was changed from row major to column major
to minimize the overhead when calling external func-
tions, like LAPACK functions from Modelica.Math.Ma-
trices.

The OpenModelica development process with nightly
tests and public issue tracking helped significantly. It
provides immediate feedback on the progress made and
possible negative side effects.

As a result the C++ runtime is applicable to model-based
control using FMI 2.0 for model exchange along with
the widely used optimization solver HQP. A speedup of
up to 8 is seen with gcc optimization flags. An example
shows an FMU exported with the C++ runtime perform-
ing significantly faster than the FMU exported with the
C runtime or with Dymola.

The price to pay with C++ is longer compilation times.
This is less an issue for online control applications,
where a model is compiled once and then runs endlessly
in the real-time control.

Another possible drawback of C++ is stronger coupling
between compilation modules, as required for improved
type safety, performance, and exception handling. These
things are hidden behind FMI.

FMI needs to be further developed towards supporting
DAE constraints, e.g. arising from network models, and
discrete states arising from clocked equations. The
OpenModelica C++ runtime offers a promising basis for
this future work.

Acknowledgements

This work was supported in parts by the Federal Minis-
try of Education and Research (BMBF) within the
ITEA2 project MODRIO (Model Driven Physical Sys-
tems Operation) – BMBF funding code: 01IS12022A.

Model-based control with FMI and a C++ runtime for Modelica

346 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118339

References

P. J. Denning: The locality principle, Communications of the
ACM - Designing for the mobile device, July 2005.

R. Franke, E. Arnold: Applying new numerical algorithms to
the solution of discrete-time optimal control problems. In:
Computer Intensive Methods in Control and Signal Pro-
cessing: The Curse of Dimensionality, Birhäuser, Basel,
1997.

R. Franke, M. Rode, K. Krüger: On-line Optimization of Drum
Boiler Startup, 3rd International Modelica Conference, 2003.
https://www.modelica.org/events/Conference2003/papers/h29_Franke.pdf

R. Franke, L. Vogelbacher. Nonlinear model predictive con-
trol for cost optimal startup of steam power plants. at – Au-
tomatisierungstechnik, 54(12):630–637, 2006.

R. Franke, B.S. Babji, M. Antoine, A. Isaksson: Model-based
online applications in the ABB Dynamic Optimization
framework, 6th International Modelica Conference, Biele-
feld, March 3-4, 2008.

R. Franke, S. Saliba, A. Frick: Virtual Power Plants for Smart
Markets, PowerGen Europe, Cologne, June 2014.

Functional Mock-up Interface for Model Exchange and Co-
Simulation, Version 2.0, July 2014.

E. Lazutkin, A. Geletu, S. Hopfgarten, P. Li: Modified Multi-
ple Shooting Combined with Collocation Method in JMod-
elica.org with Symbolic Calculations, Proceedings of the
10th International ModelicaConference March 10-12, 2014,
Lund, Sweden. http://www.ep.liu.se/ecp/096/104/ecp14096104.pdf

F. Magnusson, K. Berntorp, B. Olofsson, J. Åkesson: Sym-
bolic Transformations of Dynamic Optimization Problems,
Proceedings of the 10th International ModelicaConference,
Lund, Sweden, March 10-12, 2014.

Z.K. Nagy, B. Mahn, R. Franke, F. Allgöwer. Evaluation study
of an efficient output feedback nonlinear model predictive

control for temperature tracking in an industrial batch reac-
tor. Control Engineering Practice, 15(7):839 – 850, 2007.

J. Neupert, E. Arnold, O. Sawodny, and K. Schneider: Track-
ing and anti-sway control for boom cranes. Control Engi-
neering Practice, 18(1):31–44, 2010.

OpenModelica System Documentation, February 2014.

A. Pfeiffer: Optimization Library for Interactive Multi-Criteria
Optimization Tasks, Proceedings of the 9th International
Modelica Conference, September 3-5, 2012, Munich, Ger-
many. http://www.ep.liu.se/ecp/076/068/ecp12076068.pdf

V. Ruge, W. Braun, B. Bachmann: Efficient Implementation
of Collocation Methods for Optimization using OpenMod-
elica and ADOL-C, Proceedings of the 10th International
ModelicaConference, March 10-12, 2014, Lund, Sweden.

B. Stroustrup: The C++ Programming Language, Fourth Edi-
tion, Addison-Wesley Pearson Education Inc., 2014.

J. Wagenpfeil, E. Arnold, H. Linke, O. Sawodny: Modeling
and optimized water management of artificial inland water-
way systems. Journal of Hydroinformatics, 15(2):348–365,
2013.

N. Worschech, L. Mikelsons: A Toolchain for Real-Time Sim-
ulation using the OpenModelica Compiler, 9th International
Modelica Conference, Munich, 2012.
http://www.ep.liu.se/ecp/076/086/ecp12076086.pdf

D. Zimmer, M. Otter, H. Elmqvist, G. Kurzbach: Custom Anno-
tations: Handling Meta-Information in Modelica, Proceedings
of the 10th International ModelicaConference, March 10-12,
2014, Lund, Sweden. https://www.modelica.org/events/modelica2014/pro-
ceedings/html/submissions/ECP14096173_ZimmerOtterElmqvistKurzbach.pdf

J. Åkesson, K.-E. Årzén, M. Gäfvert, T. Bergdahl, H. Tumme-
scheit. Modeling and optimization with Optimica and JModel-
ica.org—languages and tools for solving large-scale dynamic
optimization problems. Computers and Chemical Engineering,
34(11):1737–1749, November 2010.

Session 4B: Control Applications 1

DOI
10.3384/ecp15118339

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

347

348 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Nonlinear Dynamic Inversion Control for Wind Turbine Load

Mitigation based on Wind Speed Measurement

Matthias J. Reiner1 Dirk Zimmer1

1Institute of System Dynamics and Control, German Aerospace Center (DLR), Germany,

{Matthias.Reiner, Dirk.Zimmer}@DLR.de

Abstract

The design of an advanced controller for wind turbine

load mitigation is presented. The controller is based on

Nonlinear Dynamic Inversion control methods combined

with Pseudo Control Hedging to account for the actua-

tor limits and a two degree of freedom control system

for the collective pitch control of the rotor blades. The

controller uses wind speed measurement information to

adjust to wind gust load. A newly developed wind tur-

bine system dynamics library in the Modelica language

is used to model an elastic wind turbine for a simulation

study of the controller. The simulation results show a

large reduction of the gust load on the wind turbine us-

ing the proposed controller.

Keywords: Elastic wind turbine modeling; nonlinear dy-

namic inversion; pseudo control hedging; optimization

1 Introduction

Wind energy has become an important energy source

with worldwide growing capacities. Advanced control

design can help to improve the energy generation and

extend turbine lifetime.

While the nominal control of wind turbine is already

well handled by the state of the art, and only minor

improvements can be expected for the ideal case with

smooth wind speed, there is still much potential in the

field of load reduction. Especially under gust load con-

ditions, the load on the flexible structure of the wind tur-

bines can be reduced using advanced control methods.

One important aspect in this regard is the technolog-

ical advance in wind speed measurement. Especially

turbine-mounted light detection and ranging (LIDAR)

based wind speed sensors have become much more af-

fordable and accurate. The measurement of the wind

speed opens a wide range of control methods. Gust load

can be substantial and induce strong vibrations of the

wind turbine tower, which can lead to a lifetime reduc-

tion.

In recent years, many different advanced control

approaches have been proposed for the control of

Figure 1. Visualization of a Modelica Wind Turbine model

using the DLR SimVis Library (Bellmann, 2009).

wind turbines that are based on wind speed mea-

surements (Dunne et al., 2011). Especially methods

based on Model Predictive Control (MPC) strategies and

feed-forward disturbance compensation methods show

promising results, e.g. (Schlipf et al., 2010; Wang and

Johnson, 2011; Koerber and King, 2013). This simu-

lation study focuses on an approach based on Nonlinear

Dynamic Inversion (NDI) (Slotine and Li, 1991) com-

bined with Pseudo Control Hedging (PCH) (Johnson and

Calise, 2000). Similar controller structures are known

from the field of aerospace control. Although not di-

rectly comparable, there are many similarities: in both

cases, the main source for the nonlinearity results from

the changing wind speed (e.g. airspeed) and resulting

DOI
10.3384/ecp15118349

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

349

local wind

field

rotor‐

aerodynamics

gearbox generator + PE

transformator

grid connection

controller

(torque, pitch)

structural dynamics

(tower, nacelle, wings)

Figure 2. Top level Modelica model diagram of a typical wind turbine architecture.

aerodynamics. Actuator limits play a very important role

(rates and absolute limits) and the excitation of the flexi-

ble structure has also to be considered in both cases dur-

ing gust load situations.

Since good results have been achieved in the field of

aerospace control using NDI with PCH, it is worthwhile

to study its adaption and application for elastic wind tur-

bines. One important aspect for the control of wind tur-

bines are the dynamic ranges of the actuators. While

the turbine generator can be controlled very fast to re-

act to load changes, the pitch actuators of wind turbines

are usually relatively slow. NDI has also recently been

investigated for the pitch control of wind turbines (Geng

et al., 2014) but we focus on the generator control, where

a faster response can be achieved and use a two degree

of freedom system for the pitch control. The actuator to

turn the wind turbine into the wind direction (yaw axis)

is usually the slowest actuator and therefore not relevant

for load mitigation control and will not be considered

here.

Section 2 describes the approach used for modeling

the elastic wind turbine using the Modelica language

(Modelica Association, 2010). Based on this nonlinear

model the NDI & PCH based controller is described in

section 3 using Modelica and the Functional Mock-up

Interface technology (FMI) (development group, 2014).

Simulation results and comparisons to a conventional

scheduled controller are given in section 4. A conclu-

sion and outlook is given in section 5.

2 Modeling of elastic wind turbines

Modern wind turbines represent multi-domain systems.

Hence, to describe the dynamic behavior of a complete

turbine, expertise from different areas is required: wind

field analysis is needed to describe the environment;

rotor-aerodynamics models the transformation of wind

energy into kinetic energy; this kinetic energy is then

turned into electric energy by the means of gears, electric

machines and power system converters; also the flexibil-

ity of the tower structure and the blades needs to be taken

into account.

Fig. 2 illustrates how all these components are ulti-

mately assembled for a complete turbine model within

Modelica. It represents one specific example of a wind

turbine that is based on the 5MW reference turbine from

NREL (Jonkman et al., 2009). The electric parts of the

turbine (generator, converter, grid) have been adapted to

the specifics of the European market.

Given any task, the modeler will need to adapt this

turbine model to her or his specific needs. For instance,

modeling the integration of a turbine into electric grid

requires more detailed modelling of the generators and

converters, whereas for the task of this paper, the gen-

erator can simply be represented as a controlled source

of limited torque. It is thus necessary that each part of

the turbine can be modeled with the appropriate level of

complexity and detail. To ensure this flexibility, the mod-

eling work is supported by a DLR library dedicated to

Nonlinear Dynamic Inversion Control for Wind Turbine Load Mitigation based on Wind Speed Measurement

350 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118349

wind turbines. In this library, DLR offers its combined

modeling know-how in the field of drive-train (Tobolar

et al., 2007), aerodynamics (Looye, 2008), structural dy-

namics (Heckmann et al., 2006), and visualization (Bell-

mann, 2009) (see Fig. 1) in order to offer a complete sys-

tem dynamics library for wind turbines. The following

sections describe those parts of the library which are rel-

evant for the control task at hand. These are: the model-

ing of the aerodynamics, the structural dynamics and the

design of a standard controller.

2.1 Wind turbine aerodynamics

The evident key-component of a wind turbine is its ro-

tor. The most-straight forward approach is to regard this

component as one single entity that transforms wind en-

ergy into kinetic energy by a coefficient of efficiency CP.

This coefficient is typically defined as a function of the

tip-speed ratio λ , expressing the relation between wind

speed and the tip speed of the blades. If we take the

collective pitch of the blades into account, we get a two-

dimensional function, where both input parameters are

subject to control laws: the pitch angle is controlled by

the pitch actuators and the tip speed can be regulated

by the power-off take of the generator. Hence this ba-

sic model of a rotor is well applicable for classic control

tasks.

For more advanced tasks, the rotor is decomposed into

its blades and the blades are decomposed into blade ele-

ments. Each such element then has its own airfoil polar

that describes the aerodynamic forces for lift and drag

dependent on the angle of attack within the induced wind

field. The induced wind field is a superposition of the

global wind in the vicinity of the rotor field and the wind

that is induced by the rotor itself. For a certain induced

wind, the momentum needed to change the wind veloc-

ity and the momentums emanated from the aerodynamic

forces of the blade element are equal. This equilibrium

can be described by a nonlinear system of equations and

forms the basis of the well-established Blade-Element-

Momentum (BEMT) Method (Hansen, 2008). It is suit-

able for wind turbines without strong cross-winds or sig-

nificant local turbulences. It can be used to take the in-

fluence of wind shear into account and to design indi-

vidual pitch control systems. In combination with flexi-

ble blades and towers, good estimation of the structural

loads can be performed.

For the method’s implementation in Modelica, a

model of a local blade element has been created. In in-

teraction with a global outer model for the rotor plane,

this component determines the local aerodynamic forces.

The individual blade elements can then be connected

(rigidly or by a flexible body) to form a complete blade.

Typically, three such blades then form the rotor.

2.2 Structural dynamics of tower and blade

Modern, large-scale wind turbines have rotors of more

than 100 meters of diameter. The flexibility of such a

large structure is an integral part of its design. Most

important are the structural dynamics of those compo-

nents which are most exposed to the wind: the tower and

the blades. The flexibility of the nacelle, especially of

the mounting of its devices and bearings, is currently not

taken into account but the elasticity of the nacelle mount-

ing on its tower is taken into account around the yaw an-

gle.

For the modeling of these components, the DLR Flex-

ibleBodies Library (Heckmann et al., 2006) is used. Us-

ing this library, the components can be modeled using

standard connectors of the Modelica Standard library.

The blade-elements of the rotor aerodynamics can hence

be connected to a flexible blade as well as to a rigid

blade.

The components of the FlexibleBodies library are

based on a modal approach. Structural information of the

blade and tower stiffness, as presented in (Jonkman et al.,

2009) can be incorporated into the model by a SID file

(Heckmann et al., 2006). Nonlinear effects such as the

increased stiffness due to centrifugal stretching can be

taken into account. The performance characteristics are

comparable to the approach presented in (Thomas et al.,

2014).

2.3 Complete turbine model

For the control task of this paper, the aerodynamics and

structural elasticity are the key components of the wind

turbine. Nevertheless, more components are needed to

form a complete model. This is also shown in Fig. 2.

Wind models are needed that prescribe the regional wind

conditions but also model local effects like height de-

pendent wind shear and the tower dam effect. Com-

ponents for gearbox, emergency brake, generator and

power electronics form the complete drive train of the

turbine model. Many different designs for such drive

trains exist in current wind turbines and the presented

diagram just shows one possible setup.

Finally, the controller of the turbine model is depicted

in Fig. 2 with its signals controlling motor torque and

pitch angle. One possible and advanced design of such a

controller is presented in the following chapters.

3 Controller design

The nonlinear characteristics of the wind turbine are con-

sidered in our control design by using an inverse model

of the wind turbine as part of the controller. The ap-

proach used here is Nonlinear Dynamic Inversion (NDI)

for the control of the generator torque together with

Pseudo Control Hedging to handle actuator limits.

Session 4B: Control Applications 1

DOI
10.3384/ecp15118349

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

351

vw

Pitch

Feed-Forward

Pitch

Feedback

Generator
Dyn. & Limit

Wind Turbine

F (x, u)

F̂ (x̂, u)

PCH

F̂−1(x̂, ν)

NDI

Gr(s)

Ref.-Filter

x̂ = (φg, ωg, γ, γ̇, vw)
T

uuc

x̂

ν̂

γcγc,ff

γc,fb

ωg, vw

ωg

λ-PID
ν

νh

λ

νr

ξr

λr-Table
λr

Pitch-Act.
Dyn. & Limit

γ

Figure 3. Overview of the combined NDI & PCH control system for the generator torque in addition to a two degree of freedom

pitch controller. The connections show the data flow between the different components.

For our controller design, it is assumed that high ac-

curacy measurement of the wind speed at the turbine is

available. This could be based on LIDAR, e.g. (Simley

et al., 2012) or similar measurement methods in combi-

nation with additional estimators or filters.

The notation and implementation used here is simi-

lar to (Looye, 2001; Holzapfel, 2004; Lombaerts et al.,

2012) from the field of aerospace control.

As an extension for the NDI control of the generator

torque, a feed-forward controller for the pitch control is

used. The feedback controller design for the pitch con-

trol is based on the reference controller from (Jonkman

et al., 2009) that will also be used for comparison of the

controller performance in Sec. 4. The reference pitch

controller from (Jonkman et al., 2009) is a scheduled (on

the generator speed) PI controller. Under nominal condi-

tions the controller already works very well, but can be

improved by a wind speed feed-forward controller.

The feed-forward controller for the pitch actuator con-

sists of different elements: the main part is a linear inter-

polated table which contains a function γtab(vw) of opti-

mal pitch actuator angles γ depending on the measured

wind speed. The optimal values are the steady-state re-

sults for a simulation using only the reference pitch con-

troller and constant wind speed. Since the pitch actors

are relatively slow, they should only be used when the

generator is close to its limit. For this reason a switch

is implemented in the feed-forward controller that only

enables the controller close to the lower or upper limit

of the generator speed (ωg,low and ωg,high). A hystere-

sis loop is implemented to avoid jittering of the switch

close to the limit. When active, the output of γtab(vw) is

used as input for a low-pass Bessel filter Gbes(s) (Laplace

variable s) and a rate limiter (limit γ̇c,max) to ensure that

the pitch actuators can follow the dynamics of the feed-

forward controller.

κon = ωg > ωg,high ∨pre(κon)∧ωg >= ωg,low (1a)

γc,u f =

{

γtab(vw), if κon = 1,

0, if κon = 0 .
(1b)

γc, f i = Gbes(s)γc,u f (1c)

γ̇c, f f = min

(

max

(

γc, f i − γc, f f

Tr

,−γ̇c,max

)

, γ̇c,max

)

(1d)

γc, f f =
∫

γ̇c, f f dt (1e)

Eq. 1 shows the resulting equations and logic for the

feed-forward controller. The feed-forward controller is

combined with the scheduled PI pitch controller from

(Jonkman et al., 2009) to form a two degree of freedom

control system.

We assume the general nonlinear system description

of the wind turbine in the form of Eq. (2) where x ∈ R
n

is the state vector, u ∈R
k is the input vector, y ∈R

l is the

vector of outputs that are controlled, p ∈ Rnp are the pa-

rameters and known inputs of the system and z∈R
m con-

tains any other outputs of the system. Any other control

inputs are considered as known parameters (∈ p). The

nonlinear model is our implementation based on the 5-

MW reference wind turbine from (Jonkman et al., 2009),

Nonlinear Dynamic Inversion Control for Wind Turbine Load Mitigation based on Wind Speed Measurement

352 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118349

using the model library described in Sec. 2.

ẋ = f (x, p)+g(x, p)u (2a)

y = h(x, p) (2b)

z = h0(x, p) (2c)

The inverse system can be generated using Lie-

derivatives of the output h along f and g.

ẏ = L f h(x, p)+Lgh(x, p)u (3)

Assuming that Lg(x, p) is invertible and all outputs have

the relative order 1 with respect to one of the inputs, the

following control law can be constructed:

uc = (Lgh(x̂, p))−1
(

ẏd −L f h(x̂, p)
)

(4)

In Eq. (4) yd ∈R
l represents the demand rates and x̂ rep-

resents a subset and estimation of the states x of the orig-

inal system.

x̂ = (φg,ωg,γ, γ̇,vw)
T (5)

In the following, we will use a shortened notation where

F(x,u) is used for Eq. (2), F̂(x̂,u) for a differentiable

approximation of F(x,u) for which all assumptions are

valid. For F̂(x̂,u), the flexible dynamics are neglected

and the tables for the nonlinear aerodynamics are re-

placed by differentiable B-splines. For the modified sys-

tem only a subset x̂ of the states of the original system x

are used. The subset of the states x̂ in Eq. (5) consist of

the generator angle φg and angular velocity ωg, the pitch

actuator angle γ and angular velocity γ̇ as well as mean

wind speed at the rotor blades vw.

The inverse system based on F̂(x̂,u) and Eq. (4) is

called F−1 (x̂,ν) using the virtual control input ν = ẏ.

Using F̂−1 (x̂,ν) to generate the input uc for F̂ would

lead in the ideal case (with F = F̂ and all p perfectly

known) to an input/output linearization such that the

original nonlinear system is transformed to a closed loop

system with decoupled linear dynamics:

˙̂x = ν (6)

But even in the case if only F ≈ F̂ the nonlinearity of

the closed loop system can be greatly reduced, such that

a linear controller is better able to achieve good perfor-

mance.

The inverse control law of Eq. (4) can be generated

automatically from a modified Modelica model of the

wind turbine using the automatic differentiation and in-

dex reduction (Mattsson and Söderlind, 1993) features

of Dymola (Otter et al., 1996). The inverse model is

then converted to an FMI for which the states of the in-

verse system are transformed to additional inputs. An

outer control loop is used in combination with F̂−1 (x̂,ν)
to control the resulting dynamic of Eq. (6) and to damp

effects of modeling errors and parameter uncertainties.

−a0

a0
1

s

νr

ξr

νh

λr

Figure 4. First order reference filter Gr(s) for the PCH.

Since the actuators of wind turbines are limited and also

have a dynamic behavior additional measures are nec-

essary. An approach similar to (Holzapfel, 2004) and

(Lombaerts et al., 2012), from the field of aerospace, is

used here. It consists of a reference filter Gr(s) (Fig. 4)

and a model of the system F̂(x̂,u) in combination with a

PID-feedback controller in the outer loop. An overview

of the controller setup is shown in Fig. 3. The reference

filter is used to modify the controller demand such that

the actuator limits are maintained. To achieve this, a par-

allel model of the plant F̂(x̂,u) is used. The input for

the parallel model are a subset of the measured states x̂,

defined in Eq. (5), of the wind turbine F . The outputs of

the reference filter are the set point for the PID controller

ξr and a term νr that is directly added to the output ν of

the PID controller. The reference filter is parameterized

as a critical damped filter with cut off frequency fr (filter

parameter a0 = 2π fr).

It is assumed that all these quantities are measurable or

obtainable using an observer. For F̂ the flexible dynam-

ics of the wind turbine are neglected, i.e. no elasticity

of the powertrain and tower is considered in F̂−1 (x̂,ν).
This means φg and ωg can also be directly used to cal-

culate the blade speed, except for a constant factor for

the gear ratio Igen and tip speed ratio λ = ωgR/vw (rotor

radius R).

There a multiple reasons for approximation: If the

elasticity of powertrain and especially the elasticity of

the tower would be directly considered for F̂−1 the com-

plexity would rise substantially. Although the inversion

would still be possible, at least for a flexible powertrain

using the automated possibilities of Dymola, higher or-

der derivatives of the inputs and equations of motion for

the inverse model would be required (e.g. of λ , vw and

γ). Since these are measurement values, it would make

the inverse model very sensitive to noise and uncertain-

ties in these quantities. For the NDI approach also addi-

tional measurements of the elastic deformations would

then be necessary (since the whole state vector is re-

quired for the method) that are often not readily avail-

able. In addition the computational time for the con-

trol algorithm would rise considerably such that a real

time implementation could be problematic. If elastic ef-

fects are considered, also the zero-dynamics of the sys-

tem used for the inversion can be critical. A stable zero-

dynamics is necessary for a stable inversion. The zero

dynamics can be approximated by the (transmission-) ze-

ros of a linearization of the nonlinear system since the

Session 4B: Control Applications 1

DOI
10.3384/ecp15118349

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

353

full nonlinear analysis of the zero dynamics can usually

not be solved analytically for complex systems. For the

rigid system, all zeros have no positive real part, and

therefore do not turn into unstable poles for the inverse

system. The reasons mentioned here are likewise main

factors why NDI control systems in the aerospace field

are usually also based on rigid models, even though the

aircraft can show significant elastic deformations.

For F̂−1 the inversion is done with respect to λ̇ , so

that in Eq. (4) uc = τg and ẏ = λ̇ . The tip speed ratio

was chosen for the inversion since the optimal operation

point can be found from Cp-λ curves. The model used

for the inversion is modified such that the highest deriva-

tives that are required for the inverse model are directly

used as inputs and connected to integrator chains of the

respective order.

The parallel model used for the PCH algorithm is the

same forward model F̂−1 used to generate the inverse

model F̂−1, but without the added integrator chains and

re-defined inputs. The inversion is done using the Model-

ica/Dymola capabilities (see (Thümmel et al., 2005) for

details).

The resulting inverse model of the rigid wind turbine

is then exported as an FMI. In the FMI-code, the state

of the inverse system is redefined as an input such that

no integration of the derivatives is necessary. The result-

ing inverse system is therefore in the form of Eq. (4).

The required Lie-derivatives are solved automatically by

Modelica/Dymola. The modified FMI can then be used

for a controller implementation directly on target hard-

ware, or can be re-imported into the Modelica/Dymola

to simulate the complete control system. To account for

the actuator limits, the output of the inverse model uc is

modified by limiter for the absolute value and the rate,

using the same limiter equation as in Eq. (1d) for the

pitch rate γ̇ . The result is the generator torque u that is

used as set point for the wind turbine torque generator

and the PCH parallel model F̂ (see Fig. 3).

To improve the numerical robustness of the control

system and the numeric, the required derivatives of mea-

surement values are calculated using filters. The Model-

ica approximated derivative blocks (DT1) are used. The

time constants of the DT1 elements can be tuned to pro-

vide a good compromise between accuracy and robust-

ness against noise as part of the controller synthesis.

The DLR multi-case and multi-criteria optimization tool

MOPS (Joos et al., 2002) was used to find suitable pa-

rameters for the controllers as well as the content of the

table, which contains optimal set points λr depending on

the wind speed vw using a griding simulation optimiza-

tion for different wind speed inputs of the control system.

Since it is assumed that vw is measurable the optimal λr

can then be found using a linear interpolated table based

on vw (λr-Table in Fig. 3).

As will be seen in Sec. 4, the approximate inversion

still helps considerably for the reduction of stress caused

by elastic deflections because the controller reacts faster

to quickly changing wind speed. This in turn reduces the

acceleration peaks at the tower tip and therefore reduces

the elastic vibrations.

4 Simulation results

For the simulation study, multiple scenarios of different

wind speed trajectories have been analyzed. The nonlin-

ear simulation plant model is based on the 5-MW ref-

erence wind turbine from (Jonkman et al., 2009) using

modeling components form Sec. 2.

The model consists of a flexible tower (7 flexible

modes, using the FlexibleBodies Library), flexible pow-

ertrain (modeled as spring damper system), flexible na-

celle mounting (yaw axis) and simplified first order gen-

erator dynamics. The wind-rotor interaction dynamic is

approximated using a tabled pitch correction factor to-

gether with a tabled rotor efficiency factor that is depen-

dent on the tip speed ration and pitch correction factor.

The controller from (Jonkman et al., 2009) is used as

a reference to compare the results (will be referred to

as reference controller in the following). The refer-

Energy NDI

Energy Ref
Acc. NDI
Acc. Ref

N
or

m
al

iz
ed

re
su

lt
s

D
ou

b
le

M
ex

ic
an

H
at

(2
4

m
/s

)

S
in

gl
e

M
ex

ic
an

H
at

(2
8

m
/s

)

W
in

d
li
n
ea

r
sl

op
e

0-
30

m
/s

W
in

d
ra

m
p

22
m

/s

W
in

d
ra

m
p

18
m

/s

W
in

d
ra

m
p

15
m

/s

W
in

d
ra

m
p

12
m

/s

W
in

d
ra

m
p

11
m

/s

0

0.2

0.4

0.6

0.8

1

Figure 5. Normalized results of the generated energy of the

wind turbine and acceleration at the tower tip for the different

simulated scenarios.

ence controller does not use wind measurement informa-

tion, but works very well under nominal conditions and

therefor provides a good benchmark for achievable per-

formance without wind speed measurement. Since the

main objective of wind turbines is to generate as much

energy as possible, a controller needs to achieve a good

compromise between generated energy and load reduc-

tion.

It can be assumed that in the long term, load reduction

on the tower can lead to an increase of the life time and

less required service intervals. This can make the inclu-

sion of a wind speed sensor cost-effective for future wind

Nonlinear Dynamic Inversion Control for Wind Turbine Load Mitigation based on Wind Speed Measurement

354 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118349

vw

W
in

d
sp

ee
d

[m
/s

]

time [s]
0 100 200 300 400

0

5

10

15

20

25

Figure 6. Wind speed for the scenario with a wind ramp and

double wavelet disturbances.

τNDI

τRef

G
en

er
at

or
to

rq
u
e

[N
m

]

time [s]
0 100 200 300 400

×104

−5

−4

−3

−2

−1

0

1

Figure 7. Comparison of the resulting generator torque for the

scenario with a wind ramp and double wavelet disturbances.

turbines. To verify the controller performance, eight dif-

ferent scenarios (cases) have been simulated for which

the wind speed is varied:

• Wind ramps with different constant end wind speed

vw,max (11,12,15,18 and 22 m/s).

• Linear wind speed slope from 0 m/s to 30 m/s.

• Wind ramp with single wavelet disturbance.

• Wind ramp with double wavelet disturbances.

The different cases are used to test different conditions

for the control system of the wind turbine. The first

five cases with the wind ramps are used to simulate the

nominal conditions for the controller with constant wind

speed after a startup phase. For these cases no big im-

provements can be expected compared to the reference

ωg,NDI

ωg,Ref

G
en

er
at

or
sp

ee
d

[r
ad

/s
]

time [s]
0 100 200 300 400

0

20

40

60

80

100

120

140

160

180

200

Figure 8. Comparison of the resulting generator speed for the

scenario with a wind ramp and double wavelet disturbances.

γNDI

γRef

R
ot

or
p
it

ch
an

gl
e

[r
ad

]

time [s]
0 100 200 300 400

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 9. Rotor pitch angle comparison for the scenario with

a wind ramp and double wavelet disturbances.

controller. However the cases are important, since it has

to be expected that an advanced control system should

also be able to generate similar amounts of energy dur-

ing nominal conditions, and not only focus on load re-

duction. The linear wind speed slope is used to verify

the transition phases for the control law. For example

the pitch control and pitch feed-forward control are only

active if the generator speed is close to its allowed max-

imum ωg,high and also the scheduled PI-Pitch controller

has different gains depending on the current pitch angle

γ . In addition the set point λr for the NDI control loop

changes based on the current wind speed vw. The last two

cases are used to simulate the controller behavior under

gust load conditions. To simulate the wind gust excita-

tion of the elastic wind turbine tower, Ricker wavelets

according to Eq. (7) are used. The wavelets are parame-

terized to simulate short wind gusts. Because of the form

Session 4B: Control Applications 1

DOI
10.3384/ecp15118349

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

355

a3,NDI

a3,Ref

N
ac

el
le

ac
ce

le
ra

ti
on

[m
/s

2
]

time [s]
0 100 200 300 400

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 10. Acceleration vector component parallel to the wind

direction at the top of the tower for the double wavelet scenario.

of the resulting shape they are often called Mexican Hat

wavelet (see Fig. 6).

ψ(t) =
2

√
3σπ

1
4

(

1− t2

σ2

)

e
−t2

2σ2 (7)

Two criteria have been defined for the simulated scenar-

ios to quantify the generated energy of the turbine and

the load of the wind turbine tower in Eq. (8).

Ca =
∫ 400

0
|at |1dt (8a)

Cp =
∫ 400

0
τgωgdt (8b)

The criteria Ca is a measure for the load and is com-

puted form the integral over the simulation time of 400s

of the L1 norm of the acceleration at the tip of the tower

at . A reduction of at is desirable to prolong the turbine’s

lifetime. The second criteria Cp is the generated energy

of the wind wind turbine during the simulation. An in-

crease in Cp leads to a more efficient turbine. Fig. 5 gives

an overview of the results that have been normalized to

the maximum values of all cases. As can be seen from

the plot, the generated energy is very similar for all cases

for the reference controller and the NDI based control

system. The NDI controller acts faster what leads to a

slight increase in generated energy. However the added

benefit from the advanced control law based on the wind

measurement can be seen for the resulting acceleration

at the tower tip.

The wind gust, simulated by the wavelet, leads to very

strong acceleration at the tower tip that can be reduced

substantially using the new proposed control system, as

can be seen from Fig. 5. In particular, for the case with

only one wind peak, the wind gust load can be absorbed

directly by the generator using the NDI control law.

Fig. 7 shows the resulting generator torque for this

scenario, Fig. 8 the corresponding generator speed, Fig. 6

the wind speed and Fig. 9 the rotor pitch angle. As can

be seen from the plots, the controller is able to use the

additional information from the measured wind speed to

react faster to changes in the wind speed, which results

in a much smoother generator speed and generator torque

for the NDI controller and additionally reduces the accel-

eration at the tower tip, as can be seen from Fig. 10. The

feed-forward controller for the rotor pitch angle leads to

a faster response. The reduced acceleration also lessens

the load on the tower structure.

5 Conclusion and future work

The current design of controllers for wind turbines is

rather conservative. The results of the last chapters in-

dicate that using advanced control methods such as NDI,

significant performance gains can be achieved especially

in the field of load mitigation. LIDAR systems, how-

ever, are a key technology to enable the described con-

trol method. We expect LIDAR systems to become more

widespread among new or retrofitted wind turbines due

to upcoming reductions in production cost, especially in

wind farms where one LIDAR system can be used for

multiple turbines.

Modern control methods such as NDI represent

model-based approaches. A multi-domain Modelica li-

brary for wind turbines with non-causal and hence invert-

ible models forms an optimal basis for the development

of suitable NDI controllers.

The simulation results for the NDI & PCH based con-

troller, using advanced capabilities of Modelica and FMI,

shows promising results. However in the future it would

be necessary to verify the control systems on real wind

turbines to analyze the robustness and performance un-

der realistic conditions.

We hope that the simulation-based analysis can help to

motivate the use of advanced control systems and sensors

in the future.

6 Acknowledgment

The development of Modelica models for wind turbines

is supported by DLR Technology Marketing.

References

T. Bellmann. Interactive simulations and advanced visualiza-

tion with modelica. Proceedings of the 7th Modelica Con-

ference, pages 541–550, 2009.

FMI development group. Functional mock-up interface for

model exchange and co-simulation. Technical report,

MODELISAR consortium, 2014.

Nonlinear Dynamic Inversion Control for Wind Turbine Load Mitigation based on Wind Speed Measurement

356 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118349

F. Dunne, E. Simley, and L. Pao. Lidar wind speed measure-

ment analysis and feed-forward blade pitch control for load

mitigation in wind turbines. Technical report, National Re-

newable Energy Laboratory, 2011.

H. Geng, S. Xiao, W. Yang, and G. Yang. Nonlinear dynamic

inversion approach applied to pitch control of wind turbines.

In Proceeding of the 11th World Congress on Intelligent

Control and Automation, 2014.

Martin Hansen. Aerodynamics of Wind Turbines. Earthscan,

2008. ISBN 978-1-84407-438-9.

A. Heckmann, M. Otter, S. Dietz, and J. Lopez. The DLR

flexible bodies library to model large motions of beams and

of flexible bodies exported from finite element programs.

The Modelica Association, 2006.

F. Holzapfel. Nichtlineare adaptive Regelung eines unbe-

mannten Fluggerätes. Verlag Dr. Hut, 2004. ISBN

9783899631128.

E. Johnson and A. Calise. Pseudo-control hedging: A new

method for adaptive control, 2000.

J. Jonkman, S. Butterfield, W. Musial, and G. Scott. Defini-

tion of a 5-mw reference wind turbine for offshore system

development. Technical report, National Renewable Energy

Laboratory, 2009.

H. Joos, J. Bals, G. Looye, K. Schnepper, and A. Varga.

A multi-objective optimisation based software environment

for control systems design. Proc. of 2002 IEEE Inter-

national Conference on Control Applications and Interna-

tional Symposium on Computer Aided Control Systems De-

sign, CCA/CACSD, 2002.

A. Koerber and R. King. Combined feedback-feedforward

control of wind turbines using state-constrained model pre-

dictive control. In IEEE TRANSACTIONS ON CONTROL

SYSTEMS TECHNOLOGY, VOL. 21, NO. 4, 2013.

T. Lombaerts, G. Looye, Q. Chu, and J. Mulder. Design and

simulation of fault tolerant flight control based on a phys-

ical approach. Aerospace Science and Technology, 23(1):

151 – 171, 2012. ISSN 1270-9638. 35th ERF: Progress in

Rotorcraft Research.

G. Looye. Design of robust autopilot control laws with non-

linear dynamic inversion. at Automatisierungstechnik, 49:

523–531, 2001.

G. Looye. The new DLR flight dynamics library. Proceedings

of the 6th Modelica Conference, pages 193–202, 2008.

S. Mattsson and G. Söderlind. Index reduction in differential-

algebraic equations using dummy derivatives. SIAM Jour-

nal of Scientific and Statistical Computing, 14:677–692,

1993.

Modelica Association, editor. Modelica - A Unified Object-

Oriented Language for Physical Systems Modeling Lan-

guage Specification Version 3.2. 2010.

M. Otter, H. Elmqvist, and F. Cellier. Modeling of multi-

body systems with the object-oriented modeling language

dymola. Technical report, 1996.

David Schlipf, Tim Fischer, Carlo Carcangiu, Michele Ros-

setti, and Ervin Bossanyi. Load analysis of look-ahead

collective pitch control using lidar. In Proceedings of the

10th German Wind Energy Conference DEWEK. Universi-

taet Stuttgart, 2010.

Eric Simley, Lucy Y. Pao, Neil Kelley, Bonnie Jonkman, and

Rod Frehlich. Lidar wind speed measurements of evolving

wind fields. In Proc. ASME Wind Energy Symposium, 2012.

Jean-Jacques E Slotine and Weiping Li. Applied nonlinear

control. Pearson, Upper Saddle River, NJ, 1991.

P. Thomas, X. Gu, R. Samlaus, C. Hillmann, and U. Wihlfahrt.

The onewind modelica library for wind turbine simulation

with flexible structure - modal reduction method in model-

ica. Proceedings of the 10th International Modelica Con-

ference, 2014.

M. Thümmel, G. Looye, M. Kurze, M. Otter, and J. Bals. Non-

linear inverse models for control. Proceedings of the 4th

International Modelica Conference,Hamburg, March 7-8,

2005.

J. Tobolar, M. Otter, and T. Bünte. Modelling of vehicle power-

trains with the modelica powertrain library. Systemanalyse

in der Kfz-Antriebstechnik IV, 2007.

N. Wang and K. Johnson. Lidar-based fx-rls feedforward con-

trol for wind turbine load mitigation. In Proceedings of the

2011 American Control Conference, 2011.

Session 4B: Control Applications 1

DOI
10.3384/ecp15118349

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

357

358 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Free Modelica Library of Chemical and Electrochemical Processes

Chemical 1.1.0

Marek Mateják1, Martin Tribula1, Filip Ježek2, Jiří Kofránek1,2
1Institute of Pathological Physiology, 1st Faculty of Medicine, Charles University in Prague

 U Nemocnice 5, Prague 2, 128 53, Czech Republic
2Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague,

Technicka 2, Prague 6

marek@matfyz.cz

Abstract

A new, free Modelica library for electrochemical pro-

cesses has been released - accessible as “Chemical” at
https://www.modelica.org/libraries. It is based on equil-

ibrating the electrochemical potentials of the substances

involved, following the modern theories of physical

chemistry. It dynamically solves the chemical equilibra-

tion of homogeneous chemical solutions with fully ther-

modynamic states, supported also through thermal, me-

chanical, electrical and fluid components of Modelica

Standard Library 3.2.1. Even the complex processes can

be composed from only a few base components, such as

a component for the chemical solution, a component for

the chemical substance or a component for the chemical

reaction. Behind these components are fundamental

laws of thermodynamics and physical chemistry. The li-

brary was designed to be very intuitive and easy to use.

This paper shows how the library can be used to imple-

ment the examples of a lead-acid battery, a hydrogen

burning and a chloride shift of human red blood cells.

Keywords: Modelica library, physical chemistry, ther-

modynamics equilibria, electrochemical potential, elec-

trochemical cell, internal energy, semipermeable mem-

brane

1 Introduction

The content for the chemical library comes from Phys-

iolibrary (www.physiolibrary.org), a library for physio-

logical calculations (Mateják, 2014; Mateják, et al.,
2014). We used Physiolibrary to implement the most ex-

tensive model of human physiology in 2010: HumMod

(Hester, et al., 2011; Kofránek, et al., 2011; Mateják and
Kofránek, 2011). We named our extended model Phys-

iomodel (www.physiomodel.org), and we have contin-

ued to extend it at more detailed microscopic and chem-

ical levels. The macroscopic processes and regulations

of human physiology are already validated by experi-

ments on animals and humans (Kulhánek, et al., 2010).
However, the chemical processes of the models were

(until now) conceived in terms of black boxes with in-

puts and outputs defined more by empirical relation-

ships than by strict physical theory. Focusing on empir-

ical behavior meant that expectations of the elementary

processes were well formed. This chemical library al-

lows us to move different substances in different direc-

tions across a membrane at the same time, which was

not possible when using, for example, the Model-

ica.Fluid package (Casella, et al., 2006) because stream

constructs move all substances together only in the di-

rection of the main solution stream. However having a

set of substance connectors (Table 1) there is possible to

change each substance separately just by setting its mo-

lar flow.

Table 1, Connector for substance: SubstancePort

nonflow flow

Electrochemical potential

of the substance [J/mol]

Molar flow of the sub-

stance [mol/s]

In the Chemical library, we carefully selected only

the fundamental definitions from physical chemistry

and thermodynamics to derive other known chemical re-

lations (Mortimer, 2008). For example, physical chem-

istry defines an electrochemical potential �̅� (Eq.1) for

each chemical substance j in a homogeneous chemical

solution as the composition of a relative molar energy of

pure substance ��� (typically tabulated as free molar

Gibbs energy of formation), a chemical dissolution

component of molar energy R ∙ � ∙ ln(��) (reflecting the

mole-fraction based activity of the substance �� in the

solution) and an electrical component of the molar en-

ergy F ∙ �� ∙ � (for substances with charge number �� in

the solution with non-zero electrical potential �), where

T is temperature, R is gas constant and F is Faraday’s
constant (Eq.1). �̅� = ��� + � ∙ � ∙ ��(��) + � ∙ �� ∙ � Eq. 1

The relative energy of the pure substance ��� must be

compatible with all tabulated equilibrium coefficients:

for example, equilibrium coefficients of chemical reac-

DOI
10.3384/ecp15118359

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

359

tions (as expressed by the free Gibbs energy of the reac-

tion), Henry’s coefficient for gas dissolution equilib-
rium, Raoult’s vapor pressure equilibrium, standard

voltages of redox reactions and so on. These known re-

lations do not need to be explicitly written in code be-

cause they are the results of algebraic manipulation of

the implemented relations, as we mathematically proved

during development. Therefore, in this way the Chemi-

cal library married chemical, osmotic, thermal, electri-

cal, mechanical and fluid domains. Usage of the library

has been very simplified, because it is typically possible

to build many types of reactions with few chemical sub-

stances - having a set of already defined chemical sub-

stances allows automatic calculation of equilibrium co-

efficients of their chemical processes. The principles

that apply to these free Gibbs energies of substances are

also applied to free heat energies (free enthalpies) be-

cause the same relation — called Hess’ law — exists

between free enthalpy of chemical processes and rela-

tive (free) enthalpies of substances which are typically

tabulated as free molar enthalpies of formation. There-

fore, the user does not even need to set the value of the

heat consumed or released from the chemical process,

since this heat energy is automatically derived from the

substance definitions.

The development starts with Donnan’s equilibria of a
semipermeable membrane (Donnan, 1911), together

with the Nernst membrane potential, as a consequence

of the equilibrated electrochemical potentials of the per-

meable substances. After these electrochemical pro-

cesses in a cellular membrane was married with chemi-

cal reactions, we realized that the relations are general

enough to calculate phase changes, gas solubility, elec-

trochemical cells and other known chemical processes

as described in physical chemistry textbooks, such as

(Mortimer, 2008). The result is a library that allows us

to create any type of chemical reaction, in any type of

homogenous chemical solution. We made it in one hand

with thermodynamics and physical chemistry relations

behind. In Modelica, the selected base definitions from

this theoretical approach can be directly rewritten to the

code in their natural mathematical forms, which signifi-

cantly simplify the implementation.

The Chemical library is freely available at

https://github.com/MarekMatejak/Chemical and is

meant to become a part of Modelica Standard Library.

The library is partially documented directly in the

code, more detailed description of the usage, including

this article and underlying principles is to be found in

attached documents in Documentation folder. This pa-

per shows the main principle and usability of the library

on three simple examples.

2 Chemical Substance

The Chemical library in version 1.1.0 contains two basic

states of matter: ideal gas and incompressible substance.

However, the user can easily (re)define their own state

of matter by inserting the correct expressions for the

pure substance activity coefficient, molar volume, molar

entropy and molar enthalpy, based on the current solu-

tion state (temperature, pressure, electric potential and

ionic strength) and the substance data. The object-ori-

ented design allows users to define the substance data

record as part of the state of matter package, where users

can redefine the getter functions of substance properties.

Our examples work with ideal gases in case of all gas-

eous substance and incompressible state of matter in

Figure 1. Setting of the predefined chemical substance, where (s) = solid phase, (aq) = dissolved in water, (g) = gas

phase and (l) = liquid phase.

Free Modelica Library for Chemical and Electrochemical Processes

360 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118359

case of liquid or solid. The definition data are the molar

mass of the substance, the number of charges of the sub-

stance, the molar heat capacity of the substance at a con-

stant pressure, free formation enthalpy, free formation

Gibbs energy and density (if incompressible) — all at a

temperature of 25°C and pressure 1 bar. Since these pa-

rameters are usually recorded in chemical tables at this

standard conditions. In this manner, more than 35 real

chemical substances in the example package of this

chemical library have already been defined. The usage

of these predefined substances’ data is very simple. In

the parameter dialog of the chemical substance, the cor-

rect record with this data can be selected, as shown in

Figure 1.

This setting is typically the most important setting of

each chemical model. All equilibrium coefficients,

standard voltages, dissolution coefficients, saturated va-

por pressures, etc., are automatically solved using these

substance data. As a result, for example, the chemical

reaction component only needs to define the stoichiom-

etry coefficients, and the connected substances reach

equilibrium.

As a result of fundamental relations, the solution of

chemical substances contains enthalpy, entropy and in-

ternal energy. These properties can be

represented also as Media of MSL 3.2 (e.g. Inter-

faces.SimpleChemicalMedium). Having solution as ho-

mogenous mixture of one state of matter there is an op-

tion to use the Fluid connectors and components of MSL

3.2 using Chemical library component named Compo-

nents.FluidAdapter. The FluidAdapter can connect each

substance of the solution with the fluid port, which rep-

resent the stream of the whole solution (e.g. Exam-

ples.FluidAdapter2).

3 Example of the Lead-Acid Battery

The lead-acid electrochemical cells are characterized by

two chemical reactions:

PbO2 + HSO4
- + 3 H+ +2 e- ↔ PbSO4 + 2 H2O (1)

Pb + HSO4
- ↔ PbSO4 + H+ + 2 e- (2)

The building of one cell of a lead-acid battery starts with

the definition of three solutions: two for the lead elec-

trodes and one for the liquid-acid solution (Figure 2A).

This can be done by dragging and dropping the library

class ‘Components.Solution’ into the diagram. We

called the first instance “cathode”, the second “solution”
and the last “anode”. We set the parameter ‘Electri-

calGround’ as “false” for all of these solutions in order

to attain the possibility of non-zero voltages. Now we

can specify the chemical substances inside the chemical

solutions. We drag and drop the library class ‘Compo-

nents.Substance’ into the “solution” as chemical sub-
stances (Figure 2B). H2O(liquid), H+(aqueous) and

HSO4
-(aqueous) representing the liquid aqueous solu-

tion of sulfuric acid. PbSO4(solid) and PbO2(solid) are

placed in the “cathode”, representing the elements of the

positive electrode. The substances Pb(solid) and aP-

bSO4(solid) are placed into the “anode”, representing

the elements of the negative electrode. All of these sub-

stances must be given unique names (e.g., “PbSO4” for
the cathode and “aPbSO4” for the anode), because the

Modelica language does not support two instances with

the same name in a single class.

As mentioned above, the appropriate substance data

for all these substances must be

selected as predefined parametric records, e.g., ‘Exam-
ples.Substances.Water_liquid’, ‘.Lead_solid’,
‘.Lead_dioxide_solid’, ‘.Lead_sulfate_solid’, and so on.
The last, very special substance to

be included is an electron. This class is called ‘Compo-
nents.ElectronTransfer’ and it must be added in order
for each electrode to transfer electron from the chemical

reaction to the electric circuit (Figure 2C). Each of these

substances must be connected to the appropriate solu-

tion using a solution port situated in the bottom of the

component’s icons to indicate that they are all mixed in
the solution. By having all these substances, it is possi-

ble to implement the chemical reactions. Dragging and

dropping the library class ‘Components.Reaction’ for
both chemical reactions, and setting their parameters as

an appropriate number of reactants, products and stoi-

chiometry, allows the connection of each substance with

the reaction, as expressed in reaction (1) and reaction

(2). This setting can be done using the parameter dialog

of the cathode chemical reaction (1) as there are four

types of substrates (nS=4) with stoichiometric coeffi-

cients: one for the first and second reactant, three for the

third reactant and two for the fourth reactant

(s={1,1,3,2}). There are also two types of products

(nP=2) with stoichiometry: one for PbSO4 and two for

water (p={1,2}), following the chemical scheme of the

first chemical reaction above. After setting the number

of reactants and products, it is possible to connect the

substances with reactions. Each instance of reaction has

an array of connectors for substrates and an array of con-

nectors for products; the user must be very careful to

connect each element of these arrays in the same order

as defined by stoichiometric coefficients. This means

that, for example, the water must be connected in index

2 to products of the first chemical reaction, because we

had already selected the order of products by setting the

array of stoichiometric coefficients in reaction (1). The

chemical reaction (2) must be set analogically as nS=2,

nP=3, p={1,1,2} with connections of substance ports of

Pb to substrate[1], HSO4
- to substrate[2], PbSO4 to prod-

uct[1], H+ to product[2] and e- to product[3], as repre-

sented in Figure 2D.

The electrochemical cell has already been imple-

mented at this stage. However, the simulation requires

the initial state of substances, which for the fully

charged battery means that almost all elements of the

cathode are PbO2 and almost all elements of the anode

Session 4C: Novel Modelica Applications and Libraries

DOI
10.3384/ecp15118359

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

361

are Pb. In this state, the sulfuric acid can be concen-

trated, which increases the effectiveness of the electro-

chemical cell. To set this state, it is possible to just dou-

ble-click on PbO2 and Pb and set the amount, e.g., 1mol.

To set the pure concentrated sulfuric acid we can also

set the amount of SO4
- and H+ as 1mol. This fully

charged ideal state is ready to simulate when it is con-

nected to the electric ground via one of the electric ports

of the one electron transfer component.

These batteries can be connected to any electrical cir-

cuit that is slowly discharging. For example, if we only

connect the simple electric resistance of 1 Ohm as ex-

pressed in Figure 2D, then the simulation of the dis-

charging process over 13 hours and 45 minutes gives the

results of electric current and electric potential, as can

Figure 2. The building of one electro-chemical cell of a lead-acid battery in four steps: A) adding chemical solutions, B)

adding chemical substances, C) adding electron transfers and D) adding chemical reactions.

Figure 3. Discharging simulation of the lead-acid battery

cell from Figure 2D, with the initial amount of substances

as described in the text.

Free Modelica Library for Chemical and Electrochemical Processes

362 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118359

be seen in Figure 3. The exchange of the resistor with a

voltage source can simulate the charging process for a

discharged cell.

4 Example of the Hydrogen Burning

In contrast with oxidation-reduction reactions, describ-

ing processes in lead-acid electrochemical cells, the gas-

eous reaction of burning hydrogen is very simple:

2 H2 + O2 <-> 2 H2O (3)

However, this reaction generates a large amount of en-

ergy which can be used for mechanical or thermal pur-

poses.

Building this model (Figure 4) using the Chemical li-

brary is very easy. First, we drag and drop the library

class ‘Components.Solution’ into the diagram of our

new model, labeled ‘idealGas’ in Figure 4. In parameter

dialog of this solution we check “useThermalPorts” and
“useMechanicsPorts” to enable the thermal and me-
chanical interface. In the same dialog we need to set the

area of the piston (e.g., 1 dm2), where the pressure pro-

vides the force of the green mechanical port of the up-

permost side. The next parameter is the ambient external

pressure surrounding the system (e.g., 1 bar). All three

chemical substances of the reaction (1) can be added by

dragging and dropping the library class ‘Compo-

nents.Substance’. Because this model uses gases, the

state of matter must be changed to some gas, such as the

ideal gas prepared as ‘Interfaces.IdealGas’. The sub-

stance data must be selected to define the appropriate

substances such as ‘Hydrogen_gas’, ‘.Oxygen_gas’ and

‘.Water_gas’ in package ‘Examples.Substances’. In ad-

dition, the initial amounts of substances can be prepared

for the ideal solution of hydrogen and oxygen gases at a

ratio 2:1 to attain the chemical equation above, with the

expectation that at the end of the burning process, only

water vapor would be presented. Therefore, the initial

values of H2 particles could be set to 26 mmol and of O2

particles as 13 mmol. All substances must be connected

with the ‘idealGas’ using the blue colored solution port

situated on the bottom side of each substance and solu-

tion. Then, the chemical reaction is inserted into the di-

agram of this model as library class ‘Components.Reac-

tion’, and it is set to two substrates (nS=2) with stoichi-

ometry s={2,1} and one product with stoichiometry

p={2} to represent the reaction (3). The substances are

then connected using violet colored substance connect-

ors with appropriate indexes: H2 to substrates[1], O2 to

substrates[2] and H2O to products[1]. At this point, the

Figure 4. A hydrogen-burning piston with the spring

above the piston and cooling to provide an environment

with a constant temperature.

Figure 5. Simulation of the hydrogen-burning experiment

in Figure 4. The initial phase of the explosion occurs very

rapidly — the temperature reaches immediately 3600°C
from 25°C and the pressure reaches 10 bars from 1 bar.

This pressure and this temperature are generated because

of a very strong spring, which allows the volume to

change only by about 8% during the explosion.

Session 4C: Novel Modelica Applications and Libraries

DOI
10.3384/ecp15118359

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

363

model is prepared to simulate the conditions of an un-

connected heat port and an unconnected mechanical

port. This simulation reaches the theoretical ideal of

thermally isolated (zero heat flow from/to the solution)

and isobaric (zero force generated on piston) conditions.

However, in the real world, there is always some ther-

mal energy flow from the solution, and this cooling pro-

cess can be connected using the thermal connector of the

Modelica Standard Library 3.2.1. For example, the sim-

ple thermal conductor of thermal conductance 2W/K at

a constant temperature environment of 25°C is repre-

sented in Figure 4. The mechanical power of the engine

can be connected to the robust mechanical model. How-

ever, in our example we selected only a very strong me-

chanical spring with a spring constant of 106 N/m to stop

the motion of the piston in order to generate the pres-

sure. This standard spring component is situated above

the solution in Figure 4. The results of this experiment

are shown in Figure 5.

5 Example of Chloride Shift

The mature red blood cell (erythrocyte) is the simplest

cell in the human body. Its primary function is the trans-

portation of blood gases, such as oxygen O2 (from the

lungs to tissues) and carbon dioxide CO2 (from tissues

to the lungs). The chemical processes behind the gases’

transportation are complex because the capacity of wa-

ter to transport their freely dissolved forms is very low.

To transport sufficient amounts of O2 and CO2, the gases

must be chemically bound to hemoglobin such as de-

scribed in (Mateják, et al., 2015) and/or transported as

different substances, which can be present in water in

much higher concentrations than their freely dissolved

forms allow. Therefore, to transport a sufficient amount

of CO2, it must be changed to HCO3
- using the chemical

reaction:

CO2 + H2O <-> HCO3
- + H+ (4)

This reaction takes place mainly inside the red blood

cell, because only here it is presented with the enzyme

carbonic anhydrase. Therefore, the increase of total car-

bon dioxide content of blood in tissues and its decrease

in lungs are always connected with the chloride shift be-

tween blood plasma and the intracellular fluid of eryth-

rocytes, as represented in Figure 6.

The blood plasma and intracellular fluid are divided

by the cellular membrane composed of a special, very

compact lipid double-layer. A lipophobic compound

(not soluble in lipids) cannot cross the membrane with-

out special proteins called membrane channels. Even

water molecules must have membrane channels (called

aquaporins) in order to cross the cellular membrane. In

Figure 6. Chloride shift with carbon dioxide hydration with assumption of non-bicarbonate linear acid-base buffer-

ing properties of plasma and erythrocytes.

Free Modelica Library for Chemical and Electrochemical Processes

364 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118359

addition, the chloride shift (also known as the Ham-

burger shift) is exchanging an aqueous chloride Cl- for

an aqueous bicarbonate HCO3
- in both directions across

the cellular membranes of red blood cells using the

membrane channel “Band 3”. Each passive membrane

channel only allows the equilibration of the electro-

chemical potentials of the specific permeable ions on

both sides of membrane. The different electric potentials

on each side of membrane allow their different concen-

trations to achieve equilibrium.

Conversely, the solution’s equilibrium of different

ions’ compositions on both sides of the membrane cre-
ates the measurable electric membrane potential. This

process is not so intuitive, because even though neither

solution needs to have an electric charge, there can be a

non-zero electric potential for permeable ions. This po-

tential for permeable ions at equilibrium is called the

Nernst membrane potential and, in the Chemical library,

it is a direct mathematical result of the equality of the

electrochemical potential of the ion in both solutions.

The intracellular solution must be set at the possible

nonzero electric potential (ElectricalGround=false) be-

cause, as a result, the membrane potential of the eryth-

rocytes is calculated as -12mV, which agrees with ex-

perimental data by Gedde and Huestis (Gedde and

Huestis, 1997) in the electrolytes’ setting by Raftos et

al. (Raftos, et al., 1990).

In this way, it is possible to model more complex pro-

cesses of a membrane where chemical reactions of ac-

tive membrane channels or membrane receptors can

both be used.

6 Discussion

Nowadays, alternative free Modelica libraries for chem-

ical calculations exist, such as FCSys v0.2, FuelCellLib

1.0, Modelica_EnergyStorage v3.2.1, BioChem v1.2 or

our Physiolibrary v2.3. However, we are not satisfied

with these libraries, because none of them are based on

equilibrating electrochemical potentials. This lack

makes it difficult to establish real equilibria in electro-

chemical processes, and we believe that it is very diffi-

cult to implement any kinetics without realistic equilib-

ria.

This new chemical library is more suited to under-

standing the detailed electrochemical environment of

human cells and cellular electrochemical processes, a

task at which the Physiolibrary failed. For example, we

found that the equilibrium of osmolarities (as validated

and verified for macroscopic and capillary membranes)

was not in good agreement with measured data of cellu-

lar membranes. The real data of human blood include

the total molarity of plasma at 289 mmol/L and the mo-

larity of intracellular space of erythrocytes at 207

mmol/L at osmotic equilibrium, as presented by Raftos

et al. (Raftos, et al., 1990). These values are definitely

not the same, and the explanation for these dispropor-

tions can be found in physical chemistry (Mortimer,

2008). However, when the electrochemical potential

from the original data was calculated, it was found that

electrochemical potential is in equilibrium instead of a

state of osmolarity. Therefore, equilibrating the electro-

chemical potential instead of osmolarity can help us to

describe each type of membrane and each type of sub-

stance, reaching the expected values as measured in os-

motic experiments for both organ and cellular mem-

branes.

The library is usable for any chemical or electro-

chemical process. However, chemical kinetics are not

yet seriously validated, so the only assumption is, that

the equilibrating time of chemical processes is by orders

of magnitude shorter than of other connected domains.

Testing has been done through examples in examples

package in Dymola 2015.

The mentioned examples, together with many others

that have been processed, are implemented and tested in

the ‘Example’ package of the library. They are the defi-

nition of a very simple and general chemical reaction

and also the complex models, such as: the heating of wa-

ter solutions, an exothermic reaction, the vaporization of

water, O2 and CO2 gas solubility in aqueous solutions,

an enzymatic reaction, a Harned cell (such as the typical

pH measurement of an electrochemical cell), water self-

ionization, carbon dioxide in a water solution, inorganic

phosphate in a water solution, the albumin (blood

plasma protein with 218 sides for the binding of H+) ti-

tration model by Figge-Fencl and allosteric models of

hemoglobin oxygenation by Monod-Wyman-

Changeux. All of these examples illustrate usage of the

chemical library’s components, such as the chemical so-

lution, chemical substance and chemical reaction.

We hope, that with reference to the tabulated thermo-

dynamic properties of organic substances, it should be

also possible to implement even a complex metabolic,

regulations and neural pathways of human physiology

using this Chemical library.

7 Acknowledgements

The authors appreciate the partial funding of this

work by PRVOUK P/24/LF1, SVV 260157/2015 and

FR Cesnet 551/2014.

References

Casella, F., et al. The Modelica Fluid and Media library for

modeling of incompressible and compressible thermo-

fluid pipe networks. In, Proceedings of the Modelica

Conference. 2006. p. 631-640.

Donnan, F.G. Theorie der Membrangleichgewichte und

Membranpotentiale bei Vorhandensein von nicht

dialysierenden Elektrolyten. Ein Beitrag zur

physikalisch-chemischen Physiologie. Zeitschrift für
Elektrochemie und angewandte physikalische Chemie

1911;17(14):572-581.

Session 4C: Novel Modelica Applications and Libraries

DOI
10.3384/ecp15118359

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

365

Gedde, M.M. and Huestis, W.H. Membrane potential and

human erythrocyte shape. Biophys. J. 1997;72(3):1220.

Hester, R.L., et al. HumMod: a modeling environment for

the simulation of integrative human physiology. Front.

Physiol. 2011;2.

Kofránek, J., Mateják, M. and Privitzer, P. HumMod -

large scale physiological model in Modelica. In, 8th

International Modelica Conference. Dresden,

Germany; 2011.

Kulhánek, T., et al. Distributed computation and parameter

estimation in identification of physiological systems.

In, VPH conference. 2010.

Mateják, M. Physiology in Modelica. Mefanet J

2014;2(1):10-14.

Mateják, M. and Kofránek, J. HumMod–Golem Edition–
Rozsáhlý model fyziologických systémů. Medsoft

2011:182-196.

Mateják, M., Kulhánek, T. and Matoušek, S. Adair-based

hemoglobin equilibrium with oxygen, carbon dioxide

and hydrogen ion activity. Scand. J. Clin. Lab. Invest

2015;75(2):113-120.

Mateják, M., et al. Physiolibrary - Modelica library for

Physiology. In, 10th International Modelica

Conference. Lund, Sweden; 2014.

Mortimer, R.G. Physical Chemistry (Third Edition). In:

Mortimer, R.G., editor. Burlington: Academic Press;

2008. p. 1-1385.

Raftos, J.E., Bulliman, B.T. and Kuchel, P.W. Evaluation

of an electrochemical model of erythrocyte pH

buffering using 31P nuclear magnetic resonance data.

The Journal of general physiology 1990;95(6):1183-

1204.

Free Modelica Library for Chemical and Electrochemical Processes

366 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118359

Modeling Biology in Modelica: The Human Baroreflex

Christopher Schölzel1 Alexander Goesmann2 Gernot Ernst3 Andreas Dominik1

1KITE, Technische Hochschule Mittelhessen, Giessen, Germany,
{christopher.schoelzel,andreas.dominik}@mni.thm.de

2Justus Liebig University Giessen, Giessen, Germany
3Vestre Viken Hospital Trust, Kongsberg, Norway

Abstract

Systems biology is a field that requires complex multi-
scale models of systems that are evolved rather than en-
gineered. No unifying theory exists for biology as it does
for engineering domains. Thus, models appear in very
diverse forms. Components can be genes, cells, organs
or even whole ecosystems. These components can in-
tuitively be represented as classes in an object-oriented
language, making systems biology a perfect application
for Modelica. However, we still only see very few mod-
els from this domain. In an attempt to change this, we
show that Modelica can exactly reproduce the simulation
results of a reference implementation of an established
biological model of the human baroreflex. Our imple-
mentation highlights the strengths of Modelica like the
event finding mechanism, which makes the model more
precise. We also show that biological systems pose in-
teresting challenges like signals with non-uniform delays
and the interaction of complex rhythms.
Keywords: systems biology, baroreflex, cardiovascular

system, heart rate variability

1 Introduction

Biological systems are complex, dynamic and packed
with feedback loops. Even small academic examples of
systems that exhibit these properties are very hard to un-
derstand and analyze for humans without proper tools
(Voit, 2013, pp. 8–10). Recent support comes in form of
mathematical models, forming the field of systems biol-
ogy. A strong mathematical foundation can help where
intuition fails and indeed there are now projects such
as the Virtual Liver Network (Holzhütter et al., 2012),
the Blue Brain Project (Markram, 2006) or the Physiome
Project (Hunter et al., 2002) that are on the way of build-
ing comprehensive multi-scale models for complete hu-
man organs.

In all of these projects, communication between mod-
els at different scales of time and space is a key chal-
lenge. Low-level models of biochemical reactions have
to be integrated into models on the cellular level which

then again need to be composed together to reach the
desired level of abstraction. This is made more diffi-
cult by the fact that there exists no unifying theory in
biology as it does in other domains such as electrical
engineering (Voit, 2013, pp. 413–415). It is often not
possible to build biological models as a bottom-up ap-
proach from the biochemical or genetic level, because
too much is still unknown. For example, even when
we narrow down the problem to these two lowest lev-
els we still only begin to understand the role of long
noncoding RNAs (Ponting et al., 2009) or glycoproteins
(Ranzinger and York, 2012) in the regulation of cellu-
lar processes. Instead, researchers such as Denis Noble
suggest a “middle-out” approach, that starts at the layer
of abstraction where most experimental data is available
(Noble, 2002).

There exist projects that aim to provide a common lan-
guage for biological modeling, the most prominent being
the Systems Biology Markup Language (SBML). SBML
is an XML-based description format for models featuring
the biochemical concept of different substances (called
species) and reactions that modify the quantity of these
substances. Support for the SBML is widespread in the
systems biology community, but two main factors limit
its usefulness for multi-scale modeling and the middle-
out approach. Firstly, SBML is a data format and not a
programming language. Mathematical formulas have to
be specified in MathML which is not a human-readable
format. Therefore, often multiple tools are needed for the
generation and simulation of SBML models. Secondly,
SBML is specifically designed for modeling biochemi-
cal processes which enforces a bottom-up approach and
makes it impossible to start the modeling process at a
higher level of abstraction. Other languages that are cur-
rently used in systems biology include numerical com-
puting environments like Matlab and Mathematica, and
general purpose programming languages like C. These
languages all have sufficient expressive power and flex-
ibility to start the modeling process at any layer of ab-
straction, but they also come with a lot of cognitive over-
head. Scientists interested in modeling biological sys-
tems, such as physicians or biologists, have to build their
equation systems and solve them by hand, or fit them

DOI
10.3384/ecp15118367

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

367

into a specific structure for existing implementations of
the desired solver. As a result, the structure of the model
is fitted to the programming platform instead of the other
way around. It also makes the model harder to under-
stand and discuss both for language experts that are not
familiar with the modeled system and biologists that are
not familiar with the specific language constructs. Es-
pecially with large equation systems, one has to put a
lot of effort into structuring his code to preserve a clear
distinction between different components of the modeled
systems, let alone different abstraction layers of one and
the same component.

Modelica offers an elegant solution for these prob-
lems. As an object-oriented language it makes the en-
capsulation of subsystems into larger components intu-
itive and thus highly facilitates multi-scale modeling. At
the highest level, a Modelica model may present cells or
entire organs as components with a clear interface that
hides the details of the implementation at lower levels. If
desired, however, a user of the model always has the pos-
sibility to inspect a component and dig one level deeper
to look at the subsystems constituting the organ or cell.
In theory, this makes it possible to build arbitrarily deep
nested structures without overwhelming the model user
with too much detail at a single level. Additionally, the
declarative acausal nature of Modelica allows to write
most formulas verbatim in the same way as they may ap-
pear in the mathematical definition of the model. This
greatly reduces the cognitive overhead necessary to un-
derstand, maintain and extend an existing model.

Some projects already use Modelica for tasks related
to systems biology. The BioChem library allows to trans-
late SBML models to Modelica and vice versa offering a
starting point for system biologists interested in Model-
ica (Nilsson and Fritzson, 2005). Additionally the Phys-
iolibrary by Mateják et al. (2014) and the HumanLib by
Brunberg and Abel (2010) are both targeting the model-
ing of the human physiology. Yet, when we looked at
three recent systems biology textbooks, we did not find
any reference to Modelica (Voit, 2013; Klipp et al., 2011;
Kremling, 2012), although one of these books featured a
list of over 80 tools for modeling in systems biology, in-
cluding Matlab, Mathematica, SBML and a variety of
application-specific SBML tools (Klipp et al., 2011).

In our opinion not only system biologists can bene-
fit from Modelica, but also the field of systems biology
provides interesting challenges for Modelica modelers.
In contrast to most other application areas of Modelica,
biological systems are evolved rather than engineered.
Specifically, this means that there is usually a high level
of complicated communication between multiple parts
of the system and that these interactions are not always
straightforward. One major example is the the “central
dogma” of molecular biology. It states that every as-
pect of a living system can be explained starting from the
DNA which is translated to proteins. These proteins then
carry out some function in the system, but do not change

the genetic code. This is a natural assumption that would
seem intuitive to an engineer or computer scientist: A
source code defines programs regulating the behavior of
a system. However, the study of epigenetics shows that
there are many factors that can influence gene expression
and thus change the way in which the DNA-code is read
(Holliday, 2006). To make things more difficult, there is
no moment in the life of an organism where a cell is con-
structed from nothing but DNA. Even a single fertilised
egg cell still has not only inherited the DNA from its
parents but also all of the other biochemical substances
in this cell.

Therefore, when we build models of biological sys-
tems, we might encounter unusual connection patterns
between components. These new types of problems may
indicate areas, where Modelica still can be improved. As
an additional argument for the study of biological mod-
els, the field of systems biology spans a large area of in-
teresting and relevant topics, from the modeling of brain
activity to finding diagnosis criteria and treatments for
cardiac diseases, diabetes or cancer to the modeling of
whole ecosystems like oceans (Voit, 2013, pp. 399–415).
The potential of applying mathematical modeling to bio-
logical systems is vast, and with Modelica we can facili-
tate the generation of new insights.

With this paper we want to take a further step towards
bringing together Modelica modelers and systems biol-
ogists. We show that it is not only possible to convert
SBML models to Modelica with the BioChem library
or build physiological models from predefined compo-
nents with the Physiolibrary, but also to implement a
biological model in Modelica directly from the mathe-
matical description. As a proof of concept, we therefore
implemented an established model of the human barore-
flex by Seidel (1997) in Modelica and compared it with
the original implementation of Seidel written in C. An
introduction to the Seidel-Herzel model (SHM) will be
given in section 2. The two implementations of the SHM
– hereinafter called SHM-M for our Modelica version
and SHM-C for Seidels C implementation – will both
be described in section 3. To demonstrate that Modelica
is indeed flexible enough to precisely reflect the math-
ematical description of the model, we directly compare
the output of SHM-C and SHM-M in section 4 followed
by a discussion of the results in section 5. There we
also demonstrate that biological models like the SHM
fit nicely into the modeling paradigms of Modelica and
highlight some interesting challenges of the implemen-
tation process. Finally, a short conclusion can be found
in section 6.

2 The Seidel-Herzel model

The Seidel-Herzel model (SHM) is a model of the hu-
man baroreflex that was created by Henrik Seidel and
Hanspeter Herzel and first published in 1995 with the

Modeling Biology in Modelica: The Human Baroreflex

368 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118367

main purpose of analyzing heart rate variability (HRV)
(Ernst, 2014). There are two main reasons why we chose
this model as example for a typical biological system that
can be implemented in Modelica: Firstly, although the
cardiovascular system is well researched, heart diseases
are still the most common cause of death worldwide
(Naghavi et al., 2014). This means that models like the
SHM are still relevant and may even help towards finding
diagnostic criteria for heart-related diseases. The second
reason to choose the SHM over other models of the hu-
man heart was that it is rather compact but still covers the
effects of multiple organs. The doctorate thesis of Seidel
contains the most recent version of the model, which has
24 equations and 52 parameters (Seidel, 1997).

Although there is another publication by Seidel et

al. from 1998 (Seidel and Herzel, 1998), we used this
version because it features several improvements of the
model that were not present in the journal publication.
In the following, we will give a short introduction into
the components of the SHM and also explain its rele-
vance in literature. For a more detailed explanation of
the formulas, the reader is referred to Seidel’s doctorate
thesis (Seidel, 1997). This version of the SHM consid-
ers the physiological effects of the baroreceptors in the
blood vessels, the autonomic nervous system, the lung,
the sinus- and av-nodes, the heart itself and the Wind-
kessel arteries. It does not introduce different compart-
ments in the blood system but instead models the arterial
blood pressure as a single physical quantity.

2.1 Baroreceptors

Baroreceptors are the sensory neurons measuring the
pressure in a blood vessel. The basic neural firing fre-
quency of the baroreceptors νb in the SHM is calculated
with the following formula.

ν ′
b(t) = p− p

(0)
b + k

d p
b

d p

dt
(1)

This includes the effects that baroreceptors respond to
the static blood pressure level p as well as to an increase
or decrease in blood pressure and that they only respond

to blood pressure levels above a threshold p
(0)
b . The pa-

rameter k
d p
b is a scaling factor to adjust the relative influ-

ence of the blood pressure slope.
To account for the saturation effect of baroreceptors,

this value is passed through the saturation function

νb(t) = pc0
b

(

1+ tanh

(

ν ′
b(t)− pc0

b

pc0
b

))

(2)

pc0
b = pc

b − p
(0)
b (3)

where pc
b is a scaling parameter to adjust the maxi-

mum of the saturation function, which lies at 2pc0
b .

In a living organism, however, the signal of barore-
ceptors at different parts of the body reach the autonomic
nervous system (ANS) at different time instants. This ef-
fect is modeled in the SHM with a broadening function
that is additionally applied to the saturated baroreceptor
response.

ν̃b(t) =

∞
∫

−∞

g(t − τ) νb(τ) dτ (4)

g(t) =

{

0 for t ≤ 0
1
σ χ2

2+ η
σ

(

t
σ

)

for t > 0
(5)

In this equation χ2
n is the probability distribution func-

tion of the chi squared distribution and σ and η are scal-
ing parameters to adjust the broadening range.

2.2 Lung

The Lung influences the heart rate both through neural
signals and the mechanical pressure in the thorax. The
SHM assumes a constant breathing rate that is only mod-
ified by a noise term. The activity of respiratory neurons
νr(t) is given by

νr(t) =
1
2
(1− sin(2πφr(t))) (6)

φr(t) =
t − (tr,i −θr)

Tr,i
(7)

where tr,i is the beginning of the last inspiration phase
and θr is a phase shift parameter that determines the time
between the firing of respiratory neurons and the actual
mechanical movement of the lungs.

The mechanical respiratory influence fm(t) is defined
similarly by the following equation.

fm(t) =−sin(2πφr(t −θr)) (8)

Even during voluntarily controlled breathing, the
breathing rate of a human is always subject to fluctua-
tions. Seidel models these fluctuations by introducing a
noise term which is applied to the mean breathing rate T̄r

at each breathing cycle with an autoregressive function.

Tr,i = kTr T̄r + k
last,1
Tr

Tr,i−1 + k
last,2
Tr

Tr,i−2 +σTr ξ (9)

kTr = (1− k
last,1
Tr

− k
last,2
Tr

) (10)

In this formula, Tr,i is the breathing period at the ith
breathing cycle; k

last,1
Tr

and k
last,2
Tr

are parameters that de-
termine the influence of the last and second last breathing
period on the current period; and σTr is the amplitude of
the white noise ξ .

Session 4C: Novel Modelica Applications and Libraries

DOI
10.3384/ecp15118367

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

369

2.3 Autonomic Nervous System

The autonomic nervous system (ANS) consists of the
sympathetic and the parasympathetic system. The
sympathetic system increases the heartbeat frequency
through the release of norepinephrine as neurotransmit-
ter (via synapses) and as Hormone (via the blood ves-
sels). The parasympathetic system has inhibitory influ-
ence on the heartbeat frequency through the release of
the neurotransmitter acetylcholine.

The formulas for the neural activity of the sympathetic
system νs and the parasympathetic system νp therefore
only differ by the sign with which the baroreceptor ac-
tivity enters the equation.

ν ′
s(t) = ν

(0)
s −

(

1+ kbr
s νr(t)

)

ν̃b(t)+ kr
sνr(t) (11)

ν ′
p(t) = ν

(0)
p +

(

1+ kbr
p νr(t)

)

ν̃b(t)+ kr
pνr(t) (12)

νs(t) = max(0,ν ′
s(t)) (13)

νp(t) = max(0,ν ′
p(t)) (14)

Both equations have a base firing rate ν
(0)
s/p

and scaling

parameters kr
s/p

for the respiratory influence and kbr
s/p

for
the correlation between the activity of the baroreceptors
and the respiratory neurons.

2.4 Substance Concentrations

The SHM models several concentrations of neurotrans-
mitters and hormones. The concentration of nore-
pinephrine at the sinus node (csNe) directly influences
the pacemaker phase together with the concentration of
acetylcholine (csAc) at the sinus node. Additionally, nore-
pinephrine can also act as a hormone. The ventricular
concentration cvNe in the heart itself increases the con-
tractility (force of the contraction). The concentration in
the Windkessel arteries cwNe increases the stiffness of the
vessel walls, resulting in a higher blood pressure during
the diastole.

The release of this concentration is triggered by one
neural signal and can be inhibited by another neural sig-
nal. For norepinephrine the excitatory signal comes from
the sympathetic system while the parasympathetic sys-
tem inhibits the release. For acetylcholine the parasym-
pathetic system is the excitatory part and there is no in-
hibition modeled. Both inhibitory and excitatory signals
only take effect after a delay θ x

c and are subject to satu-
ration. This leads us to the following equations

exx
c(t) = inx

c(t) = tanh(kx
c νx(t −θ x

c)) (15)

τsNe

dcsNe

dt
=−csNe(t)+ exs

sNe(t) (1− inp
sNe(t)) (16)

τvNe

dcvNe

dt
=−cvNe(t)+ exs

vNe(t) (1− inp
vNe(t)) (17)

τwNe

dcwNe

dt
=−cwNe(t)+ exs

wNe(t) (1− inp
wNe(t)) (18)

τsAc

dcsAc

dt
=−csAc(t)+ exp

sAc(t) (19)

where the τc and the kx
c are scaling parameters for the

overall slope of the concentrations cc(t) and the influence
of the inhibitory or excitatory signal.

2.5 Sinus Node

The sinus node is the main pacemaker of the heart. In
the SHM it is modeled with the pacemaker phase φ(t)
which generates a sinus signal when its value becomes
one and is then directly reset to zero. The rate of the
pacemaker phase increases with an increased concentra-
tion of norepinephrine and decreases with an increase
in acetylcholine. The latter is additionally modified by
a “phase-effectiveness curve” F(φ), because the effect
of the parasympathetic signal on the pacemaker changes
with the phase of the heart cycle. The resulting behavior
is given by the following formula

dφ

dt
=

1

T (0)

(

1+ ksNe
φ csNe(t)− ksAc

φ csAc(t)
F(φ(t))

F̄φ

)

(20)

F̄φ =

1
∫

0

F(φ)dφ (21)

F(φ) = φ 1.3(φ −0.45)
(1−φ)3

(1−0.8)3 +(1−φ)3 (22)

where T (0) is the duration of the heart cycle without
any input from the ANS and ksNe

φ and ksAc
φ are scaling pa-

rameters for the influence of the concentrations of nore-
pinephrine and acetylcholine.

The heart period of a human is always subject to ad-
ditional fluctuations that do not originate from breathing
or the signals of the ANS. These influences can be im-
plemented by replacing the parameter T (0) with a noisy

base period T
(0)

n , which varies with the heartbeat number
n similarly to the respiratory base period in Equation 9.

T
(0)

n = T̄ (0)+ klast
T (0)(T

(0)
n−1 − T̄ (0))+σ

T (0)ξ (23)

2.6 Contraction Model

Not every sinus signal generates a heartbeat and not ev-
ery heartbeat is triggered by a sinus signal. On the one
hand, if there is no sinus signal for a prolonged time pe-
riod, the atrioventricular node (AV node) will trigger a

Modeling Biology in Modelica: The Human Baroreflex

370 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118367

contraction by itself. This is represented by the param-
eter Tav so that a contraction is triggered if more than
Tav seconds have passed since the last contraction at time
tc,n. On the other hand, a sinus signal does not immedi-
ately correspond to the beginning of a contraction. There
is an atrioventricular concudtion delay Tavc,n that passes
from the firing of the sinus node (which is located at the
atrium) at time ts,n to the contraction of the ventricles. It
depends on the time that has passed since the last con-
traction at tc,n. Additionally, the sinus node has a refrac-
tory period Trefrac during which no new signal may be
generated. Combining these two effects, we receive the
following equation for atrioventricular conduction time.

Tavc,n =

{

T
(0)

avc + kt
avce

−
(ts,n−tc,n)

τavc if ts,n − tc,n > Trefrac

∞ else
(24)

In this equation T
(0)

avc is the base value for the atrioven-
tricular conduction time, kt

avc is a scaling parameter for
the influence of the time that has passed since the last
contraction and τavc is a reference value for the atrioven-
tricular conduction time.

2.7 Heart

The final components of the SHM are the contraction of
the heart and the Windkessel arteries that are responsible
for the blood pressure increasing during the systole and
decreasing during the diastole. The switch between sys-
tole and diastole is modeled explicitly by a fixed systole
duration of τsys. During the systole from tc,n to tc,n + τsys

the blood pressure follows the equations

d p

dt
=

1
τsys

Sn

C
(1−φsys(t)) e1−φsys(t) (25)

φsys(t) =
t − tc,n

τsys
(26)

where C is a scaling constant for the contractility Sn.
The value of Sn is determined at the beginning of the
systole at tc,n as follows.

Sn = S(0)+
(

kvNe
S cvNe(tc,n)+ km

S fm(tc,n)
)

S(Tn−1)

(27)

S(Tn−1) =

(

1−

(

1−min

(

1,
tc,n − tc,n−1

T̂

))2
)

(28)

During the diastole, the equation for the blood pres-
sure switches to the following formula that accounts for
the effect of the Windkessel arteries. These arteries di-
rectly connected to the heart are elastic and act as a

dampening system. During the systole they “store” blood
by expanding the blood vessels. During the diastole they
contract back to their original state slowly releasing the
stored blood.

d p

dt
=

−

(

p− p
(0)
w

)

τw(t)
(29)

τw(t) = τ
(0)
w + kwNe

w cwNe(t) (30)

In this formula p
(0)
w is the minimum blood pressure

that is still present even if the Windkessel arteries are

fully relaxed and the heart does not pump, τ
(0)
w is a base

value for the time needed for the Windkessel arteries to
fully relax, and kwNe

w is a scaling factor for the influence
of the norepinephrine concentration in the arteries on this
relaxation time.

2.8 Physiological Relevance

The SHM is able to reproduce several characteristics of
complex heart rate dynamics. The first and most obvi-
ous effect are fluctuations of the heart rate with the fre-
quency of breathing cycles called respiratory sinus ar-
rhythmia (RSA). This behavior is not surprising as it
is directly built into the model with the definition of νr.
A more interesting observation is that the model also
exhibits fluctuations with a period of approximately 10
seconds, which also corresponds to a physiological phe-
nomenon called Mayer waves (Seidel and Herzel, 1995).
When investigating the reaction of the model to changes
in parameter values, Seidel and Herzel (1998) also found
bifurcations related to the sympathetic and parasympa-
thetic delays, the baroreceptor sensitivity and repetitive
vagal stimulation. The observed dynamical properties
were in good agreement with patients with baroreceptor
hypersensitivity and animal experiments. However, re-
sults by Duggento et al. (2012) show that these bifurca-
tions can actually be triggered by most parameters of the
model. They suggest that the model should be reparam-
eterized to make all modeled variables physiologically
plausible, and assume that this could lead to a “‘unifying
theory to account for slow oscillation’ in cardiovascular
variability”.

Kotani et al. (2002) extended the model by noise and
more detailed respiratory influences. They showed that
the model can explain the synchronization between the
heartbeat and the breathing frequency observed in hu-
mans (Kotani et al., 2002). In a later study they also
found that the (modified) SHM could produce statisti-
cally valid simulations of congestive heart failure and
primary autonomic failure – diseases that are known to
affect the parasympathetic and sympathetic neural activ-
ity (Kotani et al., 2005).

To sum up, we can say that the SHM is able to pro-
duce physiologically plausible simulations of character-

Session 4C: Novel Modelica Applications and Libraries

DOI
10.3384/ecp15118367

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

371

istics of both healthy patients and several disease condi-
tions. Its potential may not have been fully exploited yet,
making our implementation a possible start for future in-
vestigations.

3 Implementations and Simulation

Setup

Thanks to Henrik Seidel we were able to use his origi-
nal implementation (SHM-C) as reference for our Mod-
elica implementation (SHM-M). It is written in C and
uses a self-implemented Runge-Kutta Method for solv-
ing the differential equations. The executable allows to
set starting values and parameters with a parameter file
and writes the simulation result to a CSV-file.

With our Modelica-version of the Seidel-Herzel-
model we wanted to reproduce the output of SHM-C
as closely as possible, while still retaining the object-
oriented implementation style of Modelica. We divided
the formulas of the SHM according to the physiologi-
cal parts they represent to obtain small Modelica compo-
nents.

On the highest level SHM-M consists
of the models Baroreceptors, Sinus-

Node, Heart, Lung, SympatheticSystem,
ParasympatheticSystem, HormoneRelease

and NeurotransmitterRelease as well as the
compartment models BloodSystem, Hormone-

Amount and NeurotransmitterAmount. These
models are the entry points for users of SHM-M.
Therefore, we kept them as simple as possible by
encapsulating the broadening and saturation of the
baroreceptors, the contraction model of the heart and
the phase effectiveness function into the separate classes
Broaden, TanhSaturation, Contraction,
and PhaseEffectiveness. Additionally, due to
the similarities in equation 11 and 12 and equations
16–19, the models SympatheticSystem and
ParasympatheticSystem share a common base
class ANSPart and the models HormoneRelease

and NeurotransmitterRelease are even
functionally equivalent to their base class
SubstanceRelease only providing different
icons. A diagram of the full model can be seen in Figure
1.

Most of the connections between models in the SHM-
M are implemented as a set of causal input-/output-
connectors. The neural signals and the mechanical res-
piratory influence as well as the boolean trigger output
of the sinus node all have a clear physiological direc-
tion. The substance concentrations and the blood flow,
however, are implemented using acausal connectors with
flow variables. Actually this is not a mathematical re-
quirement, because both the substance concentrations
and the blood pressure are defined by a single equation in
only one component that could also be implemented with

causal connectors. However, physiologically the release
and uptake of substances are separate processes and the
blood pressure is influenced by both the Windkessel ar-
teries and the heart itself. For a more realistic represen-
tation of these physiological properties, future versions
of the model should therefore also separate these effects
mathematically, which will be easier to implement using
flow variables in the connectors.

With this structure, the implementation could mostly
be achieved by just transferring the mathematical for-
mulas directly to Modelica notation. Where approxi-
mations of the mathematical definition were necessary –
namely the broadening of the baroreceptor response with
a Green’s function – the same numerical algorithm used
in SHM-C was implemented as a function in Modelica.

The only components where a straightforward
implementation was not possible are the sub-
models Contraction and Broaden. The model
Contraction captures the interplay of the sinus
signal, refractory period and AV node and thus features
rather complicated expressions in when-conditions
involving discrete variables. In the current stable
version of the OpenModelica compiler (Version 1.9.1)
these discrete equation systems are not supported.
We therefore had to implement the contraction signal
using continuous variables in the when-condition as the
following code snippet shows.

when s i n u s _ p h a s e < 1 e−10 and s i g n a l
and r e f r a c _ c o u n t d o w n <= 0 then

T_avc = T_avc0 +

k _ av _ t ∗ exp (−T_passed / t a u _ a v) ;
c o n t r a c t i o n = s i n u s _ p h a s e > 1 or

av_phase > 1 ;
end when ;

This introduced several additional phase variables for the
atrioventricular conduction time, the refractory period
and the period of the AV node.

The major challenge regarding the model Broad is
the implementation of the convolution in Equation 4. We
found no better way to calculate this convolution than to
build an array with delay expressions of the baroreceptor
signal with the following loop:

f o r i in 1 : s i z e (h i s t , 1) loop

h i s t [i] = d e l a y (x , (i−1) ∗ s t e p , (i−1) ∗ s t e p) ;
end f o r ;

This implementation works as desired for small broaden-
ing lengths, but becomes extremely slow for larger val-
ues.

As a final difference between SHM-M and SHM-C
we did not implement the noise model for the breathing
frequency and the heartbeat duration, because this noise
would only complicate the comparison of the two mod-
els. Instead, to obtain comparable data, noise was also
disabled in SHM-C through parameter settings.

Modeling Biology in Modelica: The Human Baroreflex

372 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118367

Figure 1. Diagram view of the SHM-M implementation show-
ing the components of the model.

The simulation of our model was performed us-
ing OpenModelica. The Runge-Kutta method imple-
mented in OpenModelica uses the same classical RK4-
Parameters that are also used in SHM-C. Therefore we
only had to use the same step size and the same set of
starting values and parameters for the simulation to ob-
tain directly comparable results.

We used the standard parameter set by Seidel and only
adjusted the manually defined starting values in SHM-C
to match the starting values of SHM-M that were calcu-
lated by OpenModelica. The resulting parameter config-
uration can be seen in Table 1. We then did a simulation
with both models for 1000 seconds with a step size of one
millisecond and recoded the important values in steps of
ten milliseconds as well as the duration and end time for
each heartbeat.

4 Results

The SHM was designed for the analysis of heart rate vari-
ability. Therefore, to compare different implementations
it is most important to look at the duration of heartbeats
and the blood pressure. A direct comparison of the time
series for these physical quantities can be seen in Fig-
ure 2. For the blood pressure both curves have no visual
differences until 5 seconds after the start of the simula-
tion, when SHM-M starts to run ahead slightly. At the
end of the simulation, the situation is similar: The only
difference between the curves seems to be a time shift.
For the heartbeat duration the differences are already no-
ticeable at the first heart beat, which is 3 milliseconds
longer in SHM-M than in SHM-C.

To better quantify these differences, we plotted the

Table 1. Parameter and initial values used for the comparison
of SHM-C and SHM-M.

Parameter Value Parameter Value

Baroreceptors Sinus node

p
(0)
b 60 T (0) 0.9

k
d p
b 0.06 ksNe

φ 0.6

p
(c)
b 120 ksAc

φ 0.2

σ 0.001 Contraction

η 0.01 T
(0)

avc 0.09

Lung kt
avc 0.78

θ
(0)
r 0.16 τavc 0.11

T̄r 4 Trefrac 0.22

k
last,1
Tr

0 Tav 1.7

k
last,2
Tr

0 Heart

σTr 0 τsys 0.125

ANS C 2

v
(0)
s 50 S(0) 110

kbr
s 0.38 kvNe

S 110

vr
s 30 km

S 0

v
(0)
p 10 p

(0)
w 0

kbr
p 0.38 τ

(0)
w 1.3

vr
p 30 krNe

w 0.8

Concentrations T̂ 1

ks
sNe 0.014 Initialization

θ s
sNe 2 p(0) 100

k
p
sNe 0.006 csNe(0) 0.12

θ
p
sNe 0.4 csAc(0) 0.5

τsNe 2 cvNe(0) 0.12

ks
vNe 0.014 crNe(0) 0.12

θ s
vNe 2 T0 1

k
p
vNe 0.006 tc,0 -1

θ
p
vNe 0.4 Tavc(0) 0.15

τvNe 4 S0 110

ks
rNe 0.014

θ s
rNe 3

k
p
rNe 0

θ
p
rNe 0.4

τrNe 4

k
p
sAc 0.005

θ
p
sAc 0.4

τsAc 0.05

Session 4C: Novel Modelica Applications and Libraries

DOI
10.3384/ecp15118367

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

373

time[s]

p

8
0

1
0
0

1
2
0

1
4
0

0 1 2 3 4 995 996 997 998 999

Modelica

C

time[s]

T
n
[s

]

0
.9

4
0
.9

6
0
.9

8
1

1
.0

2

0 1 2 3 4 995 996 997 998 999

Modelica

C

Figure 2. Comparison of time series of blood pressure p

and heartbeat duration Tn between SHM-C (blue) and SHM-M
(red) for a simulation time of 1000 seconds, showing seconds
0 to 5 and seconds 995 to 1000.

difference between heartbeat durations in SHM-M and
SHM-C against the standard deviation between heartbeat
durations in SHM-C. The result can be seen in Figure 3.
It turns out that the duration of the first 40 heartbeats
only differs by less than 10 milliseconds with a standard
deviation of 34 milliseconds. The plot also shows that
on average SHM-M produces heartbeat periods that are
3 milliseconds longer.

50 100 150 200

−
0
.0

3
−

0
.0

1
0
.0

1
0
.0

3

i [beat number]

ti
m

e
 [
s
]

T
i

M − T
i

C
± σ(TC)

Figure 3. Difference between RR-Intervals of SHM-M and
SHM-C relative to the standard deviation of RR-Intervals in
SHM-C. Values above zero represent RR-Intervals that are
longer in SHM-M compared to SHM-C.

While absolute differences can give an impression of
the size of possible calculation errors, for the SHM it is
much more interesting to look at the long-time behavior
of the model. Seidel used a plot of the spectral density of
RR-Intervals (i. e. heartbeat durations) as one of his main
arguments for the physiological plausibility of his model.
We therefore also compared SHM-C and SHM-M on the

frequency domain. The result can be seen in Figure 4.
The plot shows a clear peak identical in magnitude and
position at approximately 0.25 Hz, which corresponds
to the breathing frequency and can thus be thought to
represent respiratory sinus arrhythmia. We can also see
another less pronounced peak for both implementations
at approximately 0.1 Hz which Seidel attributes to Mayer
waves. However, in SHM-M the peak at 0.25 Hz is much
sharper than in SHM-C.

Figure 4. Top: Comparison of spectral density of RR-Intervals
in SHM-C (blue) and SHM-M (red) after a simulation for
1000 seconds with standard parameters. Bottom: Figure
from Seidel’s doctorate thesis comparing spectral density of
RR-Intervals of SHM with noise (red) and experimental data
(black) (Seidel, 1997).

5 Discussion

The comparison between both implementations SHM-M
and SHM-C shows that our proof of concept was suc-
cessful. At the beginning of the simulation, the blood
pressure stays almost the same. There are noticeable
differences in the heartbeat duration, but these are not
unexpected as the event finding mechanism of Model-
ica can determine the exact time at which an event oc-
curs more precisely compared to the simple check after
each Runge-Kutta step implemented in SHM-C. This is
also consistent with the sharper peak in the frequency
domain observed in Figure 4. Experimental data with
voluntarily controlled breathing actually shows a rather
smooth RSA-related peak in the frequency domain sim-
ilar to SHM-C. However, the reason for this is that the
subjects naturally cannot time their breathing to the ex-
act millisecond, introducing a noise to the breathing fre-
quency. This type of noise has been incorporated into
the model by Seidel and it can also be incorporated in
SHM-M. Our model therefore may allow a more precise

Modeling Biology in Modelica: The Human Baroreflex

374 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118367

analysis of the theoretical effects of RSA without sacri-
ficing realism.

Now that we have seen that SHM-M is able to repro-
duce the simulation results of SHM-C we can ask what
makes the new implementation (or biological models in
general) interesting from a Modelica perspective. First of
all, the notion of a system composed of multiple organs
fits nicely into the object-oriented paradigm and leads to
a natural and intuitive class structure. In fact, each sub-
section in the explanation of the SHM in section 2 cor-
responds exactly to a Modelica model in SHM-M. The
model structure directly reflects the structure of the real
world system and thus makes the model very explainable
and accessible for domain experts. Furthermore, encap-
sulation, inheritance and the reuse of objects instantiated
with different parameters could be applied to yield a hi-
erarchical structure that hides implementation complex-
ities and avoids code repetition. The idea of hierarchi-
cally structured taxonomies is deeply rooted in biology.
It therefore seems reasonable to expect that most biolog-
ical models can be implemented in such a clean and intu-
itive manner using Modelicas object-oriented approach.

Additionally, due to the tendency of biological sys-
tems to feature multiple complex rhythms, these mod-
els can showcase the strength of Modelica’s event find-
ing mechanism in comparison to a naive implementation
of the Runge-Kutta- or Euler-method or other tools that
mainly focus on continuous modeling.

These complex rhythms also turned out to be one of
the two major challenges that arose during the imple-
mentation of SHM-M. As already mentioned a straight-
forward implementation of the contraction model was
not possible in OpenModelica, because the nontrivial
conditions in the when-equations formed a discrete equa-
tion system. We did not test the model with other com-
pilers, so this may be only an issue with OpenModelica,
but nonetheless our biological model requires a feature
that seems not as crucial for most other application areas
of Modelica.

The second major implementation challenge was the
broadening function used for the baroreceptors. To as-
sess the performance issues with the implementation us-
ing direct delay equations, we recorded the time taken
for a simulation over 1000 seconds for both SHM-M and
SHM-C with broadening lengths ranging from 0.1 sec-
onds to 3 seconds. We found that simulation times of
SHM-M rise linearly from 75 seconds with a broaden-
ing length of 0.1 seconds to as much as one hour for
a broadening length of 3 seconds. In contrast, SHM-C
only shows an increase from 16.6 to 21.3 seconds re-
spectively. This results suggest that OpenModelica uses
a separate history buffer for each delay equation in the
loop. If this is the case, an increase of the broadening
length by only one simulation step would require the al-
location and management of an additional buffer of the
same size as the single history buffer used in SHM-C,
explaining the additional overhead. We are not aware of

a language construct that allows to indicate that the delay
equations in the loop may share the same buffer. Build-
ing the buffer manually in Modelica is also not possible,
because the language itself has no notion of discrete sim-
ulation steps. This performance issue is therefore hard to
fix as a Modelica programmer and would possibly be an
argument to include convolutions as a language element.

We can therefore conclude that the SHM, as a model
that exhibits the typical properties of biological models
in general, does not only fit nicely into the modeling style
of Modelica but also has some challenging aspects that
point to possible areas of improvement for OpenModel-
ica or Modelica in general. This suggests that biological
models could indeed become a new and interesting ap-
plication area for Modelica.

6 Conclusion

With our implementation of the SHM we demonstrated
as a proof of concept that Modelica is perfectly suited
for the implementation of biological systems in a natu-
ral representation. The language can directly reflect the
biological composition of the system instead of having
to fit the system into the language constructs. This is
shown by the fact that our Modelica version of the SHM
– which uses a lot of the features of Modelica such as
acausal declarations, encapsulation and component reuse
through instantiation and inheritance – can reproduce the
same behavior as the original reference implementation
in C. Moreover, it is in some parts even more precise
thanks to the event finding mechanisms of Modelica.

We also demonstrated that new challenges that are
not present in other domains may arise when we model
evolved rather than engineered systems. The interac-
tion of complex rhythms together with time-varying sig-
nal conduction delays lead to a contraction model that
could not be intuitively implemented with the current
version of the OpenModelica compiler. Additionally,
implementing the behavior that the baroreceptor signal
reaches the ANS through many different nervous con-
nections with varying delays required a convolution that
seems to be a performance bottleneck.

These are strong arguments both for biologists to
choose Modelica over a general purpose programming
language and for Modelica modelers to look for inter-
esting applications and models in the systems biology
domain. This paper laid the ground for the implemen-
tation of more biological models from the side of the
Modelica community, but to encourage interdisciplinary
research we also have to take the opposite perspective.
We need to investigate the benefits of Modelica more
closely in regard to the needs of systems biologists. A
first step could be to reparameterize the SHM as sug-
gested by Duggento et al. (2012) and to incorporate ad-
ditional components that can simulate vagal stimulation
and different disease conditions (which is possible but

Session 4C: Novel Modelica Applications and Libraries

DOI
10.3384/ecp15118367

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

375

cumbersome with the C implementation). We also plan
to extend the SHM to a multi-scale model, for example
by exchanging the heart model with a more detailed rep-
resentation modeling individual heart cells. Finally, it
would be interesting to embed the model into the Physi-
olibrary to provide a single point-of-entry for biologists
and physicians interested in physiological modeling with
Modelica. We believe that there is a lot of potential for
interesting projects involving biological models in Mod-
elica and we are looking forward to seeing more of them
in the future.

References

Anja Brunberg and Dirk Abel. Simulation verkoppel-
ter physiologischer Regelkreise mit Hilfe der objekto-
rientierten Modellbibliothek „HumanLib“. In Automa-

tisierungstechnische Verfahren für die Medizin, 9. Work-

shop, Tagungsband, pages 29–30, Zürich, Switzerland,
2010. doi:10.1524/auto.2011.0951.

Andrea Duggento, Nicola Toschi, and Maria Guerrisi. Mod-
eling of human baroreflex: Considerations on the Sei-
del–Herzel model. Fluctuation and Noise Letters, 11(1):
1240017, 2012. doi:10.1142/S0219477512400172.

Gernot Ernst. Heart rate variability. Springer-Verlag,
London, England, 2014. ISBN 978-1-4471-4308-6.
doi:10.1007/978-1-4471-4309-3.

Robin Holliday. Epigenetics: A historical overview. Epigenet-

ics, 1(2):76–80, 2006. doi:10.4161/epi.1.2.2762.

Hermann-Georg Holzhütter, Dirk Drasdo, Tobias Preusser,
Jörg Lippert, and Adriano M. Henney. The virtual liver:
A multidisciplinary, multilevel challenge for systems biol-
ogy. Wiley Interdisciplinary Reviews: Systems Biology and

Medicine, 4(3):221–235, 2012. doi:10.1002/wsbm.1158.

Peter Hunter, Peter Robbins, and Denis Noble. The IUPS hu-
man physiome project. Pflügers Archiv - European Journal

of Physiology, 445(1):1–9, 2002. doi:10.1007/s00424-002-
0890-1.

Edda Klipp, Wolfram Liebermeister, Christoph Wierling, Axel
Kowald, Hans Lehrach, and Ralf Herwig. Systems biology:

A textbook. Wiley-Blackwell, Hoboken, New Jersey, 2011.

Kiyoshi Kotani, Kiyoshi Takamasu, Yosef Ashkenazy, H. Stan-
ley, and Yoshiharu Yamamoto. Model for cardiorespira-
tory synchronization in humans. Physical Review E, 65(5):
051923, 2002. doi:10.1103/PhysRevE.65.051923.

Kiyoshi Kotani, Zbigniew Struzik, Kiyoshi Takamasu,
H. Stanley, and Yoshiharu Yamamoto. Model for complex
heart rate dynamics in health and diseases. Physical Review

E, 72(4):041904, 2005. doi:10.1103/PhysRevE.72.041904.

Andreas Kremling. Kompendium Systembiologie: Mathema-

tische Modellierung und Modellanalyse. Vieweg+Teubner,
Wiesbaden, Germany, 2012. ISBN 978-3-8348-1907-9.

Henry Markram. The blue brain project. Nature Reviews Neu-

roscience, 7(2):153–160, 2006. doi:10.1038/nrn1848.

Marek Mateják, Tomáš Kulhánek, Jan Šilar, Pavol Privitzer,
Filip Ježek, and Jiří Kofránek. Physiolibrary - Modelica
library for physiology. In Proceedings of the 10th Interna-

tional Modelica Conference, pages 499–505, Lund, Swe-
den, 2014. doi:10.3384/ecp14096499.

Mohsen Naghavi, Haidong Wang, Rafael Lozano, Adrian
Davis, Xiaofeng Liang, Maigeng Zhou, and Stein Emil
Vollset. Global, regional, and national age-sex specific all-
cause and cause-specific mortality for 240 causes of death,
1990–2013: a systematic analysis for the Global Burden
of Disease Study 2013. The Lancet, 385(9963):117–171,
2014. doi:10.1016/S0140-6736(14)61682-2.

Emma Larsdotter Nilsson and Peter Fritzson. A metabolic spe-
cialization of a general purpose modelica library for biolog-
ical and biochemical systems. In Proceedings of the 4th In-

ternational Modelica Conference, pages 85–93, Hamburg,
Germany, 2005.

Denis Noble. The rise of computational biology. Na-

ture Reviews Molecular Cell Biology, 3(6):459–463, 2002.
doi:10.1038/nrm810.

Chris P. Ponting, Peter L. Oliver, and Wolf Reik. Evolution and
functions of long noncoding RNAs. Cell, 136(4):629–641,
2009. doi:10.1016/j.cell.2009.02.006.

R. Ranzinger and William S. York. Glyco-bioinformatics today
(august 2011) – solutions and problems. In Proceedings

of the 2nd Beilstein Symposium on Glyco-Bioinformatics,
Potsdam, Germany, 2012.

Henrik Seidel. Nonlinear dynamics of physiological rhythms.
PhD thesis, Technische Universität Berlin, Berlin, Germany,
1997.

Henrik Seidel and Hanspeter Herzel. Modelling heart rate vari-
ability due to respiration and baroreflex. In Erik Mosekilde
and Ole G. Mouritsen, editors, Modelling the Dynamics of

Biological Systems, number 65 in Springer Series in Syn-
ergetics, pages 205–229. Springer, Berlin Heidelberg, Ger-
many, 1995. ISBN 978-3-642-79292-2.

Henrik Seidel and Hanspeter Herzel. Bifurcations in a non-
linear model of the baroreceptor-cardiac reflex. Phys-

ica D: Nonlinear Phenomena, 115(1-2):145–160, 1998.
doi:10.1016/S0167-2789(97)00229-7.

Eberhard O. Voit. A first course in systems biology. Garland
Science, New York City, New York, 2013. ISBN 978-0-
8153-4467-4.

Modeling Biology in Modelica: The Human Baroreflex

376 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118367

A City Traffic library

Eashan Liyana1 Simon Lacroux1 Jean-Baptiste Barbe1
1Digital Product Simulation,

La Celle-Saint-Cloud, France,
eashan.liyana@dps-fr.com simon.lacroux@dps-fr.com jean-baptiste.barbe@dps-fr.com

Abstract
Digital Product Simulation (DPS) created a library for
the modeling of city traffic. This library is designed for
the development and evaluation of control strategies,
rendered possible when vehicles are able to
communicate between each other and with their
infrastructure. CityTraffic library allows for the
implementation of control strategies by all of the
players acting in an urban environment (e.g. located in
vehicles, with a global server computing set points for
the vehicles, or with a traffic management system
setting speed limits and traffic light cycles).

The library is divided in two parts, macroscopic
traffic and microscopic traffic. Macroscopic
components are used to describe road networks such as
highways whereas microscopic components allow for
modeling city traffic where interactions between
vehicles and their environment are many.

By using a City Traffic library, cities can decrease
the number of traffic jams on their road network, and
improve the overall impact of the traffic on the
environment.

Keywords: Macroscopic and microscopic road
sections, City Traffic, Intersections, Navigation
models, Map Creator, Vehicles with their global
consumption

1 Introduction

The management of city traffic and the reduction of
motor vehicle emissions are more newsworthy than
ever.

As part of the MODRIO project (MOdel DRIven
physical systems Operation), a European project
financed by the ITEA2 program and lead by EDF, DPS
was in charge of the development of a Modeling and
Simulation CityTraffic library for a city with two
different scales, in order to observe both the flow of
vehicles on the road, and the interactions between
vehicles and their environment (other vehicles and
urban infrastructures).

2 Presentation of the CityTraffic library

The CityTraffic library is divided in two main packages
which are the Microscopic scale and the Macroscopic
scale. A connection between those scales was
implemented as well.

2.1 Macroscopic environment

This modeling scale encompasses an overview of the
urban traffic, considering the vehicle flow rate (number
of vehicles per hour), not individual vehicles
movements. It is based on an analogy with Hydraulics
where roads behave as pipes, where intersections are
loads, and where vehicles are represented as a fluid.

Figure 1: Microscopic and Macroscopic scale

Figure 2: Hydraulic analogy of the macroscopic scale

DOI
10.3384/ecp15118377

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

377

The macroscopic models are based on the following

variables:

 The density of the traffic :
(véh

/

km)


 The velocity of vehicles :

v(km

/

h)



 The vehicle flow rate :
Q(véh

/

h)





v


The fundamental equation of the macroscopic

environment computes the number of vehicles (Aw &
Rascle, 2010) (Iordanova, 2006) (Papageorgiou, 2003)

   v  0 (1)
t x

Several models were implemented around those

variables (first and second order models) with different
laws applied to the velocity of the vehicles.

Those models were integrated into components to
model roads, intersections or sources of vehicles. The
following figure is an example of the components for a
road section with two lanes of traffic and two sources
of traffic flow thus specifying the number of vehicles
generated for the section.

Figure 3: Traffic flow sources for a macroscopic road

Each road is given a maximum density parameter
representing the capacity of the road (maximum
number of vehicles on the section at the same time).
This parameter allows for simulating congestions, that
is when the density is higher than this predefined value.

Figure 4: Flow rate as a function of the density of vehicle

This scale gives a really short simulation time, but
simulation of interactions between vehicles is
impossible. Nevertheless, the macroscopic
environment is well suited to modelling highways for

which there is no intersection and where the traffic is
more fluid than in cities.

Figure 5: Vehicle density evolution in a 10 km length
road over 10 sections of 1km

2.2 Microscopic Environment

This other scale is based on an insider point of view of
the urban traffic. It allows for visualizing the journey of
each vehicle and modeling the interactions between
vehicles as well as between the vehicles and the urban
infrastructures (crossroad, red light, stop sign...).

Figure 6: Microscopic scale of a roundabout intersection

The microscopic environment is composed of a Map
with a first model named "MapDesign", which is used
by a second model named "Env_Micro_and_macro",
where the user can define different types of crossroads
and initialize the vehicles.

The vehicle model contains a navigation function
and a velocity model which are described in part 3.2 of
this document. A fuel consumption and a CO2
emission models were added in order to compute the
environmental impact of each vehicle.

2.3 Connection between environments

The CityTraffic library includes the possibility to
connect the macroscopic and microscopic
environments. The simulation time may be reduced by
modeling highways or big roads without intersections
in the macroscopic scale.

A City Traffic Library

378 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118377

2.4 Performance comparison

In the previous sections we introduced two ways of
modeling traffic flow, macroscopic and microscopic.
The following figure compares the performance of the
two methods.

CPU time as a function of the number of vehicle.

 250 0,2

 0,18

C
P

U
 t

im
e

 (
s

)
fo

r
th

e
 m

ic
ro

s
c
o

p
ic

 200 0,16 m
a
c
ro

s
c
o

p
ic

th
e
fo

r(s
)tim

e
C

P
U

 0,14

e
n

v
ir

o
n

m
e
n

t

150 0,12

e
n

v
iro

n
m

e
n

t

 0,1

100 0,08

 0,06

50 0,04

Micro

0,02

Macro

 0 0

 1 2 3 4 5 6 7 8 9 10

Number of vehicle

Figure 7: Simulation time as function of the number of
vehicles

We simulated a 100m length road for different
numbers of vehicle. For one car, the macroscopic
model is 300 times faster than the microscopic model,
and for 10 cars it’s one thousand times faster.

Using the macroscopic method to model areas
where interactions are low shortens the simulation
time.

3 Content of the library

3.1 Map Generation

The basis of the microscopic environment is the Map
where the vehicles move. As for the macroscopic
environment for which there is no animation, the map
model and the vehicle model are not used.

The Map is composed of nodes whose Cartesian
coordinates (x,y,z) are given by the user. Those nodes
are then linked with each other, and the lanes of
circulation can be defined (one way street or two way
traffic). Finally, each road includes a speed limit with a
maximum velocity to be observed by the vehicles.

Data of the Map is stored in a spreadsheet (CSV
file), which is a matrix with the coordinates of the
nodes on the diagonal, and in the other locations the
maximum velocity in m/s for the section between two

nodes. In the Map figure 6, nodes 2 (0,100,0) and 1
(0,0,0) are set in both directions with a speed limit of
50 km/h (13.88 m/s). The connections between nodes
are modelled with the value of the velocity: between
node 1 and node 2, the velocity is in the first row and
second column; the second row and first column
corresponding with the velocity between node 2 and
node 1.

On the contrary, nodes 3 (0,200,0) and 1 (0,0,0) are
not connected, and the value for the maximum velocity
between them is 0 m/s.

If a road is a one way street, the velocity between
nodes will be equal to the maximum velocity for the
right way of traffic and will be set at 0 m/s for the other
way. For example, between node 5 and node 4, the
traffic goes from 4 => 5 (in the row of node 4, there is a
value of 13.88 m/s in the column of node 5), but from 5
=> 4 is the wrong way and in the row of node 5 there is
0 m/s in the column of node 4 (in red in the figure).

In addition to the CSV file generation, the
MapDesign model also creates an animation of the
Map where each section is numbered. Roads with a
double way of circulation are larger than one way
streets, and have two numbers (one for each way of
circulation). When there are two numbers, the smaller
represents the circulation from the node with the
smallest number to the node with the biggest number.

Figure 8: Numbering of the Map sections

For example, on figure 8, section R7 is the road
between nodes 3 and 8 for the direction N3 => N8,
whereas R15 corresponds to the direction N8 => N3.

Session 4C: Novel Modelica Applications and Libraries

DOI
10.3384/ecp15118377

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

379

Figure 9: CSV File of a Map with 9 nodes

3.2 Vehicle model

3.2.1 Velocity model

Three velocity models were created in the CityTraffic
library. The first one is named "Simple" and does not
take into account the other vehicles. It defines only a
constant velocity. The other two models (Krauss and
Gipps) are car-following models (Krauß, 1998),
meaning the velocity of the selected vehicle is
associated with the velocity of the vehicle ahead. If
there is no vehicle ahead, the velocity of the vehicle is
linked with the velocity of a virtual vehicle located far
away, and it accelerates until the velocity reaches the
maximum value allowed on the current road section.

Unfortunately, the Krauss model is not realistic,
because acceleration and deceleration are instant
instead of being gradual. Finally a better model was
created: the Gipps model.

This model is used in many traffic modeling
software, and includes a progressive acceleration and
deceleration with programmable maximum values.
Nevertheless, Gipps corresponds to a perfect driver
who respects the Highway Code and the security
distance between vehicles. So it does not permit to
model an overtaking because the velocity of the vehicle
will always be inferior or equal to the velocity of the
vehicle ahead. Future development will solve this
issue.

For roads with two ways of circulation, a function
was created to identify vehicles coming from the
opposite way. Then, a passing vehicle will not make
the vehicle brake, because it will not consider it as a
vehicle ahead.

Figure 10: Simulation of two vehicles. The blue car
decelerates to turn then accelerates until reaching its
destination. The red car is on a straight way and its
velocity is limited by the road's speed limit.

3.2.2 Navigation function

The navigation function of the vehicle is based on the
"Dijkstra algorithm" (Dijkstra, 1959) which identifies
nodes to cross, in order to reach the destination using
the shortest way in terms of distance. This algorithm
uses the following methodology:

From one node, the function will first determine the
nodes which are connected to it.

If a node is not connected to the first one, its "cost"
will be set to the infinite value, whereas the connected
nodes will have a cost proportional to the distance
between the nodes. Then the same process is repeated
for all the nodes of the Map until the destination node
is reached.

Finally, the nodes are classified by their cost, and the
table of nodes returned as output will be a table of the
nodes with a minimal cost.

A City Traffic Library

380 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118377

Figure 11: Principle of the Dijkstra algorithm

3.2.3 Types of vehicle

In order to be able to visualize the vehicles on the Map,
CAD models are imported for each type of vehicle.

Figure 12: Types of vehicles available

Each type of vehicle has its own characteristics
(dimensions, mass...) which are used to update the
safety distance between vehicles and to compute the
fuel consumption of each vehicle.

3.2.4 Fuel consumption and CO2 emissions

The fuel consumption model is based on the computing
of the traction force (Guzzella & Sciarretta, 2007)
(Eriksson, 2013) (SETRA, 2009). In order for the
velocity and the acceleration to be constant during a
short interval of time, a time stamp is used when
computing all of the variables. Thus the traction power
is evaluated using a quasi-static method.

With the power calculated, the fuel consumed power
"Pf" is computed using the efficiencies of the elements
of the transmission.

Figure 13: Transmission chain of a vehicle

The engine efficiency is the most difficult to
compute, because it depends on the rotational speed of
the engine and the ratio of the gear box.

The equation for the flow of fuel is:

(2)

With for the diesel:
 Hl = 43.5 *10^6 J/kg for the fuel's lower

heating value
 ρf = 0.75 kg/L for the density.

CO2 emissions are calculated with the following

equation:
CO2 emission = Fuel consumption * ρf * Hl *

()
3

fuel emission factor * partial combustion factor

These models are included in the vehicle model to
determine the exact quantity of fuel consumed and
CO2 emitted during the trip of the vehicle on the Map.

4 Intersection models

Five models of intersection were created (roundabout,
traffic light, stop sign, yield and right of way), and
three models of stops (bus station, delivery area and
pedestrian crossing). Those models can be activated
only for the microscopic environment via an interface
where the user defines locations of the intersections
and stops on the Map by specifying nodes and sections
of the intersection.

4.1 Ghost vehicles

When a vehicle "A" reaches an intersection, a "ghost
vehicle" is set in its place with a 0 m/s velocity. These
ghost vehicles are present on the map but not shown on
the animation by Dymola.

As the velocity model detects the presence of the
vehicle ahead, the vehicle "A" will adapt its velocity to
the ghost vehicle and will stop. When the intersection
model has checked that all conditions are fulfilled to let
the vehicle go forward, the ghost vehicle disappears
and the vehicle "A" may leave the intersection.

Figure 14 is an example of this situation at an
intersection. There is a yield at node 2. The road
section impacted by the yield is the blue one.

The yellow vehicle has to give way to the green
vehicles coming from its left and its right, so the
intersection model will identify the black road sections
as having priority, and a ghost vehicle will appear in
front of the yellow vehicle (in pink on the previous
figure). The position of this ghost vehicle will be fixed,
and its velocity equal to 0 m/s, so the yellow vehicle
will detect it and will stop just behind it.

When green vehicles have passed, the intersection
model detects that there is no more vehicles on the
priority roads and the ghost vehicle is removed. As the
yellow vehicle has no more vehicles ahead, it resumes
its trip.

Session 4C: Novel Modelica Applications and Libraries

DOI
10.3384/ecp15118377

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

381

Figure 14: Example of a yield

When the green vehicles have passed, the
intersection model detects that there is no more
vehicles on the priority roads and the ghost vehicle is
removed. As the yellow vehicle has no more vehicles
ahead, it resumes its trip.

The following figure shows the animation of an
intersection.

Figure 15: Animation of a red light

4.2 Stops

Other models were implemented to stop the vehicles
which are not located at the intersection but in the
middle of the road. Those models are the bus stations,
the delivery places and the pedestrian crossings.

The first two models impact only one type of
vehicle (bus or delivery vans), but the pedestrian
crossing model stops all vehicles when pedestrians are
crossing.

5 Conclusion

We presented the CityTraffic library which offers an
intuitive tool for modeling interactions between
vehicles and their environment. The macroscopic and
microscopic scales speed up the simulation while
computing the impact of an intersection on the traffic
flow and the fuel consumption of a vehicle during its
trip.

Other intersection models are being created, as well
as a more realistic model for the driver with
heterogeneous behaviors.

Acknowledgements

References

A. Aw and M. Rascle (2010): Resurrection of "second
order" models of traffic flow.

V. Iordanova (2006): Contribution à la modélisation et la
commande du trafic routier : Approches par Bond Graph et
commande par platitude.

M.Papageorgiou (2003): Review of Road Traffic Control
Strategies.

Stefan Krauß (1998): Microscopic Modeling of Traffic
Flow:Investigation of Collision Free Vehicle Dynamics.

http://licence-math.univ-
lyon1.fr/lib/exe/fetch.php?media=gla:dijkstra.pdf

Lino Guzzella and Antonio Sciarretta (2007): Vehicle
Propulsion Systems, Introduction to Modeling and
Optimization.

Lars Eriksson, Linköping University (2013): Vehicle
Propulsion Systems, Course Introduction & Energy System
Overview.

SETRA (service d'étude sur les transports, les routes et leurs
aménagements) (2009): Etude des émissions routières de
polluants atmosphériques.

The French Ministry DGE has funded this
work within the ITEA2 project MODRIO.

A City Traffic Library

382 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118377

An open toolchain for generating Modelica code

from Building Information Models

Matthis Thorade1 Jörg Rädler1 Peter Remmen2 Tobias Maile3 Reinhard Wimmer3 Jun Cao3

Moritz Lauster2 Christoph Nytsch-Geusen1 Dirk Müller2 Christoph van Treeck3

1Berlin University of the Arts (UdK), {m.thorade,jraedler,nytsch}@udk-berlin.de
2RWTH Aachen University, E.ON Energy Research Center, Institute for Energy Efficient Buildings and Indoor

Climate, Aachen, Germany {premmen,mlauster,dmueller}@eonerc.rwth-aachen.de
3RWTH Aachen University, Institute of Energy Efficient Building, Aachen, Germany

{maile,wimmer,cao,treeck}@e3d.rwth-aachen.de

Abstract

Building Performance Simulation (BPS) is a key ele-
ment in the design of energy efficient buildings, and
there is increasing interest in using the Modelica mod-
elling language for BPS. The IEA-EBC coordinates de-
velopment of BPS in Modelica in the project “Compu-
tational Tools for Building and Community Energy Sys-
tems” (Annex 60). However, developing BPS models
and collecting required input data are time-consuming
and error-prone processes. Reusing existing Building
Information Models (BIM) as basis for Building Perfor-
mance Simulation (BPS) has the potential to make BPS
model development and subsequent simulation easier,
faster and more reliable. Activity 1.3 of the Annex 60
project is working on an open-source toolchain that can
semi-automatically generate code for BPS Modelica
models from a BIM data source. Parts of that toolchain
are discussed in this paper.

Keywords: Building Information Modelling, Modelica

code generation, Building Performance Simulation

1 Introduction

Buildings become increasingly integrated to reduce en-
ergy and peak power and to increase occupant health
and productivity, leading to complex building design.
Building Performance Simulation (BPS) is one key ele-
ment in the design of energy efficient buildings. The En-
ergy in Buildings and Communities Programme (EBC)
of the International Energy Agency (IEA) launched in
2012 the project “Computational Tools for Building and
Community Energy Systems”, also know as Annex 60
(Wetter and van Treeck, 2012). The Annex 60 project
aims at developing next generation computing tools for
the buildings industry, based on open non-proprietary
standards, including the Modelica modelling language
and the Functional Mockup Interface. The structure and

organization of the project into subtasks and activities
is shown in Figure 1.

The development of Modelica model libraries for
BPS before Annex 60 was fragmented with the result
that each institution was developing the same compo-
nents in a different, possibly incompatible, manner.
Activity 1.1 focuses on harmonizing BPS library devel-
opment by providing a core library of base classes and
components commonly needed. The libraries currently
contributing to and relying on the Annex 60 core library
are:

• AixLib from RWTH Aachen (Fuchs et al., 2015)

• BuildingSystems from UdK Berlin (Nytsch-
Geusen et al., 2013)

• Buildings from LBNL (Wetter et al., 2014)

• OpenIDEAS from KU Leuven (Baetens et al.,
2015)

Each library extends the core library by providing addi-
tional components for special applications, depending
on the respective institutions research focus. The li-
braries AixLib and BuildingSystems will be used later
in this paper to demonstrate the code generation.

But even with advanced component libraries avail-
able, building up BPS models from hand and collecting
required input data remain time-consuming and error-
prone processes (Bazjanac et al., 2011), preventing
practitioners from using BPS more extensively in stan-
dard planning processes. Building Information Mod-
elling (BIM) is a well established technology to model
and manage the digital representation of a building
over its entire lifecycle (see e.g. Eastman et al., 2008).
Reusing existing Building Information Models (BIM)
as the basis for Building Performance Simulation (BPS)
has the potential to make BPS model development and
subsequent simulation easier, faster and more reliable.

DOI
10.3384/ecp15118383

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

383

Figure 1. Structure and organization of the IEA EBC An-

nex 60 (figure adapted from Wetter and van Treeck (2012)).

In this paper, results from Activity 1.3 are presented.

Activity 1.3 of the Annex 60 project aims at leverag-
ing such BIM systems as a source of information for
semi-automated generation of BPS models in the form
of Modelica code. In order to reach a broad audience,
the methods and tools developed should:

• make use of, comply with and contribute to exist-
ing open standards,

• support both building geometry as well as heating,
ventilation and air conditioning (HVAC) compo-
nents,

• support multiple Modelica libraries,

• support a high degree of automation,

• be a collection of small, reusable tools,

• be released under open-source licenses.

A description of the toolchain implementing the overall
process as planned in this project is given by Remmen
et al. (2015), including a review of prior work in the
field. That paper is also summarized in the following
section, giving an overview of the overall process, ba-
sic ideas, assumptions and software foundation. The
section Python Framework then describes in more de-
tail the part of the toolchain that is used for controlling
the workflow, via a GUI or via Python scripts, as well
as the actual code generation. The section Use Cases
gives a first, simplified demonstration of the process.
The paper then concludes with a short discussion of
limitations and future work.

2 Process Overview

The whole process of generating Modelica code from
Building Information Models is in this project imple-
mented as a toolchain of various special-purpose tools.
Having various tools with a clearly defined task means
these tools can be developed partly independent, and
each block can possibly be reused in a different context.
On the other hand, interfaces between the tools have
to be clearly defined, either in the form of a file for-
mat or as an Application Programming Interface (API).
The various steps of the process and the interfaces are
shown schematically in Figure 2 and are discussed in
the following paragraphs, summarizing the paper by
Remmen et al. (2015).

Creating the Building Information Model A typi-
cal starting point for a BIM-based workflow would be
an architect creating a designated space and usage struc-
tures using a BIM-based CAD software. Other domain
experts, e.g. HVAC engineers, then enrich the BIM by
contributing further data. In order to collaboratively
create the model, all involved actors use a common
file format. IFC is a well-established, non-proprietary
and standardized BIM file format (International Orga-
nization for Standardization, 2013). In this project, we
rely on version 4 of IFC, because it contains several
improvements over its predecessor IFC 2x3. Using a
standard format means that various applications on the
market will be able to deliver input to our toolchain.
Also, we profit from existing tools for checking, view-
ing or sanitizing IFC files.

Transformation to Simulation Domain Model

While IFC is a well-established BIM file format, it
is in its current form not very well suited as direct
input for Building Performance Simulation (BPS), be-
cause it does not contain all information required for
BPS (e. g., some detailed HVAC objects and proper-
ties are missing, as well as simulation specific objects
and properties), and it has rather long turnaround time
for changes. Information models for the simulation
domain and corresponding file formats have been de-
veloped with the goal to resolve these drawbacks. In
this project, we rely on SimModel and corresponding
SimXML files as defined by O’Donnell et al. (2011).
The SimXML file format is clearly defined by an XML
Schema Definition (XSD). SimModel closely aligns
with IFC regarding building geometry and building
physics, but removes some redundancies and simplifies
relationships between objects. Besides the IFC model
it also entails other datamodels such as gbXML and
others. Regarding HVAC components, SimModel is a
superset of IFC. That means missing information has
to be added during the transformation process. For
conversion of geometry and building physics data ex-

An Open Toolchain for Generating Modelica Code from Building Information Models

384 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118383

App 1

App 3

App 2

libSimModel
(loading,
parsing,

mapping)

Python

CoTeTo

Modelica

Lib 1

Modelica

Lib 2
...

API

 SimModel
 IFC

Building
Spaces

Geometry

HVAC

Converter

.mo .mo .mo

GUI

Figure 2. EnEff-BIM Process Overview.

isting tools can be used, such as Simergy and/or Space
Boundary Tool (SBT) (Rose and Bazjanac, 2015). For
conversion of HVAC data a new tool is developed in
this project. The two converted parts have to be com-
bined in a second step into a single valid and correct
SimXML file that is information complete, as expected
by the following steps in the overall process. Another
option that is also investigated in this project is to cre-
ate (parts of) SimModel files with only few high level
input parameters provided by the user (such as year
built, type of building, etc.) and filled with typical and
statistical data for a complete model.

Mapping to Modelica libraries To accomplish the
link between the rigid data structure in SimModel with
the flexible data representation on the Modelica side,
mapping rules are needed (Wimmer et al., 2014). Load-
ing the SimModel file, parsing it and mapping the data
from SimModel to Modelica is performed by the C++
library libSimModel, described in detail by Cao et al.
(2014, 2015). The SimXML file is first loaded by a
validating parser that uses the XSD. As part of the pars-
ing process, a hierarchical tree is built up and some
manipulations and simplifications, like resolving links,
are performed. The data, once loaded, is then mapped
using the library specific mapping rules as described
by Wimmer et al. (2015). These mapping rules are
valid for a specific version of a specific library. When
the library changes, the corresponding mapping rules
have to be updated. The mapping rules are again stored
in XML files (confirming to a corresponding XSD).
To ease maintenance of the mapping rules, a tool for
conversion between a spreadsheet table and the corre-
sponding mapping rule XML file is developed.

All mapped data and, as needed, also unmapped
data, as well as the methods and functions of the lib-
SimModel library for loading, parsing and mapping are
exposed to Python as an API.

Code Generation and User Interface The last part
of the toolchain is written in Python and it covers three
tasks: Process control, Information Pre-Processing and
the actual Modelica code generation. These tasks and
the implementation are discussed in the following sec-
tion.

3 Python Tools

The Python tools cover three tasks: Process control,
Information Pre-Processing and the actual Modelica
code generation. The organization of the tools is shown
in Figure 3.

3.1 Process Control

As discussed in the previous section, the whole process
is implemented by several components that build a
toolchain. For the normal end-user this chain should
appear as one tool, but for power-users and during
development all parts should be usable standalone. To
achieve this, some requirements must be fulfilled:

• a common programming platform (language, ver-
sions),

• an Application Programming Interface (API) to
call the components functions from the common
programming platform,

Session 4D: Building Energy Applications 3

DOI
10.3384/ecp15118383

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

385

Python

GUI

Modelica

Lib 1 Lib 2

API:
Tree

Systems
Components
Properties

Process control

Tree view
Add missing

parameter values

2D diagrams 3D visualization

 Python
 templates

Meta model
information

Information
Pre-Processing

C
o
n
n
ec

tio
n
s

 Python
 templates

Meta model
information

Information
Pre-Processing

C
o
n
n
ec

tio
n
s

Figure 3. The Python part of our toolchain.

• no own or just an optional or partial graphical user
interface (GUI).

These requirements are already fulfilled for that part
of the toolchain that use SimModel as a starting point.
That part will be controllable from the common process
control using the GUI or scripts, standalone or embed-
ded in other tools. Further parts of the toolchain will
be added to the common process control as needed.

As the common platform for integrating the compo-
nents Python is used, so all components must be usable
from this language. This requirement is fulfilled if the
component is already written in Python, otherwise a
wrapping API is necessary. Python is well suited to
bind different components to one tool, and it is widely
used and accepted in the Modelica community. The
GUI part is implemented in Qt, so it will be portable to
all major operating systems.

3.2 Information Pre-Processing

While SimModel was designed to contain all informa-
tion that is required for BPS, that information may
sometimes have to be processed or converted. Sim-
ple conversions (e.g. unit conversion) will be covered
by the mapping rules, but more complex conversions
are more easily implemented in Python. One exam-
ple for complex information conversion is the calcula-
tion of equivalent lumped heat capacities according to
VDI 6007 that are used in low-order models of AixLib
(German Association of Engineers, 2012).

The mapping rules also do not cover the connections
between objects, this information is passed to Python
as meta model information. Another task is the process-

ing of Modelica graphical annotations. This is work in
progress and will be extended as needed. The informa-
tion processing is implemented as Python filters for the
templates, as described in the following section.

3.3 Modelica Code Generation

The actual Modelica code generation is implemented
as a tool named CoTeTo, which stands for Code Tem-
plating Tool. Although designed for this project, this
tool was implemented in a way that it can be used stan-
dalone and in other software environments. CoTeTo
will be released under an open-source license.

In this project, Modelica models for a set of differ-
ent model libraries have to be generated using a com-
mon data source. Each library needs separate filtering
and output of data because of different modelling ap-
proaches. These libraries are currently under develop-
ment and are likely to change in the future as well. This
requires a flexible and generic data conversion frame-
work to allow for future changes. Thus, the framework
should allow flexible output components for different
libraries in multiple versions as well as flexible input
components, both should be easy to maintain even for
non-programmers. The workflow of CoTeTo and the
coupling to other tools within the toolchain is shown in
Figure 3. We designed CoTeTo to be used by graphical,
command line and library level interfaces. The multiple
access possibilities open the framework to a huge com-
munity. The fact that Python does not require extensive
compilation cycles helps with rapid development. The
following section will give an overview of the compo-
nents and their functionality. We have divided CoTeTo
into input components (Data APIs) and output compo-
nents (Generators). A Generator depends on a specific
Data API (defined by its name and version).

The Template Approach There are two general con-
cepts for the generation of textual output within a com-
puter program. One approach is to embed print()-
statements for text strings and data in the structure of a
program. This is useful for nearly static, well-defined
structures of the data set and of the textual output.

The other approach is template-based, where place-
holders for the content are embedded in a text file (a
template for the output). Besides placeholders tem-
plates also offer control structures. Thus, template-
based model generation allows complying with fixed
Modelica language syntax and adding flexible model
content in the same file. One advantage is the flexibility
for the end user, who does not necessarily need to dive
into the programs’ internal structure, but can just enrich
the template file with placeholders and simple program-
ming constructs, whenever the used Modelica models
change. This workflow is much like the form letter
function in office software, which fills some variable
address fields in a text document from a database.

An Open Toolchain for Generating Modelica Code from Building Information Models

386 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118383

The template approach fits very well into the flexible
structure of the CoTeTo framework, as it is indepen-
dently usable for different information sources. From
the list of available template engines Mako (Bayer,
2014) and Jinja2 (Ronacher, 2014) seem to fit best into
CoTeTo. At this point support for both is implemented,
but after an evaluation phase one of the engines may be
dropped in the future.

Input - Data APIs A Data API is a Python module
that defines a prescribed way to fetch data sets from a
data source. Although we use the Python language to
write the CoTeTo, Data API functions can interface to
other languages.

Different Data APIs and different versions can be
used in parallel. Sample modules for reading JSON,
XML and CSV files exist in CoTeTo. This allows flexi-
ble processes during development and testing. There is
no definition for the structure of the returned data items,
since different data sources contain different types of
data (tree, table, graph, map). It is the job of the used
output Generator to understand the data delivered by
the used Data API.

The most important Data API in the Annex 60 con-
text is the interface to the C++ library libSimModel,
which handles the SimModel parsing and the mapping
to Modelica. Seen from the Python framework and
from CoTeTo it defines the data source used to fill the
placeholders in the output templates.

Output - Generators Once all relevant data has been
loaded into CoTeTo, it is passed to the output compo-
nent, called Generator. We designed the Generator

to contain all items needed to generate the code for a
specific Modelica library. This includes

• filter functions,

• the meta model structure,

• text templates,

• additional configuration and information and

• additional files.

The filter functions, meta model structure and text
templates are used and applied by CoTeTo. Additional
files like the mapping rules XML file can be stored
inside the Generator.

We experienced that some data need manipulation
that may not fit well into the mapping rule mechanism.
For this purpose, Generators can include filter func-
tions (Python code) that we call between the data API
and the templates. The filters are custom-built to the
used library. In our case, they may include simplifi-
cation of geometric relationships and calculation of

Figure 4. Standalone GUI of CoTeTo

model specific parameters. Another application of fil-
ters would be the creation of annotations for the graph-
ical appearance and placement of model components
in the Modelica code.

One major challenge in the automated generation of
Modelica models is the flexibility of Modelica. Gen-
erally said, setting up useful models needs the knowl-
edge of an experienced user. We are following the
approach to encapsulate this knowledge in library spe-
cific meta-models and templates. One essential task is
the appropriate connection of components. The API
returns the connection information corresponding to
the SimModel ontology, which differs from the one
in a Modelica library. The meta model checks if the
connection is applicable, if not, it manipulates it.

The text templates are the last step in the process
chain. The template engine combines the data struc-
tures returned by the Data API and possibly manipu-
lated by filters with the text templates to files with valid
Modelica code. The templates in a Generator can be
splitted into several files to ease maintenance.

Generators can be easily exchanged between dif-
ferent installations, as they are simple folders or even
zip-files with a defined structure. Generators can be
maintained and edited with standard system tools like
a file manager and a text editor. Creating a new Gener-

ator is as simple as copying a folder with an existing
Generator and changing the name or version number
in a text file.

Interface and Handling There are currently three
ways to use CoTeTo:

• CoTeTo can be imported in Python software as a
module library. CoTeTo works both with Python
2.7 and 3.3+. All functions are usable via the
modules API.

• A command line interface can be used interac-
tively or called from other software. It allows
listing the available Data APIs and Generators

Session 4D: Building Energy Applications 3

DOI
10.3384/ecp15118383

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

387

and executing a Generator with a data source URI
to produce the text output.

• The graphical user interface (GUI) is implemented
using PyQt4. It allows flexible browsing and edit-
ing of all components and included files and the
execution of selected Generators. The GUI can
be used as a standalone tool (see Figure 4) or em-
bedded in PyQt4-based applications as a widget.

4 Use Cases

To prove the concept of the toolchain, we have devel-
oped several use cases. These use cases are kept simple
to ensure the focus on the process. Each use case con-
sists of one single room, according to the description of
the validation example of German Guideline VDI 6007
(German Association of Engineers, 2012) and varying
HVAC setups. We divide the use cases in two groups,
water- and air-based systems. The water-based systems
are only meant for heating, while the air based systems
also cool and ventilate the room.

The first group of use cases has some basic elements
in common. These include a pump, pipes, a PID con-
trolled valve and an expansion vessel. The efficiency
of the pump is given depending on the volume flow.
The control strategy of the pump includes a night set
back, where the volume flow is reduced during nights.
We designed the use cases to be controlled by a PID
controlled valve. The control variable is the room tem-
perature. Besides these common components the water-
based systems differ in the heat generation and heat
distribution. The different combinations are as follows:

1.1 Boiler & Radiator
1.2 Boiler & Radiator & Domestic Hot Water System

2.1 Heat Pump & Radiator
2.2 Heat Pump & Floor heating

3.1 CHP & Boiler & Radiator

The second group of use cases consist of two air-
based setups. Similar to the first group they have most
of the components in common, like air ducts, fans, filter,
damper and silencer to account for additional pressure
losses. They differ in the purpose of the ventilation
system. The first of the two use cases is primarily
heating and includes an electrical heater, the other use
case is primarily cooling and includes an evaporative,
adiabatic cooling device.

The following section presents the first use case (use
case 1.1) and the corresponding Modelica code genera-
tion using AixLib and BuildingSystems library.
As we focus on the HVAC system, we will describe the
code generation for this part of the model only. The
thermal zone is currently modeled using the low order
model from AixLib for both implementations. The
hydraulic schema is shown in Figure 5. A gas boiler

Gas boiler

PID controlled valve

Pump

Expansion vessel

Radiator

Figure 5. Hydraulic schema of the applied use case

heats the water to a fixed set point temperature. A pump
circulates water in the hydraulic system. A radiator
emits the heat to the thermal zone. The parametrization
of the radiator follows the DIN-EN 442 (DIN German
Institute for Standardization, 2015). We designed the
radiator to be controlled by a PID controlled valve.
The use case is completed by connecting pipes and an
expansion vessel.

By calling the API, we load the contained data from
the SimXML file into our Python framework. This
data is already mapped to the corresponding library
as previously described, in our case to AixLib or
BuildingSystems. In addition to the mapped data,
the API returns the topology of the use case as a sorted
list. The next step is to check if the SimModel topology
fits with the Modelica topology in terms of positioning
of the components according to the hydraulic schema
and correct Modelica connections. By analyzing the
Modelica models we identify four different connec-
tion types we have to handle in the use case, all types
are included in the Modelica Standard Library (MSL).
These four connections types correspond to the Sim-
Model connections. The connections (MSL) and their
relations to SimModel are as follows:

Table 1. Comparison of Modelica and SimModel connectors

MSL SimModel

Fluid connector Water connector (cold, hot)
Thermal connector Air connector
Real connector Control connector
Boolean connector Control connector

The framework connects one component after an-
other according to the given topology, ensuring that
the connectors of the models match. In our first use
case we have a simple loop and all components, ex-
cept the expansion vessel, extend from a simple two
port model. This is a straight forward approach, as the
topology between the hydraulic schema, SimModel and

An Open Toolchain for Generating Modelica Code from Building Information Models

388 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118383

Modelica does not differ much. Components that are
not considered in SimModel, like the expansion vessel
are automatically implemented in every hydraulic loop
modeled in Modelica. The meta model contains infor-
mation about the connection of each model and infor-
mation about components that need to be inserted auto-
matically. The model for a thermal zone from AixLib

has two Thermal connectors for the implementation
of convective and radiative heat sources. Both radia-
tors from the two libraries also have a convective and
a radiative thermal connector, while SimModel uses
a single air connector. Further, the API passes the in-
formation that the radiator and the thermal zone are
coupled. The meta model collects and compares all
this information and produces a connection between
radiator and thermal zone.

More challenging is the correct choice of control
systems and their connection to the components.
The chosen controller set up in Modelica depends
heavily on the used component model. For exam-
ple, the pump model in AixLib has a Boolean
input that can turn on and off a night mode with a
reduced volume flow. This allows a direct use of
Modelica.Blocks.Sources.BooleanPulse

as a control element. The pump of
BuildingSystems requires the pressure rise
over the pump as a Real input. This example
shows possible differences in Modelica’s control
implementations. Typical control strategies, like a
night set back, are embedded as templates in the meta
model. These strategies are directly mapped to the
ones in SimModel.

Once all data is processed, the result is a valid Mod-
elica model. A Modelica representation of this spe-
cific use case is given in Figure 6, here using the
BuildingSystems library. The mentioned pump
control is highlighted in red. At this stage of the project
the graphical layout of components in Dymola is not
supported and needs manual input.

5 Summary

5.1 Limitations

As Annex 60 is an ongoing project and all tools are
currently under development, we are aware of limita-
tions in the discussed framework. Some of the limita-
tions will be tackled in ongoing work, others are out
of the projects scope. The following section provides
an overview of known limitations. As the Building In-
formation Model comes in the form of an IFC file, we
assume a valid, well formed model. The IFC file is the
foundation of the presented toolchain. For example the
IFC file has to contain SpaceBoundary entities. Yet, the
process is semi-automated and still needs input from
the user. Whenever the Modelica libraries change, the

P

pump

M
dp_in

dp

simpleValve

M

flowPipe

dp_nominal=1e4
m0=5

radiator returnP
ipe

dp_nom
inal=1e4

m
0=5

K

temperatureSensor

PID

P

setTemp

k=293.15

nightSignal

86400

dp_const

k=5e5

sw
itch_dp

small

k=Modelica.Constants.small

expVessel

setTempBoiler

k=40 + 273.15

boiler

T

baseParameters

g

Base Parameters

thermalZone

degC

weather

Air temp.

Sky rad.

Terrest. rad.

infiltrationRate

k=0.7

combiTimeTable

pump control

Figure 6. One of several use cases (here shown with Build-

ingSystems).

mapping rules and in some cases also the templates in
CoTeTo have to be adapted. For this reason we enable
the use of different versions of Modelica library and
the corresponding mapping rules and templates. Al-
though the latest versions of the libraries are used, the
initialization of the Modelica model may not provide
good starting values. The model still needs fine tuning
and the correct choice of initialization values. The gen-
erated Modelica model can be seen as a first starting
point. This is also true for the graphical arrangement in
the used simulation environment, in our case Dymola.
For simple models like the Use Case, the representation
is fairly straight forward. If we look at more complex
systems a meaningful arrangement is more challenging
and currently not supported. Further limitations are that
currently only two libraries of the Annex 60 project are
supported and to-date the full toolchain is only avail-
able for a single Use Case. Future work includes the
testing of the developed tools with the other Use Cases,
as well as setting up more complex and realistic Use
Cases.

5.2 Conclusion

This paper presents Modelica code generation for Build-
ing Performance Simulation based on Building Infor-
mation Models. The focus is on an open-source Python
framework to connect BIM with Modelica. The work is
embedded in IEA-EBC Project “Computational Tools
for Building and Community Energy Systems”, also
known as Annex 60. As Annex 60 is an international
project with many participants, our approach is an open,
adaptable and integrated toolchain with several stan-
dalone usable tools. We developed the toolchain to

Session 4D: Building Energy Applications 3

DOI
10.3384/ecp15118383

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

389

be generic and applicable for arbitrary Modelica BPS
libraries. In this paper we present a Python frame-
work that basically covers three tasks in the overall
toolchain: Process control, information pre-processing
and Modelica code generation itself. The framework
offers the possibility to access the BIM and control
the process from a GUI, command line interface or
with use of Python scripts. Covered process control
includes the choice of a specific file and applying map-
ping rules or pre-processing steps for different libraries.
The pre-processing includes calculation of library and
model specific parameters and creation of graphical
annotations. To print out the desired Modelica code,
we use a template approach. Templates are easy to use
and manipulate for each users needs, without neces-
sarily diving into the code itself. We tested the whole
toolchain using a first simple Use Case. Future work
will include testing the developed process on more de-
tailed Use Cases. The intent of the project is that all
developed tools will be available under an open-source
license.

Acknowledgement

This work emerged from the Annex 60 project, an in-
ternational project conducted under the umbrella of the
International Energy Agency (IEA) within the Energy
in Buildings and Communities (EBC) Programme. An-
nex 60 will develop and demonstrate new generation
computational tools for building and community en-
ergy systems based on Modelica, Functional Mockup
Interface and BIM standards.

We gratefully acknowledge financial support by
BMWi (German Federal Ministry of Economic Affairs
and Energy), promotional references 03ET1177A and
03ET1177D.

References

Ruben Baetens, Roel De Coninck, Filip Jorissen, Damien Pi-

card, Lieve Helsen, and Dirk Saelens. OpenIDEAS - an

open framework for integrated district energy assessments.

In Proceedings of the 14th IBPSA Conference, 2015. (sub-

mitted).

Michael Bayer. Mako Templates for Python. http://www.

makotemplates.org/, 2014. Accessed: 2015-05-13.

Vladimir Bazjanac, Tobias Maile, James O’Donnell, Cody

Rose, and Natasa Mrazovic. Data enviroments and process-

ing in semi-automated simulation with EnergyPlus. In CIB

W078-W102: 28th International Conference. CIB, Sophia

Antipolis, France, 2011.

Jun Cao, Tobias Maile, James O’Donnel, Reinhard Wimmer,

and Christoph van Treeck. Model transformation from Sim-

Model to Modelica for building energy performance simu-

lation. In Proceedings of the 5th German-Austrian IBPSA

Conference, pages 242–249, 2014.

Jun Cao, Reinhard Wimmer, Matthis Thorade, Tobias Maile,

James O’Donnel, Jörg Rädler, Jérôme Frisch, and Christoph

van Treeck. A flexible model transformation to link BIM

with different Modelica libraries for building energy perfor-

mance simulation. In Proceedings of the 14th IBPSA Con-

ference, 2015. (submitted).

DIN German Institute for Standardization. Radiators and con-

vectors - part 1: Technical specifications and requirements,

2015. 442 - 1.

Charles Eastman, Paul Teicholz, Rafael Sacks, and Kath-

leen Liston. BIM handbook : a guide to building in-

formation modeling for owners, managers, designers, en-

gineers and contractors. Wiley, Hoboken, NJ, 2008.

doi:10.1002/9780470261309.

Energy in Buildings and Communities Programme (EBC). IEA

EBC Homepage. http://iea-ebc.org/. Accessed:

2015-05-13.

Marcus Fuchs, Ana Constantin, Moritz Lauster, Peter Rem-

men, Rita Streblow, and Dirk Müller. Structuring the build-

ing performance Modelica model library AixLib for open

collaborative development. In Proceedings of the 14th

IBPSA Conference, 2015. (submitted).

German Association of Engineers. Calculation of transient

thermal response of rooms and buildings - modelling of

rooms: VDI 6007-1, 2012. 91.120.10, 91.140.10, 6007-1.

International Organization for Standardization. Industry Foun-

dation Classes (IFC) for data sharing in the construction and

facility management industries, 2013. ISO 16739:2013.

Christoph Nytsch-Geusen, Jörg Huber, Manuel Ljubijankic,

and Jörg Rädler. Modelica BuildingSystems – eine

Modellbibliothek zur Simulation komplexer energietech-

nischer Gebäudesysteme. Bauphysik, 35(1):21–29, 2013.

doi:10.1002/bapi.201310045.

James O’Donnell, Richard See, Cody Rose, Tobias Maile,

Vladimir Bazjanac, and Philip Haves. SimModel: A do-

main data model for whole building energy simulation. In

Proceedings of the 12th IBPSA Conference, pages 382–389,

2011. URL http://eetd.lbl.gov/node/51892.

Qt. Qt Cross-platform application and UI development frame-

work. http://www.qt.io/, 2015. Accessed: 2015-05-

13.

Peter Remmen, Jun Cao, Sebastian Ebertshäuser, Jérôme

Frisch, Moritz Lauster, Tobias Maile, James O’Donnell, Ser-

gio Pinheiro, Jörg Rädler, Rita Streblow, Matthis Thorade,

Reinhard Wimmer, Dirk Müller, Christoph Nytsch-Geusen,

and Christoph van Treeck. An open framework for inte-

grated BIM-based building performance simulation using

Modelica. In Proceedings of the 14th IBPSA Conference,

2015. (submitted).

Armin Ronacher. Jinja2 Templates for Python. http://

jinja.pocoo.org/, 2014. Accessed: 2015-05-13.

Cody M. Rose and Vladimir Bazjanac. An algorithm to

generate space boundaries for building energy simula-

tion. Engineering with Computers, 31(2):271–280, 2015.

doi:10.1007/s00366-013-0347-5.

An Open Toolchain for Generating Modelica Code from Building Information Models

390 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118383

Michael Wetter and Christoph van Treeck. IEA Annex 60.

http://www.iea-annex60.org/, 2012. Accessed:

2015-05-13.

Michael Wetter, Wangda Zuo, Thierry Stephane Nouidui,

and Xiufeng Pang. Modelica Buildings library. Journal

of Building Performance Simulation, 7(4):253–270, 2014.

doi:10.1080/19401493.2013.765506.

Reinhard Wimmer, Tobias Maile, James O’Donnell, Jun Cao,

and Christoph van Treeck. Data-requirements specification

to support BIM-based HVAC-definitions in Modelica. In

Proceedings of the 5th German-Austrian IBPSA Conference,

pages 99–107, 2014.

Reinhard Wimmer, Jun Cao, Peter Remmen, Tobias Maile,

James O’Donnel, Jérôme Frisch, Rita Streblow, Dirk

Müller, and Christoph van Treeck. Implementation of ad-

vanced BIM-based mapping rules for automated conversion

to Modelica. In Proceedings of the 14th IBPSA Conference,

2015. (submitted).

Session 4D: Building Energy Applications 3

DOI
10.3384/ecp15118383

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

391

392 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Lessons learnt from network modelling in a low heat density

district heating system

Itzal del Hoyo Arce Susana López Perez Saioa Herrero López Iván Mesonero Dávila
IK4-TEKNIKER

Parke Teknologikoa, Iñaki Goenaga 5, 20600 Eibar (Spain)
{itzal.delhoyo, susana.lopez, saioa.herrero, ivan.mesonero}@tekniker.es

Abstract

This paper presents the lessons learnt during the
development of a library for the modelling of district
heating systems (DH systems), especially focusing on
the distribution network. The library was built based on
elements from the Modelica Standard Library
(Modelica Association, 2012) and the NewThermal
library (Lopez, del Hoyo, 2014).

The modelling strategy chosen is described.
Furthermore, the requirements established by the DH
networks are set out as well as the models created in
response to these demands.

Finally, the artificial diffusion phenomenon, present
in the simulation of this kind of thermo-fluid systems, is
described.

Keywords: district heating modelling, plastic pipe

model, buried pipe model, numerical diffusion, courant

number, transport delay, thermo-fluid simulation

1 Introduction

District heating (DH) systems produce hot water (or
steam) at a central plant. The hot water is then
transported through pipes placed underground to
individual buildings for space heating or domestic hot
water (DHW) generation. Therefore, dwellings in a DH
system do not need their own boiler or any other
generation system. Hence, a DH system is composed of
a generation system, distribution system and
consumption side.

The main objective of modelling DH networks is to
simulate the rate of energy transport through the system.
This transport depends on the water flow through the
system as well as on the temperature levels in the DH
network. Therefore, as well as in the case of the
modelling of other large scale thermo-fluid systems, in
the modelling of a DH system there are also
fundamentally two different dynamics to take into
consideration, flow and temperature dynamics
(Frederiksen, Werner, 2013). The most important
difference between them is that while changes in the
flow are quickly transferred to the whole network,
usually in a matter of seconds, temperature changes are
transferred relatively slowly, in some cases taking
several hours.

The temperature dynamics are therefore the main
dynamics in a DH system and it is essential to consider
them. In the case of the hydraulic dynamics, the debate
is not so clear. The majority of authors work with
pseudo-dynamic models, in which the flow and the
pressure are calculated based on a static flow model,
because in most cases hydraulic dynamics are
presumably irrelevant. However, the advantages of a
variable flow in a DH system are the low return
temperature and the low heat losses in the network. The
disadvantage, however, is the risk of insufficient
hydraulic balance (Boysen et al, 2007). In this case, the
dynamic hydraulic balance is key to the automatic
control of the flow, so if the systems require a dynamic
balance, the hydraulic dynamics of the system have to
be taken into account.

In the framework of FP7 European project
AMBASSADOR (Autonomous Management System
Developed for Building and District Levels) led by
Schneider Electrics (Onillon, 2014), the dynamic model
library for the modelling of DH systems was carried out
under Modelica®. The library is composed of models
for the generation system (such as boilers or solar
thermal collectors) and distribution system (such as
pipes, fluid or hydraulic balance valves). The objective
of the AMBASSADOR project is the development of
and experimentation with systems and tools that aim to
optimize the energy usage within a district by managing
energy flows, and predicting and mastering energy
consumption and energy production. In the case of
District Heating systems, control design requires
knowing in detail the physical behaviour of the system
to be controlled. A library containing detailed models of
the components present in a DH system was developed
in consequence, including the DH network system on
which this paper is focused.

Within this frame, a fully dynamic modelling has
been chosen for the modelling of the distribution
network, where both the temperature and the flow are
simulated dynamically. The modelling is based on
Modelica® and uses a Dymola® environment due to the
advantages offered (Basciotti, 2012), such as the
possibility to implement customised control strategies
or the possibility to consider stationary effects and
dynamic hydraulic phenomena.

DOI
10.3384/ecp15118393

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

393

The lessons learnt during the modelling of a low heat
density DH network and some of the models developed,
as well as the limitations detected, are presented below.

2 Modelling of DH networks

The main components in a DH network, that is, the
distribution system, are the medium that contains the
energy to be distributed and the pipes through which the
water flows through the network. The models described
below are focused on these main components, although
during the AMBASSADOR project other models, such
as the hydraulic balance valve or DH substations, also
present in the network, were developed.

2.1 Medium: AdaptableSimpleWater model

The Modelica Standard Library contains different Water
models depending on the characteristics taken into
account: compressibility, properties variation with
temperature, etc. Starting from the most basic
ConstantPropertyLiquidWater model (which
considers the liquid incompressible and its properties
constant), to a more sophisticated set of WaterIF97
models (which take into account compressible fluid with
properties dependent on temperature).

The more real approximation implies using the type
of water that takes into account both the compressibility
and the properties dependent on temperature. However,
this kind of simulations have a high computation time
and are usually difficult to initialize.

Fluid operation range in DH systems is usually
around 30ºC-110ºC (Frederiksen,Werner, 2013) so if a
ConstantPropertyLiquidWater model is used
significant errors in pressure loss calculation and thus in
mass flow rate values could appear. Since although
water is essentially incompressible, especially under
normal conditions, mass flow rate calculation usually
implies the value of fluid viscosity, which depends on
temperature. Therefore, a certain error will be involved
if constant thermal properties are considered in the fluid
model.

With the aim of quantifying the error made, three
different water models have been studied:

 RealWater model (WaterIF97_ph): compressible
fluid with properties dependent on temperature.
Available in the Modelica Standard Library.

 SimpleWater model
(ConstantPropertyLiquid): incompressible
fluid with constant properties established at 20°C.
Available in the Modelica Standard Library.

 SimpleWater70C model
(ConstantPropertyLiquid70C):
incompressible fluid with constant properties
established at 70°C, which is the operation
temperature midrange of the DH network modelled.
Created for the study.

The comparison has been carried out for two kinds of
pipes involved in the DH network,
 A flexible plastic pipe for low-temperature

application (DN50) present in the transmission
piping

 An usual copper pipe (28mm external diameter)
covered by a specific insulation, present in the DH
branches

For both analysis, a 10m pipe has been considered
and two different mass flow rate values have been used,
specifically, the extreme values of the real system
(0.016kg/s and 0.25kg/s in the case of copper pipe, and
0.25kg/s and 2kg/s for the flexible pipe). In addition:

 No heat transfer with the ambient has been
considered, just 10ºC were imposed in the
most external layer of the pipes.

 An inlet temperature ramp between 80°C
and 60°C (in 2000s) has been simulated.

The pressure drop of both pipes were analysed during
the experiments. For the calculation, the
“DetailedPipeFlow” option has been chosen for the
FlowModel replaceable model, in this model, the wall
friction in laminar and turbulent regimes is considered.

Figure 1. Pressure drop [Pa] in copper pipe (top: 0.016kg/s,
bottom: 0.25kg/s)

Lessons Learnt from Network Modelling of a Low Heat Density District Heating System

394 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118393

Figure 2. Pressure drop [Pa] in flexible plastic pipe (top:
0.25kg/s, bottom: 2kg/s)

In Figure 1 and Figure 2 the pressure drop values
obtained in the simulations are shown. As can be
observed, the pressure loss value obtained with
SimpleWater70C (in green) is closer to the RealWater
mean value (in red) than the SimpleWater (in blue),
thus, giving a more realistic behaviour. In addition, the
model with RealWater, is 10 times slower than the
others.

As expected, RealWater is the only one that shows
the pressure loss variation with temperature, as the
properties of the other two fluids do not depend on
temperature. However, it is observed that the variation
with respect to the mean value is very low, so a constant
temperature fluid approximation does not seem to
introduce a relevant error for the cases, such as the DH
system at hand, where the operating temperature range
is not very wide.

The comparison has been done considering the
RealWater model's results as those that are nearer to the
real system's results.

Table 1. Maximum relative error in pressure drop
compared with RealWater in copper and flexible pipes

Maximum error

[%]

Flexible pipe Copper pipe

Low

Flow

High

Flow

Low

Flow

High

Flow

SimpleWater 26.44 16.6 51.9 25.19
SimpleWater70C 2.54 1.4 6.77 2.38

Table 1 shows the high error made with the

SimpleWater model in the calculation of pressure drop
in comparison with the RealWater results. In the case of
copper pipe, in addition, the error made is higher
because the flow is on all occasion laminar or near
laminar.

Besides, additional simulations have been run for
RealWater and SimpleWater70C, but this time the pipe
outlet temperature differences have been compared.
Once again, simulations have been run for both the
copper and the flexible plastic pipes, forcing a transient
phase and imposing T=10ºC in the last layer of the
pipes.

In the case of the flexible pipe, present in the
transmission piping of the DH network and therefore
more suitable to major changes in mass flow and
different levels of temperature, a change in flow (from
0.03kg/s to 2kg/s) has been imposed and different input
temperatures have been tested for a 200m pipe. Three
inlet temperatures were considered:

 InletTemperature1 = 70ºC
 InletTemperature2 = 85ºC
 InletTemperature3 = 95ºC

Figure 3. Output temperature differences in a 200m plastic
pipe, under a mass flow rate step and coming from three
different input temperatures

Figure 3 shows little differences in the output
temperature in all the experiments.

Table 2. Outlet temperature comparison. Errors made by
SimpleWater70C model compared with RealWater
model’s results

Inlet

temperature

[°C]

Abs error

[°C]

Mean

temperature

[°C]

Rel. Error

[%]

70 0.18 63 0.3
85 0.334 76 0.44
95 0.474 85 0.56

 In the case of copper pipe, a constant mass flow has

been considered and a temperature step (from 70°C to
75°C) has been imposed in the inlet temperature.

Session 4D: Building Energy Applications 3

DOI
10.3384/ecp15118393

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

395

Figure 4. Output temperature in an 80m copper pipe under
inlet temperature step and constant mass flow rate (Real
Water vs. SimpleWater70C)

In this case, the maximum absolute error is 0.217ºC,
which, compared to the mean temperature value
(72.5ºC), results in a maximum relative error of 0.3%.

A similar analysis has been carried out for different
applications, such as a little flat plate solar collector
plant for generating domestic hot water (DHW), with
the same conclusion: it is considered acceptable to use
an incompressible and temperature independent fluid,
with properties established at operation temperature
midrange.

Although the use of a fluid with properties
established at operation temperature midrange is not
always applicable, in many cases, as above explained, it
is a useful simplification. Nevertheless, the calculation
of the maximum error made with this simplification is,
on all occasions, crucial. Consequently, a new water
model has been developed,
adaptableSimpleWater model. This water model
considers water incompressible and that it has properties
of the fluid independent of temperature. However, the
adaptableSimpleWater model calls for the
midrange operation temperature of the system to be
simulated, and during the whole simulation, it uses the
properties of the fluid relative to this established
temperature.

Hence, the model has the properties of the fluid
declared as a function of the midrange operation
temperature. This temperature is established when the
adaptableSimpleWater class is instantiated.
Both, the properties of the fluid and the midrange
operation temperature, are declared as a constant.

2.2 Distribution pipes: InsulatedPipe model

The level of detail concerning temperature dynamics,
especially the inclusion of the heat capacity of the
insulation material and soil, is often omitted in
simulations of large scale district heating systems.

These systems also have considerable heat demand and
high flow rates resulting in reasonably stable
temperature levels within the distribution network. In
local small scale and low heat density systems (<0.5
MWh/m), the behaviour of a single consumer is more
important thus making a detailed modelling, with
smaller time steps being more relevant. This need is
further increased in a hybrid system with alternative
sources of heat at different temperatures and that are
intermittently available, e.g. solar heat. Systems with
low heat demand experience significant fluctuations in
temperature especially within the connection pipes, i.e.
pipes connecting consumers to the distribution network.

While a less detailed model can give adequately
accurate results for low heat demand systems on a yearly
level, e.g. for heat losses, they are less useful in testing
control systems in different use cases and can lead to
systems that do not operate as they were designed to
according to the simulations.

During the AMBASSADOR project, the dynamic
modelling of a low heat density DH network was carried
out with control design purpose, therefore, detailed
models of distribution pipes were developed
considering the heat capacity of all materials present in
the pipe. Different versions of the insulatedPipe
model (Lopez, del Hoyo, 2014) were used as a basis.

The insulatedPipe basic model describes the
hydraulic and thermal behaviour of any pipe with one or
more solid layer(s) assuming radial symmetry in both
phenomena. The DH network in this case, however,
requires new features in the insulatedPipe model,
so the basic model has been expanded creating new
versions.

2.2.1 Neglecting axial heat transmission

It is common to neglect the axial heat transmission
throughout the length of the cover in the district heating
and cooling systems pipes (DHC systems). It is done in
the most used methods for the modelling of DHC
systems, the node method and element method (Pálsson,
2000). This happens because considering the slow
temperature dynamics and the poor conductor plastic
materials in DHC pipes, the heat transfer in the solid
materials of the pipe principally occurs in the radial
direction. Traditionally, in the case of modelling DHC
systems, there are no major differences between the
results of taking into account the axial heat transfer and
not taking it into account, but there is a big difference
regarding simulation time. Not considering the heat
transfer in axial direction reduces considerably
computational weight of the simulation, a huge
advantage in the simulation of large-scale thermo-fluid
systems, because it can significantly speed up
simulations.

Hence, based on state of the art, an improved
InsulatedPipe model was created, called the
InsulatedPipeOptionalAxial model. This

Lessons Learnt from Network Modelling of a Low Heat Density District Heating System

396 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118393

new model has the same characteristics as the
InsulatedPipe basic model, but it has the option
of choosing between taking into account the heat
transfer in axial direction or not considering it. Thus, it
is up to the user to decide regarding the aforementioned
heat transfer. When the axial heat transfer is neglected
the boolean axialHeat has to be switched to false.

The experiments done show practically identical
results. During the experiment, the pipes were
considered adiabatic and they were fed by a pump with
a constant mass flow (2kg/s) and a ramp in temperature
(from 20ºC to 80ºC, in 100s). In the Figure 6, the
temperatures of three nodes (the first node, the middle
node and the last node) are shown for the cases where
axial heat conduction is considered and neglected under
the same conditions.

The CPU time consumed, nevertheless, varies

significantly, since neglecting the axial heat conduction
speeds up the simulation by a factor of 2.69 (the
simulation neglecting axial heat conduction can be up to
60% faster).

2.2.2 Buried pipe

The pipes used for transmission in DH systems are
usually underground. Buried systems are highly
influenced by the soil around them, both the thermal
conductivity of the ground and the depth at which they
are buried affects the heat transfer in the system,
particularly when the insulation has low thermal

resistance (McCauley, 2000). Moreover, soil thermal
conductivity changes significantly with moisture
content, from 0.14 W/mK in dry soil conditions to 2.16
W/mK in wet soil conditions (Bottorf, 1951).

The most important factors affecting heat transfer are
the difference between earth and fluid temperatures and
the thermal insulation. Other factors that affect heat
transfer are (ASHRAE handbook, 2008):
1. Depth of burial, related to the earth temperature and

soil thermal resistance
2. Soil conductivity, related to soil moisture content

and density
3. Distance between adjacent pipes.

The mathematical model of DHC system pipes must
compute transient heat gains or losses in the
underground piping system, and for this, the resistance
of the ground has to be considered. The most usual
physical model defines thermal resistances between the
different materials of the pipe and surrounding ground.
That is, in the modelling of a buried pipe, it is divided
into three main parts, the surrounding ground, the
insulation layers and the water mass.

The surrounding ground is considered, as an infinite
inertia. That is, it is supposed that the heat from the
buried pipes is not enough to change the temperature
and thermal properties of the surrounding soil.
Therefore, the influence of the surrounding soil is taken
into consideration through a thermal resistance (Rg),
depending on the depth at which the pipe is buried (sd),
the conductivity of the ground (Kg) and the external
diameter of the buried pipe (Dm), as is shown in the
following equations (Pálsson, Larsen, et al, 1999):

 ܴ� = ଵ2��� ��⁡ቀ4���ቁ (1)

 � = ௗݏ + Ͳ.Ͳ͸8ͷ�� (2)

A second thermal resistance (RH) is presented in the

pipe model to take into account the effect of having two
pipes side by side in the ground, depending on the depth
at which the pipes are buried (sd), the conductivity of the
ground (Kg) and the distance between the centre of the
two buried pipes (sc). Assuming identical supply and
return pipes, this resistance is given as (Pálsson, Larsen,
et al, 1999):

 ܴ� = 12��� ∗ �� ቆ1 + �ݏ�2))2ቇ

(3)

The buried model has been used for the modelling of
a CALPEX® district heating pipe and the validation has
been done with the data provided by the manufacturer
(CALPEX® technical sheet). The sheet shows two
CALPEX®UNO 63/126 buried at 0.60m at a distance

Figure 6. Temperature of three nodes inside the
InsulatedPipe and
InsulatedPipeOptionalAxial models

Figure 5. Temperature of three nodes inside the
InsulatedPipe and InsulatedPipeOptionalAxial
models

Session 4D: Building Energy Applications 3

DOI
10.3384/ecp15118393

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

397

of 0.1m. The ground temperature and soil conductivity
are also known:

Figure 7. Validation of insulated and buried pipe model
against data provided by the manufacturer

The error of the simulation results compared with

those provided by the manufacturer is 5.01% at highest
water temperature (distribution temperature) and is
below the latter value at lower temperatures.

3 Discussion: Artificial diffusion

phenomena

During the process of modelling the DH network, a

well-known phenomenon has been detected in the
simulation results related with the transport delay which
arises in any fluid movement through a pipe. The real
transport delay is calculated in the following way: �ௗ௘��� = � ∗ � ∗ �ܳ (4)

In the equation (4), ρ is the density of the fluid, A is

the transverse area the fluid goes through, L is the length
at which the output temperature is observed and Q the
flow rate through the system.

 In the course of the validation period of the
insulatedPipe model, the following test was
suggested for a flexible plastic pipe of 100 m length,
divided into 10 nodes:
 Mass flow: Step signal, the mass flow changes from

1kg/s to 2kg/s at the 30th minute
 Temperature of the incoming water: Double step

signal, the incoming water temperature changes
from 80°C to 70°C at the 20th minute and again to
60°C at the 40th minute

 It is assumed the ground temperature remains
constant (10°C) during the simulation

Figure 8. Outlet temperature in a 100m pipe divided into
10 nodes

The real transport delays, calculated by equation (4),

that must appear on the outlet temperature behaviour
corresponding to the first temperature step and the
second temperature step are 130.5s and 65.3s
respectively. However, the transport delays in the
dynamic response of the model are, rounding, 60s after
the first step and 35s in the second one. This
phenomenon is known as artificial diffusion.

Artificial diffusion is the consequence of numerical
diffusion in the simulation of a continuum phenomenon
such as fluid movement, in consequence, the simulated
medium exhibits a higher diffusivity than the true
medium (Leveque, 2007). In this case, the diffusivity is
known as the property of a substance indicative of the
rate at which a thermal disturbance, such as a drop in
temperature, will be transmitted through the substance.
Therefore, the model shows a higher diffusivity than the
real case, that is, the drop in temperature through the
substance is transmitted faster than in the real case.

The numerical diffusion is often analysed taking the
Courant number into account:

ݑ�� = ∆� ∗ �∆ݑ (5)

When the Courant number approaches zero the model

shows excessive artificial diffusion while Cou=1 cases
give the exact result.

The Courant number depends on the time step, that
is, the time between the current and the previous step
(Δt), the element length (Δx) and the flow velocity (u).
The latter is imposed by the real case, and in the case of
using a variable time-step solver, in addition, in the vast
majority of cases, the software itself decides the time-
step value (Δt). The integration step size in variable
time-step solvers, is chosen in such a way, that the local
error is smaller than the desired maximum local error,
defined via the relative and absolute tolerances. In other
words, a variable (or adaptive) step size implies that the
algorithm adapts the step size to meet a local error
criterion based on the tolerance (Dassault Systèmes AB.
Dymola User Manual, 2015).

Lessons Learnt from Network Modelling of a Low Heat Density District Heating System

398 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118393

Therefore, the user can specify just the element
length; accordingly, the artificial diffusion could be
improved discretizing more the pipe element. Therefore,
in the case at hand, the higher the number of nodes in
the pipe the better the results of the model. Considering
three different degrees of discretization:
 Considering the pipe divided into one node:

Δx=100m
 Considering the pipe divided into 10 nodes:

Δx=10m
 Considering the pipe divided into 100 nodes:

Δx=1m

The simulation has been carried out with the same
tolerance and the exercise's results are shown in the
following figure:

Figure 9. Outlet water temperature for the cases of the pipe
discretized into one node, into 10 nodes and into 100 nodes

Figure 9 demonstrates that the fewer the nodes in the
pipe the higher the artificial diffusion.

Table 3. Courant number for each case

Mass flow

1kg/s

1 node

Δx=100m

10 nodes

Δx=10m

100 nodes

Δx=1m

Delay in the
model [s]

35 65 112

Relative
error in the
time delay
[%]

73 50 14

Cou number 0.007 0.068 0.75
Mass flow

2kg/s

1 node

Δx=100m

10 nodes

Δx=10m

100 nodes

Δx=1m

Cou number 0.015 0.138 1.517

In Table 3 can be seen that the Courant number

changes with the number of nodes in the pipe, but as is
known intuitively with the case of the 100 nodes pipe
(last column), the adequate number of nodes for a
specific operating flow rate may not be the best one for
other operating flow rate. Hence, the degree of
discretization must be in accordance with the operating
flow rate range. In addition, when the discretizing level
increases the tolerance of the integration has to change
accordingly, otherwise, during the calculation a

numerical error may appear which is reflected in the
results as artificial diffusion (that is, a thermal
disturbance is transmitted through the substance faster
than in the real case).

The major disadvantage of this procedure to get the
best discretization level of a big thermo-hydraulic
system in order to reduce the relevance of the artificial
diffusion, is the significant time needed. Since
according to the technical support service, using a
variable time-step solver is not possible to examine the
time step during the course of the simulation. Therefore,
the methodology requires running the simulation to have
available the necessary data for the calculation of the
Courant number. This kind of thermo-fluid simulation,
moreover, usually has a high computational weight.

4 Conclusion

The models of the two main components present in a
DH network, fluid and buried pipes, have been
developed and successfully validated. These models
have been developed with elements from both the
Modelica Standard Library and NewThermal library
(which is in turn based on models from the Modelica
Standard Library), and based on the requirements of
district heating systems.

Furthermore, the artificial diffusion phenomenon
detected in the network models is explained and it is
suggested to identify and control its influence through
the calculation of the Courant number. The analysis of
the Courant number, however, now implies a post-
processing of the results since it is not possible to
evaluate the time step during the course of the
simulation using a variable time-step solver.

Acknowledgements

The research leading to the results presented in this
paper (models development, analysis, validation, etc.)
has been developed in the framework of project
AMBASSADOR, which has received funding from the
European Union Seventh Framework Programme
[FP7/2007-2013] under grant agreement n°314175

References

ASHRAE Handbook: Heating, Ventilating & Air-
Conditioning Systems, chapter 11. 2008

Basciotti D., Pol O., A theoretical study of the impact of using
small scale thermo chemical storage units in district heating
networks. Energy Department AIT, Austria (2012)

Bottorf, J.D. Summary of thermal conductivity as a function
of moisture. 1951

Boysen, Thorsen. Technical paper, Hydraulic balance in a
district heating system (2007)

Dassault Systèmes AB. Dymola User Manual (2015)

Svend Frederiksen, Seven Werner. District Heating and
Cooling. Studentlitteratur first edition (2013)

Session 4D: Building Energy Applications 3

DOI
10.3384/ecp15118393

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

399

R.J. Leveque (2007). Finite Difference Methods for Ordinary
and Partial Differential Equations. ISBN 978-0-898716-29-
0

Susana López, Itzal del Hoyo. Proposal for standardization of
Heat Transfer Modelling in NewThermal Library. 10th

International Modelica Conference (Lund), 2014.

James McCauley. Steam distribution system deskbook (ISBN
0-88173-303-2), 2000.

Modelica Association, (2012). A Unified Object-Oriented
Language for Physical System Modeling, Modelica®

Emmanuel Onillon, District energy flow optimization taking
into account building flexibilities. International Conference
Sustainable Places (2014)

Halldór Pálsson. Methods for Planning and Operating
Decentralized Combined Heat and Power Plants. Riso
National Laboratory, Roskilde, Technical University if
Denmark, 2000

Halldór Pálsson, Helge V. Larsen, et al. Equivalent models of
district heating system, Technical University of Denmark
and Risø National Laboratory, 1999.

Lessons Learnt from Network Modelling of a Low Heat Density District Heating System

400 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118393

Modelica based Design and Optimisation of Control Systems
for Solar Heat Systems and Low Energy Buildings

Stephan Seidel1 Christoph Clauss1 Jürgen Haufe1 Kristin Majetta1 Torsten Blochwitz2
Edgar Liebold3 Ullrich Hintzen4 Volker Klostermann5

1 Fraunhofer IIS EAS, Zeunerstraße 38, D-01069 Dresden, GERMANY
2 ITI GmbH, Schweriner Straße 1, D-01067 Dresden, GERMANY

3 NSC GmbH, Äußere Zwickauer Straße 8, D-08064 Zwickau, GERMANY
4 FASA AG, Marianne-Brandt-Straße 4, D-09112 Chemnitz, GERMANY

5 Provedo GmbH, Schweriner Strasse 1, Mottelerstraße 8, D-04155 Leipzig, GERMANY
{stephan.seidel, christoph.clauss, juergen.haufe, kristin.majetta}@eas.iis.fraunhofer.de

Abstract

The goal of the research project enerMAT is the re-
duction of energy consumption and CO2 emissions
of buildings. Especially solar heating systems are
installed in more and more buildings. This paper in-
troduces a novel approach for simulation and optimi-
sation that aims to improve the performance of build-
ing controllers and especially solar heating control-
lers by simulation and model-in-the-loop tests. A
new generation of energy-aware optimised building
energy management systems (BEMS) will be dis-
cussed and its advantages over the older controllers
highlighted. The energy-aware optimisation will be
shown on a model-based approach with an overall
building system model enabling the assessment of
the energy performance for different design and op-
eration alternatives of the building automation sys-
tem in interaction with the building. This system
model will allow a simulation-based, energy-aware,
global, dynamic, multi-criterial optimisation of
BEMS. In this paper, the idea, the approach, and the
actual state of the project research is presented with a
focus on solar heating controllers.
Keywords: Building, Energy Management, Solar

Heat, Controller

1 Introduction

As mentioned in the public media and many scien-
tific studies the energy demand of buildings is re-
sponsible for about 40% of the primary energy con-
sumption (European Commission, 2008). This de-
mand is caused by many energy consuming devices
and systems such as lighting, water heating, and con-

sumer electronics. The main consumer however is
the heating system. There is a two-step approach to
reduce the demand of fossil energy in buildings. The
first step is to equip buildings with insulation layers
and reduce the amount of energy that is emitted into
the environment. This passive measure was and still
is the main procedure for energy reduction but yields
only a small positive effect on the overall energy
balance in case the reduction is compared to the ex-
penditure in manufacturing. Insulation however is a
prerequisite for low energy houses as it reduces
greatly the required heating power. But as explained
in the following insulation should not be the only
measure for saving energy. Instead of further im-
proving insulation levels renewable energy sources
should be employed to reduce the impact on the en-
vironment. This is the second step in which fossil
fuel heating systems are replaced with renewable
energy sources after insulation has been upgraded.
Solar energy plays a major role as it is readily avail-
able and easy to harvest. Photovoltaic and solar
thermal energy systems are installed in low energy
houses in order to assist or replace fossil energy con-
suming systems. Other renewable energy harvesting
systems such as heat pumps are an alternative or a
support for solar energy. Heat pumps can harvest
thermal energy (ground or air) although depending
on the heat source their installation can be expensive.
Micro wind turbines can be installed as well but are
more difficult than solar systems. Their approval by
authorities might require costly surveys, moving
parts cause higher servicing costs and the noise
might cause resentment with the neighbours. There-
fore they are not very common in urban areas. The
installation of solar energy systems is, depending on
size and system, relatively cheap and requires only
the installation area on a roof or other exposed area.

DOI
10.3384/ecp15118401

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

401

Currently almost every newly built detached house
in Germany is equipped with a solar thermal heating
system in order to meet requirements introduced
with the Energieeinsparverordnung (Energy Savings
Regulation) (BmWI, 2014). While most houses fea-
ture small solar thermal systems which support the
warm water supply a growing percentage of the
houses built are energy-plus or solar houses that gen-
erate most of the energy required for heating from
renewable energy sources (solar and geothermal).
These houses are in general very well insulated and
rely heavily on an optimised heating system that
does provide sufficient heat not only in summer but
also in winter when the supply of renewable energy
is generally low. Therefore it is crucial for these sys-
tems that their hardware and software parameters are
adapted to the individual building where they are
installed. There is a multitude of parameters (w.r.t. to
solar thermal heating systems) including size and
direction of collector array, type of collectors,
threshold temperatures for switching, buffer size and
charging procedure as well as feed line temperatures,
occupation profiles and heating times and many
more. Many if not all of these parameters are estab-
lished during the planning and construction phase of
the building and they are based mainly on experi-
ence, especially parameters in the controller. Once
installed these parameters cannot be changed at all or
only by experts. Therefore it is vital to establish op-
timal values during the development procedure by
using simulation and optimisation.
A solar thermal heating system typically consists of a
collector array, a huge water-filled buffer storing the
thermal energy, a circulation pump on the source
side and floor heating, hot water heating and circula-
tion pumps on the consumer side. All of these devic-
es are controlled by a dedicated stand-alone control-
ler. Among others the universal controller 1611
(Universalregelung UVR 1611) from the Austrian
manufacturer Technische Alternative is a well-

known and widely used device. This device is pro-
grammed by using a PC and parameterising and con-
necting function blocks in the programming tool
from a preconfigured library.
This paper will present an approach to use simulation
and model-based optimisation to validate the planned
solar-heating system and find ideal parameters for
installation and control unit.
Furthermore this paper will highlight the use of sim-
ulation and optimisation for low energy buildings in
general and for controllers for solar thermal heating
systems in special. Section 2 will explain the control-
ler in some detail and will also discuss the targets for
simulation and the expected benefits. The following
section 3 will shed some light on the approach for
simulating the solar thermal heating system in con-
junction with control systems and the surrounding
house. This will be further elaborated in section 4
where two use cases and demonstration projects are
presented. Section 5 will give an overview of the
current status of the project and an outlook. The pa-
per will conclude with section 6.

2 Targets

The UVR 1611 control unit introduced in section 1 is
a typical controller for HVAC systems and was de-
veloped by the Austrian company Technische Alter-
native since 2000. It is tailor-made for HVAC and
solar heating systems and features a wide set of func-
tions for this purpose. The controller has 16 sensor
inputs (typically temperature sensors), 4 speed out-
puts (e.g. for circulation pumps), 7 relay outputs (for
opener/closer switches or valves), a CAN bus con-
nection and several extension modules to add more
relay outputs or LAN connectivity for viewing and
operating the controller via internet.
Although described and marketed as freely pro-
grammable this should be understood in a different
way. Programming languages such as IEC 61131-3’s
instruction list or ladder logic are not available. The
closest equivalent in 61131-3 would be the function
block diagram (FBD) although the function blocks in
the UVR cannot be connected with each other. A
UVR configuration (or sometimes called program)
consists of several function blocks that process in-
puts and flag values and write outputs and flag val-
ues. Typical function blocks are provided by a li-
brary but it is not possible to write own function
blocks. This is in most cases not necessary because
typically the UVR is not programmed by an engineer
but rather configured by a technician. Functions
blocks are ranging from simple logic functions
(AND, OR, FlipFlop), compare function, timers,

Figure 1: Universal controller UVR1611

Modelica based Design and Optimisation of Control Systems for Solar Heat Systems and Low Energy
Buildings

402 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118401

counters and clocks to control functions such PID
control. Many function blocks are designed for typi-
cal HVAC control tasks such as heating circuit con-
troller, mixer control, load pump control, solar con-
trol, boiler cascade control and many more. This
concept is part of the UVR’s success (tens of thou-
sands sold units) because typical tasks can be solved
by configuring a few function blocks instead of pro-
gramming everything from scratch. The configura-
tion, which is done on a PC and downloaded onto the
device, is fairly easy to do. Function blocks are
pulled from the library and the parameters are edited.
Many function blocks provide switches for behav-
iour changing (e.g. P-, PI- or PID controller) and
cover a wide range of required functionality. Internet
forums are full of example configurations and also
the manufacturer provides a range of configuration
examples for download.
The UVR’s success is due to its versatility and its
scalability. Typical use cases are heating systems in
detached houses that go beyond the standard natural
gas powered heating system which are controlled by
the integrated controller of the condensing boiler
such as solar thermal heating systems, geothermal
heating systems or older systems that require an ex-
tension or a retrofit. Within the enerMAT project
UVR controllers were installed by the FASA AG as
control unit for the heating system of so called solar
houses and offices with the trade name ENER-
GETIKhaus100. These houses are not standard low
energy houses, in fact they have a higher demand in
heating energy than typical low energy houses, but
the heat is provided entirely by renewable energy
sources. Typically the UVR would control the solar
heating system, its circulation pump and the corre-
sponding valves, the loading of the buffer with solar
heat and the circulation pump of the floor heating.
The solar heating system in such houses by FASA
has the aim of providing up to 92% of the heat re-
quired by the house and inhabitants by means of so-
lar energy. The remainder is covered by a wood-
burning stove. Typically one UVR is sufficient to
cover all the pending control tasks in a detached
house.
Other use cases, especially more sophisticated or
larger installations can be resolved by installing sev-
eral UVR units which communicate by CAN bus
with each other. Hence UVR 1611 controllers can be
installed wherever an off-the-shelf solution for heat-
ing systems is not available or not desired because of
compatibility issues between components of differ-
ent manufactures or missing features. Since the UVR
1611 is an older controller type it is currently phased
out and replaced by a newer type, the UVR16X2

which is similar but not identical in form and func-
tion to the 1611 model.

3 Approach

As mentioned already in Sections 1 and 2 the lack of
a methodology to obtain optimised parameters before
the actual implementation on the HVAC controller
leads to non-optimal behaviour of the heating system
which could result in poor heating performance and
energy wasting. Parameters are often estimated or
based on empirical values which are not necessarily
ideal for the particular heating system. Therefore a
simulation-based commissioning and optimisation is
required to obtain ideal functionality and parameters
for the heating system controller such as the UVR
1611. Simulation or virtual commissioning is almost
non-existent in the field of such control units. This is
vastly different for industrial programmable logic
controllers (PLC) such as PLCs for intralogistic sys-
tems (Seidel, 2012) which are tested and optimised
on a virtual model of the plant before the real com-
missioning takes place. This has various advantages
such as thoroughly tested and mature software with
fewer bugs, shorter commissioning and project time
and reduced costs. Unfortunately virtual commis-
sioning doesn’t play any significant role in building
control systems. One of the enerMat project’s aim
was to provide engineers with the tools required for a
continuous workflow for design, test and optimisa-
tion of building controllers and systems of which one
subsystem the UVR 1611 is.

Several options for simulation, emulation and vir-
tual commissioning have been analysed. The lack of
a software simulator for the UVR 1611 controller
prevents any form of software-in-the-loop (SiL) ap-
proach. Software available for the UVR is limited to
the programming system TAPPS which features no
simulation or emulation mode. If such an emulation
tool would exist a co-simulation solution would be
feasible. Hardware-in-the-loop (HiL) approaches
would be feasible by connecting the hardware con-
troller by means of an I/O interface and FMI to the
simulation. The big issue however is the missing
time synchronisation between controller and simula-
tion tool. The hardware controller would always be
restricted to real-time, and simulation runs over a
long time span such as a year would be difficult be-
cause of the required amount of time. Therefore a
model-in-the-loop (MiL) was favoured and found to
be the most promising approach which avoids the
error-prone coupling of tools or systems. By apply-
ing MiL the engineer can concentrate on the simula-
tion tool and the designed controller and building

Session 4D: Building Energy Applications 3

DOI
10.3384/ecp15118401

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

403

model. Other advantages are: symbolic prepro-
cessing of the model and thus a more reliable and
faster simulation.

To create a model of the UVR controller (and any
other controller) a detailed functional description is
required. This can be either the program code or a
system specification. Since the source code was not
available the function block specification (TA, 2014)
was used as a basis for the design of the controller
model. Such a model consists of two submodels. One
is the functional model; the other is the behavioural
model (Seidel, 2009). The latter describes how the
controller works internally, for instance what amount
of time is consumed for calculating new outputs
from a change of inputs (cycle time) or in which se-
quence the user program is executed. Knowledge of
this behaviour is important for fast processes such as
manufacturing machines (Seidel, 2011) or car en-
gines. In the case of building controls this can be
neglected and the designed behaviour model has no
cycle time because the controller’s cycle time which
is in the range of milliseconds is very small com-
pared with time constants of the building and heating
system (minutes to hours).

The functional model consists of the user pro-
gram which is the function block structure with cor-
responding inputs, outputs and parameters. Therefore
to create a model of the user program a library of the
available function blocks is required. Components of
this library are models of each function block having
the same inputs, outputs and parameters as their
counterpart in the real-world controller. The specifi-
cation of each function block was analysed, inputs
and outputs connectors were created and the function
was modeled by means of algorithms and equations
or in case of more complex blocks as a group of in-
terconnected elements from the Modelica Standard
Library (MSL). As already mentioned the complexi-
ty of the function blocks was very diverse. Simple
blocks, such as the comparison block, required just a
few lines of code as algorithm section as shown be-
low.
when valueA > valueB + diffOn then
 valAGreater := true;
elsewhen valueA < valueB + diffOff then
 valAGreater := false;
end when;
valALower:=not valAGreater;
if enable then
 valAGreaterOut := valAGreater;
 valALowerOut := valALower;
else
 valAGreaterOut:=false;
 valALowerOut:=false;
end if;
Modelica Code fragment of comparison block

It is worth noting that many of the function blocks
implement margin parameters for signal inputs to
filter noise or minor oscillations and to prevent a fre-
quent switching of outputs.

On the other hand, the PID control block was
considerably more complex because the function
block can be set to three different behaviours (abso-
lute value controller, differential value controller and
event triggered controller). The final version of the
PID block consists of 11 MSL blocks and several
lines of code. A third example is the synchronisation
block which generates user defined outputs signals
according to different times of day or week. Alt-
hough this function is not very complex the final
version contains 230 lines of code but no MSL
blocks.

Testing was very important as testing was an iter-
ative process during the development of the function
blocks. In a first step for each block an individual

test model was designed which consisted mainly of
signal functions from the MSL to generate input sig-
nals and used to test and verify the function blocks
(test model for Comparison block is shown in Figure
2). In a second step we generated test signals by us-
ing the UVR 1611 simulation board which is an ad-
ditional hardware module for the UVR and features
16 potentiometers with which temperature inputs can
be set manually. After loading user programs con-
sisting of just the function block under test into the
UVR the inputs were altered and the corresponding
outputs signals were recorded. These test signals
were then fed to the function block under test and the
recorded outputs were compared to the simulated
ones.

As a third step a model of a detached house was
created consisting of several parts:

 model of the UVR control program

Figure 2: Comparison Function block test model

Modelica based Design and Optimisation of Control Systems for Solar Heat Systems and Low Energy
Buildings

404 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118401

 model of the solar heating system
 model of the buffer for storing thermal ener-

gy
 model of the building including a single room

with floor heating.
This model was developed using components from
the GreenBuilding Library (Schwan, 2012) which is
part of SimulationX. This library provides model
components for buildings and renewable energy sys-
tems. This model (Figure 3) was kept simple in order
to detect errors in the UVR controller model which
consists of several different control blocks (solar
control, comparison, timer and others). The focus
was on the interaction of the UVR control blocks
with the rest of the model components and on the
ratio of simulation time vs. computing time. The re-
quired amount of computing time was relatively
small and in a few cases where an increase of com-
puting time was registered, this was due to pro-
gramming errors or faulty parameters. Both prob-
lems caused the generation of too many events main-
ly because thresholds were too close or states in the
function blocks not stable.

Not all available function blocks for the UVR
controller were modeled because there were too
many of them and some are rarely used. Therefore
we created a subset of the 12 most used function
blocks which were modeled in Modelica and imple-
mented into a library:

 Solar control
 Start function
 Cooling function
 Comparison
 Load pump
 PID control (speed control)
 Analog function
 Timer

 Time Switch
 Synchronisation
 Heat quantity counter
 Counter

The library of UVR function blocks is thus useable
and can be extended to its full extend. However de-
velopment was halted after around 60% of function
blocks had been modelled because the new controller
UVR 16X2 which replaces the older 1611 will fea-
ture a slightly different set of functions and will not
be compatible with the 1611. In addition the main
function blocks required in the project for UVR 1611
were modelled.

4 Use Cases and Demonstrators

After the required function blocks were modelled
and tested we were able to implement the larger
model of a refurbished office building in Chemnitz
which is also a demonstrator in the enerMat project.
The main building components that were included in
the model are:

 Solar heating system with 270m² solar
thermal collector area providing up to 80%
of the annual heat energy (90% was
planned)

 110m³ heat storage buffer
 Building with 2 floors and 1150m² heated

area
 Wood burning stove as backup heating sys-

tem for cold and darker winter months
(providing the remaining 20% heat energy)

 Heat pump to rearrange heat distribution in
the buffer which also extends the range of
the buffer. It has no external heat source and
is used solely with water from the buffer.

Figure 3: Model of a house with solar heating system and a UVR function block Solar Control

Session 4D: Building Energy Applications 3

DOI
10.3384/ecp15118401

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

405

The refurbishment of the office building was planned
and designed not as a low energy building but as a
building that is sustainable and requires almost no
fossil fuel for heating apart from the electrical energy
of the heat pump which is active for around 10 days
per year during the winter months. Therefore the
building lacks typical features of low energy build-
ings such as air condition, automatic windows, etc.
The Modelica model for this building is split into the
energy source and energy demand model which were
developed in parallel.

4.1 Energy source model

The energy source model contains the solar thermal
collector array, the UVR controller, the storage buff-
er, heat pump and wood burning stove along with
several pumps and valves.
Combined with a dummy heat sink model consum-
ing heat from the buffer this model was used to vali-
date the UVR controller model by comparing simu-
lation data with sensor readings obtained from the
real controller. Typical signals were temperatures in
the collector and buffer, pump and valve signals,
power and heat levels. Simulation and measured val-
ues were relatively similar with some deviations that
can be attributed to the temporal resolution of the
meteorological data which was one hour (mean val-
ues for one hour: temperature, solar radiation, wind,
etc…) and the one-point character of the collector
model. The UVR controller model was created by
using real UVR controller in the office building as
template and was modeled one to one w.r.t. to func-
tion blocks, inputs and parameters.

Figure 4: Temperature in 110m³ buffer (30 days)

Figure 4 shows the simulated buffer temperature dis-
tribution from the energy source model compared to
measurements over a simulation period of 30 days.
Input for the model was meteorological data record-
ed during the same period as the measurements were
taken. (Note: Local weather data was not available,

weather data was recorded at a weather station
around 60km from building). The general trend be-
tween simulation model and measurement data is
identical and deviations are due to a very simplistic
model for heat consumption which extracts heat dif-
ferently from the buffer than the real-world heating
system. Real world data from the consumption side
which would make the model more exact is not
available.

4.2 Heat consumption model

Components from the GreenBuilding library were
used to model the office building complete with
building zones, heating system, inner loads and shad-
ing. Several parts of the model had to be created
from scratch where the GreenBuilding library did not
provide sufficient components. These were models
for:

 Heat pump and control
 Wood burning stove and control
 Distribution valve
 Heat meter
 Heating circuit manifold
 Time switches
 Two point temperature controller

and several other purposes. The solar heated office
building has 53 rooms on 2 floors. Each room is
equipped with a heating circuit which is supplied
with warm water from a central heat storage tank.
This tank is heated with solar power produced by a
solar heating system which is part of the energy
source model.

The model of the overall building covers 25
building zones each equipped with a heating system
(heat consumer). Several neighbouring office rooms
had to be combined into one building zone to speed
up simulation and because the maximum amount of
building zones in one model was limited. Modelling
itself was quite time consuming because every
boundary had to be parameterised manually with the
corresponding parameters (thickness, thermal trans-
mittance, area, material, …) taken from Excel sheets.
After the completion of the demand part of the mod-
el several simulation runs were analysed in order to
assess the models conformity to the real-world and
numerous test cases were defined such as:

 Test of the heating behaviour in room:
o maximum heating
o No heating (neighbouring rooms are

heated)
 Room occupation with different number of

persons

Modelica based Design and Optimisation of Control Systems for Solar Heat Systems and Low Energy
Buildings

406 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118401

 Windows opened and closed for certain
amount of time

 Lighting (halogen bulbs) in room activated
Sensors at different positions recorded the tempera-
ture during the tests and the readings were later
compared to the simulation results. Typical devia-
tions initially observed between measured and simu-
lation data were:

 Slope of temperature too steep due to simpli-
fied heating model not containing insulation
layer between room and underfloor heating

 Simulated temperature 1K too low due to not
modelled internal gains and/or misplaced
temperature sensors (main logging sensor
was attached to ceiling)

 Solar gains because of sunlight shining into
the room too low resulting in lower tempera-
tures in simulation

 single point room model too coarse (just sin-
gle temperature instead of temperature dis-
tribution)

It was the aim of these tests and simulations to de-
termine the accuracy of the simulation model. All
tests were conducted in one office room because the
building was in constant use and tests with the heat-
ing system would have caused discomfort for the
inhabitants. The aforementioned deviations led to
some improvements in the simulation model such as
an added first order delay for the heating power. An
upgraded heating model would have produced better
results but the heating model from the library was
protected and could not be extended. Results from
the adjusted model are compared to measured data in
Figure 5.

Figure 5: Simulated temperature compared to meas-

ured temperature in office room (13 days)

The complete building model with heating system
was also simulated for one year and meteorological
data for a test reference year (TRY) was used to ob-
tain the energy demand of the building. Results (an-
nual heat consumption in kWh/m²) were then com-

pared with values calculated by the architect for the
buildings energy performance certificate and were
remarkably close (simulation 57kWh/m²; certificate
52kWh/m²). The 57kWh/m² are provided by solar
heat and in case the solar heat buffer is depleted by a
wood burning stove or the heat pump.
Simulation was then employed to find answers to the
following question. Is it useful to program the heat-
ing controller to lower the set point temperature at
night and/or at weekends?
Simulation results did not provide a simple answer as
shown in Figure 6. The underfloor heating system is
characterised by a couple of attributes that make it
very slow: two-point controller with an on/off valve;
long time constants of up to 12h, low feed tempera-
ture (around 32°C but down to 29°C in winter). All
these factors contribute to a very slow heating sys-
tem which makes energy saving measures like low-
ering the set point temperature difficult. The main
issue with a lowered set point (red line) is that re-
heating the room in the morning or after weekends
takes too long and a comfortable room temperature
(blue and green lines) is not reached in time as
shown in Figure 6.

Figure 6: Temperature setpoint lowered to 18°C on

weekends and after working hours

This result was an important finding and also a proof
that energy saving by lowering the temperature dur-
ing night and weekends comes at a price of reduced
comfort at least in this particular building. Subse-
quently this also demonstrates the need for an intelli-
gent heating controller algorithm that calculates the
required preheating time w.r.t. current room tem-
perature, outside temperature and available heating
power (feed temperatures) and next occupation. Such
a controller is currently under development and can-
not be implemented using the function blocks of the
UVR controller as they are not flexible enough. Any
form of intelligent algorithm must therefore be im-
plemented on a top level controlling system such as a
BEMS or BACS.

■ Simulated Temp. ■ Measured Temp.

Session 4D: Building Energy Applications 3

DOI
10.3384/ecp15118401

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

407

4.3 Combined energy and building model

The energy source model and demand model were
then combined into one single model. This model
was rather large and separate development was cru-
cial for handling and verification of each part. The
one year simulation produced results that were al-
ready observed by the buildings occupants. Although
the solar heat harvested during summer and stored in
the 110m³ water buffer will last until December or
January depending on weather conditions, it is not
sufficient to provide enough heat until spring. It was
therefore necessary to heat the buffer by means of a
powerful but manually operated wood burning stove.
In addition the concept of installing a heat pump to
rearrange the temperature distribution in the buffer
was simulated and evaluated and subsequently im-
plemented. While this is a reasonable approach and
helps to provide the required feed temperatures for
the heating system the amount of electrical energy
needed by the heat pump cannot be neglected. There-
fore several tasks have to be targeted with regard to
the control system:
1. The UVR controller has to be as effective as

possible, thus harvesting as much solar energy as
possible.
The validation of the UVR parameters with the
combined model was done along with a manual
variation of certain UVR parameters to find bet-
ter values. Due to the limited accuracy of the
collector model this was found to be not promis-
ing. Especially time constants could not be vali-
dated because of the one-point collector model.
Therefore the reaction of the collector model was
too fast and for a model-based optimisation of
the UVR parameters the model of the collector
was inadequate. Development of a more detailed
collector model was not part of the project.

2. The heating system should save energy by low-
ering set points in non-occupied rooms or during
nights and weekends. As discussed in section 4.2
a possible solution would be an intelligent con-
troller or BEMS algorithm. An approach to find
a solution to this task was developed in this pro-
ject as well and is discussed in (Majetta, 2015).

3. The heating support from the wood burning
stove has to be optimised while the runtime of
the heat pump to save electrical energy must be
minimised. As a solution for this problem a
BEMS algorithm has been developed which con-
stantly monitors the feed temperatures of the
heating system from the buffer and informs the
occupant when additional heat from the wood
burning stove is required. Such a system is cur-
rently not installed and the occupant must decide

for himself whether it is time to start the stove or
not. The BEMS module informs the inhabitants
about the right time to start the stove and will in
addition start the heat pump if the stove’s heat is
not sufficient or if no occupant is around to start
the stove (during night or on weekends). The
heat pump however is only used for redistribu-
tion of the temperature layers in the buffer and
takes heat from the colder bottom of the buffer to
heat up water at warmer top of the buffer where
the feed connector to the heating circuits is in-
stalled.

Especially for tasks 2 and 3 simulation-based optimi-
sation was employed but not really achievable due to
very long simulation times of the model. Initially it
was planned to simulate a whole year with the com-
bined model and use this model also for optimisa-
tion. But a year simulation required around 5 hours
computing time which is far too long for optimisa-
tion purposes. Therefore the model was analysed in
order to find the part that requires the most compu-
ting time. It was found that the different building
zones and their heat exchange through boundaries
were responsible for roughly 80% of the required
time. Hence a less detailed model was developed
with just 2 building zones instead of 26. The 2 zones
are representing the ground floor and the first floor.
The energy demand of this model was higher due to
the size of each floor and the set point temperature of
22°C whereas in the detailed model several rooms
had a set point temperature of only 18°C such as
storage rooms and libraries. The simplified model
was much faster and required around 20 min for a
year simulation and was thus fast enough for simula-
tion-based optimisation.

4.4 BEMS development

Development of the BEMS was done in two steps.
At first a statechart was created which represents the
different states of the buffer and triggers the start of
the stove and heat pump depending on certain condi-
tions and parameters. The correct function of the
statechart was then tested together with the simpli-
fied model. Then the fixed parameters were replaced
with a function that evaluates buffer condition and
weather forecast. This function takes into account
whether warm and sunny weather is expected or cold
and overcast weather. Depending on the result the
heating command will be given earlier or later. In
order to enable optimisation the function was
equipped with certain weighting factors and a target
function to be minimised.
Optimisation was then employed to find ideal pa-
rameters for these factors. In order to make the mod-

Modelica based Design and Optimisation of Control Systems for Solar Heat Systems and Low Energy
Buildings

408 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118401

el ready for the optimisation framework it had to be
exported as an FMU (functional mock-up unit) and
was then executed within the MOEA framework
(multiobjective evolutionary algorithms).
A PSO (particle swarm optimisation) algorithm
(Kennedy, 1995) from the MOEA framework was
employed to find optimised parameters for the
BEMS function.
 Fixed

Param.
Non-Optimised
Param. Funct.

Optimised
Param.Fnct.

Minimised Model
En. Heat Pump [kWh] 4437 3976 3877
En. Stove [kWh] 14440 16320 17437
Temp.Violation [days] 66 64 62
Full-scale Model
En. Heat Pump [kWh] 3638 3632 3656
En. Stove [kWh] 13881 15114 16732
Temp.Violation [days] 75 64 52
Table 1: Simulation and Optimisation Results for

BEMS controlled stove and heat pump

A typical optimisation run with a 6 months simula-
tion period and the following PSO parameters (6 par-
ticles, 50 iterations) results in 300 simulation runs
and takes around 23 hours to complete. The FMU of
the simplified model was used for the optimisation.
Optimisation targets were to minimise the operation
time of the heat pump and thus reduce the amount of
electrical energy required and to reduce the tempera-
ture violation which is triggered if the feed tempera-
ture of the heating system is below a certain thresh-
old (30°C). An important restriction for the overall
system is that the stove can only be operated be-
tween 7am and 5pm on weekdays because it requires
manual loading and starting.
The optimisation results in Table 1 show a small re-
duction in the energy consumption of the heat pump
compared to the non-optimised or fixed parameters.
In addition number of days where low feed tempera-
tures were registered is also lower which can be seen
as a higher level of comfort for the occupants. This
results in a higher heat production of the stove which
is equivalent to a longer operation time (stove is
started on more days in winter). The required fire-
wood was not taken into account as an optimisation
target as because it is available for free. An im-
portant question was however if the simulation and
optimisation results (parameters) of the reduced
model can be transferred directly to the full scale
model and will lead to improvements as well. With 5
hours computing time the optimisation for this model
would have taken around 60 days. The optimised
parameters from the reduced model were having the
similar effect in the full scale model (see Table 1)
however the heat pump energy was not significantly
reduced but the temperature violation was lower. It

was found that the limited operation time slot of the
stove is the main factor which prevents a further re-
duction of the heat pump energy.

5 Actual State and Outlook

The UVR library for Modelica has been tested and
used in this project but it is not finished as of yet due
to the discontinuation of the controller from the
manufacturer. The function blocks however are use-
able not only in UVR related projects but also for
other purposes because they implement typical func-
tions that are required in building control systems. It
has been found that the design of a model from
scratch for a single family house will be too time
consuming and the subsequent energy savings will
not cover the cost of simulation and optimisation.
Therefore it is planned to create models for standard
UVR applications and standard houses of one manu-
facturer. The simulation of these models does not
require modelling skills and can be used to test UVR
parameters for certain different configurations such
as different collector area or buffer size, different
location, usage patterns and house parameters. This
will enable the HVAC planner or engineer to install
the controller with optimised parameters and will
subsequently cause a higher performance of the solar
heating system combined with an increased conven-
ience for occupants without the need to develop a
new model for each project.

BEMS development is currently under way and
the simulation results are very promising. It has been
shown in this paper that the implementation of a
BEMS can solve certain tasks that cannot be easily
conquered with a stand-alone controller such as the
UVR. While the UVR and similar controllers are
great for standard applications more difficult tasks
require control systems that go beyond the limits of
stand-alone control units. Our BEMS approach can
be such a system. Simulation and optimisation will
play a significant role in the future. This paper tried
to highlight the use of both strategies in the devel-
opment and validation for building controls.

6 Conclusion

In this paper several ideas w.r.t building control sys-
tems, simulation and optimisation were discussed.
As of yet control systems in buildings are stand-
alone units and energy efficiency cannot be fully
achieved with these units because the standard com-
missioning procedures rely heavily on experience
rather than optimised and tested parameters. There-

Session 4D: Building Energy Applications 3

DOI
10.3384/ecp15118401

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

409

fore a library of controller function blocks has been
developed that enables the engineer to test and opti-
mise a stand-alone building controller in a simulation
environment. This library is compatible to the pro-
gram on the real-world controller so that the parame-
ters established and optimised in simulation can then
be transferred to the controller. The limits of this
approach were also discussed and a different ap-
proach for the implementation of additional func-
tionality into a Building Energy Management System
(BEMS) was demonstrated. An optimisation algo-
rithm was implemented to find BEMS parameters
that are highly energy efficient and ensure a better
comfort for occupants.

Acknowledgement

The research is
funded by

We would like to express our gratitude to the Austri-
an company Technische Alternative for giving us the
opportunity to use their controller as a basis for our
work and for their support in publishing this paper.
In addition we would like to thank our student Le-
onie Sperner who developed an essential part of the
UVR Modelica Function Block Lbrary.

References

Bundesministerium für Wirtschaft und Energie Energieein-

sparverordnung 2014

European Commission: EU Energy and transport in figures,

statistical pocket book 2007/2008

Kennedy J., E. R.: Particle swarm optimization. IEEE Interna-
tional Conference on Neural Networks, (S. 1942 - 1948). Bur.
of Labor Stat., Washington, DC, USA, 1995.

Majetta, K., Clauss, C., Haufe, J., Seidel, S., Blochwitz, T.,
Liebold, E., Hintzen, U., Klostermann, V.: Design and Opti-

mization of an Energy Manager for an Office Building,
ASIM/GI-Section Workshop – Simulation of Technical Sys-
tems & Methods in Modelling and Simulation, Stralsund, June
2015

Schwan, T.; Unger, R.; Bäker, B.; Mikoleit, B.; Kehrer, C.;
Rodemann, T.: „Green Building“ – Modelling renewable

building energy systems ans electric mobility concepts using

Modelica. 9th International Modelica Conference, Munich,
September 2012.

Seidel, S., Donath, U., Haufe, J.: Approach to a Simulation-

based Verification Environment for Material Handling Sys-

tems, 17th IEEE Conference on Emerging Technologies and
Factory Automation, Krakow, September 2012

Seidel, S., Klotz, T., Donath, U., Haufe, J.: Modelling the Re-

al-Time Behaviour of Machine Controls using UML

Statecharts, 15th IEEE Conference on Emerging Technologies
and Factory Automation, Bilbao, September 2010

Seidel, S. Donath, U.: Error-free Control Programs by means

of Graphical Program Design, Simulation-based Verification

and Automatic Code Generation, 8th International Modelica
Conference, Dresden, March 2011

Technische Alternative: UVR 1611 Frei programmierbare

Universalregelung Bedienung, Programmierung, Montagean-

leitung Ver.4 2014

Modelica based Design and Optimisation of Control Systems for Solar Heat Systems and Low Energy
Buildings

410 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118401

How to Shape Noise Spectra for Continuous System Simulation

Andreas Klöckner1 Andreas Knoblach1 Andreas Heckmann1

1DLR German Aerospace Center, Institute of System Dynamics and Control, 82234 Weßling, Germany,
andreas.{kloeckner,knoblach,heckmann}@dlr.de

Abstract

Noise for continuous-time system simulation is rele-
vant for many applications, where time-domain results
are required. Simulating such noise raises the need to
consistently shape the frequency content of the signal.
However, the methods for this task are not obvious and
often form filters are approximated by state space im-
plementations. In this paper, we address the problem
with a new method relying on directly using the speci-
fied power spectral density for a convolution filter. For
the example of railway track irregularities, we explain
how to derive the required filters, implement them in
the open-source Noise library, and verify the results.
The new method produces correct results, is very sim-
ple to use, and enables new features for time simulation
of physical systems.
Keywords: Noise, power spectral density, track irregu-

larity

1 Introduction

Modeling stochastic signals is of interest in a wide
range of applications, such as sensor modeling, aero-
dynamic turbulence, and rail irregularities. Previous
Modelica libraries, such as the Statistics library
(Haase et al., 2008), allow to precisely define statistical
properties of such signals. However, other properties of
the noise signals such as the underlying random num-
ber generator or the signal’s frequency content could
not be modeled as conveniently. A Modelica Noise li-
brary has thus recently been released in order to enable
the engineer to conveniently and consistently define
noise signals (Klöckner et al., 2014). It is intended
to include a subset of sampled noise generators and
standard distributions in the Modelica standard library.
The remaining functionality will still be available in
the AdvancedNoise library.

The Noise library also introduces a new class of
random number generators: DIRCS Immediate Ran-
dom with Continuous Seed allows to generate random
numbers from an input signal without internal states.
It thus eliminates the need for time-events, but can
be used to generate a random signal directly from the
time variable. This has been shown to positively af-

fect the simulation performance (van der Linden et al.,
2015). Additionally, it allows to define noise signals in
dimensions other than the time. This is advantageous
in several applications. Rail irregularities e.g. are typi-
cally defined with respect to the location on the track.
Turbulence models used in aviation also assume a static
wind field flown through by the aircraft.

Additionally, the frequency content of noise input
to a system must be carefully modeled. It is usually
specified by a power spectral density (PSD). If a linear
time invariant (LTI) system model is considered, the
PSD can be applied in the frequency domain by mul-
tiplying the PSD with the squared transfer function of
the model. See Frederich (1984) for a railway appli-
cation and EASA CS-25 (2013) for a typical aircraft
application. If a nonlinear model has to be simulated in
the time domain, a suitable filter transfer function must
be derived from the PSD. In the case, that the PSD
is a rational function w.r.t. to the squared frequency,
a spectral factorization of the PSD can be derived an-
alytically. See Liepmann (1952) for an aeronautical
example. Otherwise, the PSD must be approximated
by a suitable function. An alternative approach is the
recently developed Fractional-Order Modeling Tool-
box for Modelica (Pollok et al., 2015), which allows to
simulate also non rational transfer functions.

In summary, it is not at all obvious how to
parametrize these frequency properties. We thus
present a systematic method to shape the frequency
content of noise signals. The contributions of this pa-
per are as follows:

1. Using the example of rail irregularities, we sum-
marize how noise is typically specified.

2. We then shortly define the probability distribution
of the noise signals generated in this paper.

3. Starting from a given PSD we rigorously derive a
way to shape this frequency content onto a noise
signal. This method will turn out to be perfectly
simple to use and to be applicable to almost any
kind of noise spectrum.

4. We finally implement the approach and verify that
it yields the same results as conventional methods.

DOI
10.3384/ecp15118411

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

411

2 Railway track irregularities

Besides safety and operating efficiency, it is an essential
goal of railway vehicle design to provide an accepted
level of vibration comfort. In order to take human per-
ception into account, different methods and standards
exist for passenger comfort assessment. However all
of these rely on the accelerations experienced by the
passengers as input information.

From a vehicle dynamical point of view these ac-
celerations are the result of forced vibrations of the
vehicle/track-system that are excited by track irregulari-
ties. Frederich (1984) analyzed a large number of track
measurements and introduced representative PSDs for
good, average and bad tracks, see Fig. 1. Note, these
numbers quantify the irregularity per meter track length
or with respect to the spatial frequency (unit: 1/m),
respectively, and have to be transfered into the time
domain taking the vehicle speed into account, see e.g.
(Popp and Schiehlen, 2010).

Regarding the vehicle/track system that is excited
by the track unevenness we confine ourselves to verti-
cal dynamics and use the simplified quarter car model
shown in Fig. 2. The excitation input is introduced as a
variable track height z defined as a stochastic function
of the longitudinal track position. The wheel/rail con-
tact is represented by a stiff but linear spring/damper
system. Rail and its support constitute a dynamical sub-
system on the track side of the model, suspension and
car body form the vehicle subsystem. The acceleration
of the car body a is the output quantity of the model.
The resulting Bode diagram is depicted in Fig. 3.

Here, the model is defined linear by intention. Pre-
suming a constant running speed of the vehicle, the
acceleration response of the car body can be evaluated
in the frequency domain (Knothe and Stichel, 2003,
Ch. 6), which provides the opportunity of comparison
and validation with results from time domain simula-
tions in Modelica. Fig. 4 presents the pure frequency
domain results, that are based on the excitation by a
track of all three qualities.

The results presented in this paper are confined to
linear systems in order to validate the time-domain sim-
ulation approach with a well know frequency domain
solution. However, this limitation can be dropped, once
the results from time domain simulations with appro-
priately shaped noise spectra is validated. Time domain
simulations are then available for non-linear systems,
are capable of running with variable speed and may
consider singular disturbances such as running over
railway switches as well.

10−3 10−2 10−1 100 101
10−14

10−8

10−2

Spatial frequency in 1/m

PS
D

in
m

2 /
(1
/m

)

Best
Average
Worst

Figure 1. Representative track irregularity PSDs (Frederich, 1984).

Figure 2. Simplified quarter car model of a railway vehicle in
Modelica.

10−1 100 101 102

100

102

104

Time frequency in 1/s

A
m

pl
itu

de
re

sp
on

se

z/m → a/(m/s2)

Figure 3. Amplitude response from track irregularity (in m) to
body acceleration (in m/s2).

How to Shape Noise Spectra for Continuous System Simulation

412 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118411

10−1 100 101 102
10−7

10−4

10−1

Time frequency in 1/s

PS
D

in
(m

/
s2)

2 /
(1
/s
)

Best
Average
Worst

Figure 4. PSD of the body acceleration a for different track irregu-
larities at a velocity of v = 100m/s

3 Review of Noise parameters

The general degrees of freedom in parameterizing noise
have been described in detail earlier (Klöckner et al.,
2014). A noise signal can be specified in three steps:

1. Select a random number generator, which gener-
ates uniformly distributed random numbers with
certain statistical properties, such as subsequent
numbers being independent from each other.

2. Transform the uniformly distributed random num-
bers in order to match a given probability density
function, such as for a normal distribution.

3. Interpolate the resulting stream of correctly dis-
tributed random numbers.

The random number generators of the xorshift
family (Vigna, 2014) have been included in the Noise
library since its last release.1 These generators have
very strong statistical and computational properties and
are thus used in the library without exception.

In all cases, where unsampled random numbers are
required, the DIRCS generator is used. This random
number generator does not require a state but generates
a random number directly from a double input sig-
nal. To this end, the xorshift64* algorithm is first
initialized with the double input signal casted to two
integer values. After ten iterations, the output of
xorshift64* is used to seed an xorshift128

+ generator for a final iteration. In this way, high
quality random numbers are produced by the efficient
xorshift generators with a low computational effort
for arbitrary input values.

The standard normal distribution is chosen for all
random numbers generated in this work. This does not
allow to reproduce effects commonly found in measure-
ment noise, such as discretization. However, the choice
is reasonable when complex filters are used to shape
the actual noise signal to be used in the simulation.
Typical filter parameterizations for rail irregularities

1https://github.com/DLR-SR/Noise/tree/MSL

e.g. assume standard normal distributions of their in-
put signals (SIM, 2003). Additionally, the subsequent
interpolation relies on computing the weighted sum
of consequent random numbers. Following the cen-
tral limit theorem, the result will inevitably be shaped
towards the normal distribution.

In previous work, we have described three distinct
interpolation functions for noise signals. These include
piece-wise constant and linear interpolations as well a
smooth interpolation using the sinc function. The in-
terpolations yield a continuous-time random signal r(t)
by computing the sum of consequent random numbers
wi, weighted with an admissible kernel function k(t):

r(t) =
+n

∑
−n

wi · k(t − i∆t), (1)

with

k(i∆t)
!
=

{
1 if i = 0
0 if i 6= 0.

(2)

In this equation, ∆t is the sample period of the random
numbers and the interpolation base n has to be chosen
according to the selected kernel k(t).

However, for the more general case of a given PSD,
the final interpolation step has to be replaced by a more
powerful approach as described in the following sec-
tions.

4 Application of a given PSD

As already explained in Section 2, instead of (band-
limited) white noise, colored noise is required for most
practical applications. The required frequency content
of the noise signal is usually specified by a given PSD
Φ(f). In order to apply this PSD to a raw white noise
signal with piece-wise constant interpolation a linear
form filter is typically applied (SIM, 2003, VIII-TE:8).
This filter H(f) defines a mapping in the frequency
domain between the white noise input vector w(t) and
the colored noise output vector r(t):

R(f) = H(f)W (f) (3)

where R(f) and W (f) are the Fourier transforms (FTs)
of r(t) and w(t). White noise is defined by its flat PSD
of W (f)≡ 1. If the filter H(f) is applied to white noise,
the PSD of the colored noise is thus simply

Φr(f) = |R(f)|2 ≡ |H(f)|2 . (4)

In order to shape colored noise to a given PSD, the
required filter is hence constrained by

|H(f)|2
!
= Φ(f). (5)

In practice, the filter is typically applied by fitting a
rational transfer function on Φ(f) which is then sim-
ulated as an additional linear block in the model (see
Section 4.1). An alternative exploiting the interpolation
kernel from Eq. (1) is proposed in Section 4.2.

Session 5A: Control Applications 2

DOI
10.3384/ecp15118411

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

413

4.1 Using a transfer function

Before the approximation of a given PSD with a ratio-
nal transfer function is explained, important properties
are briefly repeated. In principle, the filter H(f) is
restricted to rational functions which are usually ex-
pressed w.r.t. the Laplace variable s = d + 2π j f , i.e.

H(s) =
N(s)

D(s)
=

nz

∑
k=0

aksk

np

∑
l=0

bls
l

. (6)

The coefficients ak of the numerator N(s) and the co-
efficients bl of the denominator D(s) are real numbers.
Both, the numerator and denominator can be factorized
which leads to

H(s) =

nz

∏
k=1

(s− zk)

np

∏
l=1

(s− pl)

. (7)

Every zero zk and every pole pl is either a real number
or two zeros (or poles) are each a complex conjugate
pair. A necessary condition to express H(s) in a state
space representation is that H(s) is proper, i.e. the num-
ber of poles np is greater than or equal to the number
of zeros nz. If the real part of all poles and zeros is
negative, a transfer function is called minimum phase.2

In addition to constraint (5), H(s) must be proper
and minimum phase, in order to be realizable by a
state space system. Because a suitable transfer function
H(s) cannot be analytically computed from a given
PSD Φ(f) in general, a least squares fit is performed:

min
ak,bl

n f

∑
i

(

|H(2π j f)|−
√

Φ(f)
)2

. (8)

The coefficients ak and bl are chosen as decision vari-
ables because they are real numbers and independent
from each other. In order to ensure that the filter
is proper, nz = np − 1 is chosen. The optimization
is pursued with MOPS (see Joos et al., 2002) and a
Levenberg-Marquardt algorithm is used.

Finally, the minimum phase requirement is fulfilled
by a subordinate step. To that end, the zeros zk and
poles pl of the optimal solution are computed. After-
wards, the real part of every pole/zero is mirrored into
the left half plane, e.g.

p̄i =−|ℜ(pi)|+ℑ(pi). (9)

Note that the latter operation alters only the phase but
not the amplitude of H(s).

2Minimum phase means that both the filter and its inverse are stable and
causal.

10−3 10−2 10−1 100 101
10−12

10−8

10−4

Spatial frequency in 1/m

PS
D

in
m

2 /
(1
/m

)

Reference
1st order approx.
2nd order approx.

Figure 5. Approximation of the average track irregularity PSD
with a first order and a second order filter. The second order filter
shows a good fit to the reference.

Figure 5 compares the reference PSD to the PSDs of
a first and second order filter. It can be seen that the
second order filter is a very good approximation of the
average track irregularity. This filter can thus be used
to implement the form filter.

4.2 Using the interpolation kernel

The filter or transfer function is typically implemented
using continuous-time states in Modelica. This ap-
proach has two major drawbacks: First, expressing
the filter in the time domain limits the simulation to a
fixed velocity in order to map the location to a time-
domain filter. Second, the additional states of the filter
require the raw noise signal to be generated accurately
using events, which considerably slows down simu-
lation, even if only low accuracy is required. In this
paper, we introduce a different approach to shaping the
frequency content of the noise signal using the interpo-
lation kernel k(t) from Eq. (1).

4.2.1 Theoretical background

The idea is based on the convolution theorem. It relates
the continuous-time integration of the filter states to a
convolution integral of the raw noise signal wi(t) with
the filter’s IRF h(t). Exploiting the piece-wise constant
noise signal, this approach can be further reduced to a
sum of weighted random numbers wi:

R(f) =W (f)H(f)

❝

s

r(t) = wi(t)∗h(t)

=
∫ +∞

−∞
wi(t) ·h(t − τ)dτ

=
+∞

∑
−∞

(

wi ·
∫ (i+1)∆t

i∆t
h(t − τ)dτ

)

. (10)

The weights in (10) are specified by the integral of
the IRF h(t). This integral can also be expressed as the
step response ς(t) of the filter. Assuming a stable filter,

How to Shape Noise Spectra for Continuous System Simulation

414 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118411

0.1

0.12

0.14

0.16

| K
(

f)
|

Amplitude

−0.5 0 0.5 1

−10

0

10

f/(1/s)

6
(K

(
f)
)/

°

Phase

(a) Frequency domain: In the upper plot, the selection of the correct
samples for the iFT and Hilbert transform is illustrated. The given
amplitude data () is mirrored at f = 0 and periodically repeated
(). Afterwards, the highlighted samples () are chosen. In the
lower plot, the zero phase () and the minimum phase ()
are depicted.

0

0.2

0.4

0.6

0.8

1

k
(t
)

IRF (zero phase)

−5 0 5 10
0

0.2

0.4

0.6

0.8

1

t/s
k
(t
)

IRF (minimum phase)

(b) Time domain: The resulting IRF for the zero phase (upper plot)
and minimum phase (lower plot) are depicted. The results from
the iFT () are periodically repeated () in order to chose the
correct samples ().

Figure 6. The selection of the correct samples is illustrated in the time domain and in the frequency domain.

the convolution can finally be approximated using a
truncated sum:

r(t) =
+∞

∑
i=−∞

wi · (ς (t−(i+1)∆t)− ς (t−i∆t))

≈
⌊t/∆t⌋+n

∑
i=⌊t/∆t⌋−n

wi · (ς (t−(i+1)∆t)− ς (t−i∆t))
︸ ︷︷ ︸

:=k(t)

. (11)

Using this approach, all continuous and discrete
states can be eliminated from the noise generation. This
was shown before to be advantageous for the simulation
performance (van der Linden et al., 2015). Addition-
ally, the interpolation kernel k(t) can be shaped using
an arbitrary filter, if its step response is known.

4.2.2 Computation of the IRF

As we have seen, only a suitable step response is re-
quired to shape the desired frequency content. This
IRF can easily be obtained from the transfer function
derived in Section 4.1. However, in order to avoid
the approximation with a rational function, the IRF
is directly computed from the PSD using the frame-
work of Fourier transform (FT) and inverse Fourier
transform (iFT). The resulting IRF is then numerically
integrated in order to yield the step response.

Because the PSD describes only the amplitude of the
filter and because the filter must be not realized in state

space representation it is possible to use the phase as
an additional degree of freedom. Here, two different
phases are considered: zero phase and minimum phase.

Zero phase: First the zero phase case is considered.
For this case all phase are set to zero. The FT of the
interpolation kernel is hence simply

K(f) =
√

Φ(f). (12)

However, for a correct application of available FT
algorithms, the frequency samples must be chosen care-
fully: In order to yield a real valued k(t), K(f) =
conj(S(− f)) must hold. It is further helpful to re-
member that – because time and frequency are both
discretized – K(f) and k(t) are periodically repeated.
This is illustrated in Fig. 6a for a simple example and
the correct samples are marked.

After the iFT, the resulting k(t) is periodically re-
peated, too. This allows to chose the correct samples as
depicted in Fig. 6b. As it can be further seen, the zero
phase yields a non-causal IRF which is symmetric to
t = 0.

Minimum phase: Second, the minimum phase case
is considered. In this case, only the amplitude of the
FT of the interpolation kernel is given by the PSD:

|K(f)|=
√

Φ(f). (13)

Session 5A: Control Applications 2

DOI
10.3384/ecp15118411

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

415

The minimum phase 6 (K(f)) can be computed using
the Hilbert transform. For the Hilbert transform, the
same samples must be chosen as for the iFT. The result-
ing minimum phase is depicted in Fig. 6a. Afterwards,
the full FT of the interpolation kernel is given by

K(f) = |K(f)| · exp(j · 6 (K(f))). (14)

The transformation into the time domain is subse-
quently performed in the same way as for the zero
phase case. As it can be seen in Fig. 6b, the minimum
phase filter is causal, i.e. its IRF is non-zero only for
non-negative times t ≥ 0.

Figure 7 compares IRFs for the average track irregu-
larities as obtained from the procedure outlined above.
First, the IRF of the fitted second order filter is eval-
uated by simulation and by iFT of the PSD shown in
Fig. 5. Both results are essentially the same, showing
the correct iFT application. The IRFs obtained directly
from the given PSD are also shown. The minimum
phase IRF is very similar to the fitted filter’s IRF, un-
derlining the good fit of the filter. The zero phase IRF
is non-causal, as it is non-zero for negative times.

5 Results

The form filters for average track irregularities are im-
plemented using the Noise library according to the
procedures outlined above. Using the Dymola 2016
RC2 simulation tool with its DASSL solver, the dif-
ferent steps of the implementation are then verified.
To this end, the following simulation experiments are
presented:

1. The minimum phase convolution is verified
against a state space filter implementation with
identical white noise input.

2. The white noise input of the state space imple-
mentation is exchanged by an independent noise
source not using the DIRCS algorithm.

3. The minimum phase and zero phase IRFs are com-
pared to each other.

4. The quarter car model of the railway vehicle is fed
with the zero phase noise convolution filter and
compared against the standard frequency domain
solution.

5.1 Convolution verification

Figure 8 shows a comparison of the fitted second or-
der filter’s state space implementation with its mini-
mum phase convolution implementation. Both filters
are driven by identical white noise generated with the
DIRCS generator directly from the position on the track.
The raw random numbers are generated with a sam-
ple period of ∆x = 0.4m and a standard deviation of

−100 0 100
0

1

2

Distance in m

T
ra

ck
ir

re
gu

la
ri

ty
in

m
m

Figure 7. Comparison of different IRF: The IRF of the 2nd or-
der filter is obtained by simulation () and by iFT (). An
excellent agreement can be recognized. Additionally, the mini-
mum phase () and zero phase () IRF are depicted. These
correspond directly to the specified PSD.

10−1

100

PS
D

in
1/
(1
/

m
)

PSD of white noise

10−3 10−2 10−1 100
10−12

10−8

10−4

Spatial frequency in 1/m

PS
D

in
m

2 /
(1
/

m
)

PSD of track irregularity

150 200 250
−10

−5

0

5

10

Distance in m

T
ra

ck
ir

re
gu

la
ri

ty
in

m
m

Track irregularity (excerpt)

Figure 8. The identical white noise (upper plot) is applied to the
second order filter by simulation () and by convolution ().
The PSD of both implementations (middle plot) are identical and
correspond well with the reference PSD (). As it can be seen
in the lower plot, the signals are also identical.

How to Shape Noise Spectra for Continuous System Simulation

416 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118411

σ =
√

0.5/∆t. It can be seen that the white noise spec-
trum has indeed a spectral density of 1; except for its
random nature. The shape of the white noise spectrum
directly corresponds to the shape of the track irregu-
larity PSDs. Both irregularity PSDs can be seen to be
identical. This is also the case for the actual simulation
output z of the track irregularity.

5.2 Space domain noise verification

In the second step, the minimum phase convolution
implementation is compared to a traditional state space
implementation fed by a time domain sampled noise.
In order to yield comparable results, the time domain
noise is sampled with ∆t = ∆x/v. The standard devi-
ation of the normal distribution is kept the same. Fig-
ure 9 compares both results to the reference. Good
agreements can be observed in both time frequency
domain and spatial frequency domain PSDs. Timing
comparisons are not presented, as the current convolu-
tion implementation is not yet optimized.

5.3 Minimum and zero phase filters

The comparison of the minimum phase and zero phase
convolution implementations can be seen in Fig. 10.
The white noise generator is DIRCS in both cases and
the sample periods are both ∆x = 0.4m. Both IRFs
have a resolution of 0.1 m. Both variants agree very
well with the reference in the low frequencies. At very
high frequencies, the influence of the two sampling
periods are marked with vertical lines. Characteristic
marks on the PSDs can be seen at these lines. The re-
spective sampling periods must thus always be chosen
high enough to resolve all relevant effects.

5.4 Quarter car railway vehicle

Finally, the zero phase convolution implementation
is integrated with the quarter car model of a railway
vehicle running at v = 100m/s. Figure 11 compares
the acceleration of the car body from this simulation
to the well trusted frequency domain solution. A very
good agreement can be seen.

6 Conclusions

In this paper, we show how to consistently shape a noise
signal to match a given frequency content specified by
a PSD. The method is introduced at hand of the quarter
car model of a railway vehicle, for which well trusted
reference solutions are available.

Our method uses the non-recursive random number
generator DIRCS. It generates normally distributed ran-
dom numbers directly from the current location on the
track. We then shape the frequency content of the ran-
dom numbers using a convolution with the impulse
response of a form filter. It is shown that the IRF of
the form filter can be directly generated from the given
PSD using the inverse Fourier transform.

10−1 100 101 102
10−11

10−8

10−5

Time frequency in 1/s

PS
D

in
m

2 /
(1
/s
)

10−3 10−2 10−1 100
10−9

10−6

10−3

Spatial frequency in 1/m
PS

D
in

m
2 /
(1
/m

)

Figure 9. The PSD of the track irregularity from simulation ()
and from convolution () are compared in the time frequency
domain (upper plot) and in the spatial frequency domain (lower
plot). Both agree very well. In the spatial frequency domain, an
excellent agreement with the reference () can be also seen.

10−3 10−2 10−1 100 101 102
10−15

10−9

10−3

Spatial frequency in 1/m

PS
D

in
m

2 /
(1
/m

)

Figure 10. The PSD resulting from the minimum phase ()
and from the zero phase () iFT agree well with the reference
().

10−1 100 101 102
10−7

10−4

10−1

Time frequency in 1/s

PS
D

in
(m

/
s2)

2 /
(1
/s
)

Figure 11. The frequency domain solution is compared () to
simulation results ().

Session 5A: Control Applications 2

DOI
10.3384/ecp15118411

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

417

The method is implemented in the Modelica Noise
library and validated against the given spectrum. It is
then used to excite a linear quarter car model running
at a constant speed. Results obtained with our method
agree very well with the standard solutions based on
frequency domain computations.

Our method is thus shown to produce correct results.
Additionally, it can be employed not only for linear
models, but also for non-linear models, vehicles run-
ning at varying speed, or in more complex scenarios
involving e.g. singular disturbances. Moreover, the
method proposed in this paper is perfectly straightfor-
ward to use and can also be applied to a variety of
problems, such as turbulence or street roughness.

The current implementation is based on the open-
source Noise library. This makes the method avail-
able to a wide audience and also gives room for further
improvements. Since our implementation of the convo-
lution has not yet been optimized, further investigations
should take into account timing measures. Extensions
of the method could possibly be found in higher di-
mensional noise spectra, correlated noise, or additional
effects such as discretization.

Reproducible research

The results of this paper can be reproduced using
the code which will be made available on http:

//dlr-sr.github.io.

Acknowledgments

We thank our parents for giving us a great first name.

References

EASA CS-25. Certification specifications and acceptable means of
compliance for large aeroplanes, 2013.

Fritz Frederich. Die Gleislage aus fahrzeugtechnischer Sicht. ZEV–

Glasers Annalen, pages 108–1984, 1984.

Joachim Haase, S Wolf, and C Clauß. Monte carlo simulation
with modelica. In 6th International Modelica Conference, pages
601–604, Bielefeld, Germany, 2008.

H.D. Joos, J. Bals, G. Looye, K. Schnepper, and A. Varga. A multi-
objective optimisation-based software environment for control
systems design. In Conference on Computer-Aided Control

Systems Design. IEEE, 2002.

Andreas Klöckner, Franciscus L. J. van der Linden, and Dirk
Zimmer. Noise generation for continuous system simula-
tion. In Hubertus Tummescheit and Karl-Erik Årzén, editors,
Proceedings of the 10th International Modelica Conference,
number 96 in Linköping Electronic Conference Proceedings,
pages 837–846, Lund, Sweden, March 10-12 2014. Model-
ica Association and Linköping University Electronic Press.
doi:10.3384/ECP14096837. ISBN: 978-91-7519-380-9. ISSN:
1650-3686. eISSN: 1650-3740.

K. Knothe and S. Stichel. Schienenfahrzeugdynamik. Springer,
Berlin, 2003.

Hans Wolfgang Liepmann. On the application of statistical con-
cepts to the buffeting problem. Journal of the Aeronautical

Sciences (Institute of the Aeronautical Sciences), 19(12), 1952.
doi:10.2514/8.2491.

Alexander Pollok, Dirk Zimmer, and Francesco Casella. Fractional-
order modelling in modelica. accepted and to be presented at
the 11th International Modelica Conference, 2015.

K. Popp and W. Schiehlen. Ground Vehicle Dynamics. Springer,
2010.

SIMPACK Time Excitations Catalogue. SIMPACK, 24th September
2003. SIMDOC v8.607.

Franciscus L. J. van der Linden, Andreas Klöckner, and Dirk Zim-
mer. Effects of event-free noise signals on continuous-time
simulation perfomance. In Felix Breitenecker, Andreas Kugi,
and Inge Troch, editors, 8th Vienna International Conference on

Mathematical Modelling, volume 8 of Mathematical Modelling,
pages 280–285, Vienna, Austria, 2015. IFAC-PapersOnLine.
doi:10.3182/20150218-3-AU-30250.

Sebastiano Vigna. Further scramblings of marsaglia’s xor-
shift generators. CoRR, abs/1404.0390, 2014. URL
http://arxiv.org/abs/1404.0390. Code available
at http://xorshift.di.unimi.it/.

How to Shape Noise Spectra for Continuous System Simulation

418 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118411

Dynamic Modelling of a Flat-Plate Solar Collector for Control

Purposes

Saioa Herrero López Susana López Pérez Itzal del Hoyo Arce Iván Mesonero Dávila
IK4-TEKNIKER

Parke Teknologikoa, Iñaki Goenaga 5, 20600 Eibar (Spain)
{saioa.herrero, susana.lopez, itzal.delhoyo, ivan.mesonero}@tekniker.es

Abstract

Two different dynamic models of a flat-plate solar
collector have been developed in the Modelica
language under Dymola® software.

These models have been developed within the
Ambassador Project (Onillon, 2014). In this project,
models of district heating components are conducted
for control purposes, including a solar plant model.

The present article describes in detail each of these
models along with the development process (e.g.,
assumptions taken into account). The model validation
process and results are also presented, as well as the
corresponding discussion and conclusions. The
model’s validation has been conducted by comparing
the model’s simulation results with the experimental
results obtained in the IK4-TEKNIKER Solar Thermal
Test Rig.

Keywords: Solar collector, Dynamic model, Control

design, Modelica

1 Introduction

Solar water heating has received increased interest in
recent years, primarily because it is a free energy
source, and it is available, in principle, anywhere all
over the world.

The key element in a solar heating plant is the solar
collector field, as it is at the solar collectors that the
solar energy is captured and transferred to the
circulating fluid. Currently, the collector type most
widely used in such plants is the flat-plate solar
collector.

Heating demand coverage involves not only a
certain quantity of heat energy but also a specific water
temperature. Besides, in the case of solar plants, the
energy source is non-manageable; therefore, it is even
more difficult than in conventional plants to assure
required supply conditions.

Because of that, well-developed control is essential
in this type of facility to allow the fulfilment of supply
requirements, which will depend on the application.

One of these applications is a solar water heating
plant connected to a district heating system. This
scenario is covered by the Ambassador Project. The

core of this project is the development of suitable
management by control algorithms, which assure
optimum performance of the whole district energy
system. Control design requires knowing in detail the
physical behaviour of the system to be controlled;
therefore, models of all the subsystems in the District
Heating System, including the solar plant, are required.

Solar collectors are usually described by stationary
models that consider the collector to be in steady-state
operation (Hottel and Woertz, 1942; Hottel and
Whillier, 1955; Bliss, 1959). Stationary models have
the advantage of being simpler and hence needing less
computation time than dynamic models. However, this
simplification may be critical because solar collectors
rarely reach a steady state during operation due to their
large time constants and the variability of the driving
forces. For several applications, e.g., the investigation
of control strategies, it is desirable to take the collector
dynamics into account (Schnieders, 1997; Ron, 1980).

Therefore, within this context, two flat-plate solar
collector dynamic models have been developed in the
Modelica language under the Dymola® environment: a
Detailed Model and a Simplified Model.

2 The Detailed Model

Dynamic solar collector models can be classified into
single capacitance (one node) models (Duffie and
Beckman, 1991; Close, 1967), fluid flow direction
distributed models (or 1xN node models) (Isakson,
1995; Muschaweck and Spirkl, 1993; Prapas, Norton et
al 1988), and fluid flow direction and transverse
distributed (or MxN node) models. Models of the last
type try to represent the physical system in a more
realistic way: apart from taking into account fluid
temperature nodes (fluid flow direction), several
temperature nodes at transverse directions are also
used, with each one representing a solar collector
component. There are several models developed in this
way: 2x1 node (Klein, Duffie et al 1974), 2x node
(Huang and Wang, 1994), 3x node (Ron, 1980), 4x
node (Kamminga, 1985), or even more complicated
ones (Oliva et al, 1991; Cadafalch, 2009).

In the present case, the so-called “Detailed Model”,
a 5x1 model, has been developed. On the one hand,

DOI
10.3384/ecp15118419

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

419

transverse nodes represent the glass cover, the air
inside the collector, the absorber, the fluid, and the rear
insulation. Regarding the longitudinal discretization
(fluid flow direction), at first a 5xn distributed model
(8>n>1) was chosen, but it was determined that the
discretization level increase in the fluid flow direction
did not yield a relevant difference; therefore, it was
discarded in favour of model simplicity.

In the model, the following heat flows are
considered between the collector components:

• Convection between the glass cover and the air in
the gap. For this case, a natural convection is
considered as well as between this air and the
absorber plate. The equations correspond to a free
convection between a fluid and a plate, taking into
account the possibility of the fluid being hotter
than the solid and vice versa, and the tilt angle of
the collector (Chapman, 1987)

• The fluid flow through the absorber plate is
modelled via a forced heat convection imposed
between the fluid lines and the absorber, taking
into account both laminar and turbulent regimes
(Verein Deutscher Ingenieure, 1997).

• Radiation heat transfer has been taken into account
between the glass cover and the absorber plate.

• Conduction heat transfer between the absorber and
the rear insulation is modelled (conduction in a
Plane Wall) (Chapman, 1987).

In addition, heat transfer phenomena are also
considered between the collector and the ambient, and
has been modelled under the following conditions:

• Radiation between the glass cover and the sky. The
model calculates the sky temperature from the
value of the clearness index, the relative humidity
and the ambient temperature.

• Both forced (wind action (Sartori, 2006)) and
natural convections (same equations as for the
collector internal convection) between the glass
cover and the ambient are included. In the case of
the rear insulation, only natural convection has
been modelled.

• The solar radiation reaching the collector is applied
to both the absorber and glass cover energy
balances. For the glass cover, the element
absorptivity is included as a parameter. With
respect to that reaching the absorber, the glass
cover transmissivity and the absorber absorptivity
are taken into account, with both depending on the
incidence angle of the solar radiation.

The scheme in Figure 1 represents the conceptual idea
of modelled heat transfer phenomena.

Figure 1. Schematic of heat transmission phenomena
modelled in the Detailed Model

Following, physical assumptions associated with
this type of model and those considered when
developing the model are collected:

• All heat transport phenomena are taken to be in 1-
D perpendicular to the flow direction, except for
the heat carried by the flow. Perfect insulation is
considered at the edges, so all heat transfer
phenomena are related to the frontal collector area.

• With respect to the absorber, a harp type has been
chosen; i.e., in each collector the fluid flow is
distributed through a certain number of parallel
tubes. The fluid flow is considered uniform along
all the tubes in the absorber.

• Modelled pressure losses are those taking place at
the collector harp tubes. Neither pressure losses at
the input/output of the collector nor at the
manifolds are modelled. This is because it was
considered not important to develop specific
detailed models for those elements. If real pressure
losses need to be included, the best way to do it is
by including data obtained from experimental tests
(see Simplified Model in Section 3).

• Natural convection is considered between the rear
insulation component and the ambient.

• As mentioned before, the solar energy not only
affects the energy balance of the absorber plate
(taking into account the glass cover’s
transmissivity and the absorber’s absorptivity
mentioned below) but also that of the glass cover
itself.

• The cover’s solar absorptivity is considered
constant (independent of temperature and solar
spectrum). However, the cover’s transmissivity and
IR absorptivity are dependent on incidence angle.

• Only fluid properties depend on temperature. The
rest of the components’ physical properties are not
dependent on this variable. If desired, the
components’ properties, such as thermal inertias,

Dynamic Modelling of a Flat-Plate Solar Collector for Control Purposes

420 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118419

can be easily turned into temperature-dependent
properties by replacing the elements with those in
the NewThermal Library (López, Hoyo, 2014).

A picture of the corresponding Modelica model built
under the Dymola® environment can be observed in
Figure 2.

Figure 2. Solar Collector Detailed Model developed
under Dymola® software

As shown in Figure 2, the Detailed Model is built
with models from the Modelica Standard Library,
mainly, HeatCapacitor, ThermalConductor,
Convection, BodyRadiation, and DynamicPipe.

Each of the primary components in the solar
collector (glass cover, air inside the gap, absorber
plate, and rear insulation) is modelled as a thermal
inertia with a certain uniform temperature finite
volume (HeatCapacitor).

The fluid model itself represents an incompressible
fluid and it is characterized by the value of its main
properties, such as density, viscosity, specific heat
capacity, conductivity and vapour pressure. Any fluid
model included in the Modelica Standard Library can
be used (DynamicPipe selector), but for the validation
phase (see Section 4), a specific fluid model (Tyfocor
LS) has been developed.

To simulate the behaviour of the collector when
exposed to the solar radiation with a fluid circulating
inside via the Detailed Model, apart from the model
parameters, the following inputs are needed:

• Irradiance in the plane of the collector
• Incidence angle of solar radiation
• Clearness index
• Relative humidity
• Ambient temperature
• Wind velocity and direction

• Fluid input port conditions (i.e., mass flow rate and
temperature)

It can be observed that the model’s discretization level
is high, so it can be easily adapted to other solar
collector designs. To achieve this, it includes many
parameters (e.g., geometries and various material
physical properties), inputs and state variables.

3 The Simplified Model

As mentioned, the described Detailed Model has a
significant number of parameters, and many of them
are related to geometrical and thermal properties of the
materials, which are not usually provided by the
manufacturer. Therefore, it could be difficult to set up
the Detailed Model.

The purpose of the Simplified Model is to develop a
workable model; i.e., one that provides the most
representative solar collector dynamics using the
minimum number of parameters that are easy to obtain,
with a minimum simulation time.

Regarding the model’s parameters, several standards
have been developed to normalize the solar collector’s
performance data via solar thermal collector testing.
Historically the US ASHRAE standard (93-77) was the
first one to be widely used. Next, the ISO 9806 series
of standards was developed and from them, the EN
12975. Several national standards are also available
outside of Europe, most often based on the ISO 9806,
but in Europe the EN 12975 has replaced all national
standards.

Taking as a reference EN12975, it distinguishes
between steady state test conditions and quasi-dynamic
test conditions. Currently the most common tests
between manufacturers are those performed under
steady state conditions.

�� �⁄ = �′(
)�
�

∗ − ��(�� − ��)
− ��(�� − ��)

�
(1)

Equation (1) represents the static behaviour of a flat-

plate solar collector according to EN12975. The
standard describes tests for working out all of the
parameters in the equation: those related to the heat
reaching the fluid (F’), and those related to collector
thermal losses (c1, c2). Currently there are a couple of
Modelica libraries including solar collector models
based on equation (1)1.

However, within the standard stationary tests’
descriptions, additional optional test procedures are
included, which is the case for the effective thermal
capacity (c5) and the incidence angle modifier (Kθb(θ)).
Including these two additional parameters results in the

1 AixLib library (SolarThermal model), and Building Systems library
(ThermalCollectorDynamic model)

Session 5A: Control Applications 2

DOI
10.3384/ecp15118419

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

421

following equation representing the collector, also
included in the referenced standard:

�� �⁄ = �′(
)�
���(�)�

∗ − ��(�� − ��)

− ��(�� − ��)
� − ��

���
��

(2)

Related to the effective thermal capacity, it involves

an equivalent collector global thermal capacity,
lumping into one temperature node the heat capacities
of all the collectors’ components. By simply adding
this parameter to equation (1), it becomes dynamic,
resulting in a solar collector model type called a
Single-capacitance (or one node) model.

In this way, the dynamic behaviour is considered,
not in a detailed way but adequately for use of the
model for control design purposes.

Therefore, equation (2) is chosen as the model basis
for the Simplified Model. Currently there is a Modelica
library already including a dynamic solar collector
model that takes into account this thermal capacity;
however its approach is different from that shown at
equation (2)2.

It must be noted that in equation (2), mean fluid
temperature (tm) is considered the arithmetic mean
between the inlet and outlet temperatures of the
collector. This finding implies theorizing a linear
temperature distribution in the collector, as several
authors did previously (Close, 1967). However,
according to other authors (Duffie and Beckman,
1991), in reality, this distribution is not observed. In
the EN 12975 standardized test the arithmetic mean is
used; therefore, because this standard is the reference
for the Simplified Model, the arithmetic mean will also
be used in this case.

Equation (2) actually represents a thermal energy
balance, where the following terms appear:

• The useful energy gain, as heat energy absorbed by
the fluid (��), In the equation it appears as energy
per unit collector area (A).

• Solar radiation absorbed by the collector, which
depends on the collector’s efficiency factor (F’),
the effective transmittance-absorbance product for
normal incidence (ταen), the incidence angle
modifier for beam radiation (Kθb(θ)), and the
global hemispheric solar radiation (G).

• Energy losses, calculated according to parameters
obtained from the standardized tests (c1, c2),
ambient temperature (ta), and fluid arithmetic mean
temperature (tm).

• Energy storage, calculated from effective thermal
capacity (c5), and fluid arithmetic mean
temperature variation.

2 Buildings library (ASHRAE93 model and EN12975 model)

Related to hydraulic behaviour, fluid pressure losses
are also included in the model. The measurement of the
collector pressure loss, although optional, is included
in the referenced standard tests. Therefore, an ad-hoc
model has been developed (pressureLoss) and
included in the model to apply the corresponding total
pressure losses according to the data obtained from the
tests. This component initially applies the least squares
method to approximate the test data to a 2nd order
polynomial function without an independent term, for
later calculation of the pressure drop depending on the
flow rate during the simulation.

A picture of the corresponding Modelica model built
under Dymola® environment can be observed in Figure
3.

Figure 3. Solar Collector Simplified Model

In the previous figure, HeatBalance model is used to
compute the heat flow calculation according to
equation (2) and transmit it to the fluid (collectorHarp
DynamicPipe). Despite 3 nodes being defined at the
collectorHarp, the calculated heat flow is only applied
to the central one. The extreme nodes are only used to
calculate the mean fluid temperature.

In the case of the Simplified Model for the
simulation, when exposed to the solar radiation with a
fluid circulating inside, just the following inputs are
needed:

• Irradiance in the plane of the collector
• Incidence angle of solar radiation
• Ambient temperature
• Fluid input port conditions (i.e., mass flow rate and

temperature)

3.1 Series and Parallel configuration

In both centralized and decentralized solar plants, solar
collectors are usually connected together in series,

Dynamic Modelling of a Flat-Plate Solar Collector for Control Purposes

422 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118419

parallel or a combination of series and parallel
arrangements.

To simulate the whole solar field would require the
development of the corresponding simulation models
based on the connections of the individual solar
collector models, which would be very tiresome.
Because of that, based on the described Simplified
Model, two additional models have been worked out
for the simulation of series and parallel arrangements
of collector modules, respectively.

In a parallel-connected collector array, the flow of
the heat transfer fluid is divided and a proportion goes
through each collector in the array. This mainly
involves the same pressure drop and the same
temperature increment, and thus the same collector
efficiency. Facing modelization coming from the
Simplified Model, the parallel connection of N solar
collectors is equivalent to a unique solar collector with
an area N times larger, an N times higher heat capacity,
an N times higher number of tubes, and the same
pressure drop. In this new model (ParallelArray
model), apart from the simplified collector model
parameters, the user only needs to set up the number of
solar collectors in the collector array.

Conversely, in a series-connected collector array, all
of the heat transfer fluid passes through all of the
collectors. This transfer primarily involves a pressure
drop and output temperature increase; thus, collector
efficiency decreases in the fluid flow direction. In this
case the developed model is equivalent to a unique
solar collector with the same number of tubes but N
times longer, discretized into N+2 nodes in the flow
line (SeriesArray model). The net heat flow
calculated at each solar collector (balance of heat gain,
heat losses, and heat storage) is applied to each one of
the N central nodes. In the SeriesArray model, apart
from the Simplified Model parameters, the user has to
set up the number of solar collectors in the collector
array, and the percent of additional pressure drop with
respect to the theoretical array pressure drop (N times
the individual solar collector pressure drop) due to the
additional pipe length for the connections.

To check the developed models, simulations have
been carried out in Dymola®, and simulation results
have been compared between these new models and
the corresponding assembly of individual simplified
collector models. The checking has been carried out for
the N=3 case, under certain ambient and fluid
conditions (see Case B conditions at Section 4). The
comparison of the obtained collector array outlet
temperatures for the parallel and series connection is
shown at Figure 4 and Figure 5, respectively.

Figure 4. Outlet temperature comparison for the parallel
arrangement configuration.

Figure 5. Outlet temperature comparison for the series
arrangement configuration.

As expected, in the parallel configuration all outlet
temperatures coincide perfectly: between individual
collectors, and also with the ParallelArray model.

In the case of the series arrangement, the length of
each flow control volume (node) of the SeriesArray
model (N+2 = 5 nodes) is different from that of the
series connection of 3 individual collectors (3N = 9
nodes). This involves small differences between the
outlet temperatures, as indicated in Figure 5, which are
more obvious in the transient states (error <1%). It is
considered that based on the small error obtained, the
developed model behaviour is good, and it is not worth
increasing the number of control volumes in the
SeriesArray model.

4 Validation of the Detailed and Simplified

Models

Two flat-plate solar collectors’ dynamic models have
been developed: the Detailed Model, and the
Simplified Model. The validation of these models is
carried out by comparing experimental data with the
models’ simulation results of a specific flat-plate solar
collector working under certain operating conditions.

Experimental data are obtained from the Solar
Thermal Test Rig located at IK4-TEKNIKER facilities
(LER), normally used for the characterization of solar

Session 5A: Control Applications 2

DOI
10.3384/ecp15118419

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

423

thermal components, such as flat-plate solar collectors.
This facility has a fully sensorized and actuated solar
thermal installation, including a mini-weather station to
collect meteorological data. In this facility, the fluid
comes out of a DHW tank and is driven by the primary
pump to the collector. Before reaching that point, the
fluid passes through some heaters that increase the
fluid temperature up to the desired value. The fluid
makes its way to the collector where it is heated by
solar radiation, and finally it goes back to the DHW
tank, thus closing the circuit.

For validation, an appropriate environment has been
developed in Dymola® for the Detailed Model and the
Simplified Model simulations, to simulate their
behaviour when working under ambient conditions
with a fluid passing through. Among other things, this
included the implementation of ad-hoc calculation
models needed to turn available experimental data into
the required input data for the Simplified and Detailed
models.

Figure 6. Dymola® environment for the Simplified
Model and the Detailed Model simulations.

Regarding the models’ parameters values, in the case
of the Simplified Model they were obtained from the
corresponding collector performance test report carried
out according to UNE-EN 12975-2:2006 by a testing
laboratory accredited by ENAC. In the case of the
Detailed Model, most of the parameters’ values were
collected from the collector manufacturer’s technical
data sheets, and the rest (e.g., physical properties of
certain materials) from specialized literature (Duffie
and Beckman, 1991; Chapman, 1987).

In this type of plant, the heat transfer fluid degrades
over time, so its properties values also change. In this
case, when experimental tests for validation were
carried out in the LER, the fluid was not fresh;
therefore, in pursuit of representativeness/veracity in
the simulation results, real physical properties were
used for the fluid model definition instead of those
coming from the technical data sheets. For that
purpose, a fluid sample was removed from the circuit
and characterized just after performance of the tests.
Thus, reliable values for quantities such us density,
thermal conductivity, specific heat capacity and

dynamic viscosity depending on temperature value
were available for the simulations.

The aim of the validation process is to check the
capability of the developed models to represent
collector behaviour in general, and dynamic
performance specifically. For that purpose, the
following three collector operation cases have been
established:

• Case A: mass flow rate variation (increasing steps),
for almost constant incident solar radiation and
inlet temperature values.

Figure 7. Case A mass flow rate profile.

• Case B: incident solar radiation with sudden
variation (covered/uncovered), for different mass
flow rates, with an almost constant inlet
temperature

Figure 8. Case B irradiance and mass flow rate profiles.

• Case C: increasing inlet temperature, with
decreasing incident solar radiation (not controlled)
and almost constant mass flow rate

Figure 9. Case C Irradiance, mass flow rate, and inlet
temperature profiles.

These cases allow the analysis of the models’
responses to the variation of the possible controlled
variables in this type of plant (mass flow rate and inlet
temperature), and the main non-manageable
perturbation (solar irradiance).

Dynamic Modelling of a Flat-Plate Solar Collector for Control Purposes

424 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118419

The resulting collector’s outlet temperature value
over the time at each case is shown in the following
figures.

Figure 10. Case A outlet temperatures.

Figure 11. Case B outlet temperatures.

Figure 12. Case C outlet temperatures.

5 Discussion

For validation, as shown in Figure 10, Figure 11, and
Figure 12, the collector outlet temperature values are
very similar. An initial offset can be observed between
the experimental data and the simulation models’
results, especially for case A and B. This finding is
observed because at the LER, when the experiment
starts, the solar collector is covered, which avoids
radiation entrance but also prevents direct convection
phenomena to the ambient, while in the simulation
models, this convection does occur (more losses, lower
outlet temperature). Obviously, this offset, or a
consequence of it, remains during the rest of the
simulation.

Conversely, it must be noted that the outlet
temperature slope with changing input values (mass
flow rate, incident solar radiation, or inlet temperature)
is very much alike in the three cases, which means that
in both models the physical dynamics are properly
modelled.

From these findings, it is concluded that both of the
developed models are appropriate for representing the
dynamic (and also the static) behaviour of a flat-plate
solar collector. However, it is worth highlighting that
depending on the application, one can be more suitable
than the other.

Table 1. Models characteristics comparison.

 Detailed Simplified

N. parameters 29 14

N inputs 9 5

N. continuous time states 7 3

CPU time3 15.1

As shown in Table 1, the Detailed Model has a

larger number of parameters, whose values can be
difficult to ascertain. It also has a greater number of
time states involving a greater CPU time. However,
due to the high degree of detail, this model is more
suitable than the Simplified Model for analysing the
influence of particular system variables, such as
individual components’ geometry or material, on
collector performance. This capability is very valuable,
for example, for modelling design improvements.

As for the Simplified Model, again paying attention
to the results appearing in Table 1, it is ultimately more
user-friendly. Simulation time is lower and therefore
more suitable for control design purposes because it is
normally necessary to perform numerous simulations
to, for example, identify the controlled system. The
only requirement is to have access to collector
parameters obtained from the referenced standard test.

For cases in which direct access to standard test
parameters is not possible, the Detailed Model may be
the only way to obtain them. In this situation, the
corresponding standard test load cases can be
simulated using the Detailed Model instead of doing it
experimentally, thereby obtaining the necessary
Simplified Model parameters’ values. This may also be
a more affordable way.

Finally, when a controller is developed, a common
final step in this process is the fine controller parameter
tuning, which is normally carried out by driving the
real system. However, simulations of the designed
controller using the Detailed Model can be worked out
instead, thus allowing for cost saving, and avoiding
damage to the real system.

3Relation between Detailed/Simplified Models CPU times for Case A
simulation.

Session 5A: Control Applications 2

DOI
10.3384/ecp15118419

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

425

6 Conclusions

Two flat-plate solar collector models have been
developed in the Modelica language: the Detailed
Model and the Simplified Model. It has been
demonstrated that both provide a suitable
representation of solar collector dynamic behaviour.
However, there are differences between them that
make them suitable for different applications.

The Detailed Model uses a high quantity of
elements, parameters, and inputs, allowing for a
complete and detailed analysis of the solar collector.
This characteristic is suitable mainly for collector
design purposes, such as studying components’
material/geometry influence, etc.

The Simplified Model is a more workable model,
with fewer but more accessible parameters based on
standard tests. This type of model is primarily
appropriate for control design purposes. In fact, within
Ambassador Project, developed Simplified Model has
been used to identify the flat-plate solar collector
system via model simulations, getting to a transfer
function (outlet temperature depending on inlet mass
flow rate) consisting on a first-order system and a pure
delay.

Acknowledgments

The research leading to the results presented in this
paper (e.g., model development, analysis, and
validation) has been developed under the project
AMBASSADOR frame, which has received funding
from the European Union Seventh Framework
Programme [FP7/2007-2013] under grant agreement
n°314175.

References

R.W. Bliss Jr. The derivations of several “Plate-Efficiency
Factors” useful in the design of flat-plate solar heat
collectors. Solar Energy 3, 4, 55-64, 1959. doi:
10.1016/0038-092X(59)90006-4.

J. Cadafalch. A detailed numerical model for flat plate solar
thermal devices. Solar Energy, 83, 12, 2157-2164, 2009.
doi: 10.1016/j.solener.2009.08.013.

A. J. Chapman. Fundamentals of Heat Transfer, 1987.

D. J. Close. A design approach for solar processes. Solar

Energy 11, 2, 112-122, 1967. doi: 10.1016/0038-
092X(67)90051-5.

J. A. Duffie and W. A. Beckman. Solar engineering of

thermal processes, 1991. doi: 10.1002/9781118671603.

H. C. Hottel and A. Whillier. Evaluation of flat plate
collector performance. Transactions of the Conference on

the use of solar energy II, Thermal Processes, 74-1 04,
1955.

H. C. Hottel and B.B. Woertz. The performance of flat-plate
solar heat collectors. Transactions of the ASME, 64: 94-
102, 1942.

B. J. Huang, S.B. Wang. Identification of solar collector
dynamics using physical model-based approach. ASME. J.

Dyn. Sys., Meas., Control, 116(4):755-763, 1994.
doi:10.1115/1.2899275.

P. Isakson. Solar collector model for testing and simulation.
Final report for BFR project Nr. 900280-1, Building

Services Engineering, Royal Institute of Technology,

Stockholm, 1995.

W. Kamminga. The approximate temperatures within a flat-
plate solar collector under transient conditions.
International Journal of Heat and Mass Transfer, 28, 2,
433–440, 1985. doi: 10.1016/0017-9310(85)90076-6.

S. A. Klein, J. A. Duffie, W. A. Beckman. Transient
considerations of flat-Plate solar collectors. ASME. J. Eng.

Gas Turbines Power, 96(2):109-113, 1974.
doi:10.1115/1.3445757.

S. López, I. del Hoyo. Proposal for standardization of Heat
Transfer Modelling in NewThermal Library. Proceedings

of the 10th International Modelica Conference, 2014. doi:
10.3384/ECP140961189.

J. Muschaweck, W. Spirkl. Dynamic solar collector
performance testing. Solar Energy Materials and Solar

Cells 30, 2, 95–105, 1993. doi: 10.1016/0927-
0248(93)90011-Q.

A. Oliva, M. Costa, C.D. Perez Segarra. Numerical
simulation of solar collectors: the effect of nonuniform and
nonsteady state of boundary conditions. Solar Energy, 47,
5, 359-373, 1991. doi: 10.1016/0038-092X(91)90030-Z.

E. Onillon. District energy flow optimization taking into
account building flexibilities. 2nd Sustainable Places

International Conference, 2014.

D. E. Prapas, B. Norton, et al. Response function for solar-
energy collectors. Solar Energy 40, 4, 371–383, 1988. doi:
10.1016/0038-092X(88)90010-2.

A. J. de Ron. Dynamic modelling and verification of a flat-
solar collector. Solar Energy 24, 2, 117-128, 1980. Doi:
10.1016/0038-092X(80)90386-2.

E. Sartori. Convection Coefficient Equations for Forced Air
Flow over Flat Surfaces. Solar Energy, 80, 9, 1063-1071,
2006. doi: 10.1016/j.solener.2005.11.001.

J. Schnieders. Comparison of the energy yield predictions of
stationary and dynamic solar collector models and the
models’ accuracy in the description of a vacuum tube
collector. Solar Energy 61, 3, 179-190, 1997. doi:
10.1016/S0038-092X(97)00036-4.

Verein Deutscher Ingenieure. VDI Wärmeatlas. 1997.

Dynamic Modelling of a Flat-Plate Solar Collector for Control Purposes

426 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118419

Generic Modelica Framework for MultiBody Contacts and

Discrete Element Method

Hilding Elmqvist
1
, Axel Goteman

1,2
, Vilhelm Roxling

1,2
, Toheed Ghandriz

1

1
Dassault Systèmes, Lund, Sweden, {Hilding.Elmqvist, Toheed.Ghandriz}@3ds.com

2
Lund Institute of Technology, Lund, Sweden, {axel.goteman, vilhelm.roxling}@gmail.com

Abstract

A generic framework for mechanical modeling of
objects that collide and have contact is presented. It can

be used in combination with the Modelica MultiBody
library and to model granular objects using DEM

(Discrete Element Method). The shapes of the objects

are given by general triangular meshes.

Keywords: MultiBody models, Discrete Element

Method, Collision detection, Contact handling

1 Introduction

Many real-world system behaviors depend on contact

between mechanical bodies. Examples are walking,

vehicle on a road, mechanisms in mechanical watches
and many types of manufacturing machines.

1.1 Earlier Modelica Based Solutions

There have already been several developments to

support collision handling in Modelica. In (Otter, et al

2005) is described a solution based on a collision
handling software called Solid. The contact force

calculations take into account the contact patch, i.e.
also rotational friction torque is handled. The paper

(Oestersötebier et al, 2014) introduces non-central

contact blocks in which the contact surfaces are
defined. (Hofmann, 2014) discusses the use of the

Bullet Physics Library and deepest point penetration
for force calculations. Unfortunately this point might

not be unique which then results in unrealistic

simulation results.

1.2 Discrete Element Method

The Discrete Element Method (DEM) has a focus on
handling many interacting objects. Typically, both

positional and rotational degrees of freedom are

handled, i.e. 6 DOFs per object. The geometries can be
complex, e.g. polyhedral. Many different force models

can be used depending on what matter is studied.
It has been noted that simply using penetration

depth, which is often calculated by collision packages,

are not suited for continuous time simulation because
of the discontinuity in the forces and where the forces

act. DEM typically handles this by calculating
penetration volume. See, for example, (Chen, 2012).

(Hippman, 2003, 2013) also considers the penetration

volume and makes force calculations based on the
surface patches.

1.3 Contribution

A generic framework for mechanical modeling of

objects that collide and have contact is presented. It can
be used in combination with the Modelica MultiBody

library and to model granular objects using DEM

(Discrete Element Method). The shapes of the objects
are given by general triangular meshes. The special

case of sphere is also supported in order to handle tens
thousands of objects for DEM. The contact handling is

organized using ExternalObjects, i.e. C and C++ code.

Each body in the scene registers its current position
which is given as the solution of the Modelica motion

equations. After that a centralized routine of the scene

calculates and adds all forces between pairs of bodies
in contact. The force calculation is done using the

intersection volume found by the CSG (Constructive
Solid Geometry) intersect operator. We have used a

generalization of the Hertz contact model developed by

(Nassauer, 2013), where the force is proportional to √��, with V=penetration volume and d=penetration

depth. The force is acting in the centroid of the

penetration volume. The details are given in section
6.1.

1.4 Example: Simple Objects

As an example of how the presented library can be

used, consider the billiard like set-up in Figure 1 of 100

layers of balls, i.e. 5050 balls on a table plus one ball
hitting from below.

Figure 1. 5050 balls hit from below

DOI
10.3384/ecp15118427

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

427

The area around where the first collision happens is
enlarged in Figure 2.

Figure 2. Zoomed in on the first colliding balls

Modeling such scenario is quite simple:

model Billiard

 parameter Integer layers=100;

 parameter Integer n=div(layers*(layers+1),2);

 inner CollidingWorld collidingWorld;

 Sphere sphere[n]

 (x0={{layer(i)*sqrt(3)/2,

 column(i)-(layer(i)-1)*0.5, 0}

 for i in 1:n}, each radius=0.5) ;

 Sphere sphere1(x0={-5,0,0}, v0={1,0,0}, radius=0.5);

end Billiard;

The trivial functions layer and column calculates the
position of the i

th
 ball in the triangle.

2 Modeling Solids

2.1 Triangle Mesh

One popular method of representing solids is to define

its closed surface by a set of triangles with its counter

clockwise normal pointing outwards. The following

Modelica record is used:

record TriangleMesh "Defines solid by triangle mesh of its surface"

 parameter Real vertices[:,3] "3D coordinates of points";

 parameter Integer triangles[:,3](min=1)

 "Triangle structure based on vertices (index array)";

end TriangleMesh;

i.e. all vertices are defined in a separate vector and the

triangles are defined using indices into this vector.

2.2 Solids Defined by Functions

A cube can be defined as a function:
function cube

 output TriangleMesh mesh=TriangleMesh(

 vertices={{0,0,0}, {0,1,0}, {0,0,1},{0,1,1},

 {1,0,0}, {1,1,0}, {1,0,1}, {1,1,1}},

 triangles={{1,4,2}, {1,3,4}, {1,5,7}, {1,7,3}, {5,8,7}, {5,6,8},

 {2,4,8}, {2,8,6}, {4,3,8}, {3,7,8}, {1,6,5}, {1,2,6}});

end cube;

The library contains a set of functions for defining the
triangular meshes of basic primitive shapes such as

box, cylinder and sphere. In addition, functions for

translating, rotating and scaling triangle meshes are
available.

2.3 Polygon Extrusion

A convenient method of defining solids, especially for

early concept studies, is to extrude polygons.

2.3.1 Editing Polygon as Icon

Polygon editing is available in Modelica tools since

one of the icon primitives is Polygon. Dymola has an

API function to retrieve annotations from Modelica
classes. This function is used to define a parameter

vector of 2D coordinates. We propose that such a
function is included in the Modelica standard.

An example of such use is shown in Figure 3 for a

pallet level of a watch. A picture was imported into the
icon editor and a polygon was drawn over the picture.

2.3.2 Concave Polygon Triangulation

The polygon, which can be concave, needs to be
triangulated in order to fit into the triangular mesh

representation.

It is assumed that the polygon is defined counter
clockwise. The vertices of the polygon need to be

traversed and inspected for “ears”, i.e. when the edges
make a “right turn”. A simple algorithm is to remove

vertices at “left turns” and generate the corresponding

triangles first. The polygon is therefore traversed as
long as there are at least 3 remaining vertices.

2.3.3 Extrusion

The extrude function takes a potentially concave
polygon as input and an extrusion height parameter. It

triangulates the polygon and converts to 3D

coordinates for front and back. The extrusion sides are

trivially triangulated by splitting the rectangles defined

by the polygon vertices from the front and back
polygon respectively.

The resulting triangular mesh for extruding the

pallet lever polygon is shown in Figure 3. The triangle
vertices are colored red, green and blue and

interpolation has been performed over the triangle

surface.

Figure 3. Triangle mesh of extruded part

Generic Modelica Framework for MultiBody Contacts and Discrete Element Method

428 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118427

2.3.4 Regular Forms

For regular forms such as a gear wheel, it’s convenient
to just define the polygon for one tooth and use
replication to define the entire form. In order to

replicate around a circle, the polygon needs to be
rotated. Functions to translate, rotate and scale

polygons are defined.

Figure 4 shows how the above operations can be
used to define an escape wheel of a watch.

Figure 4. Triangle mesh of extruded regular form

2.4 Constructive Solid Geometry Operations

More complex geometries can be defined using
constructive solid geometry (CSG). It enables

combining triangular meshes by the operations: union,

difference and intersection.

Figure 5. Triangle mesh of part created by CSG

operations

The solid in Figure 5 has been created using the

following Modelica code (the parameters are defined in

section 8.2):

 mesh := rotate(Cylinder(radius, height=height), {pi/2,0,0});

 for i in 1:nSlots loop

 mesh := difference(mesh, rotate(translate(

 Box({slotLength,height,slotWidth}),

 {radius-slotLength,-height, -slotWidth/2}),

 {0,2*pi/nSlots*(0.5+i),0}));

 mesh := difference(mesh, rotate(translate(rotate(

 Cylinder(slotWidth/2, height=height), {pi/2,0,0}),

 {radius-slotLength,0,0}), {0,2*pi/nSlots*(0.5+i),0}));

 mesh := difference(mesh, rotate(translate(rotate(

 Cylinder(stopArcRadius, height=height), {pi/2,0,0}),

 {centerDistance,0,0}), {0,2*pi/nSlots*i,0}));

 end for;

A Cylinder is first constructed. A for loop is then used
to remove boxes and cylinders from the solid by using

the CSG difference operator.

This method of defining solids, i.e. a textual
definition of object creation, extrusion, CSG

operations, etc, can also be found in certain CAD

packages such as OpenSCAD and OpenJSCAD.org.
The latter uses JavaScript to define the solid objects

and the operations.

2.5 Use of CAD data

The presented Modelica library also contains functions
for reading triangle meshes from CAD files. The

current implementation allows reading DXF files. By

using converters other CAD formats can also be used
such as VRML.

3 Modeling Idiom for Pairwise Coupling of

Objects

It is important that the end user does not have to care

about setting-up individual possible contact pairs. It
should be possible to just drag an object into the scene,

which is possible in Playmola (Elmqvist, et al., 2015),

and automatically get collision behavior.
A unique Integer id needs to be defined by the user

both for the solutions of (Otter, et al., 2005) and
(Oestersötebier et al., 2014).

Our solution solves this problem as follows. The

contact handling is organized using ExternalObjects,
i.e. C and C++ code. Each body in the scene registers it

position which is given as the solution of the Modelica

motion equations. After that a centralized routine of the
scene calculates and adds all forces between pairs of

bodies in contact. These forces are then retrieved for
each body and used in their motion equations.

The difficulty is to properly synchronize the external

calculations of the forces. All current positions and

orientations must be known then.

We use inner outer constructs together with flow

variable declarations in the following way. When a
body calls setBodyTransformation, it also assigns

bodyMoved which is defined as
sync.synchnonize.done. When the body calls

getBodyForces an extra term is added:

collidingWorld.forceCalculated.

model Body

 extends Contacts.Synchronize.CollidingObject;

 Real bodyMoved = sync.synchronize.done;

 Modelica.SIunits.Force f[3];

equation

 bodyMoved = setBodyTransformation(…);
 f = getBodyForces(b,time) +

 collidingWorld.forceCalculated;

…

end Body;

Session 5B: Mechanical Systems

DOI
10.3384/ecp15118427

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

429

The term forceCalculated will not have a value until all
bodies have defined bodyMoved and the

calculateForces function of the external scene object

has been called. This is accomplished in an algorithm
in the inner instance of CollidingWorld:

model CollidingWorld

 ExternalScene scene=ExternalScene(id="s");

 Synchronize.SynchronizeConnector synchronize;

 Real bodyMoved = synchronize.done;

 Real forceCalculated[3];

 Real dummy;

equation

 synchronize.do = 0;

algorithm

 dummy := bodyMoved;

 calculateForces(scene);

 forceCalculated :=fill(0, 3);

end CollidingWorld;

The trick is then that bodyMoved of CollidingWorld
should depend on the bodyMoved of all the bodies.

bodyMoved is defined using a Real flow variable done.

connector SynchronizeConnector

 Real do;

 flow Real done;

end SynchronizeConnector;

This means that all the outer done variables of
CollidingWorld.synchronize are summed together with
the inner done of CollidingWorld.synchronize.

However, to achieve this zero sum semantics, there

needs to be some connections to
collidingWorld.synchronize. Each body extends

CollidingObject and gets the outer declaration, an

instance of SynchronizeModel and the needed connect
statement.

model CollidingObject

 outer CollidingWorld collidingWorld;

 SyncronizeModel sync;

equation

 connect(collidingWorld.synchronize, sync.synchronize);

end CollidingObject;

model SyncronizeModel

 SynchronizeConnector synchronize;

end SyncronizeModel;

This is indeed complex. However, a useful
consequence of Modelica semantics of inner-outer

combined with connectors having a flow variable.
Fortunately, the end user does not need to care about

this.
This idiom is documented here since it might be

useful in other circumstances when external objects are

involved and careful synchronization of calls to
external functions are necessary.

4 Extension to MSL MultiBody library

A general body with collision behavior and general

triangle mesh shape has been developed as a wrapper
to Modelica.Mechanics.MultiBody.Parts.Body. The

mass and inertia are automatically calculated. It has the

usual frame connector, i.e. it can be used together with
joints and force elements in the usual way.

5 Contact detection

Often, the most time consuming part of a DEM

simulation is the contact detection. It is therefore
crucial that it is as efficient as possible, for speed

considerations. The contact detection can be divided

into two phases, the broad phase and the narrow phase.
The broad phase consists of finding potential collision

pairs among all the bodies in the scene, while in the
narrow phase, those pairs are checked in detail for

collision. For more detailed descriptions than present

in this section, see (Goteman, et al., 2015).

5.1 Without a broad phase

To begin with, a broad phase is not necessary in cases
where the number of bodies in the scene, n, is low. In

those cases the body shapes may also be more

complex, which means that the narrow phase will take
the majority of the time, and a broad phase would not

make an impact anyway.

 Without a broad phase, every body has to be checked

against all other bodies, resulting in a time complexity
of O(n

2
). This does not mean that a detailed

investigation is needed between every pair of bodies.

Normally, a bounding volume of every body is
determined. If the bounding volumes of two bodies

intersect, that pair can be checked in more detail. The
most common bounding volume type is the axis

aligned bounding box (AABB), but one can also use

e.g. the bounding sphere (centered in the centroid of
the objects).

5.2 Broad phase

As n increases, it gets expensive to even check

bounding volumes for all bodies. The point of having a

broad phase is to remove the quadratic time
dependency. The most common approaches uses some

kind of tree structure into which the objects are placed,
resulting in an O(n·log(n)) time complexity.

As an example, imagine 1000 balls placed in a

straight line, every pair being precisely at contact.
Without a broad phase, approximately half a million

bounding volume checks would be carried out,
assuming that every pair of bodies is only checked

once. With a good broad phase however, only 999

checks would be needed.

Generic Modelica Framework for MultiBody Contacts and Discrete Element Method

430 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118427

5.2.1 Morton codes

In this solution, the so called Z-order curve has been

used in the broad phase. This space filling curve arises
when doing the following:

Discretize 3d-space into base cells so that the
coordinates of each base cell can be described by an

integer. Translation of coordinates should also be done,

so that the integers are unsigned. Now the idea is to
assign a so called Morton code to each base cell. The

Morton code is determined by interlacing the binary

representation of the three coordinates, according to the
example in Figure 6.

Figure 6. Morton code construction

c is the Morton code, and as shown above, starting
from the least significant bit, the lowest x-bit comes

first, then y’s lowest, then z’s lowest. Then the second
lowest x-bit, and so on.

If the base cells are sorted according to their Morton

codes, the order will follow the curve shown in Figure

7 (in 2D).

Figure 7. Z-curve ordering

For more details on the Z-order curve and Morton
encoding, see e.g. (Karras, 2012).

5.2.2 The algorithm

The algorithm used in this solution is based on the

algorithm presented by (Lavrov, 2014). The idea is that

every body is occupying one to eight cells, where the
sizes of the cells are represented by the level of the

corresponding octree-node. A cell is not necessarily a

base cell, but a cubic cell within which the Z-order
curve covers every base cell before leaving. Given the

size and lowest Morton code of a cell, the maximal
Morton code can also be calculated, and the cell can be

represented by a one dimensional interval. A short

description of the algorithm:
1.) For each body, generate its Morton code-based

intervals (one to eight). This should be done

according to the body’s AABB. The
information should be inserted in some data

structure, where each element contains the
interval, and a body ID.

2.) Sort the data structure according to the start

code of the intervals.
3.) For each interval:

a. Iterate forward in the data structure
until a start code is found that is

greater than the end code of this

interval.
b. For every start code passed within this

interval, push a pair containing this

intervals ID and the others, to another
data structure.

4.) Remove duplicates from the data structure
with pairs.

5.) For each pair:

a. Check the bodies AABBs against
each other.

b. If they intersect, a more detailed
analysis is needed (narrow phase).

5.2.3 Parallelization using GPU

In this section, a short explanation of possible

parallelizations of step 1-4 is presented. The NVIDIA
CUDA programming model was used for this

parallelization, and we refer to (Elmqvist, et al., 2015)
for a brief introduction to general GPU architectures

and CUDA.

The most computationally heavy part of the
algorithm is sorting. There are in fact two sorts in the

algorithm, as step 4 also requires a sorted vector to
operate on. In the first sort, the generated intervals are

sorted, and the number of elements to be sorted is

therefore of the same magnitude as the number of
bodies in the scene. In the second sort, possible

collision pairs are sorted, and the numbers of pairs are

therefor directly linked to how crowded the scene is.
Sorting in the broad phase can be done in parallel, by

using the CUDA library Thrust’s parallel radix sort.
Also the Morton encoding can be done in parallel,

the only problem being that the number of generated

intervals per object is unknown. This is a problem
since pushing data to the end of a storage container

results in the need of atomic operations, which
generally has a negative effect on GPU performance.

However, using the fact that an object generates at

most eight intervals, each thread on the GPU can work
on its own separate piece of memory, with gaps

removed after encoding. Because of how the Morton

encoding is done and the choice of grid size, most

Session 5B: Mechanical Systems

DOI
10.3384/ecp15118427

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

431

objects generate eight intervals, minimizing the gap
removal.

Step three could not be effectively parallelized,

since no effective method was found for determining
the number of generated collision pairs per interval.

Without a guaranteed upper limit on collision pairs, the

Morton encoding method could not be used, and using
atomic operations proved to be to slow, due to the high

number of access conflicts.

5.3 Narrow phase

When the AABBs of two bodies are colliding, a
method is needed to detect if the bodies are actually

colliding. If a collision is detected, the overlapping

region also has to be determined in order to calculate
the resulting forces.

 For this, the CSG (Constructive Solid Geometry)
intersect operator, using BSP (Binary Space

Partitioning) trees, is used (Segura, 2013). It is a
suitable method since it works well and fast on

arbitrarily shaped bodies that are described by their

polygon surfaces.
In a BSP tree, every node has two children. A node

has a plane in 3d space, and its left child represents one
of the half spaces created by this plane, and the right

child represents the other. All operations on the tree are

naturally defined recursively. BSP trees are widely
used in e.g. computer graphics, where the planes might

be chosen as the walls of a room.

When using BSP trees for CSG operations, the
planes are chosen as coplanar with the surface

polygons of the bodies. It results in the left child being
inside the polygon, and the right child being outside (or

the other way around, depending on how you define

your tree), see Figure 8.

Figure 8. BSP tree

Note that polygon (line in 2D) E has to be split by the

plane coplanar to polygon C in the tree construction,
but not A by D. This is because the tree structure

depends on which polygon is chosen as root.
It is now possible to efficiently determine e.g. which

part of a body surface is inside another. Polygon by

polygon, the surface can be traced down the tree, until
it comes to an empty node, which is either in or out.

The polygons are split if they span both sides of a
plane.

The implementation is made in C++, building on
principles from a ported version of the JavaScript

library csg.js, by (Wallace, 2012).

5.3.1 Multiple Contacts

The intersection from a collision between concave
bodies may consist of multiple contact regions. The

result of the CSG intersection contains no information
about this, so an algorithm is needed, that splits up the

provided set of polygons (if needed). A short

description of a solution:
The algorithm assumes that the original intersection

consists of one or more closed volumes, which are to

be represented as a vector of intersections. The

algorithm goes through all polygons in the original

intersection and checks the polygons vertices against
the vertices of each intersection. If no match is found, a

new intersection is created. If one match is found, the

polygon is added to that intersection. If multiple
matches are found, the corresponding intersections are

merged and the polygon added.

5.4 Iterative reformulation

Motivated by the fact that the narrow phase generally
was the computationally heaviest part of a simulation,

except for simulations of spheres, attempts to

accelerate this phase were made. The critical part of the
narrow phase is when polygons of one body are

traversing the other body’s tree, so that became the
focus.

Every polygon of a body traverses the tree

independently, which motivated to do the traversal in
parallel. Then, by traversing all polygons in all

collision pairs simultaneously, high parallelism is

possible both with few complex objects, and many
simple ones, see figure 9.

Figure 9. Illustration of the new traversal algorithm.

To achieve this kind of traversal, a major restructuring

of the CSG algorithm were carried out. Incidentally,

this restructuring resulted in a large performance boost
for CPU execution as well. In fact, it performed as

good as or better than the GPU in most cases.

The three major reasons for the lack of GPU
acceleration are:

Generic Modelica Framework for MultiBody Contacts and Discrete Element Method

432 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118427

 High instruction divergence. Nearby threads

may take different paths in the tree.

 High data divergence. Nearby threads might

access non-coalesced memory locations.

 Each thread requires a large amount of
registers, decreasing the occupancy.

6 Force Calculations

6.1 Normal force

When the intersection between two bodies is

determined, the resulting forces need to be calculated.

Because the colliding bodies are arbitrarily shaped, the

overlapping region (the intersection) is given as a

polyhedron with arbitrary shape, which implies that a
classification of type of collision is hard to make. Thus

a collision type independent model is needed. One such
model is proposed in (Nassauer, 2013), where the

contact force for elastic response is volume dependent.

The derivations are based on Hertz model for contacts
between spheres. With the assumption that the contact

region is small with respect to the bodies in contact, it

leads to: ࡲ = ࢊ�√�ࡱ

Here E is Young’s modulus of the objects, V is the

volume of the overlapping region, d is the penetration

depth and � = 4ଷ√�.

It is shown that this is actually a generalization of
Hertz model.

The force is applied at the centroid of the

overlapping region. To determine the force direction,

constant pressure is assumed within the intersection.
The direction can then be determined by weighing each

polygon’s normal with its area, sum over the polygons
from one of the bodies, and normalize: �� = ∑ �ೕ�ೕೕ∑ �ೕೕ .

Ai and ni are the area and normal direction of polygon i

respectively. This gives a behavior similar to that of a
body floating in a liquid, the only difference being the

assumption of constant pressure. An illustration of the

polygonal contributions for the force direction is
shown in Figure 9, taken from the debug window

developed together with this package.

Figure 9. Intersection volume and forces

The penetration depth is defined as the extension of the
overlapping region in the direction of nf, see Figure 10,

and can be found as � = max�ሺ�� ∙ ��ሻ − min�ሺ�� ∙ ��ሻ ⁡.
pi is the position of vertex i, and j ranges over all
vertices in the intersection.

Figure 10. Penetration depth

6.2 Additional forces

In this context, the normal force is not sufficient to

describe the contact interaction between bodies.

(Nassauer, 2013) also proposes models for damping
and friction, described below.

6.2.1 Damping

Energy dissipation can be introduced by modifying the
normal force equation to ࡲ = ሺ૚ࢊ�√�ࡱ + ,ሻࢊ��
where c is the damping constant and vd is the relative

velocity between the bodies in the orientation of nf.

The points for which the velocities are calculated are
chosen as the centroid of the intersection for both

bodies.

6.2.2 Friction

The classical Coulomb friction model turns out to be

very hard to implement in DEM simulations. There are

many reasons for this, the most important being that, in
the case of static friction, all other forces acting on the

body have to be known.

Session 5B: Mechanical Systems

DOI
10.3384/ecp15118427

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

433

So instead, the following, velocity dependent model
is used: �� = (ሺ2µ�∗ − µ�ሻ �2�4 + 1 + µ� − µ��2 + 1)�

F is the normal force, x=vt/vs, where vt is the

magnitude of the relative tangential velocity between
the bodies, and vs is the velocity for transition from

static to kinetic friction. vt can be found by projecting

the relative velocity between the bodies, again taken at
the centroid of the intersection, onto the plane of which

nf is normal. Also µ�∗ = µ�ሺ1 − Ͳ.Ͳ9ሺµೖµ�ሻ4ሻ,
where µs and µk are the coefficients of friction for

static and kinetic friction respectively. This generates
the following friction behavior.

Figure 11. The friction model

6.2.3 Rotational damping

To simulate the friction caused by rotation at the
contact point, a model with a damping effect is

proposed. It applies a torque in the opposite direction

of the relative angular velocity at the contact point (in
the direction of nf). Its magnitude is proportional to the

angular velocity, the area of the contact region, and the
normal force, according to �� = −����ሺ�૚ −�૛ሻ��

A is the area of the contact region, cr is a constant for

calibration of the model, and �� is the angular velocity

of body i, which is the same in any point of a rigid
body. The area can be approximated by projecting the

triangles from one body onto the plane to which nf is
normal, and summarize: � = ∑�������

This model does not take into account the fact that the

friction force most probably is not uniformly
distributed across the contact area. A better solution

(not yet implemented) would be to integrate over the

area, and apply the friction model from section 6.2.2 on
the triangles. F should then be replaced by the

corresponding local contribution to the normal force,

and vt by the tangential component of �× ��, where ri

is the position of the triangle relative to some fix point,

e.g. the centroid of the intersection.

6.3 Additional algorithms for polyhedrons

6.3.1 Volume and centroid

To complete the force calculations, algorithms to

compute the volume and the centroid of the
intersection are needed. Those algorithms are also

needed to compute center of mass and mass of a

triangular meshed body. This is done by (Nürnberg,
2013), for closed polyhedrons of arbitrary shape.

Conveniently, the algorithms only depends on the
surface of the polyhedron, which is what is produced

from the CSG intersection operation.

6.3.2 Moment of inertia

An algorithm to compute the inertia tensor of the

bodies is also needed. This can be done for an arbitrary

polyhedron (with triangle faces) in the following way:
Pick a point, e.g. the point around which the inertia

tensor is needed. If another point is chosen, a simple

translation to the desired point has to be carried out
afterwards.

The integration over the body’s volume can be
transformed to a sum of integrals over tetrahedrons.

Those tetrahedrons are the ones created by connecting

the chosen point with the triangles of the body surface.
Now, for one such tetrahedron, if the normal of the

triangle from the object’s surface points into the
tetrahedron, the contribution from this tetrahedron is to

be subtracted, otherwise added, to the total inertia

tensor.
What remains is to actually calculate the moment of

inertia of arbitrary shaped tetrahedrons. (Tonon, 2004)

presents expressions for this in terms of the vertex
coordinates.

7 Animation

7.1 Additional debug window

In order to allow for debugging and analysis of contact
behavior, OpenGL was used to create a new animation

window for Dymola. This window has expanded

capabilities in order to simplify debugging of contact
mechanics.

It allows viewing of the individual polygons of a
body, which gives the option of viewing the

intersections in the event of a collision. The window

also supports drawing of the forces, both the
contribution of every individual intersection polygon

and the combined collision force. The resulting torque

of the collision force is also viewable.

7.2 New ModelicaServices Model for Triangle

Mesh

The ModelicaServices package which might have

different implementations for different tools, has some
models for animation of certain predefined shapes such

Generic Modelica Framework for MultiBody Contacts and Discrete Element Method

434 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118427

as box, cylinder and sphere, DXF-files and parametric
surfaces. Parametric surfaces are defined by a function

of two independent parameters and return the

corresponding 3D position.
The above capabilities are not sufficient for

animation of triangular meshes. We propose that

ModelicaServices is extended with such a model. It
will be similar to

ModelicaServices.Animation.Surface, defining the
surface by:

 input Real vertices[:,3]

 "3D coordinates of points";

 parameter Integer triangles[:,3]

 "Triangle structure based on vertices"

Note that vertices can be time dependent, i.e. it is

possible to animate flexible bodies.
Three different coloring schemes are proposed: one

color for entire shape, separate color for each triangle
and separate color for each vertex with interpolation

over triangle. The last most powerful alternative

supports animating stresses in flexible bodies.

8 Examples

8.1 Lever Escapement

The lever escapement was invented around 1755 and is

used in watches to convert an oscillation to a rotational

motion, see Wikipedia (“Lever escapement”), Figure
12:

Figure 12. Lever escapement of mechanical watch

There are two contact problems: One for making sure

the rotation ticks at the desired frequency; the other to
insert more energy from the spring of the watch to the

oscillator.

 The shape of the pallet lever was extracted from
(British Horological Institute, 2011) and a polygon was
created and extruded. The escape wheel was defined as

a regular form as described in section 2.3, see Figure

13.

Figure 13. Pallet lever and escape wheel

8.2 Geneva Mechanism

The Geneva mechanism has been used since long ago

to achieve intermittent motion (Bickford, 1972). It is
used, for example, in mechanical watches and in film

projectors to move the film.

The drive wheel (grey in the figures below) has a
pin which rotates the output wheel (yellow) when in

contact in the slots. When the pin is not in contact, the
output wheel lock its locking surface by sliding against

the locking ring of the drive wheel.

The dynamics is thus quite complex and there is a
fast change in the acceleration when the drive pin

enters and leaves the slot.

8.2.1 Parametric mechanism

Depending on how many output slots there are, the

geometry of the parts is given. The Modelica function

generating the output wheel by CSG operations in
section 2.4 has the following variable declarations

showing the dependencies.

 input Real radius=1 "Geneva wheel radius";

 input Integer nSlots(min=3)=3 "Number of driven slots";

 input Real pinDiameter=radius/10 "Drive pin diameter";

 input Real clearance=radius/100;

 input Real height=radius/5;

 output TriangleMesh mesh;

protected

 Real pi=Modelica.Constants.pi;

 Real centerDistance = radius/cos(pi/nSlots);

 Real driveCrankRadius = sqrt(centerDistance^2-radius^2);

 Real slotLength = radius + driveCrankRadius - centerDistance;

 Real slotWidth = pinDiameter + clearance;

 Real stopArcRadius = driveCrankRadius - pinDiameter*1.5;

 Real stopDiscRadius = stopArcRadius-clearance;

 Real clearanceArc = radius*stopDiscRadius/driveCrankRadius;

It is therefore possible to define a parametric

mechanism, i.e. that the shapes of all parts of the
mechanism are parametric. The Geneva mechanism

with nSlots=3 is shown in Figure 14.

Session 5B: Mechanical Systems

DOI
10.3384/ecp15118427

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

435

Figure 14. Geneva mechanism with 3 slots

The Geneva mechanism with nSlots=6 is shown in
Figure 15. Notice that the drive wheel is then relatively

smaller.

Figure 15. Geneva mechanism with 6 slots

The angle of the output wheel is plotted in Figure 16 in
the case of nSlots=6:

Figure 16. Output angle when 6 slots

It should be noted that the contact handling is very

complex. In particular, the locking surface is concave.
It is sliding against the convex locking ring which has

smaller radius. So theoretically there would be one
contact surface. However, due to the discretization of

triangulated mesh, there might be several simultaneous
contact surfaces which our approach handles.

8.3 Bucket Digging in Pile of Belgian Blocks

Some of the roads in the old central parts of the city of

Lund, Sweden are built by Belgian Block stones, see

Figure 17.

Figure 17. Belgian Block stones

To demonstrate that our solution can handle many
objects (DEM) defined by triangular meshes, we want

to calculate the force needed on the bucket to grab the

stones by an excavator or loader tractor, see Figure 18.
The time to simulate 4 seconds of real time took 27

minutes. During that time more than 7 million

collisions took place.

Figure 18. Bucket digging pile of Belgian Block stones

The plot of the force is shown in Figure 19 when the
bucket has constant velocity.

0 2 4 6 8 10

-120

-80

-40

0

revolute1.phi

Generic Modelica Framework for MultiBody Contacts and Discrete Element Method

436 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118427

Figure 19. Plot of horizontal and vertical forces during

digging

8.4 Tippe Top

The Tippe Top is a special toy that has fascinated a lot

of physicists for a long time. It consists of a hollow

sphere with a stem, as can be seen in Figure 20.

Figure 20: Snapshot of Tippe Top inversion, from left to

right

As a result of its special geometry, its center of mass is

located below the center of the sphere. When spun, the

Tippe Top will invert itself, and spin on the stem,
Figure 20. Since the behavior of the Tippe Top is quite

complex, the fact that we can simulate it serves as a
good indicator of the potential of this package.

Simulating the behavior until inverting after 3.3

seconds took 12 minutes.

9 Extensions to Flexible Bodies

The presented framework could naturally be extended
to flexible bodies as well. This section introduces

related work not yet integrated in the framework which
shows the possibilities.

A prototype library has been developed in Modelica

to model and simulate planar flexible multibody
systems which also has the ability of simulating contact

problems. The simulation of the flexible multibody
system is based on the floating frame of reference

approach and a model reducing technique, Kraig-

Bampton method (Ghandriz, 2014, Shabana, 2013 and
Simeon, 2013). The geometry of a body is a set of

polygons defining the outer and inner boundaries of the

body. A standalone code was developed for generating
the finite element mesh by implementing Delaunay

triangulation (Shewchuk, 2012). The reduced model is
generated as Modelica code. Once a flexible or a rigid

body is generated inside Dymola it can be used
together with joints, drivers, constraints, etc. to build a

multibody system using the PlanarMultiBody library

(Zimmer, 2012).
Having solved the equation of motion of the model,

the nodal elastic deformations of the flexible

components are retained from the modal coordinates
which is used to calculate the time history of the planar

stresses.
A few examples will be given below to show the

capabilities.

9.1 Flexible Bodies – FEM

The first example is a simplified version of a

mechanism so called wing variable camber leading

edge flap used in Boeing aircraft (Cole, 1967). A

similar mechanism is shown in Figure 21.

Figure 21. Wing variable camber leading edge flap

The behavior of the system can be analyzed using the

planar flexible library. The simplified mechanism in
Figure 22 consists of 13 rigid and two flexible bodies.

The bending of the flap and the resulting stress
distribution at an instance of time can be seen in Figure

23.

Figure 22. Folded wing flap

Session 5B: Mechanical Systems

DOI
10.3384/ecp15118427

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

437

Figure 23. Unfolding wing flap

9.2 Flexibility and Topology Optimization

One of the excellent applications of flexible multibody

dynamics can be realized as its combination with the
theory of structural optimization. In particular,

structural topology optimization is a part of conceptual

design of a mechanical product where the material
distribution, i.e. topology, of the body is iteratively

updated to reach a constraint optimal state (Bendsoe,
2003). It means that, for example, with the optimal

topology, the body can be stiffer or stronger but lighter.

It is the purpose of many mechanical design engineers
to build a mechanical part which shows the highest

strength on the operation with the minimum amount of
material used. In (Ghandriz, 2015) a method for

applying structural topology optimization on multibody

systems (TOMBS) can be found; where, large
rotational and transitional motion, transient inertia and

reaction forces of flexible bodies are accounted for in

the optimization process.
For applying TOMBS on a flexible multibody

system it is required to solve equation of motion in
every optimization iteration; thus, the modal reduction

and retaining all nodal elastic deformations must also

be repeated in accordance with the new topology.
We apply TOMBS on one of the flexible bodies in

the above example. The optimization problems are
defined as to minimize the sum of the strain energy

stored in the body over the operation time, while the

maximum allowed volume is 60% of the initial volume
shown in Figure 22.

If the thickness of the non-optimized body is

changed such that it has the same weight as the
optimized body, the generated stresses during

operation in the body with optimal topology is smaller
than the stresses of the non-optimized one. Figure 24

shows the change of the maximum stress of the two

designs (optimized and non-optimized with reduced
thickness) over time. The stress distribution of the non-

optimized body with reduced thickness is shown in
Figure 25 (upper part). The optimal result is shown in

Figure 25 (lower part). The colors are set for
illustrative purpose. The highest stress is well below

the yield stress. In later design stages, the high local

stresses can be cured using shape optimization.

Figure 24. Maximum stresses for optimized and non-

optimized body

Figure 25. Stress distribution of the non-optimized body

with reduced thickness (upper part); resulting shape of

topology optimization (lower figure)

9.3 Flexibility and Contact

The last example is the lever escapement where both
bodies are flexible. In flexible bodies, the forces

generated due to the contacts must be distributed to the

nodes of the finite elements involved in contact. The
portion of the total contact force which each node

receives is proportional to the node's penetration depth

and its distance from the center of the contact region.
To obtain a more exact local deformation of the

finite elements involved in contact, corresponding

Generic Modelica Framework for MultiBody Contacts and Discrete Element Method

438 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118427

nodes must be excluded from the modal reduction, i.e.
they should be in the set of Master nodes in Kriag-

Bampton method. Figure 26 shows the finite element

mesh. In Figure 27, three snapshots of the model and
the resulting stresses at the moment of contact are

illustrated.

Figure 26. FEM mesh

Figure 27. Stresses during the contact

It is interesting to see that the highest stresses in the

Pallet body, i.e. the body on the left, are caused by the
inertia forces. These stresses cannot be captured if the

problem is analyzed statically.

10 Conclusions

A new Modelica framework for collision handling and

DEM has been presented. It allows construction of 3D
parts by use of Modelica functions for CSG in the early

concept phase. CSG is also used to find contact region.

Special considerations are taken in order to be able to
handle DEM.

A discussion about the possibility to extend this
framework to FEM with contact and for topology

optimization is given.

We propose that this framework serves as a starting
point for a working group within Modelica Association

to define a standard Modelica library for collision,
contact and DEM.

Acknowledgements

This work has partly been performed as a master thesis
project at Lund Institute of Technology. The first

author served as an industrial advisor and Michael

Doggett as the formal supervisor.

The authors want to thank Hans Olsson for
extending Dymola with the capability to animate

triangular meshes.

References

Bendsoe M. P., Sigmund O. (2003): Topology optimization:

theory, methods and applications. Springer Science &

Business Media

Bickford J.H. (1972). Geneva Mechanisms. Mechanisms for

intermittent motion. New York: Industrial Press inc. 128.

ISBN 0-8311-1091-0,

http://ebooks.library.cornell.edu/k/kmoddl/pdf/002_010.pd

f

British Horological Institute (2011): Drawing Clock and

Watch Escapements - Distance Learning Course. pp 17-30,

http://www.bhi.co.uk/sites/default/files/Drawing%20Escap

ements%20Version%201.4%20DS.pdf

Chen J. (2012): Discrete Element Method for 3D

Simulations of Mechanical Systems of Non-Spherical

Granular Materials. The University of Electro-

Communications, Japan,

http://ir.lib.uec.ac.jp/infolib/user_contents/9000000625/90

00000625.pdf

Cole J. B., Island M., Weiland R. H. (1967): AIRCRAFT

WING VARIABLE CAMBER LEADING EDGE FLAP.

United States Patent Office,

https://docs.google.com/viewer?url=patentimages.storage.

googleapis.com/pdfs/US3504870.pdf

Elmqvist H., Baldwin A.D., Dahlberg S. (2015): 3D

Schematics of Modelica Models and Gamification.

Proceedings 11th International Modelica Conference,

Versailles, September 21-23, 2015.

Elmqvist H., Olsson H., Goteman A., Roxling V., Zimmer

D., Pollok A. (2015) Automatic GPU Code Generation of

Modelica Functions. Proceedings 11th International

Modelica Conference, Versailles, September 21-23, 2015.

Ghandriz T. (2014): An algorithm for structural topology

optimization of multibody systems, Master’s thesis, Lund
University.

https://sharepoint.srv.lu.se/sites/mimer/kursplanering/gu/S

PBstipendium/Nomineringar%202015/MATEMATIK%20

Tohee%20Ghandriz.pdf

Ghandriz T., Führer C., Elmqvist H. (2015): Structural

Topology Optimization of Multibody Systems.

ECCOMAS Thematic Conference on Multibody

Dynamics, Barcelona, Catalonia, Spain.

Goteman A., Roxling V. (2015): GPU Usage for Parallel

Functions and Contacts in Modelica, Master’s thesis, Lund

Institute of Technology, Lund, Sweden. (To be published)

Gottland N. (2012): Make Geneva wheels of any size,

http://newgottland.com/2012/01/08/make-geneva-wheels-

of-any-size/

Hippman G. (2003): An Algorithm for Compliant Contact

Between Complexly Shaped Surfaces in MultiBody

Dynamics. MultiBody Dynamics 2003, Lisabon, Portygal,

http://www.pcm.hippmann.org/doc/eccomas03_hippmann.

pdf

Hippman G. (2013): Polygonal Contact Model.

http://www.pcm.hippmann.org/

Session 5B: Mechanical Systems

DOI
10.3384/ecp15118427

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

439

Hofmann A., Mikelsons L., Gubsch I., Schubert C. (2014):

Simulating Collisions within the Modelica MultiBody

Library. Proceedings 10th International Modelica

Conference, Lund, March 10-12, 2014,

http://www.ep.liu.se/ecp/096/099/ecp14096099.pdf

Karras T. (2012): Thinking Parallel, Part III: Tree

Construction on the GPU.

 http://devblogs.nvidia.com/parallelforall/thinking-parallel-

part-iii-tree-construction-gpu/

Lavrov D. (2014), Collision Detection Using Z Order Curve

Aka Morton Order.

http://dmytry.com/texts/collision_detection_using_z_order

_curve_aka_Morton_order.html

Mueller R.K. (2015): OpenJSCAD.org User & Programming

Guide. http://openjscad.org/

Nassauer B., Kuna M. (2013): Contact forces of polyhedral

particles in discrete element method. DOI

10.1007/s10035-013-0417-9, Springer Verlag.

Nürnberg R. (2013): Calculating the volume and centroid of

a polyhedron in 3d.

http://wwwf.imperial.ac.uk/~rn/centroid.pdf

Oestersötebier F., Wang P., Trächtler A. (2014): A Modelica

Contact Library for Idealized Simulation of Independently

Defined Contact Surfaces. Proceedings 10th International

Modelica Conference, Lund, March 10-12, 2014,

http://www.ep.liu.se/ecp_article/index.en.aspx?issue=96;ar

ticle=97

Otter M., Elmqvist H., Diaz Lopez J. (2005): Collision

Handling for the Modelica MultiBody Library.

Proceedings 4th International Modelica Conference,

Hamburg, March 7-8, 2005, pp. 45-53,

http://elib.dlr.de/12299/1/otter2005-modelica-collision.pdf

Segura C., Stine T., Yang J. (2013): Constructive Solid

Geometry Using BSP Tree.

https://www.andrew.cmu.edu/user/jackiey/resources/CSG/

CSG_report.pdf

Shabana. A. A. (2013): Dynamics of multibody systems.

Cambridge university press.

Shewchuk J. R. (2012): Lecture Notes on Delaunay Mesh

Generation, Department of Electrical Engineering and

Computer Sciences, University of California at Berkeley.

Simeon B. (2013): Computational flexible multibody

dynamics: a differential-algebraic approach. Springer

Science & Business Media.

Tonon F. (2014): Explicit Exact Formulas for the 3-D

Tetrahedron Inertia Tensor in Terms of its Vertex

Coordinates.

http://docsdrive.com/pdfs/sciencepublications/jmssp/2005/

8-11.pdf

Wallace E. (2012) csg.js. http://evanw.github.io/csg.js/

Zimmer D. (2012): A Planar Mechanical Library for

Teaching Modelica. Proceedings of the 9th International

Modelica Conference, September 3-5, 2012, Munich,

Germany

Generic Modelica Framework for MultiBody Contacts and Discrete Element Method

440 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118427

Different Models of a Scaled Experimental Running Gear for the

DLR RailwayDynamics Library

Christoph Schwarz Andreas Heckmann Alexander Keck

Institute of System Dynamics and Control, German Aerospace Center (DLR), 82234 Wessling

{Christoph.Schwarz, Andreas.Heckmann, Alexander.Keck}@dlr.de

Abstract

The DLR internal project “Next Generation Train”

(NGT) deals with a high-speed train in a double-deck

configuration. To realize the two continuous floors,

a single wheel running gear configuration is selected.

Equipped with independently rotating wheels instead of

a usual wheel-set, a track guidance control becomes nec-

essary. In terms of an advanced control and observer

development the implementation of validated simulation

models is absolutely essential. Therefore, the paper gives

a short overview of the hardware of the scaled Experi-

mental Running Gear on the DLR roller rig represent-

ing the NGT single wheel running gear. Using the DLR

RailwayDynamics Library three different models of the

running gear are implemented, which vary in complexity

and can be used for different analysis methods. Finally,

some significant simulation results of the particular sim-

ulation models are presented and discussed.

Keywords: railway vehicle dynamics, running gear, ana-

lytical modeling

1 Introduction

In 1985 a roller rig was established at DLR. Since

then various aspects of the railway vehicle dynamics

have been investigated using constantly advanced run-

ning gears. The current configuration represents the sin-

gle axle running gear of the DLR internal project “Next

Generation Train” (NGT) (Winter et al., 2011). This

project is targeted on a high-speed train in lightweight

design with high demands for energy efficiency and the

passenger capacity. To achieve these goals the train is

designed in a double-deck configuration with continu-

ous floors on both levels. Therefore, the running gear

is equipped with independently rotating wheels (IRW)

mounted on an axle bridge and individually driven. To

stabilize the running gear dynamics, which are unstable

at higher speeds (Wickens, 2003), a mechatronic track

guidance is applied to ensure the safe service of the train

and to reduce the wheel and rail wear.

Regarding the synthesis of a model based control and

an extensive analysis of the running gear system, the

development of an appropriate and validated but at the

same time simple simulation model is essential. In a

first step, the hardware of the scaled running gear on the

DLR roller rig is described in Section 2. Furthermore,

the paper establishes three different simulation models in

Section 3 varying in the level of complexity and imple-

mented using the DLR RailwayDynamics Library. Some

simulation results as well as a comparison thereof are de-

lineated in Section 4. Finally, in Section 5 an outlook to

the future work is given together with conclusions.

2 Hardware of the running gear on

the roller rig

The actual running gear operating on the roller rig is a

scaled 1 : 5 version of the single axle running gear con-

ceived for the intermediate wagons of the NGT. The ma-

jor components of the Experimental Running Gear are

the central frame, the two axle bridges, and the four

wheels. Figure 1 illustrates the particular modules as

well as the mechanical degrees of freedom relevant for

the mechatronic track guidance control. Using the in-

dices i = f ,r (front, rear axle bridge) and j = r, l (right,

left wheel), respectively, the DOFs are the lateral dis-

placements y f and yr of the center point of the axle

bridge P with respect to the railroad centerline, the yaw

Figure 1. Half model of the running gear with mechanical

degrees of freedom.

DOI
10.3384/ecp15118441

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

441

Figure 2. Detailed CAD model of the current running gear

design.

angle of each axle bridge ψ f and ψr and the four angular

wheel velocities ω f r, ω f l , ωrr and ωrl .

The central frame is a screwed construction and very

small manufacturing tolerances are demanded on the par-

ticular parts. In addition, the frame is mounted to the

roller rig by a lemniscate guidance, that blocks the longi-

tudinal motion of the running gear but allows for lateral

and vertical motions as well as yawing. Laser sensors

used for the measurements of yi and ψi are attached to the

frame just as the converters of the motors. Furthermore,

each axle bridge is interconnected to the frame by two

leaf springs as it can be seen in Figure 2. The springs act

on the one hand as an axle bridge guidance with respect

to the frame and on the other hand as vertical suspension.

The adjustment of these springs in a V-shape guarantees

a guidance free of clearance and allows radial steering of

the axle bridges, what is necessary for the mechatronic

track guidance. This leaf spring guidance concept and

an improved cable guidance from the laser sensors and

converters to the target PC are the outcome of the latest

redesign of the running gear in 2014. Another enhance-

ment of the newly constructed running gear are the low

torsional stiffness of the frame and the additional vertical

springs, that can be added in order to adapt for an op-

tional, additional load. The vertical springs and the leaf

springs lead to a rotational yaw stiffness between the axle

bridges and the central frame, which has to be taken into

account in the development of the track guidance control.

The IRWs are individually driven by permanent-

magnet synchronous motors. In contrast to the real NGT

setup, these in-wheel drives only have to deliver the con-

trol torque but not the traction torque, which is gener-

ated by the rollers. There are two independent control

torques, one for the leading and one for the trailing axle

bridge, since the torques of the right and the left motor

Figure 3. Modelica model of the running gear on the roller rig.

are equal in amount but opposite in direction. The two

torques are calculated by separate, but identically param-

eterized controllers. The cascaded control structure im-

plies an inner PD loop for the yaw angle and an outer PI

loop for the lateral displacement.

3 Modeling aspects of the scaled run-

ning gear

Before describing the specific models with their char-

acteristics some general aspects are pointed out that all

three of them have in common. Firstly, the limitation of

the actuator torque representing a non-linearity is mod-

eled as part of the controller. Furthermore, the angular

wheel velocities ωi j are negative, since the angular roller

velocity ωR = vR
rR

is positive in case of a positive vR. An-

other common aspect of the models described hereafter

is to idealize the wheel profile as perfectly conical with

the cone angle d.

3.1 Detailed multibody Model

The multibody model of the running gear is divided into

two parts: the running gear itself and the contact mod-

els of each wheel-rail pair, see Figure 3. According to

(Heckmann et al., 2014) there are two options for the

contact model: Kalker’s linear theory and the theory

formulated by Polach. Due to the more accurate con-

tact formulation the latter theory is used to calculate the

creep forces fff =(fx, fy, lz)
T

, with the longitudinal creep

Different Models of a Scaled Experimental Running Gear for the DLR RailwayDynamics Library

442 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118441

Figure 4. Creep forces in relation to the spin for the MBS and

the nonlinear model(Knothe and Stichel, 2003).

force fx, the lateral creep force fy and the torque lz. The

nonlinear relation between the creep forces and the slip

sss = (sx, sy, φz)
T

, with the longitudinal slip sx, the lateral

slip sy and the spin φz, is illustrated in Figure 4. In ad-

dition, the shear modulus G and the Kalker coefficients

C11, C22, C23 and C33 determine the calculation of fff . The

Kalker coefficients depend on the semi-axes of the con-

tact ellipse a and b and are stored in look-up tables in the

contact modules.

The running gear model comprises all of the major

components described in the previous section and is in

turn divided into different substructures. On the top level

the interfaces for the in- and outputs τi j, yi and ψi are im-

plemented, see Figure 3. Further parameters defined in

this level are the wheel base e, the stiffness and the damp-

ing coefficient of the vertical spring/damper component

as well as the body parameters of the central frame like

its mass M and the moments of inertia. In a first sublevel

the DOFs of the central frame are modeled using three

rotational and two translational joints that are connected

in series. The leading and the trailing axle bridges are

represented by identical substructures. Considering the

axle bridge structure the rotational stiffness k between

the central frame and the axle bridge is modeled inde-

pendently of the vertical spring. This component is posi-

tioned at the yaw joint of the axle bridge followed by the

roll joint and the translational joint for the vertical dis-

placement. Furthermore, the wheel gauge f , the nominal

rolling radius of the wheels r0 and the body parameters of

the wheels and the axle bridge are defined. Another fea-

ture implemented in the axle bridge model is the transfer

behavior from the requested controller torque to the ac-

tual angular wheel acceleration.

3.2 Nonlinear analytical Model

Since the overall aim is to generate a model that can be

used for the development of a feed-forward as well as

a feed-back control, another more simple model is nec-

essary than the MBS model. Therefore, the complexity

and the computational effort of the nonlinear model is

reduced by carrying out some simplifications. First of

all, the three rotational degrees of freedom of the cen-

tral frame are locked, since for the true scale NGT rail-

way car with e = 14 m and f = 1435 mm the influences

of these rotations might be diminutive anyway. Though,

for a later application to the true scale NGT the influ-

ences of the mass and the inertias of the car body have to

be investigated. Another simplified aspect is the neglect

of the vertical stiffness between the axle bridge and the

frame, so the vertical displacement of the central frame

is zF =
z f +zr

2
. In addition, the width of the continu-

ous roller rails is considered to be infinitesimal regard-

ing the calculation of the position of the contact patch

on the wheel surface. Furthermore, Kalker’s linear the-

ory (Kalker, 1990) is used to calculate the creep forces fff

in the wheel-rail contact. However, the maximum creep

force is limited to fff max = FN µ , with the normal wheel

force FN and the friction coefficient µ between wheel and

rail, see Figure 4. To further decrease the computational

effort the creep torque is neglected (Polach, 2000) and

the Kalker coefficients are kept constant. Thus, the con-

tact formulation is stated as (Knothe and Stichel, 2003)

fff =

(

fx

fy

)

=KKK





sx

sy

φz





, with (1)

KKK =−abG

(

C11 0 0

0 C22

√
abC23

)

.

The mathematical description of the nonlinear dynamics

is carried out using three coordinate systems: the iner-

tial (index I), the body fixed (index ψ , located in the

middle of the axle bridge) and the contact point coor-

dinate system (index r, l) (Jaschinski, 1990). However,

the transformation matrices AAA converting these coordi-

nate systems disregard the rotation of the wheels around

the y-axis (Bremer, 1988).

The nonlinear model is deduced from the Euler-

Lagrange equations

d

dt

(

∂T

∂ q̇̇q̇q

)T

−

(

∂T

∂qqq

)T

+

(

∂V

∂qqq

)T

=QQQ, (2)

with the generalized forces QQQ, the time derivative q̇̇q̇q =
(ẏ f , ẏr, ψ̇ f , ψ̇r, ω f r, ω f l , ωrr, ωrl)

T of the generalized

coordinates qqq and the kinetic and potential energy T and

V , respectively. With the masses of the frame M and of

an axle bridge including two wheels m, the moments of

inertia of an axle bridge with respect to yawing B and

of a wheel with respect to rolling C the kinetic energy T

results in

T =
M

8

(

(

∑ ẏi

)2
+
(

∑ żi

)2
)

+
m

2

(

∑ ẏ2
i +∑ ż2

i

)

+

+
B

2

(

∑ ψ̇2
i +∑ α̇2

i

)

+
C

2

(

∑ω2
i j

)

. (3)

In addition, the potential energy V is determined by two

effects. The first is the potential Vs of the rotational

spring with the stiffness k at the connection from the

Session 5B: Mechanical Systems

DOI
10.3384/ecp15118441

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

443

frame to the wheel carrier and the second is the eleva-

tion energy Ve

V =Vs +Ve =
k

2
ψ2

f +
k

2
ψ2

r +(2m+M)g zF . (4)

In a next step, the velocities and displacements,

needed for the calculation of the kinetic and potential

energy, are determined. Since yi, ψi and ωi j are gen-

eralized coordinates or time derivatives thereof, only αi

and zi have to be substituted for qqq and q̇̇q̇q, respectively.

The kinematic relation between the rotation of the axle

bridges about the x-axis and their translation along the

y-axis is stated as (Jaschinski, 1990)

αi ≈ tanαi =−
d

f
2
− r0d

yi =−Γyi. (5)

The vertical movements zi are on the one hand character-

ized through the yaw motions of the axle bridges and on

the other hand through their lateral displacements. These

influences can be treated separately (Jaschinski, 1990),

so that the vertical displacements of the axle bridges are

zi = zi(ψi)+ zi (αi) =
d f

2

(

1

cosψi

−1

)

+ yi tanαi. (6)

The calculation of the generalized forces will be de-

scribed through the right wheel of the leading axle bridge

but can easily be transferred to the other wheels. The cor-

relation between QQQ f r, the absolute and angular velocities

of the wheel at the contact point and the creep force fff f r

is

QQQ f r =

(

∂vvv f r

∂ q̇̇q̇q

)T

fff f r +

(

∂ΩΩΩ f r

∂ q̇̇q̇q

)T





0

τ f

0





. (7)

Thus, the required velocities are deduced as (Jaschinski,

1990)

vvv f r =AAAψI





0

ẏ f

ż f



+





ψΩΩΩ f r ×





x f r

y f r

r f r









, (8)

with ψΩΩΩ f r =





0

ω f r

0



+





cosψ f α̇ f

−sinψ f α̇ f

ψ̇ f





.

The actual rolling radius r f r is determined through the

distance y f r from the axle bridge center to the contact

point along the body fixed y-axis

r f r = r̄−d · y f r, with r̄ = r0 +
d f

2
. (9)

Furthermore, y f r as well as the contact point shift x f r

are dependent on the yaw angle and y f r is additionally

dependent on the lateral displacement of the particular

axle bridge.

At last, the creep force is calculated using (1), with

the contact ellipse semi-axes a and b and the force FN, f r

normal to the contact patch (Popp and Schiehlen, 2010)

√

ab f r =
3

√

3
FN, f r(1−κ)Eg

2π(A+D)G
√

gν
. (10)

A and D are geometrical parameters determined by the

curvature of the contacting bodies in the vicinity of the

contact patch and therefore they vary with the yawing

and the lateral displacement of the axle bridges. Never-

theless, A and D as well as the associated, dimensionless

parameters Eg and gν are set to a fixed value. Finally, the

slip and spin of the nonlinear running gear model is





sx, f r

sy, f r

φz, f r



=
1

vR





rvx, f r + vR cosψ f

rvy, f r − vR sinψ f

rΩz, f r





. (11)

3.3 Linear analytical Model

On the basis of the model described in the previous sec-

tion a linear analytical model in the form

TTTẋ̇ẋx =BBBuuu+(AAA1 +AAA2)xxx (12)

is generated, with xxx = (yi, ψi, ẏi, ψ̇i, ∆ωi j)
T

and uuu =
(

τ f , τr

)T
. To receive the linear state space representa-

tion, ∆ωi j = ωi j −ω0 is substituted for ωi j (Goodall and

Hong, 2000), with ω0 = − vR
r0

. Though the system gives

no direct information about the angular wheel velocities,

the accurately measurable velocity vR allows to recalcu-

late ωi j.

The linearized equations of motion are presented in

equation (13) and are discussed in the following. Due to

the symmetry of the running gear the dynamics of the

leading and the trailing axle bridge are determined in

the same way. First of all, the differential equations of

the lateral displacement show a coupling of the two axle

bridges. In the scaled environment this mutual influence

is quite small, since the mass of the axle bridge and the

connected wheels m is more than two times larger than

the mass of the frame M. Regarding a 1:1 railway vehi-

cle the mass ratio is vice versa and the coupling between

front and rear axle bridge is more distinctive.

The part of the generalized forces referring to the

torque τi constitutes the input matrix BBB. The next term is

the linearization of the derivative of the potential energy

and represents the matrix AAA1. This vector shows clearly

the two components of V , namely the elevation energy

and the spring potential. In addition, the two influences

on the elevation energy generated by the yaw and lateral

motion, respectively, can be seen.

In terms of the linearization, the limitation of the creep

forces at higher slip values illustrated in Figure 4 is re-

pealed in this model. Nevertheless, the gap between the

nonlinear and the linear creep force calculation can be

Different Models of a Scaled Experimental Running Gear for the DLR RailwayDynamics Library

444 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118441

























(

M
4
+m+BΓ2

)

ÿ f +
M
4

ÿr
M
4

ÿ f +
(

M
4
+m+BΓ2

)

ÿr

Bψ̈ f

Bψ̈r

C∆ω̇ f r

C∆ω̇ f l

C∆ω̇rr

C∆ω̇rl

























=























0

0

0

0

τ f

−τ f

τr

−τr























+



























(2m+M)gΓy f

(2m+M)gΓyr

−
[

(2m+M) gd f
4

+ k
]

ψ f

−
[

(2m+M) gd f
4

+ k
]

ψr

0

0

0

0



























+

+









































2c̄22η
(

ψ f −
ζ
vR

ẏ f

)

− 4c̄23d
f r0

(

η +Γ
f d
2

)

y f +
c̄23η

vR

[

2ψ̇ f +d
(

∆ω f r −∆ω f l

)]

2c̄22η
(

ψr −
ζ
vR

ẏr

)

− 4c̄23d
f r0

(

η +Γ
f d
2

)

yr +
c̄23η

vR
[2ψ̇r +d (∆ωrr −∆ωrl)]

−c̄11

[

f dζ
r0

y f +
f r0
2vR

(

f
r0

ψ̇ f −∆ω f r +∆ω f l

)]

− c̄23 f d
(

1
r0+rR

− d2

r0

)

ψ f

−c̄11

[

f dζ
r0

yr +
f r0
2vR

(

f
r0

ψ̇r −∆ωrr +∆ωrl

)]

− c̄23 f d
(

1
r0+rR

− d2

r0

)

ψr

−c̄11r0

[

− dζ
r0

y f −
f

2vR
ψ̇ f +

r0
vR

∆ω f r

]

− c̄23 f d2

2(r0+rR)
ψ f

−c̄11r0

[

dζ
r0

y f +
f

2vR
ψ̇ f +

r0
vR

∆ω f l

]

+ c̄23 f d2

2(r0+rR)
ψ f

−c̄11r0

[

− dζ
r0

yr −
f

2vR
ψ̇r +

r0
vR

∆ωrr

]

− c̄23 f d2

2(r0+rR)
ψr

−c̄11r0

[

dζ
r0

yr +
f

2vR
ψ̇r +

r0
vR

∆ωrl

]

+ c̄23 f d2

2(r0+rR)
ψr









































. (13)

kept within tolerable limits with the help of the actua-

tor saturation. Hence, the generalized forces Q fffQ fffQ fff caused

by the creep forces determine the matrix AAA2. The vec-

tor in the second line of equation (13) describes this

part of AAA, using the dimensionless, geometrical param-

eters ζ = 1 + Γr0 and η = 1 + Γr̄ and the extended

Kalker coefficients c̄11 = abGC11, c̄22 = abGC22 and

c̄23 = (ab)
3
2 GC23. The parameters c̄11 and c̄22 have the

dimension of a force and c̄23 the dimension of a torque.

Considering the coefficients related to ∆ωi j it becomes

obvious that the model is just linear in case of a con-

stant roller velocity vR. Furthermore, the linear model is

only valid for this specific vR, since the system behav-

ior strongly depends on this parameter, what will be sub-

stantiated in the following section. Another aspect is that

for a real configuration with longitudinal rails instead of

rollers, the terms reciprocally proportional to rR vanish,

because rR → ∞. Substituting common values for the pa-

rameters, it turns out that the influence of the spin is quite

small in relation to the slip.

4 Results

After describing the three different models, they are

compared in this section by the illustration of some sub-

stantial simulation results. At first, some analysis results

of the linear model are presented to get more insight in

the running gear dynamics. Figure 5 shows the eigen-

values of the linear model for vR ∈
[

0.1 m
s

;50 m
s

]

with

steps of 0.1 m
s

. Considering the similarity laws stated

in (Jaschinski, 1990) this velocity range corresponds to

Real axis
-1000 -900 -800 -700 -600 -500 -400 -300 -200 -100 0

Im
a
g
in

a
ry

 a
x
is

-20

-10

0

10

20

5

10

15

20

25

30

35

40

45

50

v
R

 [
m

/s
]

Figure 5. Eigenvalues of the linear model with varying roller

speed vR.

[

1 km
h

;400 km
h

]

in a 1:1 configuration. According to equa-

tion (13), there are four first order terms, namely the

equations describing the angular wheel motions, and four

second order terms, namely the lateral and the yaw mo-

tions. Due to the symmetry of the running gear the eigen-

values of the front and the rear axle bridge occur in pairs.

One of this eigenvalue pairs is at low velocities approxi-

mately −1.3 ·105, since the coefficients reciprocally pro-

portional to vR are very large in this case. In addition, it

can be seen that with growing wheel velocity the real

parts of all eigenvalues are moving in the positive di-

rection, i. e. their dynamic behavior becomes slower.

The detailed view of the area around the imaginary axis

in Figure 6 shows that only two of the six eigenvalue

pairs have got an imaginary part and consequently de-

scribe an oscillating behavior. This oscillating behav-

ior called hunting motion is characteristic for railway

vehicles with a conical or any nonlinear wheel profile.

Session 5B: Mechanical Systems

DOI
10.3384/ecp15118441

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

445

Real axis
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Im
a
g
in

a
ry

 a
x
is

0

2

4

6

8

10

5

10

15

20

25

30

35

40

45

50

v
R

 [
m

/s
]

Figure 6. Unstable eigenvalues of the linear model with vary-

ing roller speed vR.

Considering a conventional wheelset, the angular wheel

velocities of the right and the left wheel are the same

and in this way a self centering behavior occurs (Wick-

ens, 2003). However, there is a critical velocity, that de-

scribes the maximum speed from which on the system

is unstable. In (Dellmann and Abdelfattah, 2012) it was

described that this hunting motion and the critical speed

exist also for IRWs, what can be seen in Figure 6. In con-

trast to (Dellmann and Abdelfattah, 2012) the setup dif-

fers to some extent, e.g. the implementation of the yaw

stiffness between the frame and the axle bridge. Because

of this structural peculiarity, the eigenvalues describing

the hunting motion possess already an imaginary part of

about 8.4 at very low speeds. Another feature causing an

instability is the potential energy, since a yaw motion of

conical wheels comes along with a reduction of poten-

tial energy. This instability is characterized by the real

eigenvalue in Figure 6.

In a next step, the transfer behavior from the input

u = τ f to the output y = y f of the real running gear is

compared to the MBS model in Figure 7. The particular

curves are created using a chirp signal as input (Saupe

and Knoblach, 2012) and each is showing a nearly con-

stant transfer behavior for frequencies of up to 1 Hz.

The green curve represents the running gear configura-

tion without the redesign enhancements described in sec-

tion 2. It shows an analog trend in relation to the mea-

sured roller rig data but has got a constant offset. The

same resemblance characterizes the model that takes the

newly constructed leaf spring guidance into account and

Frequency [Hz]

10
-1

10
0

|G
(f

k
)|

10
-1

10
0

roller rig
old configuration
rotational stiffness
drive unit identification
wheel rail contact

Figure 7. Measured and simulated transfer behavior of the

running gear.

Figure 8. Desired and actual lateral displacement of the three

simulation models at vR = 2 m
s

.

the model with identified drive units in addition. Fi-

nally, the MBS model that additionally has got adapted

wheel/rail contact parameters, e. g. coefficient of fric-

tion, conforms the hardware running gear very well in

the area up to 3 Hz. This adjustment shifts the drop, that

can be seen for the other designs between 4 and 6 Hz,

to higher frequencies. Nevertheless, another parameteri-

dentification will be done to further match the dynamic

behavior of the simulation model also in the frequency

range above 3 Hz.

Since the detailed multibody model is validated with

respect to the hardware running gear, the analytical mod-

els are compared to this model in the following two sce-

narios. Both simulations comprise a step of the desired

lateral position so that the actuator torque reaches its lim-

itation. Considering the applied roller speed the run-

ning gear with IRWs is an unstable system, so in con-

sequence Figure 8 presents the results of the controlled

running gear at a low velocity vR = 2 m
s

. The lateral dis-

placements of the three models in Figure 8 show a very

good match and the corresponding results of the control

torque verify the conformity of the three models. This

means that congruent positions without just as congruent

torques would not approve the model conformity at all.

The control torques of the linear and the nonlinear model

are nearly identical, so the nonlinearities in the running

gear dynamics might be insignificant at least for the se-

lected level of complexity in section 3.2.

Furthermore, a test scenario illustrated in Figure 9 is

recorded at a three times higher wheel velocity than in

Figure 8. These simulation results show approximately

the same distinguished conformity of the three models,

though a slight deterioration at t = 0.2 s can be noticed

Different Models of a Scaled Experimental Running Gear for the DLR RailwayDynamics Library

446 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118441

Figure 9. Desired and actual lateral displacement of the three

simulation models at vR = 6 m
s

.

because of the higher speed. This might be the outcome

of the neglected DOFs, what is tolerated for the sake of a

less complex model. Nevertheless, the results of the lin-

ear and the nonlinear model are as identical as in the low

speed simulation affirming the validity of the lineariza-

tion also for higher wheel velocities.

5 Conclusions and Outlook

Based on the scaled 1:5 running gear on the DLR roller

rig three simulation models have been established. First

of all, a detailed multibody model has been described

that has been used and validated in former works at

DLR. Furthermore, a nonlinear analytical model with

a reduced complexity has been deduced in detail. The

third implemented and tested running gear model is a

linearization of the nonlinear analytical model. The com-

parison of the results of the three models approves their

validity and enables their use in the development of ad-

vanced control and observer concepts. In this context,

the analytical models will be inverted and used in a feed-

forward control concept (Heckmann et al., 2015). In ad-

dition, the excellent conformity of the linear and the non-

linear models facilitates the application of well-known

linear analysis and control synthesis methods. Therefore,

a plot of the eigenvalues has been illustrated as one of the

results of the linear analysis of the running gear system

and some characteristics of the dynamics of a railway

vehicle with IRWs have been described.

Another aspect that can be scrutinized using the gener-

ated simulation models is a new sensor concept, since the

laser sensors used for the measurement of yi would not

accurately work in a real application due to dirt. Regard-

ing this, force and torques sensors are already installed at

the wheel mounting and shall after some further investi-

gations replace the laser sensors. Finally, one part of the

future work is to integrate the analytical models into the

DLR RailwayDynamics Library to provide an environ-

ment for an advanced control development for railway

systems.

Acknowledgements

This work was supported by BMBF (BMBF
Förderkennzeichen: 01IS12022G), the German Federal
Ministry of the Education and Research, within the
ITEA 2 project Modrio.

References

H. Bremer. Dynamik und Regelung mechanischer Systeme.

Teubner–Verlag, Stuttgart, 1988.

T. Dellmann and B. Abdelfattah. Comparison of dynamic

properties of a conventional wheelset and an independently

rotating wheelset - a theoretical contribution to an almost

forgotten technology. ZEVrail, 136(10):380–390, 2012.

R. Goodall and L. Hong. Solid axle and independently-rotating

railway wheelsets - a control engineering assessment of sta-

bility. Vehicle System Dynamics, 33(1):57–67, 2000.

A. Heckmann, A. Keck, I. Kaiser, and B. Kurzeck. The foun-

dation of the DLR railwaydynamics library: the wheel-rail-

contact. In 10th International Modelica Conference, 2014.

A. Heckmann, C. Schwarz, T. Bünte, A. Keck, and J. Brem-

beck. Control development for the scaled experimental rail-

way running gear of DLR. Vehicle System Dynamics, 2015.

to appear.

A. Jaschinski. On the application of similarity laws to a scaled

railway bogie model. Forschungsbericht DLR-FB 90-06,

DLR, Institut für Dynamik der Flugsysteme, Oberpfaffen-

hofen, Germany, 1990.

J. Kalker. Three-dimensional elastic bodies in rolling contact,

volume 2. Springer, 1990.

K. Knothe and S. Stichel. Schienenfahrzeugdynamik. Springer,

Berlin, 2003.

O. Polach. A fast wheel-rail forces calculation computer code.

Vehicle System Dynamics, 33:728–739, 2000.

K. Popp and W. Schiehlen. Ground Vehicle Dynamics.

Springer, 2010.

F. Saupe and A. Knoblach. Design of excitation signals for

the closed loop identification of industrial robots. In IEEE

International Conference on Control Applications, 2012.

A. H. Wickens. Fundamentals of Rail Vehicle Dynamics:

Guidance and Stability. Swets & Zeitlinger, Lisse, NL,

2003.

J. Winter, E. Mittelbach, and J. Schykowski, editors. RTR

Special - Next Generation Train. Eurailpress, DVV Media

Group, 2011.

Session 5B: Mechanical Systems

DOI
10.3384/ecp15118441

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

447

448 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Efficient Compilation of Large Scale Dynamical Systems

Federico Bergero1,2 Mariano Botta2 Esteban Campostrini2 Ernesto Kofman1,2

1CIFASIS, CONICET, Argentina {bergero,kofman}@cifasis-conicet.gov.ar
2FCEIA, UNR, Argentina {marianoabotta,lesteban22}@gmail.com

Abstract

In this work, we present a novel methodology to ef-

ficiently compile large scale dynamical systems de-

scribed as Modelica models, and its implementation in

a prototype Modelica Compiler called ModelicaCC. The

methodology allows to perform the different stages of

the compilation process without expanding the content

of repetitive structures so the resources (CPU time and

memory) used by the compiler result independent on the

model size. Besides introducing the methodology with

their algorithms and the implementation in the Model-

icaCC compiler, we analyze their efficiency comparing

its performance with that of OpenModelica in different

large scale models.

Keywords: Modelica Compilers, Large Scale Models,

Tarjan Algorithm, Model Flattening

1 Introduction

Modelica (Fritzson, 2004) is an object-oriented,

equation-based language for representing continuous

and hybrid models. Modelica provides a standardized

way to model complex physical systems containing,

e.g., mechanical, electrical, electronic, hydraulic,

thermal, control, electric power, or process-oriented

subcomponents.

The simulation of these models requires some trans-

formations. First, classes and connections amongst them

are removed obtaining a flat model. A flat model yields

a Differential Algebraic Equation (DAE) system which

must be then sorted and converted into an Ordinary

Differential Equation (ODE) system. From the ODE

representation, C code is generated and compiled to-

gether with the ODE numerical integration method. This

pipeline is performed by the Modelica compilers.

Frequently, Engineers and researchers of different do-

mains need to simulate large scale models, which are

usually the result of connecting together several identical

components in repetitive structures. Examples of these

models appear in Smart Grids, spatial discretization of

Partial Differential Equations (PDE), etc. Although the

Modelica language do allow to represent these large

scale models in a convenient way, Modelica compilers

fail to complete the compilation pipeline when the size

of the models grows beyond a few thousand of compo-

nents. Thus, efficient handling of large scale models is

an important topic in the modeling and simulation com-

munity (Cellier et al., 2013).

In this article we present novel algorithms to ad-

dress the compilation of large scale Modelica models.

The idea behind them is to exploit the repetitive na-

ture of large scale models and perform all the mentioned

transformations (flattening, sorting and code generation)

without expanding the model arrays. Also, as outlined in

(Stavaker, 2011), preserving the iterative equations un-

til the code generation phase enables the use of parallel

simulation techniques that would otherwise be useless.

We present also prototype implementations for these

algorithms and compare their performance against Open-

Modelica compiler.

The work is organized as follows: Section 2 provides

the main concepts used along the rest of the article. Then,

Sections 3 and 4 introduce the novel algorithms devel-

oped for the flattening and causalization stages. Af-

ter that, Section 5 presents the ModelicaCC compiler,

describing its architecture and components. Finally, a

comparative study of the Compiler performance on large

scale systems is performed in Section 6 and the conclu-

sions are presented in Section 7.

2 Background

In this section we first describe the process for simulation

of Modelica models and we outline the problems faced

when compiling large scale systems. Later we present

the tool we use for generating C code and simulating,

and finally we review some works related to this article.

2.1 Modelica Compilers

As mentioned earlier, Modelica models require differ-

ent transformations before being simulated. First, a flat-

tening stage is responsible for converting the Modelica

model into an equivalent model without classes (inher-

itance and composition), converting also the connect

equations into equalities. After this stage, the flat model

only contains variables of basic types (real, integer,

DOI
10.3384/ecp15118449

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

449

boolean, etc) and equations (and algorithms) represent-

ing a hybrid DAE system.

This DAE system is then converted into an ODE sys-

tem so it can be simulated by ODE solvers (Runge-Kutta,

DASSL, DOPRI, etc). This conversion is divided in two

sub-steps. First, if the problem has high index, an in-

dex reduction algorithm (such as Pantelides (Pantelides,

1988)) is applied. Then, the equations are horizontally

and vertically sorted by a matching algorithm (such as

Tarjan (Tarjan, 1972)) and the ODE system is obtained.

Then, an optimization stage is applied removing triv-

ial equations (like a = b). Finally, C language code

is generated and compiled together with the numerical

solver obtaining an executable program that simulates

the model.

Figure 1 shows a typical pipeline found on most Mod-

elica tools, like OpenModelica (Fritzson et al., 2005),

Dymola (Brück et al., 2002) and others.

Parsing Flattening Index Reduction Sorting

Optimization Code Generation Simulation

Figure 1. Pipeline of compilation

2.2 Modelica and Large Scale Models

With the availability of more powerful simulation plat-

forms, models that in the past were dozen or hundreds of

variable are increasing their size to thousands or millions

of variables (Cellier et al., 2013). This imposes some

new challenges on the modeling and simulation commu-

nity. First we must have ways of modeling these huge

systems. Modelica seems to be a good choice for that.

By their nature, large scale models are rarely developed

by extension, i.e. they are not handwritten. In general

they possess some repetitive structure that makes them

easier to be described by comprehension.

Modelica is well fitted for this kind of description. It

allows the modeler to replicate components and connect

them in a regular fashion. Thus a large scale model can

be written with a short Modelica description. This is usu-

ally done using the for iterative equation for behavior

description and array variables for states.

However, problems appear in the different stages of

the compilation pipeline. When flattening large scale

models, most Modelica tools perform what is known as

loop unrolling, i.e. for equations are replaced by their

equivalent scalar equations. In this stage array variables

are also expanded into several scalar variables.

Consider for instance the lumped model of a LC

Transmission Line depicted in Fig.2. This model can be

described by the Modelica code of Listing 1.

Figure 2. LC Line model

Listing 1. Hierarchical Modelica model of the LC Line exam-

ple

model l c l i n e

import Analog = M o d e l i c a . E l e c t r i c a l . A n a l o g ;

model l c s e c t i o n

A n a l o g . I n t e r f a c e s . P i n p in2 ;

A n a l o g . B a s i c . I n d u c t o r i ;

A n a l o g . I n t e r f a c e s . P i n p i n ;

A n a l o g . I n t e r f a c e s . P i n p in1 ;

A n a l o g . B a s i c . C a p a c i t o r c ;

eq u at ion

con n ect (c .p , p in1) ;

con n ect (pin , i . p) ;

con n ect (i . n , c . p) ;

con n ect (c .n , p in2) ;

end l c s e c t i o n ;

A n a l o g . B a s i c . R e s i s t o r r ;

A n a l o g . B a s i c . G r o u n d g ;

c o n s t a n t I n t e g e r N = 100;

l c s e c t i o n [N] l c ;

A n a l o g . S o u r c e s . C o n s t a n t V o l t a g e s ;

eq u at ion

con n ect (r . n , g . p) ;

con n ect (s . n , g . p) ;

con n ect (s . p , l c [1] . p i n) ;

con n ect (r . p , l c [N] . p i n 1) ;

con n ect (g.p , l c [N] . p i n 2) ;

f o r i in 1 :N − 1 loop

con n ect (g.p , l c [i] . p i n 2) ;

con n ect (l c [i] . p i n 1 , l c [i + 1] . p i n) ;

end f o r ;

end l c l i n e ;

If we ask OpenModelica to flatten this model, the fol-

lowing code is obtained:

Listing 2. Flat model without arrays

c l a s s l c l i n e

c o n s t a n t I n t e g e r S i z e = 100;

Real l c [1] . c . v ; Real l c [1] . c . i ;

parameter Real l c [1] . c . C ;

. . .

Real l c [100] . c . v ; Real l c [100] . c . i ;

parameter Real l c [100] . c . C ;

. . .

eq u at ion

l c [1] . c . i = l c [1] . c . C ∗ der (l c [1] . c . v) ;

. . .

l c [100] . c . i = l c [100] . c . C ∗ der (l c [100] . c . v) ;

. . .

end l c l i n e ;

Efficient Compilation of Large Scale Dynamical Systems

450 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118449

In this code, we can see several equations like

lc[1].c.i=lc[1].c.C*der(lc[1].c.v),

lc[2].c.i=lc[2].c.C*der(lc[2].c.v), etc.

coming from the Capacitor class inside each instance

of the lcsection model.

That way, the cost of flattening this model is (at least)

linear w.r.t. the Size parameter. Moreover, this ex-

panded version will impose a huge burden on the suc-

cessive stages of the compilation process as they must

now deal with a large description.

In this work we argue that for efficient compilation of

large scale models, all the steps involved in the process

must be performed without expanding the model at all.

Therefore in each step we deal with a large scale model

but described in a short Modelica code.

2.3 µ–Modelica and QSS Stand–Alone

Solver

The QSS Stand–Alone Solver (Fernández and Kofman,

2014) is an open source tool for continuous system sim-

ulation. The solver has a complete implementation of the

QSS methods (Cellier and Kofman, 2006) and it includes

also DOPRI and DASSL (Petzold, 1983) solvers.

The models must be described as a hybrid ODE sys-

tem using a subset of the Modelica language called

µ–Modelica. µ–Modelica contains the basic Modelica

statements that allow to represent hybrid ODE systems

as they are used by numerical ODE solvers, but using

Modelica syntax instead of C or FORTRAN language.

That way, the µ–Modelica code is easily translated by

the QSS solver into C code and compiled together with

the numerical integration method of choice.

A remarkable feature of this tool is that it does not un-

roll for loops in the generated C code. This has two up-

sides, first the computational cost of the translation does

not depend on the size of the loop (hence the size of the

model), second this also holds for the compilation of the

generated C code.

ModelicaCC compiler uses the QSS solver for the last

stages of the compilation process (C code generation and

simulation). Thus, the goal of the previous stages is to

translate a Modelica model into µ–Modelica.

2.4 Related Work

Some work has been done regarding the compila-

tion of large scale Modelica models. Studies have

been developed testing how compilers work on large

scale models recognizing their limitations on that

area (Frenkel et al., 2011; Sezginer, 2014-2015; Casella,

2015). In (Jens Frenkel, 2012) particularly, the authors

study different causalization (matching) algorithms ap-

plied to large scale models and conclude that the PF+ al-

gorithm (by Duff) is the best choice as it achieves linear

performance on the tested cases.

In (Zimmer, 2009) Zimmer also presents the problem

compiling large scale models of current Modelica com-

pilers. There the author proposes a solution based on

the preservation of module structure during the compi-

lation phase. This is achieved through partial flattening

and causalization.

More closely related work was presented in

(Arzt et al., 2014), where the authors explore the

idea of finding repetitive structure on the incidence

graph to efficiently apply Pantelides index reduction

algorithm without dealing with flattening nor causal-

ization. Therefore both works are complementary. The

present work relates to this article in the sense that we

also try to exploit the repetitive structures, but in our

case, we develop new algorithms (in Section 3 and 4) to

be applied on the an extended graph.

A first attempt to preserve array variables and iter-

ative equations was presented in (Stavaker et al., 2010;

Stavaker, 2011). There, the authors modified the flat-

tening and causalization algorithm of OpenModelica to

allow slice variables (such as a[1:10]) to be treated as

a single variable. The modified algorithm does not cor-

rectly flattens hierarchical models and does not handle

irregular definition of variables. As we will see, our pro-

posal deals with more general and realistic cases (both

while flattening and sorting).

3 Flattening Algorithm

This section presents an algorithm to efficiently flatten

large scale models, without expanding equations and ar-

ray variables. This stage is divided in two steps. The

first one actually flattens the model and the second one

removes the connect statements by the corresponding

equations.

3.1 Class Flattening Stage

This stage of the flattening algorithm deals with class

flattening leaving connections (and connectors) un-

touched. The algorithm follows the principles of most

Modelica compilers, but with a special treatment for ar-

rays of variables.

For example, when flattening the model

shown in Listing 1 most Modelica tools will

expand the array lc.c.v into Size vari-

ables and generate Size equations of the form

lc[1].c.i=lc[1].c.C*der(lc[1].c.v).

While the result is correct, it will produce a large

description for the successive stages of the compilation

pipeline.

What we propose is to avoid expanding the arrays to

generate the flat model. In the transmission line example

of Listing 1, this can be done as follows:

• First flatten model lcsection by flattening their

components Capacitor and Inductor. This

Session 5C: Modelica Language & Compiler Implementation 2

DOI
10.3384/ecp15118449

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

451

will result in a model with basic type variables.

• For flattening the array lcsection lc[Size]

we proceed as follows:

– For each variable in the flat model

lcsection we define an array of size

Size, prefixing the name of that variable

with lc_.

– We change the modifications (if any) on the

new array variable.

– We wrap each equation in a for loop (with

range i in [1:Size]) adding the [i] in-

dex expression on each use of the above de-

fined variables. The same is done for algo-

rithmic sections.

• Now we are ready to remove the lc instance of

lcline.

The result of applying these rules is shown in Listing

3.

Listing 3. Flat model without expanding arrays

model l c l i n e

c o n s t a n t I n t e g e r S i z e = 100;

parameter Real l c_c_C [S i z e] ;

Real l c _ c _ v [S i z e] ;

Real l c _ c _ i [S i z e] ;

. . .

eq u at ion

. . .

f o r i in 1 : S i z e loop

l c _ c _ i [i] = l c_c_C [i] ∗der (l c _ c _ v [i]) ;

end f o r ;

end l c l i n e ;

We see that the length of this flat version is indepen-

dent of the Size parameter.

The idea sketched in this example can be applied to

most arrays of classes. However, if the array has a non-

regular definition (due to the usage of a type redeclare

modification in some components of the array, for in-

stance), then a special procedure should be followed.

Anyway, those cases are beyond the scope of this work

since most practical large scale models do show regular-

ity in their class definitions.

3.2 Connection Replacement Stage

After the class flattening stage, we still have to remove

connectors and convert the connect operators into

equations. This process cannot be done locally (at the

component level) since connections are inter–component

operations. Thus, we have no choice but to solve this

problem looking at the complete model.

A connect equation binds the variables of two connec-

tors instances. Modelica distinguishes between two kind

of variables inside connectors:

Potential variables which are equalized for connected

connectors.

Flow variables which are zero-summed for connected

connectors and zero-equalized for unconnected

ones.

When replacing a connect operator, the potential

variables are easily handled (they are converted to an

equation like a=b). However, flow variables require a

special treatment since more than two connectors can be

connected together resulting in a zero-sum of multiple

terms. To generate these equations we must compute the

set of all connectors that share a connection.

We can associate this issue to a graph theory prob-

lem as follows. First we build an undirected bipartite

graph with one node for each connect operator and

one node for each connector instance. Then, for each

connect node, we add two edges linking it with the corre-

sponding connector nodes. Then, computing the connec-

tion sets is analogous to finding the connected compo-

nents of the graph. Several search algorithms, like Depth

First Search (DFS) (Hopcroft and Tarjan, 1973), achieve

this goal with linear complexity.

Connections on Large Scale Models After the class

flattening stage, arrays are preserved appearing inside it-

erative equations arising from scalar equations wrapped

in for loops. As mentioned above, the connect equa-

tions and connector variables are still part of the model

and they should be replaced by their equivalent equa-

tions.

If these connections and connectors belong to repli-

cated models, our purpose is to replace them by the cor-

responding equations preserving the arrays and the for

loops. To this end, we propose to extend the graph theory

procedure explained above representing arrays of con-

nectors and connections by single nodes (with some ad-

ditional information) in order to find the connected com-

ponents on this vectorized graph.

3.2.1 Vectorized Connection Graph

We build the vectorized connection graph as follows

• For each connect operator we create an e node.

Each operator inside a for loop counts as a single

node.

• For each connector, we add a c node. An array of

connectors also counts as a single node.

• We add two edges for each connect operator link-

ing it with the two connectors involved. Each edge

will have the range P ⊂ N of use of each connector

(in the case it corresponds to an array) as a prop-

erty.

Efficient Compilation of Large Scale Dynamical Systems

452 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118449

3.2.2 Vectorized Connection Algorithm

Now we must find the connected components in the vec-

torized graph. A modified DFS algorithm is proposed for

that goal. The idea is to gather multiple connected com-

ponents while traversing the graph using the information

available on the edge properties.

Before presenting the algorithm, we provide the fol-

lowing definitions:

Definition 1 Given a vectorized graph G and a range

P0 ⊆ N, we define G (P0) as the subgraph resulting con-

taining all the nodes of G and only the edges with range

P such that P0 ⊆ P.

Definition 2 Given a vectorized graph G , we say that a

subset C of its nodes is connected in the range P0 if it is

connected in the classic sense on graph G (P0).

Definition 3 Given a vectorized graph G , a node c, and

a range P0, we say that the set of nodes C is a con-

nected component including c in the range P0 if it is a

connected component including c in the classic sense on

graph G (P0). We shall denote it C =CC(G ,c,P0).

Definition 4 Given a range P0 and a node c of a vector-

ized graph G , we say that P0 is a compact range of c if

CC(G ,c,P0) =CC(G ,c,P) for all P ⊆ P0.

Notice that if P0 is a compact range of c, then the con-

nected component (cc) is the same for each subrange of

P0. This means that all the variables involved in the cc

have the same connection structure in the range P0. Thus,

they can be treated in the same way.

Thus, given a vectorized graph, finding a large com-

pact ranges allows to gather multiple components on a

single step. The following algorithm performs this step.

Given a node c, we initially take P0 as the range of one

of its edges, and then:

1. Remove all the edges whose range P has empty in-

tersection with P0.

2. In the resulting graph, find the classic connected

component C ignoring the edge ranges.

3. If two nodes of the connected component C contain

an edge with range P such that P∩P0 6= P0 then P0

is not a compact range. Thus, take P′
0 = P∩P0 and

go back to step 1.

4. Otherwise P0 is a compact range including node c of

the vectorized graph. Moreover, C = CC(G ,c,P0)
is the connected component including c in the range

P0.

Finally, the previous algorithm can be iteratively used

to find all the connected components on compact ranges

on a vectorized graph G as follows.

1. Take a node c with at least one edge with non empty

range. If none is found, all the connected compo-

nents have been already computed.

2. Compute a compact range P0 and the corresponding

connected component C =CC(G ,c,P0) for node c

using the previous algorithm.

3. Add C and P0 as a new connected component to the

result.

4. Remove the range P0 from all the edges in C and

go back to step 1.

This algorithm provides a set of connected compo-

nents with the corresponding ranges. For instance, in the

model of Listing 1 one of the connected components will

be:

{g.p, lc[1 : Size].pin2,r.n,s.n} (1)

The presented algorithm is not linear as the original

DFS since it visits many times the same node. Anyway,

the fact that we have only one node per array and one

node for each iterative equation makes this algorithm sig-

nificantly faster than its scalar counterpart in large scale

models. Additionally, it allows to generate equations

preserving the arrays and for loop equations.

For simplicity and space reasons, we only introduced

the basic algorithm which does not cover all cases.

Scalar variables inside loops have a special treatment, so

that the edges have their ranges covering the whole set N.

Also, connections binding arrays with different ranges

also need a special treatment which involves translating

the ranges while traversing the vectorized graph.

Equation Generation Once we have computed the

connected components we must generate their equations.

Given a connected component we do:

• For each potential variable in the connector we add

an equality equation binding their value. In the case

of ranged connectors we include a for equation.

• For each flow variable we add a zero-sum equation.

In the case with range connectors we include a sum

term for all the elements involved.

For example, the first connected component of Listing

1 would yield the following equations:

Listing 4. Iteartive equations for solved components

/ / P o t e n t i a l v a r i a b l e s

f o r i in 1 : S i z e

g_p_v = l c _ p i n 2 _ v [i] ;

end f o r ;

g_p_v = r_n_v ;

g_p_v = s_n_v ;

/ / Flow v a r i a b l e s

g_p_i + sum (l c _ p i n 2 _ i) + r _ n _ i + s _ n _ i = 0 ;

Session 5C: Modelica Language & Compiler Implementation 2

DOI
10.3384/ecp15118449

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

453

4 Causalization Algorithm

This section presents a novel algorithm to convert a DAE

system into an ODE system specially tailored for large

scale models. This procedure can be also expressed as

a graph theory problem. The idea is to capture the re-

lation between equations and variables as an undirected

bipartite graph and then applying Tarjan’s algorithm to

find the strongly connected components. We will re-

view a simplified version of this algorithm presented in

(Cellier and Kofman, 2006).

4.1 Classical Tarjan’s Algorithm

We start from a flat Modelica model with N equations

and N unknown variables 1.

Graph Creation

• For each equation we add a vertex e to the graph.

• For each unknown variable we add a vertex v to the

graph.

• We add an edge (e ,v) if unknown v is used in equa-

tion e.

We will assume that unknown variables in Modelica

models are of type Real. Parameters, constants and dis-

crete variables are not considered unknown for the con-

tinuous part of the system. Also, assuming the absence

of singularities, variables that appear inside a der opera-

tor are considered state variables which are known (with

the unknown being their derivatives).

Causalization The causalization algorithm proceeds

as follows:

1. Each e vertex of degree 1 (i.e., having only one out-

going edge) can be made causal since that equation

has only one variable. Number the equation with

the lowest available number starting from 1, follow

the edge to its corresponding v node and remove all

edges connected to v. Finally remove vertexes e and

v.

2. Each v vertex of degree 1 can be made causal since

that variable appears in only one equation. Then

number the vertex with the highest available num-

ber starting from N, follow the edge to its corre-

sponding e node and remove all edges connected to

e. Finally remove vertexes e and v.

3. If we have numbered all equations we have fin-

ished. Else go to step 1.

1If the number of equations is different than the number of un-

kwonws the problem cannot be converted to an ODE system.

If a vertex (e or v) with degree 1 is not found, then an

algebraic loop or a higher order singularity might exist,

and a different procedure should be followed.

The space complexity of the algorithm is O(E +V)
(with V number of vertex and E number of edges). The

time complexity is also linear (if care is taken to find

vertexes of degree 1) since each step removes one pair of

vertexes.

When the algorithm finishes, the results is a sorted list

(sorted by the number we assigned during the algorithm)

of pairs (e,v) meaning that variable v must be solved us-

ing that equation e. Finally we solve each variable in

each equation and we obtain a model in an ODE form.

Tarjan on Large Scale Models In order to apply Tar-

jan’s algorithm to a large scale model, we should first

unroll the for equations. This step alone takes a com-

putational cost (time and space) proportional to the num-

ber of equations inside the for loop. Then, building the

bipartite graph requires to create one e vertex for each

unrolled equation and one v vertex for each element in

the array variables (since a[1] and a[2] are different

unknowns) as well as the edges of the graph. Finally, the

cost of applying Tarjan’s algorithm to this graph grows

linearly with the number of vertexes.

In order to avoid this, we propose a modified Tarjan

algorithm that is applied directly on the non-expanded

model. This way, we not only avoid the cost of the ex-

pansion but this also results in applying Tarjan’s algo-

rithm to a much smaller graph and producing a much

shorter ODE system description.

4.2 Vectorized Graph Representation

Here we start with a model with NE (scalar or for) equa-

tions and NV (scalar or array) variables. We will assume

that every for loop has a single equation in its body. If

this is not the case, it can be split into multiple for loops

with only one equation in their body.

Then, we build an augmented bipartite graph where

each edge has two properties: an equation range pe ⊂ N

and an index range pv ⊂N (two sets of integer numbers).

The graph is built as follows:

• We create an e vertex for each equation. If an equa-

tion is inside a for loop, only one node is created.

• We create a v vertex for each variable. Arrays are

treated as a single variable.

• We add an edge (e,v) if unknown v is used in equa-

tion e with their pe, pv properties computed as fol-

lows:

– pe = {1} if the equation is not inside a for

loop.

– Otherwise, pe is the range of the for loop.

Efficient Compilation of Large Scale Dynamical Systems

454 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118449

– pv = {1} if the variable is a scalar.

– Otherwise, pv is the set of indexes of the array

that are used at equation e.

For example the equation

f o r i in 2 : 10 loop

der (a [i]) = b [i−1] ;

end f o r ;

would have two edges, one connecting to array

der(a) with properties pe = 2 : 10, pv = 2 : 10 and

another edge connecting the equation with the array

b with properties pe = 2 : 10, pv = 1 : 9.

If we compare this graph with the one resulting of ex-

panding arrays and loops, we can see that the vectorized

graph collapses all the variable vertexes of the same array

into a single macro-vertex and all the equation vertexes

of a same loop into a single macro-vertex. Also, edges

have been merged so that a multi-edge with pe = [2 : 10]
is equivalent to nine simple edges.

We propose next a Vectorized Tarjan’s Algorithm to

be applied to these augmented graphs.

4.3 Vectorized Tarjan’s Algorithm

A vectorized version of the Tarjan’s algorithm explained

above can be sketched as follows:

1. Each e vertex of degree 1 can be made causal since

those equations have only one variable each. Num-

ber the equation with the lowest available number

starting from 1, follow the edge with properties

p1
e , p1

v to its corresponding v node and remove p1
v

from the index range pv of every outgoing edge

connected to v. Remove edges with empty index

range (pv = {}), remove vertex e, and finally re-

move v if it has no more edges.

2. Each v vertex of degree 1 can be made causal

since those variables are used in only one equa-

tion each. Number the equation with the highest

available number starting from N, follow the edge

with properties pN
e , pN

v to its corresponding e node

and remove pN
e from the equation range pe of every

outgoing edge connected to e. Remove edges with

empty equation range (pe = {}), remove vertex v,

and finally remove e if it has no more edges.

3. If the graph is now empty, we have finished. Other-

wise, go back to step 1.

In rule 2, N is the number of scalar variables we would

have if we expand all arrays. The reason is that there are

cases in which the algorithm above may actually expand

some or even all the arrays.

Simple scalar cases Let us analyze first how this al-

gorithm works for models without arrays and iterative

equations. Here, the vectorized graph will have one e

vertex for each equation and one v for each variable and

all the edges will have pe = pv = {1}. When we make

causal a vertex (e or v) we must follow the correspond-

ing edge and compute the set difference of p1
e or p1

v with

those of all outgoing edges. That difference will always

be the empty set since all edges have the same pe, pv thus

we will always remove all edges. Therefore, the Vector-

ized Tarjan’s Algorithm fails back to the classical algo-

rithm for simple scalar models.

Vectorized cases Let us see what happens on models

with arrays and iterative equations on the two rules we

have.

In rule 1, we make causal an e vertex using an edge

with pv = {i1, i2, . . . , im}. That multi-edge represents m

simple edges meaning that equation e involves that set

of indexes of the array v associated with the v node.

When we causalize e, we are making causal variables

v[i1], v[i2], ... in a single step. Once those

indexes are causalized, they become known variables to

the remaining equations and we remove them from the

index ranges pv of the remaining outgoing edges of v.

The same analysis can be performed regarding rule 2.

Non Covered Cases The Vectorized Tarjan’s Algo-

rithm can fail to find a vertex with degree 1. The reasons

here are the same as in the classical Tarjan’s algorithm,

either the model is structurally singular or the model has

an algebraic loop. In the present work we do not handle

this type of problems with the Vectorized algorithm. If

this case is found, appropriate algorithms can be applied

(such as Pantelides) on the expanded model.

The algorithm presented can be extended to deal with

certain structures that, without having algebraic loops,

result in graphs where all nodes have degree larger than

1. For the sake of simplicity we have not address this

in the present work, but the algorithm can be easily ex-

tended to cover the case where a node has degree 2 or

higher but there are some indexes (in pe or pv) that are

only used in one outgoing edge.

Anyway, the presented algorithm is still able to sort

many practical models, as we shall illustrate in Section

6.

Complexity and Result Analysis The complexity

analysis in this case is not as simple as in the classical

Tarjan’s. The space complexity is now O(NE +NV) since

the graph has that number of nodes. Here we are assum-

ing that the properties of the edges are stored not by ex-

tension but by comprehension (since they are continuous

range of integers).

Each step causalizes at least one variable (or one el-

ement in the case of arrays), so in the worst case the

Session 5C: Modelica Language & Compiler Implementation 2

DOI
10.3384/ecp15118449

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

455

time complexity is the same as in the classical Tarjan’s

algorithm. On models showing regular structure (as in

large scale models), the algorithm will causalize more

than one variable in each step reducing the time com-

plexity. Going further, additional conditions can be im-

posed on the model to assure that algorithm achieves a

O(1) time complexity w.r.t. the model size.

Equation Generation When the algorithm finishes,

the result is a sorted list of pairs (e,v) where each pair

has the two ranges pe, pv of the edge used to causalize

it. From here, Modelica code can be generated with the

sorted and solved equations. An equation with range

larger than one will be placed inside for loops in the

range pe, so that variable v[i] is computed there for i

in the range pv.

5 The Modelica C Compiler

We have developed a Modelica C Compiler (or Model-

icaCC) to test the algorithms presented above. The ar-

chitecture of the compiler follows the usual pipeline of

Figure 1. In this case, we decided that the input/output

of each stage are valid Modelica models (except for the

very last stage which produce C code).

Each stage converts the Modelica model fed as input

into a “simpler” equivalent one. As we will be using the

QSS Stand–Alone Solver (Section 2.3) for the C code

generation and simulation, the goal of the previous stages

is to obtain a valid µ–Modelica model.

One design goal of ModelicaCC is to reuse as much

available code as possible. So, several open source li-

braries were used as part of the implementation. The

C++ STL and Boost library were used for representing

the AST and the Boost-Spirit library was used for pars-

ing. Also, the GiNaC library was used for symbolic ma-

nipulation of equations and the Newton iteration imple-

mentation of the GSL library is used for solving alge-

braic loops. Graph algorithms were implemented with

the Boost Graph Library.

Below, we shall briefly describe the stages of the Mod-

elicaCC tool outlining the novel features.

5.1 Flattening Stage

The flattening stage of ModelicaCC implements the al-

gorithm presented in Section 3.1 and 3.2. The input to

this stage is a total hierarchical Modelica model. The

transformation of the first stage are mainly implemented

as AST Visitors using the Boost library. The algorithm

presented in Section 3.2 is also implemented using the

Graph Library from Boost.

The command ./flatter performs this stage, pro-

ducing a flat Modelica valid code, which in large scale

models preserves arrays and for loops.

5.2 Alias Elimination

Usually, Modelica models contain hundreds of trivial

equations of the form a = b, most of them coming

from connect operators. In order to simplify the tasks

of the successive stages (causalization and code gener-

ation), these alias variables are removed together with

their binding equations, replacing then the removed vari-

able by their corresponding alias.

In the ModelicaCC implementation we also remove

array alias. For instance, an equation like a[i]=b[i]

in the body of a for loop in the complete range of both

arrays can be removed together with one of those vari-

ables. This process allows removing a large number of

equations and variables in a single step.

The command ./antialias performs this task, re-

moving aliases from a flat Modelica model and produc-

ing a flat alias–free Modelica model.

5.3 Reduction to µ-Modelica Syntax

The QSS Stand–Alone Solver accepts models described

in a subset of the Modelica language called µ-Modelica,

which has a reduced and restricted syntax.

At this stage, the Modelica statements that are not part

of µ–Modelica are replaced by semantically equivalent

expressions and operators.

The result of this stage is still an unsorted DAE system

containing only µ–Modelica constructs.

The command ./mmo performs this conversion, tak-

ing a flat Modelica model and producing an equivalent

flat Modelica model with µ–Modelica supported syntax.

5.4 Causalization Stage

The causalization stage of ModelicaCC has two flavors:

• Classical causalization, where for loops are un-

rolled and array are expanded. This implementation

is able to tackle algebraic loops using an external C

function that solves them using the GSL library.

• Vectorized causalization, implementing the algo-

rithm presented in Section 4 that attempts to pre-

serve the arrays and for loops.

Both implementations use the Boost library for the im-

plementation of the graph theory algorithms and the

GiNaC library for symbolic equation manipulation.

The vectorized algorithm is used by default. In case

it fails (due to an algebraic loop not yet handled), the

classical algorithm is used.

The result of this stage is a causalized µ-Modelica

model that can be translated into C and simulated by the

QSS Solver.

The command ./causalize performs this task,

taking a flat unsorted µ–Modelica model and producing

a sorted µ–Modelica system.

Efficient Compilation of Large Scale Dynamical Systems

456 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118449

5.5 Simulation Code Generation

The QSS Solver is in charge of the last stage of the

compilation pipeline, generating the C code from the µ–

Modelica model, compiling it together with the numeri-

cal solver.

As it was already mentioned, the QSS Solver does not

expand arrays or for loops producing a compact piece

of C code that can be quickly handled by the C compiler

(it uses the gcc, GNU Compiler Collection).

The QSS Solver allows to simulate the models with

different numerical algorithms, including DASSL, DO-

PRI and all the QSS family.

6 Examples and Results

We report here the usage of the algorithms and tools de-

veloped on two large scale systems of varying size. In

both cases, we are analyze the computational cost related

to each stage of the compilation pipeline, comparing it

with that of OpenModelica.

We also report simulation CPU time in order to assert

the correctness and quality of the resulting C code.

Banchmark Platform We used OpenModelica

1.9.3+dev (r25437) and the QSS Solver in version

rev.1299 on an Intel i7-3770 CPU @ 3.40GHz with a 64

bits Ubuntu Linux with 8Gb of RAM.

On both tools, we will use DASSL as numerical inte-

gration solver with a tolerance of 1e−6.

6.1 One Dimensional Heat Transfer

This model is a 1D Finite Difference discretization of

a PDE heat transmission problem taken from (Sezginer,

2014-2015).

Table 1 shows the CPU time consumed by each

stage of the pipeline by OpenModelica and ModelicaCC.

There, the columns are Flattening, Sorting, Code Gener-

ation, COde Compilation, SIMulation.

Table 1. Timing (in sec.) of the compilation stages for differ-

ent sizes of the Heat Transfer model

OpenModelica ModelicaCC

Size F+S+C CO SIM F S+C CO SIM

10 1.82 0.8 0.002 0.07 0.05 0.06 0.003

100 2.1 2.23 0.01 0.07 0.05 0.06 0.016

1K 7.9 8.18 0.5 0.07 0.05 0.06 0.8

4K 57.9 11.1 7.5 0.07 0.05 0.06 16.9

10K 316.9 26.7 − 0.07 0.05 0.06 −

We note that this model is flat already, so in the Mod-

elicaCC case it could be directly fed to the causalization

stage (since the whole pipeline is valid Modelica code)

but we measure the trivial flattening stage anyway.

In the last row, with 10000 sections, DASSL fails to

simulate.

6.2 A LC Transmission Line

The LC Line example is the one presented in Listing 1.

Each section of the line is made with components from

the MSL while the connections between these sections

was done by writing the Modelica code.

Table 2 reports the CPU time of the different stages of

the compilation.

Table 2. Timing (in sec.) of the compilation stages for differ-

ent sizes of the LC Line model

OpenModelica ModelicaCC

Size F+S+C CO SIM F S+C CO SIM

10 0.1 1.0 0.006 0.03 0.04 0.2 0.005

100 1.9 1.4 0.14 0.03 0.04 0.2 0.094

1K 61.8 − − 0.03 0.04 0.2 55

10K − − − 0.03 0.04 0.2 −

Starting from 1000 components, the C compiler fails

to compile the code generated by OpenModelica. For

10000 components, OpenModelica fails to generate the

C code.

Again, for 10000 components DASSL fails to simu-

late the system.

6.3 Result Analysis

From the two examples studied above we see that the

proposed algorithms and the ModelicaCC implementa-

tion have a constant complexity (both in space and in

time) w.r.t. the model size. This not only allowed us to

compile the models faster but we can handle larger mod-

els.

Notice that OpenModelica fails in the second case for

10000 components (which in fact correspond to more

than 100000 variables, since the model contains several

algebraic variable arrays). In that case, even for 1000

components, the C code produced is so large that it can-

not be handled by the C compiler. All these problems

disappear with the ModelicaCC approach.

In all cases, the simulation times are similar for both

tools and the simulation results (not reported here) have a

negligible difference. This tells us that DASSL is receiv-

ing equivalent set of equations. Moreover, when DASSL

fails to simulate, DOPRI works fine with the QSS Solver.

In this benchmark we have only fully analyzed the

open source OpenModelica tool. Anyway, we have also

run the experiments on demo versions of Dymola and

Wolfram System Modeler, obtaining a similar behavior

when the model increases in size.

Session 5C: Modelica Language & Compiler Implementation 2

DOI
10.3384/ecp15118449

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

457

7 Conclusions and Future Research

In this article we presented novel algorithms for efficient

compilation of large scale Modelica models. The idea

behind them is to exploit the repetitive nature found on

this kind of models and to process them without expand-

ing iterative equations and array variables.

The two algorithms for Flattening and Causalization

(Sec. 3 and 4) were implemented in a prototype C com-

piler called ModelicaCC. A design goal of ModelicaCC

was to have a Modelica-valid pipeline throughout all the

process and to exploit existing open source libraries.

The study performed on two large scale models shows

that the algorithms and their implementation have a con-

stant cost w.r.t. the model size while other Modelica tools

have a supra-linear cost (both in flattening and code gen-

eration/compilation). This allows to compile arbitrary

large models with no extra cost.

There are many directions for future work. First, the

Vectorized Tarjan’s algorithm must be extended to deal

with algebraic loops. For higher index models, our idea

is to extend Pantelides algorithm in the same way done

for Tarjan’s in order to reduce the index of non-expanded

models.

As mentioned before, one possible source of large

scale models is the spatial discretization of PDE’s. The

algorithms in this work are presented for unidimensional

arrays and non nested loops. They must be extended to

higher dimension and nested loops for their application

in 2D and 3D discretizations.

Finally, so far we have made experiments with a few

large scale models. All algorithms and tools presented

here have to be tested on more complex cases.

The ModelicaCC compiler is

an open source tool hosted at

www.sourceforge.net/projects/modelicacc/.

The models used in this ar-

ticle can be downloaded from

www.fceia.unr.edu.ar/~fbergero/modelica15/.

References

Matthias Arzt, Volker Waurich, and Jörg Wensch. Towards Uti-

lizing Repeating Structures for Constant Time Compilation

of Large Modelica Models. In Proceedings of the 6th In-

ternational Workshop on Equation-Based Object-Oriented

Modeling Languages and Tools, EOOLT ’14, pages 35–38,

Berlin, Germany, 2014.

Dag Brück, Hilding Elmqvist, Sven Erik Mattsson, and Hans

Olsson. Dymola for multi-engineering modeling and simu-

lation. In Proceedings of Modelica 2002, 2002.

Francesco Casella. Simulation of Large-Scale Models in Mod-

elica: State of the Art and Future Perspectives. In 11th In-

ternational Modelica Conference, 2015.

F. Cellier, X. F. Floros, and E. Kofman. The Complexity

Crisis: Using Modeling and Simulation for System Level

Analysis and Design. In Proc. SimulTech 2013, 3rd Inter-

national Conference on Simulation and Modeling Method-

ologies, Technologies, and Applications, Reykjavik, Island,

2013.

F. E. Cellier and E. Kofman. Continuous System Simulation.

Springer-Verlag, New York, 2006.

Joaquín Fernández and Ernesto Kofman. A Stand-alone

Quantized State System Solver for Continuous System

Simulation. Simulation, 90(7):782–799, July 2014.

ISSN 0037-5497. doi:10.1177/0037549714536255. URL

http://dx.doi.org/10.1177/0037549714536255 .

Jens Frenkel, Christian Schubert, Gunter Kunze, Peter Fritz-

son, Martin Sjolund, and Adrian Pop. Towards a Bench-

mark Suite for Modelica Compilers: Large Models . In 8th

Modelica Conference, 2011.

Peter Fritzson. Principles of Object-Oriented Modeling and

Simulation with Modelica 2.1. Wiley-Interscience, New

York, 2004.

Peter Fritzson, Peter Aronsson, Hakan Lundvall, Kaj Nys-

trom, Adrian Pop, Levon Saldamli, and David Broman.

The OpenModelica Modeling, Simulation, and Develop-

ment Environment. In Proceedings of the 46th Conference

on Simulation and Modeling (SIMS’05), pages 83–90, 2005.

John Hopcroft and Robert Tarjan. Algorithm 447: Ef-

ficient Algorithms for Graph Manipulation. Com-

mun. ACM, 16(6):372–378, June 1973. ISSN

0001-0782. doi:10.1145/362248.362272. URL

http://doi.acm.org/10.1145/362248.362272.

Peter Fritzson Jens Frenkel, Gunter Kunze. Survey of appro-

priate matching algorithms for large scale systems of dif-

ferential algebraic equations. In 9th Modelica Conference,

2012.

Constantinos C. Pantelides. The Consistent Initialization of

Differential-Algebraic Systems. SIAM Journal on Scientific

and Statistical Computing, 9(2):213–231, 1988.

L. R. Petzold. A description of DASSL: a differential/algebraic

system solver. In Scientific computing (Montreal, Quebec,

1982), pages 65–68. IMACS, New Brunswick, NJ, 1983.

Kaan Sezginer. A Test Suite of Large Scalable Models for

Modelica Tool Evaluation. Master’s thesis, POLITECNICO

DI MILANO, 2014-2015.

Kristian Stavaker. Contributions to Parallel Simulation of

Equation-Based Models on Graphics Processing Units.

PhD thesis, Linkopings Universitet, 2011.

Kristian Stavaker, Daniel Rolls, Jing Guo, Peter Fritzson, and

Sven bodo Scholz. Compilation of Modelica Array Compu-

tations into Single Assignment C for Efficient Execution on

CUDA-enabled GPUs. In 3rd EOOLT, 2010.

Robert Tarjan. Depth-First Search and Linear Graph Algo-

rithms. SIAM Journal on Computing, 1(2):146–160, 1972.

doi:10.1137/0201010.

Dirk Zimmer. Module-Preserving Compilation of Modelica

Models . In 7th Modelica Conference, 2009.

Efficient Compilation of Large Scale Dynamical Systems

458 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118449

Simulation of Large-Scale Models in Modelica:

State of the Art and Future Perspectives

Francesco Casella

Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy,
francesco.casella@polimi.it

Abstract

State-of-the-art Modelica tools are very effective at
converting declarative models based on differential-
algebraic equations into ordinary differential equations.
However, when confronted with large-scale models of
distributed systems with a high number of states (1000 or
more) or with large algebraic systems of equations (1000
or more unknowns), they face a number of serious effi-
ciency issues, that hamper their practical use for system
design. The paper analyses these issues in detail, points
out strategies for improvement, and also introduces a li-
brary of scalable test models that can be used to assess
existing tools, as well as to help developing advanced so-
lution methods for large-scale systems.
Keywords: Modelica Compilers, Large-Scale Models,

Efficient Simulation

1 Introduction

After almost 20 years from the first release of the Mod-
elica language definition 1.0 (The Modelica Associa-
tion, 1997), the Modelica language is well-established
for system-level modelling tasks in many domains of
engineering, such as automotive, robotics, mechatron-
ics, energy, aerospace, in particular when multi-domain
modelling is required.

To the best of the author’s knowledge, based on pub-
lished literature and personal experience, the standard
work flow of state-of-the art Modelica tools can be sum-
marised by the following steps, which are described in
detail by Cellier and Kofman (2006).

1. (Flattening) The Modelica code is parsed; classes
are expanded and instantiated, and eventually
brought into the so-called flat form, i.e., a set
of scalar hybrid differential-algebraic equations to-
gether with a set of scalar variables and parameters.

2. (Causalisation) Structural analysis of the
differential-algebraic equations (DAEs) is per-
formed, in order to solve them efficiently for the
state derivatives and algebraic variables. This

process includes equation ordering (BLT transfor-
mation), may require symbolic index reduction,
and usually involves extensive symbolic process-
ing, as well as the use of advanced techniques such
as tearing or reshuffling for solving sub-systems
of equations efficiently. In most cases, the use of
numerical solvers for linear and non-linear systems
of algebraic equations is required.

3. (Time integration) The code which results from
the previous step is linked to some well-tested,
general-purpose dense Ordinary Differential Equa-
tion (ODE) solver, including root-finding algo-
rithms to handle state events in the case of hybrid
models.

In principle, step 2 is not strictly necessary, as DAEs re-
sulting from step 1 could be solved directly using numer-
ical DAE solvers. In practice, this is not standard prac-
tice for two reasons: one is that object-oriented Model-
ica models very often end up having index greater than 1,
that are challenging to solve numerically, the other is that
the above-sketched process is usually more numerically
robust and easier to initialize than the direct solution of
the nonlinear DAEs.

As to step 3, most Modelica models end up being stiff,
because the modular way of building the models very of-
ten generates some very fast dynamic phenomena that,
albeit maybe not of interest for the modeller, cannot be
easily removed from the model, because they stem from
the interaction of equations placed in different compo-
nents.

As a consequence, stiff solvers are usually needed, the
choice usually falling onto DASSL (for multi-step algo-
rithms) and on Radau IIa (for single-step algorithms),
which implement sophisticated step-size and order adap-
tation with error control, as well as root-finding algo-
rithms for state-event detection.

When explicit solvers are required (e.g., for real-time
simulation applications) it is sometimes possible to care-
fully build a modular model so that stiffness is avoided,
but this is not the standard way people build object-
oriented models in most cases, and people usually take
for granted that stiffness will be handled by the solver.

DOI
10.3384/ecp15118459

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

459

In the early days of Modelica tool development, the
largest and most challenging object-oriented models
were multi-body systems, for which the above-sketched
process can be extremely effective.

Consider, for example, the well-known 6 d.o.f. robot
model of the Modelica.MultiBody.Examples library: a
system which is originally described by 1766 non-trivial
DAEs is reduced to an ODE system having only 36
states, whose derivatives can be computed by forward
assignments, except for one 6x6 linear system. Fur-
thermore, the resulting ODE system is dense and very
strongly coupled, as a change in torque at one joint influ-
ences the acceleration of all the robot’s links, due to kine-
matic constraints. The choice of a general-purpose dense
ODE solver is perfectly adequate in this case. Even more
dramatic is the case of the EngineV6 model, which starts
from 2083 non-trivial DAEs and ends up with a 4-th or-
der ODE system.

Probably due to the success in these very demanding
applications, this standard work flow has not changed
much over the years, and is still the state of the art as
of today. However, there are significant problems when
following this approach with several categories of mod-
els, some of which are rapidly gaining significance.

For example, it is well-known among control practi-
tioners that the simulation of the transient of a Modelica
system model including a digital controller can be orders
of magnitude slower than the simulation of the model
with the corresponding continuous-time one. As a con-
sequence, people often delay the simulation of the ac-
tual closed-loop behaviour with the digital controller un-
til late in the project, even though some potentially crit-
ical control functionality (e.g., anti-wind-up logic) can-
not be easily and accurately reproduced in a continuous-
time framework. Also, when finally switching to digital
control, they might resort to fixed-time-step simulation,
which do not give any guarantee of precision, in order to
keep the simulation time within acceptable limits.

Another field of growing importance is the simula-
tion of large networked systems with decentralized con-
trol. One notable example is that of smart grids, where
multiple producers and consumers of electrical and also
possibly thermal energy cooperate to the goals of stable
network behaviour, satisfaction of all the load requests,
and system optimality. Another interesting example is
the one of self-driving cars on highways. These systems
can easily encompass hundreds or thousands of individ-
ual agents, some of which might be inactive or dormant
for long periods of time, as well as multi-domain physi-
cal phenomena that span widely different time-scales.

The design of the control strategy for such large-scale
systems is usually based on hierarchical approaches, us-
ing cascaded control strategies and abstracting low-level
behaviour within higher levels. However, at some point
in the design cycle it becomes important to verify the
system performance by taking into account the detailed
physical behaviour, in particular to test how the system

reacts to borderline or anomalous conditions. For exam-
ple, what if a power generation unit cannot keep up with
the required load ramp rates, due to limitations in the
energy conversion process? What if a self-driving car
brakes too hard on slippery ground and loses traction in
a rush-hour traffic scenario? Today’s Modelica tools are
clearly inadequate to handle the simulation of such large
systems, because their standard work flow does not scale
up well with the system size.

The goals of this paper are thus to point out the funda-
mental limitations of the current approach that hinder the
use of Modelica tools in these areas, to highlight some re-
cent relevant research developments going in the right di-
rections, to make concrete proposals for further research,
and finally to urge the Modelica community to under-
take a more systematic and aggressive strategy to make
the object-oriented simulation of such systems easy and
efficient for tomorrow’s system designers.

This is the outline of the paper: in Section 2, the
issues of current state-of-the-art Modelica solvers with
large-scale models are reviewed; Section 3 introduces a
library that is intended to collect a wide array of bench-
mark of scalable (very) large Modelica models to support
the development and testing of innovative methods and
algorithms; Section 4 reviews some promising research
trends to address the challenges of efficient simulation
of large-scale models. Finally, Section 5 closes the paper
with some concluding remarks.

2 Issues with State-of-the-Art Solvers

and Large Models

In this section, the limitations of the standard work flow
presented in the Introduction when dealing with large-
scale models are discussed.

2.1 Localized Interaction is Not Exploited

Object-oriented system models are built in a modular
way by the hierarchical composition of components and
sub-systems via causal and a-causal connectors. The a-
causal connection paradigm makes it possible to propa-
gate instantaneous constraints (i.e., algebraic equations)
through large portions of the system, with the con-
sequence that the ODE dx/dt = f (x, t) obtained after
causalization is tightly coupled and has a dense Jacobian
∂ f/∂x with comparably few non-zero terms.

In practice, however, this almost only happens in the
case of multi-body systems, where the Jacobian corre-
sponding to the states of kinematic chains turns out to be
dense. In most other cases, the interaction between sub-
systems is based on flows that depend only on nearby
states. Although the a-causal modelling paradigm allows
for algebraic constraints resulting in a tight coupling be-
tween the state derivatives across components, these con-
straints are usually confined to small portions of the sys-

Simulation of Large-Scale Models in Modelica: State of the Art and Future Perspectives

460 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118459

tem. In other words, the derivative of any given state
variable only depends on the values of a few neighbour-
ing states, which means that each row of the Jacobian
∂ f/∂x only has a few non-zero elements.

As a consequence, the Jacobian ∂ f/∂x has a high de-
gree of sparsity. Even more importantly, the number of
non-zero element on each row is an invariant property of
the system structure. Therefore, as the number of states
N grows, e.g., because more and more individual agents
or sub-systems are added to it, the number of non-zero
terms only grows as O(N), not as O(N2), as it is the case
with tightly coupled systems.

Apparently, this basic fact is still not exploited by
Modelica tool developers, which still employ dense
solvers as the mainstream option. This has two severe
consequences. The first is that the workload of Hes-
sian inversion in implicit solvers, which grows as O(N3),
eventually becomes the bottleneck for large enough sys-
tems, as there are no other tasks in the simulation process
whose complexity grows at this rate. Probably, this is
currently masked by the fact that other tasks become in-
feasible earlier as the size grows, before this break-even
point is ever reached, but as other tasks are streamlined,
this will become all-important.

The other consequence is that the memory allocated
to store the values of the Jacobian ∂ f

∂x
and of the fac-

tored Hessian (h ∂ f

∂x
− I)−1 matrices for the solver can be-

come unnecessarily quite large, triggering lots of cache
memory misses that can severely degrade the simula-
tion speed. For example, a system with 1000 state vari-
ables requires 16 Mbytes to store the these two matrices
in double-precision floating-point arithmetics; this is al-
ready well beyond above the size of the on-CPU cache in
modern processors. A system with 10000 states requires
1.6 Gbytes of storage just for that purpose, which is to-
tally unreasonable, as most of that space is occupied by
zeros.

2.2 Localized Activity is Not Exploited

In many large-scale systems, local phenomena may oc-
cur within one sub-system or agent, that require short
time steps for an accurate description, but on the other
hand have negligible influence over the other sub-
systems or agents on the time span of such short steps.

For example, consider the model of an urban district
heating system. When a local temperature controller is
switched on or off, or when a window is opened in one
heated unit, relatively fast transients are triggered that
involve local state variables, but have a negligible influ-
ence on the temperature of the water in the distribution
system over that short time span, due to its large heat
capacity. As a consequence, they also have a negligible
effect on the other heated units. In order to describe the
fast local transients within the specified accuracy, stan-
dard ODE solvers will reduce the time step length and

compute several time steps within a short time interval.
This is very inefficient when the system is very large,

(say, 100 or 1000 heated units), since the short time steps
span the entire system, requiring the computation of a
very large derivative vector and of an extremely large Ja-
cobian matrix, as well as the inversion of an extremely
large Hessian matrix. This tremendous effort is in fact
useless, as all other state variable will hardly change at
all during these short steps.

2.3 Systems with Activity on Widely Differ-

ent Time Scales Are Penalized

In many cases, multi-domain systems are characterized
by physical phenomena taking place over widely differ-
ent time scales. For example, power plant models built
by connecting a boiler-turbine model, a synchronous
electrical generator, and a transmission line to a net-
work strong point, are characterized by slower thermal
dynamic phenomena, taking place over time scales from
a few seconds to a few hundred seconds, and faster elec-
trical phenomena taking place over time scales from 10
to 100 milliseconds.

When transients take place in the faster sub-system(s),
standard ODE solvers reduce the system-wide time step
length to very small values, causing the wasteful re-
computation of the slower thermal states, which hardly
change at all across those time steps. On top of that,
if accurate equations of state are used to describe the
fluid properties, these unnecessary computations involve
those equations, leading to an enormous and useless
overhead. Once again, the slow-down factor gets bigger
as the size of the system (i.e., the number of its states)
increases.

2.4 Localized Influence of Events and Dis-

continuities is Not Exploited

When hybrid systems and events are involved, the sit-
uation illustrated in the previous sub-section gets even
worse. The standard approach described in Section C
of the Modelica Language Specification (The Modelica
Association, 2014) requires that every time an event is
triggered, the integration of the continuous-time ODE is
halted at the event instant, the event is processed, global
event iteration (involving the entire system!) is per-
formed until convergence, and finally the simulation is
restarted, usually with a very short time step because the
discontinuities triggered by the event usually cause fast
changes in some state variables, requiring small enough
steps to stay within the allowed error tolerance.

Although this approach gives theoretical guarantees of
accuracy in the numerical solution, it quickly becomes
prohibitively expensive for all but the simplest systems.

For example, consider the model of an innovative en-
ergy conversion system for distributed generation, where

Session 5C: Modelica Language & Compiler Implementation 2

DOI
10.3384/ecp15118459

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

461

a waste heat recovery unit, powered by an Organic Rank-
ine Cycle (ORC) engine, drives an electrical generator
which is connected to the grid by means of a switched
AC/AC converter. The ORC system has time constants
from a few seconds to a few tens of seconds, and is char-
acterized by a very high CPU load to compute its state
derivatives, as complex equations of state are needed
to describe the fluid properties. It might also feature a
digital controller model with a periodic sampling time
around 500 ms or so. On the other hand, the switched
converter model triggers state events whenever currents
or voltages on each of the three phases of both sides cross
certain thresholds. Since a small ORC turbine can easily
exceed 60000 rpm rotational speed and there are multiple
events for each turn on each phase, the average frequency
of events may easily exceed 10000 per second.

It is clear that recomputing the entire state derivative
record, which requires computing all the fluid properties
around the circuit, at this kind of rate can make the simu-
lation four or more orders of magnitude slower than nec-
essary, which basically means this kind of simulations
is currently infeasible with state-of-the-art tools. On the
other hand, this state of affairs is by no means necessary:
it is easily understood that the effect of any single switch-
ing on the turbine rotational speed is negligible, due to its
comparatively large inertia. Since the turbine is the only
interface between the electrical part and the thermal part,
there is obviously no need at all of recomputing the ther-
mal states 10000 times per second or more, in order to
achieve an accurate simulation.

2.5 Systems with large-scale algebraic con-

straints are not considered

At the other end of the spectrum, there are interesting
system models characterized by very large systems of al-
gebraic equations. In the Modelica world, a model with
one or more such systems is often considered evil, or at
least the result of inappropriate modelling practices, and
the common wisdom calls for adding a few more states
to the model in order to break them down to smaller sys-
tems. However, this is not always appropriate.

Consider the study of power generation and transmis-
sion systems, which has recently gained interest in the
Modelica community, see Vanfretti et al. (2014). The
models used to assess the network stability consider the
dynamic phenomena taking place in the power genera-
tors, while neglecting the much faster electrical phenom-
ena in the transmission network, which is described by
algebraic equations (dynamic phasors). Nation-wide or
continent-wide models can thus easily contain thousands
of state variables, as well as one, very big algebraic sys-
tem of a hundred thousands or more linear equations.
They key factor here is that this system will be extremely
sparse, thanks to the transmission network topology.

State-of-the art tools try to cope with this system using
tearing, which is prohibitively expensive at this scale.

2.6 Repetitive Structures are Not Exploited

Large-scale models usually involve repetitive structures,
such as arrays of variables or models, and for-loops in
equation sections. Even if for-loops are not used, it might
be the case that the same model is instantiated a very high
number of times. For instance, a model of a digital cir-
cuits might contain a very large number of NAND gates;
a 64 bit adder might be built hierarchically by assembling
4-bit and 16-bit adders.

As mentioned in the Introduction, the mainstream ap-
proach of state-of-the-art tools is to flatten the entire
model all the way down to scalar variables and equa-
tions, then analyse the structural properties of the sys-
tem of equations and generate the code to compute the
state derivatives. If the model is very large and has a lot
of repetitive structures, the analysis phase (which is part
of the compilation process) might require a very large
amount of time, which could be spared if the analysis is
carried out at the array level.

Also, following the standard approach, separate code
is generated to solve each equation in the DAE, so that, in
the case of repetitive models, the code has a large number
of duplications, i.e., chunks of code that carry out exactly
the same operation, albeit on different chunks of data.
This can lead to unnecessarily high memory allocation,
which brings in the previously discussed overhead due to
off-cache memory access and cache misses. If the output
of the Modelica tool is C code that needs to be compiled
into executable code, very large source code files might
also cause the C compiler to fail, or at least to become
very slow, particularly if optimized code is generated.

3 The ScalableTestSuite Library

The assessment of the performance of existing tools
when dealing with large scale systems, as well as the
testing of innovative algorithms and solution strategies,
calls for a library of benchmark cases. In the author’s
opinion, the requirements of this library are

• The size of the model should be easily selected
by setting one (or more) integer parameters, while
meaningful values of all other physical parameters
should be automatically set by the model.

• The models should stress all the aspects mentioned
in Section 2, either one at a time, or possibly also in
a combined fashion.

• The models should be physically meaningful and
representative of real-life modelling problems.

• The library should be self-contained and only de-
pend on the Modelica Standard Library (MSL) to
ensure maximum portability.

• At least some models should be defined as plain
equations in a single Modelica class, so that they

Simulation of Large-Scale Models in Modelica: State of the Art and Future Perspectives

462 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118459

Figure 1. Structure of the ScalableTestSuite library.

might also be tried out easily with other simulation
tools that do not support Modelica.

• At least some models should be defined both by
plain equations and by modular descriptions, to as-
sess how efficiently the tool can handle the over-
head of a modular, object-oriented description of
the model.

• The library should be widely advertised among tool
developers and researchers, be open to contribu-
tions, and eventually become the accepted reference
benchmark for the community.

A related work, the Modelimark test suite, was pre-
sented at the 2011 Modelica conference by Frenkel et al.
(2011). The main goal in that case was the same of the
library presented in this paper, i.e., provide scalable test
models for tool benchmarking.

The result of that work is a Python software which can
automatically generate Modelica code of models with
scalable complexity. This approach is actually quite
powerful and gives a lot of flexibility in terms of what
can actually be tested; on the other hand, it makes the de-
velopment, deployment and maintenance of the test suite
more complex than a plain Modelica package containing
the direct definitions of the benchmarks, in particular if
many contributors are expected.

Also, the focus of that work is mainly (though not ex-
clusively) aimed at evaluating the compiler performance,

i.e. how much time is needed to obtain the executable
simulation code from the Modelica source, while the
present work is more focused on the solver performance,
though obviously the compiler performance can be eval-
uated as well. Finally, compared to the Modelimark test
suite, the present work puts more emphasis on testing the
simulation performance on physically meaningful mod-
els, which are representative of some class of real-life
modelling problem.

At the 2014 EOOLT workshop in Berlin, after the dis-
cussion following the presentation of the paper (Ranade
and Casella, 2014), the author decided to start working
on his library with a master thesis project. Version 1.0
of the library, released on May 11th, 2015, is the end re-
sult of Kaan Sezginer’s master’s thesis (Sezginer, 2015).
The library, which is open source and hosted on GitHub
(Sezginer and Casella, 2015) is under continuous devel-
opment and has already grown since then.

As of the time of this writing, the library contains 16
different test models, belonging to the electrical, me-
chanical, and thermal domains. The size can be set by
suitable integer parameters - the library already contains
the definition of test cases of size growing as the powers
of 2, complete with experiment annotation, so that the
benchmarks can be run by just checking out the library
from the repository and compiling any of those classes.

The structure of the library is shown in Figure 1. More
specifically, the following models are currently included:

• Electrical transmission line, directly modelled by
equations or by connection of MSL components

• DC distribution networks, modelled by MSL com-
ponents

• Flexible cantilevered beam, modelled by connec-
tion of MSL multi-body components or by the finite
element method, taken from Schiavo et al. (2006)

• String suspended in a gravitational field, modelled
by connection of MSL multi-body components

• One-dimensional heat conduction, with two differ-
ent types of boundary conditions, directly modelled
by equations or by connection of MSL components

• One-dimensional heat exchanger, in co-current and
counter-current configuration, assuming constant
fluid density and constant fluid heat capacity

• Models of 1D thermal advection, one assuming
constant density and heat capacity, the other us-
ing the detailed IF97 model of steam and including
compressibility effects

• Models of a district heating (Ranade and Casella,
2014) and of distributed cooling system (Floros
et al., 2014). The former is a continuous time
model, using nonlinear (and very stiff) systems with

Session 5C: Modelica Language & Compiler Implementation 2

DOI
10.3384/ecp15118459

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

463

bifurcations to model the local on-off temperature
controllers; the latter employs events for the same
purpose.

The models have been verified against known analyt-
ical solutions, whenever available. Each model stresses
one or more of the aspects discussed in Section 2.

All the models in the library except the ones built with
the MultiBody library have a high degree of sparsity, see
Table 1 for some example values. As already anticipated
in Section 2.1, the density of the Jacobian for the multi-
body models does not depend on the size and is about
50%, making a dense solver perfectly adequate to handle
them. Conversely, for all other models the number of
non-zero elements grows as O(N), so that the density of
the Jacobian is inversely proportional to the system size
and already much below 1% even for moderately large
models with about 1000 state variables.

The district heating model is characterized by a
strongly localized action: the on-off transitions of the lo-
cal temperature controllers require many time steps to be
computed accurately, but take place in much less than
one second, during which the temperature of all other
units do not change significantly; due to sligtly differ-
ent heat capacity parameters of the different units, all the
transitions take place asynchronously, so that each tran-
sition involves one unit at a time.

The distributed cooling system model combines the
feature of the previous model with events having only a
local influence on the corresponding unit temperature.

The transmission line models also show localized ac-
tion, as the simulated transient correspond to one sharp
voltage and current wave crossing the transmission line
once; consequently, each individual voltage has a sharp
transition only when the wave passes through it, and is
practically constant during the rest of the time.

The DC distribution system models allow to experi-
ment with test cases featuring large sparse systems of
linear algebraic equations.

As to repetitive structures, most examples are based on
arrays of parametric size of variables and/or models, and
make use of for loops in the equation section, so they can
also be used for testing the ability of the compiler to cope
with these structures efficiently. In the case of the DC
distribution system, Modelica code is also provided that
automatically generates the code of large system mod-
els with explicit declarations of individual components
and connections, in order to test the ability of compilers
to factor out common code also in this case. Some ex-
amples of automatically generated code are already in-
cluded in the library.

More models with events, as well as multi-physics
models with widely different time scales, will be added
in the near future, possibly before the writing of the final
version of this paper.

4 Research Trends for the Efficient

Simulation of Large-Scale Models

This section points out some recent research trends that
might improve the performance of Modelica tool dramat-
ically when dealing with large-scale models. The aim is
to encourage the community at investing more in this di-
rection and bring these advanced methodologies in the
mainstream as standard options for tomorrow’s Model-
ica tools, so that they can keep up with the challenges
posed by large-scale system models.

4.1 Sparse Solvers

A literature search on the topic of using sparse ODE
solvers for the simulation of Modelica models found sur-
prisingly little relevant results. To the author’s knowl-
edge, the only really relevant reference is a Modelica
Conference paper (Link et al., 2009), where the authors
advocated the use of sparse DAE solvers to improve the
performance of power plant simulation in Modelica. Ap-
parently, they have not been listened to so far.

To further motivate the analysis carried out in Sec-
tion 2.1, Table 2 reports the simulation results of the
SimpleAdvection model from the ScalableTestSuite li-
brary. The model is linear and the causalization can be
performed exclusively by forward assignments, so that
the Hessian inversion quickly becomes the performance
bottleneck. Dymola 2015 FD01 has been used to run
the test on a laptop with an Intel i5-4200U CPU and 8
GB of RAM, using DASSL as the ODE solver. Similar
results have been obtained using OpenModelica on the
same machine, with the same ODE solver.

The simulation time scales up as O(N2.6) and it is re-
ally hard to believe that much better results couldn’t be
obtained with the sparse matrix version of DASSL. Also
note the disproportionate amount of memory allocated
by the simulation process (over 1 GByte for the largest
model), mostly to accommodate the Jacobian and Hes-
sian matrix values. Finally, note that in most scientific
computing circles, a dynamic model with 12800 state
variables is considered a small one, not a very large one.

The other application for sparse solvers is in models
with large linear algebraic systems of equations. For very
large systems, tearing takes too much time during code
generation and leads to a set of residual equations which
is still very sparse. Sparse numerical solvers should in-
stead be automatically selected and used in these cases.

4.2 Multi-Rate Algorithms

In all those cases showing localized activity and/or
widely different time scales, multi-rate algorithms can
improve the simulation performance dramatically and in-
creasingly with the system size.

Multi-rate algorithms have been studied since the
early 1960s, but never made it into the mainstream sim-

Simulation of Large-Scale Models in Modelica: State of the Art and Future Perspectives

464 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118459

Table 1. Sparsity of some large-size models.

Model # of states # of non-zero Jac.

Jac. entries density

Transmission line 320 elements 642 1603 0.38%
Transmission line 640 elements 1282 3203 0.19%
Steam pipe advection 320 volumes 640 3194 0.78%
Steam pipe advection 640 volumes 1280 6394 0.39%
Heat exchanger 320 volumes 957 3505 0.38%
Heat exchanger 640 volumes 1917 7025 0.19%
String models 32 segments 66 2147 49.29%
String models 64 segments 130 8387 49.63%

Table 2. Simulation performance of the SimpleAdvection model.

Model # of states Simulation Memory

time [s] allocation [MB]

Simple advection, 1600 nodes 1599 6.7 22
Simple advection, 3200 nodes 3199 30.8 84
Simple advection, 6400 nodes 6399 183 326
Simple advection, 12800 nodes 12799 979 1293

ulation tools. The basic idea behind them is that only a
few global steps involving the entire system should be
performed. If the error estimates after one such step ex-
ceed the set tolerance only for a sub-set of states (i.e.,
the fast ones, or the ones with localized activity), then
the time step grid is refined for those states only (the ac-

tive states), while interpolating the found result for the
latent states, whose precision has already been achieved
with the global step. This approach can also be applied
recursively.

The end result of using multi-rate algorithms is that
whenever localized activity and/or transients in a fast
subsystem take place, refinement steps are taken which
only involve the (small!) relevant portion of the system,
avoiding useless computation of other state derivatives,
and also only requiring the inversion of small Hessians,
in case of implicit solvers. Of course the advantage of
using these algorithms grows with the size of the system.

On-going work at Politecnico di Milano is aimed at
developing a multi-rate version of the TR-BDF2 algo-
rithm, which is particularly attractive as the coefficients
to interpolate the latent state are a by-product of the solu-
tion process, so they don’t need any additional overhead.
Very promising results have already been obtained us-
ing a multi-rate version of Rosenbrock’s algorithm, ap-
plied to the district heating model of the ScalableTest-
Suite library. In particular, while the simulation time
using DASSL grows as O(N2.6), the simulation time of
the prototype versions of multi-rate algorithms written in
Matlab grows in a range from O(N1.3) to O(N1.8). Al-
though the performance should be evaluated on an effi-
cient version of the code written in C, the shown trend is
nevertheless pointing in the right direction.

Also on-going at the moment of writing this paper is
work at Bielefeld University to interface such solver to
the OpenModelica compiler.

Please refer to (Ranade and Casella, 2014) for a more
in-depth discussion of multi-rate algorithms, references
to relevant literature, and preliminary results. Refer to
(Casella, 2015) for ideas on how to generate efficient
code to support such algorithms starting from declarative
DAE-based Modelica models.

4.3 Smart Multi-Rate Event Handling

As discussed in Section 2.4, a straightforward implemen-
tation of the algorithm sketched in Appendix C of the
Modelica Specification guarantees the correctness of the
simulation results, but can be extremely inefficient in the
case of large systems with frequently spaced events.

Some ideas have already been explored in the liter-
ature. Sanz et al. (2014) discuss how to avoid useless
event iterations when it can be established a priori that a
further event iteration is not necessary; they also discuss
how to limit the event iterations to the smallest necessary
sub-set of equations. In (Höger, 2013), a somewhat sim-
ilar analysis is carried out to avoid unnecessary function
evaluation during root finding, when the exact time in-
stant of a state event is being computed. In both cases,
the advantage grows with the size of the system.

All adaptive step-size solvers with error control of or-
der n assume that the right-hand side of the ODEs is n

times continuously differentiable. Whenever an event
is triggered in a Modelica model, some derivatives can
change discontinuously, which violates the assumption
of continuous differentiability. The standard approach is

Session 5C: Modelica Language & Compiler Implementation 2

DOI
10.3384/ecp15118459

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

465

to integrate the equations up to the event time, process
the event determining the new initial conditions, then
restart the integration from these initial conditions com-
pletely disregarding the previous results. As said above,
this approach is safe but usually very inefficient.

A less naive solution strategy could be worth explor-
ing. Assume that the variable v with discontinuous be-
haviour due to events only influences the derivative of
one state variable x1, that in turn x1 only influences the
derivative of x1 and x2, and those in turn only influ-
ence the derivative of x1, x2, and x3. It follows that x1
is continuous (though not differentiable), x2 is continu-
ously differentiable, and x3 is twice continuously differ-
entiable. By assumption, the rest of the system is not
influenced by v, x1, and x2, so its inputs are twice con-
tinuously differentiable despite the event. Consequently,
a second-order error estimation algorithm would give re-
liable indications about the error on all the states other
than x1, x2, and x3 across time step including the event.

Assume now that during a global step the zero-
crossing function of the event changes sign, but the er-
ror estimator remains below the tolerance for all these
other states. In the context of a multi-rate algorithm, it
could then be possible accept the global step without any
event handling, and only process the event in a refine-
ment step, involving only the small set of active variables
{x1,x2,x3}.

In other terms, assuming that there is enough low-pass
action between the discontinuous variables and the bulk
of the system states, it might not be necessary to stop
the integration of the latter ones, but only to refine the
solution of those states which are more directly affected
by the discontinuity.

There are of course a lot of details to be worked out to
implement this approach, but it is the author’s opinion
that the performance improvements could be dramatic
for most large models of systems subject to digital con-
trol; even more so if there are different sub-systems with
different time scales and different sampling rates of the
corresponding controllers.

4.4 QSS Algorithms

Quantized State Systems methods (Cellier and Kofman,
2006) adopt an alternative strategy for the solution of
ODE systems, i.e., instead of discretizing over time they
discretize over the set of state values, thus turning ODE
systems into Discrete EVent Systems (DEVS). Second-
and third-order accurate methods QSS2 and QSS3 have
been developed, as well as a linearly implicit method
LIQSS (Migoni et al., 2013), which can deal with stiff
system, a key feature for generic Modelica models.

Two features of QSS algorithms are relevant in the
context of this paper. The first is that these algorithms
naturally exploit localized interaction, as discussed in
Section 2.1, handling therm very efficiently, as demon-
strated by Floros et al. (2014). The second is that, as soon

as the continuous-time ODEs are turned into event-based
systems, the handling of events blends in the framework
seamlessly without any significant overhead. Thus, also
the issue raised in Section 2.4 can be solved efficiently
by these algorithms.

Experiments have been already made at handling
Modelica models with QSS algorithms.

Floros et al. (2011) report a first attempt at implement-
ing an interface to a PowerDEVS-based QSS solver in
the OpenModelica back-end. Unfortunately, this is no
longer supported by OpenModelica due to later back-end
refactoring.

Later on, the same research group developed a stand-
alone QSS solver with a interface based on a small sub-
set of Modelica (µ-Modelica), and a back-end module
for OpenModelica that generates µ-Modelica code from
regular Modelica code, see (Bergero et al., 2012).

Although these early experiments have lead to inter-
esting published results, to the author’s knowledge, as of
the time of writing of this paper there is still no main-
stream, well-tested and maintained tool that can process
generic Modelica models, possibly involving advanced
language features, and successfully generate simulation
code based on QSS. Further work is required in this di-
rection to consolidate the above-mentioned results.

4.5 Exploiting repetitive structures

Interesting ideas have been published about methods to
avoid flattening the models to the level of scalar equa-
tions and variable, exploiting for loops or hierarchical
model structure, see e.g. (Zimmer, 2009; Höger, 2011;
Arzt et al., 2014). These methods may lead to consid-
erable savings in the memory footprint of the simulation
executable, as well as to considerable speed-up in the
compilation and structural analysis phases.

However, at the time of the writing of this paper, these
methods have only been demonstrated by prototype im-
plementations, but are still unavailable in mainstream
Modelica tools. More development, implementation and
testing work is required to make them standard features
of state-of-the-art Modelica tools.

4.6 Exploiting parallel CPUs

Research work on the parallelization of simulation code
generated from Modelica models started as early as Peter
Aronsson’s PhD work (Aronsson, 2006).

The field is now finally approaching maturity. Parallel
simulation code generation recently became available as
an advanced feature in Dymola 2015 FD01, using algo-
rithms described by Elmqvist et al. (2014), so it has al-
ready passed the stage of prototype implementation and
entered the stage of advanced feature in at least one Mod-
elica tool.

Two prototype parallel code generation back-ends
in OpenModelica are documented in the literature:

Simulation of Large-Scale Models in Modelica: State of the Art and Future Perspectives

466 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118459

(Sjölund et al., 2013), mainly focusing on TLM-based
partitioning, and (Walther et al., 2014), based on ideas
from Casella (2013). A new infrastructure to implement
parallelized code is currently being built in the same tool,
as documented by Gebremedhin and Fritzson (2014). To
the author’s knowledge, no other published information
is available concerning other Modelica tools.

The author hopes that this kind of algorithms even-
tually becomes a standard feature that does not require
special settings by end user - the tool should figure out
autonomously what is the best configuration for the prob-
lem at hand, given the available hardware resources (i.e.,
number of cores), and the exploitation of parallelism
should become transparent to the end user, as most other
low-level details of symbolic and numerical processing.

All the above-mentioned works exploit the parallelism
inherent in the causalization process. It was clearly
pointed out in the most recent papers that the problem of
clustering the atomic tasks into bigger ones is essential
to avoid excessive task set-up and switching overhead,
which could more than offset the gain obtained by paral-
lelism. Some heuristics are needed to estimate the actual
workload, which is one key ingredient of clustering algo-
rithm. One may expect that these heuristics will become
more mature and reliable in the next few years.

Another useful feature when dealing with implicit
solvers is the parallelization of the computation of the
Jacobian ∂ f/∂x. This is almost trivial to achieve in the
cases when the Jacobian is computed numerically, and
also trivially obtained when the Jacobian is computed
symbolically, once the problem of computing f (x) ef-
ficiently has been solved. Significant speed-ups could be
obtained here, in particular for large models.

As a side remark, it is surprising that the performance
test whose results are reported in the above-mentioned
references are carried out with low-end computers with
few parallel cores, such as laptops. It would be interest-
ing to see what kind of speed-up factors can be obtained
if high-end workstations with latest-generation with 20+
logical cores are employed. This will give some under-
standing on what will be possible with run-of-the-mill
hardware within 3-6 years.

As a final remark, it is the author’s opinion that paral-
lel computation strategies should be combined with ap-
propriate techniques exploiting sparsity and locality of
large-scale Modelica models, in order to obtain truly out-
standing performance improvement. Brute-force speed-
up by parallelization is not able by itself to offset the
inefficiencies pointed out in Section 2, even when larger
numbers of cores will eventually become available at low
cost on standard workstations.

5 Conclusions

In the future, large-scale system-level models of smart
grids and distributed cyber-physical systems will become

a strategic asset in the development of such systems.
Although the Modelica language has a lot of potential
in this field, current state-of-the-art Modelica tools em-
ploy methods and algorithms that suffer from fundamen-
tal limitations as the size of the system model increases,
quickly leading to unsatisfactory performance even for
moderately large models. In order to meet the challenges
posed by large, hybrid, distributed models, fundamental
advances are required in the integration methods and also
in the structural analysis and compilation phases.

This paper tries to draw the attention of the Modelica
community on this topic, highlighting some fundamental
issues, pointing out promising research trends that have
potential to solve them effectively, and urging tool devel-
opers to pursue the goal of efficient simulation of large-
scale models with determination.

Finally, the paper introduces the ScalableTestSuite
Modelica package, a library of scalable models for
benchmarking existing tools and helping the develop-
ment of innovative methods and algorithms to cope with
large-scale Modelica models. Contributions are wel-
come to improve and expand the scope of this library, in
order to make it the reference collection of benchmarks.

6 Acknowledgement

The author thanks his former master’s student Kaan
Sezginer for his contribution in developing version 1.0
of the ScalableTestSuite model library.

References

P. Aronsson. Automatic Parallelization of Equation-Based

Simulation Programs. PhD thesis, Linköping University,
Department of Computer and Information Science, 2006.

Matthias Arzt, Volker Waurich, and Jörg Wensch. Towards uti-
lizing repeating structures for constant time compilation of
large Modelica models. In David Broman and Peter Pepper,
editors, Proceedings of the 6th International Workshop on

Equation-Based Object-Oriented Modeling Languages and

Tools, pages 35–38, Berlin, Germany, Oct 10 2014. ACM.
ISBN 978-1-4503-2953-8. doi:10.1145/2666202.2666207.

F. Bergero, X. Floros, J. Fernandez, E. Kofman, and
F. Cellier. Simulating modelica models with a stand-
alone quantized state systems solver. In Proceedings

9th International Modelica Conference, pages 237–246–
442, Munich, Germany, Sep. 2012. Modelica Association.
doi:10.3384/ecp12076237.

Francesco Casella. A strategy for parallel simulation of declar-
ative object-oriented models of generalized physical net-
works. In Henrik Nilsson, editor, Proceedings of the 5th In-

ternational Workshop on Equation-Based Object-Oriented

Modeling Languages and Tools (EOOLT), pages 45–51,
Nottingham, UK, Apr 19 2013. ISBN 978-91-7519-621-
3. URL http://www.ep.liu.se/ecp/084/006/

ecp13084006.pdf.

Session 5C: Modelica Language & Compiler Implementation 2

DOI
10.3384/ecp15118459

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

467

Francesco Casella. Efficient computation of state derivatives
for multi-rate integration of object-oriented models. In
I. Troch F. Breitenecker, A. Kugi, editor, Proceedings 8th

Vienna International Conference on Mathematical Mod-

elling, pages 262–267, Vienna, Austria, Feb. 18–20 2015.

F. E. Cellier and E. Kofman. Continuous System Simulation.
Springer-Verlag, 2006.

Hilding Elmqvist, Sven Erik Mattsson, and Hans Olsson.
Parallel model execution on many cores. In Proceed-

ings of the 10 th International ModelicaConference, Lund,
Sweden, Mar. 10-12 2014. The Modelica Association.
doi:10.3384/ECP14096363.

X. Floros, F. Bergero, F. Cellier, and E. Kofman. Automated
simulation of modelica models with qss methods - the dis-
continuous case. In Proceedings 8th International Modelica

Conference, pages 657–667, Dresden, Germany, Mar 20-22
2011. Modelica Association.

Xenofon Floros, Federico Bergero, Nicola Ceriani, Francesco
Casella, Ernesto Kofman, and François Cellier. Simula-
tion of smart-grid models using quantization-based inte-
gration methods. In Hubertus Tummescheit and Karl-Erik
Årzén, editors, Proceedings 10th International Modelica

Conference, pages 787–797, Lund, Sweden, Mar 10-12
2014. The Modelica Association. ISBN 978-91-7519-380-
9. doi:10.3384/ECP14096787.

Jens Frenkel, Christian Schubert, Günter Kunze, Peter Fritz-
son, Martin Sjölund, and Adrian Pop. Towards a benchmark
suite for Modelica compilers: Large models. In Proceed-

ings 8th International Modelica Conference, pages 143–
152, Dresden, Germany, Mar 20-22 2011. Modelica Asso-
ciation.

Mahder Gebremedhin and Peter Fritzson. Automatic task
based analysis and parallelization in the context of equa-
tion based languages. In David Broman and Peter Pepper,
editors, Proceedings of the 6th International Workshop on

Equation-Based Object-Oriented Modeling Languages and

Tools, pages 49–52, Berlin, Germany, Oct 10 2014. ACM.
ISBN 978-1-4503-2953-8. doi:10.1145/2666202.2666210.

C. Höger. Separate compilation of causalized equations.
In Proceedings 4th International Workshop on Equation-

Based Object-Oriented Modeling Languages and Tools.,
pages 113–120, Sep. 2011.

Christoph Höger. Sparse causalisation of differential algebraic
equations for efficient event detection. In Proceedings of

the 8th EUROSIM Congress on Modelling and Simulation,
pages 351–356, Washington, DC, USA, 2013.

K. Link, H. Steuer, and A. Butter. Deficiencies of mod-
elica and its simulation environments for large fluid sys-
tems. In Proceedings 7th International Modelica Confer-

ence, pages 341–344, Como, Italy, Sep. 20–22 2009. The
Modelica Association. ISBN 978-91-7393-513-5. doi:DOI:
10.3384/ecp09430034.

G. Migoni, M. Bartolotto, E. Kofman, and F. Cellier.
Linearly implicit quantization-based integration meth-
ods for stiff ordinary differential equations. Simula-

tion Modelling Practice and Theory, 35:118–136, 2013.
doi:10.1016/j.simpat.2013.03.004.

Akshay Ranade and Francesco Casella. Multi-rate integration
algorithms: a path towards efficient simulation of object-
oriented models of very large systems. In David Bro-
man and Peter Pepper, editors, Proceedings of the 6th In-

ternational Workshop on Equation-Based Object-Oriented

Modeling Languages and Tools, pages 79–82, Berlin, Ger-
many, Oct 10 2014. ACM. ISBN 978-1-4503-2953-8.
doi:10.1145/2666202.2666214.

Victorino Sanz, Alfonso Urquia, and Francesco Casella. Im-
proving efficiency of hybrid system simulation in model-
ica. In David Broman and Peter Pepper, editors, Proceed-

ings of the 6th International Workshop on Equation-Based

Object-Oriented Modeling Languages and Tools, pages 21–
28, Berlin, Germany, Oct 10 2014. ACM. ISBN 978-1-
4503-2953-8. doi:10.1145/2666202.2666205.

Francesco Schiavo, Luca Viganó, and Giann Ferretti. Object-
oriented modelling of flexible beams. Multibody System Dy-

namics, 15(3):263–286, 2006.

K. Sezginer and F. Casella. The ScalableTestSuite Modelica li-
brary, 2015. URL https://github.com/casella/

ScalableTestSuite.

Kaan Sezginer. A test suite of large scalable models for Mod-
elica tool evaluation. Master’s thesis, Politecnico di Milano,
April 2015. Supervisor: prof. F. Casella.

Martin Sjölund, Mahder Gebremedhin, and Peter Fritzson.
Parallelizing equation-based models for simulation on
multi-core platforms by utilizing model structure. In Alain
Darte, editor, Proceedings of the 17th Workshop on Compil-

ers for Parallel Computing, July 2013.

The Modelica Association. Modelica - A unified object-
oriented language for physical systems modeling - Lan-
guage specification version 1.0. Online, Sep 1997.
URL http://www.modelica.org/news_items/

documents/ModelicaSpec30.pdf.

The Modelica Association. Modelica - A unified object-
oriented language for physical systems modeling - Lan-
guage specification version 3.3 revision 1. Online,
Jul. 11 2014. URL https://www.modelica.org/

documents/ModelicaSpec33Revision1.pdf.

Luigi Vanfretti, Tetiana Bogodorova, and Maxime Baudette.
A Modelica power system component library for model
validation and parameter identification. In Proceedings

10th International Modelica Conference, pages 1195–1203,
Lund, Sweden, Mar 10-12 2014. The Modelica Association.
doi:10.3384/ECP140961195.

Marcus Walther, Volker Waurich, Christian Schubert, and Ines
Gubsch. Equation based parallelization of modelica models.
In Proceedings of the 10 th International ModelicaConfer-

ence, Lund, Sweden, Mar. 10-12 2014. The Modelica Asso-
ciation. doi:10.3384/ECP140961213.

D. Zimmer. Module-preserving compilation of modelica mod-
els. In Proceedings 7th International Modelica Conference,
pages 880–889, Como, Italy, Sep. 20–22 2009. The Model-
ica Association. doi:10.3384/ecp09430028.

Simulation of Large-Scale Models in Modelica: State of the Art and Future Perspectives

468 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118459

Developing Mathematical Models of Batteries in Modelica for

Energy Storage Applications

Dr. Thanh-Son Dao Dr. Chad Schmitke

Maplesoft, Waterloo, Ontario, Canada, {tdao, cschmitke}@maplesoft.com

Abstract

In this paper, effective and systematic steps in the
mathematical modeling of high-fidelity battery models
for simulating energy storage systems (ESS) will be
presented. Two approaches to battery modeling will be
discussed in this article: (1) the equivalent electrical
circuit approach, and (2) the electrochemical approach.
The battery models discussed in this article are
developed based on the Modelica Standard Library
specification 3.2.1 and commercialized as part of the
Battery Component Library in MapleSim ® 2015.

Keywords: electrochemical, battery, Modelica, energy

storage, electric vehicles, MapleSim

1 Introduction

Battery modeling is a challenging field that has been
receiving a great amount of interest recently due to the
great push from the portable electronic devices and the
electric and hybrid electric vehicles (EV/HEV)
industries. Despite of the differences in the power
ranges and battery sizes in these applications, the two
industries share a common goal: developing a new
generation of batteries that allow devices to run for a
longer period of time, while operating within a range
that maximizes the battery’s service life. In both of
these areas, accurate and efficient battery modeling is
vital to help maximize the performance of a device and
its battery.

In this paper, we focus on the development of
mathematical models of batteries, with an aim to
produce high-fidelity battery models that are suitable
for a wide range of applications. The battery models
are implemented using the Modelica language,
allowing them to be shared across multiple simulation
platforms.

There have been several efforts in the past few years
to commercialize Modelica-based battery component
packages, including the battery libraries developed by
AIT (Einhorn et al., 2011) and Modelon (Gerl et al.,
2014; Modelon, 2015). Although some of the basic
features of battery simulation such as battery voltage,
state of charge (SOC), state of health (SOH), thermal
effects, etc., are included in these packages, they face
many limitations, which are mainly due to the
equivalent electrical circuits approach used in

generating their battery models. Some of the
limitations include:
• It’s not possible to maintain the battery voltage

accuracy over a wide range of applied current:
This is mainly because of the simplicity of the
electrical circuit representations which do not
allow them to describe the battery physics
accurately under different operating conditions.
For EV/HEV applications, this is a big obstacle as
the charge/discharge current in an EV/HEV varies
greatly during the operation of the vehicle and it is
crucial that a battery model can portray this
accurately.

• The thermal effects are simplified and neglect the
changes in the entropy of the reaction of the
electrode materials during each phase of the
battery’s operations. This is the most important
heat source responsible for the reversible heat
generation caused by the chemical reactions in the
battery. As a result, the battery voltage and SOH
cannot be simulated correctly as they are directly
dependent on the battery temperature, making the
battery components un-useful for battery
parameter estimation and other applications that
are temperature-dependent and require accurate
simulation results. This includes studies and
testing related to battery life and battery
management systems (BMS).

• The circuit-based models are usually not scalable
and are accurate only for the narrow ranges of
specified parameter values. Any changes in the
battery parameters such as capacity, thermal,
applied current, etc., would cause large distortions
in the simulation results.

In this article, two modeling approaches, namely the
equivalent circuit approach, and the electrochemical
approach are used to develop the battery models in
MapleSim. All of the modeling issues mentioned
above are either remedied or improved in the battery
models presented in this article, depending on the
modeling approach. The equivalent circuit models are
upgraded based from the work (Chen and Rincón-
Mora, 2006). Several new features are added to the
original representation, allowing the models to capture
the thermal effects, degradation, and electrode

DOI
10.3384/ecp15118469

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

469

chemistries precisely. This approach is described in
details in Section 2. The electrochemical battery
models are based on the porous electrode foundation
proposed by (Newman and Tiedeman, 1975; Doyle et
al., 1996). The symbolic and numerical techniques for
handling the electrochemical battery equations and
incorporating the equations into MapleSim are
thoroughly discussed in Section 3. Section 4 and
Section 5 discuss thermal effects and battery
degradation, while Section 6 presents the structure of
the Modelica implementation of the models in
MapleSim. The battery library includes a parameter
estimation worksheet programmed in Maple to allow
the users to validate the battery parameters based on
experiment measurements. Section 7 provides
information about this, and examples outlining some
key applications of battery models are presented in
Section 8.

2 Equivalent electrical circuit models

Circuit-based models attempt to model the
electrochemical physics of a battery using only
electrical components. These component models can
easily be incorporated into any system models, and are
generally not computationally expensive.

Although the circuit models abstract away the
electrochemical physics happening in the battery,
circuit-based models are close to mapping the physics
onto circuit elements.

The base structure for the equivalent-circuit models
for lead-acid, nickel-metal hydride, and lithium-ion
cells in MapleSim was developed based on the work of
(Chen and Rincón-Mora, 2006). The internal structure
of the model is shown in Figure 1. There are two main
linear circuits in the diagram: (1) the RC circuit at the
bottom models the instantaneous, short, and long-time
responses of the battery; and (2) the large capacitor at
the top models the battery capacity.

Figure 1. Schematic diagram of an equivalent circuit battery
model.

The two circuits are non-linearly coupled using the
following equations which describe the battery
behaviors as the function of the battery SOC:

���� = �1 ��� = �2 exp(�3����) + �4 + �5���� + �6����2
+ �7����3 ������� = �8 exp(�9����) + �10) ��ℎ��� = �11 exp(�12����) + �13 ��ℎ��� = �14 exp(�15����) + �16 ����� = �17 exp(�18����) + �19 ����� = �20 exp(�21����) + �22

(1)

For all materials, the open-circuit potential (OCP)

equation is curve-fitted based on experiment
measurements. As an example, Figure 2 shows the
OCP versus SOC for some materials of a lithium-ion
battery. Example curve-fitted equations for the OCPs
of LiCoO2 and graphite are shown in Equations (16)
and (17) in Appendix A.

Figure 2. Open-circuit potentials for lithium-ion cathode
materials.

3 Electrochemical models

Figure 3. Anatomy of a lithium-ion cell (Dao et al., 2012).

Electrochemical models explicitly represent the
chemical processes that take place in the battery. These
types of models describe the battery physics in great
details, making them the most accurate of all the
battery models.

Developing Mathematical Models of Batteries in Modelica for Energy Storage Applications

470 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118469

3.1 Governing equations

Mathematical descriptions for electrochemical
processes in most rechargeable cells are derived from
the porous and concentrated solution theories proposed
by (Newman and Tiedeman, 1975; Doyle et al., 1996)
which mathematically describe charge/discharge and
species transport in the solid and electrolyte phases
across a spatial cell structure. The porous electrode
theory uses partial differential equations (PDE) to
describe the electrochemical processes. In general,
these PDEs are derived based on Fick’s law of
diffusion for the active material concentration, Ohm’s
law for electrical potential distributions, and the Nernst
and Butler-Volmer equations. In this article, the PDEs
governing a lithium-ion cell in 1D spatial structure will
be used as an example (see Figure 3).

The PDEs that describe the changes in Li+
concentration in solid and liquid phases due to the
gradient changes in the diffusive flow of Li+ ions are
described by: ����� =

���2 ��� ��2 ����� � (2)

and � ����� =
��� ����� ����� �+ �(1 + �+)� (3)

Charge conservation in the solid phase of each
electrode can be described by Ohm’s law as � �2Φ���2 = ��� (4)

Combining Kirchhoff’s law with Ohm’s law in the
electrolyte phase yields: −���� �Φ��� − ���� �Φ��� +

+
2������� (1− �+)

� ln ���� = � (5)

The Butler-Volmer equation describing the
relationships between the current density,
concentrations, and over-potential is given by: � = 2����,��� − ��,�����0.5���,�����0.5��0.5

× �exp �0.5��� �� − exp�−0.5��� ���

(6)

These partial differential algebraic equations
(PDAEs) are defined separately for each of the positive
and negative electrode regions, and coupled with each
other by the continuity in the boundary conditions. In
total, 14 non-linear PDAEs are used to describe the
behaviors of a lithium-ion cell. More details on battery
equations can be found in (Newman et al., 1975; Doyle
et al., 1996; Dao et al., 2012; Seaman et al., 2014)

3.2 Model reduction

The traditional methods for solving the battery PDAEs
were mainly based on the classic finite difference
techniques, which approximate continuous quantities

as being constant within discrete evenly-spaced
intervals along the spatial axis, x, and approximate the
derivatives based on a Taylor series expansion. The
end result is a large set of hundreds or even thousands
of linear differential equations (DEs) which makes
solving the whole battery system in real-time
extremely difficult.

The approach for handling the battery PDEs
implemented in MapleSim is different. Our approach is
to use the symbolic computation strength of Maple®
2015 to approximate the PDEs using Galerkin’s
method (Dao et al., 2012; Seaman et al., 2014) to
produce fast simulating, yet accurate, models. The idea
behind this method is to find the approximate
numerical solution to a non-linear PDE using a set of
orthogonal basis functions, and convert the PDE into a
set of coupled ordinary differential equations (ODEs)
based on temporal-spatial separation techniques. The
resulting ODEs are small in size and are continuous,
making the battery model they form more numerically
stable and faster to solve.

Using the liquid phase concentration equation in Eq.
(2) as an example, we start off with the spatial
decomposition and allow time-varying coefficients as ��,����(�, �) = ���(�)��(�)

�
�=1 (7)

where N is the number of node points, ��(�)’s are the
basis functions, and ��(�)’s are the unknown functions
of time to be solved for. The basis functions, ��(�)’s,
must be orthogonal to ensure the resulting ODEs are
linearly independent from each other.

Inserting approximate solution in (7) into the
original PDE in (2) gives: ��(�, �) = ����(�)

d��(�)
d��

�=1 +

−�����d2��(�)

d�2 ��(�) + �(1− �+)� ≈ 0

�
�

(8)

This function is known as the residual. In Galerkin’s
method, we replace the condition that the residual
should be approximately zero, with the condition that
the residual should be orthogonal to the set of basis
functions. The Galerkin techniques result in a set of
ODEs which, when solved, give the approximate
numerical solution, of the time-varying unknowns.

The reduced equations produced as the result of the
Garlekin approach are then converted into Modelica to
integrate with MapleSim using the Modelica
component generation functionality in Maple.

4 Thermal effects

Modeling thermal effects in battery is crucial for many
applications such as for testing and modeling the BMS,
cooling system control, battery degradation, energy

Session 5D: Electrical Systems

DOI
10.3384/ecp15118469

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

471

consumption in automotive/mobile devices, etc.
Currently, several commercial libraries such as those
developed by AIT and Modelon, model battery thermal
behaviors by only looking at the irreversible heat
generation due to the ohmic thermal loss caused by the
battery’s internal resistance. This approach neglects the
most important heat source – the reversible heat due to
the chemical reactions in the battery electrodes.

Thermal effects are incorporated in both
electrochemical and equivalent circuit battery
components using the following lumped thermal
equation: ���� d�

d� = ���� − ���+ �� ������ − ����� �
+ �2���� + ℎ�����(�� − �)

(9)

In the above equation,
����� and

����� are the entropy of

reaction which are dependent on the electrode
materials.

The entropy of reaction for each electrode chemistry is
measured from experiments and integrated into the
battery components using a lookup table. The entropy of
reaction curves for some of the chemistries for a lithium-
ion cell can be seen in Figure 4. MapleSim’s lithium-ion
cell component includes detailed electrochemical
properties for 14 cathode chemistries and 3 anode
chemistries, covering most of the commercially available
lithium-ion electrode materials. The complete list of
cathode and anode materials for lithium-ion cells
supported by MapleSim 2015 is shown in Table 1 and
Table 2 in Appendix B. The variety of the electrode
materials allows the model to be used in different
applications in both automotive and portable devices.

Figure 4. Entropy changes for lithium-ion cathode materials.

For all thermal models, the effects of cell
temperature on the diffusion and ionic conductivity
coefficients are modeled by Arrhenius’ equation as: �� = ��,��� exp ����� � 1���� − 1��� (10)

���� = �������� exp ����� � 1���� − 1��� (11)

���� = � exp ���� � 1���� − 1��� (12)

5 Capacity fade

The ability to model the degradation or capacity fade
of rechargeable batteries during operation is critically
important for predicting a battery’s lifetime, and for
designing and testing the BMS. In MapleSim, the
battery life is modeled as the degradation caused by the
formation of a solid-electrolyte interphase (SEI) layer
in the negative electrode during charge (Pinson and
Bazant, 2013). The following equation is used to
describe the SEI thickness growth during charge:

d�
d� =

��������1 +
������������ (13)

Both the diffusion coefficient, �����, and the
reaction rate, ����, are temperature-dependent and can
be described by Arrhenius’ equation as: ����� = �0 exp �− ����� (14) ���� = �� exp �− ����� (15)

The capacity fade is incorporated in both lithium-ion

and NiMH cells for both electrochemical and
equivalent circuit components based on the same
degradation mechanism. The calculated battery SOH is
dependent on the applied current, depth of discharge,
temperature, and the cycling time. The degradation
model also outputs the increase in the battery’s internal
resistance due to the formation of the SEI film. ���� =

�� (16)

The parameters in the life model for lithium-ion cell
have been estimated to closely fit the experiment
measurements from a Lithium Iron Phosphate (LFP)
found in (Liu et al., 2010). A comparison shows that
the differences between simulation results and
experiment measurements are small, as shown in
Figure 5.

Figure 5. The life model (solid line) closely fits experiment data
(dotted line) at 15oC and 60oC. Data from (Liu et al., 2010) with
LiFePO4 electrode.

Developing Mathematical Models of Batteries in Modelica for Energy Storage Applications

472 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118469

An example of the simulation results of a single
lithium-ion cell being cycled for 20 hours at 80%
Depth of Discharge (DOD) is shown in Figure 6.

Figure 6. Degradation of LiCoO2 electrode after cycling for 20
hours at 80% DOD. Plots show battery voltage, temperature,
thickness of SEI layer, and state of health.

6 Modelica implementation

The battery code has been implemented based on the
Modelica Standard Library specification 3.2.1. The
order-reduced battery equations were converted
directly into Modelica using Maple commands.

6.1 Single cell

Both the electrochemical and equivalent circuit cell
components are based on the following structure:

model BatteryComponent “Descriptions”

public // main parameters

 parameter Real Ncell = 1 “Number of cells in series”;

parameter Boolean useCapacityInput = false “True means enable capacity
input”;

 parameter Real CA(unit = “A.h”) = 1 “Battery capacity”;

RealInput Cin if useCapacityInput "Battery capacity input";

parameter Boolean includeDegradation = false;

// other electrochemical and thermal parameters

…

public // select electrode material

 parameter MaplesoftBattery.Selectors.Chemistry.Positive chem_pos;

 parameter MaplesoftBattery.Selectors.Chemistry.Negative chem_neg;

public // standard ports

 Voltage v;

 Current i;

 PositivePin p;

 NegativePin n;

public // optional heat models and input/output ports

 MaplesoftBattery.Selectors.HeatModel heatModel;

 RealInput Rint;

 RealOutput soc;

protected // protected parameters and internal variables

 …

equation // main battery equations

 …

end BatteryComponent;

The selectors for cathode and anode chemistries,

chem_pos and chem_neg, are implemented as
dropdown menus as shown in Figure 7, allowing the
user to select the electrode materials easily. A suitable
model for the electrochemical behaviors and thermal
effects of the cell will be used, depending on the choice
of the chemistry. Additionally, the user can incorporate
custom data for electrode chemistries and thermal
properties based on input signal or lookup tables.

Figure 7. Lithium-ion cathode chemistry selector in MapleSim.

Thermal effects are also part of the battery
components in MapleSim. There are three options for
the thermal model: isothermal, convection cooling,
and external heat port. The last option, external heat

port, allows the other thermal components to be
connected with the cell to simulate heat transfer
between the cell and other parts of a system, such as
heat transfer between the cells in a battery pack. If the
convection cooling option is selected, the cell will
exchange heat with an airflow through convection.

The battery degradation effects will be included in
the simulation if the useCapacityInput option is
selected. The battery model will output battery SOH in
this case.

In addition to the main inputs/outputs, the user can
turn on the input ports for the battery internal
resistance and capacity, allowing these effects to be
modeled based on a variable input or experiment
measurements. Figure 8 shows a lithium-ion
component with all the external ports turned on.

Figure 8. Ports of a battery component.

The battery components currently supported in
MapleSim are shown in Figure 9.

Session 5D: Electrical Systems

DOI
10.3384/ecp15118469

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

473

Figure 9. Battery components in MapleSim’s battery
component library.

6.2 Stack

The user can wire the individual cells to create a
stack model easily. This can be done using MapleSim’s
advanced graphical user interface or based on standard
Modelica descriptions. As an example, the Modelica
script for n lithium-ion cells wired in series as shown in
Figure 10 is written as follows:

model Main

public // cell definitions

Electrochem.LiIon Cell1(chem_pos = …, chem_neg = …);

Electrochem.LiIon Cell2(chem_pos = …, chem_neg = …);

Electrochem.LiIon Cell3(chem_pos = …, chem_neg = …);

…

Electrochem.LiIon Celln(chem_pos = …, chem_neg = …);

equation // cell connections

 connect(Cell1.p, …);

 connect(…, Celln.n);

…

 connect(Cell3.p, Cell2.n);

 connect(Cell2.p, Cell1.n);

end Main;

Figure 10. Lithium-ion cells connected in series.

7 Battery parameter estimation

The Battery Component Library in MapleSim includes
worksheets programmed in the Maple language, for
estimating battery parameters, based on experiment
measurements.

The global optimization technique of Differential
Evolution Algorithm is implemented in the worksheet
to effectively perform the search for multiple
parameters and find the best possible solution. This
algorithm is part of the Global Optimization Toolbox

in Maple and is powered by Optimus® technology
from Noesis Solutions.

Figure 11 and Figure 12 show the parameter
estimation results for a LiCoO2 (LCO) lithium-ion
battery based on two sets of test data.

Figure 11. Battery parameters used for curve fitting.

The plots in Figure 12 show that the simulation
results closely resemble experiment data.

Figure 12. Simulation results (solid line) for battery parameter
identification closely resemble experiment data (dotted line).

8 Applications

The structure and robustness of the battery components
make them useful for many applications.

Example 1:

The example in Figure 13 shows an electric vehicle
powered by a 30Ah Lithium Iron Phosphate (LFP)
battery pack which has a maximum voltage of 390V
when fully charged. The LFP cathode and Lithium
Titanate (LTO) anode are chosen for their good
thermal stability. The model also features an
asynchronous induction motor. The combined
efficiency of the motor and power electronics is
modeled using an efficiency map, which allows the

Developing Mathematical Models of Batteries in Modelica for Energy Storage Applications

474 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118469

simulated vehicle’s energy consumption to be realistic.
The battery pack is air cooled, using thermal
parameters defined through a parameter block. The
lithium-ion component outputs key information about
the battery’s operation such as SOC, temperature,
voltage, and current values, as the vehicle follows the
EPA highway drive cycle.

Figure 13. MapleSim model of an electric vehicle with an LFP
lithium-ion battery.

The simulation results in Figure 14 show the vehicle
speed and battery SOC. The controller does a good job
in controlling the vehicle’s speed. Depending on the
direction of the vehicle’s speed, the motor works in
motoring mode. When the vehicle slows down, the
motor becomes an electrical generator, which captures
the brake energy to recharge the battery through re-
generative braking.

 (a) (b)

Figure 14. Vehicle speed (a) and battery SOC (b).

Example 2:

The following example (Figure 15) shows the
simulation of the thermal exchange between lithium-
ion cells connected in a series/parallel structure. The 6
cells used in the model exchange heat between the
adjacent cells that are in contact with them through
thermal conductivity.

The differences in cell temperatures result in an
imbalance in the cell voltages (i.e., some cells have
lower voltages than the other cells), causing the
currents through the series strings to vary (see Figure
16). In extreme cases, the “weak” cells (i.e., cells
having lower voltages) can become over-heated due to
short-circuiting and have to be remedied using a
balancing current. The stack voltage is shown in Figure
17.

Figure 15. Thermal exchange in battery pack wired in
series/parallel configuration.

 (a) (b)

Figure 16. Current through each string of cells connected in
series (a) and cell temperatures (b).

Figure 17. Stack voltage.

9 Conclusion

In this paper, we have shown two methods of
generating battery model. While equivalent electrical
models attempt to model the electrochemical physics
of a battery using only electrical components, the

Session 5D: Electrical Systems

DOI
10.3384/ecp15118469

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

475

resulting battery component, which is computationally
inexpensive to incorporate into system models, has
many limitations.

Electrochemical models on the other hand, are the
most accurate because they describe the physics of a
battery by explicitly representing the chemical
processes that take place within it. Starting with PDEs
to describe these electrochemical processes, symbolic
techniques are then applied to approximate the PDEs
using Galerkin’s method, to arrive at the final set of
reduced equations.

Capacity fade is incorporated into both the
equivalent circuit and electrochemical battery
components, with simulation results showing that
battery life achieved by the components is a close fit
with experiment measurements. The battery
components also incorporate thermal effects, and
include Maple language-based worksheets for battery
parameter estimation, based on experiment
measurements.

The battery components were implemented based on
the Modelica Standard Library specification 3.2.1, and
commercialized as part of the Battery Component
Library in MapleSim™. The battery library also comes
with a parameters identification worksheet which
ensures a high level of fidelity in the battery
components, making them suitable for a wide range of
applications.

References

M. Chen and G. Rincón-Mora. Accurate Electrical Battery
Model Capable of Predicting Runtime and I-V
Performance. IEEE Trans. On Energy Conversion.

21(2):504-511, 2006.

T.-S. Dao, C.P. Vyasarayani, and J. McPhee. Simplification
and Order Reduction of Lithium-Ion Battery Model
Based on Porous-Electrode Theory. Journal of Power

Sources, 198:329-337, 2012.

M. Doyle, J. Newman, C. Schmutz, and J.M. Tarascon.
Comparison of Modeling Predictions with Experimental
Data from Plastic Lithium Ion Cells. Journal of the

Electrochemical Society, 143(6):1890-1903, 1996.

M. Einhorn, F.V. Conte, C. Niklas,, H. Popp, and J. Fleig. A
Modelica Library for Simulation of Electric Energy
Storages. The 8

th International Modelica Conference,
2011.

J. Gerl, L. Janczyk, I. Krueger, and N. Modrow. A Modelica
Based Lithium Ion Battery Model. The 10

th International

Modelica Conference, 2014.

P. Liu, J. Wang, J. Hicks-Garner, E. Sherman., S.
Soukiazian, M. Verbrugge, H. Tataria, J. Musser, and P.
Finamore. Aging Mechanisms of LiFePO4 Batteries
Deduced by Electrochemical and Structural Analysis.
Journal of the Electrochemical Society, 157(4):A499-
A507, 2010.

J. Newman and W. Tiedeman. Porous-Electrode Theory
with Battery Applications. AIChE Journal, 21(1):25-44,
1975.

M.B. Pinson and M.Z. Bazant. Theory of SEI Formation in
Rechargeable Batteries: Capacity Fade, Accelerated
Aging, and Lifetime Prediction. Journal of the

Electrochemical Society, 160(2):A243-A250, 2013.

A. Seaman, T.-S. Dao, and J. McPhee. A Survey of
Mathematics-Based Equivalent-Circuit and
Electrochemical Battery Models for Hybrid and Electric
Vehicle Simulation. Journal of Power Sources. 256:410-
423, 2014.

Modelon Battery Library [Web]:
http://www.modelon.com/products/modelica-
libraries/battery-library-release-information/

List of symbols � specific surface area [m2m-3] �� factor for reaction rate equation [m s-1] ����� Bruggeman’s coefficient �� concentration in electrolyte phase [mol m-3] �� concentration in solid phase [mol m-3] ��,��� maximum concentration in solid phase [mol m-3] ��,���� surface concentration in solid phase [mol m-3] �0 diffusion coefficient at standard conditions [m2s-1] �� diffusion coefficient [m2s-1] ��,��� reference diffusion coefficient [m2s-1] ���� electrolyte diffusion coefficient [m2s-1] �� activation energy [J mol-1] ��� activation energy for diffusion [J mol-1] ��� activation energy for diffusion [J mol-1] �� activation energy for ionic conductivity [J mol-1] � applied current [A] � wall-flux of ions [mol m2s-1] � reaction rate constant [mol (mol-1m3)3/2] ���� rate constant of SEI formation [m s-1] � molar mass of SEI layer [kg mol-1] � radius of intercalatin particle [m] � ideal gas constant [J K-1mol-1] � thickness of SEI layer [m] � time, [s] �+ transference number in the electrolyte � battery temperature [K] ����� temperature at standard conditions [K] � main dimension across the cell sandwich [m] �� basis function � porosity of electrode Φ� electrical potential in solide phase [V] Φ� electrical potential in electrolyte phase [V] � Specific conductivity coefficien [m A
-1

] ���� effective ionic conductivity of electrolyte [S m-1] � over-potential [V] �� time-dependent variable of the i-th basis function ���� density of SEI layer [kg m-3] � electronic conductivity of in solid phase [S m-1]

Developing Mathematical Models of Batteries in Modelica for Energy Storage Applications

476 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118469

Appendix A

OCP equations for LiCoO2 cathode and LiC6 anode:
 �� = (−3.234− 638.136� + 2387.637�2 − 4027.7467�3 + 4106.484�4− 2790.517�5 + 1292.901�6 − 401.8703962�7 + 79.910�8− 9.1764�9 + 0.463�10)/(−1.411− 160.70� + 604.048�2 − 1008.0656�3 + 1005.1301�4 − 663.87�5 + 299.134�6 − 90.922�7

+ 17.8147�8 − 2.032�9 + 0.1025�10)

(17)

 �� = 0.7222 + 0.1186� + 0.268�0.5 − 0.20114� +
0.2403�1.5 + 0.2808exp(0.90−

12.8265�)− 0.798exp(0.3818� − 0.4108)

(18)

In both equations, � indicates the battery SOC.

Appendix B

Table 1. List of cathode materials for Lithium-ion cells
supported by MapleSim.

Chemical composition
Common name,

where given

LiCoO2 LCO

LiFePO4 LFP

LiMn2O4 LMO

LiMn2O4 – low plateau

Li1.156Mn1.844O4

LiNi0.8Co0.15Al0.05O2 NCA

LiNi0.8Co0.2O2

LiNi0.7Co0.3O2

LiNi0.33Mn0.33Co0.33O2 NMC

LiNiO2

LiTiS2

LiV2O5

LiWO3

NaCoO2

Table 2. List of anode materials for Lithium-ion cells
supported by MapleSim.

Chemical composition
Common name,

where given

LiC6 Graphite

LiTiO2

Li2Ti5O12 LTO

Session 5D: Electrical Systems

DOI
10.3384/ecp15118469

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

477

478 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Average model of a synchronous half-bridge DC/DC

converter considering losses and dynamics

Michael Winter1 Sascha Moser1 Stefan Schoenewolf1 Julian Taube1

Hans-Georg Herzog1

1Institute for Energy Conversion Technology, Technische Universitaet Muenchen, Germany,
michael.winter@tum.de

Abstract

Nowadays, power electronic systems play a major
role in almost every large system. Due to the high
switching frequencies, the simulation of these de-
vices is computationally very expensive and not suit-
able for system simulation. Average models of these
power electronic systems are needed to simulate the
basic terminal characteristics of these devices with-
out the need to simulate every switching operation.
This paper describes a Modelica implementation of
a synchronous half-bridge converter for the use in
an automotive power net simulation as well as in
real-time environments. The model takes into ac-
count the losses in the semiconductors as well as
the dynamic behavior of the converter. For the
parametrization of the model, only the switching
frequency and some values from the datasheets of
the used components are required. To validate the
proposed model, an equivalent SPICE model is de-
veloped, serving as a reference model. The dynamic
behavior of the two models is compared using step
responses of the load current. The relative devia-
tion of the model’s output voltage compared to the
SPICE simulation is less than 2 %. Furthermore,
also the energetic behavior was investigated, and it
is shown that the proposed model provides good re-
sults for a wide operating area.

Keywords: power electronics, average model,
DC/DC converter, losses, acausal modeling

1 Introduction

DC/DC converters are used to convert a DC in-
put voltage into a DC output voltage with a higher,
lower or inverted value. In the automotive power
net, such power electronic circuits are used exten-
sively. Almost every electronic control unit (ECU)
has a DC/DC converter close to its terminals to the
power net side in order to compensate voltage fluctu-
ations and to supply the electronics with a constant

voltage. In addition, DC/DC converters are used
to control DC motors, to couple the 48V level with
the 12V power net or to stabilize the 12V power net
with an additional energy storage (Ruf et al., 2012).

In today’s product development processes, sim-
ulation is a very important step. With the help of
simulation, development cycles can be shortened and
costs can be reduced. When simulating power elec-
tronic systems, several engineering challenges have
to be solved. During the development phase, the
DC/DC converter is usually simulated with SPICE
(Simulation Program with Integrated Circuit Em-
phasis) or a similar software. The behavior of the
converter is primarily determined by the power semi-
conductors and passive components. The passive
components can be easily modeled in SPICE and the
power semiconductor manufacturers provide more or
less accurate models for their products. The ma-
jor advantage of a SPICE simulation is that the dy-
namic behavior and all loss mechanisms in a power
electronic system are taken into account. The sim-
ulation is computationally quite intensive, however,
the long computation times are not a big issue in this
development phase as only short periods of time are
considered and usually only one or a small number
of converters are simulated simultaneously.

For system simulation however, these models are
not suitable for two reasons. On the one hand, in
contrast to Modelica, SPICE does not meet the re-
quirements of multi-domain simulation. There are
already approaches to translate SPICE models into
the Modelica language (Majetta et al., 2011) and it
also has been shown that Modelica is in principle
suitable for simulation of power electronics (Glaser
et al., 1995). None of these approaches solves the
second challenge, that the calculation of the switch-
ing operations would slow down the system simula-
tion, so it would be practically impossible to carry
out longer simulations. Another approach is to build
behavioral or loss models. The various loss mecha-
nisms in power electronic converters are well under-
stood and can be described by algebraic equations

DOI
10.3384/ecp15118479

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

479

(Giuliani et al., 2011; Gragger, 2011). However, this
type of modeling neglects the dynamic behavior of
the passive components.

2 Objectives and Approach

This paper describes an average model of a syn-
chronous half-bridge converter in continuous con-
duction mode, considering the converter’s dynamics
and losses. In future work, the model will be used
both in the Modelica-based automotive power net
simulation environment (Ruf et al., 2013) as well as
in real-time operation in an automotive power net
test bench (Kohler et al., 2010). For parametriza-
tion of the model, only the switching frequency and
the datasheet parameters of the power semiconduc-
tors, the inductance, and the capacitors are needed.
The model is validated by means of an equivalent
SPICE model.

3 The Synchronous Half-Bridge
Converter

The converter model presented in this work is based
on a synchronous half-bridge converter as shown
in Figure 1. The fundamentals presented in this
chapter are well known and documented in liter-
ature (Kazimierczuk, 2008; Erickson and Maksi-
mović, 2001), as well as in application sheets pro-
vided by the semiconductor manufacturers (Vishay,
2002). The converter consists of a high-side switch
S, a low-side switch S̄, an inductor L, and capacitors
at the input and output. Basically it is a standard
buck or boost converter topology with the freewheel-
ing diode replaced by a second switch in order to
reduce conduction losses. Furthermore, the topol-
ogy becomes bidirectional by this change where the
voltage v1 is always higher than the voltage v2. The
direction of the energy flow can be controlled by the
duty cycle D.

i1

S
S̄

L

C1 C2

i2

v1 v2

Figure 1. Topology of a synchronous half-bridge

3.1 General equations for the syn-
chronous half-bridge

The two switches are controlled by complementary
pulse width modulated signals with the switching

frequency fS . The duty cycle D relates in the fol-
lowing always to the high-side switch S and is defined
as follows:

D =
ton

TS

=
ton

ton + toff

= fS · ton (1)

The transfer equations for a loss-less half-bridge con-
taining no storing elements such as inductors or ca-
pacitors are the same as for an ideal DC-transformer:

v2 = D ·v1 (2)

i2 ·D = −i1 (3)

In order to obtain a transformer considering the
ohmic and the switching losses, equation (2) is re-
placed by a power balance equation that interrelates
input power, output power and power dissipation:

P1 +P2 −PL = 0 (4)

The load dependent losses of the half-bridge are
composed of the losses of the high-side and the low-
side switch. In each switch, conduction losses occur
and depending on the mode, also switching losses.

PL = PL,S,cond +PL,S,sw +PL,S̄,cond +PL,S̄,sw (5)

The load dependent loss mechanisms in the semi-
conductors are presented separately in the follow-
ing two subsections. For switching losses, the turn-
on and turn-off times of the power semiconductors
have a major impact. In this work, the simplify-
ing assumption is made that both switches are the
same and the driver circuit has an ideal behavior,
providing similar rise and fall times trise and tfall.
Thus, switching times are simply a function of the
the total gate charge Qg, the operating voltage of
the gate-drive circuit Udrive and the sum of the gate
driver’s output resistance, the gate series resistance
and the gate’s input resistance, called Rg,total.

trise = tfall =
Qg ·Rg,total

Udrive

(6)

In addition the continuous charging and discharg-
ing of the semiconductor’s gates causes losses which
have to be covered by the gate driver. These losses
are a function of the total gate charge Qg,total, the
driving voltage Vdrive and the switching frequency.

PL,Gate = Qg,total ·Vdrive ·fS (7)

3.2 Loss equations for the synchronous
half-bridge in buck mode

In buck mode the high-side switch is obligatory, so
conduction and switching losses occur:

PL,S,cond = RDS,on · i2

2
·D (8)

PL,S,sw = 0.5 ·v1 · (−i2) · (tfall + trise) ·fS (9)

Average Model of a Synchronous Half-Bridge DC/DC Converter Considering Losses and Dynamics

480 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118479

The low-side switch does not have to switch the cur-
rent but supports the loss reduction in the commu-
tation path. For simplicity it is assumed that losses
through the conducting diode during the dead times
and the reverse recovery effect can be neglected, so
here only conduction losses occur:

PL,S̄,cond = RDS,on · i2

2
· (1−D) (10)

PL,S̄,sw = 0 (11)

3.3 Loss equations for the synchronous
half-bridge in boost mode

The low-side switch is the primary switch during
boost mode operation, the losses are described by
following equations:

PL,S̄,cond = RDS,on · i2

1
· (1−D) (12)

PL,S̄,sw = 0.5 ·v2 · (−i1) · (tfall + trise) ·fS (13)

The high-side switch is part of the commutation
path, so there are only conduction losses:

PL,S,cond = RDS,on · i2

1
·

(1−D)

D2
(14)

PL,S,sw = 0 (15)

4 Models

In this chapter, the proposed Modelica model of
a synchronous half-bridge converter is presented.
Then the equivalent model is implemented in SPICE
and serves as a reference model in chapter 5.

4.1 Modelica implementation of the
synchronous half-bridge converter

The implementation of the model of the proposed
half-bridge converter is based on the averaged cir-
cuit model for a two-switch converter (Erickson and
Maksimović, 2001). The model is obtained by tak-
ing the basic structure of the real converter in-
cluding the inductance and capacitances. Then,
the switches have to be replaced by an averaged
switch model, as shown in Figure 2. The elec-
trical connectors p1 and n1 provide the terminals
for the high-voltage side, the connectors p2 and
n2 for the low-voltage side, and the connectors pa

and na for the auxiliary power supply. The auxil-
iary power supply can optionally be charged with
a constant power loss in order to take the power
for the converter’s control into account. The trans-
fer function and the loss equations of the semicon-
ductors of the synchronous half-bridge are imple-
mented in a separate model named AveragingHalf-
Bridge. This sub-model contains equations (3) - (7)

Figure 2. Model of the proposed synchronous half-bridge
converter

and is able to swap between the two equation sys-
tems (8) - (11) for buck and (12) - (15) for boost
mode, depending on the actual current direction.
The AveragingHalfBridge is derived from the base
class Modelica.Electrical.Analog.Interfaces.TwoPort
of the Modelica Standard Library which also defines
the directions of the currents and voltages of the
equation system. The sub-model receives the actual
duty cycle D of the half-bridge as a real input and
is parametrized with the following values:

• The switching frequency fS of the half-bridge.

• The on-resistance RDS,on and the total gate
charge Qg,total of the MOSFET, both values can
be taken from the MOSFET’s datasheet.

• The operating voltage of the gate-drive circuit
Udrive and total gate resistance Rg,total, de-
termined by design and the MOSFET’s and
driver’s parameters from the datasheet.

The dynamic behavior of the converter is de-
termined by the input and output capacitors, the
inductance and the respective series resistances of
these components:

• The capacitance C1 and the equivalent series
resistance of the capacitor RC1 on the high-
voltage side of the converter.

• The inductance L and the equivalent series re-
sistance of the inductor RL.

• The capacitance C2 and the equivalent series re-
sistance of the capacitor RC2 on the low-voltage
side of the converter.

4.2 SPICE model as reference for vali-
dation

For the validation of the Modelica model, a SPICE
model for comparative simulations is implemented
which is shown in Figure 3. This model takes the
switching behavior of the real converter into ac-
count. The passive components of the converter

Session 5D: Electrical Systems

DOI
10.3384/ecp15118479

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

481

like input and output capacitors and inductor are
directly inserted from the SPICE library. These
components are parametrized to the same compo-
nent values as for the Modelica model in subsec-
tion 4.1, taking into account the ohmic resistance
of the inductor and the equivalent series resistance
of the capacitors. For the MOSFETs and anti-
parallel freewheeling diodes SPICE models provided
by the semiconductor manufacturers are used. The
gate drivers are modeled by time varying voltage
sources. An additional resistor corresponds to the
gate driver’s output resistance and gate series resis-
tance whereas the gate’s input resistance is provided
by the model of the MOSFET. Dead time as well
as rise and fall times of the gate driver are set by
the voltage shape of the voltage sources. As all pa-
rameters and submodels of the SPICE model are se-
lected very close to physical realizations, this model
is well suited to validate the considerably more ab-
stract model from subsection 4.1 in the following
section.

Figure 3. SPICE model of the proposed synchronous
half-bridge converter

5 Validation of the proposed
model

For parametrization of the models a synchronous
half-bridge converter for a typical 48V / 12V con-
version has been designed. The converter consists
of the MOSFET IPP052N08N5 (Infineon, 2014),
driven by UCC27210 (Texas Instruments, 2014)
the inductance SER2918H-682 (Coilcraft, 2014) and
60 µF/3 mΩ-capacitors, as well as a Schottky diode
MBR20100CT (On Semiconductor, 2015) for the
SPICE simulation. The values that are required
for the parametrization of the model can be taken
from the data sheets and are listed in Table 1. The
SPICE simulations were carried out with the soft-
ware LTSPICE IV by Linear Technology. The sim-
ulation environment for the Modelica model is Dy-
mola by Dassault Systèmes. During the simulations
for the validation, the significant speed advantage
became apparent. For the computation of an inter-

val of 100 ms the SPICE model takes about 10 min,
whereas the Modelica model takes less than 100 ms
using an interval length of 10 µs.

Table 1. Model parameters

Name Value Description

fS 200 kHz Switching frequency
RDS 5.2 mΩ On-Resistance of the switch
Qg 42 nC Total gate charge
Rg,total 2 Ω Sum of all gate resistances
Vdrive 12 V Gate-drive voltage
L 6.8 µH Inductance of the inductor
RL 2.6 mΩ Resistance of the inductor
C1,C2 60 µF Capacity of C1 and C2

RC1,RC2 3 mΩ ESR of C1 and C2

5.1 Dynamic behavior

In this subsection the dynamic behavior of the pro-
posed model shall be compared with the SPICE
model on the basis of step responses on the load
current. Therefore, the duty cycle is kept constant
and the load resistance is changed to a different load
scenario.

10

12

14

V
ol

ta
ge

[V
]

0

20

40

C
u
rr

en
t

[A
]

6 7 8 9

−1

0

1

Time [ms]

V
ol

ta
ge

D
ev

ia
ti

o
n

[%
]

Figure 4. Output voltage and inductor current step re-
sponse of the Modelica(blue) and the SPICE model(red)
to a step in the load resistance during buck mode and the
relative voltage deviation between the Modelica to the
SPICE model

Average Model of a Synchronous Half-Bridge DC/DC Converter Considering Losses and Dynamics

482 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118479

The first scenario examines the buck operation.
The input v1 is fed by a constant voltage source
of 48 V with an internal resistance of 10 mΩ, the
duty cycle is constant at 25 %. In steady state, the
load resistance is reduced to 0.5 Ω and after another
2 ms increased to 2 Ω. The result of the simula-
tion is shown in Figure 4. The output voltage and
the inductor current are illustrated in the upper two
graphs, red for the results of the SPICE simulation,
blue for the Modelica model. The lower graph shows
the relative error of the output voltage that has a
maximum relative error of 1.5 % (absolute 200 mV).

The second scenario examines the boost opera-
tion. Now the input is v2 and is fed by a constant
voltage source of 12 V also with an internal resis-
tance of 10 mΩ, the duty is held constant at 25 %.
In steady state, the load resistance is reduced to 8 Ω
and after another 2 ms increased to 24 Ω. The re-
sult of the simulation is shown in Figure 5. The
output voltage and the inductor current are illus-
trated in the upper two graphs, red for the results of
the SPICE simulation, blue for the Modelica model.
The lower graph shows the relative error of the out-
put voltage that has a maximum relative error of
1.5 % (absolute 720 mV).

46

48

50

V
ol

ta
ge

[V
]

−30

−20

−10

0

C
u
rr

en
t

[A
]

6 7 8 9
0

0.5

1

1.5

2

Time [ms]

V
ol

ta
ge

D
ev

ia
ti

on
[%

]

Figure 5. Output voltage and inductor current step re-
sponse of the Modelica(blue) and the SPICE model(red)
to a step in the load resistance during boost mode and
the relative voltage deviation between the Modelica to
the SPICE model

5.2 Efficiency and losses

In this section, the resulting efficiency of the pro-
posed model shall be compared with the efficiency
of the SPICE model. Figure 6 shows the efficiency
map of the Modelica model in buck mode as a func-
tion of the output current and the duty cycle. The
input is fed by a constant voltage source of 48 V.

0 20 40 60 80 0.2
0.4

0.6
0.8

0.8

1

I[A]
D

η

Figure 6. Efficiency map of the proposed Modelica
model in buck mode. The input voltage is fixed at 48 V.

The result is the typical efficiency map of a
DC/DC converter, having a bad efficiency at low
currents, an maximum in the lower quarter of the
output current and a subsequent slight lowering of
efficiency at higher loads, as there ohmic losses are
the dominating effect. Figure 7 shows the absolute
deviation

∆η = ηDymola −ηSP ICE (16)

between the SPICE and the Modelica simulation. It
can be seen that in the range of high duty cycles and
moderate to high output currents, the absolute de-
viation is lower than two percentage points. At very
low duty cycles there is a trend towards a higher
deviation as well as in the area of very low output
currents. The negative deviation in the low-current
range may be caused by the fact that charging ef-
fects of the MOSFET’s and diode’s parasitic capaci-
tors are not yet implemented in the Modelica model.
Reasons for the positive deviation in the range of
higher currents are the not yet implemented dead-
time losses as well as the effects of ringing in the
switching node.

6 Conclusion and Outlook

In the previous considerations, a model of a syn-
chronous half-bridge converter was presented. The
model represents losses and the dynamic behavior
given by inductors and capacitors of the converter,

Session 5D: Electrical Systems

DOI
10.3384/ecp15118479

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

483

0 20 40 60 80 0.2
0.4

0.6
0.8

−4

−2

0

2

4

·10−2

I[A]
D

∆
η

Figure 7. The absolute efficiency deviation ∆η of the
SPICE model against the proposed Modelica implemen-
tation

without the need of simulating every switching pro-
cess of the power semiconductors. This approach re-
duces the calculation effort of the model by several
magnitudes. The model can be parametrized easily
by using datasheet parameters of the components
used in the design. To validate the Modelica model,
an equivalent model in SPICE is used which is much
closer to physical reality as it takes the switching be-
havior of the converter into account and uses more
detailed semiconductor models provided by the man-
ufacturers. The deviation between both models con-
cerning dynamic behavior during load steps was in-
vestigated. It was shown that there is a maximum
relative error of 1.5 % in the output voltage of the
model in reference to the SPICE model. Further-
more, also the energetic behavior was investigated.
It was shown here that the proposed model provides
good results for specific operating areas. Still there
are some effects which should be considered in fu-
ture examinations in order improve the accuracy of
the model. These are for example losses because of
the reverse recovery effect of the diodes or losses due
to ripple currents in the capacitors.

References

Coilcraft. Datasheet - Shielded Power Inductors -
SER2900, 2014.

Robert W. Erickson and Dragan Maksimović. Fundamen-
tals of power electronics. Kluwer Academic, Norwell,
Mass., 2nd ed edition, 2001. ISBN 0-306-48048-4.

Harald Giuliani, Claus-J. Fenz, Anton Haumer, and Han-
sjörg Kapeller. Simulation and validation of power
losses in the buck-converter model included in the
smartelectricdrives library. In The 8th International
Modelica Conference, Technical Univeristy, Dresden,
Germany, Linköping Electronic Conference Proceed-

ings, pages 369–374. Linköping University Electronic
Press, 2011.

J. S. Glaser, F. E. Cellier, and A. F. Witulski. Object-
oriented power system modeling using the dymola
modeling language. In PESC ’95 - Power Elec-
tronics Specialist Conference, pages 837–843, 1995.
doi:10.1109/PESC.1995.474914.

Johannes Gragger. Computation time efficient models of
dc-to-dc converters for multi-domain simulations. In
Matthias Schmidt, editor, Advances in Computer Sci-
ence and Engineering. InTech, 2011. ISBN 978-953-
307-173-2. doi:10.5772/15813.

Infineon. Datasheet IPP052N08N5, 2014.

Marian Kazimierczuk. Pulse-width modulated DC-DC
power converters. Wiley, Chichester, U.K., 2008. ISBN
978-0-470-77301-7.

Tom P. Kohler, Thomas Wagner, Andreas Thanheiser,
Christiane Bertram, Dominik Buecherl, Hans-Georg
Herzog, and Joachim Froeschl. Experimental investi-
gation on voltage stability in vehicle power nets for
power distribution management. In 2010 IEEE Vehi-
cle Power and Propulsion Conference (VPPC), pages
1–6, 2010. doi:10.1109/VPPC.2010.5729168.

Kristin Majetta, Sandra Böhme, Christoph Clauß, and
Peter Schneider. Msl electrical spice3 - status and
further development. In The 8th International Mod-
elica Conference, Technical Univeristy, Dresden, Ger-
many, Linköping Electronic Conference Proceedings.
Linköping University Electronic Press, 2011.

On Semiconductor. Datasheet - MBR20100CT - Switch-
mode Power Rectifiers, 2015.

Florian Ruf, Alexander Neiss, Andreas Barthels, Tom P.
Kohler, Hans-Ulrich Michel, Joachim Froeschl, and
Hans-Georg Herzog. Design optimization of a 14 v
automotive power net using a parallelized direct al-
gorithm in a physical simulation. In 13th Interna-
tional Conference on Optimization of Electrical and
Electronic Equipment (OPTIM), 2012.

Florian Ruf, Markus M. Schill, Andreas Barthels, Tom P.
Kohler, Hans-Ulrich Michel, Joachim Froeschl, and
Hans-Georg Herzog. Topology and design optimiza-
tion of a 14 v automotive power net using a modified
discrete pso in a physical simulation. In 2013 IEEE Ve-
hicle Power and Propulsion Conference (VPPC), pages
1–7, 2013. doi:10.1109/VPPC.2013.6671740.

Texas Instruments. UCC2721x 120-V Boot, 4-A Peak,
High Frequency High-Side and Low-Side Driver (Rev.
F), 2014.

Vishay. DC-to-DC Design Guide. Vishay Siliconix, 2002.

Average Model of a Synchronous Half-Bridge DC/DC Converter Considering Losses and Dynamics

484 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118479

Modeling and Simulation of Liquid Propellant Rocket Engine

Transient Performance Using Modelica

Liu Wei1 Chen Liping1 Xie Gang1 Ding Ji2 Zhang Haiming2 Yang Hao2
1School of Mechanical Science & Engineering, Huazhong University of Sci. & Tech., China,

liuwei20@foxmail.com,{chenlp,xieg}@tongyuan.cc
2Suzhou Tongyuan Software & Control Technology Co., Suzhou, China,

{dingj,zhanghm,yangh}@tongyuan.cc

Abstract

This paper presents a liquid propellant rocket engine
(LPRE) model library in Modelica language, which
contains component models such as pipes, valves,
tanks, turbo-pumps, combustion chambers, nozzles,
injectors, gas generators, etc. These component models
can be applied to establish a variety of liquid rocket
engine systems with the capability of predicting engine
transient performance during the startup, shutdown and
regulation processes. Typical gas-pressurized liquid
propellant engine system and turbo-pump liquid
propellant engine system are modeled in the paper.
Some simulations and analyses are performed to
validate the models qualitatively. All the modeling and
simulations are implemented in MWorks (Zhou, 2006),
which is a modeling and simulation platform that fully
supports Modelica.

Keywords: liquid propellant engine, thermo-fluid,

startup and shutdown transient

1 Introduction

Liquid propellant rocket engines are widely used and
play a very important role in aerospace. The function
of a LPRE is to generate thrust through chemical
reactions, which usually release thermal energy from
the chemical energy of the propellants. The pressure
generated from the thermal energy imparts a
momentum to the reaction products. Then a momentum
in the opposite direction is imparted to the rocket and
propels a vehicle in space. A LPRE system usually
consists of thrust chamber assembly, propellant feed
system, turbine-drive system (for turbo-pump LPRE),
and propellant control system, etc. A liquid propellant
rocket engine is very complex and difficult to design
and analyze because of many coupled subsystems and
their extreme working conditions. Physical
experiments under various conditions are also
expensive. Hence it’s critical to utilize models to
facilitate the design and analysis process of LPRE. The
control equations of LPRE dynamic motion are
implicit and nonlinear differential algebraic equations.
The structure and components of one LPRE often

differ from those of another. Therefore, it is a big
challenge for engineers to build LPRE models that are
of high generality and reusability, flexibility. Most of
the existing models for LPRE (Karimi, 2003; Ruth,
1990; Matteo, 2012; Tabrizi, 2013; Karimi, 2006) lack
generality, reusability or flexibility. A usual completed
system model can only be applied to some specific
LPRE and cannot be modified directly to be applied to
others. Besides, the modeling process is difficult and
time consuming, because engineers have to consider all
of the numerical problems in equations solving
procedure.

Modelica (Fritzson, 2010) is an object-oriented
equation-based modeling language, which is capable of
multi-domain modeling and has a strong software
component model with structure for creating and
connecting components. Modelica allows engineers to
use mathematics to define system behaviors naturally
and have powerful structuring capability to deal with
complex interconnected systems. Engineers often do
not need to consider numerical solving problem, thanks
to the Modelica developing environment. These
properties make Modelica suitable for the modeling
and simulation problems of large scale and complex
LPRE system. This paper focuses on modeling general
library and efficient simulation of LPRE using
Modelica.

2 Implementation of component models

We try to make best use of capabilities of Modelica
when developing the liquid propellant rocket engine
library. Firstly, we determine the objective of the
library. A system model is expected to predict the flow
rate, pressure and temperature of the components in a
LPRE system during the whole running time. The
dynamics of LPRE mainly consists of fluid dynamics,
heat transfer, thermal dynamics and combustion, all of
which should be taken into consideration.

According to the natural border in the LPRE system
and object orientation, we divide a system into
interacting components. Object orientation is viewed as
a structuring tool to handle the topological structure
description of a LPRE system. In order to decrease

DOI
10.3384/ecp15118485

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

485

complexity, we assume that the decomposed
components are independent physical functional
objects, including pipes, valves, tanks, turbo-pumps,
combustion chambers, nozzles, injectors, gas
generators and bottles. While subject decomposition
(Jensen, 2003) is also performed to obtain base models,
which collect common properties of a class of models
and are physical phenomenon units. The main base
models in LPRE library consist of control volume,
flow model, ideal gas property, heat convection, heat
conduction and combustion model. These base models
cannot be simulated directly, and are inherited and
aggregated by more than one component model for
reusing.

The components models exchange information
through connectors. The connectors ensure that
components are independent of each other and work
under a set of boundary conditions provided by
connectors. The connectors of component models
should present the properties of interactions between
these components in a real physical LPRE system.
Thus it would be easy and natural to connect
components. The LPRE library contains four
connectors for fluid flow, heat flow, 2D rotation and
2D translation respectively. In order to make the LPRE
library consistent with Modelica Standard Library
(MSL) and increase versatility, the four kinds of the
connectors in the LPRE library are the same with those
in MSL. Using base models, connectors and
mathematical models of physical components, detailed
component models are developed and implemented.

3 Description of mathematical models

In this chapter, the mathematical models of some most
important components are presented, including
combustion chamber, nozzle, pipe, valve, pump and
turbine.

3.1 Combustion chamber

The thrust chamber is a key subsystem of a LPRE. The
combustion chamber is a part of the thrust chamber
where the chemical reaction of the propellant takes
place to generate hot gas products. It is assumed that
liquid propellants react and change to hot gas after a
constant delay time and gas flow in combustion
chamber is adiabatic. The control equations of a
bipropellant combustion chamber are described as
follows.

 ox ox

oxi

dm m
m

dt 
  (1)

 fu fu

fui

dm m
m

dt 
  (2)

 g ox fu

go

dm m m
m

dt 


   (3)

1 ox fum m

g

m mdK K

dt m 
 

  
 

 (4)

 gdm d RTdp RT p p dV

dt V dt RT dt V dt
   (5)

 (,)g i m

dRT
RT p K RT

dt
   (6)

Here ݉௢௫ is the oxidizer mass, ݉௙௨ is the fuel mass, ሶ݉ ௢௫௜and ሶ݉ ௙௨௜ are the inlet mass flow rates of oxidizer
and fuel, ሶ݉ ௚௢ is the outlet mass flow rate of gas
products, ܭ௠ is the propellants mixture ratio, p is the
pressure inside chamber, RT is the product of gas
constant and temperature of gas staying in combustion
chamber, ܴ ௜ܶሺ݌, ௠ሻ is the product of gas constant andܭ
temperature of gas products defined as a function of
pressure and mixture ratio, ߬௚ is the stay time of gas in
chamber, V is the volume of chamber. The control
equations of a gas generator resemble those of the
combustion chamber.

3.2 Nozzle

The nozzle is also a part of a thrust chamber, whose
function is to accelerate gases and create high exhaust
velocity. It is assumed that the gas flow through the
nozzle is an isentropic expansion. Nozzle expansion
ratio is defined as follows:

1

1

1

2

1
=

1
1

1

c

ee

t

e

c

p

pA

A
p

p
















 
  

 
          

 (7)

Here, ܣ௘ and ܣ௧ are the flow areas at nozzle exit and
throat, ݌௖ and ݌௘ are the pressure at chamber and
nozzle exit, ߛ is the specific heat ratio.

Velocity at nozzle exit is given by:

1

2
1

1
e

e c

c

pg
RTv

p






 
          

 (8)

Here, R is the gas constant, ௖ܶ is gas temperature in
combustion chamber.

The mass flow through a nozzle is given by:

1

12

1
t c

c

A p
m

RT







 

   
 (9)

The thrust force is defined as follows:
 ()

e e e a
F mv A p p   (10)

3.3 Pipe

Pipes are interconnect components that carry fluid to
the intended components. Pressure drop between inlet

Modeling and Simulation of Liquid Propellant Rocket Engine Transient Performance Using Modelica

486 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118485

and outlet of a pipe is determined by the following
equation.

2 2

2 2

l v v
p

d
     (11)

Here ߣ is the friction coefficient, ߦ is the coefficient
of the local head loss, l and d are length and diameter
of the pipe, ߩ and v are density and velocity of fluid in
the pipe.

3.4 Valve

Valves control fluid flows. Every LPRE uses some of
them. Liquid valves are governed by the following
familiar equation, where the flow rate is the function of
pressure drop and flow area:

 2dm C A p  (12)

Here ܥௗ is the flow rate factor.

For a gas valve, when
12

1
o

i

p

p






 
   

, we have

2 1

2

1
i i o o

d

i i

p p p
m C A

p p


  



 
               

 (13)

When
12

1
o

i

p

p






 
   

, then

2

12 2

1 1
i i

d

p
m C A

 
 

 
    

 (14)

3.5 Pump

A pump pressurizes propellants and deliver them to
extended components in a turbo-pump propellant feed
system. Centrifugal pump is the most widely used
pump type. Performance maps for head and power are
used in the pump model. The head h is evaluated by
following equations:

2

ref

q

ref

nn
h h q

n n

   
        

 (15)

3

ref

q

ref ref

nn
P P q

n n




   
        

 (16)

 P  (17)

 p

pq

P
 


 (18)

Here, n is the rotational speed, q is the volume flow
rate, P is the power consumption, ߱ is the angular
velocity, ߬ is the torque, ߟ௣ is the pump efficiency, ݄௤ሺ	ሻ and ௤ܲሺ	ሻ are functions obtained from the
performance map, ref is the reference value.

3.6 Turbine

A turbine gets energy from the expansion of high
temperature and high pressure gas, and provides power
to the pump. The expansion is assumed to be isentropic.
The control equations of a turbine is presented as
follows:

1

1
1

o

i

i

p
W RT

p






 
          

 (19)

t t

u

C Wm

     
  

 (20)

Here, W is the power of gas expansion, ߟ௧ ቀ௨஼ቁ is the

turbine efficiency defined as a function of the velocity
ratio obtained from the performance map. The mass
flow rate in a turbine is evaluated by the familiar
equation in the gas valve model.

4 Simulation and analysis of system

Liquid propellant rocket engines area classified into
two major types according to their propellant feed
system, namely gas-pressurized liquid propellant
rocket engine and turbo-pump liquid propellant rocket
engine. Typically, engines with small propellant
quantities have a gas-pressurized propellant feed
system, and large engines required weight
considerations choose a turbo-pump propellant feed
system. The startup and shutdown phases of a LPRE
are very complex. The engine components are working
under extreme operating conditions, and about half of
the engine failures occur during the startup and
shutdown. Thus the prediction of the transient
characteristics of a LPRE is important and necessary to
engine safety and reliability. In the next sections, we
model two typical kinds of the LPRE, and perform
simulations to obtain the transient characteristics of the
LPRE.

4.1 Gas-pressurized liquid propellant rocket

engine

A gas-pressurized LPRE consists of gas bottles,
propellant tanks, pipes, valves, thrust chamber heads,
injectors, combustion chambers, nozzles and igniters.
According to the typical physical structure of gas-
pressurized LPRE, a system model is quickly built by
using component models in the LPRE model library.
Figure 1 depicts the diagram view of the gas-
pressurized LPRE system model. Figure 2 shows the
combustion chamber pressure. Two thrust chambers
start up and shut down at different times. There is a
pressure pulse during the start-up, because the oxidant
and the fuel flow into the combustion chamber
asynchronously. Thus it is important to control the
difference between the times when two propellants
flow into combustion chamber initially, in order to

Session 7A: Aerospace Applications 1

DOI
10.3384/ecp15118485

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

487

decrease the maximum of the pressure pulse. When the
shut-down signal is given, the propellant control valves
are closed. Pressure drops immediately, because the
combustion lacks fuel and oxidant. The result also
implies that the operations of one thrust chamber
directly influence the steady pressure of another.

Figure 1. A gas-pressurized LPRE system Model

Figure 2. Pressure in the combustion chambers

4.2 Turbo-pump liquid propellant rocket engine

In contrast to the gas-pressurized LPRE, the turbo-
pump LPRE has Turbo-pumps and a gas generator, but
has no gas bottles. Figure 3 depicts the diagram view
of a turbo-pump LPRE system model.

Figure 3. A turbo-pump LPRE system Model

Figures 4, 5 and 6 show the turbine shaft speed,
pump outlet pressure, combustion chamber pressure
and gas generator pressure during the start-up. Firstly,
the igniter drives the turbine to run and the turbine
rational speed rises very quickly. The pump outlet
pressure, as the function of the turbine rational speed,
also increases. The pumps then deliver propellants to
the combustion chamber and gas generator. After the
gas generator is ignited, it drives the turbo-pump in
turn. Due to couple relations between gas generator
and turbo-pump, rational speed and pressure exceed the
nominal ones, and then decrease and stabilize to the
steady states.

Figure 4. Rotational speed of turbine

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

time / s

p
re
ss
u
re

 /
M
P
a

combustion chamber 1
combustion chamber 2

0 2 4 6 8 10
0

500

1000

1500

2000

2500

3000

3500

4000

4500

time / s

sh
a
ft

 s
p
e
e
d

 /
 (r
a
d
/s
)

Modeling and Simulation of Liquid Propellant Rocket Engine Transient Performance Using Modelica

488 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118485

Figure 5. Pump outlet pressure

Figure 6. Pressure in combustion chamber and gas
generator

Some interesting features of the shut-down process
are depicted in Figures 7, 8 and 9. When the shut-down
signal is given, the propellant control valves are closed.
The gas generator lacks of propellants very soon, so the
pressure in it begins to drop quickly. The rotational
speed of turbine shaft decreases slowly, because the
power delivered by gas generator to drive turbine get
smaller and there exists resistance. There are residual
propellants in the pipelines, thus pressure oscillations
in the combustion chamber and gas generator are
observed.

Figure 7. Pressure in combustion chamber and gas
generator

Figure 8. Rotational speed of turbine

Figure 9. Pump outlet pressure

0 2 4 6 8 10
0

2

4

6

8

10

12

time / s

p
re
ss
u
re

 /
 M

P
a

oxidant pump

fuel pump

0 2 4 6 8 10
0

1

2

3

4

5

6

7

time / s

p
re
ss
u
re

 /
 M

P
a

combustion chamber

gas generator

46 48 50 52 54 56
0

1

2

3

4

5

6

time / s

p
re
ss
u
re

 /
 M

P
a

combustion chamber

gas generator

48 50 52 54 56 58 60
500

1000

1500

2000

2500

3000

3500

4000

time / s

sh
a
ft

 s
p
e
e
d

 /
 (r
a
d
/s
)

48 50 52 54 56 58 60
0

1

2

3

4

5

6

7

8

9

time / s

p
re
ss
u
re

 /
 M

P
a

oxidant pump

fuel pump

Session 7A: Aerospace Applications 1

DOI
10.3384/ecp15118485

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

489

5 Conclusions

We have established a component model library for
liquid propellant rocket engine that can be used to
build LPRE system models efficiently and simulate
engine transient performance. In this paper, we give the
control equations of some most interesting components
of LPRE. The general method for applying the
characteristics of Modelica, especially object-
orientation and connection mechanism, to the modeling
procedure of LPRE is presented. Gas pressurized
LPRE and turbo-pump LPRE system models are build
using component models from the established LPRE
library. The transients during engine start-up and shut-
down are simulated and analyzed. Due to extreme
working conditions and uncertainty, the start-up and
shut-down processes are very complex. Our LPRE
library provides an efficient tool to study the transient
properties. In the future, we will validate the system
model with existing experimental results and improve
accuracy.

Acknowledgements

The paper is supported by the Key Project of National
High Technology Research and Development Program
(No. 2013AA041301).

References

Fanli Zhou, Liping Chen, Yizhong Wu and et al. MWorks: a
modern IDE for modeling and simulation of multi-domain
physical systems based on Modelica. Proceedings of the
5th International Modelica Conference, Vol. 2: 725-731,
2006.

Peter Fritzson. Principles of object-oriented modeling and
simulation with Modelica 2.1. John Wiley & Sons, 2010.

H. Karimi, A. Nassirharand, and M. Behesht. Dynamic and
nonlinear simulation of liquid-propellant engines. Journal
of propulsion and power, 19(5): 938-944, 2003.

E. K. Ruth and R. L. Ahn. Advanced Liquid Rocket Engine
Transient Model. 1990. AIAA-90-2299.

Francesco Di Matteo, Marco De Rosa, and Marcello Onofri.
Transient Simulation of the RL-10A-3-3A Rocket Engine.
Space Propulsion Conference. 2012.

Mahyar Naderi Tabrizi, Seyed Ali Reza Jalali Chime, and
Hassan Karimi. Modeling and Simulation of Open Cycle
Liquid Propellant Engines. Journal of Science and
Engineering, 1(1): 17-34, 2013.

H. Karimi, and A. Nassirharand. Application of a Simulation
Algorithm for Dynamic analysis of a Liquid Propellant
Engine. Journal of Aerospace Science and Technology,
3(1): 23-30, 2006.

Jakob Munch Jensen. Dynamic Modeling of ThermoFluid
Systems. Diss. Ph. D. thesis, Technical University of
Denmark, 2003.

Modeling and Simulation of Liquid Propellant Rocket Engine Transient Performance Using Modelica

490 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118485

Model Based Specifications in Aircraft Systems Design

Martin R. Kuhn1 Martin Otter1 Tim Giese2
1Institute of System Dynamics and Control, German Aerospace Center (DLR e.V.), Germany,

{martin.kuhn,martin.otter}@dlr.de
2Airbus operations GmbH, Germany, tim.giese@airbus.com

Abstract

This application paper describes the concept and needs
on model based specifications in order to specify the
basic behavior of aircraft systems and methods to
check the requirements. It is demonstrated how it can
be implemented by recent Modelica based libraries,
especially with the new Modelica_Requirements
library. Two new FFT-based requirement blocks are
proposed to allow full coverage of the specification.

Keywords: executable specification, requirements,

aircraft system design, FFT-based requirements.

1 Introduction

Executable specifications are computer algorithms
written in an appropriate specification language with
the purpose of demonstrating and verifying the
compliance of the input-output behaviour of the model
subject to the model specifications. In aircraft design,
executable specifications demonstrating and verifying
the behaviour of models can be seen as an important
tool to make the co-work between airframers and
suppliers quicker and more efficient, as they allow
frequent testing and early validation of subsystems and
systems interaction.

Similarly, requirement modelling allows the
specification and testing of demands on signals which
are generated by a system or the model of a system.
Together, executable specifications and requirement
models enable a well-defined specification of a system.
Both methods allow testing against the hardware or
software implementation. They strongly benefit from
methods for monitoring and cross-checking.

While the traditional aircraft design process is based
on document based specifications only, a model
supported design process based on executable
specifications and requirement models is thought to
improve the process in terms of quality and time
(Becker and Giese, 2011). In contrast to the traditional,
more software oriented usage of executable
specifications, here they were used in a more general
way also for specification of physical models and
behavior. In the publication the concept was evaluated
with MathWorks based tools, but specification models
may include physical models built with Modelica. In
order to have a one-tool solution which allows better

coupling of the physical models to requirement blocks,
alternatives to this approach with Modelica based
methods were investigated in the “CleanSky, Systems
for green operation” project (Cleansky, 2015).
Associated tools were developed in parallel in the
CleanSky subproject ModelSSA by Dassault Systèmes,
supervised by DLR-SR and in the ITEA2 “MODRIO”
project with several partners1. This paper reviews the
concept of executable specifications for aircraft
systems2 where the executable specifications are seen
as a bigger package of specifications, test cases,
demonstrators and monitoring functions. The
implementation is solely based on Modelica.3

2 Review of model based design process

For aircraft systems design, the current design process
is a document-based development. The behaviour of
the system to be developed is defined by textual
requirements, pseudo code, tables, block diagrams,
logic diagrams and mathematical expressions. General
demands applicable to several (sub-)systems are
generalized in industrial standards, for example MIL-
STD-704F (MIL704F, 2004) or airframer specific
standards, for example the AirBus Directives (ABD).
Document-based development has severe disad-
vantages: There is the danger of misunderstandings and
misinterpretations of functional requirements since
they are written in natural language which could result
in incorrect system behaviour. Furthermore, the
specified system behaviour cannot be simulated.
Therefore, contradicting requirements can hardly be
recognized before realization of the system. Also for
multi-system functions and interfaces the validation is
missing and therefore the mutual influences between
systems may not be treated correctly in the early design
cycles. This results in late detection of design errors
when integrating the systems together. In addition, in
case of requirements on signals and requirements on
systems interacting with plants, the signal processing
and plant test models may be implemented differently

1 MODRIO: https://itea3.org/project/modrio.html
2 In this paper aircraft systems (e.g. a drive) and components of a system
(e.g. controller) are both called “system” to simplify notation.
3 Section 2-4 is based on the internal reports (Kuhn et. al., 2014; Becker
et.al., 2013; Becker, 2014).

DOI
10.3384/ecp15118491

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

491

between the airframer and different suppliers. In any
case there might be redundant work since the same
monitoring functions need to be implemented by
several suppliers or at the airframer for testing.
In contrast, by a Model Based Design Process (MBDP)
the system to be developed is specified by models
representing the functional and/or physical behavior.
The models can be delivered with test environments
and monitoring functions which are modeled by the
airframer. To prevent confusions and double work, it is
essential to tightly link the documentation and the
model based specification. This can be achieved by
automatic generation of the documentation from the
model and its embedded requirements and optionally
with linkage of models to requirements in databases.
By this approach, misunderstandings and lack of
information is avoided since the models provide a
mathematically precise definition and allow interactive
simulation and investigation. While the model should
cover all aspects of the systems’ functionality, there is
no necessity to express all of it in a single model. A
combination of methods as

• flow diagram notation,

• state transition notation,

• physical modelling, plus the afore-mentioned

• written requirements
can be used. This methodology was evaluated in
(Becker and Giese, 2011). The efficiency of the model
based approach was analyzed in (Becker et al., 2013).
In (Becker, 2014) the model-based design process was
tested qualitatively against the former development
programs. It could be shown that the model based
specification process results in reduced cost for
development of control systems. Those are significant
advantages from a project management perspective.

3 Elements of an executable specification

model

In the following we will introduce representative
requirements in the style of (Tunnat, 2011) and
(MIL704F, 2004) for the Environmental Control
System (ECS) and for the electrical system.

For a model-based design process, the requirements
can be grouped into two different layers:

• The high level requirements.
• The functional requirements.

The high level requirements treat specifications on the
exterior behavior of the system. The formulation is
based on engineering knowledge and top level
demands. The high level requirements include

(1) Demands on the implementation and realization.
Those requirements generally are not stated by use
of models. A requirement can be stated as in R1.

R1: The engine’s total probability of failure must be

smaller as 1e-9.

(2) Demands on the signal and state behavior. Such
requirements are stated by requirement blocks that
assess the specific requirements using observation
variables from a physical model as part of the
executable specification. Requirements may be
specified based on industrial standards. A
requirement can be stated as in R2 and R3.

R2: In normal operation mode, the envelope of the

RMS value of the 400 Hz AC voltage after a voltage

transient is given by the following figure and has to

remain in the final limits.

R3: In normal operation mode, the distortion

spectrum of the variable frequency AC voltage has to

remain below the limits given by the following figure.

In contrast to the high level requirements, the
functional requirements define the realization and
logic of the system to be realized in an abstract but
executable language. For example, R4 and R5:

R4: In case Ditching is not active, the OVBDV shall be

in its PO position and the BUV shall be in its FO

position, five seconds after Override has been

activated

R5: For a two-position valve defining a valve flap the

following functional behaviour shall apply:

If the system is in state “open” indicated by

“full_open”=true, a commanding signal “closing”

without indication “fault” shall result in state “close”.

In case of “fault” the system shall go into condition

“open_fault” with indicator “stuck_open”=true.

Reciprocal rule for state “close” with indicator

“full_close”, command opening and fault condition

“close_fault” indicated by “stuck_close”

In these examples, the logic is functional as no details
on the physical realization is given.

0 0.05 0.1 0.15 0.2
100

200

300

400

Time from onset of Transient [s]
V

o
lt
s
 [

R
M

S
]

10
1

10
2

10
3

10
4

10
5

10
6

-40

-30

-20

-10

0

10

Frequency [Hertz]

d
is

to
rt

io
n
 A

m
p
lit

u
d
e
 [

d
B

V
]

Model Based Specifications in Aircraft Systems Design

492 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118491

A fully model based design process relies on
extensive modelling to express demands by functional
modelling, supplied test environments, model of the
physical system with its components, test it against the
specification and check the result. The center in charge
of the aircraft or system specification may cover all or
a selection of the following tasks to express the model
based specification for a component (or system) which
shall be developed:

Table 1: Elements of model based specification process

1 Specification of the components functional and
procedural behavior by models.

2 Simple physical model to demonstrate the desired
behavior of the component and allow simulation
with physical test environments.

3 Physical modelling of the testing environment.
4 Expression of requirements and modes of

operation by requirement monitors.
5 Definition of interfaces to physical states,

environmental states, logical states.
6 Mapping of requirements to the interfaces of the

functional models.
7 Providing property monitors with built in signal

operations for requirements which demand
advanced processing of interface signals-

8 Providing indicators and automatic
documentation of warnings and faults.

9 Make tools available for managing requirements
and documentation

In the systems realization phase of the supplier and
afterwards in the systems integration phase of the
airframer there are additional demands for
• Systematic testing of system models.
• Clearance of requirements.
It is the task of the supplier to realize the system and
harmonize the behavior of the executable specification
and the developed system. For this, the model of the
developed system can be embedded into the test model,
being optimized and checked by the monitors.

4 Realization with tools of MathWorks

The aforementioned approach was evaluated by Airbus
Germany at hand of a controller design of the ECS.
The model of the controller could be best modelled by
hierarchical state charts and stateless flow charts.

The modeling platform used several packages and
tools of the MathWorks product family. The physical

system of the ECS system architecture was modelled
with Simulink. Alternatively, Modelica models can be
imported in Simulink. For the hybrid state space
modeling of component models, Stateflow was used
(MathWorks, 2015b).

The functional specifications of the controller
make use of Stateflow as well. The state diagrams give
a detailed description on the systems behavior,

including start sequence, transitional conditions and
entry conditions when changing to adjacent states.

For managing of requirements, no ready to use
product was found which met the demands. Thus a
special requirement manager was commissioned by
Airbus (toolbox developed by Silver Atena4).

The requirement manager summarizes and
documents the requirements, tracks the requirements
changes and allows some coverage analysis on
requirements with predefined test scenarios. It relies on
additional special properties block which are inserted
to the local functional model. For this part the
“Verification and Validation” toolbox (MathWorks,
2015a), the Airbus requirement manager, and
Simulink’s “Report Generator is used.

An example of a model based specification for an
ECS controller is shown in Figure 1 formally defining
Requirement 5. The pneumatic network is the physical
plant which has to be stabilized by a controller to be
developed. The pneumatic system acts as environment
model and is realized by Simulink blocks. The
preliminary model of the controller can be
implemented in a very simple manner at this stage. The
only aim is that the physical system can be simulated,
even if the simulation results violate requirements. For
example, in case a physical demonstrational model is
needed, the controller could be implemented as a P
controller while the supplier’s realization may rely on a
sophisticated model-based controller.

In addition to the preliminary controller - and more
important - the functionality of the controller (R5) is
defined by additional Stateflow diagrams. They are the
result of a pre-design at the airframer. In the right part
of Figure 1, requirements for the behavior in case of
errors are defined. The system can be simulated and
checked interactively by variation of the input states of
the Stateflow system.

No special monitors for high level requirements
were implemented.

After implementation of the functional executable
specification, the formal verification of requirements
can be realized with the “Design Verifier” block set
from MathWorks. An example is shown in Figure 2
formally specifying requirement R4.

The blocks in the left calculate the requirement
while the „statement“ block is linked to a requirement
checker and monitoring system. The system supports
documentation and formal verification of the
requirements. Other special monitors for high level
requirements can be implemented with Simulink
blocks or Simulink S-functions.

4 http://www.silver-atena.de

Session 7A: Aerospace Applications 1

DOI
10.3384/ecp15118491

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

493

Figure 2: Formal specification of requirement R4 using
the Design Verifier from MathWorks.
Figure and text from (Tunnat, 2011).

5 Realization with Modelica

This section shows how to use Modelica for modelling
and checking of requirements to provide the necessary
functionality of Table 1. In general, the transition from
the paper based design process to model based
specification, executable specifications and automated
testing is mostly a matter of the development
philosophy rather than of the technical realization.

Functional requirements can be most conveniently
specified in Modelica by synchronous state machines
(Elmqvist et al., 2012). In Figure 3 the example of
Figure 1Fehler! Verweisquelle konnte nicht

gefunden werden. is shown, implemented with a
Modelica synchronous state machine.

Figure 3: Modelica synchronous state machine of the
example in Figure 1.

The realization and user friendliness is mostly
equivalent to a Stateflow implementation in this case.
However, the Modelica synchronous state machines
have a more rigorous definition to avoid modelling
errors. For example, there may be assignments to the

same variable in different state machine “states” (such
as in state “close_fault” in Figure 3. These state
machine states are “mutually exclusive” and at one
sample instant the code of only one of these states is
executed. Furthermore, in parallel state machines,
exactly one assignment to the same variable at the
same sample instant is allowed. In essence, Modelica
and a Modelica tool only allow one single assignment
to the same variable at one sample instant, in order to
always have deterministic, well-defined behaviour. On
the other hand, in Stateflow several assignments to the
same variable are possible.

Alternatively, one may express the system in
Modelica by behavior trees which follow a slightly
different concept. Behaviour trees can be used for
modelling of logical behavior and especially mission
planing. Complex missions are built up using atomic
tasks. Tasks can query conditions from system states or
trigger actions, e.g. by sending commands to the
communication bus. For a detailed description of the
Modelica library used here, see (Klöckner, 2014).5 The
main advantage of behavior trees for executable
specifications is their standardized and intuitive
structure to express alternative paths. Plans are very
scalable and human-readable on all levels of the
hierarchy. It is their benefit and drawback at the same
time to be inherently memory- and loop-free. They
thus execute the correct task immediately after a restart
or online modification.

This is demonstrated in Figure 6 which is the
Modelica behavior tree implementation of the ECS
example of Figure 1. Depending on the Boolean input
variables fault and opening, one of the four conditions
open, close_fault, open_fault or close occurs. The logic
is like this: Starting always from the top, a selector
tries to execute one of the paths linked below, where
the preference is from left to right. The “sequence”
starts a sequence from left to right, in case the breaking
condition (II-Symbol) is true. For example in case of
“not opening”, the “selector” cannot take the left path
“sequence” which is blocked by “condition”. Instead
the right path to selector2 is tried. “sequence2” ends in
the action “open_fault” in case “faultyO” is un-blocked
by fault = true, and otherwise in “close”.

5 Different types of “behavior trees” in a Modelica context have
also been used in (Myers, 2010).

close

outer Boolean fully_close;

fully_close = true;

clause_fault

outer Boolean stuck_close;

stuck_close = true;

open_fault

outer Boolean stuck_open;

stuck_open = true;

open

outer Boolean fully_open;

fully_open = true;

2: fault

2: fault

3: opening and not fault

3: closing and not fault

“In case Ditching is not active, the OVBDV shall be in its

PO position and the BUV shall be in its FO position, five

seconds after Override has been activated.“

Figure 1: Model based specification at hand of an ECS example

Model Based Specifications in Aircraft Systems Design

494 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118491

Figure 4: Modelica behavior tree of ECS example in
Figure 1.

Another important demand of model based
specification are physical demonstrator models of the
system and modelling of test and environment models
(Table 1, demand 2 and 3). Obviously, Modelica is
very well suited for this part, due to the many available
physical modeling libraries, that are much more
intuitive to use than with only graphical input/output
block diagrams.

The expression of high level requirements can be
formulated in principle by any type of mathematical
operation which results in an expression for
requirement fulfilled/not fulfilled (or not yet
evaluated). For example in (Kuhn, 2011) Modelica
requirement models have been designed for band
constraint signals or frequency domain constraints. The

textual output of the requirement checking was based
on Dymola proprietary scripting and was missing
systematic output and documentation concepts.

In parallel to JTI activities, the European ITEA
projects EUROSYSLIB, OPENPROD, and their
successor MODRIO also identified a strong need for
requirements modelling. Their approach resulted in the
new Modelica_Requirements library (Otter et al.,
2015). One essential advantage of this library is that it
uses two- and three-valued logic to specify
requirements. It is then possible to distinguish whether
a requirement is satisfied, violated, or not tested during
a simulation. It could be demonstrated in the JTI
project, that the requirements library fulfills many
needs for formulation of executable specifications of
the electrical and the ECS system. In particular, for the
examples in this paper, the LogicalBlocks, the
TimeLocators and the ChecksInSlidingWindow have
been used.

Requirement R2 could be implemented with the
Modelica_Requirements library with several
BandDuration blocks. A more convenient approach is
sketched in section 5.2 by using a newly designed and
implemented “Funnel” block.

Frequency domain requirements, such as needed for
Requirement R3, cannot be defined with the current
Modelica_Requirements library. Therefore, new
requirement blocks have been developed based on the
Fast Fourier Transformation (FFT), see section 5.3.

An implementation of requirement R4 with the
Modelica_Requirements library is shown in Figure 5.
The requirement block “requirement_AVS_override”
displays the textual version of the requirement in its
icon and collects the status of all requirement blocks
during one simulation run. By this example it is also o

root root root

sequence sequence sequence

selector selector selector

?

condition condition

opening

input1

close_fault close_fault

sequence1 sequence1 sequence1

faultyC faultyC

fault

input2

selector1 selector1 selector1

?

open open open_fault open_fault

sequence2 sequence2 sequence2

faultyO faultyO

close close

selector2 selector2 selector2

?

during1

check

observation.OVBDV_FO

during2

check

observation.OVBDV_PO

and1

and

and2

and
not1

not

delayedRising1

AVS_override_and_not_ditching

delay rising

by

5 s

o_AVS

observation.AVS_override

o_ditching

observation.ditching

observation

In case Ditching is not active,

the OVBDV shall be in its PO position

and the BUV shall be in its FO position,

five seconds after Override has

been activated

requirement_AVS_override

AVS_override_and_not_ditching

Figure 5: Formal specification of requirement R4 with the Modelica_Requirements
library.

Session 7A: Aerospace Applications 1

DOI
10.3384/ecp15118491

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

495

demonstrated how to bind requirements to the physical
model: The general idea is to define observation
variables in Modelica records, as needed from a
physical system model (“observation” in Figure 5). Via
newly developed Modelica language elements the
actual values of the observation variables can be
inquired conveniently from the physicale system model
(Elmqvist et al., 2015). Figure 6 shows the final status
with the requirement model (lower left) and the system
model (upper part). The system model may be the
executable specification or the supplier’s model in the
verification phase.

Figure 6: Binding and assessment of ECS requirements.

The requirement model is linked to the system model
by the following instantiation of the requirement:

 Requirements.AVSRequirements Req1(
 observationName="controller",
 observation= Bindings.AVSRequirementFromController(
 controller))

Bindings.AVSRequirementFromController is a function to
map the variables from the controller to the
requirement record. observationName defines the name
of the target of the requirement. This is needed for
automatic documentation.

At the end of the simulation, the following log is
displayed:

--- 100 % of the requirements are satisfied ---
Requirements satisfied (1 of 1):
Controller(Req1.requirement_AVS_override):
In case Ditching is not active, the OVBDV shall

be in its PO position and the BUV shall be in

its FO position, five seconds after Override has

been activated

The current development stage allows to check in
every simulation run whether the defined requirements
are satisfied or violated (or are not tested).

The binding concept is flexible enough to bind
requirements to all instances of a class using the
experimental component iterators. For example in case
of multiple controllers, an iteration would map a
requirement to each controller.

For organization of functional expressions, there
exists no requirement manager similar to the Simulink

solution for Modelica yet. The Simulink tool
summarizes and documents the requirements, tracks
the requirements changes and allows coverage analysis
on requirements with predefined test scenarios. In the
MODRIO project, further developments are planned in
this direction.

5.1 Demonstration: Specification of hardware

As last example, the concept of a model based design
process relying on a model based specification shall be
demonstrated at hand of a realistic example of the
design of a generator. Alternatively to written
specifications, the airframer may deliver a model based
specification. The test model is shown in Figure 7 on
the right side (supply of linear resistive three phase
load and nonlinear rectified load to investigate the
harmonics in the AC line).

Figure 7: Demonstration of testing environment with
requirement models and signal monitors.

The availability of test models allows easy and uniform
implementation for all suppliers. Special operations on
signals needed for the requirements checking might be
also given as models. Here, the green block embeds an
FFT based requirements blocks, an alternative
realization (Kuhn, 2011) to the FFT block of section
5.3.
The requirements are stated by Modelica blocks. In this
case two requirement blocks are associated to the
model in the lower right corner which check the
requirements for the operating area of the DC voltage
and frequency content of the AC line voltage.

A primitive generator model might be supplied by
the airframer. This is replaced by the supplier by a
much more detailed model (dashed box in the left). By
this test environment, the generator model can be
tested and also optimized in relation to the
requirements.

printViolations

satisfaction: %

Model Based Specifications in Aircraft Systems Design

496 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118491

The model in the left lower corner triggers the
summary log of the requirement blocks. The output
together with the documentation of the test model and
the system model (generator) are valuable parts of a
proper industrial model delivery.

5.2 Transient Limits monitor

The “Funnel” block, displayed in the
figure to the right, allows checking of
transient time limits in funnel style.
The upper and lower limits are
defined via a table versus time. The
initial start of the time varying limits is triggered by an
initial overshoot of the limits. The initial limits are
defined by the final band. This funnel type limit may
be retriggered if one full period of the funnel style
limitation has gone by. The output y indicates the
satisfaction of the criterion. Further outputs are a
scaled distance to the limits and the time varying upper
and lower limits.

5.3 FFT-based frequency property monitor

Frequency based criteria are typical for industrial
standards of electrical systems but are not yet
supported in the Modelica_Requirements library. For
example, MIL-STD-704F (MIL704F, 2004) defines a
maximum distortion in the spectrum of the 270Volts
DC system.

Based on the implementation and practical
experience with the FFT monitoring block of (Kuhn,
2011), two FFT blocks were newly designed and
implemented. An example of the user’s view of the
new FFT block WithinAbsoluteFFTdomain is shown in
Figure 8. An alternative block with limits for total
harmonic distortion (THD) is shown in Figure 9.

Figure 8: Example of WithinAbsoluteFFTdomain block
for the inputs: � = � + � ∙ ��� �����+�.� ∙ ��� �����
(�� = � ��,�� = � ��) and condition = true.

The user interfaces were designed to allow
parameterization with a minimum of information and
display the amplitudes over the frequencies in the icon.

Figure 9: Example of WithinAbsoluteFFTdomain_THD
block with: � = � + � ∙ ������� +�.� ∙ �����(����)
(�� = � ��,�� = � ��, “pulse” is the rectangular pulse
function at frequency ��) and condition = true.

In the icon of WithinAbsoluteFFTdomain, the two
scalar parameters of this block are displayed, f_max –
the maximum frequency of interest for the user, and
f_res – the resolution of the frequency axis (so the
increment of the frequency axis). Typically, the user is
interested in a maximum frequency f_max that is an
integer multiple of some base frequency (e.g. 50 Hz
base for power distribution networks). The frequency
resolution should be selected in such a way, that the
spectral lines of particular interest are an integer
multiple of the resolution (in order to get the most
accurate result). In the example f_max = 4 Hz and
f_res = 1 Hz, so 5 frequency values are shown in
the icon (0, 1, 2, 3, 4 Hz). For numerical reasons, in
practice the resolution should be chosen high enough
to distinguish well between adjacent peaks in the
spectrum.

The constraints for the frequency amplitudes are
defined via a polygon based on a tabular parameter
input. Typically, there are two kinds of parameteri-
zations: Definition via absolute values for the
constraints and definition in relation to the magnitude
at a certain frequency. For relative definition, the user
is requested for the respective base frequency. In case
this frequency is not an integer multiple of the
frequency resolution, the frequency closest to it is
taken. With parameter searchInterval a search interval
around this base frequency is defined, where the
maximum peak in this region is taken as real base
frequency. For example for the 50 Hz net frequency of
the European power grid, the frequency may vary by
±0.2Hz in regular operation mode. After initialization,
the limits are displayed as red polygons in the icon

Whenever the Boolean input condition has a
rising edge, the Real input signal u is periodically
sampled with a sample rate automatically computed
from f_max and f_res and stored in a buffer. Once
“sufficient” values are stored in the buffer (for details,
see below), an FFT is computed, displayed in the icon
as bar plot and stored on file. Additionally, the distance

FFTdomain_C_THD

25

f_max f_res.

0.2 Hz

THD [pc]

48.3813

Session 7A: Aerospace Applications 1

DOI
10.3384/ecp15118491

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

497

to the amplitude boundary is computed. If at least one
amplitude is above the boundary, output y = Violated.
If all amplitudes are below the boundary, y = Satisfied,
and if the FFT has not yet been computed, y =
Undecided. In the example of Figure 8, y = Satisfied.

In case a falling edge of u occurs before sufficient
sample values are monitored or the simulation run is
terminated, then the FFT spectrum is approximated via
the partly-filled buffer with zeros for other values
(called “zero-padding” technique).

Standard tools/functions for FFT provide a different,
user-unfriendly parameterization. The mapping of the
parameterization of the WithinAbsoluteFFTdomain
block to the underlying standard FFT parameterization
is non-trivial and is shortly sketched:

In order that the amplitudes are computed by the
FFT with sufficient precision, the FFT computation
needs to be performed for a much larger frequency as
of interest for the user. In the block a fixed factor of 10
is used. So, if ���� = 4 Hz, then the FFT computation
uses internally a maximum frequency ����,��� ≥
40 Hz. The basic formulae for an FFT computation of
real numbers with even number of sample points are
summarized in equation (1):

 �� =
�� − 1�� ,

 � = �0,
���� ,

2���� ,⋯ ,
��
2
� ,∆�� = �(��)− ��� ,�� =

��
2

+ 1

����,�(��) =
1�� � ∆����−1

�=0 �−�2�� ���
 (1)

where

• �� is the sample period.
• �� is the number of sample points

• �� is the sample frequency �����,��� =
��2�

• ���� is the frequency resolution (f_res).

• �� is the number of frequency points
• ��� is the arithmetic mean of the signal
• ∆�� is the difference of the input signal with

respect to the arithmetic mean ��� .
• ���� is a complex number as function of a (real)

frequency �� , � ∈ [1. .��] and represents the FFT.

In order to be efficient, the original FFT algorithm by
Cooley and Tukey (Cooley, 1965) requires that the
number of sample points is an integer multiple of 2: �� = 2� , � = 1,2, … Newer algorithms allow more
prime numbers. The implemented blocks use the public
domain C-code KISS FFT (Borgerding, 2003). This
mixed-radix FFT code requires that the number of
sample points must be an integer multiple of 2, 3 and 5:

�� = 2�3�5� . For real signals, �� must be additionally
an even number.

The maximum frequency 10 ∙ ���� is now enlarged
so that the number of sample points �� fulfills the
above restrictions. The sample period �� is determined,
so that the frequency resolution �� ��⁄ has the required
value. These computations are performed with the
following Modelica code:

 // Compute best ns according to 10*f_max and f_resolution

 ns :=2*integer(ceil(10*f_max/f_res));

 // Make ns even
ns :=if mod(ns, 2) == 0 then ns else ns + 1;

// Find smallest ns that is even + expressed as 2^i*3^j*5^k

while true loop

 ns1 :=ns;
 while mod(ns1,2) == 0 loop ns1 :=div(ns1, 2);end while;
 while mod(ns1,3) == 0 loop ns1 :=div(ns1, 3);end while;
 while mod(ns1,5) == 0 loop ns1 :=div(ns1, 5);end while;
 if ns1 <= 1 then break; end if;
 ns :=ns + 2; // enlarge ns, but keep it even

end while;

// Compute other FFT variables
f_max_FFT = f_resolution*div(ns, 2);
Ts = 1/(2*f_max_FFT) "Sample period";
T = (ns - 1)*Ts "Simulation time";

To understand the numbers above beforehand, utility
function showNumberOfFFTpoints(..) is provided that
computes them. For example calling the function as

showNumberOfFFTpoints(f_max=2000, f_resolution=27);

results in the following output:

Desired:
 f_max = 2000 Hz
 f_resolution = 27 Hz

Calculated:
 Maximum frequency used = 20250 Hz
 Number of sample points = 1500 (=2^2*3^1*5^3)
 Sample period = 2.46914e-005 s
 Simulation time = 0.0370123 s

Note, that ����,��� = ��� − 1� ∙ �����������

=
��
2
∙ �����������

=
1500

2
∙ 27 Hz

= 20250 Hz

In the “advanced” tab access is given to parameters
less often used:
• SearchInterval (search interval around base

frequency)
• TerminateAfterFFT (When true, the simulation is

terminated after evaluation of the FFT)
• Parameterization of the “Window” type

In case the sampled interval does not match a multiple
length of the occurring waves, the spectrum would

Model Based Specifications in Aircraft Systems Design

498 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118491

suffer from this “discontinuity” of non-matching levels
at start and end point since the FFT assumes periodic
signals. This can be circumvented by multiplication of
the time series by a filter of the same length, called
“window function”. If this window function exhibits a
shape with zero at start and end and some maximum in
the middle, this discontinuity can be attenuated. By
choice of a proper window function, erroneous high
frequency signals will be diminished and the signal
power at frequencies not precisely matched in the FFT
output spectrum is smeared to the adjacent spectral
points (called bins). For details see (Heinzel, 2002).
The influence of windowing is demonstrated in Figure
10 and Figure 11. A sinusoidal signal of amplitude 1.5
and frequency 3.4 Hz is not matched by the FFT’s
output resolution of 1 Hz. Figure 10 shows a peak at 3
Hz with an amplitude of 1.2, some amplitudes in the
adjacent bins and content for all higher frequencies.

Figure 10: � = �.� ∙ ���(�� ∙ �.� ∙ �) and 1 Hz
resolution.

Figure 11: � = �.� ∙ ���(�� ∙ �.� ∙ �), 1 Hz resolution
and flat top window.

In contrast, Figure 11 is the FFT output of the signal
which was windowed by the “Minimum sidelobe 3-
term-at top window SFT3M” (Heinzel 2002) of length �� with the window �� = 0.28235 − 0.52105 ∙ ��� �1 ∙ 2 ∙ � ∙ ��� − 1

�

 +0.19659 ∙ ��� �2 ∙ 2 ∙ � ∙ ��� − 1
�, � = 0. .�� − 1

(2)

One can see from the plot, both frequencies 3 Hz and 4
Hz show the amplitude of the original signal of 3.4 Hz.
Also the next bins show a higher (erroneous) content
while there are only low amplitudes at higher
frequencies. As a consequence it is recommended to
use windowing only in case where discrete peaks in the
spectrum are expected, which may not be matched well

by the resolution, the output resolution is low and the
information about the correct amplitude is essential.

In addition to the WithinAbsoluteFFTdomain block, the
WithinAbsoluteFFTdomain_THD, calculates the Total
Harmonic Distortion (THD) from the FFT output.
THD is a measure for the amplitudes of harmonics in
relation to the amplitude of the base frequency, where
M is defined by ����� ∙ � ≤ ����,���:

��� = ���[� ∙ �����]2�
�=2 /�[�����] (3)

The THD criteria should only be evaluated for periodic
steady state conditions. Periodic steady state is
typically only occurring after an initial transient phase
of the simulation. Instead of using an arbitrary settling
time, the block offers the following feature: The THD
can be evaluated cyclically at quite low numeric cost
and is assumed to converge to a steady state value at
periodic steady state condition. The

WithinAbsoluteFFTdomain_THD block offers the
option to evaluate the THD cycle every update % of
the base harmonic until the difference between two
successive THD evaluations is below changerate. At
this point the criterion is calculated.

In Figure 12 some benchmarks for different kinds of
data storage of the �� FFT points is given:

• SamplingAndModelicaBuffer (= blue line) buffers
the data at every sampling interval 1/�� in a
Modelica array. Due to Modelica’s single
assignment rule, all values of this array need to get
a value at every sample instant. If a value is not
changed at the current sample instant, the value
from the previous sample instant is copied (so at
every sample instant �� − 1 values are copied).

• SamplingAndBuffer (= red line) invokes a C
function at every sample instant that stores the
actual value of the input signal into an internal C
array.

• NoEventConly (= green line) does not use
sampling but a C function stores the input value at
every model evaluation into an internal C array.
The values in this array are interpolated and
internally sampled before the FFT is computed.
For older Dymola versions this was beneficial
since the simulation restart after a sample instant
was “expensive” for a stiff solver. For newer
Dymola versions this is not the case if the sampled
system does not influence the integrator (which is
the case here).

As can be seen from the figure SamplingAndModelica-

Buffer is the slowest. NoEventConly is a bit faster as
SamplingAndBuffer. In other benchmarks,
SamplingAndBuffer is the fastest approach. Due to
these benchmarks, in the two blocks the
SamplingAndBuffer approach is used for data storage.

0 4 8 12 16 20

-0.5

0.0

0.5

1.0

1.5

A
m

p
lit

u
d
e

Frequency in [Hz]

0 4 8 12 16 20

-0.5

0.0

0.5

1.0

1.5

2.0

A
m

p
lit

u
d
e

Frequency in [Hz]

Session 7A: Aerospace Applications 1

DOI
10.3384/ecp15118491

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

499

Figure 12: Comparison of CPU time [s] for three types of
data storage for the FFT points.

6 Summary

In this paper the concept of model based specification
and associated tools for aircraft systems was discussed.
While previous work on this subject is based on
MathWorks toolboxes it could be shown that Modelica
could be used instead. Especially the new
Modelica_Requirements library adds important
extensions to express high level requirements and bind
requirements to the system model under study. In
combination with the FFT based requirement blocks of
this paper, the full range of typical aircraft
requirements for electrical systems can be formally
defined. For automated documentation additional tools
and scripts tailored to the need of the airframer or
supplier is needed.

7 Acknowledgements

The research leading to these results has received
funding from the European Union’s Seventh
Framework Programme (FP7/2007-2016) for the Clean
Sky Joint Technology Initiative under grant agreement
no. CSJU-GAM-SGO-2008-001.

References

Becker C., and Giese T. (2011). Application of model based
functional specification methods to environmental control
systems engineering. SAE Paper : Aerotech Congress &

Exhibition.

Becker C. et.al. (2013). Efficiency of model based
methodologies in air systems engineering. AST Workshop

on Aircraft System Technologies.

Becker C. (2014). Modellbasierter Entwurf von
Flugzeugklimasystemen: Herausforderungen und Nutzen
funktionaler Systemspezifikationen. Technical report,

Airbus Germany, EYVVC.

Borgerding M. (2003). Kiss fft.
URL: http://sourceforge.net/projects/kissfft/.

CleanSky (2014). Deliverable D2.1.4: Simulation and
Design Platform Report. Revision b. Technical report,

Cleansky SGO.

CleanSky project (2015). Systems for green operation (sgo).
URL: http://www.cleansky.eu.

Cooley, James W.; Tukey, John W. (1965). "An algorithm
for the machine calculation of complex Fourier series".
Math. Comput. 19: 297–301. doi:10.2307/2003354

Elmqvist H., Gaucher F., Mattsson S.E., and Dupont F
(2012). State Machines in Modelica. Proceedings of the 9

th

International Modelica Conference, Munich, Germany,
Sept. 3-5. Download:
http://www.ep.liu.se/ecp/076/003/ecp12076003.pdf

Elmqvist H., Olsson H., and Otter M. (2015). Constructs for
Meta Properties Modeling in Modelica. Accepted for

Modelica’2015 conference.

G. Heinzel, A. Rüdiger and R. Schilling (2002). Spectrum
and spectral density estimation by the Discrete Fourier
transform (DFT), including a comprehensive list of
window functions and some new at-top windows. URL:
http://www.rssd.esa.int/SP/LISAPATHFINDER/docs/Data
_Analysis/GH_FFT.pdf

Klöckner A. (2014). The Modelica BehaviorTrees Library:
Mission Planning in Continuous-Time for Unmanned
Aircraft. Proceedings of the 10

th
 International Modelica

Conference, pp. 727 –736, Lund , Sweden, March 10 -12.
DOI: 10.3384/ ECP 14096727. Download:
http://www.ep.liu.se/ecp/096/076/ecp14096076.pdf

Kuhn M.R. (2011). Advanced generator design using pareto-
optimization. Power Electronics and Drive Systems

(PEDS), 2011 IEEE Ninth International Conference on,
pp. 1061 –1067, Dec. DOI: 10.1109/PEDS.2011.6147391.

Kuhn M.R., and Ji Y. (2014). Modelica for large scale
aircraft electrical network V&V. Proceedings of the 10

th

International Modelica Conference, pp. 747-756. DOI
10.3384/ECP14096747. Download:
http://www.ep.liu.se/ecp/096/078/ecp14096078.pdf

MathWorks (2015a). Simulink Toolbox: Verification and
Validation. URL:
http://www.mathworks.com/products/simverification/.

MathWorks (2015b). Stateflow. URL
http://www.mathworks.com/products/stateflow/.

MIL704F (2004). MIL-STD-704F: Aircraft electric power
characteristic. Download: http://everyspec.com/MIL-
STD/MIL-STD-0700-0799/MIL-STD-704F_1083/

Myers T., Geoff Dromey R. and Fritzson P. (2010).
Comodeling: From Requirements to an Integrated
Software/Hardware Model. IEEE Computer, vol.44, no. 4,
pp. 62-70, April 2011

Otter M., Thuy N., Bouskela D., Buffoni L., Elmqvist H.,
Fritzson P., Garro A., Jardin A., Olsson H., Payelleville
M., Schamai W., Thomas E., Tundis A. (2015). Formal
Modeling and Automatic Verification of Requirements.
Accepted for Modelica’2015 conference.

Thuy N. (2014). D2.1.1 – Modelica extensions for properties
modelling, Part III: FOrmal Requirements Modelling
LAnguage (FORM-L). Internal report, ITEA2 MODRIO

project, Sept. 2014.

Tunnat M. (2011). Integration modellbasierter Methoden in
den Entwicklungsprozess hybrider Flugzeugregel-
ungssysteme am Beispiel des Ventilation-Control-System.
Master thesis, Technical University Hamburg-Harburg,

Institut für Flugzeug-Kabinensysteme, supervised by C.

Becker and T. Giese (Airbus).

0 1 2 3 4 5

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

C
P

U
 t
im

e
 [
s
]

simulated time [s]

SamplingAndModelicaBuffer SamplingAndCBuffer NoEventConly

Model Based Specifications in Aircraft Systems Design

500 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118491

Multi Electrical Machine Pre-Design tool with error handling and

machine specific advanced graphical design aid features based on

Modelica

Tomasz D. Michaski
1
 Antoni Garcia Espinosa

2
 Jordi-Roger Riba Ruiz3 Luís Romeral Martínez

4

2,3
Departament of Electrical Engineering, Universitat Politècnica de Catalunya, Spain,

garciae@ee.upc.edu, riba@ee.upc.edu
1,4

Departament of Electronic Engineering, Universitat Politècnica de Catalunya, Spain,
tomasz.michalski@mcia.upc.edu, luis.romeral@mcia.upc.edu

Abstract

This paper presents a design tool for Induction

Machines, Permanent Magnet Synchronous Machines,

Externally Excited Synchronous Machines and

Switched Reluctance Machines. This software, based

on Modelica language, is able to provide full

dimensioning (cross and axial section measures) and

operation characteristics according to mechanical and

electrical requirements set as inputs. The tool is able to

perform error handling, which informs a designer about

unfeasible designs and gives clues about the possible

errors. Both aspects of the tool GUI and scripts provide

help files and code explanation in order to re-use the

tool and improve library’s functionalities.

Keywords: Modelica, design tools, electrical machines,

SMPMSM, IPM, Synchronous Machine, SRM,

Efficiency Map.

1 Introduction

Electrical motors use is spreading in new fields and

they are replacing other actuators because of their

performance, power, torque density and reliability.

However, in order to integrate these new components

into a system engineering design process, the models

of electrical machines must be pre-evaluated and

designed for specific uses.

In the past years several phenomes have changed the

panorama regarding electrical machines typology.

Regarding motors using magnets: appearance and

proliferation of Surface Mounted Permanent Magnet

Synchronous Motors, internal Permanent Magnet

Motor Family, emerge and intensive development due

to magnet’s price raises (substitution of rare earth

magnets by ferrite magnets) and increased power

density requirements (keeping rare earth magnets in

geometrical configurations meant to achieve high

airgap flux). Regarding externally excited Synchronous

Machines [1]-[2], its ability to work in four quadrants

and to work under very high temperatures (where

magnet motors get demagnetized) made them resurge

in micro generation, both in land and aviation fields.

These new appearances did not pull back Induction

Machines because of, as in Switched Reluctance

Motors, its low construction and operation costs are

still an advantage [3].

The electrical machine design process has also

changed due to the reduction of FEA costs and high

demand of motors for specific purposes. Both

phenomena made it possible to start developing

specifically optimized motors out of catalogue

increasing the added value of small companies.

Not only design process has changed, but its

implementation and tests before construction. The

introduction of systems engineering design in Product

Lifecycle Management requires parametrized models

of all its components. Modelica not only fits in that

spot but also allows multi-parametric, multi-physics

implementation of such models for both: steady state

and transient simulations [4].

The work presented in this paper is the first

Modelica implementation of pre-design tool able to

provide the data required to create such models in

order to integrate the specific machine size and

properties into system models and is intended to work

under Clean Sky [5] European Initiative therefore the

library along with help files, and manuals are free to

use. This novel tool in the Modelica society also leaves

a possibility to be used with other already developed

open and commercial libraries i.e. outputs of pre-

design sizing algorithms can be passed as inputs to

electrical machines advanced and complex models

such as the Actuation 2015 project [6].

In the cases where, in a system model, an electrical

machine is required, the user is force to select from

pre-designed models (with restricted electro-

mechanical sizes) or manually calculate the machine

parameters for the purpose he is modelling for. With

this new tool, added to the Modelica chain, and given

designer’s specifications, insert the specific machine he

needs to work with.

2 Basic Pre-design tool

2.1 Scope

Basic pre-design tool is conceived as a series of

Modelica functions meant to return physical,

DOI
10.3384/ecp15118501

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

501

geometrical, electrical and magnetic properties as a

starting point of an electrical machine’s design. These

scripts can be run from within Modelica or by a third

party GUI able to call Modelica scripting. The program

is able to pre-design Induction Motors (IM), Surface

Mounted Permanent Magnet Synchronous Motors

(SMPMSM), Internal Permanent Magnet Synchronous

Motors (IPM) in their Spoke (embedded and non-

embedded magnets), V-Shape and Planar

configurations. It also performs pre-sizing for Switched

Reluctance Motors (SRM) and externally exited

Synchronous Machines (Syn). Each machine runs its

own pre-sizing algorithm even though some of the sub-

functions are shared across machines like winding

factor calculation or number of gauged turns.

Since SMPMSM and IM machines have been

deeply analyzed, this work is more focused in the IPM

family, SRM and Synchronous machines.

For IPM family the program returns all cross section

and axial section dimensions for stator, rotor, magnets

shaft and hub if required. Following outputs are

provided: moments of inertia of stator, rotor and total,

mass of stator, rotor, total mass including housing as

well as masses separated by materials like magnet

mass, magnetic steel mass and copper. Subsequent are

inductances and phase resistance based on desired

working temperature. The tool also includes saturation

factor of airgap flux, Back-EMF, number of turns per

phase and final obtained power. With this data an

efficiency map including losses is also calculated and

performed.

Figure 1. Layer structure of the GUI and Modelica pre-

sizing core code.

2.2 Internal Operation and Process

The sets of inputs are large and vary from one machine

to another. Among them there are first tier and second

tier inputs. First tier are basic indispensable values for

pre-sizing, and second tier those pre-sizing tool can

automatically set if left empty or its influence is minor.

For the first tier inputs power, efficiency, current or

voltage are some of the electrical parameters required.

Airgap flux or magnetic steel or magnet properties are

among the magnetic parameters. Part of the second tier

inputs would be stator shoe tooth separation or shaft

diameter external or extra length for housing. Because

of the amount of inputs and its diversity an external

input GUI was developed.

As Figure 1 shows, this GUI is a cover over

Modelica functions. It allows opening and saving

machines and has its own help documentation. When

the inputs are set, the GUI prepares the data and sends

it to Modelica by means of a callback of the sizing

scripts which starts performing the sizing.

In this stage the several Modelica algorithms

perform pre-sizing. When finished data is structured

and send back to the GUI. In this stage is when motor

can be saved with both input and output data. Also in

this stage is when output data can be analyzed with the

provided output sub tools.

2.3 Modelica Sizing Core

Modelica sizing core consists of five principal

algorithms which perform sizing code for each

machine: IM, PMSM, IPM, SRM and SYN. As shown

in Figure 3, all of them utilize other common

functions: winding (returns the winding factor of the

fundamental frequency), CmecCALC (interpolates

mechanical constant), htrmodif (recalculates slot

height based on trapezoidal slot to one based on

squared slot), hexapack (obtains a number of

conductors per area following a hexagonal pattern),

quadrapack (obtains a number of conductors per area

following a square pattern), MassandMOI (calculates

mass and moments of inertia), Resistance (returns

resistance per phase), MassandMOISYN (calculates

mass and moments of inertia of Synchronous

machine), round_Nph (rounds number of turns per

phase), cartdistance (returns distance between two

points in Cartesian coordinates), Rotation (performs

basic algebraic rotation in Cartesian coordinates),

Reflection (performs basic algebraic reflection

through axis situated at the angle position),

feasibleregion (determines if angle is feasible for

SRM motor design), TorquevsSpeed (returns torque

vs speed vs efficiency map as a matrix), Inductances

(calculates d-q inductances), RotorShape (generates

a valid rotor geometry for IPM machine), MAGNETdb

(returns properties of selected permanent magnet) and

ellipse (finds ellipse from five points and returns its

center).

Every main sizing function writes data in special

format using DataFiles, writeMATRIX and

Utilities.Streams.print functions. After that

Multi Electrical Machine Pre-Design Tool with Error Handling and Machine Specific Advanced Graphical
Design Aid Features Based on Modelica

502 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118501

machine structure is read by the external graphic user

interface.

Figure 3. Modelica sizing relation tree of functions.

2.4 MATLAB GUI

Graphic User Interface was programmed in MATLAB

Guide tool. This was done because it offers a good

trade between complex plot representations and an

appeal interface without the use of complex or third

party APIs. All of the results from Dymola pre-sizing

are decoded and interpreted on this stage.

Figure 4. Pre-sizing GUI for SMPMSM inputs. Each

variable contains a brief description when prompted.

The Graphical User Interface software is presented

in. Figure 2 and Figure 4. This was done because

currently Dymola serves as a simulation environment

and there are no tools publically available for

generation of the graphical user interface [7]. However

user is expected to performs various pre-design runs,

inspect and print results if necessary.

Figure 2. Example of Input/Output GUI with some windowed sub tools for the IPM machine.

Session 7B: Electrical Machines

DOI
10.3384/ecp15118501

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

503

3 Example of Use

V-shape Internal Permanent Magnet will be used in the

example to show most functionalities of the tool

including the graphic error handling, console messages

and height vs. PM. Figure 5 shows Modelica’s sizing

core for this kind of machines.

When inputs are set and sent to sizing core several

data is calculated before the actual sizing procedure

starts, for example, if not set, shaft and hub diameters.

Pole shoe height is determined depending on desired

power.

And finally total length and polar pitches. Then

stator sizing starts taking into account flux saturation

by means of a flux form factor coefficient corrector.

Desired fluxes in airgap, tooth and yoke and winding

configuration will determine the final size, number of

conductors and saturation.

Then rotor calculation starts. It is worth noting that

IPM rotor can be very complex and incur in several

parts collisions, this it is explained in more detail in

section 3.2. That is why rotor is sized by two main

loops, one for the geometrical and the other for the

magnetic considerations. If rotor is physically

impossible program aborts, if not, then geometry of

magnet, its position and reluctance paths are send to

the magnetic circuit solving algorithm that will

determine if the magnet quantity is enough to sustain

the airgap flux, if not, magnet height is increased and

rotor data is send back to geometry validation step.

3.1 First input set

The desired phase voltage, phase current, power, rated

torque, rated speed, power factor and efficiency (which

later on are corrected). Number of phases, number of

poles, form factor as well as winding properties are the

main parameters for design process. During this initial

round it is recommended to use default values for flux

densities. Desired Airgap, Stator Tooth and Yoke Flux

Densities are required, and, as second tier, geometric

properties like shaft diameter and length, slot opening,

or filling and stack factors. Although these parameters

can have a great influence in machine’s design, they

have to adapt to electrical and mechanical requirements

not the other way around.

Further iterations can be used to refine input

parameters if output geometry or features doesn’t look

reasonable, for example big yokes or too narrow tooth

tip. Then the script is launched and performs sizing.

Usually a set of inputs leads to impossible geometry or

magnetic circuit, which is why an error handling

system was developed.

3.2 Error Handling: Console and Graphics

Internal PMSM incorporates very complex rotor

geometry because of the number of independent

elements that conforms it: rotor shaft, rotor hub, air

barriers, wedge dimensioning and magnets size and

positioning [8]. Figure 6 shows geometry used to

obtain geometry.

It is not suitable for an ease of use of pre-design to

ask for more than twenty parameters associated only to

those elements. The basic pre-design tool is able to

position the magnet with four parameters, cover factor,

desired wedge, top air barrier length and V-shape

angle. Summed to the diameters automatically

calculated magnets are positioned and all associated

elements obtained (Figure 6): reluctance path lengths

and widths, centers of gravity and areas. This is thanks

to a parametrized model of its geometry.

Outfits and collisions are detected by rules of relative

position of the aforesaid parametrization by means of

Figure 5. Sizing-core flow chart for IPM machines.

points. For example, alpha_v cannot be smaller than

half pole pitch, which is the same to say that Point5

would be further than machine center.

Another typical example is when V-shape angle is to

narrow, in that cases distance of Point4 is inferior than

shaft radius which leads to a collision. The program is

able to detect these collisions and report them in both

graphical representation and console. Console

messages appear at the very same moment that the

problem is generated, for graphical representation,

Modelica has to return the control to the GUI which

will call the cross section function graphical

representation.

Multi Electrical Machine Pre-Design Tool with Error Handling and Machine Specific Advanced Graphical
Design Aid Features Based on Modelica

504 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118501

Figure 6. Semi pole graphical representation of the

geometrical assistant points used to fit rectangular magnets

inside rotor. This is only valid for V-shape with only one air

barrier in top.

An example of the console messages are as follows:

**** ROTOR GEOMETRY CALCULATION FAILED,
because of geometry error:

******** ALLOCATION ERROR: Magnet may

penetrate the shaft area ********

*** Start: Flux-vs-h_PM GEN01 ***

*** End: Flux-vs-h_PM GEN01 *** [Success]

*** End IPM GEN 07 ***

Each geometry message errors return, when possible,

the nature of the sizing error, as well, each function

returns and START-END messages.

And the graphical representation is as shown in Figure

7. The plot is not rasterized; zooming to any area will

not carry a loss of detail. Collision information is saved

in motor structure allowing other third party

applications to perform its own interpretation of

collisions.

3.3 Final Iteration and results comparison

Problem with shaft diameter can be changed by two

means, one increasing V-shape angle and the other

reducing shaft diameter. The second solution becomes

a better approach when it comes to reduce the impact

in machine properties. Once enough space for magnets

is given the final motor is generated.

By properly setting inputs it is possible to achieve

close to FEA 2D results, this is shown in Table 1.

It is not the aim of the tool, and it cannot, to

substitute FEA in design process. This level of basic

pre-design does not allow taking into account complex

reluctance network effects and saturation effects,

which are directly related to d-q inductance values.

However, being able to achieve these results it is

especially useful when designing new machines

between two well-known sizes or rated powers, or

during optimization processes.

Figure 7. Graphical output error handling, remarks in red

contours and dim colors of parts colliding. Zoom can be

performed in figures to see the detailed problem.

Table 1. Comparison between FEA and pre-design too.

FEM/Real Parameter
Pre-design

Calculated

Relative

Error

97,78 Total Mass [Kg] 100,35 2,6%

0,08
Rotor Moment of

Inertia [Kg·m
2
]

0,0832 2,7%

1,51
Stator Moment of

Inertia [Kg·m
2
]

1,504 0,2%

0,088
Phase Resistance

[Ω]
0,0943 6,8%

0,0021
Direct Axis

Inductance [H]
0,0026 25,4%

0,0091
Quadrature Axis

Inductance [H]
0,01183 29,4%

0,0048
Final Flux in

Airgap [Wb]
0,0044 8,0%

161,00
Back Electro

Motive Force [V]
153,73 4,5%

48915,00

Rated

Mechanical

Power [W]

48939,56 0,1%

282,00
D outer stator

[mm]
292,59 3,8%

184,00
D outer rotor

[mm]
186,52 1,4%

75,00 Length [mm] 75,95 1,3%

30,00 Slot Height [mm] 30,72 2,4%

6,50
Tooth Width

[mm]
6,05 7,0%

18,40 Yoke Height 21,72 18,0%

Session 7B: Electrical Machines

DOI
10.3384/ecp15118501

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

505

[mm]

27,00
Magnet Length

[mm]
27,69 2,5%

5,00
Magnet Height

[mm]
5,15 3,0%

3.4 Output sub-tools of the GUI

Raw data of the pre-design requires interpretation

especially when the volume of information is high. In

order to present pre-sizing outputs in an easy going

way several tools were developed. Some are specific

for each machine and some are shared across all

packages.

All outputs depart from the output section of the

GUI where basic sizing information is presented. An

example of the output GUI is shown in Figure 8. Each

machine has its own outputs sets, interface and tools.

Figure 8. Screenshot of SM-PMSM pre-design outputs.

The most reliable and informative way to read

dimensions relationship is to generate blueprints, but

given dimension’s magnitude are already computed,

the use of scaled colored representations is more

valuable. It is able to return fast qualitative information

as well as raw dimensions. That is why scaled cross

and axial sections of the machine were implemented in

the output stage. Figure 9 contains two examples: for

Synchronous Machine and Switched Reluctance

Machine. This allows a fast eye check of dimensions

and proportions giving almost instantly clues about

what can fail in a design. If the design is considered

good the designer can directly import output values to

his design table.

For SRM specific case a feasible region chart was

elaborated [9]. An example of it can be seen in Figure

10. This chart locates the motor in a five conditions

diagram. Three are related to the good behavior of the

motor, and two to physical limitations given the

desired number of poles for stator and rotor.

Figure 9. Example of two cross sections of different

machines with different graphical detail set. Left, Salient

Pole Synchronous Machine. Right, Switched Reluctance

Motor with dimensional aids.

Figure 10. SRM Feasible Region Sizing Chart. Allows to

determine if motor complies with 5 conditions between

rotor and stator pole angles.

Also an efficiency map is generated as a preliminary

representation of the motor behavior. Efficiency map is

a representation of torque vs mechanical speed chart

with efficiency of each point following a color gradient

depending on its value (Figure 11). This map is able to

take into account copper and iron losses. The map

requires the following information from pre-design:

inductances; phase voltage; field; average flux density

and mass of each part where iron losses are considered

(this is obtained thanks to the Moments of inertia and

masses function); phase resistance and a maximum

speed and current. The efficiency map computes, in a

series of concatenated loops, the equivalent circuit of

the machine taking into account both phase resistance

in series and iron losses in a parallel branch. Iron losses

are taken into account by means of an implementation

of Bertotti’s equation [10]. To calculate losses

Multi Electrical Machine Pre-Design Tool with Error Handling and Machine Specific Advanced Graphical
Design Aid Features Based on Modelica

506 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118501

following that method three elements are required:

average field densities are found via the flux densities

determined for each part, volumes (masses) are

computed in a previous stage: Masses and Moments of

Inertia function, and finally coefficients are found once

material for each part has been selected or can be

introduced manually.

4 Future work

The aim of any pre-design tool is to reduce the required

information designer must provide in order to achieve a

feasible design. This is directly related to the number

of inputs required in the first iterations of the design,

before entering into a refining process. On the other

hand by means of further layers in the design pre-

design tools can provide even richer sets of data

without landing in the long simulation times of FEA

solutions.

It should be able to handle several winding layers

and fractional slotting and present the results

graphically. One very complete free solution in this

regard is EMETOR online SMPMSM tool [11].

Figure 11. Torque vs. Speed vs. Efficiency representation

(a.k.a. Efficiency map) for an IPM machine delivered by

the pre-sizing tool. Data is calculated under Modelica,

plotted by GUI.

Also the introduction of thermal restrictions by

means of a thermal model would also optimize the

design process and prepare the models for even more

complex simulation scenarios. Thermal model should

be able to interact with resistance values during pre-

design process and also able to specify losses and heat

transfer with the surroundings.

For the second proposed approach a reluctance

network of each machine based on an electro-magnetic

model of the machine would provide the golden mean

between a basic pre-design and a FE analysis.

Reluctance network should provide variables such as

torque ripple frequencies and magnitudes, Back Electro

Motive Force shape, airgap flux shape, both taking into

account armature reaction. And several other variables

usually reserved to FE simulations. It also should be

able to report variations in performance and behavior

based on different control approaches given by

Modelica implemented systems of such nature.

5 Conclusions

This tool provides an easy and intuitive way to

generate machine designs in order to provide, to further

design steps, seed values to work with. Also, by means

of a refinement process, obtain close to final machine

properties to use into system model design. It as well

helps to determine pre-design inconsistencies and

evaluate machine properties by means of the debug

data in console, the graphical aids during design

process and graphical representation of outputs.

Thanks to the inclusion of the efficiency map a

preliminary behavior of the machine can also be

evaluated before setting it up in any system.

Acknowledgements

Modelica implementation of this pre-design tool is part

of Modelica Library of Detailed Magnetic Effects in

Rotating Machinery (MAGMOLIB, SP1-JT1-CS-

2013-01, GA-620087) project managed by the German

Aerospace Center (DLR) and developed by MCIA

research center a part of the CLEANSKY partnership,

a Public Private Partnership between the European

Commission and the aeronautical industry.

References

[1] M. R. Kuhn, A. Griffo, W. Jiabin, and J. Bals, "A

components library for simulation and analysis of

aircraft electrical power systems using Modelica," in

Power Electronics and Applications, 2009. EPE '09.

13th European Conference on, 2009, pp. 1-10.

[2] M. R. Kuhn, "Advanced generator design using

pareto-optimization," in Power Electronics and Drive

Systems (PEDS), 2011 IEEE Ninth International

Conference on, 2011, pp. 1061-1067.

[3] J. Yang, "A novel modelica based design platform for

switched reluctance drive systems," in Electrical

Machines and Systems (ICEMS), 2014 17th

International Conference on, 2014, pp. 3302-3308.

[4] C. Kral, A. Haumer, and R. Wöhrnschimmel,

"Extension of the FundamentalWave Library towards

Multi Phase Electric Machine Models," ed, 2014.

[5] The Clean Sky Joint Technology Initiative. Available:

http://www.cleansky.eu/

[6] (2015). Actuaction2015. Available:

http://www.actuation2015.eu/

[7] C. Schlegel and R. Finsterwalder, "Automatic

Generation of Graphical User Interfaces for

Simulation of Modelica Models," presented at the

Modelica Conference 2001, 2011.

[8] J. R. a. M. Hendershot, T.J.E., Design of brushless

permanent-magnet motors. Hillsboro, OH : Oxford :

Magna Physics Pub: Motor Design Books LLC, 1994.

[9] R. Jordi-Roger, G. Antoni, and R. Luís, "A computer

experiment to simulate the dynamic behaviour of

Session 7B: Electrical Machines

DOI
10.3384/ecp15118501

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

507

electric vehicles driven by switched reluctance

motors," vol. 51, ed: International Journal of

Electrical Engineering Education, 2014, pp. 368-382.

[10] M. Chunting, G. R. Slemon, and R. Bonert, "Modeling

of iron losses of permanent-magnet synchronous

motors," Industry Applications, IEEE Transactions on,

vol. 39, pp. 734-742, 2003.

[11] R. I. o. Technology. (2008). EMETOR. Available:

www.eme.ee.kth.se/emetor

Multi Electrical Machine Pre-Design Tool with Error Handling and Machine Specific Advanced Graphical
Design Aid Features Based on Modelica

508 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118501

Enhancements of Electric Machine Models:

The EMachines Library

Anton Haumer1,2 Christian Kral2
1OTH Regensburg, Germany, anton.haumer@oth-regensburg.de

2EDrives, Austria, {anton.haumer, christian.kral}@edrives.eu

Abstract

Transient models of multi phase electric machines are
already implemented in the Modelica Standard Library
(MSL). However, advanced effects like saturation and
skin effect are not taken into account. As an extension
to the MSL models, the new EMachines library is
presented. This package will be released as a
supplemental library to the commercial EDrives
library. The particular focus of this paper is on the deep
bar effect of induction machines. A comparison of
simulation results demonstrates the influence of the
skin effect on the operational behavior of the machines.
At the end of this publication further developments of
the EMachines library will be outlined.

Keywords: multi phase electric machines, induction

machines, squirrel cage, deep bar effect, skin effect

1 Introduction

The Modelica Standard Library already contains
transient models of multi phase electric machines:
Modelica.Electrical.Machines and
Modelica.Magnetic.FundamentalWave (Kral,
Haumer, Wöhrnschimmel, 2014). For the next release
of the MSL, quasi static machine models are planned to
be included. These models neglect electric transients
for performance reasons (Kral, Haumer, 2014):

 Modelica.Magnetic.QuasiStaticFundamentalWave.
Both the transient and the quasi static models

consider Joule, friction, core and stray load losses.
However, more advanced effects like saturation and
skin effect are not taken into account. During the
development of the EDrives Library (Haumer, Kral,
2014) and the extension towards controlled multiphase
operation, the stator stray inductance ��� design had to
be changed. Therefore, in the EMachines library the
stator stray inductances are modeled by phase
inductances with mutual coupling to other phases and
by self inductances – ideally coupled with the
respective phase only. The new leakage inductance
concept was implemented in the electric machine
models of the EMachines library without affecting the
backwards compatibility of the machine parameters.
Yet the new machine models are based on a parameter
record to overcome the drawback of parameterization

by multiple parameters. In the new EMachines Library
advanced effects like saturation and skin effect will be
taken into account. First, the deep bar effect is
implemented, followed by further effects.

The EMachines library will be released as a
supplemental library to the commercial EDrives library
(see Table 1). Yet the EMachines library can be used
without the EDrives library to investigate the influence
of advanced effects of machines fed directly from the
supply network.

Table 1. Description of electric drives libraries

library description
Modelica.
Electrical.
Machines

transient threephase models,
based on space phasor theory,
connector and parameter
compatible with
Magnetic.FundamentalWave

Modelica.
Magnetic.
FundamentalWave

transient multiphase models,
based on coupling between
electrical domain and
fundamental magnetic field

Modelica.
Magnetic.
QuasiStatic.
FundamentalWave

quasi static multiphase models,
based on coupling between
electrical domain and
fundamental magnetic field,
neglecting electrical transients
based on time phasors

EMachines supplement to the commercial
EDrives library, extending
Magnetic.FundamentalWave
and Magnetic.QuasiStatic.
FundamentalWave

EDrives commercial library for inverter
fed drives, utilizing models from
EMachines

First, the structure of the EMachines library (see

Figure 1) will be presented, including the
parameterization by means of parameter records.
Second, the technical details of the deep bar effect will
be explained. Comparisons of simulation results
demonstrate the handling of the machine models and
the influence of the skin effect. At the end of this paper
an overview on the future developments of the
EMachines library will be given.

DOI
10.3384/ecp15118509

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

509

2 Structure of the Library

Figure 1. Structure of the EMachines Library

The EMachines library includes both transient and
quasi static models of synchronous and induction
machines. The EMachines models reuse the
components of the
Modelica.Magnetic.FundamentalWave and the
Modelica.Magnetic.QuasiStaticFundamentalWave
library and are thus fully connector compatible. Even
though the parameters of the MSL library are also used
by the EMachines models, the EMachines library is not
parameter compatible since a parameter record is used
(see Figure 2). This concept allows the user to switch
from the parameter set of one drive to another
parameter set in a very convenient way. All parameters
that do not specify the machine properties but
operational conditions remain single parameters in the
machine models (see Figure 3). These single
parameters are operational temperatures in case of a
disabled heat port of the machine, and the enabling
parameter of the optional support flange.

Figure 2. Parameter record of the induction machine

Figure 3. Operational parameters of induction machine

Components for modeling enhanced effects are
stored in sub-packages named Components. The
parameter records of these components and the entire
machines are defined in the package
ParameterRecords. Extensions are implemented in
such a way that the user can switch them off or on.
This concept enables the convenient comparison of the
operational behavior of standard and enhanced electric
machine models.

The EDrives library uses wrapper models. In these
wrapper models the instances of EMachines models are
used, including temperature and rotor position sensors.
The wrapper models also use a signal bus connector to
exchange the sensed quantities with the inverter
models (Haumer, Kral, 2014).

Up to now, the following machine types were
implemented:
• Synchronous machine with permanent magnets
• Synchronous reluctance machine and
• Induction machine with squirrel cage rotor.
Further machine types (electrically excited

synchronous machine, induction machine with wound
rotor and slip rings) will be implemented in the near
future.

3 Deep Bar Effect

The skin effect in the bars of the squirrel cages of
induction machines and the damper cages of
synchronous machines is called deep bar effect
(Binder, 2012; Toliyat, Kliman, 2004). Skin effect in
general is caused by the linkage between electric and
magnetic field, it describes the fact that current density
increases from the center of a conductor to its surface,
dependent on the current’s frequency. In this paper it is
assumed that the bar width is smaller than the height.
Considering the distribution of the stray field
(Kleinrath, 1975), it is sufficient to only consider a one
dimensional model of the skin effect. The deep bar
effect increases the effective resistance and decreases
the effective stray inductance of the rotor bars. This
effect strongly depends on the electrical rotor

Enhancements of Electric Machine Models: The EMachines Library

510 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118509

frequency. Therefore the stator current and torque of
induction machines at stand still, i.e. slip = 1, is
strongly affected. Furthermore, the additional losses
caused by higher harmonics of non-sinusoidal currents
due to inverter operation are increased. Modeling the
deep bar effect allows the investigation of the starting
behavior of induction machines fed by the grid in a
more realistic way. For inverter fed machines, the
influence of resistance increase and stray inductance
decrease on the inverter’s controller can be
investigated.

3.1 Differential equations

Figure 4. Deep bar embedded in rotor sheets

In Figure 4, one can relate the magnetic stray field
strength ��, and the magnetic flux density ��, ��⃗ � = �0���⃗ � (1)

respectively, with the current density ��. The magnetic
permeability of the iron sheets is considered to be
infinitely high: ���⃗ �(�)�(�) = � �⃗�(�′)�(�′)��′ℎ

� (2)

where ℎ designates the total height of the bar.
The magnetic flux in x-direction of a layer of

infinitely small height can be expressed as

dϕ = �0��(�)��� = �0 ����(�)
� ��(�′)�(�′)��′ℎ
� (3)

where � is the conductor length. If the bar current and
therefore the bar current density is varying with respect
to time, the time varying flux induces a voltage in the
bar in z-direction, which in turn influences the current
flow ���⃗ ∙ ������⃗ = [��(� + ��) − ��(�)]� = −�(dϕ)�� (4) ���(�) = ��(�) (5)

In (5) � represents the electric resistivity. The
current flow caused by the induced voltage reduces the
current density for greater � (i.e. towards the slot
ground) and increases the current density for smaller �

values (i.e. towards the slot opening). The partial
differential equation for the transient skin effect yields: �2����2 = �0� ����� (6)

Assuming a sinusoidal current with constant
frequency, and utilizing space phasors to express the
sinusoidal quantities (Haumer et al, 2008), the partial
differential equation simplifies to an ordinary
differential equation with respect to the height
coordinate y: �2����2 = ���0��� (7)

For a rectangular bar the solution of (7) leads to an
exponential distribution of the current density: �� = �0�−(1+�)

�� (8)

where � = � 2��0� denotes the skin depth and �0

represents the current density at the top of the bar.
Considering a rectangular bar made of aluminum

with a height of 30 mm and a width of 4 mm, the
current densities with respect to height are depicted in
Figure 5 for three different frequencies. The total bar
current in all cases gives 120 A.

Figure 5. Current densities with respect to height

For simple geometries like rectangular or
trapezoidal bars (zur Nieden, 1931), the differential
equation (7) can be solved analytically. It is then
possible to express the frequency dependent factors of
resistance increase, ��, and stray inductance decrease, ��, with respect to the DC resistance and leakage
inductance, respectively. For bars with rectangular
shape, these factors are well known as Field’s
formulas, utilizing the so-called reduced height of the
bar �: �(�) = ℎ�� �0�

2
 (9)

�� = � ���ℎ(2�) + ���(2�)���ℎ(2�)− ���(2�)
 (10)

�� =
3

2� ���ℎ(2�)− ���(2�)���ℎ(2�)− ���(2�)
 (11)

0

1

2

3

4

5

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

J
/

J D
C

y / h

1 Hz

50 Hz

100 Hz

Session 7B: Electrical Machines

DOI
10.3384/ecp15118509

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

511

To cope with arbitrary bar shapes, the height of the
bar is discretized as described in (Müller et al, 2008).
The rotor resistance �� and rotor stray inductance ���
are separated into the constant parts ��,��� and ���,��� not affected by the skin effect and the variable
parts ��,��� and ���,��� of the bar. The series
connection of the variable part ��,��� and ���,��� is
either replaced by a ladder network where each L-R
element represents a layer of the discretized height, or
the algorithm described in section 3.3 is evaluated.
However, this algorithm can be applied only for quasi
static points of operation: for transient operation, (6)
has to be solved, using a ladder network (section 3.4).

The original cage used in
Modelica.Magnetic.FundamentalWave and
Modelica.Magnetic.QuasiStaticFundamentalWave

is replaced by a new cage model shown in Figure 6.
The sub-model deepBar represents the variable parts
of the rotor resistance ��,��� and stray inductance ���,��� under influence of the deep bar effect, whereas
the constant parts of the rotor resistance and stray
inductance is represented by the single components
resistorConst and inductorConst. For
performance reasons, the quasi static cage model
utilizes the algorithm described in section 3.3, whereas
the transient cage model uses the ladder network of
section 3.4. The usage of the quasi static algorithm
increases performance due to the fact that the algebraic
equations can be solved easier than the set of
differential equations describing the ladder network.

Figure 6. Transient cage model with skin effect

3.2 Parameterization of the Cage

For both – the quasi static algorithm and the transient
ladder network – the resistances and stray inductances
of the layers are pre-calculated in the parameter record
of the cage: the user has to define the geometry of the

bar (i.e. a matrix with the height coordinate y in the
first column and the respective bar width in the second
column). An algorithm calculates the height ℎ� and the
width �� of each of the � layers. From these heights
and widths, the resistances �� at reference temperature
and inductances �� of each layer are determined: �� =

�� 1ℎ��� (12) �� = �0� ℎ��� (13)

For the actual resistances the operating temperature
has to be considered.

The user has to define the constant part ��,��� of the
rotor resistance with respect to the stator winding. Thus
the variable part ��,��� = �� − ��,��� is determined,
too. Since the geometry of the bar defines the area of
cross section and therefore the DC resistance of a
single bar, ����, the turns ratio between stator winding
and a rotor bar is given: ����������2 =

��,������� (14)

The geometry defines the DC slot stray inductance ����, too. Therefore the variable and the constant, ���,��� and ���,���, respectively, are determined by: ���,��� = ����������2���� (15) ���,��� = ��� − ���,��� (16)

3.3 Quasi static Algorithm

In order to determine the actual resistance and stray
inductance, we may assume the complex current in the
first layer at the bottom of the bar, and recursively
calculate one layer current after another, utilizing the
Modelica definition of complex numbers:
 Modelica.SIunits.ComplexCurrent ik[n]
 "Layer currents";
 Modelica.SIunits.ComplexCurrent iSum[n]
 "Summed layer currents";

 Modelica.SIunits.Resistance Ractual
 "Actual resistance";
 Modelica.SIunits.Inductance Lactual
 "Actual inductance";
equation
 ik = {if k == 1 then Complex(1, 0) else
 (RRef[k - 1]/RRef[k]*ik[k - 1] + j*omega*
 Lsigma[k - 1]/(kT*RRef[k])*iSum[k - 1])
 for k in 1:n};
 iSum = {if k == 1 then ik[1] else
 (iSum[k - 1] + ik[k]) for k in 1:n};
 Ractual = sum({kT*RRef[k]*('abs'(ik[k]))^2
 for k in 1:n})/('abs'(iSum[n]))^2;
 Lactual = sum({Lsigma[k]*('abs'(iSum[k]))^2
 for k in 1:n})/('abs'(iSum[n]))^2;

In this algorithm RRef[k] represents the reference
resistance of each layer and kT is the relative resistance
increase at operating temperature compared to
reference temperature. The total resistance and
inductance calculations are based on the linear
equivalent circuit shown in Figure 7.

Enhancements of Electric Machine Models: The EMachines Library

512 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118509

Based on the actual resistance and stray inductance
the actual voltage drop and Joule losses of the bar are
calculated.

Figure 7. Equivalent circuit of a rotor bar

3.4 Transient Equivalent Ladder Network

In the transient deepBar model, a physical series
connection of � (count of layers) R-L elements is
established; The entire network structure is depicted in
Figure 7 and a single R-L element is shown in Figure 8.
The single R-L elements are connected in series.

Figure 8. Transient deepBar model

4 Simulation Results

First, we compare the frequency dependent resistance
increase �� and stray inductance decrease �� for a
trapezoidal bar. For this bar shape the quasi static and
the transient simulation and the analytically derived
result (zur Nieden, 1931) are compared.

Figure 9 shows the quasi static model to evaluate the
deep bar algorithm. The transient model looks similar;
the frequency ramp raises very slowly from nearly 0 to
100 Hz to avoid transient effects as far as possible.
Current and voltage are measured to calculate the
effective impedance. The parameters of the
investigated bar are summarized in Table 2. The bar is
discretized into 16 layers.

Figure 9. Quasi static evaluation of deep bar algorithm

Table 2. Parameters of the investigated bar

height of bar 30 mm
top width 6 mm
bottom width 2 mm
conductivity 36 ∙ 106 S/m at 20°C

Both the quasi static and the transient model
calculate the resistance increase, ��, and stray
inductance decrease, ��, from the actual Joule losses
and energy of the magnetic field. The results of these
calculations are summarized in Table 3 and Figure 10.

The transient model shows initial transients caused
by the layer currents penetrating the bar. However,
both the quasi static and the transient model match
very well. Since the number of layers was chosen
relatively low, there are deviations from the
analytically obtained results. An appropriate choice of
the count of layers leads to a trade-off between
performance and accuracy of the results.

Table 3. Resistance increase and inductance decrease

analytical quasi static transient

f / Hz kR kX kR kX kR kX

1 1,001 1,000 1,001 1,000 1,000 0,882
10 1,072 0,969 1,080 0,969 1,075 0,964
20 1,266 0,891 1,276 0,894 1,273 0,894
30 1,505 0,797 1,509 0,808 1,508 0,808
40 1,731 0,711 1,731 0,730 1,730 0,730
50 1,929 0,640 1,926 0,667 1,925 0,667
60 2,100 0,584 2,095 0,618 2,095 0,618
70 2,251 0,540 2,245 0,579 2,245 0,579
80 2,388 0,504 2,381 0,547 2,380 0,547
90 2,515 0,475 2,506 0,522 2,506 0,522

100 2,635 0,451 2,623 0,500 2,623 0,500

Session 7B: Electrical Machines

DOI
10.3384/ecp15118509

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

513

Figure 10. Quasi static (green and magenta) and transient
(black and brown) results, compared with analytical
formulae (blue and red)

The second example is derived from
Modelica.Electrical.Machines.Examples.
AsynchronousInductionMachines.AIMC_DOL
and simulates the start-up of an induction machine with
squirrel cage, both quasi static and transient. Both
models have the same diagram layout; the transient
model is shown in Figure 11. Each induction machine
model is loaded with a quadratic speed dependent
torque.

Figure 11. Transient start-up of induction machine

For the investigated machine the default data of the
MSL induction machines are used; for the bar, the
dimensions described in Table 2 are utilized.

Figure 12 shows the electromagnetic torque without
and with deep bar effect of a quasi static simulation.
Figure 13 shows the electromagnetic torque without
and with deep bar effect of a transient simulation.
Obviously, the deep bar effect causes a higher torque
and reduces the duration of acceleration.

In each of the investigated cases the equilibrium at
the end of the acceleration is practically the same, since

for small slip (i.e. rotor frequency) the skin effect can
be neglected.

Figure 12. Quasi static torque w/o (blue) and with (red)
skin effect

Figure 13. Transient torque w/o (blue) and with (red) skin
effect

5 Conclusions and Outlook

The new EMachines library will be released as a
supplemental library to the commercial EDrives
library. The advantages and extensions to MSL models
have been presented, especially the convenient
parameterization of machine models by means of a
parameter record.
In detail, the skin effect and its implementation have
been discussed. A comparison of numerical and
analytical factors of quasi static resistance increase and
inductance decrease show satisfying coincidence. An
example demonstrates the influence of the deep bar
effect on the starting behavior of an induction machine.

All models are documented thoroughly and have
been tested with both OpenModelica and Dymola.
Examples demonstrating the usage are available.

0 10 20 30 40 50 60 70 80 90 100

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

k
r,

 k
x

f [Hz]

nieden.kR(f) nieden.kX(f) kR(f) [1] kX(f) kR(f) [1] kX(f)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

40

80

120

160

200

240

280

320

360

400

to
rq

u
e

 [
N

m
]

time [s]

imc.tauElectrical // 1 [N.m] imc.tauElectrical // 2 [N.m]

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-400

-200

0

200

400

600

800

to
rq

u
e

 [
N

m
]

time [s]

imc.tauElectrical // 1 [N.m] imc.tauElectrical // 2 [N.m]

Enhancements of Electric Machine Models: The EMachines Library

514 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118509

The EMachines library is a perfect platform for
extensions of machine models in the near future
without losing backwards compatibility to the MSL.
Further developments are already planned:
• Induction machine models with wound rotor and

slip rings
• Electrically excited synchronous machines
• Saturation effect of the main field and of the stray

field
• Thermal models of electric machines
• Temperature dependent characteristic of

permanent magnet
• Effect of cross-coupling between d- and q-axis in

synchronous machines
• Effects of higher harmonics of the spatial

distribution of the magnetic field
• Hysteresis core losses
• Detailed losses in the permanent magnet of

permanent magnet synchronous machines
• Coupling with FEA software in order to take into

account the detailed magnetic operation point

References

Andreas Binder. Elektrische Maschinen und Antriebe.
Springer, 2012. doi: 10.1007/978-3-540-71850-5

H. A. Toliyat, G. B. Kliman. Handbook of Electrical Motors.
CRC Press, 2004. ISBN 978-0824741051

Hans Kleinrath. Grundlagen elektrischer Maschinen.
Akademische Verlagsgesellschaft 1975.
ISBN 3-400-00279-8 (out of print).

Anton Haumer, Christian Kral, Johannes Vinzenz Gragger,
Hansjörg Kapeller. Quasi-Stationary Modeling and
Simulation of Electrical Circuits using Complex Phasors.
Modelica 2008.

Anton Haumer, Christian Kral. The New EDrives Library: A
Modular Tool for Engineering of Electric Drives.
Modelica 2014.

Christian Kral, Anton Haumer, Reinhard Wöhrnschimmel.
Extension of the FundamentalWave Library towards Multi
Phase Electric Machine Models. Modelica 2014.

Christian Kral, Anton Haumer. New Multi Phase Quasi
Static FundamentalWave Electric Machine Models for
High Performance Simulations. Modelica 2014(a).

Germar Müller, Karl Vogt, Bernd Ponick. Berechnung
elektrischer Maschinen. Wiley, 2008.

E. zur Nieden. Berechnung von Stäben für
Stromverdrängungsmotoren. Elektrotechnik und

Maschinenbau 51 (11): 129-134, 1931.

Session 7B: Electrical Machines

DOI
10.3384/ecp15118509

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

515

516 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Simulation of Piping 3D Designs Powered by Modelica

Xavier Rémond1 Thierry Gengler1 Christophe Chapuis1
1Dassault Systèmes, Vélizy Villacoublay, France,

{Xavier.Remond, Thierry.Gengler, Christophe.Chapuis}@3ds.com

Abstract

Traditionally, piping systems have been defined in
Modelica by connecting components in a model
diagram. Additionally, the systems engineer must enter
values for parameters such as pipes diameter and
length, volume of vessels, etc. Those values are often
also defined in CAD piping 3D designs, for example in
CATIA by Dassault Systèmes. A more convenient
definition of the piping system can be made directly
using the data from the CAD environment.

A tool has been developed to extract data from
CATIA piping 3D designs. This information is used to
generate the corresponding Modelica representation.

Methodology based on the use of Modelica extends
(inheritance) is applied to add controllers and other
features to the generated model for dynamic
simulation. Simulation results can be visualized
directly in the 3D view of the piping design.

Specialized tools are developed, based on generated
Modelica models, in order to enable quick calculations
from the piping 3D design directly in the CAD
environment.

Keywords: CAD, 3D, Piping, simulation, Modelica

code generation

1 Introduction

Traditionally, piping systems have been defined in
Modelica by connecting components in a model
diagram and setting parameters value for those
components. The components may be pipes with
diameter and length, vessels with volume, etc. The
piping network is partially duplicated in CAD piping
3D designs, which contains also piping components
with parameters. More precisely, the piping 3D designs
are master models for pipes shape as well as some
other component parameters defined in the BOM (bill
of material).

 CAD designers and system engineers then need to
exchange data in order to perform simulations based on
actual piping 3D design.

A more convenient definition of the piping system
can be made by directly using the data from the CAD
environment. For that purpose, a tool has been
developed to generate automatically a Modelica
representation of a piping 3D design. It will help to
perform various kinds of studies and simulations, by

simplifying tasks of users who are extracting data from
piping 3D designs.

This article is structured as followed:

- Section 2 presents the type of models that are
referred to in this paper;

- Section 3 illustrates the typical process
involving the CAD designers and systems
engineers;

- Section 4 explains how the Modelica
representation of piping 3D designs is built;

- Section 5 focuses on the possible usages of
Modelica representation of piping 3D designs.

2 Piping 3D models and Modelica models

In this section, models for piping 3D design and
corresponding Modelica simulation models are
defined.

2.1 Models for piping 3D design

Piping 3D designs are typically made of piping
equipments and piping lines.

Figure 1. Example of piping 3D design

Equipments typically represent tanks, pumps, etc. In a
CAD environment, they are parameterized 3D shapes.

Piping lines are composed of piping parts: pipes,
valves, reducer, instruments, elbows, etc. Pipes may be
either straight or curved.

DOI
10.3384/ecp15118517

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

517

Figure 2. Types of piping parts in CATIA

In a CAD environment, pipes are defined by a
geometry (center curve + section), attributes (nominal
size, end style, etc.) and a material. Other piping parts
are parameterized 3D shapes.

Models of piping parts and equipment include
connectors, also called ports. They dictate how part
connect each other, and how a pipe is routed from the
part. Each port has a 3D position and a specific
attribute that dictates the type of a part that can be
connected to it and the way it can be oriented. The
following attributes are assigned to a port: port type
(piping, electrical, etc.), nominal size, rating, end style,
standard, outside diameter, wall thickness, alignment
rules, orientation rules.

Figure 3. Typical piping "Tee" part with connectors

The 3D position of the connectors in a pipe model

can be used in order to compute the altitude difference
between the extremities of the pipe.

Additional data is available from the attributes of
the piping parts, such as length and diameter for a pipe.

Figure 4. Attributes of a pipe in CATIA

Remark: It is possible to define flexible pipes in some
CAD environments such as CATIA. However, such
models are considered as rigid pipes in this project,
mostly because of lack of availability for
corresponding behavior description based on Modelica
models.

2.1.1 Energy loss in piping parts

A specific attribute called Loss Coefficient K can be
set on the piping parts (except for the pipes).

Figure 5. Attributes of Tee piping part in CATIA

Simulation of Piping 3D Designs Powered by Modelica

518 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118517

It is based on Hydraulic Resistance Theory for
modeling losses (Idelchik I.E., 1994). On a part, it is
possible to compute the pressure drop Δp with a
quadratic expression:

Δ� = � ��22

where ρ is the upstream density and v the mean
velocity.

In Modelica the loss coefficient can be computed
using the proper correlation as it is in Modelica.Fluid

for the pipes, fittings or valves. For example in pipes,
the Moody chart (Figure 6) is used to compute the loss
factor due to the friction on specific circumstances
(Casella et al, 2006).

However, most piping parts do not allow a specific
correlation model. The pressure loss coefficients are
most often derived from measurements and are
available in the form of charts. With the K attribute the
correct coefficient can be integrated in the 3D part
definition from manufacturer datasheet.

Figure 6. Moody Chart: lg(λ) = f (lg(Re), Δ), ζ= λL/D

2.2 Simulation models for piping 3D design

Variety of studies can be performed from piping 3D
designs, depending on the kind of model and its
purpose: hydraulic, pneumatic, thermo-fluidic, etc. As
a consequence, multiple Modelica libraries can be
used, separately or combined, in order to create a
Modelica representation of those piping designs. For
example, the following libraries may be used
(https://www.modelica.org/ModelicaLibrariesOvervie
w#fluid):

- Modelica.Fluid, from Modelica Association, for
thermo-fluid flow in piping networks.
Modelica.Fluid includes a subset of
FluidDissipation library, from XRG Simulation.
FluidDissipation contains heat transfer and

pressure loss calculations for industrial
components used for the modeling of thermo-
hydraulic processes.

- Modelica.Media, from Modelica Association,
providing models and functions to compute media
properties

- ThermoPower, from Politecnico di Milano, to
model the dynamics of thermal power plants

- AirConditioning, from Modelon AB, to model
transient and steady state behavior of air
conditioning systems

- Hydraulics, from Modelon AB, to model hydraulic
systems

- Pneumatics, from Modelon AB, to model
pneumatic systems

Other libraries contain packages related to fluid, such
as:

- HumanComfort, from XRG Simulation, providing
models to estimate the human comfort within an
air-conditioned zone

- Buildings, from Lawrence Berkeley National
Laboratory, is a free open-source library with
dynamic simulation models for buildings energy
and control systems. It is includes a package of
models for pressure driven mass flow rate and for
heat and moisture exchange in fluid flow networks.

This list is of course not exhaustive.

Figure 7. FluidDissipation library

Session 7C: 3D Representations for Modelica Models

DOI
10.3384/ecp15118517

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

519

Depending on the Modelica libraries used, the

necessary data from the piping 3D design can vary.
The geometric data are the most commonly used:
length and diameter of pipes, bend radius, volumes,
etc.

Other data, such as material or roughness, may be
needed in the Modelica representation of the piping
design.

3 Collaboration between CAD designers

and system engineers

As described in the previous section, CAD designers
and system engineers share a large amount of data and
even more if the cycle of development is considered.

3.1 Parameter extraction and matching

On the upper picture of Figure 8 a pipe 3D geometry is
presented in light grey color. The interesting point on
this example is the number of parameters necessary for
a Modelica based system simulation. Considering the
diameter, the bend radius, the angles of curvature and
the height variations, this geometry contains at least ten
parameters. This is already significant for a single pipe.

 Figure 8. Typical modification of piping 3D design

In reality, complete 3D models are much more
complex and contain multiple piping parts (valves,
reducer, junction...). Consequently the number of
parameters can increase, up to hundreds or even more.

It is therefore useful to define an automatic
extraction and a matching method from each 3D
parameter to the system simulation model.

3.2 Life cycle of models

When considering the life cycle of the models, the
number of parameters to be shared between piping 3D
designs and piping simulation models becomes even
more critical. For each design change, as shown on
Figure 8, the Modelica model must be updated
accordingly, including the parameters. A system
simulation model in this context strongly depends on
changes in the design and more if the design is
(partially) driven by the results of simulation. The
number of parameters is then even more difficult to
manage due to the time that it consumes and also the
increased risk of error.

Figure 9. Life cycle of models and data flow without
generation tool

Consequently, it is necessary to take care of the life
cycle regarding the Piping Design, the Modelica model
and also the simulation results. On Figure 9 the usual
cycle is presented. With the Modelica generation tool
presented in this paper, this cycle can be simplified
(Figure 10). The transition from piping design to
Modelica model is now partially automated and after
each design modification a new model can be
generated automatically. Moreover, data manually
added by user in Modelica model is automatically
reused with the new version of generated model. In that
process, the piping 3D model is the master model
which hosts the piping system data.

Simulation of Piping 3D Designs Powered by Modelica

520 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118517

Figure 10. Life cycle of models and data flow when using
the Modelica generation tool

4 Modelica code generation

The Modelica code generation from piping 3D design
is done in a few steps.

4.1 Traversing piping 3D designs

The first step is done by traversing and filtering the 3D
design. The algorithm collects all the information
available in the parametric geometry and in the model
based on a specific semantic. The 3D design is then
mapped and may be assimilated to a graph with each
nodes corresponding to a pipe, a piping part or
equipment.

The approach is similar to a previous work with
mechanical models (Elmqvist et al, 2009).

4.2 Generated Modelica code

From the graph built by traversing the piping 3D
design, Modelica code is generated. A root Modelica
model is created. Each node in the graph is represented
by a Modelica component in this root model. The
reference class of each of these components will be
determined by the mapping process. Every component
is replaceable; this gives more flexibility if some
components must be changed afterwards.

Each node of the graph contains the type of its
corresponding piping object. That type is mapped with
a Modelica class or a group of classes by a mapping

table. Depending on the Modelica libraries that are
targeted for the simulation, that table can be modified
in order to map piping types with the Modelica classes
which are of interest.

It is important to note that the mapping of a single
3D design object can involve several basic Modelica
classes such as shown on Figure 11. The rigid pipe is a
single entity in term of 3D design. However for the
simulation this pipe needs to be split in order to take in
to account the bends for example. In any case and to
simplify the generated root model each 3D design
object which needs several Modelica base classes is
encapsulated in a sub-class.

Figure 11. 3D pipe and its Modelica representation

To complete this approach the mapping process also

includes the mapping of the attributes. The program
exposes keywords associated to a piping type. The user
is then responsible of the matching definition with the
input parameter for each of the chosen classes (Table
1). In the current prototype the mapping table is
defined from a CSV text file. For example, the
parameter of Modelica class can be mapped to a
formula including the K attribute introduced in section
2.2.1.

The next step will consist in developing convenient
editor for the mapping.

Type Keyword from 3D Modelica Path Modelica Parameter
PipRigidPipe Modelica.Fluid.Pipes.StaticPipe
 Port_1 port_a

 Port_2 port_b

 Diameter diameter

 Length length

 Height height_ab

Table 1. Example of mapping table

Session 7C: 3D Representations for Modelica Models

DOI
10.3384/ecp15118517

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

521

4.3 Diagram layout generation

The understanding of the diagram is a non-
negligible point for Modelica model and even more in
the case of automatic generation. Currently a simple
force-based algorithm provides an understandable
layout. Figure 12 is the resulting layout when
generating the model of Figure 1.

Figure 12. Diagram generated from model of Figure 1.

The implemented layout algorithm is good at

displaying the loops and symmetries on the diagram, as
shown in Figure 13. It is also fairly quick: the number
of components in a Modelica diagrams is relatively
small compared to some other kind of graphs, and the
algorithm computes the layout almost instantaneously
for diagrams containing less than 50 components.

However, the current algorithm has some
limitations including the following:

- The algorithm sometime converges to a local
minimum of energy instead of a global
minimum, which results into lower quality
layout. This is the most common disadvantage of
force-based layout algorithms.

- Position of connectors in the component icon is
not taken into account; as a consequence, even if
the components are nicely positioned, the routes
for connections may be not so good.

- Computed layout is not optimized for diagrams
with Manhattanized connections, as the
components are not aligned;

- Some generated diagrams are not compact, as
shown in Figure 12 and Figure 16.

Force-based layout algorithms are quite flexible.
They can be extended or combined with other
algorithms to improve the generated diagrams. Such
improvement may be part of a future work.

Figure 13 Example of diagram generated with force-
based layout

In the context of piping design, a 2D schematic

design is often available. This could provide a strong
base to generate a Modelica diagram with a nice layout
for people who are used to work with P&ID
schematics. In future works, generation of Modelica
model based on both Schematics and 3D CAD will be
investigated.

5 Applicative usage of generated models

5.1 Model completion

An important property of the generated model is the
possibility to use Modelica extends (inheritance) for
adding controllers and other features to the model for
simulation and also for setting missing parameters
values. It is also possible to replace components if
needed, because all components are replaceable in the
generated model. In that way, the generated model is
separated and can be changed independently of the
added and/or modified components.

In order to insert inline components in the generated
model, for example inline sensors, it is not possible to
change the connections in the extended model. The
following methodology can be applied instead. A new
class can be created which wraps the generated class
for the pipe which includes the new inline component.
Then, in the extended model, the initial component is
replaced with the new class (Figure 14).

Simulation of Piping 3D Designs Powered by Modelica

522 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118517

Figure 14. Initial generated model and extended model
with inline sensor

A main limitation when working with extended models
is related to diagram layout, which cannot be modified.

5.2 Model update

Thanks to the use of the extended model, the
modifications on the Modelica representation
performed by the user are not lost when the Modelica
representation is updated.

Even with the recommended methodology to have

seamless update of the Modelica representation, it is
useful to have a comparison tool so the user can easily
identify the changes resulting from the update
operation. Highlighting those changes helps validate
the changes and identify where the new Modelica
representation would need some additional information
or fine tuning.

5.3 Model simulation

The prototype of the Modelica generator has been used
to compare alternatives of 3D routes for pipe lines.

The system considered here is a simple civil
engineering system for water supply. It consists of 6
main installations distributed over an area of 2km by
2km:

1. Intake pumping station
2. Intermediate pumping station
3. Water treatment and storage plant
4. Industrial plant
5. Industrial plant
6. Business park

As presented on Figure 15 a piping network is
defined in order to distribute the water to each plant
based on its need. The apparent simplicity of this
design actually conceals already significant amount of
parameters (length, diameter, height variation,
roughness…) that must be taken into account for a
precise definition of the system, even in a pre-phase
project.

Figure 15. The water supply piping 3D design. At upper part: design with environment. At lower
part: without environment

Session 7C: 3D Representations for Modelica Models

DOI
10.3384/ecp15118517

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

523

The study we propose focuses on the design of the
branch between the Intermediate pumping station (2)
and the Water treatment and storage plant (3). Two
routing options are proposed (lower part of Figure 15).
The option 1 is passing over the mountain and the
option 2 gets around it with a pipe additional length of
750m.

By using the Modelica representation generator it is
possible to create a simulation model where we find
each installation and the network structure. Figure 16
shows the generated Modelica diagram according to a
specific mapping with the Modelica Standard Library,
Buildings Library and also with our own test library for
the pumping station behavior definition.

Once the mapping is defined by the user only few
seconds are needed to generate a Modelica
representation from the piping 3D design.

From the generated models, simulations have been

performed for each 3D design. It is good to note that to
perform this simulation a complementary work is
necessary in Modelica. For example, the initial
conditions need to be precisely specified in order to
have a functional simulation; therefore an expertise in
simulation is required for the first model initialization.

The first result that we can extract from the

simulations is a pressure drop characteristics
comparison between the two options. On Figure 17,
route 1 (passing over the mountain) has a lower
pressure drop for any volumetric flow rate. This result
seems to demonstrate that the friction losses on the
longer route 2 have an important impact on the
pressure drop. The pumping system will logically
consume more power with routing option 2.

Figure 17. Pressure drop characteristics for the two
routing options with incompressible water

However, even if we can already estimate the
additional power needed by the second option, it is
easily possible to confirm this with a simulation which
will take into account the full system. After results
analysis, it appears that for a volumetric flow rate of
2500 m3/h, route 2 will consume more than route 1,
from 330kW to 369kW at the intermediate pumping
station.

These results can then be the starting point to trade-
off discussions in order to choose the best design,
concerning: the cost to build the system, the choice of
material or also the maintenance costs. In any case,
these conclusions are based on a simulation which is

Figure 16. Modelica Diagram generated from the water supply piping 3D design

Simulation of Piping 3D Designs Powered by Modelica

524 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118517

strongly linked with a 3D design that could be quickly
updated and tested. This example illustrates the
possibility to improve the design process with system
simulation.

5.4 Analysis tools powered by Modelica

In addition to the global approach of complex fluidic
network for simulation, specialized tools are
developed. Based on generative Modelica model, they
will allow quick calculations from the piping 3D
design directly in the CAD environment.

For example, a command computes pressure drop in
a single rigid pipe. The user will have only to enter few
parameters, and the tool will provide the results of the
computation. The underlying Modelica model does not
need to be shown to the user. This system engineering
calculator aims at performing quick pre-dimensioning
of the designs, before performing more detailed
simulations.

This tool is currently under development.

5.5 Animation of piping 3D design

As the piping 3D design is the original model for the
simulation, it is natural to benefit from that design in
order to convey information, such as simulation results.

Fluid flow in pipes is typically a piece of
information that can be displayed on the 3D mockup,
based on animation.

Figure 18. Animated flow on 3D design

A new dedicated Modelica class has been developed,
which works like a sensor in order to collect data from
the piping model. That data is used by an animation
module in the 3D view. Animation is performed by
moving a texture along the pipe.

Compared to the existing class
Modelica.Mechanics.MultiBody.Visualizers.PipeWith

ScalarField, the new class has the advantage to work
with bended pipes. Also it is a light-weight class, as it
is designed for a more specialized purpose of flow
animation. As a result, it has a tiny impact on the size
of simulation results. Such components could be
standardized, as the pipe shape data is fully defined in
Modelica component.

This class has two main sets of attributes, one for
the description of the geometry and one for the
description of the texture.

Figure 19. Modelica parameters for the pipe flow
animation

The geometry is described with a set of points
defining the spine of the pipe, the radius of the pipe,
and the number of points along the circle defining the
pipe profile.

Figure 20. Illustration of pipe geometry with defining
points highlighted

The texture is described with an array of RGB color

values stored in an array of size U x V, where U and V
are the number of colors respectively along the pipe
profile and along the pipe axis.

Session 7C: 3D Representations for Modelica Models

DOI
10.3384/ecp15118517

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

525

Figure 21. Color encoding in the color map

Let us consider the following simple model:

Figure 22. Example of model using a curved pipe
animation

During the simulation, the following pipe animation
will be generated:

Figure 23. Curved pipe animation example

The animation is based on one scalar input, called
texturePosition, corresponding to the position of
the texture along the pipe. In generated Modelica
representations of piping 3D design, an equation links
that input with the flow rate.

6 Conclusions

With the proposed approach of generative Modelica
representation of piping 3D designs, the collaboration
between CAD designers and system engineers will
become easier. The automated exchange of data
improves efficiency and reduces the risk of errors. The
editable mapping table offers high flexibility for
multiple usages of the Modelica code generator.

Moreover, it will bridge the gap between the CAD
and System Engineering disciplines, by providing
easy-to-use utilities for pre-dimensioning of systems
directly available in CAD environment.

Future work will include the development of such
tools for CAD users, of editor for the mapping table,
and improvement of diagram layout.

Acknowledgements

The authors would like to thank Guillaume Lerey,
Gustavo Passini, Simon Royer (Dassault Systèmes
SE), Markus Andres (3DS GmbH) and Dr Hilding
Elmqvist (Dassault Systèmes AB) for their
contributions and feedbacks.

References

Casella F., Otter M., Proelss K., Richter C., Tummescheit H.
The Modelica Fluid and Media library for modeling of
incompressible and compressible thermo-fluid pipe
networks. Proceedings 5th Modelica Conference, pp 631-
640. 2006.

Elmqvist, H., Mattsson, S. E., & Chapuis, C. Redundancies
in Multibody Systems and Automatic Coupling of CATIA
and Modelica. Proceedings 7th Modelica Conference, pp
551-560. 2009.

Idelchik I.E. Handbook of Hydraulic Resistance. 3rd edition,
Begell House, 1994. ISBN 0-8493-9908- 4.

Vahlenkamp T., Wischhusen S. FluidDissipation for
Applications - A Library for Modelling of Heat Transfer
and Pressure Loss in Energy Systems. Proceedings 7th

Modelica Conference, pp 132-141. 2009.

model TestAnimation

 CurvedPipeAnimation pipeAnimation(
 nbCirclePoints=10,
 curvePoints= {{0,0,0},{10,0,0},
 {20,10,5},{30,15,5},{40,15,5}},
 radius=3,
 colortab ={{{0,90,255},{10,120,255},
 {10,150,255},{10,120,255}}},
 textureSize=10,
 texturePosition=time);
end TestAnimation;

Simulation of Piping 3D Designs Powered by Modelica

526 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118517

3D Schematics of Modelica Models and Gamification

Hilding Elmqvist
1
, Alexander D. Baldwin

1,2
, Simon Dahlberg

2

1
Dassault Systèmes, Lund, Sweden, Hilding.Elmqvist@3ds.com

2
Malmö University, Malmö, Sweden, {alexander.d.baldwin, simondahlberg89}@gmail.com

Abstract

Block diagrams have been used for a long time to
express data flow in dynamic models, i.e. the input
output relations between calculation blocks. SysML

diagrams are also used to express other relations such

as component hierarchy and inheritance. Modelica uses
object diagrams, a generalization of block diagrams

since acausal connections are allowed. CAD uses a 3D

representation to represent the assembly of a
mechanism, i.e. how bodies are coupled with joints.

This paper describes a generalization of object
diagrams, called 3D Schematics, to utilize 3D

representations of the icons/shapes and unification with

assembly diagrams and exploded views.
The ideas have been prototyped in a program called

Playmola which is inspired by computer games. The
goal is to make a model authoring environment that is

much more intuitive and fun than existing ones. The

hope is that such a tool would be used to promote
science for students already in high-school.

Keywords: Block Diagrams, Object Diagrams,

MultiBody Assembly, Exploded View, Gamification

1 Introduction

The look and feel of Modelica tools needs to be

modernized. It has roots from the 1990s when

compromises due to limitations in rendering speed

needed to be made with regards to capabilities. As a

consequence, a flat 2D graphics representation was
introduced in Modelica.

Watching young children experience, handle and
enjoy 3D scenes and actions in Minecraft

1
 inspired

making a completely different 3D environment for

building and experiencing Modelica models. The 2D
physics environment Algodoo (Algodoo, 2015) has

also served as inspiration.

2 Modelica Object Diagrams and 3D

Schematics

3D schematics as a unification of visual representations
of models will be presented by a series of examples.

1
 https://minecraft.net/

2.1 MultiBody Modeling

An example of how to model MultiBody systems in

Modelica is shown in Figure 1. It is a pendulum called
the Furuta pendulum.

Figure 1. Furuta pendulum model in Dymola

The corresponding 3D schematic of Playmola is shown

in Figure 2.

Figure 2. Furuta pendulum model in Playmola

Since it’s a 3D view the user can change the camera

position to get a different perspective of the Furuta
pendulum. It should be noted that the joints are

rendered in 3D and are oriented according to the axis
of motion. Red spheres represent the connectors.

The 3D representation of the revolute joint has been

automatically derived from the Modelica annotation of
the icon which contains:
 Rectangle(

 extent={{-100,-60},{-30,60}},

 lineColor={64,64,64},

 fillPattern=FillPattern.HorizontalCylinder,

 fillColor={255,255,255},

 radius=10),

world

x

y

B1

r={0.5,0,0}

b a a b

n={1,0,0}

R2

a b

n={1,0,0}

R3

DOI
10.3384/ecp15118527

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

527

Since the fillPattern is set to HorizontalCylinder, a
cylinder is generated for the 3D representation. The

standard 2D and the “2.5D” representations are shown

in Figure 3.

Figure 3. Standard 2D and new “2.5D” visualization of
the revolute joint

The image for the poster of the Modelica Conference
2015 in Versailles, Figure 4, was generated based on a

gearbox model using this “2.5D” technique.

Figure 4. Modelica Conference poster using “2.5D”
visualization of a gearbox

The view of the Furuta pendulum in Figure 2 can be
seen as an exploded view of a 3D assembly drawing.

The unexploded view is shown in Figure 5. The joints

and connections are then not rendered.

Figure 5. Un-exploded view of Furuta pendulum

The above view is also the animation view for
Playmola. It corresponds to the special animation view

of Dymola shown in Figure 6.

Figure 6. Animation of Furuta pendulum model in

Dymola

2.2 CAD shapes – Robot Model

The mechanics part of the model:

Modelica.Mechanics.MultiBody.Examples.Systems.Ro

botR3.fullRobot is shown in Figure 7.

Figure 7. Robot model in Dymola

The corresponding non-exploded Playmola model is

shown in Figure 8.

Figure 8. Un-exploded view of Robot model in Playmola

world

x

y

a b

n={1,0,0}
r2

a b

n={1,0,0}
r3

a b

n={1,0,0}
r5

axis1

axis2

axis3

axis4

axis5

axis6

3D Schematics of Modelica Models and Gamification

528 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118527

This view uses the actual shapes of the bodies instead
of icons and is constructed in the same way as the

assembly is made.

Figure 9 shows the exploded view.

Figure 9. Exploded view of Robot model in Playmola

This is a very intuitive visual representation of the
robot in which the degrees of freedom are clearly

shown. In this representation, additional modeling

elements can be introduced such as electrical motors
and gearboxes as shown in Figure 10 of the partial

robot model (the 3D representations of the motors and
gearboxes were automatically generated):

Figure 10. Exploded view of Robot model with motors

and gearboxes in Playmola

2.3 Bodies in Contact

Many real life situations involve bodies in contact or
colliding bodies. Playmola utilizes the new

functionality available in Dymola for contact handling
(Elmqvist, et al., 2015). It is therefore possible to put

some boxes on a table (big box), set initial rotation

speed on one of the boxes, and experience the domino
effect as shown in Figure 11.

Figure 11. Domino bricks model in Playmola

3 Gamification

3.1 Background

Science education has been slow to adopt the use of

interactive simulations. (Wieman and Perkins, 2006)
are vocal proponents of using interactive simulations as

an educational tool in science and argue that traditional

forms of education fail to provide students with an
understanding of science by suppressing their interest

in the subject and failing to engage them. Wieman and
Perkins argue that interactive simulations are an

effective complement to traditional media in science

education – an idea that is supported by research into
the use of simulation tools to engage college students

(Podolefsky, 2010). According to Wieman and Perkins,

the most important features of an engaging interactive
simulation tool are:

 Highly interactive animation

 An appealing environment and sophisticated

graphics

 Simple and intuitive controls

 Connections to real-life objects (Wieman and

Perkins, 2006 p. 291)

Research shows that an effective way of promoting

user-engagement and interest in learning environments
is the incorporation of elements from digital games

(Sabourin and Lester, 2014). The use of game-elements
in other contexts, usually referred to as gamification,

has been an increasingly popular research topic in

recent years, with many studies applying its principles
in an educational context (Hamari et al., 2014),

(Seaborn and Fels, 2015). The stated motivation for the

use of (digital) gamification is often to increase user

Session 7C: 3D Representations for Modelica Models

DOI
10.3384/ecp15118527

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

529

engagement and, consequently, user retention in
software systems (Deterding et al., 2011).

Most gamification today is implemented using

extrinsically motivating elements such as points,
achievements and leaderboards - encouraging users to

compete for rewards and status. This kind of

gamification has been criticised for not being
representative of what makes games fun and has been

referred to as “pointsification” (Robertson, 2010).
Numerous attempts have, however, been made to

construct models or frameworks for gamification

which focus on intrinsic motivation and fun.
In addition to design-elements from games, game-

related technologies such as game engines and 3D-
engines can be useful in non-game contexts and have

successfully been used in the development of

simulation tools on numerous occasions (Bijl et al.,
2011). Game engines often boast advanced graphical

features with realistic lighting and shadows and

support for importing complex animated and textured
3D models, which can be used to provide the appealing

environment and sophisticated graphics Wieman and
Perkins consider important. Depending on the type of

simulation tool to be created, other common features of

game engines such as built-in physics engines and
artificial intelligence systems can also be useful. These

types of features are often provided in a development
environment which supports rapid production,

commonly with little need for programming.

3.2 Gamification Frameworks

(Nicholson, 2012) attempts to solve the issue of the

negative effects of extrinsic motivators on intrinsic
motivation by conceptualising a framework for

“meaningful gamification” with a focus on the end-

user rather than the organization providing the service,
even providing his own definition of meaningful

gamification as: “the integration of user-centered game

design elements into non-game contexts”. Besides
recommending a focus on intrinsic motivators,

Nicholson’s framework stresses the importance of
context in the use of game elements, referring to the

concept of situated motivational affordances

(Deterding, 2011), which describes how the
motivational effect of a system element depends upon

the background of the user and the context in which it
is used in the system. Nicholson concludes that

meaningful gamification relies on using elements that

users with a wide variety of backgrounds can relate to
in the right context within a system. In his examples of

applications of meaningful gamification, Nicholson
suggests removing scoring/rule-based elements and

focusing on ‘play’, referring to this as ‘playification’.
Deterding et al. refer to this concept as ‘ludification’
and consider gamification a subset of ludification

(Deterding et al., 2011 p. 13).

Numerous studies on gamification refer to Malone’s
paper (Malone, 1982) on using ideas from games in

effective user interface design. While written long

before the coining of the term “gamification”,
Malone’s ideas still have a lot in common with the
aforementioned definitions, particularly Nicholson’s
framework for user-centered meaningful gamification.
Malone focuses on the user’s enjoyment, defining three
principle heuristics for designing enjoyable user
interfaces: challenge – the activity should have a clear

goal and an uncertain outcome, fantasy – the interface

should be “emotionally appealing” and use metaphors
that the user can relate to, and curiosity – the interface

should provide the right level of informational
complexity in order to be novel or surprising while still

understandable; it might also use “sensory curiosity”,
which refers to the use of audio and visual effects as
decorations, to enhance fantasy or as a means of

representing aspects of a system.

3.3 Use of Gamification in Playmola

Playmola was constructed with gamification in mind,

primarily taking advantage of Malone’s “fantasy” to
immerse users in the setting of a workshop where they

can experiment and build models in an environment
that is both familiar to them (most people have some

experience of building things in a garage or shed) and

contextually appropriate for the kind of construction
being done (mechanical models in the developed

prototype), see Figure 12.

Figure 12. Garage environment for visual experiments in

Playmola

Textured 3D models for the environment (including
walls, floor, ceiling, a workbench, a screwdriver and
stacked cardboard boxes), particle effects (a welding

effect using sparks, see Figure 13) and music and

sound effects (specially composed background music
and a welding sound effect when components are

connected) were all used to invoke this sense of

fantasy.

3D Schematics of Modelica Models and Gamification

530 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118527

Figure 13. Welding a joint in Playmola

Playmola has to a certain extent been inspired by the
Kerbal Space Program

2
 which allows you to construct

and launch a rocket built-in a hangar, see Figure 14.

Figure 14. Kerbal Space Program

4 Modeling with Playmola

As demonstrated above, Playmola allows modeling

with the predefined 3D objects, Box, Cylinder and

Sphere in addition to objects defined by triangular

meshes imported from CAD programs. The
components are organized in groups, see Figure 15.

Figure 15. Group of Robot parts

2
 https://kerbalspaceprogram.com/

When hovering over the group, the 3D parts are rotated

in order to give better perception. It should be noted
that the same 3D representation is used in composition

mode as in animation mode. In addition, all Modelica

library components can be used when modeling. Their
visual representation is usually flat and only shown in

the exploded view.
When a connector of a part is moved close to a

connector of another part, the connectors are

highlighted. A dialog is shown (Figure 16) to allow
selection of joint type to be inserted.

Figure 16. Dialog for selecting joints when connecting

parts

When parts and joints are connected in a loop

(kinematic loop), special handling in the Dymola
solver is required. To simplify for the user, such a

situation is automatically detected and currently a

strong spring damper is inserted to act as a cut joint
and brake the kinematic loop. This cut joint is

visualized with a dashed line (Figure 17).

Figure 17. Kinematic loop

In order to promote ease of use for younger users, most
components used in Playmola are simplified wrappers

of components from the Modelica Standard Library,

dramatically reducing the number of parameters the
user can change to a subset of key parameters that

allow the user freedom to experiment without
becoming confused by an overload of information.

For example, when a revolute joint is selected a

dialog slides in from the right (Figure 18) showing
only certain parameters.

Session 7C: 3D Representations for Modelica Models

DOI
10.3384/ecp15118527

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

531

Figure 18. Simplified dialog for revolute joint

These kinds of constraints are recommended by

(Podolefsky et al., 2010) in their discussion of the use

of simulation tools in physics education: ‘constraining
what students can do reduces cognitive demands and
frees up resources for sense making and development

of an expert-like mental framework.’ In addition to
these simplified components, other components can be

loaded as desired.

5 User Experiences

5.1 First Grader

Playmola was presented to a 7-year old boy. He is

interested in machines and had previous experiences
with simpler 2D educational games. The first exercise

was to construct a double pendulum, i.e. introducing

the concepts of setting the size of a box and coupling
the parts by means of revolute joints. This was carried

out without problems especially since changing a
parameter such as length is immediately visualized.

The next exercise was to construct a robot using the

set of bodies shown in Figure 15. Axis of motion then
becomes very important. The concept of direction was

introduced by showing 3 fingers pointing right, up and

towards him and corresponding to the 3 input boxes in

the dialog. It was explained that 0,0,1 meant choosing

the axis towards him and 0,1,0 meant up. It was also
explained how to move the parts by setting the

StartAngle by a short introduction to the concept of

degrees for angles. After that he could build the robot
as shown in Figure 9.

5.2 Bachelor Students

In a small-scale study, eight users were about to

recognize Playmola’s theme and felt that it was
enjoyable and suitable for the application, using words

like ‘charming’ and ‘great’. One user described how
the environment actively enhanced the user experience:
‘You come into a calm environment with calming
music which isn't distracting. It makes it easier to

concentrate on what you actually want to do.’
The use of a single, unified 3D view for construction

and animation of models - instead of the disconnected
2D view for construction of models and 3D view for

animation of simulation results seen in Dymola -

appears useful from the perspective of helping new
users understand the application. All users agreed that

the 3D environment made it easier for them to

visualize the models, one pointing out that the unified
view made it easy to tweak parameters in a model and

get direct visual feedback reflecting the changes.

Observations also showed that the ability to view the
complete model in 3D allowed users to quickly

discover the source of any issues.

6 Proposed Extensions to Modelica

As demonstrated above, Rectangle with fillPattern=

HorizontalCylinder can be interpreted as a Cylinder

enabling the “2.5D” representation. Other graphical
primitives such as Ellipse, Rectangle and Polygon just
get a fixed small extrusion in the z-direction. This

means that, for example, the icon of the Prismatic joint
does not look right, see Figure 19.

Figure 19. Standard prismatic joint rendered in Playmola

We propose that general 3D primitives are introduced

in the graphics annotations of Modelica. In particular, a

triangular mesh representation gives a very flexible
way of defining the component shapes.

The paper (Elmqvist, et al., 2015) presents details
about modeling with triangular meshes. A popular

representation is an array of 3D vertices and an array of

triangles defined as 3 indices into the vertices array. A
set of functions are defined for building triangular

meshes of Box, Cylinder, Sphere and other elementary

shapes. Transformation functions for translating,

rotating and scaling of shapes are defined. In addition,

functions from extrusion of shapes from polygons are
available. Finally the Constructive Solid Geometry

(CSG) operations, union, difference and intersection

are defined.
By replacing the four rectangles of the Prismatic

joint icon graphics by the following annotation:

TriangleMesh(mesh=

 rotate(

 union(

 translate(

 Box(size={200, 60, 60}),

 r={-100, -30, 30}),

 translate(Box(size={70, 100, 100}), r={-100, -0, 50})),

 angles={3.14159265/6, 0, 0}),

 triangleColor={175, 175, 175})

the visual representation of Figure 20 of the Prismatic

joint is achieved.

3D Schematics of Modelica Models and Gamification

532 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118527

Figure 20. Prismatic joint using triangular mesh

The calls to the function Box return 12 triangles each.

These are translated and combined by the CSG union
operator to a new triangular mesh representing the

union. Finally this solid is rotated. A default argument

might be introduced, in addition to the mesh argument,
with a 2D standard representation for those tools that

does not support 3D primitives.
In addition to this triangular mesh primitive

extending the visual representation to 3D, also the

coordinate system need to be extended, for example:

coordinateSystem(

 extent3D={{-100,-100,-100},{100,100,100}})

Furthermore, the Placement annotations of components
need to be extended to 3D positioning, sizing and

orientation, for example (with qx, qy and qz
representing the direction of the local x, y and z axis):

Placement(transformation3D(

 position={-50,50,10},

 size={10,10,10},

 rotation={qx, qy, qz}))

The position and rotation of connectors in 3D is
especially important to enable assembly operations

where the connected components immediately rotate to
be correctly assembled.

7 Playmola Architecture

Playmola is designed to run in a web browser and it

communicates with Dymola using remote JavaScript

calls encoded in JSON format. Dymola 2016 version
(Dassault Systèmes, 2015) has support for remote

Modelica function calls performed in Java, JavaScript
or Python. This API has been extended by certain new

functions.

Three.js (Dirksen, 2013), (three.js, 2015), a popular
JavaScript 3D rendering API based on WebGL, was

chosen for Playmola's development since it provides
the required graphical functionality. Dymola was

enhanced to include functions for exporting 3D models

in a format compatible with three.js. The built-in
VRML loader was extended with extra functionality to

be able to load 3D models in VRML format.

Playmola imports data from Dymola by the means
of a client/server relationship. This architecture is used

in order to load component models defined in Dymola

into Playmola, to send the parameterized component
instances back to Dymola in the form of generated

Modelica code, for performing simulation and to query

frame data for the result animation.
jQuery Mobile (jQuery Foundation , 2015) was used

for GUI elements and input handling, which, together
with the cross-platform nature of HTML5, allows

Playmola to be used on multiple devices. The

prototype was developed on browsers running on a PC,
but also runs on iPad (Figure 21) and other touch-based

devices.

Figure 21. Playmola on the iPad

8 Stereo Viewing and Virtual Reality

In order to become more interesting and allow a 3D

experience, Playmola can be run in stereo mode for 3D

viewing. The rendering package used, Three.js,
supports side-by-side rendering of the scene.

Figure 22 shows running Playmola on an iPhone,
transferring this stereo image to a 3D TV using Apple

TV. The TV is set to stereo side-by-side mode and

active 3D glasses are used for viewing the 3D content.

Figure 22. Stereo image on iPhone and 3D TV

The stereo side-by-side rendering is also what is
needed for virtual reality gear such as Oculus Rift or

the low cost Google Cardboard. Google Cardboard

Session 7C: 3D Representations for Modelica Models

DOI
10.3384/ecp15118527

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

533

mounts a smart phone in front of your eyes. Head
motion is tracked and controls the viewing. It is

possible to make compositions by looking at an object,

pressing the button on the Cardboard (Google
Cardboard V2 is needed for iPhone), looking in the

direction of the destination and releasing the button,

Figure 23. The white circle in the middle of the view
represents the focus point.

Figure 23. Google Cardboard and side-by-side projection

We have tested the Leap Motion controller that tracks

your fingers. However, our initial assessment is that the
resolution is not sufficient for gripping objects when

authoring models.

We believe Cardboard will revolutionize education.
It is then important that the teacher and the students

can be in the same virtual reality. We are currently
investigating technologies to enable sharing the same

scene. It means that all clients communicate with a

scene server that broadcasts any changes to the scene.
As the next step, we are eager to start testing

HoloLens from Microsoft since it supports augmented

reality. It means that the teacher and the students can
be seen in the virtual model and can act on it.

9 Future Work

The work is continuing and this section will summarize

some of the features in the pipeline.
Traditionally, a mechanism assembly is done by

putting joints between frames of bodies. However, it

makes sense from an object oriented point of view to
associate more information with the bodies. For

example, a bar that has a cylindrical hole is prepared
for mating with another body with a hole, i.e. it is

prepared to have one rotational and optionally one

translational degree of freedom. By associating this
information with the body, the tool can automatically

insert either a Revolute or a Cylindrical joint when
connected to another body. Standardized base classes

with predefined properties for such smart connectors

will be used to store such information about degrees of
freedom.

In order to better support direct manipulation and

virtual reality authoring without keyboard, we are

working on widgets for positioning, rotation, scaling
and setting DOFs. Figure 24 shows the positioning tool

which is inspired by such a tool in Unity.

Figure 24. Positioning tool

Orientation in 3D is complex to comprehend for

students. However, it is important when building and
initializing complex mechanisms such as a Stewart

platform. Therefore support should be given in
Playmola.

The Turtle graphics methodology is a good way of

learning 2D computer graphics. It is based on two
commands, forward a certain distance and rotate a

certain angle plus repetition. For 3D Turtle graphics,

two rotation commands are needed such as Roll and
Turn (Verhoeff, 2009). Roll is rotation around the x-

axis and Turn around the z-axis.
By using 16 bars and connectors with Roll(±90°)

and Turn(130.06°), it is possible to build a regular 3D

polygon as shown in Figure 25 (Verhoeff, 2009).

Figure 25. Regular 3D polygon

In order to build such regular structures we plan a
Repeat Paste command which pastes a certain number

of levels and makes the connections.
Playmola will also allow the inclusion of plots in the

environment, i.e. on the walls, on the computer or on

3D Schematics of Modelica Models and Gamification

534 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118527

the desk. The plots are regular 3D object although flat,
i.e. they have position, orientation and scale 3D

transformation as shown in Figure 26.

Figure 26. Plot as 3D object

3D is not only important for mechanical systems. We
have started to experiment on how to handle fluid

systems. Interestingly, some of the data associated with

a mechanical connector, i.e. position and orientation

are also needed for fluid components such as tanks and
reactors. For pipes, also the routing is important.

Regarding animation of fluid flows and their

properties and electrical flows, we will use the particle
simulations available in packages such as three.js. The

speed of particles corresponds to the flow rate and
color can be used for temperature as shown in Figure

27. The level in a vessel can conveniently be handled

by the shaders of the GPU by making the vessel
transparent and filling the vessel up to a certain level

when rendering the fluid.

Figure 27. Flow and level animation.

10 Conclusions

A completely different and more modern 3D
representation of Modelica models is proposed. It will

help professionals to comprehend complex models and
is more attractive, intuitive and fun for new-comers.

These ideas have been prototyped in a web

application which uses Dymola in server mode for
creating 3D representations and for performing

simulations.

The support for low cost virtual reality gear such as
Google Cardboard will enable faster adaption of this

kind of modeling and simulation techniques in

education.

Acknowledgements

This work has partly been performed as a bachelor

degree project at Malmö University. The first author
served as an industrial advisor and Olle Lindeberg as

the formal supervisor.
The authors want to thank Carl Fredrik Abelson for

extending Dymola with needed remote JavaScript calls

for various functionalities and for exporting WebGL
code for 3D Modelica representations.

The authors also want to thank Martin Malmheden,

who has been heavily involved in the discussions on
how to continue the work after the bachelor degree

project, for his contributions.

References

Algodoo (2015): http://www.algodoo.com/

Bijl, Jonatan L. and Boer, Csaba A. (2011): Advanced 3D

Visualization for Simulation Using Game Technology. In:

Proceedings of the Winter Simulation Conference.

WSC’11. Phoenix, Arizona: Winter Simulation

Conference, 2011, pp. 2815–2826.

Dassault Systèmes (2015): Dymola 2016.

http://www.Dymola.com

Deterding, Sebastian. (2011) Situated motivational

affordances of game elements: A conceptual model. In:

CHI 2011, May 7–12, 2011, Vancouver, BC, Canada.

Deterding, Sebastian et al. (2011): From Game Design

Elements to Gamefulness: Defining “Gamification”. In:

Proceedings of the 15th International Academic MindTrek

Conference: Envisioning Future Media Environments.

MindTrek ’11. New York, NY, USA: ACM, 2011, pp. 9–
15

Dirksen, Jos (2013): Learning Three.js: The JavaScript 3D

Library for WebGL. Packt Publishing (October 2013)

Elmqvist H., Goteman A., Roxling V., Ghandriz T. (2015):

Generic Modelica Framework for MultiBody Contacts and

Discrete Element Method. Proceedings 11th International

Modelica Conference, Versailles, September 21-23, 2015.

Hamari, J., Koivisto, J., and Sarsa, H. (2014): Does

Gamification Work? – A Literature Review of Empirical

Studies on Gamification. In: System Sciences (HICSS),

2014 47th Hawaii International Conference on. Jan. 2014,

pp. 3025–3034.

jQuery Foundation (2015): jQuery Mobile

https://jquerymobile.com (visited on 05/16/2015).

Malone, Thomas W. (1982): Heuristics for Designing

Enjoyable User Interfaces: Lessons from Computer

Games. In: Proceedings of the 1982 Conference on Human

Factors in Computing Systems. CHI ’82. New York, NY,
USA: ACM, 1982, pp. 63–68.

Nicholson, Scott. (2012): A User-Centered Theoretical

Framework for Meaningful Gamification. In: Proceedings

Session 7C: 3D Representations for Modelica Models

DOI
10.3384/ecp15118527

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

535

of Games+Learning+Society 8.0. Madison, WI, USA,

2012.

Podolefsky, Noah S., Perkins, Katherine K., and Adams,

Wendy K. (2010): Factors promoting engaged exploration

with computer simulations. In: Phys. Rev. ST Phys. Educ.

Res. 6.2 (Oct. 2010), p. 020117

Robertson, Margaret. (2010): Can’t play, won’t play.

http://hideandseek.net/2010/10/06/cant-play-wont-play/

(visited on 04/07/2015).

Sabourin, J.L. and Lester, J.C. (2014): Affect and

Engagement in Game-Based Learning Environments. In:

Affective Computing, IEEE Transactions on 5.1 (Jan.

2014), pp. 45– 56.

Seaborn, Katie and Fels, Deborah I. (2015): Gamification in

theory and action: A survey. In: International Journal of

Human-Computer Studies 74 (2015), pp. 14–31.

three.js (2015): http://threejs.org/ (visited on 04/12/2015).

Verhoeff T., Verhoeff K. (2009): Regular 3D Polygonal

Circuits of Constant Torsion. Bridges 2009: Mathematics,

Music, Art, Architecture, Culture.

http://archive.bridgesmathart.org/2009/bridges2009-

223.pdf

Wieman, Carl E. and Perkins, Katherine K. (2006): A

powerful tool for teaching science. In: Nat Phys 2.5 (May

2006), pp. 290-292.

3D Schematics of Modelica Models and Gamification

536 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118527

Holistic Virtual Testing and Analysis of a Concept Hybrid Electric

Vehicle Model

Jonathan Spike1 Dr. Johannes Friebe1 Dr. Chad Schmitke1

Dr. Christian Donn2 Michael Folie2 Valerie Bensch2

Christine Schwarz3

1Maplesoft, Waterloo, Ontario, Canada, {jspike, jfriebe, cschmitke}@maplesoft.com
2IPG Automotive GmbH, Karlsruhe, Germany,

{christian.donn, michael.folie, valerie.bensch}@ipg.de
3ISKO engineers AG, Leonberg, Germany, Christine.Schwarz@isko-engineers.de

Abstract
In this paper; the development, integration, and
analysis of a hybrid electric vehicle (HEV) using
system level virtual test will be presented. The work
will discuss how a Modelica-based Parallel HEV
powertrain model developed using MapleSim™ is
integrated into industrial vehicle modeling software
tool (IPG CarMaker®) using the Functional Mockup
Interface (FMI) standard; and how, using API
commands, virtual testing and analysis was performed
with an optimization tool (Noesis Optimus®). The
acausal modeling of the HEV powertrain was done
using Modelica 3.2.1, allowing the flow of energy to be
inferred from the operating characteristics and
controller design. The multidomain model uses
components from the electrical and mechanical
libraries, including commercialized library components
from MapleSim’s Driveline Component Library and
Battery Component Library.

Keywords: Hybrid Electric Vehicle, Powertrain, FMI,

Driveline, Modelica, MapleSim, CarMaker, Optimus

1 Introduction

Powertrain hybridization assists an internal combustion
engine to operate with optimal efficiency and enables
the recuperation of kinetic energy during braking. This
increases a vehicle’s fuel efficiency and reduces it
exhaust emissions. Additionally, powertrain
electrification offers many possibilities for increasing
longitudinal and lateral vehicle dynamics (Appel,
Sterzing-Oppel, et al, 2015). However, in view of the
wide range of variants and concepts of hybrid electric
vehicles, finding optimized setups often poses a
challenge due to the varying boundary conditions,
different cases of application, as well as interdependent
vehicle subsystems.

 Although the process starts with simulation runs to
investigate vehicle concepts and operating strategies
using different powertrain topologies or components, it
is crucial to examine the performance of the overall
system, as well as the functionality and interaction of
all relevant subsystems, in realistic scenarios and

conditions in order to meet the final development
targets. This is where optimization processes and tools
can assist – to find the best compromise, taking into
account all the various design constraints.

 In this paper, an open integration and test platform is
used for the multi-objective optimization of the
powertrain concept of a hybrid vehicle. This was done
for different driving scenarios and driver types while
taking into account longitudinal and lateral vehicle
dynamics. A comparative study of fuel efficiency and
performance for a hybrid-electric powertrain with
different battery sizes and operating strategies was
carried out, using the FMI approach to integrate a
detailed vehicle powertrain model into a
comprehensive full-vehicle model driven by a virtual
driver on a virtual road.

2 Modeling and Simulation Environment

The comparative study of fuel efficiency and
performance of different hybrid electric vehicle
powertrain concepts carried out in this work was
conducted using three development tools. The
powertrain model was developed in MapleSim™, the
multidomain modeling and simulation environment
from Maplesoft™. It was then converted into a
Functional Mockup Unit (FMU) for integration with
the test environment using IPG CarMaker®, an open
integration and testing platform (Kobayashi, Donn,
2015). The virtual vehicle, road and driver were set up
using CarMaker, which then linked the entire virtual
environment with Optimus®, a Process Integration and
Design Optimization (PIDO) platform from Noesis, to
perform comprehensive multi-objective optimization.
Figure 1 shows an overview of the modeling and
simulation environment.

DOI
10.3384/ecp15118537

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

537

Figure 1. Modeling and Simulation Environment

3 Powertrain Model

The HEV powertrain model was developed using
MapleSim’s Modelica-based library components. The
Modelica physical modeling language has become
widely-used and allows multidomain modeling within
one model structure (Otter, Elmquist et al, 2007). The
HEV powertrain model utilized MapleSim’s own
Driveline Component Library, Battery Component
Library, as well as custom components to generate the
model. The intuitive modeling process allows
dragging-and-dropping of predefined components,
connecting them together, and then specifying the
operating parameters to obtain preliminary results. The
model was then converted using the FMU code
generation template for integration with vehicle
modeling tools that comply with the FMI standard,
such as IPG CarMaker. The automatically-generated
code includes significant optimizations obtained by
applying symbolic techniques. This results in fast
execution time, making it suitable for both real-time
applications and optimization solutions. The FMI
export tool, used to integrate the HEV powertrain with
CarMaker, provides the ability to generated FMI 1.0 or
2.0 along with both Model Exchange (FMU that uses
the solver in the target environment) and Co-
Simulation (FMU with embedded solver)
configurations. The HEV powertrain model details are
specified in the following section.

3.1 Reference Model

In order to meet the goal of a realistic HEV powertrain
with a continuously variable transmission (CVT) and
maximizing efficiency, a commercially-available
powertrain concept was selected. The selected
powertrain configuration is a Parallel HEV model with
a CVT, inspired by the 2006 Honda Civic Integrated
Motor Assist (IMA) powertrain (Hofman, Druten et al,
2005). The Honda IMA configuration uses the electric
motor (EM) and internal combustion engine (ICE) in a
parallel configuration therefore driving the same
driveshaft. By adjusting the operating behavior of both
the EM and ICE, an energy balance may be determined

to maximize efficiency. The EM connected in this
configuration can provide engine balancing, function
as the starter motor, and allow for energy flow to and
from the driveshaft for either motor assisting or
electrical regeneration. This parallel HEV powertrain
configuration allows for six different modes of
operation (Donn, Folie et al, 2015:

1. Engine Driving (E): The ICE is the only source for

providing the power
2. Motor Assist (MA): The ICE and EM both deliver

the requested driving power
3. Motor Driving (M): The EM is the only source for

providing the power
4. Charging (CH): The ICE deliver power for both

the vehicle and battery charge power demand.
5. Brake Energy Recovery (BER): During

deceleration, part of decelerating power is
recovered by the EM and stored in the battery

6. Idle Stop (IS): The ICE is stopped during full
vehicle stops. Meanwhile, the auxiliaries are
powered from the battery.

3.2 Powertrain Component Modeling

The EM and ICE driveshaft is also coupled to the input
of the CVT. The output from the CVT then drives the
wheels as the torque is transferred through a
differential. Since the EM motor is capable of both
providing energy and extracting energy from the
driveshaft, a Power Electric Controller (PEC) system is
required to manage the energy flow to and from the
EM and the battery. Figure 2 presents the energy flow
between the different powertrain subsystems.

Figure 2. Energy Flow Diagram for a Parallel Hybrid
Electric Vehicle Powertrain using a CVT.

EMBattery

ICE

CVT
Final

Drive

PEC

Fuel

Wheels Load

Holistic Virtual Testing and Analysis of a Concept Hybrid Electric Vehicle Model

538 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118537

Figure 3. FMU Generation Configuration of Hybrid
Electric Vehicle Powertrain with a CVT

The acausal physical component modeling
characteristics of the Modelica components allow the
powertrain system to be developed based on the energy
flow diagram of Figure 2. The fundamental physical
equations within the Modelica components allow the
system to provide/extract energy at the wheels as the
vehicle is accelerating or decelerating without
requiring special modeling structures or definitions for
each component use case. Figure 3 shows an overview
of the HEV powertrain model prepared for FMI export
used in this work. The FMU uses input/output signals,
unlike the physical ports in the Modelica components,
thus requiring the model to be prepared in the form that
is compatible with the FMI standard.

The MapleSim model was generated based on
limited technical data for the 2006 Honda Civic IMA
powertrain. Model data was obtained from multiple
sources, and estimates were used when information
was not available. Several of the key components (ICE,
EM, Battery, PEC) were not explicitly available and
approximate models were used to replicate the desired
behavior. The following specifies additional details for
each of the major subsystems.

ICE System: The ICE subsystem utilized engine

performance data for a 1.36L engine. The engine map
was implemented using MapleSim’s Driveline engine
component that related the engine throttle to the speed-
torque tabular data. The ICE model was configured to
allow the engine to be used with a stop-start system.
The ICE model also provides instantaneous fuel rate,
for fuel consumption calculation.

EM, PEC, and Battery Systems: The electric motor
subsystem housed all three components (EM, PEC, and
the battery). The EM selected was a permanent magnet
DC motor with a rated power of 13.8kW. By using the
DC-EM the PEC unit and control strategy can be
relatively simple, as the PEC was not a primary focus
for this investigation. However, the PEC did include
features to protect the battery from being over charged
or fully discharged and appropriately limit the
electrical current. The battery model selected was the
nickel-metal hydride (NiMH) equivalent circuit battery
model from the MapleSim Battery Component Library.
Further discussion on the battery is contained in
Section 3.3.

Transmission System: The CVT component was

directly obtained from MapleSim’s Driveline
Component Library. This component allows the
transmission ratio to be adjusted based on the specified
gear ratio. The CVT gear ratio operates within the
continuous range of 0.45 and 2.6. The CVT was
coupled to a final drive system allowing for further
gear reduction. The control approach used with the
CVT and ICE is discussed in Section 3.4.

3.3 Battery Pack

The Nickel Metal Hydride (NiMH) battery used in the
reference vehicle powertrain provides the electrical
energy storage required for the HEV and an additional
electrical charge to operate the auxiliary components
that would normally operate the 12V electrical
systems. This battery supplies power during electrical
motoring (M) or motor assist (MA) modes. During the
charging (CH) or braking (BER) operating modes the
energy is stored in the high voltage battery pack.

Session 7D: Virtual Test Benches

DOI
10.3384/ecp15118537

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

539

The NiMH battery model was selected from the
MapleSim Battery Component Library to resemble the
battery used in the reference vehicle. The battery
library includes additional battery chemistry such as
Lead Acid and Li-ion, each with available electro-
chemical and equivalent circuit models. The NiMH
battery model used was an equivalent circuit model
that implements nonlinear resistors and capacitors. The
values of the resistors and capacitors are determined as
a nonlinear function of battery state-of-charge (SoC).
Figure 4 illustrates the underlining equivalent circuit
structure representing the battery. Equation (1) defines
the exponential-polynomial function used (Chen,
Rincón-Mora, 2006).

Figure 4. Equivalent Circuit Model Diagram for the
NiMH Battery

 ܴ� = �ଵ,�� exp(�2,��ܵ��) + �ଷ,�� + �4,��ܵ��+ �ହ,��ܵ��2 +⋯ �� = 1ܴ� (�ଵ,�� exp(�2,��ܵ��) + �ଷ,�� + �4,��ܵ��+ �ହ,��ܵ��2 +⋯) � = {Ͳ,1,2}, ݆ = {1,2}
(1)

In order to prevent the battery from reaching non-

physical conditions, the battery model can terminate
the simulation if the battery is discharged past a
minimum level or similarly if the battery is over
charged. As a result the PEC implemented is tasked
with maintaining the battery within the desired SoC
range ensuring the proper battery operation.

The calculating the instantaneous battery SoC is

determined using Equation (2).
 SoCሺtሻ = QሺtሻQmax (2)

SoC(t) and Q(t) are the instantaneous state of charge

and battery electrical change, while Qmax is the
maximum electrical charge that the battery pack is
capable of maintaining. Therefore, the value of SoC
ranges between 1 (fully charged) and 0 (fully

discharged). More details about the battery model can
be found in (Dao, Vyasarayani et al, 2012)

3.4 Powertrain Control Strategy

The hybrid powertrain energy management strategy
determines the distribution of power between the EM,
ICE and the battery while fulfilling the instantaneous
power demand requirements. The implemented control
strategy has a significant impact on the useable energy
and performance of the powertrain (Donn, Folie et al,
2015). Figure 5 illustrates the energy flow chart,
defining the block subsystems used in the control
strategy. The powertrain is combined with the vehicle
and driver model in which case the applied torque can
either accelerate the vehicle or apply regenerative
braking depending on the driver pedal input command.

Figure 5. Energy Management Flow Chart for the
Parallel Hybrid Electric Vehicle

The powertrain’s torque demand (Td) is calculated

by converting information from the positions of the
accelerator and brake pedals. The combined torque
output from the EM and ICE is used to meet the torque
demand. As a result, the distribution between the two
systems – as determined by the torque split controller -
provides an important part of the control strategy. In
this work the torque split controller is a rule-based
approach, determined by the torque demand and
battery SoC.

Figure 6 illustrates an extract of the sample code

that was used to define the custom Modelica torque
splitter component. As a result, the powertrain
operating mode is determined by the torque splitter
output. When the battery SoC is at a sufficient
operating point, the powertrain operating
characteristics are as defined in Table 1. Otherwise,
when the battery SoC is below the 10% minimum
specified threshold, the torque splitter will ensure not
to load the EM. Instead, the ICE will be expected to
provide all of the accelerating torque demand.

EM

Battery

ICE

CVT
Final

Drive

Torque Split

Controller

Torque

Coupling

Vehicle &

Driver Model

Pedal

Position

Applied

Torque

HEV Powertrain

Pedal

Interpreter

Holistic Virtual Testing and Analysis of a Concept Hybrid Electric Vehicle Model

540 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118537

Figure 6. Modelica Code Sample of the Torque Splitter

Table 1. Powertrain torque split strategy

Mode Torque Demand

Range

Torque Split

BER Td < 0 TICE = 0
TEM = Td -TDrag

M 0 < Td < TE TICE = 0
TEM = Td

CH TE < Td < TRg TICE = Td + TEM
TEM = RegTrq

E TRg < Td <TMA TICE = Td
TEM = 0

MA Td > TMA TICE = Td - TEM
TEM = 0.5(Td -TMA)

Once the torque distribution has been determined,

the engine and transmission control systems are
required to operate together. The approach selected
assumes that the operating performance of the ICE is
the major focus. The ICE and transmission control
approach uses the minimal Brake Specific Fuel
Consumption (BSFC) (Bai, Maguire et al, 2013). Both
the engine map and optimal BSFC operating points
have been determined in a previous analysis.

The powertrain utilizes two controllers that

continuously regulate the engine throttle and the
transmission ratio, adjusting the ICE instantaneous
operating point to the BSFC optimal operating point.
Additionally, when the vehicle is running at speeds
below 20Km/h, the electrical regenerative braking is
not used. Rather, only the hydraulic brake (in the
CarMaker brake model) is used to stop the vehicle.

4 Process Integration and Optimization

The Optimus software tool provided an automated
approach to preforming a large number of simulations
with parameter configuration changes. Optimus takes
over the task of manually running simulations,
obtaining, storing, and then analyzing the results. This
automated approach is performed through direct
communicating with CarMaker using API functions
(alternatively the open ASCII interface communication
can be used). Figure 7 shows the workflow deployed
with the Optimus tool. Starting on the left, different
parameter sets are selected, and substituted into
CarMaker for simulation. Following that, the results
are processed. For example, the total energy used in the
simulation is determined based on the total electrical
energy and fuel consumed during the entire simulation
run.

Figure 7. Optimus Workflow of the Automated Process

One vehicle parameter, the vehicle body mass, was

determined as a result of adjusting the capacity of the
HEV powertrain battery. The base vehicle body mass
of 1301kg is updated with the additional battery mass
calculated based on (Noshin, Verbrugge et al, 2010)
using an energy density of 80Wh/kg. Once the
simulation is complete, the results can be used as
inputs for an objective function, or as constraints
during an optimization process.

4.1 Design of Experiments

The design process, particularly for systems with many
undetermined parameters, has the challenge of defining
a suitable parameter set to use for optimization. This
results in a large design space during the optimization
process. One automated approach to reducing the
design space is to perform a sensitivity analysis. The
sensitivity analysis provides a method of determining
the design variables that have the most significant

Results

Total Electric

Energy

Update

Body Mass

Vehicle

Parameter

Parameter

Set

Boundary

Conditions

Simulation

Parameters

Simulation

Total Engine

Fuel

Total

Energy

Total

Time

Mean

Values

Min/Max

Values

Session 7D: Virtual Test Benches

DOI
10.3384/ecp15118537

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

541

influence on the response. The most significant
variables can be used in further analysis while
simultaneously reducing the design space by excluding
less significant factors.

A sensitivity analysis study was preformed to

examine which of the parameters had the greatest
influence on the response of the entire system
performance. Figure 8 illustrates the results of the
Latin Hypercube sampling with 100 experiments per
traffic-light and driver-behavior configuration. One
finding noted in the sensitivity analysis was that the
traffic light timing considerably influenced simulation
results, most notable for the defensive driver. This can
be observed clearly by the vertical lines in the plot
results with the regular traffic light control. To ensure
each simulation would experience the same influence
from each traffic light, the traffic lights were adjusted
to ensure the vehicle would stop as it approached the
intersection. The adjusted traffic light control plot
points are obtained using this new traffic light timing.
It can be noted that the aggressive driver was able to
reliably complete the simulation run in less time than
the defensive driver with the tradeoff appearing in
higher total energy consumption. The adjusted traffic
light control will be used for further discussion in this
work.

Figure 8. DOE Results from Drive Cycle with Different
Traffic Light Control and Driver Behavior

A set of six parameters were selected to be used in

the optimization process with an interval range that
remained within physically feasible limits. Table 2
shows the six parameters and the ranges selected to
drive the optimization process. It also includes the
vehicle body mass parameter determined by the battery
capacity selected.

Table 2. Optimization Input Parameters

Parameter Description Min Value Max Value
BatCap Capacity of

Battery
10 [Ah]/
1.44 [kWh]

150 [Ah]/
21.6 [kWh]

TE Torque Demand:
Battery
Regeneration
Lower Limit

10 [Nm] 50 [Nm]

TRg Torque Demand:
Battery
Regeneration
Upper Limit

25 [Nm] 100 [Nm]

TMA Torque Demand:
Motor Assist
Starting Point

75 [Nm] 150 [Nm]

RegenTrq Electric Motor
Regenerative
Torque Load

5 [Nm] 50 [Nm]

FinDrRatio Final Drive Ratio 4 [-] 7 [-]

Body_mass Vehicle Mass
1319 [kg] 1571 [kg]

The Latin Hypercube 100 sample experiments were

used to determine the influence of selected parameters
on the total response time and total energy
consumption. Table 3 shows the output parameters
monitored during the experiments.

Table 3. Optimization Output Parameters

Parameter Description Unit

Total_Time Total Time for Drive Cycle [s]

Total_Energy Total Energy Consumption [kWh]

The correlation denoted in Table 4 represents both
the Pearson and Spearman rank correlation
coefficients. For both, values close to +/- 1 indicate a
significant linear or monotonic correlation between the
input parameter and the output parameter. For example
the input parameter TMA has been determined to have
strong correlation with the total energy consumption
particularly for the defensive driver.

Table 4. Correlation table for the adapted traffic light
control drive cycle

Driver Type Parameter

Total Time

Pearson

(Spearman)

Total

Energy

Pearson

(Spearman)

AGGRESSIVE

DRIVER

BatCap 0.015

(0.205)

0.433

(0.434)

TE 0.173

(0.191)

-0.333

(-0.308)

TRg -0.137

(-0.127)

0.196

(0.188)

Holistic Virtual Testing and Analysis of a Concept Hybrid Electric Vehicle Model

542 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118537

TMA 0.331

(0.682)

0.682

(0.683)

RegenTrq 0.097

(0.048)

0.327

(0.323)

FinDrRatio -0.053

(-0.259)

0.083

(0.072)

DEFENSIVE

DRIVER

BatCap 0.098

(0.193)

0.576

(0.574)

TE 0.082

(0.118)

-0.345

(-0.331)

TRg -0.083

(-0.041)

0.245

(0.223)

TMA 0.318

(0.723)

0.521

(0.524)

RegenTrq 0.107

(0.076)

0.320

(0.322)

FinDrRatio -0.068

(-0.227)

0.121

(0.107)

4.2 Multi-objective Optimization

The selection of a suitable strategy and algorithm for
optimization can be influenced by multiple factors.
Aside from parallelization possibilities and computer
resources, the number of design variables and system
behavior can have a great influence on the strategy
deployed. In this case, the simulation time was not a
limiting factor - with the simulation performance
approximately 8-fold faster than real time.
Additionally, because the HEV system under
consideration is highly nonlinear, a global optimization
algorithm such as an evolutionary strategy should be
chosen.

This work considered two simultaneous objective

functions: minimize drive cycle total time and
minimize energy consumption. These two conflicting
objectives will result in more than one optimal
solution. As a result a Pareto front is determined
defining the complete set of compromised optimal
solutions. The evolutionary algorithm NSEA+ (Non-
dominant Sorting Evolutionary Algorithm) was used to
detect the Pareto points for the Nordschleife drive
cycle. Figure 9 and Figure 10 show the optimal results
for both the aggressive and defensive driver. The
optimization process also considered the constraints TE
< TRg and TRg < TMA as part of the requirement in
the HEV powertrain controller.

Figure 9. Optimization Results: Nordschleife Drive Cycle
and Aggressive Driver Behavior

Figure 10. Optimization Results: Nordschleife Drive
Cycle and Defensive Driver Behavior

The five unique points denoted in Figure 9 and

Figure 10 are defined as follows:
1. Pinitial: the initial design response. Pinitial was

determined by using the mean value for each
design variable considered in the optimization
process.

2. POpt_Time: the optimal solution considering the
optimal time objective only

3. POpt_Energy: the optimal solution considering the
optimal energy consumption objective only

4. PHigh: response with all design space variable
using upper boundary values

5. PLow: response with all design space variable
using lower boundary values

For each of the objectives functions a considerable

improvement was made compared to the initial design
variable selection. It is worth noting that some of the
optimal results were found at the boundaries,
suggesting that increasing the boundary limits might
further improve the optimal results.

Session 7D: Virtual Test Benches

DOI
10.3384/ecp15118537

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

543

Table 5. Optimization Results for Nürburgring-
Nordschleife Drive Cycle

B
atC

ap [A
h]

T
E

 [N
m

]

T
R

g [N
m

]

T
M

A
 [N

m
]

R
egenT

rq [N
m

]

P-Low 10 10 25 75 5

P-Initial 80 30 62.5 112.5 27.5

P-High 150 50 100 150 50
Aggressive
Drive
POpt Time

11.9 31.5 43.4 76.0 25.0

Aggressive
Drive
POpt Energy

10.2 43.6 49.8 75.9 10.1

Defensive
Driver
POpt Time

16.7 49.9 52.1 75.5 20.6

Defensive
Driver
POpt Energy

17.4 50.0 51.1 75.7 22.1

FinD
rR

atio [-]

B
ody_M

ass [kg]

T
otal E

nergy
C

onsum
. [kW

h]

T
otal T

im
e [s]

P-Low 4 1319 1.15 251.4

P-Initial 5.5 1445 1.17 249.3

P-High 7 1571 1.46 248.6

Aggressive
Drive
POpt Time

6.8 1322 3.93 167.8

Aggressive
Drive
POpt Energy

4.3 1319 3.17 172.4

Defensive
Driver
POpt Time

6.1 1331 0.79 247.6

Defensive
Driver
POpt Energy

4.9 1332 0.72 248.9

This example showed that a hybrid powertrain with

a smaller battery was best for the aggressive driver on
this particular driver cycle. As for the defensive driver,
a higher torque limit (TE) for pure electric mode was
more beneficial.

5 Conclusion

In this paper, a new and efficient approach for
optimizing the design parameters of a complete
powertrain model with a hybrid electric vehicle was
shown. The goal was not only to integrate a complex
powertrain model in an easy and intuitive way for a
given vehicle, but also to detect coherences and
perform advanced optimizations using virtual test
driving in an automated loop without much user effort.

The powertrain model was created using MapleSim.

It is a Parallel HEV model with a CVT, inspired by the
2006 Honda Civic IMA powertrain, and allows for six
modes of operation. It was integrated with the
CarMaker vehicle model using the Functional Mockup
Interface (FMI) standard, and simulated under two
scenarios – representing defensive and aggressive
driver behavior. Design of experiment and multi-
variable optimization were performed using Optimus.

While this work was focused on investigating the

method and workflow of combining the different tools,
the realistic results that were achieved indicate that this
is an effective method for investigating and optimizing
a hybrid powertrain concept. The combined effect of
the different tools creates an easy-to-use and powerful
environment for comprehensive development and
optimization of a hybrid electric powertrain concept.
The automated evaluation of multiple simulations
allows good insight into a highly complex system to
understand its dependencies. Applying evolutionary
optimization algorithms helped to find the optimal
settings required to meet pre-defined performance
goals.

References

C. Appel, S. Sterzing-Oppel, J. Gerstenberg, C. Donn.
Comprehensive and crossdomain vehicle simulation
for the electrification of sports cars. Graz
Symposium Virtual Vehicle, Graz, 2015.

S. Bai, J. Maguire and H. Peng. Dynamic Analysis and
Control System Design of Automatic Transmissions,
Warrendale, Pennsylvania, USA: SAE International,
2013.

M. Chen and G.A. Rincón-Mora. Accurate electrical
battery model capable of predicting runtime and I-V
performance. IEEE Transactions of Energy

Conversion, Vol. 21, No. 2, 2006.
T.-S. Dao, C.P. Vyasarayani, J. McPhee.

Simplification and order reduction of lithium-ion
battery model based on porous-electrode theory.
Journal of Power Sources, 01/2012, page 329–337,
DOI: 10.1016/j.jpowsour.2011.09.034, 2012.

Holistic Virtual Testing and Analysis of a Concept Hybrid Electric Vehicle Model

544 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118537

C. Donn, M. Folie, V. Bensch, J. Friebe, J. Spike, P.
Goossens and C. Schwarz. Concept analysis &
system design of a hybrid electric vehicle with
virtual test driving. 15th Stuttgart International
Symposium Automotive and Engine Technology,
Stuttgart, 2015.

T. Hofman, R.M. van Druten, A.F.A Serrarens and J.
van Baalen. A fundamental case study on the Prius
and IMA drivetrain concepts. 21st Worldwide
International Battery, Hybrid and Fuel Cell Electric
Vehicle Symposium (EVS-21), Monaco, 2005.

M. Kobayashi and C. Donn. Fusion of simulation and
testing within the automotive development process
using an open integration and test platform. 2015
JSAE Annual Congress, Yokohama, 2015.

O. Noshin, B. Verbrugge, G. Mulder, P. van den
Bossche, J. van Mierlo, M. Daowd, M. Dhaens and
S. Pauwels. Evaluation of performance
characteristics of various lithium-ion batteries for use
in BEV application, Vehicle Power and Propulsion
Conference (VPPC), IEEE, Lille, France, 2010.

M. Otter, H. Elmqvist, S. E. Mattsson. Multidomain
Modeling with Modelica. Handbook of Dynamic

System Modelling, Chapman & Hall/CRC, chapter
36, pp. 36.1 - 36.27, 2007.

Session 7D: Virtual Test Benches

DOI
10.3384/ecp15118537

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

545

546 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Modeling of an Automatic Transmission for the Evaluation of

Test Procedures in a Virtual End-of-Line Test Bench

Jan Röper1 Jörn Göres1 Clemens Gühmann2

1Daimler AG, Germany {jan.roeper,joern.goeres}@daimler.com
2Chair of Electronic Measurement and Diagnostic Technology, Technische Universität Berlin, Germany

clemens.guehmann@tu-berlin.de

Abstract

End-of-line tests for automatic transmissions are manda-

tory to ensure quality and safety. The interaction of

unit under test, test bench and test automation leads to

a high complexity in the development of test automation

and test procedures. Validation of test automation and

test procedures requires access to the test bench and the

unit under test, both of which are only available close

to startup of production. Therefore, virtualization of test

bench and unit under test can be used to ease the bottle-

neck.

Virtualization is a common tool in the development of

electronic control units for automotive applications us-

ing SIL and HIL technologies. The properties of sim-

ulation models for a virtual end-of-line test bench dif-

fer from those for classical SIL and HIL environments.

In this paper, an automatic transmission model suitable

for a virtual end-of-line test bench is presented. The re-

quired characteristics of the multiple-disk clutch friction

model are discussed in detail. Hydraulics are modeled

using a Moore machine to enable simulation of the pres-

sure build-up characteristics during shift operation. With

the resulting model, the influence of the key parameter

of a test procedure actuating an overlapping gearshift is

investigated in a virtual test system.

Keywords: automatic transmission, modeling, virtual

test bench, HIL, SIL, end-of-line, friction, hydraulics,

disk clutch

1 Introduction

Automatic transmissions (AT) are tested for quality and

safety at the end-of-line (EOL). An example for a test re-

garding quality is the shifting of gears. The testing of the

park break is an example for a safety related test. The

EOL test system consists of a test bench, the unit under

test (UUT) and a test automation. During the EOL test,

test bench and UUT are stimulated by the test automa-

tion executing test procedures. The results of the tests

are compared to limits and documented in a database for

statistical evaluation. Based on the test results, the AT is

cleared or sent to rework.

When setting up a new test system, validation of the

test automation as well as the test procedures is neces-

sary to ensure smooth operation. Test bench and UUT

are only available close to startup of production. There-

fore, a virtual test bench is used as a substitute. A virtual

test bench requires a model of the AT and the test bench.

The control functions of the test bench programmable

logic controller (PLC) have to be simulated as well. This

also applies to the ECU functions used during the EOL

test. For the testing of the automation and its test pro-

cedures, the simulation has to be connected to the test

automation via the communication interfaces used in the

real test bench. Figure 1 shows the components of the

real test bench. All components except the test automa-

tion are simulated in the virtual test bench.

The main application of AT models in literature is

the evaluation of system dynamics for controller design

(Runde, 1984). The setup described above can be com-

pared to HIL setups used for the evaluation of ECU func-

tions. Isermann describes the history of HIL systems

and shows its use for the development of engine con-

trol functions (Isermann et al., 1999). HIL simulation is

also applied to PLC program testing for manufacturing

equipment (Tomaszunas, 1998; Röck, 2007). However,

the execution of ECU functions on none-ECU hardware

is more characteristic for SIL setups (Chrisofakis et al.,

2011). The virtual test bench is a composition of these

virtualization techniques. The coupling of ECU and AT

models is carried out in a customized third party SIL en-

vironment (Brückmann et al., 2009).

The customized SIL environment used for the imple-

mentation of the virtual test bench allows the utilization

of real communication interfaces and a real-time simu-

lation mode on a none real-time operating system. The

test automation is insensitive to minor timing deviations.

However, latency and jitter of the test system are affected

by the real-time precision. The effects of latency and jit-

ter on the test automation are discussed in (Röper et al.,

2014) and have to be considered when working with the

virtual test bench. The models of test bench and AT are

DOI
10.3384/ecp15118547

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

547

Programmable

Logic Controller

(PLC)

Automation

CAN

Analog

Profibus

Pressure Sensors

Induction Machine Induction MachineAutomatic Transmission

Figure 1. EOL test system

transferred from the Modelica R© tool to the SIL as a func-

tional mock-up unit. Simulation is carried out using a

fixed step solver.

A similar setup uses a classical HIL as a base (Kuebler

et al., 2012). No statements are made about the simula-

tion of ECU functions. In the already publicated HIL-

based implementation of a virtual test bench, the com-

munication channels are merged to a single Profibus con-

nection neglecting the influence of communication in the

real setup.

In this paper, a model of an AT is presented, which fits

the specific requirements of the EOL test. When creating

a model for the virtual test bench in an early product de-

sign stage of the AT, there is a lack of technical data. Pa-

rameters which are unknown at this stage are estimated

or reused from earlier projects. Such a model enables the

test of the automation software as well as the develop-

ment of test procedures and their pre-parameterization.

When transferring test procedures developed in the vir-

tual environment to a real test bench, the parameters have

to be verified and possibly readjusted.

The focus in this paper is on the modeling of the char-

acteristics of the pressure build-up in hydraulic clutch ac-

tuators as well as on close to zero slip in clutches. The fo-

cus results from the tests performed at the EOL: Pressure

build-up characteristics have a strong impact on the syn-

chronization during gear shift. After a successful gear

shift, the transmission ratio is closely monitored to ver-

ify the ability of the clutch to transmit a specified torque.

During the EOL test, the induction machine connected to

the output shaft is set to speed control, while at the input

shaft a constant torque is applied by a second induction

machine. The transmission ratio RT is calculated by:

RT =
ωin

ωout
, (1)

with the angular velocity at the input shaft ωin and

the angular velocity at the output shaft ωout. A slip in

any of the clutches leads to a decrease of the expected

speed at the input shaft. In addition, the resulting ra-

tio depends on the speed level which varies during the

test. Therefore, the ratio is variable, even if the slip is

constant. The following example demonstrates the ef-

fect: With an expected ratio of RT = 1, a constant over-

all slip of ωslip = 2rad/s would lead to a measured ratio

RT = 0.996 at the set speed ωout = 500rad/s, while the

same slip would lead to a ratio RT = 0.98 at a set speed

of ωout = 100rad/s. The variability of the ratio RT in-

creases the demand for a model with low slip, since an

adjustment of the speed levels may lead to the violation

of a limit.

2 Modeling and Verification

The virtual test bench model consists of an AT model

as well as models of the induction machines and their

control. The modeling depth in each submodel is cho-

sen depending on its significance for the EOL test. For

example, the oil pumps of the AT are modeled with the

states active and inactive, whereas the oil flow, depend-

ing on the input speed of the pumps, is not considered.

Detailed submodels of the planetary gears, clutches and

hydraulic actuators ensure a proper resemblance of the

AT characteristics. Below, the detailed submodels of hy-

draulic actuators and clutch friction are presented. Both

hydraulic actuators and clutches are nonlinear systems

which require special treatment for real-time simulation.

The verification of the test bench model is carried out

with regard to its ability to simulate the sticking of closed

clutches.

Modeling of an Automatic Transmission for the Evaluation of Test Procedures in a Virtual End-of-Line Test
Bench

548 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118547

2.1 Modeling of Hydraulic Actuator

Prior to the modeling of pressure build-up in a hydraulic

actuator, a detailed analysis of its design is carried out.

Figure 2 shows a schematic diagram of a hydraulic ac-

tuator. The components of interest are the plunger I, the

return spring II and the disks III. In addition, the charac-

teristic pressure curve of the clutch actuator during acti-

vation and deactivation is shown as well.

pc

I

II

III

activation deactivation

t

prs
a

prs
d

active

Figure 2. Clutch actuator and pressure characteristics

The clutch is activated by opening a valve that fills the

hydraulic cylinder, which leads to the first pressure build-

up in the curve. When passing the gap between plunger

and disks, the pressure depends on the return spring char-

acteristics. In AT clutches, disk springs are used to pro-

vide the return force, which leads to the first plateau at

pa
rs in the curve. Friction counteracts the plunger move-

ment and adds to the return spring force. The second

pressure build-up results from the contact force between

plunger and clutch disks. The return spring character-

istics also dominate the pressure curve when deactivat-

ing the clutch. The plateau during deactivation is on a

lower pressure level pd
rs, since friction forces act against

the spring force when the plunger moves in its starting

position. Both of the plateaus feature a small slope. The

level of the plateaus as well as the slope is measured dur-

ing the EOL test to ensure the assembly of the correct

return spring type.

A physical model of the assembly presented above

would require calculation of contact forces between

plunger and clutch disks. This would result in a stiff sys-

tem and therefore slow simulation due to the necessity of

small integrator step sizes (Press et al., 2007). Therefore,

an alternative approach is made to implement a real-time

capable model. The model includes the electronic con-

trol valve which is driven by the ECU. In the model, the

target pressure pset of the actuator is calculated by a look-

up table. The pressure build-up is dissected into states

which can be represented by the Moore machine shown

in figure 3 which is implemented using the Modelica R©

State Graph library.

The Moore machine gives out different levels of pres-

sure. State S1 represents the inactive state, where a base

pressure pb ensuring deaeration is provided. State S2

represents the plateau during activation of the clutch. In

this state, the pressure pa(s) is rising with a specified

slope. State S3 represents the fully activated actuator

where the target pressure pset is reached, while state S4

is the equivalent to state S2 with the pressure pd(s) when

deactivating the clutch.

S1

pb

S2

pa(s)

S3

pset

S4

pd(s)

T12

T21

T23

T24

T34T41

T42
T43

Figure 3. Moore machine of clutch actuator

The transition conditions are summarized by table 1.

Fully activating and deactivating the clutch corresponds

to a walkthrough of the states S1 to S4 in rising order

followed by the state S1. Switching from state S1 to state

S2 occurs when a signal is set by the ECU, which is big

enough to generate a pressure that moves the plunger.

State S2 is kept active until the gap is covered. The gap

is modeled by a linear differential equation:

s =
1

tgap
dt, (2)

with position variable s ranging from 0 to 1. The time

needed for covering the gap is provided as a parameter

tgap. The hight of the pressure rise during activation of

state S2 is provided by the parameter ∆pa
rs. State S3 be-

comes active as soon as the condition s ≥ 1 is satisfied

and stays active until the pressure command pset drops

as specified in table 1.

Table 1. Transition conditions for Moore machine

pset s

T12 ≥ pa
rs −∆pa

rs

T21 ≤ pb ≤ 0

T23 ≥ pa
rs ≥ 1

T24 < pd
rs > 0

T34 < pd
rs

T41 < pd
rs ≤ 0

T42 ≥ pa
rs > 0

T43 ≥ pa
rs ≥ 1

The signal generated by the Moore machine is a suc-

cession of straight segments with sharp angles. Both

pressure build-ups occur instantaneously, which is not

conform to the pressure build-up in the real system. The

Session 7D: Virtual Test Benches

DOI
10.3384/ecp15118547

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

549

pressure build-up can be modeled by the sum of two par-

allel PT2 element outputs y1
PT2 and y1

PT2, whose param-

eters are tuned using measurements from a component

test bench or simulation results from a physical model.

The first PT2 element representing the pressure build-up

before covering the gap is fully active when s = 0 is sat-

isfied, while the pressure build-up after covering the gap

is represented by the second PT2 element when s = 1

holds. While covering the gap, blend factors KB1 and

KB2 proportional to s are used to calculate the sum of the

PT2 elements:

KB1 = s, (3)

KB2 = 1− s, (4)

ps = y1
PT2KB1 +y2

PT2KB2. (5)

Figure 4 a) shows a measured pressure curve pm and

a simulated pressure curve ps, both scaled by the fac-

tor 1/p0. The characteristic curves show a good agree-

ment. Oscillations in the measured signal resulting from

the pressure control are absent in the simulated signal,

since the pressure control is not modeled. At t = 0.4s

the simulated pressure curve deviates from the measure-

ment. The simplified model is not able to fully represent

the physical effects when the contact between plunger

and disks is established, which has an influence on the

synchronization. The influence of the height of pset on

the pressure characteristics is neglected as well. Figure 4

b) shows the position variable s which rises linear during

activation.

p
/p

0

a)

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2 p
m

p
s

b)

s

t [s]
0 0.1 0.2 0.3 0.4 0.5

0

0.5

1

Figure 4. Clutch activation a) pressure and b) position

The utilization of the variable s enables realistic sim-

ulation of complex shift operations, for instance pre-fill

of the clutch actuator or termination of a shift operation

before synchronization. Figure 5 shows pressure, po-

sition variable and active state resulting from a normal

shift I, an activation of the clutch from a residual pres-

sure II (shift operation starts in state S4 instead of S1)

and a prematurely terminated shift operation III. When

activating the clutch from a residual pressure, the state

S2 is held for a shorter time, since the position variable

s is greater than zero when the pressure command is is-

sued. The same effect occurs when terminating a shift

operation. In this case, the pressure drop in state S4 is

taking less time than in the case of a normal shift opera-

tion.

I II III

p
c/p

0

0 2 4 6
0

0.1

0.2

s

0 2 4 6
0

0.5

1

t [s]

0 2 4 6

S
1

S
2

S
3

S
4

Figure 5. Shift operation scenarios I-III

2.2 Modeling of Multi Disk Clutch Friction

The hydraulic actuator model described in the preceding

section enables the calculation of the normal force within

the clutch. The normal force FN and the clutch friction

coefficient µ yield the ability of the clutch to transmit

torque. The friction coefficient µ depends on the proper-

ties of the friction system, resulting from the tribological

system of clutch disks and lubricant, as well as the rel-

ative speed vrel of the shafts. The speed dependency of

friction can be considered by expressing the coefficient

of friction as a function of vrel for a specific system. The

clutch torque capacity Tcap defines the maximum stick

and slip torque, which is determined by:

Tcap = N
ri + ra

2
µ(vrel)FN, (6)

with the inner disk radius ri and the outer disk radius

ra as well as the number of disk couples N. Figure 6

shows the typical characteristics of the torque capacity in

an AT disk clutch based on a measurement from (Mos-

bach, 2002). If vrel > 0 is true, the transmitted torque T

equals the torque capacity Tcap. In the case of zero rela-

tive velocity, T can take any value between zero and Tcap.

In this case, T becomes a constraining torque resulting

from the torque applied via the shafts. Mathematically,

T is a set-valued function for vrel = 0 (Lantos and Már-

ton, 2011).

In the following section, the clutch friction system is

replaced by a linear contact between a mass and a sur-

face. The considerations made with this simplified sys-

tem can be transferred to a rotational contact without

modifications.

Modeling of an Automatic Transmission for the Evaluation of Test Procedures in a Virtual End-of-Line Test
Bench

550 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118547

|vrel|

|Tcap|

0

Figure 6. Torque capacity characteristic

There exist numerous friction models to determine the

force transmitted when vrel = 0. Mare gives a review of

different friction models and categorizes them into three

types depending on their ability to model contact dynam-

ics (small tangential deformations in the contacting sur-

faces without sliding) and depending on whether the sys-

tem dynamics properties are parameters of the friction

model (Mare, 2012). The three types are:

1. static and mass free,

2. dynamic and mass free,

3. mass integrated.

In static and mass free models the set-valued function

at vrel = 0 is replaced by a function with a steep rise.

Therefore, this type of model can not be used when true

sticking with vrel = 0 is required. The deviation of vrel

depends on the steepness of the function, which is lim-

ited by the computational effort. A steep rise leads to a

stiff system which makes small step sizes necessary. An

implementation of the type 1 model known as the classic

friction model estimates the friction force Ffric with:

Ffric = tanh(vrel/v0)µ(vrel)FN. (7)

In dynamic and mass free models a differential equa-

tion is used instead of the algebraic function in type 1

models. Type 2 models are able to represent true stick-

ing and are often based on physical effects in the contact.

Typical examples are the Bristle and the Reset-Integrator

model (Haessig and Friedland, 1991). While the Bristle

model approximates the contact force by multiple elastic

contacts, the Reset-Integrator model uses a single elastic

contact which leads to faster computation. The param-

eterization of type 2 models requires knowledge of the

underlying physical effects which is not available when

creating models in an early product development stage.

The mass integrated type 3 models employ the exter-

nal applied force which equals the friction force when

sticking. They are simple for a single contact but lead to

complex systems when multiple contacts are connected.

The implementation of a reusable type 3 friction model

for the simulation of an AT is not feasible, since the in-

ertia properties and the structure of the AT are part of

the type 3 model. The Karnopp model is the earliest im-

plementation of a type 3 model (Karnopp, 1985). The

effort for a multi contact implementation of the Karnopp

model is shown by Deur for an AT model (Deur et al.,

2003). An additional submodel for the calculation of the

torque at vrel = 0 is implemented.

The Modelica R© library supplies a clutch model which

exploits event handling strategies (Otter et al., 1999). A

classification using the three types from above is not pos-

sible. Characteristics of the event based friction model

are true sticking and mass free. The model sets the rela-

tive acceleration arel to zero when a change of sign in the

velocity is detected. The equation arel = 0 stays active

until the force capacity of the contact is exceeded. This

model satisfies the demand for small relative velocity in

sticking mode, when using a variable step solver with an

event searching algorithm. In the case of a sign change

in vrel, an event is triggered which stops the integrator.

The point of time of the sign change is determined by an

algorithm and the integrator is restarted with an adjusted

set of equations.

When using a fixed step solver, as required for real-

time calculations, the integrator is restarted without

searching for the time of the sign change. Therefore,

the residual relative velocity in sticking mode depends

on the offset between the event and the integrator step

after the event. The maximum relative velocity while

sticking depends on the step size of the solver and the

relative acceleration. The maximum error results from

a sign change that takes place right after the integrator

evaluated the equations. The time that passes until the

event is detected is approximately equal to the integra-

tor step size. The relative velocity resulting from the

event based approach is constant once the sticking mode

is established, contrary to the relative velocity acquired

when using the classical model. Neither the classical nor

the event based approach satisfy the requirements stated

above.

A friction model that suits the requirements of the vir-

tual test bench is the kpki model (Bai et al., 2013), which

uses a structure resembling a limited PI controller. The

original implementation does not allow modeling of a

peak friction value at zero velocity. Figure 7 shows a

novel, extended implementation of the kpki model sup-

porting peak friction. The approach is based on an al-

tered version of the limited PI controller provided by the

Modelica R© library.

PI

0

F
fric

Fslip

vrel

Fstick

Figure 7. Extended kpki model

The PI controller is based on the work presented in

Session 7D: Virtual Test Benches

DOI
10.3384/ecp15118547

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

551

(Aström and Hägglund, 1995), where the limit in the

controller is set as a parameter. Extending the model to

the application of variable limits enables the support of

peak friction at zero velocity. The limit is adjusted de-

pending on the relative speed. Since the controller only

reacts if vrel = 0 is violated, a range representing zero ve-

locity has to be defined. This range can be compared to

the approach in the Karnopp model, where the parameter

DV is used for this purpose. The model shown in figure

7 contains a hysteresis element defining two speed levels

v+0 and v−0 for the adjustment of the controller limit. This

is necessary for a clean switchover to the stuck mode. If

the relative velocity decreases and the switch to the peak

friction level is made to early, the controller sets a high

friction force to reach zero slip. Since the friction force

in the physical system results from the external force,

a rising friction force just before reaching zero speed is

implausible. Figure 8 shows the curve of the simplified

force characteristics implemented with a hysteresis ele-

ment.

|vrel|

|Ffric|

v0v00 -

Figure 8. Friction force levels

A standard setup for the evaluation of friction models

is shown in figure 9 (Haessig and Friedland, 1991). It

consists of a mass with a friction contact to a surface,

which is connected to a spring. The system is stimulated

by applying a constant speed to the free end of the spring.

c

m

Ffric

v = const.

Figure 9. Friction experiment

The compression of the spring leads to a force Fc on

the mass. The spring force rises until the peak value

of the friction characteristic curve is exceeded (Fstick =
0.25N), resulting in an acceleration of the mass against

the remaining friction force (Fslip = 0.2N). The move-

ment of the mass relieves the spring until the damping of

the friction brings it to a stop. The process is repeated in

the same fashion as long as the spring end is moved. Fig-

ure 10 a) shows the resulting spring and contact force for

the extended kpki model and figure 10 b) for the classical

model. Both models are supplied with a friction charac-

teristic with a peak at zero slip. The classical model does

not have the ability to differ between rising and falling

speed, which leads to the peaks at the end of the sliding

phase. The maximum relative speed during sticking is

5e-4m/s for the classical model, while the extended kpki

model shows a maximum relative speed of 6.7e-7m/s.

F
 [

N
]

a)

1 1.5 2 2.5 3

0.15

0.2

0.25

F
fric

F
c

t [s]

F
 [

N
]

b)

1 1.5 2 2.5 3

0.15

0.2

0.25

F
fric

F
c

Figure 10. Friction experiment result a) kpki model

b) classical model

The parameters of the model include gain KPI and time

constant Ti of the PI controller, as well as the velocities

v+0 and v−0 that define the switch points of the hystere-

sis element. When tuning the parameters of the extended

kpki model, overshooting and oscillation of the friction

force set by the PI controller have to be avoided. There-

fore, an analysis of the poles of the system is carried

out to fix the PI controller parameters. The time con-

stant Ti is fixed at Ti = 20h with the integrator step size

h = 0.0001s for the explicit Euler algorithm. The result-

ing numerical stability can be evaluated after the poles

are set (Cellier and Kofman, 2006). The system bound-

ary for the linear analysis includes the mass and the fric-

tion contact. Figure 11 shows the block diagram repre-

senting the model with the external force input U and the

relative velocity output Y . The mass is represented by

the transfer function Gm(s) = Km
1
s

with Km = 1
m

, while

the PI controller is represented by the transfer function

GPI(s) = KPI(1+
1

Tis
), provided that the limiter is not ac-

tive.

Gm(s) GPI(s)
U(s) Y (s)

−

Figure 11. Block diagram

With the block diagram from figure 11 the transfer

function of the system can be calculated to:

G(s) =
Y (s)

U(s)
=

KmKPIs+KmKPI
1
Ti

s2 +KmKPIs+KmKPI
1
Ti

. (8)

A dynamic system is oscillatory if it holds at least two

complex conjugate poles. The gain KPI can be used to

Modeling of an Automatic Transmission for the Evaluation of Test Procedures in a Virtual End-of-Line Test
Bench

552 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118547

move the poles to the x-axis of the left half pane of the

pole-zero diagram to avoid oscillations. The poles can be

calculated from the denominator of the fraction in equa-

tion 8 by completing the square:

−
KmKPI

2
±

√

(

KmKPI

2

)2

−KmKPI
1

Ti

. (9)

The poles are located on the x-axis of the left half pane

if the square root term is none negative. When setting the

parameters m = 0.1kg and c = 100N/m (Haessig and

Friedland, 1991), a value of KPI > 200 leads to a posi-

tive square root term and therefore to a dynamic system

without oscillation. The best results regarding approxi-

mation of true sticking are obtained with KPI = 600. The

product of the resulting poles and the step width satisfy

the stability domain of the explicit Euler algorithm.

After setting the parameters Ti and KPI, the parameter

v+0 can be calibrated by a simple experiment. Subjecting

the mass to an external force leads to a relative velocity

in the contact which is counteracted by the PI controller.

The parameter v+0 has to be higher than the velocity in-

duced by an external force step to the peak force level

from figure 8. Setting a smaller value of v+0 triggers the

lower friction level intended for the sliding mode. The

same applies to an abrupt reduction of the external force

to zero during sliding. A parameter v−0 with the same

value as v+0 would lead to a premature jump to the stick

friction level. The effect of a premature jump to the stick

friction level is visible in the simulation results from the

classical model in figure 10 b). Therefore, a low value

for v−0 is desirable. If the value for v−0 is chosen too small,

the controller will never reach the stick mode after slid-

ing. Figure 12 illustrates the performance of the model

when stimulated by step signals. The relative speed re-

sulting from a step to the maximum friction force (blue

curve) stays within the boundary set by v+0 , while the rel-

ative speed resulting from a step to zero force (red curve)

does not trigger the peak friction force after passing v−0 .

Both curves show a discontinuity, which results from the

limiting within the PI controller (magnified area).

v
rel [m/s]

F
fr

ic
 [

N
]

0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

0.15

0.2

0.25

× 10
-3

step

step

0.24

0.25

0.26

× 10
-4

3.4 3.6 3.8

0.185

0.19

0.195

0.2

0.205

× 10
-4

v0
+v0

-

Figure 12. Calibration of v+0 and v−0

The model developed for the linear contact example

can be transfered to a clutch model. When setting the

parameters in a model with multiple clutches, the closed

clutches which are not in the focus of the analysis at the

moment can be replaced by ideal, slip-free connections.

Modeling of drag torque in the clutch can be achieved

by applying a small normal force even if the hydraulic

actuator is inactive.

2.3 Verification

The suitability of the model for the execution of test pro-

cedures with regard to low slip in closed clutches has

to be verified as well. The verification is carried out by

measuring the transmission ratio while executing a test

procedure on the virtual test bench. Table 2 shows the

results of the verification and the design values RT of

the transmission ratio presented by (Dörr et al., 2014).

The transmission ratio is evaluated in steady state Rstat
T,sim

and dynamic state R
dyn
T,sim. A representative steady state

occurs after a successful gear shift. For evaluation of

the dynamic state the worst case scenario was chosen:

During acoustic measurement the load torque changes

its sign, which demands rapid adjustment of the fric-

tion force. The transmission ratio is exactly emulated

in steady state, while the deviations are small in dynamic

state. The biggest deviation from the design value can be

observed in the reverse gear with ∆R
dyn
sim = 0.019, which

is sufficiently small.

Table 2. Verification with test procedure

Gang RT Rstat
T,sim R

dyn
T,sim

1 5.503 5.503 5.496

2 3.333 3.333 3.330

3 2.315 2.315 2.311

4 1.661 1.661 1.658

5 1.211 1.211 1.203

6 1.000 1.000 0.996

7 0.865 0.865 0.863

8 0.717 0.717 0.715

9 0.601 0.601 0.600

R -4.932 -4.932 -4.913

3 Simulation and Experiment

With the model presented above, a test procedure execut-

ing an overlapping gearshift is developed. The overlap-

ping gearshift consists of a sequence of five steps illus-

trated by figure 13. After initialization of the test bench

and the UUT, the signal for the activation of clutch C2 is

sent to the AT. After an expiration of a sleep timer, clutch

C1 is deactivated. Activating clutch C2 before deactivat-

ing clutch C1 is necessary due to the pressure build-up

Session 7D: Virtual Test Benches

DOI
10.3384/ecp15118547

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

553

characteristics discussed above. The choice of the sleep

time parameter τ has a strong influence on the strain

induced in the clutches during gearshift. A parameter

study of τ is performed with the virtual test bench using

the original automation in a safe environment. Choosing

hazardous values for the parameter τ shows the conse-

quences without damaging hardware. Measurements on

a real test bench are carried out to confirm the character-

istics identified by the simulation.

I
activate

C2
initialize sleep

deact.

C1

adjust

pressure

II III IV V

Figure 13. Overlapping gearshift sequence

3.1 Simulation

For the parameter study, the parameter τ is set with val-

ues from 150 to 400ms. Other parameters, like the pres-

sure command for the clutch actuators, are constant dur-

ing the simulation runs. Figure 14 shows the resulting

pressures in the two clutches. The data is synchronized

at the beginning of the pressure rise of clutch C2. The

offset in time between the five resulting pressure curves

for clutch C1 is clearly visible. The range chosen for the

parameter τ covers gear shifts with no overlapping, as

well as gear shifts with strong overlapping. In the pres-

sure curves of clutch C2, the pressure adjustment in step

V of the gearshift sequence is visible. The pressure ad-

justment is carried out with a fixed delay after synchro-

nization of clutch C2.

p
C

1
/p

0

0 0.2 0.4 0.6
0

0.25

0.5

t [s]

p
C

2
/p

0

0 0.2 0.4 0.6
0

0.25

0.5

150 [ms]

200 [ms]

250 [ms]

300 [ms]

350 [ms]

400 [ms]

Figure 14. Simulated pressure during gearshift

for different values of τ

Figure 15 shows the rotational speed of the input shaft

ωin, as well as the torque T of the input and output shaft.

The influence of the sleep time on the synchronization is

significant for τ ≥ 300ms. In addition, the torque curves

change as well. The torque on the input shaft is delayed

for greater values of τ , while the characteristics of the

torque on the output shaft change dramatically. An addi-

tional rise of torque before synchronization of clutch C2

is visible. For short sleep times τ , the synchronization

is triggered by the rising pressure of clutch C2, while for

longer sleep times the synchronization is triggered by the

falling pressure of clutch C1. In the case of longer sleep

times, synchronization occurs on a higher pressure level

leading to additional, undesirable strain within the trans-

mission.

ω
in

 [
ra

d
/s

]

0 0.2 0.4 0.6

100

125

150

T
in

 [
N

m
]

0 0.2 0.4 0.6
-50

0
50

100
150

t [s]

T
o
u
t [

N
m

]

0 0.2 0.4 0.6

-200

0

200

150 [ms]

200 [ms]

250 [ms]

300 [ms]

350 [ms]

400 [ms]

Figure 15. Simulated speed and torque during gearshift

for different values of τ

The results from the parameter variation acquired in

the virtual environment show that a maximum value

of τ = 250ms leads to a clean overlapping gearshift.

Longer sleep times lead to additional strain which can

possibly damage clutch disks.

3.2 Experiment

To verify the simulation results, measurements with the

test procedure presented above are carried out on a real

test bench. The torque level predicted by the simula-

tion does not exceed the torque tolerated by the test

bench. Therefore, the measurements can be performed

for all parameter settings used in the simulation. The AT

used for the experiments may suffer increased clutch disk

wear and is excluded from clearing.

Figure 16 shows the pressure curves measured dur-

ing gearshift. The influence of the variated sleep time

is clearly visible. The time interval between the falling

pressures of clutch C1 is slightly irregular, which is

caused by timing deviations in the test system. The sig-

nals show low scale oscillations which are not present in

the simulation results. This is due to the simplifications

in the model omitting pressure supply characteristics and

clutch piston friction. The slope of the falling pressure

in clutch C1 differs from the simulated clutch pressure

slope, which can affect the time needed for synchroniza-

tion.

Figure 17 shows the resulting curves for speed and

torque. The synchronization of the measured input shaft

speed ωin is slower than the simulation result and shows

an additional undershoot. The undershoot after syn-

chronization is compensated in the simulation by the

ideal speed control. The influence of the sleep time

on the input shaft speed is significant for τ ≥ 350ms,

Modeling of an Automatic Transmission for the Evaluation of Test Procedures in a Virtual End-of-Line Test
Bench

554 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118547

p
C

1
/p

0

0 0.2 0.4 0.6
0

0.25

0.5

t [s]

p
C

2
/p

0

0 0.2 0.4 0.6
0

0.25

0.5

150 [ms]

200 [ms]

250 [ms]

300 [ms]

350 [ms]

400 [ms]

Figure 16. Measured pressure during gearshift

for different values of τ

while the torque measurements are already affected for

τ ≥ 300ms. The maximum of the torque signal at the

input shaft Tin shows a disagreement to the simulation.

The inertias in the test bench model are only estimates,

which leads to the deviation of the input shaft torque Tin.

Characteristics of the measured and the predicted torque

as well as the influence of the parameter τ are similar.

The output shaft torque Tout shows a good resemblance,

although the measured signal is smoother, which fits to

the elongated synchronization.

ω
in

 [
ra

d
/s

]

0 0.2 0.4 0.6

100

125

150

T
in

 [
N

m
]

0 0.2 0.4 0.6
-50

0
50

100
150

t [s]

T
o
u
t [

N
m

]

0 0.2 0.4 0.6

-200

0

200

150 [ms]

200 [ms]

250 [ms]

300 [ms]

350 [ms]

400 [ms]

Figure 17. Measured speed and torque during gearshift

for different values of τ

Altogether, the simulation shows a sufficient resem-

blance of the measured signals. The ability to estimate

parameters for test procedures is confirmed. In the exam-

ple shown above, a choice of the parameter τ = 250ms

in the virtual environment is valid for the real test bench

as well. This holds even though strong simplifications

were made in the process of modeling.

4 Summary and Outlook

In this paper, an approach for the modeling of an AT in

an early stage of product development is presented. In

addition, real-time requirements resulting from the inte-

gration in a virtual test bench are met. Modeling of a

hydraulic clutch actuator as well as modeling of friction

is discussed in detail. An extended implementation of

the kpki model is applied to a synthetic example of a dy-

namic system and a method for the parameterization of

the friction model is presented as well.

With the resulting virtual test system, the influence of

the key parameter for an overlapping gearshift is inves-

tigated. The qualitative agreement of the results is con-

firmed by measurements on a real test bench. Possible

improvements for a better quantitative agreement of the

results obtained with the virtual test bench include:

• parameterization with speed dependent friction co-

efficient and exact test bench inertias,

• detailed modeling of controller properties of the in-

duction machine,

• modeling of the effect of the valve target value in

the hydraulic actuator.

References

K. Aström and T. Hägglund. PID controllers: theory, de-

sign and tuning. International Society for Measurement and

Control Seattle, WA, 1995.

S. Bai, J. Maguire, and H. Peng. Dynamic Analysis and Con-

trol System Design of Automatic Transmissions. SAE Inter-

national, 2013.

H. Brückmann, J. Strenkert, U. Keller, B. Wiesner, and

A. Junghanns. Model-based development of a dual-clutch

transmission using rapid prototyping and sil. In Getriebe in

Fahrzeugen, 2009.

F. Cellier and E. Kofman. Continuous system simulation.

Springer, 2006.

E. Chrisofakis, A. Junghanns, C. Kehrer, and A. Rink.

Simulation-based development of automotive control soft-

ware with modelica. In Proceedings 8th Modelica Confer-

ence, 2011.

J. Deur, J. Asgari, and D. Hrovat. Modeling of an automotive

planetary gear set based on karnopp model for clutch fric-

tion. In ASME 2003 International Mechanical Engineering

Congress and Exposition, pages 903–910. American Soci-

ety of Mechanical Engineers, 2003.

C. Dörr, H. Kalczynski, A. Rink, and M. Sommer. Nine-

Speed Automatic Transmission 9G-Tronic by Mercedes-

Benz. ATZ worldwide eMagazines Edition:, 01:20–25,

2014.

D. Haessig and B. Friedland. On the modeling and simulation

of friction. Journal of Dynamic Systems, Measurement, and

Control, 113:1256–1261, 1991.

R. Isermann, J. Schaffnit, and S. Sinsel. Hardware-in-the-loop

simulation for the design and testing of engine-control sys-

tems. Control Engineering Practice, 7:643 – 653, 1999.

Session 7D: Virtual Test Benches

DOI
10.3384/ecp15118547

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

555

D. Karnopp. Computer simulation of stick-slip friction in me-

chanical dynamic systems. Journal of dynamic systems,

measurement, and control, 107:100–103, 1985.

M. Kuebler, R. Ammann, and M. Wissbach. VIP, der virtuelle

Getriebe-Endpruefstand. In 16. VDI Kongress: Berechnung,

Simulation und Erprobung im Fahrzeugbau, 2012.

B. Lantos and L. Márton. Nonlinear Control of Vehicles and

Robots. Springer-Verlag London, 2011.

J. Mare. Friction modelling and simulation at system level:

a practical view for the designer. Proceedings of the Insti-

tution of Mechanical Engineers, Part I: Journal of Systems

and Control Engineering, 226:728–741, 2012.

C. Mosbach. Das Reibungs- und Reibschwingverhalten nass-

laufender Lamellenkupplungen. PhD thesis, Technische

Universität München, 2002.

M. Otter, H. Elmqvist, and S. Mattsson. Hybrid modeling in

modelica based on the synchronous data flow principle. In

Computer Aided Control System Design, 1999. Proceedings

of the 1999 IEEE International Symposium on, 1999.

W. Press, B. Flannery, S. Teukolsky, W. Vetterling, and

T. Gould. Numerical recipes, the art of scientific comput-

ing. Cambridge University Press, 2007.

S. Röck. Echtzeitsimulation von Produktionsanlagen mit

realen Steuerungselementen. PhD thesis, Universität

Stuttgart, 2007.

J. Röper, J. Göres, and C. Gühmann. Analysis of timing and

jitter in real and virtual test bench for automatic transmis-

sions. In Simulation and Testing for Automotive Electronics

V, 2014.

J. Runde. Modelling and Control of an Automatic Transmis-

sion. PhD thesis, Purdue University, 1984.

J. Tomaszunas. Komponentenbasierte Maschinenmodellierung

zur Echtzeit-Simulation für den Steuerungstest. PhD thesis,

Techn. Univ. München, 1998.

Modeling of an Automatic Transmission for the Evaluation of Test Procedures in a Virtual End-of-Line Test
Bench

556 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118547

A New Fault Injection Method for Liquid Rocket Pressurization

and Feed Systems

Zhu Mingqing1 Xie Gang1 Shao Jintao2 Chen Liping1 Zhou Fanli2
1CAD Centre, Huazhong University of Science and Technology, Wuhan, China, 430074

2Suzhou Tongyuan Software&Control Tech. Co., Suzhou, China, 215123
{zhumq,xieg,shaojt,chenlp,zhoufl}@tongyuan.cc

Abstract

Fault simulation is an important method in the design
of liquid rockets and fault injection is necessary for
fault simulation. In this paper, we present a new fault
injection method for liquid rocket pressurization and
feed systems (PFS) without modifying the system
structure. Firstly, we develop a physics-based model of
pressurization and feed systems based on Modelica,
which describes both nominal and faulty behaviors in a
unified way. Then, we describe the new fault injection
method, which uses the fault mode library and
constructs the association between the Modelica model
and the fault mode using customized Modelica
annotation in MWorks®. We verify the new method by
simulating several typical fault modes such as leakage
and clogging. The results show that our method could
be easily used to simulate various fault modes in liquid
rocket pressurization and feed systems. Moreover, the
new fault simulation process indeed plays a role in the
system design. Our results could provide some
reference for the ongoing research in fault detection
and diagnoses.

Keywords: fault simulation; fault injection; Modelic

a/MWorks; pressurization; fault mode

1 Introduction

A suitable pressurization and feed system is important
for a liquid rocket to transfer rocket propellants from
the propellant tanks to the engine at certain flow rates
and pressures (Partola, 2012). Mostly, the engine could
not generate enough thrust to keep the rocket in orbit if
the pressure inside the propellant tank is too low,
which may lead to flight failure. Therefore, a
diagnostic solution is needed to quickly identify the
faults so that recovery actions can be taken or an abort
procedure can be initiated before system safety is
compromised (Daigle, 2011). Effective diagnoses
require abundant historic data, which are traditionally
acquired by executing many ground tests.
Unfortunately, the costs of implementing ground tests
are enormous and the process of physical tests is
extremely dangerous. In addition, it is really hard or
impossible to reappear some fault modes because of

equipment restrictions, let alone covering all possible
flight conditions. Nowadays, with the development of
computer science, fault simulation based on numerical
methods is an ideal alternative to ground tests. Relying
on a detailed model of system behaviors under nominal
and faulty conditions (Daigle, 2011), numerical
simulation has several advantages. Firstly, an engineer
could build a mathematical PFS model according to its
physical function and simulate its behaviors under all
kinds of working conditions to verify the design of the
system. Moreover, typical fault modes of a system
could be manually injected into the nominal model to
predict their effects on the system performance. In this
way, we could accumulate abundant faulty knowledge
of the system, which is important for ongoing research
in fault diagnoses and design optimization.
Implementing faults in PFS is not new to the literature.
For example, Gao Ming et constructed a filling system
based on Modelica where fault simulation was
processed by altering the models or resetting the
parameters (Gao, 2009).
Wang Min et built a modular PFS based on Matlab
where two typical faults were simulated by adding step
signals to change the behavior of the system (Wang,
2010).
Fan Zhongze et simulated four kinds of faults by VC++
where the fault is expressed by the fault factor and fault
trigger time (Fan, 2008).
Another approach for model-based fault simulation is
used by F.L.J. van der Linden. Using instance
modifiers as well as an inner-outer broadcasting
method, the faults can be triggered in a central block
(F.L.J. van der Linden, 2014). Though valuable in
some aspects, this method is hard to handle a large
number of fault modes.
Most of these works are examples in which faults in
PFS are triggered and simulated. The simulation results
can give some reference to the model-based diagnoses.
However, all the implementations have to modify the
original system model to inject fault modes, which is
very fussy if there are many fault modes. In fact,
engineers prefer a simpler and more convenient way to
inject faults in system models.

DOI
10.3384/ecp15118557

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

557

In this paper, we develop a lumped-parameter dynamic
model of PFS using Modelica on MWorks®, which is
simple enough to allow for physics analyses and
numerical simulations. More importantly, we propose a
new method to describe the fault mode and inject the
fault mode into the Modelica model without modifying
the structure of the original system. Several typical
fault modes are simulated to justify the validity of this
method. We have investigated both the nominal regime
and the effects of several primary faults, such as gas
leakage in the gas pipe as well as clogging of the
electric valve.
The paper is organized as follows. Section 2 gives an
introduction to liquid rocket pressurization and feed
system. Section 3 briefly describes the modeling of
PFS considering both nominal and faulty behaviors.
Section 4 presents the new method of model-based
fault injection and the workflow of fault simulation.
Section 5 verifies the approach with several fault
simulation experiments. Conclusions and suggestions
for future work are presented in section 6.

2 Overview of PFS

A simplified working diagram of the liquid rocket PFS
is depicted in Figure 1.
The working process is outlined as follows. Initially,
cold helium gas is injected into gas bottles 1 through
valve 2 to obtain very high pressure on the ground. At
the same time, the propellant tank is pressurized
through ground valve 4. Once engine 17 starts, high
pressure gas is released from the gas bottle, and finally
enter the propellant tank. The mass flow rate of the gas
is controlled by controller 12, which controls the
opening of SV 6 or SV 8 by detecting the pressure in
the propellant tank.

1

2

3

6

7

8

9

10

12

11

5

14

4

15

1-Gas Bottles; 2-Injection Valve; 3-Filter

4-Ground Valve; 5-Baffle; 6-Main SV

7-Main Board; 8-Second SV; 9-Second Board

10-Heater; 11-Pressure Sensor; 12-Controller

13-Gas Pipe 14-Oxidant Tank; 15-Transport Pipe

16-Pump Valve; 17-Engine

13

16

15

17

Figure 1 A Liquid Rocket PFS

3 Modeling PFS

A detailed system model is essential for fault
simulation. Based on the above analysis, fluid
dynamics and hydraulics, we could construct all the
nominal mathematical models. To meet the
requirements of both validity and computational
performance, all the models are treated lumped-
parameter. Both nominal and faulty behaviors are
considered in the model.

Pressure Board

The purpose of the pressure board is to control the flow
rate of the fluid from upwind. In fact, the board could
be considered as an orifice. Based on the continuous
equation, the isentropic relationship and the equation
of the gas velocity, we could obtain the flow rate of the
gas according to the pressure ratio (Esposito, 2000).
The mass flow rate is given by:

 up

q m

up

P
m A C C

T
 (1)

Where Cq is the discharge coefficient, A is the
restriction area,

up
P is the upstream pressure,

m
C is the

mass flow parameter, and
up

T is the upstream

temperature.
The critical pressure ratio at which the flow switches
from sonic to subsonic can be calculated using the
equation:

1
12

1

s
s

cr

s

P




 
   

 (2)

Here,
s

 is the isentropic calorific factor.

When (/)
dn up cr

P P P , the flow is subsonic and the

flow parameter
m

C is a function of the pressure ratio
and depends on the gas properties. When
(/)

dn up cr
P P P , the flow is sonic, the mass flow

parameter
m

C is a constant and the mass flow rate only
depends on the upstream temperature.
The nominal behavior of the board is described as in
equation (1). To characterize the fault mode such as
leakage, we introduce a leakage variable dm_flow and
leakage coefficient K (0<=K<=1). The constrain
equation is:

g_in

dm_flow= K m (3)

Here, K is the fault parameter of the board. K=0
implies the nominal condition and K=1 implies
complete leakage.

Pipes (Gas and Liquid)

The flow condition of the fluid could be treated as
laminar if the flow rate is relatively small and the mass
flow rate changes linearly with the pressure drop
(Esposito, 2000). The equation is given by:

A New Fault Injection Method for Liquid Rocket Pressurization and Feed System

558 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118557

 m G dp  (4)

Similarly, we introduce a fault parameter leak to
represent the leakage fault mode. The equation is given
by:

 _dm flow leak m  (5)

Here, leak=0 implies the nominal condition and leak=1
implies total leakage.

Gas Bottle

Gas Bottle is a closed volume filled with inert gas.
Before the flight of the rocket, the gas bottle will be
injected into enough gas to obtain high pressure. When
the valve opens, the gas quickly expanses into the
downstream road. Since the gas flow is very fast, the
heat transfer between the wall and the gas could be
neglected and the temperature and pressure in the gas
bottle would be given by (Esposito, 2000):

1

0

0

p
T T

p





 
  

 
 (6)

dp R T

m
dt V

  
 (7)

Here, 0T is the initial temperature in the gas bottle, 0p
is the initial pressure.
We introduce coefficient leak to represent the leakage
behavior of the bottle. The equation is:

 dm_flow= leak m (8)

Propellant Tank

The propellant tank is the most important component
of a PFS. Tank pressurization is a very complicated
physical process: the outer gas enters the tank and
mixes with the initial gas in the tank, following the
process of heat transfer and mass transfer. The tank
wall is surrounded with the environment with all kinds
of heat radiation and convective heat flow. Hence, it is
rather difficult to predict the pressure in the tank. To
determine the mathematical model, several
assumptions are made as follows:

 The gas is undissolved with the liquid.
 The liquid is considered incompressible.
 The phenomena such as condensation and

boiling are neglected.
Under low pressure, the gas could be treated as the
ideal gas. The equation of state is given by:

 pV mRT (9)

Ignore the kinetic energy of the entering gas. The
mixed gas transfers heat with the tank wall and the
liquid. The conversation equation is given by (Esposito,
2000):

 gas
in p in 1 2 gas gas

dU
m c T Q Q p der(V)

dt
       (10)

Here,
gas

U is the internal energy of the gas, 1Q is the

heat flow between the gas and the liquid, 2Q is the heat
flow between the gas and the tank wall and

gas
V is the

volume of the gas.
Applying Newton Law, we obtain the heat transfer
equation

 Q hA T (11)

Here, h is the coefficient of heat transfer, A is the
heat transfer area and T is the difference in
temperature.
Since free convection is dominant in the tank interior,
the average heat transfer is modeled based on the
empirical Nusselt number correlations of the type

n
Nu CX (Rohsenow, 1985).

k Nu

h
L

 (12)

The characteristic length L in the above tanks
different values for different heat transfer area.
The Modelica language for dynamic simulations is
ideal for modeling PFS. Based on the equations
described in this section, we could easily build all the
corresponding Modelica model. Combining all the
related components in Figure 1, we can develop a
liquid rocket PFS as follows:

Figure 2 A System Model of PFS in MWorks Modeling
View

4 Model-Based Fault Simulation

In the previous sections we have briefly discussed the
nominal and faulty behaviors of the basic components.
In this section, we describe how to associate the fault
modes with the system model and inject the fault mode
into a certain model correctly without changing the
system topology.

4.1 Fault Mode Library

There are many kinds of fault modes in PFS.
Traditionally, fault modes are stored in the literature as

Session 8A: Aerospace Applications 2

DOI
10.3384/ecp15118557

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

559

depicted in Table 1. As is shown in Table 1, a single
fault mode must be a faulty symptom of a certain
product, which belongs to a subsystem. Many items are
used to describe the fault mode and each kind of fault
mode is tied with a fault parameter, as discussed in
Section 3. However, all these items are written in the
literature which could not be recognized by the
computer. It is necessary to build a standard architect
to transfer the literal fault mode into a quantitative fault
mode file.
To get a unified description of all kinds of fault modes,
we choose a XML file. XML is a hierarchy extensible
language featured by self-describing, convenient data
processing and easy understanding. It is suitable for the
representation of the fault modes of a liquid rocket
system. Moreover, it makes it convenient for us to
generalize this method to other tools (not limited to
MWorks) in the future. According to the requirements
of the configuration information in Table 1, the XML
file should include at least three contents: the product
name, the fault mode description and the fault
parameter. Another key element is the trigger time,
since most of the fault modes are not triggered at the
beginning. The logical hierarchy of the XML file is
designed in Code 1.

Table 1 Literal Description of Some Fault Modes

Code 1 A Sample of a Certain Fault Mode

</Product>
 <Product Type=”gaspipe” Name
="gaspipe" >
 <FaultMode Name="Leakage">
 <Parameter Name="leak"
Value="0" Condition="time>10" />
……
</Product>

Code 1 describes the leakage fault mode of a gas pipe
according to Table 1. There is a default value for the
fault parameter and trigger time, which can be
modified before simulation. Moreover, the XML file
can be extended to add some new items.
To better modify the XML file from GUI, we have also
designed a XML editor on MFC (Petzold, 1998). The
XML file can be read and modified by utilizing the
DOM (document object module) technology, which is

a cross-platform and language-independent convention
for representation and interacting objects in HTML,
XHTML and XML documents.
Similarly, we could build other fault modes in the
XML file just as in Code 1. By extending MWorks
(Zhou, 2006), we develop an interface to read the XML
file into the simulation environment. The structure of
the FML (fault mode library) is depicted in Figure 3.

Figure 3 Hierarchical Structure of PFS Library and FML

4.2 Mapping Between Fault Mode and Modelica

Model

From the above discussion, we know that faulty
behaviors are stored in the Modelica file and fault
modes are stored in the XML file. They are implicitly
connected via the fault parameter. We need to
construct a mechanism to make sure that the fault
mode can be injected into the right object.
As the Modelica semantic describes, annotation is an
attribute or property containing information associated
with some element of a Modelica model and it will not
affect the simulation of the model (Peter, 2010).
According to the annotation syntax, we introduce a
new annotation mapping for associating Modelica
model with the fault mode in FML. Take the
SimGasPipe leakage fault as an example:

Code 2 SimGasPipe Modelica Code

model SimGasPipe
annotation(__MWorks(FaultInfo(ModelName="ga
spipe")));
 extends
DynamicSystem.PressureBoostTransSystem.
BaseClasses.TwoPortsSysGas;
 Real leak = 0.1 "leakage coefficient"
 annotation
(__MWorks(FaultInfo(FaultParameter)));
 parameter Real G(unit="kg/s/pa") = 1000;
equation

 m_flow = G * dp;
 dm_flow = m_flow * leak;
As we observe from the code above, the first kind of
annotation defines the name of the model which must
be consistent with the product type defined in the XML

Subsyst
em

Product
Fault
Mode

Fault
Parameter

PFS

GasBottle Leakage leak

Board
Leakage K

Clogging leak

Valve

Always
Open

leak

Always
Closed

leak

GasPipe Leakage leak

LiquidPipe Leakage leak

A New Fault Injection Method for Liquid Rocket Pressurization and Feed System

560 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118557

file. The defined word ModelName is mapped with the
string Type defined in XML file. The second kind of
annotation shows that this variable is a fault parameter
and can be changed by fault injection. The defined
word FaultParameter matches with Parameter in the
XML file. Both fault modes start with keyword
_MWorks to make sure that it can be identified by
MWorks.

4.3 Fault Injection

Fault injection is a key process in fault simulation. All
faults could be injected into a system by changing the
system input in some way (Genler, 1991). In the state-
space framework, the process is described in the
following way:

(1) () () ()

() () () ()

x t Ax t Bu t Fp t

y t Cx t Du t q t

   
  

 (13)

Here ()u t and ()y t are the command value of the in-
puts and the measured value of the outputs,
respectively, ()p t and ()q t are the fault vectors and
F is the fault entry matrix. Vector p contains the
actuator faults, disturbances and input sensor faults.
Vector q contains the output sensor faults. The fault
entry matrix F is assumed to be known and could be
considered as a constant input to the whole system.
Based on the mapping relationship discussed above, we
could make fault injection possible by changing the
value of the fault parameter in the model. The so-called
fault parameter has a meaning different from the
definition in Modelica. It can be treated as an input
signal to the system as discussed in equation (13). To
be able to change the value of the fault parameter
during the simulation, we should define it as a variable.
Figure 4 helps us better understand the idea.

Fault
Injection

leak=if time
>10 then 0.8

else 0

Figure 4 Fault Injection Operation
As can be seen from Figure 4, leak is the fault
parameter defined in the model. The fault mode will be
triggered at time 10s. The expression “leak= if time>10
then 0.8 else 0” depicted in Figure 4 is only a pseudo
code for easy understanding of the injection
mechanism. The platform MWorks will not generate
such an equation when compiling the model but just
replace the default fault parameter 0 with the new
setting parameter 0.8.

4.4 Fault Simulation

To help the user better understand the new fault
injection method, we gives a fault simulation
procedure as follows:

System Model

(Fault)

System Model

(OK)

Model

Library

(.mo)

Fault Mode

Library

(.xml)

Simulation

Fault

Injection

Load

Choose

Fault

Parameter

Trigger

Condition

Edit

Figure 5 Fault Simulation Process

Firstly, we construct a system model from components
in the PFS library. Secondly, we choose the fault mode
that is to be simulated from the fault mode library. It is
worth to note that there may exist more than one object
of the same class in the system for a certain fault mode.
For example, there are four SVs, all of which are
classed as electric valve in Figure 1. We must make
sure that the fault mode is associated with the right
object. This problem is resolved by the new annotation
mapping. Specifically, MWorks will associate all the
related objects in the system model and let the end user
choose which object to be injected. Thirdly, we need to
specify the fault parameter and fault trigger time. An
exception is the nominal situation where there is no
need to handle this. Finally, we simulate the system
model. At that time, the fault parameter in the model
will be replaced by the value we specified if the fault
trigger condition is satisfied.

5 Case Study

Based on the system depicted in Figure 2, we first
conduct nominal condition simulation to demonstrate
the validation of the system model. Then, we show to
how to inject several typical fault modes were injected
using the method described in Section 5.

5.1 Nominal Condition

Under nominal condition, the propellant pressure
should maintain a relatively high level to ensure a safe
flight. The simulation result is as follows:

Session 8A: Aerospace Applications 2

DOI
10.3384/ecp15118557

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

561

Figure 6 Pressure in the Tank@ Nominal Condition

As we can see from figure 6, the pressure is always
within the setting pressure range of SV6 before 150s
and SV8 is always closed. After 150s, the gas bottle
could not supply enough gas to the propellant tank and
the pressure experiences a little drop until 250s. The
pressure drops under the minimal control pressure of
SV8, causing SV8 opens to increase the pressure of the
tank. It can be seen from Figure 6 that the pressure in
the tank always keeps a relatively high level and satisfy
the requirements of the flight. The system model is
well suited for the simulation of PFS.

5.2 Fault Simulation-SV Always Closed

To overcome accidental faults in the flight of a rocket,
redundant strategy is always adopted for an easily
broken part or a critical part. As is done in Figure 1,
two parallel SVs could ensure to some extent the safety
of the rocket.
As seen from Figure 7, a fault mode is injected into
SV6 at time 50s, which makes the valve always closed.
The pressure in the tank drops sharply below the
minimum control value of SV8 and it opens to ensure
that the pressure keeps oscillating within its setting
range. The simulation result shows that the fault
injection method is successful and the redundant
strategy is helpful in maintaining the tank pressure.

Figure 7 Tank Pressure@ SV6 Fault

5.3 Fault Simulation-Gas Pipe Leakage

Figure 8 shows the result of the tank pressure with a
modified leak coefficient. The tank pressure could
sustain if the leakage is 20 percent, whereas the
pressure drops sharply if the leakage is more than 40
percent. The simulation result demonstrates that the
fault injection method is successful and the system has
a high level stability even under a fault mode (20%
leak-age).

Figure 8 Tank Pressure@ Gas Pipe Leakage

6 Conclusions and Future Work

In this paper, we develop a physics-based model of
pressurization and feed systems and analyze the
validity of the model. Moreover, we introduce a new
annotation mapping mechanism to associate the
Modelica model with the fault mode, which lays a
foundation for fault injection without modifying the
structure of the system model. Standardization of
different kinds of fault modes using a XML file is
realized as well.
By adjusting the fault parameter of the gas pipe, we
obtain simulation results that are consistent with the
qualitative analysis, thereby justifying the validity of
the new fault injection method. The new method is
easy to understand and can support multiple fault
modes injection is also supported as well.
Based on the above analysis, we conclude that fault
simulation could help us better understand the system
and explore the weakness of the system design in
advance. The new fault injection method is simpler and
more convenient than the traditional methods.
The idea of fault injection is quite general. It is not
limited to PFS and can be applied to other domains by
simply modifying the fault modes and system model.
PFS is just one application and we plan to explore this
method further in the future. For example, fault
transmission and fault diagnose are on our agenda. We
could simulate the process of fault transmission and do
some fault diagnose analyses by batch simulation
based on current method. Another future research is to
combine current work with FMEA efficiently.

0 50 100 150 200 250
0.28

0.32

0.36

0.4

time/s

p
/M

P
a

0 50 100 150 200 250
0.28

0.32

0.36

0.4

time/s

p
/M

P
a

0 50 100 150 200 250
0.2

0.24

0.28

0.32

0.36

0.4

time/s

p
/M

P
a

leakage 20%

leakage 40%

leakage 60%

A New Fault Injection Method for Liquid Rocket Pressurization and Feed System

562 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118557

Acknowledgements

The paper is supported by The National High
Technology Research and Development Program of
China ("863"Program) (No. 2013AA041301)

References

Partola I S. Design of liquid-propellant rocket engines.
Journal of Machinery Manufacture and Reliability,
41(6):492-498, 2012.

Daigle M, Foygel M, Smelyanskiy V. Model-based
diagnostics for propellant loading systems. Aerospace
Conference, 2011 IEEE. pp. 1-11, 2011.

Gao Ming, Niaoqing HU, and Guojun QIN. Object-oriented
Modeling and Fault Simulation of Propellant Filling
System. Machine Tool & Hydraulics, 37(09):223-226,
2009.

Wang Min, Hu Niaoqing, Qin Guojun. Fault Modeling and
Simulation Analysis for LRE Test-bed Filling System.
System Simulation, 22(11): 2672-2675, 2010.

Fan Zhongze, Huang Minchao. Fault Simulation of Space
Power System in the Operation Process. Journal of
National University of Defense Technology, 30(02): 11-15,
2008.

F.L.J. van der Linden. General fault triggering architecture to
trigger model faults in Modelica using a standardized
blockset. Proceedings of the 10th International Modelica
Conference, 2014.

Esposito A. Fluid power with applications. Prentice-Hall
International, 2000.

Rohsenow W M, Hartnett J P, Ganic E N. Handbook of heat
transfer fundamentals. 1985.

Petzold C. Programming windows. Pearson Education, 1998.

Fan-Li Zhou, Li-Ping Chen, Yi-Zhong Wu, Jian-Wan Ding,
Jian-Jun Zhao, Yun-Qing Zhang. MWorks: a Modern IDE
for Modeling and Simulation of Multidomain Physical
Systems Based on Modelica. Proceedings of the 5th
International Modelica Conference, Vol. 2: 725-731, 2006.

Peter Fritzson. Principles of object-oriented modeling and
simulation with Modelica 2.1. John Wiley & Sons. 2010.

Genler J. Analytical Redundancy Methods in Fault Detection
and Isolation. Preprints of IFAC/IMACS Symposium on
Fault Detection, Supervision and Safety for Technical
Processes SAFEPROCESS’91. 1991.

Session 8A: Aerospace Applications 2

DOI
10.3384/ecp15118557

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

563

564 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Automated Safety Analysis by Minimal Path Set Detection for

Multi-Domain Object-Oriented Models

Christian Schallert

Institute of System Dynamics and Control, German Aerospace Centre (DLR), Christian.Schallert@dlr.de

Abstract

This paper describes, exemplifies and substantiates a
method for detection of the minimal path set of any
fault-tolerant technical system that is represented as a

multi-domain object-oriented model. Thus, the method

automatically performs a safety or reliability analysis
of the system.

Keywords: safety analysis, reliability analysis, minimal
path set, graph algorithms, modelling of failures,

failure probability

1 Introduction

Safety and reliability are essential in transport aircraft
design and operation, as well as other technical areas.

Safety analyses are therefore an inherent part of the

complex process of aircraft and on-board systems
development. In systems development, multi-domain

object-oriented modelling and simulation have now
become the state-of-the-art.

This paper describes a method that integrates safety

or reliability analysis with multi-domain object-
oriented modelling. In essence, the method

automatically detects the minimal path set of any fault-
tolerant technical system. The method is based on the

simulation of normal behaviour, degradation and

failure of a system. Thus, modelling of failures is
supplemented to component models from generic

libraries, e.g. the Modelica Standard Library, that

typically represent only normal, intact behaviour.
Other approaches to automated safety or reliability

analysis based on multi-domain object-oriented
modelling exist. A model-based diagnosis approach

has been described by (Bunus, Lunde, 2008) that uses

constraints (inequalities) instead of differential
equations. It is particularly dedicated to diagnosing

systems, i.e. detecting and isolating faults. Another
approach described by (Papadopoulos et al., 2001)

performs semi-automatic fault-tree synthesis based on

fault annotations included in the components of a
system model.

The method described in this paper differs from the

existing approaches, in so far that it uses differential-
algebraic equations and modelling of failures. It thus

permits the conducting of all other simulation studies
that initially motivated the implementation of a model,

as well as it ensures a consistent safety analysis due to
the modelling, not just annotating, of failures. The goal

of the method is to improve the development process
of fault-tolerant, safety-critical systems.

2 Modelling Approach

This section refers to the approach selected for the

modelling of fault-tolerant systems and the additions

necessary to enable automated safety analysis.

2.1 Modelling of Failures

The proposed minimal path set detection method
requires that failure of a system can be simulated in

addition to its normal behaviour. Thus, the modelling
has to be supplemented by equations that reflect

failures of system components and, if applicable, by

operating logics that determine how a system reacts to
the occurrence of component failures.

Model parameter values are changed in order to

represent a failure. In doing so, the model equations
remain the same (structure-invariant approach).

Corresponding examples of aircraft on-board system
models including component failures, e.g. electrical

open circuit, mechanical disconnection or loss of

hydraulic pressure, are provided in (Schallert, 2008,
2011, 2014). The proposed detection method activates

component failures by directly accessing the relevant
model parameters. Alternatively, a universal fault

triggering network described by (van der Linden, 2014)

can be used for activation of failures.
Provided that the preconditions (see subsection

3.1.2) are met, the detection method can be used also if

the structure of the model equations is changed to
represent failures. Such a structure-variant, multi-mode

approach is described by (Elmqvist et al., 2014).

Component failure rates �� are stored in each

component model that includes failures. Since the ��
values are used only for post-processing (see equation
2), they can be inserted also as custom annotations; a

concept described by (Zimmer et al., 2014).

2.2 Indication of System Status

Safety or reliability assessment requires the analyst to
define criteria that indicate if a system operates

normally or if it fails. Such criteria have to be

DOI
10.3384/ecp15118565

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

565

implemented in a system model, in order to compute a

sysOp output signal that indicates system operation.

In case of a flight control surface actuation system,

such as described in (Schallert, 2014), sysOp is

computed by comparing the actual position or rate of

the controlled surface with the command (model
input). The capability of the system to follow

commands is simulated by the minimal path set
detection method for various combinations of intact

and failed components. In doing so, sysOp is evaluated

for correlation with the respective component states.

3 A Method for Minimal Path Set Detection

In this section a method is described that solves the

problem of determining the failure probability of a

system by detecting its minimal path set. The method is
called DMP. It draws on a representation of the system

model object structure as a graph and on simulation.

Minimal path set analysis generally assumes that a
system and its components are two-state, intact or

failed, as explained in section 2.3 of (Birolini, 2007).
The DMP method is a state space simulation. The

state space, in this context, denotes the set of all

combinations of intact and failed components of a
system to be examined for detection of its minimal

path set. Evaluation of the system graph reduces the
size of the state space and hence the number of

simulations required.

3.1 Definitions and Preparations

3.1.1 Definitions

Definitions are provided of the terms used in the
following for the DMP method:

Set. A defined collection of distinct objects, e.g. the
components of a system.

Subset. A is a subset of B, A ⊆ B, if every object of A is

also an object of B, e.g. {1, 2, 3} ⊆ {1, 2, 3}. If A is a

subset of but unequal to B, then A is a proper subset of

B, A ⊂ B, e.g. {1, 2} ⊂ {1, 2, 3}.

Superset. A is a superset of B, A ⊇ B, if every object of

B is also an object of A, e.g. {1, 2, 3} ⊇ {1, 2, 3}. If A

is a superset of but unequal to B, then A is a proper

superset of B, A ⊃ B, e.g. {1, 2, 3} ⊃ {1, 2}.

Difference set. A \ B denotes the set of elements that are

members of A but not of B, e.g. {1, 2, 3} \ {2} =

{1, 3}, or {1, 2, 3} \ {4} = {1, 2, 3}.

Component. A distinct element of a system. In this

paper, components are also called nodes.

Combination. A set of intact components of a system.

Path. A set of intact components that causes a system
to operate.

S-T path. A Source-to-Target path in a graph.

Path set. A set of paths of a system.

Minimal path. A path that cannot be reduced without
causing system failure.

Minimal path set. The set of all minimal paths of a

system.

Graph. A representation of a set of objects, e.g. the

components (nodes) of a system, and of the

connections between them.

Node. An object in a graph. Nodes are also called

components in this paper.

Edge. A link that connects a pair of nodes in a graph.

Articulation. A node in a graph (or path) that, if

removed, disconnects the graph (or path) into several
subgraphs.

Subgraph. A part of a graph whose set of nodes and set
of edges are subsets of those of the graph, the set of

edges being restricted to the subset of nodes.

Density. The density d of a graph is generally, e.g. in
(Diestel, 2010), defined by �(�,�) = 2� �(� − 1)⁄ (1)

where N and E denote the numbers of nodes and edges
of the graph, respectively.

Probability computation. The probability of system
operation or failure is computed from the system’s

minimal path set in applying the reliabilities of its
components. Let Ci denote the intact state of

component i. Then, the probability of occurrence P of a

minimal path MP is, see (Meyna, Pauli, 2003), �(��) = �(�1 ∧ �2 ∧…) ∀�� ∈ �� �(��) = � �(��)��∈�� = � ��(�)��∈�� , �� = �−��� (2)

with the component reliabilities Ri, failure rates λi and

exposure time t. Exponentially distributed lifetimes are

assumed. Other lifetime models, e.g. Weibull
distribution, can be used as well. The probability of

system operation Rsys(t) is computed from the

probabilities of the minimal paths by ����(�) = �(��1 ∨…∨ ���)

= ������� −�
�=1 � � ����� ∧ �����

�=�+1 + . . .

�−1
�=1

+(−1)�+1 ⋅ �(��1 ∧ ��2 ∧…∧ ���)

(3)

where r is the number of all minimal paths in the set.

Equation 3 is evaluated for illustration at the end of
subsection 3.2.2.

3.1.2 Properties of Minimal Paths and Requirements

for Detection

This subsection explains the assumptions and
requirements that apply to the minimal path set

detection method DMP described in section 3.2:

1. The system behaves monotonously. This refers to
a system that operates if all its components are
intact and fails if all components fail. If the system

Automated Safety Analysis by Minimal Path Set Detection for Multi-Domain Object-Oriented Models

566 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118565

operates while not all components are intact, it
continues operating if any further component

becomes intact. Conversely, if the system has

failed, it remains failed if any further component
fails. This definition of monotony is common in

safety analysis. For instance, it can be found in

section 14.2 of (Meyna, Pauli, 2003).

2. Every real world component is represented by one

model object and by one node in a corresponding
graph. No component is represented by two or

more model objects or nodes.

DMP relies on a representation of the object structure

of the system model as a graph. Nodes of the graph
represent components, and edges the connections

between components. The establishing of a graph is

described in subsection 3.1.3. The properties of
minimal paths, and in particular their situation in the

graph, are explained in the following, which then
proceeds to further requirements for DMP.

Depending on the system model and, if applicable,

the marking of sources (S) and targets (T) in the
corresponding graph, some S-T paths are minimal

paths. This is true, for instance, for the electric network
models shown in (Schallert, 2008, 2011), where also

related detection methods are described. In general,

however, what is known is only that a minimal path
consists of one or more connected nodes.

This is explained by Figure 1 that depicts a part of
an aircraft’s flight control surface actuation system

model and its accompanying graph. The edges of the
graph correspond to the interfaces that exchange

power, material or signals among the components

(nodes) of a system. This exchange among
neighboured nodes enables a system to operate. No

other nodes are situated between any of those nodes

that exchange power, material or signals and hence
belong to a minimal path. Thus, only a coherent set of

nodes can be a minimal path. The following defines a
coherent set of nodes:

Definition 1. A set of nodes in a graph is coherent if
any two nodes of the set are connected through a series

of edges and through only those nodes that belong to

the set.

Figure 2 shows coherent and incoherent sets of

nodes (marked blue) for illustration. An S-T path, such
as (c), is a special case of a coherent set of nodes.

Figure 2. Coherent (a), (b), (c) and incoherent sets of

nodes (d), (e) in a graph

Coherence (interconnection) of intact nodes in the

system graph is a precondition for a minimal path.
Removing a node from a minimal path interrupts the

exchange of power, material or signals among the

nodes of the minimal path. If no other minimal paths
exist, the system fails. If the system operates with an

incoherent set of intact nodes, nodes can be removed
from the set, i.e. fail, without interrupting the exchange

of power etc. Such a set of nodes is therefore a path but

not a minimal path. Thus, the third assumption for
method DMP is:

Figure 1. Exchange of power and signals across the edges in a coherent set of nodes

Session 8A: Aerospace Applications 2

DOI
10.3384/ecp15118565

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

567

3. Only a coherent set of intact nodes in a system
graph can be a minimal path.

Because not every coherent set of intact nodes is a
minimal path, the system model is simulated to

determine which ones are actually minimal paths.

3.1.3 Graph Representation of Multi-Domain Object-

Oriented Models

A graph is defined by its adjacency list (array AL). In

AL, each row corresponds to a node of the graph. The

neighbours of a node are stored in the respective rows

of AL, as will be illustrated. If more than one

connection exists between two components of a model,

this is reflected by a single edge in the graph. (That is,

in each row of AL, any node is stored not more than

once.) It is only relevant that any two nodes of the

graph are connected, but it is not important whether the
two nodes are connected by one or more than one edge.

Additionally, the interface types are not evaluated by
method DMP, so they are not reflected in the graph.

Figure 3. Components and connections in a multi-domain

object-oriented model

For illustration, the adjacency list is indicated for a part

of the system model depicted in Figure 1. Figure 3 (a)

shows the component (node) and interface names, and
the indices in (b). The numbering of nodes – encircled

in (b) – corresponds to Figure 1. The algorithm that

actually prepares an adjacency list is described in
subsection 3.1.3 of (Schallert, 2015).

The connections via mechanical flanges, hydraulic
ports, electric pins etc. are declared in the model by the

connect() statements below. They are expressed in

terms of the component and interface names (left
column), and in terms of component and interface

indices (right column).

1.
connect(POB1.flange_a,
Motor1.flange);

(1.1, 2.3)

2.
connect(Motor1.port_a,
Valve1.port_A);

(2.1, 3.1)

3.
connect(Motor1.port_b,
Valve1.port_B);

(2.2, 3.2)

4.
connect(POB1.p,
Computer1.p_B);

(1.2, 4.5)

5.
connect(Valve1.p,
Computer1.p_V);

(3.3, 4.4)

6.
connect(Computer1.Sw1,

Up1.p);
(4.2, 5.1)

7. connect(Up1.p, Down1.p); (5.1, 6.1)

8.
connect(Computer1.Up1,
Up1.n);

(4.1, 5.2)

9.
connect(Computer1.Down1,
Down1.n);

(4.3, 6.2)

A special case occurs if more than one node is directly
or indirectly connected to one and the same interface of

a node, as happens for the 6
th

 and 7
th

 connections of the

example: Computer1.Sw1 (4.2) is connected to

Up1.p (5.1), and in turn Up1.p (5.1) is connected

to Down1.p (6.1). Actually, there is a direct

connection between (4.2) and (6.1). It only appears

to be indirect, across (5.1), because each connect()

statement links exactly two nodes. To reflect that a

direct connection exists between (4.2) and (6.1), an

auxiliary node (14) is introduced. Auxiliary nodes do

not represent any real or model object; rather, they are

introduced to ensure that coherent sets of nodes are

correctly detected by method DMP. An auxiliary node

is stored as an additional row in the adjacency list AL.

Table 1 specifies the adjacency list by the node
indices. Figure 4 shows the corresponding graph.

Table 1. Adjacency list AL for Figure 3 (b)

 1 2 4

 2 1 3

 3 2 4

 4 1 3 5 6 14

 5 4 14

 6 4 14

14 4 5 6

Figure 4. Graph for Figure 3 (b)

Automated Safety Analysis by Minimal Path Set Detection for Multi-Domain Object-Oriented Models

568 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118565

3.2 Detection of Minimal Paths

Method DMP is capable of detecting the minimal path
set if conditions 1, 2 and 3 defined in subsection 3.1.2

are fulfilled. The detection starts with all system
components (nodes) intact. Nodes are then

successively removed from the system graph, which

corresponds to component failures. The model is
simulated to identify if the system still operates or fails.

Articulations can occur in the graph that, if

removed, cause disconnection of the graph into several
subgraphs. Since only a coherent set of intact nodes

can be a minimal path, splitting up the graph at
articulations reduces the state space and thus the

number of simulations. The lower the density of a

system graph is, the more articulations occur within it
and thus fewer simulations are required. For

completeness, method DMP allows that articulations
can also belong to a minimal path.

3.2.1 Detection Algorithm

Figure 5 shows a flow chart of the detection algorithm.
It consists of a preparation phase (steps DMP.1 - 4) and

the actual, iterative detection process (steps DMP.5 -

17). Steps DMP.3, 8, 11 - 16 refer to lower level
algorithms that are described in detail, including code,

in (Schallert, 2015). The meaning of the symbols used

is as follows:

nr number of all components that can

fail of a system

nLoop iteration counter of detection process

rn node(s) to be removed from a path of

array PSprev

PS, PSprev arrays of path sets in the actual and

previous iteration, respectively, of

the detection process

isMinPS,
isMinPSprev

Boolean arrays that store if a path in

array PS or PSprev is minimal

np, npprev number of paths stored in PS and
PSprev

SF array for storing combinations that

cause system failure

nsf number of combinations stored in

array SF

In the preparation phase, the necessary data are

retrieved from the system model (step DMP.1). Then,
the model is simulated to check if the system operates

for the set of initially intact components (nodes). To

this end, the model output sysOp is evaluated. A

monotonous system will operate, and the procedure is
continued only in this case (step DMP.2). If the system

fails, no minimal path can be detected, and the process

is aborted. Next, a graph (adjacency list) of the system
model is established (step DMP.3, see 3.1.3). Then,

several arrays are initialised (step DMP.4) for the

detection process.

At the start of an iteration, the paths detected so far,
their number, as well as the information whether they

are minimal are assigned to PSprev, npprev and

isMinPSprev. Arrays PS, isMinPS and the counter np

are reset (step DMP.5). Then, nLoop is increased by one.

Next, combinations are generated from the paths in

PSprev. If the ith path, denoted by PSprev[i, :], is

minimal (checked in step DMP.7), then it is not further
reduced, because any subset of a minimal path causes

system failure. If the ith path is not minimal, then all

subsets are generated that remove one intact node rn

from the path (step DMP.8): PSprev[i, :] \ {rn} for all

rn ∈ PSprev[i, :] and rn ∈ {1, nr}. If node nr is an

articulation of path PSprev[i, :], then the corresponding

subgraphs of PSprev[i, :] are generated. Articulations

and subgraphs are determined by an algorithm based
on depth-first search described by (Tarjan, 1972).

Along with each subgraph, the non-articulations of

PSprev[i, :] that also belong to the respective subgraph

are stored. This information is used later, in step

DMP.13, to generate combinations that remove two or
more non-articulations from a path, dependent on the

simulation result (step DMP.11). Due to monotony of

the system, any subset of a path is generated only if it

is not a subset of any combination stored in SF that

causes system failure. Thus, if no subset is generated

from path PSprev[i, :] in step DMP.8, then the system

fails for every subset of this path; it is minimal and is

marked by isMinPSprev[i] := true. The generation of

subsets of paths ends after every path in PSprev has

been processed, i.e. i > npprev (step DMP.10).

Next (step DMP.11), the model is simulated for
every generated combination in order to determine if

the system is operating. From the simulation result

(sysOp), it is first determined which paths in PSprev are

minimal. If a path is minimal, it is stored in PS and

marked as minimal in isMinPS. Then, dependent on

whether they cause system operation or failure, the

combinations are stored either in PS or in SF, and the

respective counter (np or nsf) is increased (step

DMP.12).

For those paths in PS that were established due to an

articulation and that are no superset of any other path,
combinations are generated that remove two or more

non-articulations from the original path in PSprev (step

DMP.13). This is necessary since articulations can also

belong to a minimal path. The system model is then

simulated for the generated combinations. Dependent
on the simulation result, a combination is stored either

in PS or SF (steps DMP.14 and 15).

Next, array PS is tidied up by deleting those paths

that are a superset of any other path (step DMP.16). A
path can be minimal only if it is not a superset of any

other path. If every of the np paths in PS is marked as

minimal (step DMP.17), the detection is complete and

Session 8A: Aerospace Applications 2

DOI
10.3384/ecp15118565

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

569

the process ends. Otherwise, the process continues with

a new iteration at step DMP.5.

3.2.2 A Minimal Path Set Detection Example

The detection algorithm DMP is illustrated by means

of the example graph shown in Figure 6. It is assumed
that this graph is deduced from the object-oriented

model of any technical system. The minimal path set is
assumed as PS = {{1, 2, 3}, {4, 5, 6}, {1, 3, 4, 6, 7}}.

Figure 6. An example graph

Figure 5. Flow chart of minimal path set detection algorithm DMP

Automated Safety Analysis by Minimal Path Set Detection for Multi-Domain Object-Oriented Models

570 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118565

The meaning of the symbols used is as follows, as yet
not defined:

isArt indicates if rn is an articulation of the

respective path

comb generated combination of intact nodes

simC array of generated combinations, input for

simulations of the system model

sysOp array of simulation result (system operates

or not) for every combination in simC

nonArt non-articulation nodes of a path in PSprev

that also belong to a generated subgraph

The detection proceeds as follows. In the tables,

column “row” indicates the progress of the algorithm

in terms of “nLoop” - “number of comb”, e.g. 0-1

denotes combination 1 of iteration 0 (nLoop = 0).

In the preparation phase it is checked if the system

operates when all its components are intact (step

DMP.2 in Figure 5). Thus, the simulation input simC is

as indicated below in Table 2. At this initial stage, no

path has yet been detected and PSprev is empty.

The system operates, so the set of initially intact nodes

is stored as a single, non-minimal path (np = 1) in PS

(step DMP.4). SF is empty (nsf = 0), Table 3.

Table 3. Path set after initial stage of detection process

PS isMinPS SF

{1, 2, 3, 4, 5, 6, 7} - -

The process continues with iteration one (nLoop = 1).

The path data are assigned to PSprev, isMinPSprev and

npprev. PS, isMinPS and np are reset (step DMP.5).

Combinations are then generated from path PSprev[1, :]

as follows (step DMP.8): Node 1 is an articulation. The
path splits into two subgraphs {2, 3} and {4, 5, 6, 7}

due to the removal of node 1. The non-articulations of

the original path PSprev[1, :] that also belong to the

respective subgraphs are {2, 3} and {5, 7}. Node 2 is

not an articulation, thus a combination is generated by

removing node 2 from PSprev[1, :], and likewise for

nodes 3, 5 and 7. Altogether, ten combinations are
generated for simulation of the system model, Table 4.

The simulation result of step DMP.11 (column

sysOp) indicates that path PSprev[1, :] is not minimal,

because the system operates for subsets of it, namely
for those in rows 1-2, 1-3, 1-4, 1-5, 1-7, 1-8 and 1-10.

These combinations are stored as paths in PS, np = 7.

The other combinations in rows 1-1 and 1-6 are stored

in SF, nsf = 2 (step DMP.12). The one in row 1-9,

{7}, is not stored in SF as it is a subset of {5, 6, 7}.

At this stage, two of the seven paths in PS are not

supersets of any other path, namely rows 1-2 and 1-5 in

Table 4 (marked bold). Other paths can exist that

include some of the articulations of the original path

PSprev[1, :]. To assure that such paths are detected,

further combinations that are no superset of any path in

PS - in this case {4, 5, 6, 7} and {1, 2, 3} - must be

generated (step DMP.13). Such combinations remove
as many non-articulations from the original path as

non-superset paths were deduced from it, namely two

(rows 1-2 and 1-5) in the case of PSprev[1, :]. To avoid

generating supersets, one node of every set of non-

articulations, {5, 7} and {2, 3}, is removed from the
original path, respectively. Thus, the combinations

PSprev[1, :] \ {2, 5}, PSprev[1, :] \ {2, 7}, PSprev[1, :] \

{3, 5} and PSprev[1, :] \ {3, 7} are generated, as listed

in rows 1-11 through 1-14, Table 5.

Due to the simulation result, three more paths are

stored in PS, np = 7 + 3 = 10, and one more

combination in SF, nsf = 2 + 1 = 3 (steps DMP.14 and

15). The total number of simulations so far is nsim =

1 + 10 + 4 = 15. Supersets of paths are removed from

PS, which leads to np = 5 paths remaining (in Table 6)

after completion of step DMP.16.

Table 6. Path set PS and combinations that cause system

failure SF, as existent after 1
st
 iteration of process

PS isMinPS SF

{1, 2, 3} - {1, 2, 4, 6, 7}

{1, 2, 4, 5, 6} - {2, 3}

{1, 3, 4, 5, 6} - {5, 6, 7}

{1, 3, 4, 6, 7} -

{4, 5, 6, 7} -

Since none of the paths in PS is marked as minimal

(step DMP.17), the process continues with a second

iteration (nLoop = 2). The path data are assigned to

PSprev, isMinPSprev and npprev. PS, isMinPS and np

are reset (step DMP.5). Then, combinations are

generated (step DMP.8) from each of the npprev = 5

paths in PSprev as listed in Table 7. Three combinations

are generated from PSprev[1, :] = {1, 2, 3}, but only one

is stored in simC for simulation. The other two are not

stored in simC because they are a subset of a

combination in SF, as indicated in rows 2-1 and 2-3. If

a combination causes system failure, every subset of it

causes system failure as well due to system monotony.

Any combination is stored only once in simC, as

indicated in row 2-12, for instance. Eight combinations
are stored altogether for simulation in step DMP.11.

Table 2. Combinations tested (by simulation of system model) at initial stage of detection process

row PSprev rn isArt comb comb stored in simC sysOp nonArt

 no yes

0-1 - - - {1, 2, 3, 4, 5, 6, 7} - x x -

Session 8A: Aerospace Applications 2

DOI
10.3384/ecp15118565

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

571

The simulation result (column sysOp in Table 7)

indicates that PSprev[1, :] = {1, 2, 3} and PSprev[4, :] =

{1, 3, 4, 6, 7} are minimal, because the system fails for

every respective subset. These paths are stored in PS

and marked as minimal in isMinPS (step DMP.12). In

addition, two non-minimal paths, {4, 5, 6} in row 2-5

and {1, 4, 5, 6} in row 2-6, are stored in PS; the latter

will be removed in step DMP.16.

It is not necessary in this iteration to generate

combinations that remove two or more non-

articulations from any path in PSprev. The reason is: At

most one subgraph that causes system operation is

deduced from any path in PSprev. In the case of

PSprev[2, :] = {1, 2, 4, 5, 6}, subgraphs {2}, {4, 5, 6}

and {1, 2}, {5, 6} are generated due to articulations 1

and 4, respectively. The system operates only for {4, 5,
6}. In order to generate every combination from

PSprev[2, :] that is no superset of {4, 5, 6}, it is

sufficient to remove one non-articulation from

PSprev[2, :]. These combinations are generated already

in step DMP.8, as Table 7 shows (rows 2-9 and 2-10).

Thus, np = 4 paths are stored in PS of which two are

minimal. nsf = 3 + 3 = 6 combinations are stored in

SF. The total number of simulations so far is nsim =

15 + 8 = 23. np = 3 paths remain in PS (see Table 8)

after removal of supersets in step DMP.16.

Table 8. Path set PS and combinations that cause system

failure SF, as existent after 2
nd

 iteration of process

PS isMinPS SF

{1, 2, 3} x {1, 2, 4, 5}

{1, 3, 4, 6, 7} x {1, 2, 4, 6, 7}

{4, 5, 6} - {1, 3, 4, 5}

 {1, 3, 4, 6}

 {2, 3}

 {5, 6, 7}

Since not all paths are marked as minimal, the process

enters a third iteration, nLoop = 3. Again, the path data

are assigned to PSprev, isMinPSprev and npprev. PS,

isMinPS and np are reset. Then, combinations are

generated only for the non-minimal path PSprev[3, :] =

{4, 5, 6} in step DMP.8. As Table 9 shows, every

generated combination is a subset of any combination

in SF. This means that PSprev[3, :] is also minimal, and

no further simulations are necessary. Thus, the process

is complete. The minimal path set of the example
system (Figure 6) is correctly detected:

Table 10. Minimal path set detected after 3
rd

 iteration

PS isMinPS

{1, 2, 3} x

{1, 3, 4, 6, 7} x

{4, 5, 6} x

Next, the probability of system operation (or failure) is
computed. For illustration, equation 3 is evaluated for

the detected minimal path set. With the component

reliabilities Ri = Ri(t), the probabilities of the minimal
paths are: �(��1) = �1�2�3, �(��2) = �1�3�4�6�7, �(��3) = �4�5�6.

For the 2
nd

 order intersections, the probabilities are: �(��1 ∧ ��2) = �1�2�3�4�6�7, �(��1 ∧ ��3) = �1�2�3�4�5�6, �(��2 ∧ ��3) = �1�3�4�5�6�7.

The probability of the single 3
rd

 order intersection is: �(��1 ∧ ��2 ∧ ��3) = �1�2�3�4�5�6�7.

Employing these products, equation 3 reads ����(�) = �1�2�3 + �1�3�4�6�7 + �4�5�6 −(�1�2�3�4�6�7 + �1�2�3�4�5�6

+�1�3�4�5�6�7) + �1�2�3�4�5�6�7.

If it is assumed that λi = 10
-2

/h and t = 1h, thus R = Ri =

0.990, then the probability of system operation is
Rsys(1h) = 2R

3
 + R

5
 - 3R

6
 + R

7
 = 0.99922 or likewise,

the probability of system failure is Fsys(1h) = 1 -

Rsys(1h) = 7.8⋅10
-4

.

3.2.3 Proof and boundary effort of detection method

The minimal path set detection method DMP gives a

complete result when applied to any multi-domain

object-oriented system model that fulfills the
conditions 1, 2 and 3 stated in subsection 3.1.2. In

addition, the method is finite which means that it

terminates when applied to any such model. The
completeness and finiteness are proven in the

following. The upper and lower bounds of the required
computing effort are also derived.

Completeness. Consider a detection method that

merely exploits the monotony of the analysed system.
It starts with a set of all nodes as the initial path. Every

combination is generated that removes a single node
from the path. It is tested for each (by simulation of the

model) if the system operates. Those combinations that

cause system operation constitute a set of paths. In the
set of paths, only those are kept that are no superset of

any other, because only a non-superset path can be

minimal. Thus, a complete path set of the system exists
at the end of an iteration of the detection method.

A next iteration is entered. All combinations are
generated that remove a single node from every path in

the set of the previous iteration. In so doing, subsets of

combinations that cause system failure are omitted.
Due to monotony, if a combination causes system

failure, the system remains failed if any node is
removed from that combination. Again, testing the

generated combinations leads to a complete set of

paths, a next iteration is entered with all non-superset
paths of the set, and so on. At some point it is found

that the system fails on removal of any node from a

path. Such a path is minimal by definition. The method

Automated Safety Analysis by Minimal Path Set Detection for Multi-Domain Object-Oriented Models

572 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118565

continues reducing the other paths until all in the set of
paths are minimal. Since every path was reduced by a

single node from one iteration to the next, it is obvious

that the method gives the complete minimal path set.
In addition to exploiting system monotony, method

DMP benefits from the fact that only a coherent set of

intact nodes can be a minimal path. Evaluation of the
system graph hence reduces the number of simulations

required for minimal path set detection.
A path is split into subgraphs at the articulations of

the path. In this way, subgraphs are generated for every

path that exists in the path set of the previous iteration
of DMP. If two or more subgraphs of a path cause

system operation, all combinations are generated that
remove as many non-articulations from that path, as

subgraphs were deduced from it that cause system

operation. (Two or more nodes are removed, because
all combinations that reduce a path by one of its non-

articulations have been generated and tested in a

preceding step.) In so doing, for the generated
combinations to be no superset of any of the subgraphs

of that path, each non-articulation removed from the
path belongs to exactly one of its subgraphs. Thus, if

any such combination causes system operation, it exists

in the path set at the end of an iteration of DMP. It
follows that the path set at the end of any iteration is

complete, and hence method DMP is complete.

Finiteness. DMP commences with a set of all nodes of

a monotonous system as the initial path. It tests if the

system still operates for subsets of a (the initial or
other) path. Every subset removes one or more nodes

from a path. Nodes are never added to a path from one

iteration to the next. DMP repeats gradually removing
nodes until the system fails for all subsets of a path, i.e.

if that path is minimal. For those paths not yet
identified as minimal, subsets of them are generated

until they be reduced no further without causing system

failure, i.e. until every path is minimal. Then, the
process ends. If every single node of a system

constitutes a minimal path, the process ends after all
nodes are failed. Due to monotony, a system fails if all

its nodes fail. Thus, method DMP clearly terminates.

Effort. For illustration of the highest computing effort,

consider a complete system graph that includes no

articulations. Removal of any node gives a subsequent
smaller complete graph. In addition, consider that

every single node of the nr nodes of the system graph
constitutes a minimal path. Then, the number of

simulations in each iteration nLoop of DMP is the

binomial ����, ������. DMP iterates until all nodes

are failed, i.e. nLoop = nr. The total number of

simulations is thus ∑ ����, �������������=0 = 2��, the

same as a “brute force” approach needs.
The lowest effort occurs if a system operates only

with all its nodes intact (single minimal path that
comprises all nodes of the system). Irrespective of the

density of the system graph, DMP runs until iteration

nLoop = 1 is completed. The total number of simulations

is hence ∑ ����, ������1�����=0 = 1 + ��.

The number of simulations required by DMP is thus

bound by the upper limit 2�� and lower limit 1 + ��.
Between these bounds, the actual effort depends on the

density of the system graph, the number of minimal

paths and number of nodes thereof. The more effort is
saved, the lower the density of a system graph is.

Figure 7. An example graph, higher density than Figure 6

For illustration, Table 11 lists the number of

simulations nsim for three detection cases. The number

of edges and density (equation 1) of the respective
graphs are denoted by E and d. The number of nodes is

N = nr = 7 for all cases. nsim is stated for method DMP,

as well as a method that exploits the system “monotony
only” (no evaluation of the graph), as described. Case 2

corresponds to the example in subsection 3.2.2. Case 1
relates to the same graph, but the system has one less

minimal path. Case 3 assumes the same minimal path

set as case 2, but the graph has a higher density (Figure
7). The comparison shows that the fewer minimal paths

exist and the lower the density of the graph, the smaller
effort required by DMP. With an increasing number of

minimal paths and graph density, the effort of DMP

approaches that of the “monotony only” method. A

“brute force” method neither evaluates the monotony

of a system nor its graph; it thus requires 2�� = 128
simulations for each case.

Table 11. Comparison of effort of minimal path set detection for three cases

case system graph E d PS nsim

 monotony only DMP

1 Figure 6 8 0.381 {1, 2, 3}, {4, 5, 6, 7} 35 15

2 Figure 6 8 0.381 {1, 2, 3}, {4, 5, 6}, {1, 3, 4, 6, 7} 40 23

3 Figure 7 10 0.476 {1, 2, 3}, {4, 5, 6}, {1, 3, 4, 6, 7} 40 34

Session 8A: Aerospace Applications 2

DOI
10.3384/ecp15118565

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

573

4 Conclusions

This paper contributes a method called DMP for

detection of the minimal path set of any fault-tolerant
system that is represented as a multi-domain object-

oriented model. DMP can be employed throughout the

system development process to keep the safety analysis
up-to-date with design iterations. This is meaningful

particularly if multi-domain object-oriented modelling
is used already in systems engineering. DMP enhances

the scope of application of a model while permitting all

other simulation studies that originally motivated
implementation of the model to be conducted.

DMP belongs to the class of state-space simulations.

Evaluation of the system graph reduces the number of
simulations required, thus ensuring feasibility of DMP.

It has been successfully tested on large, realistic
models of safety relevant aircraft systems, as described

in (Schallert, 2015).

It must be beared in mind that all model-based
safety analysis methods capture only those phenomena

that are covered in the modelling. A model is always
an abstraction of a real system and might hence be

incomplete. Then again, the DMP method ensures that

all relevant failure conditions, at least in so far as
modelled, are captured.

Acknowledgements

This research has received funding from the European
Union’s 7

th
 Framework Programme (FP7/2007-2013)

for the CleanSky Joint Technology Initiative under
grant agreement CSJU-GAN-SGO-2008-001.

References

A. Birolini. Reliability Engineering – Theory and Practice

(Fifth Edition). Springer-Verlag Berlin Heidelberg, 2007.

P. Bunus, K. Lunde. Supporting Model-Based Diagnostics

with Equation-Based Object-Oriented Languages.

Proceedings of the 2
nd

 International Workshop on

Equation-Based Object-Oriented Languages and Tools

(EOOLT), pp. 121-130, Paphos, Cyprus, 2008.

R. Diestel. Graph Theory (Graduate Texts in Mathematics),

Springer-Verlag, 2010.

H. Elmqvist, S. E. Mattsson, M. Otter. Modelica extensions

for Multi-Mode DAE-Systems. Proceedings of the 10
th

International Modelica Conference, pp. 183-193, Lund,

Sweden, 2014. doi: 10.3384/ECP14096183

A. Meyna, B. Pauli. Taschenbuch der Zuverlässigkeits- und

Sicherheitstechnik. Carl Hanser Verlag München Wien,

2003. In German.

C. Schallert. Incorporation of Reliability Analysis Methods

with Modelica. Proceedings of the 6
th
 International

Modelica Conference, pp. 103-112, Bielefeld, Germany,

2008.

C. Schallert. Inclusion of Reliability and Safety Analysis

Methods in Modelica. Proceedings of the 8
th
 International

Modelica Conference, pp. 616-627, Dresden, Germany,

2011. doi: 10.3384/ECP11063616

C. Schallert. A Safety Analysis via Minimal Path Sets

Detection for Object-Oriented Models. Safety and

Reliability: Methodology and Applications (editors:

Nowakowski et al.), CRC Press/Balkema, ISBN: 978-1-

315-73697-6, 2014.

C. Schallert. Integrated Safety and Reliability Analysis

Methods for Aircraft System Development using Multi-

Domain Object-Oriented Models, 2015 (to appear).

R. Tarjan. Depth-First Search and Linear Graph Algorithms.

SIAM Journal on Computing, 1(2), pp. 146-160, 1972.

F. van der Linden. General fault triggering architecture to

trigger model faults in Modelica using a standardized

blockset. Proceedings of the 10
th
 International Modelica

Conference, pp. 427-436, Lund, Sweden, 2014. doi:

10.3384/ECP14096427

Y. Papadopoulos, J. McDermid, R. Sasse, G. Heiner.

Analysis and synthesis of the behaviour of complex

programmable electronic systems in conditions of failure.

Reliability Engineering and System Safety, Vol. 71, pp.

229 - 247, 2001.

D. Zimmer, M. Otter, H. Elmqvist, G. Kurzbach. Custom

Annotations: Handling Meta-Information in Modelica.

Proceedings of the 10
th
 International Modelica

Conference, pp. 173-182, Lund, Sweden, 2014. doi:

10.3384/ECP14096173

Table 4. Combinations tested during 1
st
 iteration of detection process

row PSprev rn isArt comb comb stored in simC sysOp nonArt

 no yes

1-1 {1} x {2, 3} - x - {2, 3}

1-2 {1} x {4, 5, 6, 7} - x x {5, 7}

1-3 {2} - {1, 3, 4, 5, 6, 7} - x x -

1-4 {3} - {1, 2, 4, 5, 6, 7} - x x -

1-5 {1, 2, 3, 4, {4} x {1, 2, 3} - x x {2, 3}

1-6 5, 6, 7} {4} x {5, 6, 7} - x - {5, 7}

1-7 {5} - {1, 2, 3, 4, 6, 7} - x x -

1-8 {6} x {1, 2, 3, 4, 5} - x x {2, 3, 5}

1-9 {6} x {7} - x - {7}

1-10 {7} - {1, 2, 3, 4, 5, 6} - x x -

Automated Safety Analysis by Minimal Path Set Detection for Multi-Domain Object-Oriented Models

574 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118565

Table 5. Combinations tested during 1

st
 iteration that remove two non-articulations from PSprev[1, :]

row PSprev rn comb comb stored in simC sysOp

 no yes

1-11 {2, 5} {1, 3, 4, 6, 7} - x x

1-12 {1, 2, 3, 4, {2, 7} {1, 3, 4, 5, 6} - x x

1-13 5, 6, 7} {3, 5} {1, 2, 4, 6, 7} - x -

1-14 {3, 7} {1, 2, 4, 5, 6} - x x

Table 7. Combinations tested during 2

nd
 iteration of detection process

row PSprev rn isArt comb comb stored in simC sysOp nonArt

 no yes

2-1 {1} - {2, 3} ⊆{2, 3} - - -

2-2 {1, 2, 3} {2} - {1, 3} - x - -

2-3 {3} - {1, 2} ⊆{1, 2, 4, 6, 7} - - -

2-4 {1} x {2} ⊆{1, 2, 4, 6, 7} - - -

2-5 {1} x {4, 5, 6} - x x {5, 6}

2-6 {2} - {1, 4, 5, 6} - x x -

2-7 {1, 2, 4, 5, 6} {4} x {1, 2} ⊆{1, 2, 4, 6, 7} - - -

2-8 {4} x {5, 6} ⊆{5, 6, 7} - - -

2-9 {5} - {1, 2, 4, 6} ⊆{1, 2, 4, 6, 7} - - -

2-10 {6} - {1, 2, 4, 5} - x - -

2-11 {1} x {3} ⊆{2, 3} - - -

2-12 {1} x {4, 5, 6} exists in simC - x -

2-13 {3} - {1, 4, 5, 6} exists in simC - x -

2-14 {1, 3, 4, 5, 6} {4} x {1, 3} exists in simC - - -

2-15 {4} x {5, 6} ⊆{5, 6, 7} - - -

2-16 {5} - {1, 3, 4, 6} - x - -

2-17 {6} - {1, 3, 4, 5} - x - -

2-18 {1} x {3} ⊆{2, 3} - - -

2-19 {1} x {4, 6, 7} ⊆{1, 2, 4, 6, 7} - - -

2-20 {3} - {1, 4, 6, 7} ⊆{1, 2, 4, 6, 7} - - -

2-21 {1, 3, 4, 6, 7} {4} x {1, 3} exists in simC - - -

2-22 {4} x {6, 7} ⊆{5, 6, 7} - - -

2-23 {6} x {1, 3, 4} - x - {3}

2-24 {6} x {7} ⊆{5, 6, 7} - - -

2-25 {7} - {1, 3, 4, 6} exists in simC - - -

2-26 {4} - {5, 6, 7} ⊆{5, 6, 7} - - -

2-27 {5} - {4, 6, 7} ⊆{1, 2, 4, 6, 7} - - -

2-28 {4, 5, 6, 7} {6} x {4, 5} - x - {4, 5}

2-29 {6} x {7} ⊆{5, 6, 7} - - -

2-30 {7} - {4, 5, 6} exists in simC - x -

Table 9. 3

rd
 iteration of detection process (no combinations tested)

row PSprev rn isArt comb comb stored in simC sysOp nonArt

 no yes

3-1 {4} - {5, 6} ⊆{5, 6, 7} - - -

3-2 {4, 5, 6} {5} - {4, 6} ⊆{1, 3, 4, 6} - - -

3-3 {6} - {4, 5} ⊆{1, 2, 4, 5} - - -

Session 8A: Aerospace Applications 2

DOI
10.3384/ecp15118565

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

575

576 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

High-fidelity Modelling of Self-regulating Pneumatic Valves

Alexander Pollok1 Francesco Casella2

1Institute of System Dynamics and Control, German Aerospace Center (DLR), Germany,

alexander.pollok@dlr.de
2Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy,

francesco.casella@polimi.it

Abstract

In conventional aircraft energy systems, self-regulating

pneumatic valves (SRPVs) are used to control the pres-

sure and mass flow of the bleed air. The dynamic be-

havior of these valves is complex and dependent on sev-

eral physical phenomena. In some cases, limit cycles can

occur, deteriorating performance. This paper presents a

complex multiphysical model of SRPVs implemented in

Modelica. First, the working-principle is explained, and

common challenges in control-system design-problems

related to these valves are illustrated. Then, a Modelica-

model is presented in detail, taking into account several

physical domains. It is shown, how limit cycle oscil-

lations occurring in aircraft energy systems can be rep-

resented with this model. Finally, some multi-domain

interactive effects are described.

Keywords: Modelica, Thermofluid, Modeling, Friction,

Electrohydraulic, Hydraulic

1 Introduction

In applications related to process control often relatively

simple valve models are used. They are based on flow

coefficients, and relate mass flow to pressure drop by the

use of a quadratic relationship. This helps keeping the

system model at a low-order, benefitting understanding

as well as control design. Most of the time, these simple

models are accurate enough, and all relevant dynamics

are included.

There are however applications, where simple models

are inadequate. This can be the case, if high accuracy

is needed, when choking occurs, or when internal valve

phenomena are relevant. Neglection of these cases, and

the utilization of an inadequate model can lead to un-

wanted behavior in the controlled system: Valve dynam-

ics often contain nonlinearities like stiction, backlash and

deadband, which in turn can lead to oscillations (Choud-

hury et al., 2006).

Indeed, according to Bialowski (1993), about 30%

of controlled loops in the process industry are oscillat-

ing. In Desborough and Miller (2002), 26.000 PID con-

trollers in the process industry are surveyed: 16% are

classified as excellent, 16% as acceptable, 22% as fair,

10% as poor, and 36% run in open-loop.

In aircraft, SRPVs are used to control the pressure and

flow rate of the engine bleed air. An illustration of the

working principle can be found in Figure 1, more de-

tailed descriptions can be found in Section 2.

SRPVs operate under harsh conditions inside the en-

gine nacelle. Since several SRPVs are operated in-line,

their dynamic behavior has to be tuned so as to avoid the

occurrence of limit cycles. This can be done in situ, but

the associated costs are substantial. Being able to predict

the system behavior better during the design phase would

reduce those costs considerably, but for a sufficient level

of prediction-accuracy a high-fidelity model is needed.

Related research has been done by several authors.

Beater (2000) presented a simple model of an electro-

hydraulic valve in Modelica and HyLib. In Beater and

Clauß (2003), a pneumatic drive system is modelled in

Modelica, combining pneumatic, mechanical and elec-

tronic domains. A free-piston-engine modelled in Mod-

elica is described in Pohl and Gräf (2005), containing

detailed submodels of several physical domains. Pujana-

Arrese et al. (2007) presented a Modelica-model of a

pneumatic muscle, combining fluid modelling with the

mechanical system of kinematics.

The goal of this paper is to demonstrate how high-

fidelity multi-physical models of self-regulating pneu-

matic valves can be developed in the object-oriented

equation-based modelling-language Modelica. It is

structured as follows: In Section 2, the Modelica model

for SRPVs is presented and the motivations for mod-

elling choices are explained, subdivided into the different

physical domains. Libraries, models and implementa-

tions that are used in this work are mentioned. In Section

3, exemplary model outputs are shown, and a number of

emerging phenomena are discussed. The paper is con-

cluded in Section 4.

DOI
10.3384/ecp15118577

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

577

" f low c r o s s s e c t i o n " ;

output M o d e l i c a . S I u n i t s . M a s s F l o w R a t e

m_flow " mass f low " ;

Real minp " lower p r e s s u r e " ;

Real maxp " uppe r p r e s s u r e " ;

Real p r c r i t " c r i t i c a l p r e s s u r e r a t i o " ;

Real r a t i o " a c t u a l p r e s s u r e r a t i o " ;

Real p s i " f low f u n c t i o n " ;

Real s i g " f low d i r e c t i o n " ;

Real d " d e n s i t y a t a c t u a l u p s t r e a m " ;

a lgor i thm

minp : = min (pu , pd) ;

maxp : = max (pu , pd) ;

p r c r i t : = (2 / (kappa+1)) ^

(kappa / (kappa−1)) ;

r a t i o : = minp / maxp ;

p s i : = i f r a t i o < p r c r i t

then (2 / (kappa+1)) ^ (1 / (kappa−1))

∗ (kappa / (kappa+1)) ^ (1 / 2)

e l s e (kappa∗ r a t i o ^ (1 / kappa)

∗ (r a t i o ^ (1 / kappa)− r a t i o)

/ (kappa−1)) ^ (1 / 2) ;

s i g : = s i g n (pu−pd) ;

d : = i f s i g > 0 then du e l s e dd ;

m_flow : = p s i ∗A∗ s i g ∗ (d∗2∗maxp) ^ (1 / 2) ;

end n o z z l e _ f l o w ;

Fluids moving through a butterfly valve at high ve-

locities induce a fluiddynamic torque on the valve disk.

This generates an interesting coupling between the fluid

and mechanic domains of a valve model. For the calcu-

lation of the torque, two approaches are often used: one

based on the pressure difference, one based on the fluid

velocity. In Solliec and Danbon (1999), the different ap-

proaches are compared. We use the classical approach

based on pressure difference, as the pressure difference

is more clearly defined than the fluid velocity in the con-

text of lumped parameter models. Here, the torque T is

calculated as:

T (α) = K(α) ·∆P ·D3 (1)

where K is the torque coefficient, ∆P is the pressure

difference, α is the valve angle and D is the valve di-

ameter. A spline-based approach is used to describe the

dependency between torque coefficient and valve angle.

A Modelica multibody connector provides the valve an-

gle and feeds back the induced fluiddynamic torque.

2.3 Actuator model

Two actuator models as described in Section 2.1 are

needed, for two different implementations of the second

control loop. Accordingly, one partial model together

with two extending models was created. The Modelica

diagram of the base model can be seen in Figure 4.

Three physical domains are significant for the mod-

elling of the valve actuator: the fluid dynamics inside

the chambers, the multi-body mechanics of the mecha-

nism, and the thermal behavior of the parts. They are

connected through the piston and chamber components,

Figure 4. Modelica component layer of the (partial) valve ac-

tuator base model

where all domains have considerable influence. The do-

mains are indicated in Figure 4 through colored lines.

2.3.1 Mechanical domain

The core of the mechanical domain is the piston-model,

where a one-dimensional force balance over the piston

is calculated, see Equation 2. The occurring forces are

commented in the following:

Fpressureupper +Fpressurelower
+Fconstraint

+Ff riction +Fd′alembert +Fjoint = 0
(2)

Pressure forces:

The piston model and both chamber models are

connected by translational mechanical connectors.

In this way, the position and the forces generated

by fluid pressure are exchanged.

Constraining forces:

Based on the construction, the movement allowance

of the piston is limited. To represent this, stiff

quadratic spring forces are implemented. These

come into effect as soon as the end of the stroke

is reached.

Friction force:

The friction forces between piston and cylinder are

mainly responsible for unwanted stiction-effects.

Detailed modelling of friction phenomena is there-

fore necessary. Furthermore, a simple model based

on two static and dynamic friction coefficients is

numerically unfavourable when the piston position

is used as a state. In this work, we used the Lund-

Grenoble (Lu-Gre) friction model (De Wit et al.,

Session 8A: Aerospace Applications 2

DOI
10.3384/ecp15118577

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

579

1995). It is a detailed model of friction with inter-

nal states that represent the deflection of the bris-

tles (micro-bumps in the material surface). The im-

plementation in Modelica was done according to

Aberger and Otter (2002), but instead of rotatory

coordinates, translative coordinates were used. An

example trajectory of friction force over piston ve-

locity can be seen in Figure 5.

d’Alembert force:

The d’Alembert force, or inertial force, of the pis-

ton is calculated by deriving the position w.r.t. time

two times and multiplying with its mass. Of course,

this makes the system quite stiff from a numeri-

cal point of view, but then, there are solvers of

production-quality available to handle stiff systems.

Joint force:

The joint force is the linking force between the

translative piston dynamics and the planar dynam-

ics of the mechanism. The prismatic joint model of

the multibody library provides the interface.

−0.015 −0.010 −0.005 0.000 0.005 0.010 0.015

velocity [m/s]

−20

−10

0

10

20

fr
ic

ti
o
n

fo
rc

e
[N

]

Figure 5. A trajectory (friction force w.r.t. velocity) of the

Lund-Grenoble friction model

For the dynamics of the mechanism, the Modelica

Multibody library as presented in Otter et al. (2003) is

used. With this library, the mechanism can be repre-

sented exactly; also an extension to alternative designs

can be done with little effort. Unfortunately, nonlinear

systems of equations cannot be avoided at this point.

2.3.2 Fluid domain

For the air in the valve actuator, high-speed fluid effects

can be neglected. Consequently, the Modelica fluid li-

brary as presented in Casella et al. (2006) is used wher-

ever possible.

Both valve chambers correlate to variable volume

models, something not yet implemented in the Model-

ica fluid libary. The governing equations of a variable

volume model are a generalisation of the standard vol-

ume model equations, and take the form of Equation 3,

with the density ρ , the volume V, and φ ∈ (1,u,x) repre-

senting mass, energy and substance balance respectively.

d

dt

(

φ ·ρ ·V
)

= ∑ f low+∑source (3)

In the case of the energy-balance, mechanical work on

the cylindrical chamber volume now creates an interest-

ing interaction between the fluid and mechanical domain.

The implementation in Modelica can be seen in Listing

2.

Listing 2. Extract of Modelica code for lower variable volume

model

/ / t r a n s l a t i v e mechan ics i n t e r f a c e

medium.p = − f l a n g e . f / a r e a ;

pos = f l a n g e . s ;

volume = volume_0 + a r e a ∗pos ;

/ / mass b a l a n c e

mass = volume∗medium.d ;

der (volume∗medium.d)

= sum (f l u i d P o r t . m _ f l o w) ;

/ / en e r g y b a l a n c e (dU = dQ + dW)

der (volume∗medium.d∗medium.u)

= sum (f l u i d P o r t [i] .m_f low ∗ noEvent (

a c t u a l S t r e a m (f l u i d P o r t [i] . h _ o u t f l o w))

f o r i in 1 : n i n f)

− medium.p∗der (volume)

+ h e a t P o r t . Q _ f l o w ;

/ / s u b s t a n c e b a l a n c e

der (volume∗medium.d∗medium.Xi)

= sum (f l u i d P o r t [i] .m_f low ∗ noEvent (

a c t u a l S t r e a m (f l u i d P o r t [i] . X i _ o u t f l o w))

f o r i in 1 : n i n f) ;

2.3.3 Thermal domain

The thermal effects in self-regulating pneumatic valve

systems are largely dominated by the advection in the

air. This is obviously already included in the fluid mod-

elling. Nonetheless, conduction through the solid com-

ponents still has to be modelled if high-fidelity results

are necessary.

On the thermal side, the model is structured as fol-

lows: The environment is modelled as boundary condi-

tion of constant temperature. The actuator cylinder wall

and piston are both modelled as thermal masses. A fur-

ther discretization is discarded based on the high inter-

nal conductivity of the used materials. The energy dis-

sipated by friction is added to the piston wall. Between

High-fidelity Modelling of Self-regulating Pneumatic Valves

580 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118577

the fluid volumes and the piston mass, as well as between

the cylinder wall and the environment, constant thermal

conductances are assumed. Between the fluid volumes

and the cylinder wall, the thermal conductance is depen-

dent on the wetted area, which is in turn dependent on

the piston position.

As a consequence, a heat-conduction component was

composed that connects heat conductivity with the piston

position. The remainder was modelled using the Model-

ica thermal heat transfer library, the details of which are

described by Tiller (2001).

In Figure 6, the structure of the thermal model is illus-

trated.

air

cylinder wall

e
n

v
ir

o
n

m
e
n

t air

piston

Figure 6. Thermal structure of the valve actuator

2.4 Statistics

The resulting models of valve and actuator feature

(0+10) states, (21+161) time-varying variables and (0+
{3}) nonlinear systems of equations respectively.

3 Results and Discussion

3.1 Application

To use the model for simulations, a set of parameters has

to be defined. Most of them have a geometrical mean-

ing and can simply be taken from the specifications. For

accurate results, there are however three separate mea-

surements to be done:

3.1.1 Friction

In the calculation of the piston-friction as appearing in

Equation 2, the Lund-Grenoble (Lu-Gre) friction model

(De Wit et al., 1995) is used. In this model, the friction

characteristics are defined by 6 constants. These have to

be obtained from experiments or looked up in literature,

based on the material-pairing.

3.1.2 Aerodynamic Torque

The aerodynamic torque as described in Equation 1 is de-

pendent on the angle of the valve-disc. This dependency

differs somewhat based on the geometry, but can often

be estimated by CFD-calculations.

3.1.3 Mass Flow Characteristic

Butterfly Valves feature a S-shaped dependency between

mass flow and valve angle. Like the aerodynamic

torque, this dependency is only somewhat similar be-

tween valve-models. Therefore, CFD-calculations or ex-

periments have to be deployed.

3.2 Limit Cycle Oscillations

For reasons of confidentiality, no actual valve setups or

associated measurements can be presented here. Instead,

a simpler composition is shown, where two valves are

used to reduce the pressure in a pipe. The Modelica di-

agram of the composition can be seen in Figure 7. The

pipe models are based on the gas dynamics library as

presented by Sielemann (2012b). Each pipe-component

represents a pipe of 20 meters length and a diameter of

0.1 m, totalling at a length of 80 meters and a volume of

around 630 liters.

Figure 7. Modelica diagram of oscillation test case

As boundary conditions, the input pressure (left side)

is set to 3 bars, while the right boundary is modelled as

a quadratic resistance, normalized to a fluid velocity of

10 m
s

at a pressure of 1 bar. The valve actuators are run

in pneumatic-mode and set to regulate the downstream

pressure to 2 and 1 bars respectively.

When the composite model is simulated, limit cycle

oscillations occur. These are displayed in Figure 8. For

both valves, the piston gets stuck at the outmost deflec-

tion, until the restoring forces are high enough to over-

come the friction forces.

Session 8A: Aerospace Applications 2

DOI
10.3384/ecp15118577

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

581

0 2 4 6 8 10 12 14
0

5

10

15

20

25

30

A
n

g
le

[d
e
g
]

valve1.Angle

valve2.Angle

0 2 4 6 8 10 12 14

time [s]

0.5

1.0

1.5

2.0

2.5

3.0

3.5

P
re

ss
u

re
[P

a
]

×10
5

valve1.p1

valve1.p2

valve2.p1

valve2.p2

Figure 8. Results of oscillation test case

To demonstrate that the oscillations are caused by fric-

tion effects, the influence of friction and d’Alembert-

forces was reduced with scaling parameters. A two-

dimensional sweep of the quasi-steady-state amplitudes

and periods over both scaling-parameters is shown in

Figure 9.

It can easily be seen that the oscillations are strongly

dependent on the friction forces and weakly dependent

on the d’Alembert-forces. Furthermore, for vanish-

ing friction-forces, the oscillations disappear completely.

In other experiments, neglecting the d’Alembert-forces

caused the oscillations to disappear, emphasising the im-

portance of their inclusion in the model.

3.3 Dynamic interactions

The multi-domain nature of the presented model results

in some interesting nonlinear transients. Two of them are

presented in the following.

3.3.1 Aerodynamic Torque

The waterhammer effect is commonly known in pipeline

operations. When a closing valve is used to stop the flow

of a heavy and fast fluid-mass, the residual momentum

of the fluid generates a build-up of pressure upstream of

the valve.

For self-regulating pneumatic valves, a similar effect

can occur: Let’s presuppose that the valve actuator closes

the valve by a particular angle. The air mass upstream of

the valve is then decelerated as a result, while generating

a temporary pressure build-up. This pressure-buildup in

turn increases the aerodynamic torque on the valve disk,

closing the disk further and amplifying the effect.

0.2 0.4 0.6 0.8 1.0

normalized friction forces

0.2

0.4

0.6

0.8

1.0

n
o
rm

a
li

z
e
d

d
’A

le
m

b
e
rt

fo
rc

e
s

amplitude [Pa]

2
5
0
0
0

50000

7
5
0
0
0

100000

1.5E4

3.0E4

4.5E4

6.0E4

7.5E4

9.0E4

1.0E5

1.2E5

0.2 0.4 0.6 0.8 1.0

normalized friction forces

0.2

0.4

0.6

0.8

1.0

n
o
rm

a
li

z
e
d

d
’A

le
m

b
e
rt

fo
rc

e
s

period [s]

0
.9

1
.1

1
.3

1
.5

0.75

0.90

1.05

1.20

1.35

1.50

1.65

Figure 9. Results of oscillation test case

In Figure 10, a test model is represented where a

pressure-regulated pipe is subjected to a harmonic inlet

pressure with increasing frequency. The model was sim-

ulated with and without consideration of aerodynamic

torque. The result of the simulation can be seen in Fig-

ure 11. It is easily recognizable that the valve opening

is smaller when taking aerodynamic torque in considera-

tion, especially at certain frequencies.

Figure 10. Aerodynamic Torque test model

3.3.2 Oscillatory heating

Generally, the environment of the valve has an ambient

temperature different from the fluid temperature in the

pipe. Also, heat conduction between environment and

the valve chambers takes place. In the static case, the

High-fidelity Modelling of Self-regulating Pneumatic Valves

582 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118577

Figure 11. Transient effects of Aerodynamic Torque

temperature in the valve chamber will approach the am-

bient temperature after a time. However, in the case of

valve movement, fluid mass is exchanged between the

valve chambers and the pipe. In this way, the resulting

temperature of the valve is dependent on the amount of

valve movement.

4 Conclusion

Self-regulating pneumatic valves show a complex be-

havior, resulting in limit-cycle oscillations, if the over-

all system is not tuned satisfactorily. We present a de-

tailed Modelica model for this kind of valves. The model

includes all relevant physical effects, representing the

thermal, fluid, and mechanical domains. Simulation re-

sults exhibit the typical dynamical characteristics of self-

regulating pneumatic valves. Subsequently, the model

can be used to predict system performance in an early

development phase.

References

Martin Aberger and Martin Otter. Modeling friction in mod-

elica with the lund-grenoble friction model. In Proceedings

of the 2nd International Modelica Conference, 2002.

Peter Beater. Modeling and digital simulation of hydraulic sys-

tems in design and engineering education using modelica

and hylib. In Modelica workshop, pages 23–24, 2000.

Peter Beater and Christoph Clauß. Multidomain systems:

Pneumatic, electronic and mechanical subsystems of a

pneumatic drive modelled with modelica. In Paper pre-

sented at the 3rd International Modelica Conference, 2003.

WL Bialowski. Dreams vs. reality: a view from both sides of

the gap. Pulp and Paper Canada, 94:19–27, 1993.

Francesco Casella, Martin Otter, Katrin Proelss, Christoph

Richter, and Hubertus Tummescheit. The modelica fluid

and media library for modeling of incompressible and com-

pressible thermo-fluid pipe networks. In Proceedings of the

Modelica Conference, pages 631–640, 2006.

MAA Shoukat Choudhury, Sirish L Shah, Nina F Thornhill,

and David S Shook. Automatic detection and quantification

of stiction in control valves. Control Engineering Practice,

14(12):1395–1412, 2006.

C Canudas De Wit, Hans Olsson, Karl Johan Astrom, and

Pablo Lischinsky. A new model for control of systems with

friction. Automatic Control, IEEE Transactions on, 40(3):

419–425, 1995.

Lane Desborough and Randy Miller. Increasing cus-

tomer value of industrial control performance monitoring-

honeywell’s experience. In AIChE symposium series, pages

169–189. New York; American Institute of Chemical Engi-

neers; 1998, 2002.

Martin Otter, Hilding Elmqvist, and Sven Erik Mattsson. The

new modelica multibody library. In Proceedings of the 3rd

International Modelica Conference. Citeseer, 2003.

Sven-Erik Pohl and Markus Gräf. Dynamic simulation of a

free-piston linear alternator in modelica. In Modelica, 2005.

Aron Pujana-Arrese, Javier Arenas, Iban Retolaza, Ana

Martinez-Esnaola, and Joseba Landaluze. Modelling in

modelica of a pneumatic muscle: application to model an

experimental set-up. In 21st European conference on mod-

elling and simulation, ECMS, pages 4–6, 2007.

Michael Sielemann. Device-Oriented Modeling and Simula-

tion in Aircraft Energy Systems Design. PhD thesis, Ham-

burg University of Technology, 2012a.

Michael Sielemann. High-speed compressible flow and gas

dynamics. In Proceedings of the 9th International Modelica

Conference, 2012b.

C Solliec and F Danbon. Aerodynamic torque acting on a but-

terfly valve. comparison and choice of a torque coefficient.

Journal of fluids engineering, 121(4):914–917, 1999.

Michael Tiller. Introduction to physical modeling with Model-

ica. Springer Science & Business Media, 2001.

Session 8A: Aerospace Applications 2

DOI
10.3384/ecp15118577

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

583

584 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Dynamic Modeling of a Central Receiver CSP system in Modelica

Johan Edman1 Johan Windahl2

1Department of Energy Sciences, F. Eng., Lund University, Sweden, edman.jle@gmail.com
2Modelon AB, Ideon Science Park, Lund, Sweden, johan.windahl@modelon.com

Abstract

A dynamic model of the Solar Two test facililty has been

implemented in Modelica. The model consists of a set of

Central Receiver specific CSP components, along with a

Rankine cycle to form a complete system. Main com-

ponents include models of a sun, heliostat field, receiver,

storage tank and a Rankine cycle including a steam gen-

erator. The components and the full system were tested

in a series of simulations – both dynamically and during

steady state conditions – and the results were compared

to data from the reference system. The dynamic behavior

of the models aligned with expectations, although time

constants could not be evaluated due to lack of dynamic

reference data. The steady state characteristics were ad-

equate for most models, although some complementary

work needs to be done on the Receiver model.

Keywords: Modelica, Dymola, Dynamic modeling, Con-

centrated Solar Power, Central Receiver, Solar Salt,

ThermalPower library

1 Introduction

Due to an increasing energy demand of a growing world

population with an increasing consumption of technol-

ogy, the interest renewable energy is ever increasing.

This is further reinforced by a heightened awareness of

the impact of the exploitation of non-renewable energy

sources on local environments and global climate.

Furthermore, fossil fuels are increasingly being sub-

jected to scrutiny. Reasons for this include the impend-

ing threat of global peak oil, i.e. the point when the ex-

traction rate of oil can no longer meet the consumption

rate, and the allocation of oil and other fossil resources

to instable regions of the world. This has kindled the in-

terest in developing new, local means of power produc-

tion to minimize the dependence on foreign resources.

A promising branch of renewable energy production is

concentrated solar power (CSP).

Concentrated Solar Power refers to thermal power sys-

tems which use the sun as their primary heat source. The

underlying principle behind CSP systems is that the so-

lar radiation incident on Earth is basically collimated and

thus can be focused. To produce the heat flux required to

maintain an adequate working temperature for efficient

operation of a thermal power system the sunlight has to

be concentrated several orders of magnitude.

There are several different types of CSP systems, but

they all consist of the same elemental components. All

CSP systems have a set of Sun-tracking reflectors which

concentrate the sunlight onto an absorber. The absorbed

power is converted into heat which is either converted di-

rectly into electricity using a heat engine or transported

to a conventional thermal power cycle via a Heat Trans-

fer Fluid (HTF). Systems using an HTF can often be

combined with a heat storage system and/or an auxil-

iary gas turbine, enabling power generation during in-

sufficient weather conditions and throughout the night.

The Central Receiver system (CRS), which is mod-

elled in this project, uses numerous large mirrors, called

Heliostats, which track the movement of the Sun over

two axes. Heliostats focus the sunlight from a vast area

onto a Receiver located on top of a tower. The HTF is

heated in the receiver and then transported to the thermal

power cycle, located by the foot of the tower. A sketch

of the Solar Two system is presented in Figure 1.

This work is conducted in collaboration with Mode-

lon AB, Sweden, which specializes in physical model-

ing of dynamic systems using Modelica. The models de-

veloped are largely based on the various model libraries

in Modelons portfolio, especially the ThermalPower li-

brary, the LiquidCooling library and the Modelon Stan-

dard library.

This article describes the authors’ process of modeling

a CRS based on a reference system, and validating the

Superheater

Evaporator

Preheater

Turbine

FW-heaters Deaerator FW-heaters

Condenser

~

Heliostat Field

Receiver Tower

Hot Storage

Cold Storage

Generator

Figure 1. A sketch of the Solar Two CRS system.

DOI
10.3384/ecp15118585

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

585

model by conducting simulations. Section 2 describes

the reference system, and the properties of the different

components. In section 3 the equations governing the

behavior of the components are stated, along with the

property values used to configure the system model to

match the reference system. Section 4 describes the sim-

ulations conducted to validate the models, and section 5

lists the simulation results. Finally, in section 6 a discus-

sion of the results is given, along with conclusions and

future work.

2 Reference system

A reference system was chosen to which the test results

could be compared. It can be divided into two parts: The

sun including weather conditions and the power plant.

2.1 Sun

Reference data for solar properties is taken from mea-

sured data collected at Planta Solar de Almeria, Spain

(GeoModel Solar, 2014). Important properties are the di-

rect normal insolation (DNI), which describes the solar

flux intensity, the solar azimuth (γs) and elevation angle

(αs), which describe the solar position in the sky.

2.2 Power Plant

As most operating systems are commercially owned they

do not publish much data. Therefore, an old government-

funded test plant from the 1990’s was chosen as refer-

ence system; the Solar Two project in California, USA.

The Solar Two project was built to test and gain oper-

ating experience in using molten salt as HTF. It was an

important predecessor of large, commercial plants such

as the Gemasolar plant, formerly called Solar Tres, in

Seville, Spain.

Reference data for Solar Two is taken from public re-

ports (such as Pacheco, 2002) by Sandia National Labo-

ratories, which was one of the main actors of the project.

Solar Two consists of a central tower in a surround

heliostat field, an external cylinder receiver, a direct heat

storage system and an electrical power generation system

(EPGS) consisting of a steam generator producing steam

for a 12.5 MW Rankine cycle. The HTF is a molten

nitrate salt solution.

Heliostat Field The heliostat field is a north-biased

surround field. It consist of 1818 relatively small

healiostats à 39 m2 and 108 larger heliostats à 95 m2,

adding up to a total reflective area of 82,700 m2.

Receiver The receiver consists of 24 panels arranged

in a cylinder. Each panel contains 32 thin tubes through

which the HTF flows. The exterior sides of the panels

are coated with black Pyromark paint, designed to have

a high absorptivity (95%) and thermal endurance.

During normal operation the HTF enters at 290◦C, and

the flow is regulated so the exit temperature is kept con-

stant at 565◦C.

Storage System The direct heat storage system con-

sists of two insulated storage tanks, one for hot HTF

(565◦C) and one for cold (290◦C).

The salt flow through the receiver (cold tank → hot

tank) and the flow through the steam generator (hot tank

→ cold tank) are independent of each other as long as

none of the storage tanks are completely empty, and can

be regulated separately.

Heat Transfer/Storage Medium The medium com-

monly referred to as Solar Salt is used both as heat

transfer and as heat storage medium. It is a mixture of

60% sodium nitrate (NaNO3) and 40% potassium nitrate

(KNO3). Solar salt has a high heat capacity and a low

vapor pressure. It starts to crystallize at 240◦C and is

completely solid at 220◦C (Ferri et al., 2008). Conse-

quently, the salt has to be kept above these temperatures

or it may cause major damage to parts of the system.

Steam Generator The steam generator consists of a

preheater, a kettle evaporator and a superheater. The pre-

heater and superheater are U-tube, straight shelled heat

exchangers.

During normal operation, feedwater enter the pre-

heater at 260◦C and 100 bar. The preheater heat the

feedwater to near a saturation temperature at 311◦C, the

evaporator produces steam at 311◦C and finally the steam

is heated in the superheater to 535◦C.

The steam turbine, described in the next section, was

salvaged from an old project and was not dimensioned to

handle an inlet temperature of 535◦C. Consequently, the

steam had to be attemperated using feedwater to bring

the temperature down to 510◦C. The reason for produc-

ing steam at a higher temperature than the turbine could

handle was to demonstrate the potential of the solar salt

technology.

Rankine Cycle The power cycle is a non-reheat regen-

erative Rankine cycle using a train configuration with

four extraction points. The first and second extraction

points were fed to two high pressure feedwater heaters,

the third point to a deaerator and the last point to a low

pressure heater.

The cycle had a rated gross electrical output of

12.5 MW at 0.084 bar condenser pressure, a nominal

steam mass flow rate of 13.9 kg/s and inlet conditions as

described above, i.e. 510◦C and 100 bar.

The steam turbine was salvaged from the Solar One

project (the predecessor of Solar Two) which was con-

ducted in the 1980’s, and refurbished.

Dynamic Modeling of a Central Receiver CSP System in Modelica

586 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118585

3 Implementation

Six major components, along with important subcompo-

nents, were implemented: The Sun model, the Helio-

stat Field model, the Receiver model, the Storage Tank

model, the Steam Generator model and the Rankine Cy-

cle model. Components which are affected by ambient

factors – such as ambient temperature, pressure and wind

speed – contain an outer component called Weather Con-

ditions, which allows these parameters to be set globally.

3.1 Sun

The Sun model provides input values to the Heliostat

Field model. Outputs are DNI, elevation angle αs and

the azimuth angle γs. To calculate the elevation and az-

imuth angles the hour angle ω and the declination angle

δ needs first to be calculated.

For a given point in time (day number n and solar time

hh : mm : ss) and latitude λ the other angles are calculated

as follows, here in degrees (Duffie et al., 2013):

ω = 15(hh−12)+mm/4+ ss/240 (1)

δ = 23.45sin(360(284+n)/365) (2)

αs = sin−1 (cosδ cosω cosλ + sinδ sinλ) (3)

γs = sgn(ω)

∣

∣

∣

∣

∣

cos−1
(cosδ cosω sinλ − sinδ cosλ

cosαs

)

∣

∣

∣

∣

∣

(4)

A simple correlation between solar altitude and DNI

is adopted (Reno et al., 2012):

DNI = 950.2(1− e−0.075αs)[W/m2] (5)

3.2 Heliostat Field

The Heliostat Field model converts inputs from the Sun

model into total insolation onto the receiver. The im-

plementation can be summarized with the following for-

mula:

I = DNI ·Eη(αs,γs) ·A ·ηr ·ηc ·αrec (6)

where

I = insolation to receiver [W]

Eη(αs,γs) = Efficiency matrix

A = Total reflective area [m2]

and

ηr =

{

reflectivity if not inclRefl

1.0 else

ηc =

{

cleanliness if not inclClean

1.0 else

αrec =

{

1/rec. abs. if inclRecAbs

1.0 else

The efficiency of the field is determined by an exter-

nally provided matrix. The efficiency matrix is inserted

into a lookup table which takes the elevation and az-

imuth angles as input and outputs an interpolated effi-

ciency value.

The following simplifications are used:

1. The entire heliostat field is always focused on the

receiver, no capability to defocus the field is imple-

mented.

2. The output is the total power reflected towards the

receiver, no information on the distribution of the

insolation from different directions or along the

height or the receiver is provided.

3.3 Receiver

The receiver model converts incoming insolation into

heat and transfers it to the HTF. It also accounts for am-

bient heat losses through radiation and convection. The

implementation consists of three main subcomponents; a

surface model, a wall model and a pipe model. Each of

the subcomponents is discretized into n segments. The

Receiver model is displayed in Figure 2.

A few simplifications have been made in this imple-

mentation:

1. The emissivity of the receiver surface is indepen-

dent of the surface temperature (Gray body assump-

tion).

2. The convective heat loss in each surface node is cal-

culated as an estimate of the mean convective heat

loss for a cylinder in cross flow with a surface tem-

perature equal to the node temperature (see the Sur-

face model section below).

3. Conduction heat losses are neglected.

4. Internal components used during start-up and shut-

down sequences are left out for simplicity.

Session 8B: Power, Energy & Process Applications 1

DOI
10.3384/ecp15118585

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

587

Figure 2. The Receiver model.

3.3.1 Surface model

The surface model is a subcomponent which calculates

the heat exchanged between the receiver wall and its am-

bient surroundings. Insolation is converted to heat, heat

losses through radiation and convection are subtracted

and the net heat is transferred through the heat port.

The model is described by following equations:

Q̇net = Q̇abs − Q̇rad − Q̇conv [W] (7)

Q̇abs = αI [W] (8)

Q̇rad = εσA(T 4
wall −T 4

sky) [W] (9)

Q̇conv = hcA(Twall −Tamb) [W] (10)

where

I = insolation [W]

α = surface absorptivity

ε = surface emissivity

σ = Stefan-Boltzmann constant [W/m2 K4]

A = surface area [m2]

hc = convective heat transfer coefficient [W/m2 K]

The wall temperature Twall is taken from the heat port,

the ambient temperature Tamb is taken from the weather

conditions model and the sky temperature Tsky is esti-

mated as Tamb −8 (Forristal, 2013).

The convective heat transfer coefficient hc is calcu-

lated as the sum of forced and natural convection.

hc = hcn +hc f (11)

For the natural convective heat transfer coefficient,

hcn, a correlation for the Nusselt number for a vertical

plate is used (Churchill et al., 1975). The formula is

modified to better fit vertical cylinders by adding a sec-

ond term (Fujii et al., 1970).

hcn =
NuHk

H
(12)

NuH =

(

0.825+
0.387(GrHPr)1/6

(

1+
(0.492

Pr

)9/16)8/27

)2

+0.97
H

D

(13)

where

H = height of the receiver [m]

D = diameter of the receiver [m]

GrH = Grashof number

Pr = Prandtl number

For the forced convective heat transfer coefficient, hc f ,

a correlation for the Nusselt number for a cylinder in

cross-flow is used (Churchill et al., 1977):

hc f =
NuDk

D
(14)

NuD = 0.3+
0.62Re1/2Pr1/3

(

1+
(0.4

Pr

)2/3)1/4

(

1+
(Re

282000

)5/8)4/5

(15)

where

D = diameter of the receiver [m]

Re = Reynolds number

3.4 Storage Tank

The storage tank model consists of a two-media volume,

a wall and two heat conductors. Heat ports of the volume

are connected to a fixed temperature source via the wall

model and two conductor models (see the Film Conduc-

tor section below). Values for wall properties are given

as the lumped properties of the metal wall and the insu-

lation.

3.4.1 Film Conductor

The FilmConductor model is created to provide a con-

ductor model with a variable heat transfer area. The heat

transfer area is set to depend on the liquid level in the

tank. As the conductor model is separate from the wall

model, the conduction through the liquid layer closest to

the tank wall is modelled. The thermal conductivity is

evaluated at the film temperature. It is described by fol-

lowing equations:

Dynamic Modeling of a Central Receiver CSP System in Modelica

588 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118585

Q̇ = k(Tf ilm) ·Aheat · (Tf luid −Twall) (16)

Tf ilm =
Twall +Tf luid

2
(17)

where

k = Thermal conductivity [W/m K]

The thickness of the film is given a default value of

0.2 m.

3.5 Steam Generator

In the steam generator model, heat from the HTF is trans-

ferred to the water in the Rankine cycle in three static

HEX models; the preheater, the boiler and the super-

heater. Steam is produced in a drum model connected

to the boiler. The feedwater flow is regulated to keep

the drum level constant. Volumes are placed between the

flow components to provide numerical stability and ther-

mal inertia. The Steam Generator model is presented in

Figure 3.

Figure 3. The Steam Generator model.

3.6 Rankine Cycle

The Rankine cycle model is a slightly simplified model

of the Solar Two steam cycle plant. It consists of four

turbine segment, a condenser, a generator (modelled as

an efficiency parameter) and three open feedwater heater

components. The turbine models are based on Stodola’s

law. The heater components consist of a deaerator, a

pump and a check valve. The pump speed is regulated to

keep the liquid level in the deaerator at a constant level.

Figure 4. The Rankine model.

Preheaters and turbine segments are connected in a

train configuration. Only open feedwater heaters (deaer-

ators) are used as it allows for easy configuration of the

setup (Haywood, 1991). The Rankine model is displayed

in Figure 4.

3.7 Configuration of the System model

In the system model, components are combined and con-

figured according to data from the reference system pre-

sented in section 2.2. All salt/water flows are regulated

by a master control model.

As no efficiency matrix has been published for the So-

lar Two heliostat field, a matrix calculated for a similar

type of field was modified and used. The matrix is gener-

ated by Sandia National Laboratories using an algorithm

called DELSOL, written in FORTRAN (Ehrhart et al.,

2013). Inputs to DELSOL differ slightly from properties

of the Solar Two plant, which will cause an error. How-

ever, in the absence of a better approximation this matrix

was used.

The heat transfer properties of the storage tanks were

set to guess values. No effort was made to fine tune the

heat loss from the tanks as its magnitude was several or-

ders smaller than the heat transported through the tanks.

The Rankine model is configured to maximize its ef-

ficiency. The efficiency of a non-reheat, regenerative

Rankine cycle with only open feedwater heaters is maxi-

mized when the enthalpy rise is equal between two adja-

cent heaters (Haywood, 1991). Knowing the condenser

back pressure and final feedwater temperature, the en-

thalpy in the condenser and high presseure heater can

be computed. The intermediate enthalpy levels can then

be calculated and the pressures are determined as the

saturation pressures with corresponding liquid phase en-

thalpies.

Setting the isentropic efficiency of each turbine seg-

ment to 0.7, which is reasonable for a turbine of this size

Session 8B: Power, Energy & Process Applications 1

DOI
10.3384/ecp15118585

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

589

Figure 5. The System model setup.

and age (Haywood, 1991; Thern, 2013), the enthalpy lev-

els in the turbine are iteratively calculated as

hi+1 = hi −ηis

(

hi −his(pi+1)
)

(18)

starting with the entalpy of the inlet steam.

The final values of pressures and entahlpies at the

nominal operating point are presented in Table 1.

Parameter Pressure H, steam H, liquid

[bar] [kJ/kg] [kJ/kg]

Inlet steam 100.000 3464.28

1st extraction 46.920 3294.26 1134.83

2nd extraction 13.065 3051.71 815.80

3rd extraction 1.885 2769.13 496.76

Condenser 0.084 2435.92 177.73

Table 1. Nominal pressure and enthalpy values for the Rankine

model.

The full system model is diplayed in Figure 5.

4 Testing and Simulation

Each component was tested dynamically and in steady

state and results were compared to data from the refer-

ence system if it was available. In this section setups

from the Receiver and the full system tests are presented.

For a further detailed description of the tests, see Edman

(2014).

4.1 Receiver

Two tests are presented for the receiver; one test of the

dynamics and one test measuring the efficiency at steady

state conditions.

4.1.1 Dynamics

The receiver is initially fed a constant insolation of

35 MW and a salt mass flow rate of 60 kg/s. At

t = 5 min, the insolation is increased to 45 MW , and at

t = 10 min the mass flow rate is increased to 80 kg/s.

The temperature of the salt outflow and in the tubewalls,

and the total heat loss at the surface are monitored.

4.1.2 Steady State

The steady state efficiency of the receiver was tested at

different levels of insolation and wind speed. The salt

flow was regulated to keep the receiver outflow temper-

ature constant at 565◦C. Once the flow is stabilized the

efficiency is calculated as:

ηrec =
Qnet

Qinc

=
ṁ · (hout −hin)

I
(19)

The input values are presented in Table 2.

Parameter Values

Insolation {48, 40, 30, 20, 15} [MW]

Wind speed at 76.2 m {0, 2.5, 5, 7.5, 10} [m/s]

Table 2. Parameter values used in the Receiver Steady State

test.

4.2 System

Two tests are conducted including all parts of the system,

one steady state test and one dynamics test. Parameter

and initial values are configured according to section 2.2.

4.2.1 Steady State

In the steady state test the receiver is fed a constant level

of insolation. The mass flow rate of salt through the re-

ceiver is regulated to keep the outlet temperature at a con-

stant level of 565◦C. The steam generator is fed with the

same salt flow rate as the receiver, thus keeping the salt

level in the tanks constant. Once the system has reached

steady state, heat flow rates and efficiencies are deter-

mined and compared to reference data (Pacheco, 2002).

Four simulations are run with diffent levels of insola-

tion. The input parameters are listed in Table 3.

Case 1 Case 2 Case 3 Case 4

Time 12:00 12:00 09:00 09:00

Day 172 354 172 354

Table 3. Times for the System Steady State test.

4.2.2 Dynamics

The whole system is simulated over a couple of full day

scenarios, Clear and Cloudy. Salt flows are regulated to

Dynamic Modeling of a Central Receiver CSP System in Modelica

590 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118585

maintain nominal operating conditions. Each simulation

is started at t = 06:00 as the start-up sequence of the

receiver is not modelled. The simulation is terminated

automatically when the salt level in the hot tank drops

below 0.9 m.

Both simulations are run on day number 172. In the

Clear scenario a clear day is simulated. In the Cloudy

scenario a cloud appears at t = 11:00 and obstructs the

insolation for one hour. The energy flow rates in the dif-

ferent parts of the system as well as the tank levels are

monitored.

5 Results

5.1 Receiver Dynamics

Results from the dynamic receiver test are presented in

Figure 6. In the first 100 s the receiver tube walls are

heated from their initial value of 290◦C to their steady

state value.

When the insolation is increased at t = 5 min the wall

temperature starts to rise, leading to an increased heat

flow rate to the salt flow and thus an increased outflow

temperature. When the salt flow rate is increased at

t = 10 min the ouflow temperature drops as a greater

amount of salt is heated. The increasing temperature dif-

ference along with the increased flow rate leads to an

increased heat flow rate to the salt flow, causing the wall

temperature to drop.

The rise times of the slopes are approximately equal

to the time it takes for one mass unit of salt to pass

through the receiver (≈ 60s@60kg/s and 45s@80kg/s).

The smoothening at the end of the slopes is due to the

thermal inertia of the tube walls.

0 5 10 15
300

350

400

450

500

550

600

650

700

750

800

Time [m]

T
e

m
p

e
ra

tu
re

 [o
C

]

0 5 10 15

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

H
e

a
t

lo
s
s
 [

M
W

]

Receiver outlet T

Wall T, 1st node

Wall T, end node

Total heat loss

Figure 6. The results from the Receiver dynamics test. Color

indicates the correct y-axis.

5.2 Receiver Steady State

Receiver efficiencies at steady state conditions for differ-

ent levels of insolation and wind speed are presented in

Figure 7.

The efficiency peaks at high insolation and low wind

speed and is steadily decreasing with decreasing insola-

0 1 2 3 4 5 6 7 8 9 10
0.6

0.65

0.7

0.75

0.8

0.85

0.9

Wind speed at 76.2 m [m/s]

T
h

e
rm

a
l
e

ff
ic

ie
n

c
y

48 MW Inc., Dymola

40 MW Inc., Dymola

30 MW Inc., Dymola

20 MW Inc., Dymola

15 MW Inc., Dymola

29.2−38.8 MW Inc., Solar Two meas.
14.6−19.3 MW Inc., Solar Two meas.

Figure 7. Steady state efficiency of the Receiver model at dif-

ferent levels of insolation and wind speed. The colored mark-

ers indicate measured values from the Solar Two project.

tion and increasing wind speed. The blue and red mark-

ers in the figure are measured values from the Solar Two

project (Pacheco, 2002). Although the behavior of the

receiver model is correct the efficiency of the model is

generally higher than the measured values from the So-

lar Two project.

5.3 System Steady State

A visual presentation of the first steady state case is pre-

sented in Figure 8. The majority of the losses in the sys-

tem occur in the heliostat field (optical losses) and in the

condenser of the Rankine cycle, and thus these are inter-

esting areas to analyze when developing the system as

small improvements may have large impacts.

The power output is higher than the rated power of the

Solar Two Turbine (12.5 MW) as the steam is not attem-

perated. Also, the salt flow is higher than the nominal

flow as it regulated by the receiver flow. If the steam

generator salt flow was separately regulated, this would

correspond to the hot tank salt level rising.

A comparison between the solar specific component

efficiencies in the four different cases and measured val-

ues from the Solar Two project is presented in Table 4.

In
c.

 s
ol

ar
 p

ow
er

78
.4

 [M
W

] 9
8.

8
[%

]

Parasitics
0.9 [MW] 1.2 [%]

Heliostat field eff.
38.6 [%]

R
ec

ei
ve

r
re

fl.
: 3

.0
 [%

]

R
ec

ei
ve

r
he

at
 lo

ss
: 2

.3
 [%

]

H
ea

t s
to

ra
ge

 h
ea

t l
os

s:
 0

.2
 [%

]

S
G

 a
nd

 F
W

H
 h

ea
t l

os
s:

 1
.7

 [%
]

C
on

de
ns

er
 h

ea
t l

os
s

35
.5

 [%
]

T
ur

bi
ne

 e
ff.

: 0
.4

 [%
]

G
en

er
at

or
 e

ff.
: 0

.2
 [%

]

P
ow

er
 o

ut
pu

t

14
 [M

W
] 1

8.
2

[%
]

Figure 8. Visualization of the losses from different parts of

the system in the System Steady State test. Solid lines are the

cloudy scenario and the dashed lines are the clear scenario

Session 8B: Power, Energy & Process Applications 1

DOI
10.3384/ecp15118585

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

591

Efficiency

Case 1 Case 2 Case 3 Case 4 Solar Two

HS field 0.71 0.65 0.67 0.54 0.63

Receiver 0.91 0.91 0.91 0.89 0.88

Overall 0.18 0.17 0.17 0.13 0.13

Table 4. Comparison between simulated efficiencies and the

measured Solar Two efficiencies(Pacheco, 2002).

The heliostat field and receiver models are in general

more efficient than the measured values, resulting in a

generally higher overall efficiency. The efficiencies of

the other parts of the system did not differ significantly

from the measured values.

5.4 System Dynamics

Figure 9 shows energy flow rates in different parts of the

system (top), and the liquid levels in the tanks (bottom),

from both scenarios.

Power production continues virtually undisturbed dur-

ing the passing of the cloud and well after the insolation

sinks below the power input demanded by the power cy-

cle. However, in the cloudy scenario the simulation is

stopped earlier as power has been drained from the stor-

age during the passing of the cloud and thus the hot tank

empties sooner.

The level in the hot tank sinks in the early hours as

the absorbed power by the receiver is lower than the

power delivered to the steam generator. Once the ab-

sorbed power exceeds the demand the level starts to rise,

and continues to do so until the demand is once again

higher than the absorbed power . In the Cloudy scenario

6 8 10 12 14 16 18 20

0

10

20

30

40

50

60

70

80

P
o
w

e
r

[M
W

]

Total insolation

Power trans., HS field

Power abs., Receiver

Power abs., SG

Power generated

6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

Time [h]

L
iq

u
id

 l
e
v
e
l
[m

]

Hot storage tank

Cold storage tank

Figure 9. Top: Power transferred in the different parts of the

system in the System Dynamics test. Bottom: Variations in

tank liquid levels. The dashed lines represent the Clear sce-

nario and the solid lines represent the Cloudy scenario.

the hot salt level drops at a constant rate during the pass-

ing of the cloud as the incoming flow from the receiver

is very low.

6 Discussion

As relevant dynamic data from the reference system is

scarce, time constants and general appearance of the dy-

namic results cannot be validated against a reference,

only discussed from a theoretical point of view. To get

feedback from the reference system the steady state heat

loss and efficiency tests were conducted.

6.1 Evaluation of Results

6.1.1 Receiver model

The dynamical behavior of the receiver is satisfactory.

However, there is room for improvement as start-up and

shut-down procedures are not modeled.

The steady state efficiency of the receiver model is

generally higher than the measured values. A few in-

fluential factors can be mentioned:

1. No conduction heat loss has been implemented in

the receiver model, see further discussion below.

2. The insolation is always uniformly distributed

among the surface nodes in the model.

3. In the Solar Two receiver efficiency measurement,

neither inlet nor outlet salt temperatures were strin-

gently kept at their nominal values (Pacheco, 2002).

Conduction is seldom mentioned in conjunction with

receiver heat loss and it was assumed that its influence

is negligible. This assumption may need to be reeval-

uated. The difference between simulated and measured

efficiency seems to be proportional to the level of inso-

lation, suggesting a constant heat loss factor is missing

from the model. This factor could be due to conduction

or possible an inaccurate absorptivity of the receiver sur-

face. However, it does not appear to vary significantly

with wind speed, which suggests that the convective heat

loss is properly modelled.

6.1.2 System model

Steady State The overall efficiency of the system

model is generally higher than the measured values. Dif-

fering factors are mainly the heliostat field, the receiver

(already discussed) and parasitics.

The efficiency of the heliostat field model is higher

than the Solar Two HS field. As this efficiency is de-

termined by the efficiency matrix, using a correct matrix

would eliminate this error. As the heliostat field is one of

the major power sinks in the system, a correct description

of its properties is important.

Dynamic Modeling of a Central Receiver CSP System in Modelica

592 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118585

Parasitics have not been thoroughly studied in this

project and many of the parasitic components of the real

system have been omitted from the models. Therefore,

the parasitic efficiency was higher in the model.

Dynamics The dynamic behavior of the system

aligned with expectations and demonstrates the benefit

of using a direct storage system. The power production

is virtually undisturbed by the passing of the cloud. It is

clear that the capacity of this particular storage system

is not very large, as the liquid level sinks quickly when

the incoming flow of hot salt is disrupted. A commersial

system with a larger storage capacity would be able to

handle even more perturbances. However, during partic-

ularly bad conditions an auxilliary heat source would be

needed.

6.2 Conclusions

The dynamic behavior of the receiver model is properly

modelled to what extent it is possible to verify. Re-

sponses to sudden changes in the input parameters are

gradual and the model stabilizes at resonable values.

However, it is hard to evaluate time constants of the sys-

tem as most data from the reference system is given as

efficiencies and average values, and dynamic data is very

scarce.

The two components which are unique for the CRS

system are the heliostat field and the receiver. The helio-

stat field model utilizes the data which is most commonly

given for a real field, but more detailed data is needed to

improve the model. The receiver model is more efficient

than the real system, which is most likely due to the lack

of conduction losses and possibly a faulty absorptivity

value. More detailed inputs from the heliostat field and

the ambient conditions would also improve the model.

The EPGS models work properly, which validates the

usefulness of the Modelon ThermalPower library as most

components are taken from there.

All models are generic and rescalable. However, the

Rankine model has to be modified if a different config-

uration is used, e.g. with more extraction points; with

closed feedwater heaters or with a reheat configuration.

Dymola and the Modelica language, are powerful

tools for modeling the thermohydraulic parts of the sys-

tem, i.e. the solar loop and the power cycle. For detailed

modeling of complex optical systems such as the helio-

stat field, an optical simulation tool would be needed.

6.3 Future work

More detail could be added to increase accuracy and al-

low for more specific properties to be studied.

1. Heliostat/Receiver models: More detailed informa-

tion about the insolation patterns onto the receiver

are needed to increase the model accuracy.

2. HTF model: To be able to model filling and drain-

ing of receiver and pipes. During start-up and shut-

down sequences the HTF medium must be able to

handle a mixture of solar salt and air.

3. Storage Tank model: Stratification and auxilliary

heating of the storage tanks have not been mod-

elled.

4. Steam Generator model: Steam attemperation with

feedwater should be included in the steam genera-

tor model. Also, changing the static heat exchanger

models to dynamic ones should be considered.

5. Rankine model: A more generic Rankine model

could be implemented.

References

W. Churchill, H. H. S. Chu, "Correlating equations for lami-

nar and turbulent free convection from vertical plate," Int. J.

Heat. Mass. Tran. 18:1323-1329, 1975.

S. W. Churchill and M. Bernstein, "A Correlating Equation

for Forced Convection From Gases and Liquids to a Circu-

lar Cylinder in Crossflow," Int. J. Heat. Mass. Tran. Trans.

ASME 99, 1977, pp. 300-306.

J. A. Duffie and W. A. Beckman, "Solar Radiation" in Solar

Engineering of Thermal Processes, 4th. Ed., Hoboken, New

Jersey: Wiley, 2013, pp. 12-20.

J. Edman, "Dynamic Modeling of a Central Receiver CSP

sytem in Dymola," M.S. thesis, Dept. En. Sci., Lund Univ.,

Lund, Sweden, 2014.

B. D. Ehrhart and D. D. Gill, "Evaluation of Annual Efficien-

cies of High Temperature Central Receiver Concentrated

Solar Power Plants With Thermal Energy Storage," Sandia

Nat. Lab., Albuquerque, NM, Rep. SAND2013-5493, Jul.

2013.

R. Ferri, A. Cammi and D. Mazzei, "Molten salt mixture prop-

erties in RELAP5 code for thermodynamic solar applica-

tions," Int. J. Therm. Sci. vol 47, 2008, pp. 1676-1687.

R. Forristal, "Heat Transfer Analysis and Modeling of a

Parabolic Trough Solar Receiver Implemented in Engineer-

ing Equation Solver," NREL, Golden, CO, Rep. NREL/TP-

550-34169, Oct. 2013.

T. Fujii, H. Uehara, "Laminar natural-convective heat transfer

from the outer surface of a vertical cylinder," Int. J. Heat.

Mass. Tran. 13:607-615, 1970.

GeoModel Solar, Typical Meteorological Year Data

(Sample Data), GeoModel Solar, [Online], Available:

http://geomodelsolar.eu/data/typical-meteorological-year,

[Accessed: Feb. 2014].

Session 8B: Power, Energy & Process Applications 1

DOI
10.3384/ecp15118585

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

593

R. W. Haywood, "Advanced steam-turbine plant" in Analysis

of Engineering Cycles, 4th. Ed., Pergamon Press, 1991, pp.

110-115.

J. E. Pacheco, "Final Test and Evaluation Results from the So-

lar Two Project," Sandia Nat. Lab., Albuquerque, NM, Rep.

SAND2002-0120, Jan. 2002.

M. J. Reno, C. W. Hansen and J. S. Stein, "Global Horizontal

Irradiance Clear Sky Models: Implementation and Analy-

sis," Sandia Nat. Lab., Albuquerque, NM, Rep. SAND2012-

2389, Mar. 2012.

M. Thern, Lund University, F. Eng., Dept. En. Sci., private

communication, Dec 2013.

Dynamic Modeling of a Central Receiver CSP System in Modelica

594 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118585

Modeling of Linear Concentrating Solar Power using Direct Steam

Generation with Parabolic-Trough

Antoine Aurousseau1,2 Valéry Vuillerme1 Jean-Jacques Bezian2
1 Univ. Grenoble Alpes, INES, F-33375 Le Bourget du Lac, France

CEA, LITEN, Laboratoire des Systèmes Solaires Haute Température, antoine.aurousseau@cea.fr;
2 Université de Toulouse, Mines Albi, CNRS, Centre RAPSODEE, France;

Abstract

This papers deals with the Modelica /Dymola modeling
of linear concentrating solar power in a parabolic-
trough experimental loop using direct steam
generation. An extensive description of the parabolic
collector and the absorber tube models is proposed.
First results of the simulation of a clear sky day, with
the aim of validating the models, are discussed.
Experimental data from the CIEMAT-PSA DISS loop
in Almeria, Spain, is used.

Keywords: Concentrating Solar Power, Parabolic-

Trough, Direct Steam Generation, Modeling,

ThermoSysPro.

1 Introduction

Concentrating Solar Power (CSP), or Solar Thermal
Electricity, is a promising technology for renewable
electricity generation. In its latest Technology
Roadmap report (OECD/IEA, 2014), the International
Energy Agency estimates that with appropriate R&D
support, the contribution of CSP to the global
electricity production could reach 11% by 2050.

 Among the several CSP technologies, parabolic-

trough uses linear concentration to collect heat with a
fluid flowing inside an absorber tube located at the

focal line of a parabolic mirror. The process of using
water as the heat transfer fluid in the tubes and
generating steam for a direct use as the working fluid
of a thermodynamic cycle is referred as Direct Steam
Generation (DSG). It offers several advantages and has
potential cost reduction effects, compared to
technologies using other heat transfer fluids and heat
exchangers (Eck et al., 2008; Feldhoff, Eck, Benitez, &
Riffelmann, 2009).

The combination of the natural transient condition
of solar irradiation and the dynamics induced by the
presence of a two-phase flow inside the absorber tubes
results in a behavior of the steam generation system
that is strongly dynamic. Modeling this behavior at the
system scale is useful for the sizing and design of both
the solar field and its control system.

This paper presents a model of a parabolic-trough
solar field, developed with Modelica on the basis of the
ThermoSysPro library, developed by EDF R&D
(ThermoSysPro 2014). In the first section, the
Modelica model is presented, with a focus on the
parabolic collectors and the absorber tubes, and the
second section presents the preliminary simulations
carried out to validate the models using the

experimental data of the CIEMAT-PSA DISS

Figure 1: Diagram of the DISS loop (Valenzuela et al. 2005)

DOI
10.3384/ecp15118595

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

595

experimental loop in Almeria, Spain. Simulations are
carried out with the commercial software Dymola.

2 Models description

2.1 The reference experimental setting

The DISS (for DIrect Solar Steam) experimental loop
is located in Almeria, Spain, and is operated by the
CIEMAT-PSA institute. It has been operated since
about fifteen years, and many studies have been
published. It consists in the connection in series of
several parabolic-trough collectors, and the appropriate
balance of plant installations for the water/steam flow.
This study is making use of the experimental loop
operated in “once-through” mode, where water is
vaporized and steam superheated in the same absorber
line, without separation. Description of the
experimental setting and collectors details can be found
in (Valenzuela, Zarza, Berenguel, & Camacho, 2004,
2005). Figure 1 shows the experimental loop for the
once-through operation mode. It here consists in 11
collectors connected in series, with an injection cooler
between the 10th and 11th collector for the control of
the outlet steam temperature. Two collectors are 25
meters long and the other ones are 50 meters long.

2.2 Model structure

As only the solar field section is modeled (consisting
of the 11 connected collectors), presented here is the
general structure of a single collector model, consisting
of a parabolic mirror and an absorber tube. Figure 2
pictures the structure.

The optical model computes the heat flux absorbed
by the tube wall, then the tube wall model computes
the flux through the wall, and the tube two-phase flow
model eventually computes the flow conditions. The

three “sub-models” are connected with thermal ports
and exchange heat flux and temperature data.

2.3 Collector model

A LS3-type collector is modeled.

 Figure 3 pictures the collector model in terms of heat
fluxes. A developed modified version of the
ThermoSysPro 3.1 solar collector is used. The absorber
tube and the parabolic mirror are discretized into a
defined number of segments, with a set of acausal
equations for each of them. The heat flux absorbed by
a tube internal wall segment is computed with the
following equation:
 − �ܹ௨௕௘ = ை��,௢௩௘௥ߟ × ܯ�� × cos � × ×�ܰܦ �௥௘௙�௦ܰ − �ܹ�ௗ���௦௦− �ܹ௢�௩���௦௦

(1)

The sign of the heat flux is negative from the parabolic
collector point of view, since flux leaving a component
is negative by convention. The glass envelope energy
balance is computed by the following equation:

 ݀ெܥ௉௚��௦௦ ݀�௚��௦௦݀� = �ܹ௕௦���௦௦ + �ܹ௢�ௗ����+ �ܹ�ௗ���� − �ܹ௢�௩���௦௦− �ܹ�ௗ���௦௦
(2)

Following equations compute the other heat flux terms:

�ܹ�ௗ���� = ��௨௕௘௦ܰ × � × ��௨௕௘ × ሺ�௪���ସ− �௚��௦௦ସ ሻ (3)

Figure 3: Heat flux diagram on the collector

Figure 2: Collector-tube model structure

Modeling of Linear Concentrating Solar Power using Direct Steam Generation with Parabolic-Trough

596 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118595

�ܹ௢�ௗ���� = ��௨௕௘௦ܰ × ߣ × ሺ�௪���− �௚��௦௦ሻ/ ʹ௨௕௘�ܦ logܦ௚��௦௦ܦ�௨௕௘

(4)

�ܹ�ௗ���௦௦ = �௚��௦௦௦ܰ × � × �௚��௦௦ × ሺ�௚��௦௦ସ− �௦௞�ସ ሻ (5)

�ܹ௢�௩���௦௦ = �௚��௦௦௦ܰ × ℎ × ሺ�௚��௦௦ − ��௠௕ሻ (6)

�ܹ௕௦���௦௦ = �ܰܦ × �௚��௦௦௦ܰ × �௚��௦௦ × cos�× ܯ�� × ை��,௉௘�௞ߟ

(7)

The equations terms are detailed in Table 1.
 �ܹ௨௕௘ Heat flux transmitted by tube wall �ܹ�ௗ���௦௦ Heat flux loss through radiation of glass enveloppe

to atmosphere �ܹ௢�௩���௦௦ Heat flux loss through convection of glass
enveloppe to atmosphere �ܹ௕௦���௦௦ Heat flux absorbed by glass enveloppe �ܹ௢�ௗ���� Conduction heat flux from tube wall to glass
enveloppe �ܹ�ௗ���� Radiation heat flux from tube wall to glass
enveloppe ߟை��,௢௩௘௥ Overall (glass and tube) collector efficiency ��ܯ Incidence angle modifier � Incidence angle ܰܦ� Direct Normal Irradiation �௥௘௙� Parabolic mirror aperture area ௦ܰ Number of discretization segments ݀ெ Mass of glass enveloppe segment ܥ௉௚��௦௦ Glass enveloppe thermal capacity �௚��௦௦ Glass enveloppe temperature ��௨௕௘ Tube wall heat exchange area � Boltzmann constant ��௨௕௘ Tube wall emissivity �௪��� Tube wall temperature ߣ Inner gas conductivity ܦ�௨௕௘ Tube diameter ܦ௚��௦௦ Glass enveloppe diameter �௦௞� Sky temperature ℎ Convection heat loss coefficient ��௠௕ Ambient external temperature �௚��௦௦ Glasss absorptivity at normal incidence ߟை��,௉௘�௞ Peak parabolic mirror optical efficiency

Table 1 : Collector model terms detail

The incidence angle modifier is a function of the
incidence angle and is extracted from (Valenzuela et
al., 2005) : ��ܯ = − Ͳ.ͲͲ ͺͺ × � − Ͳ.ͲͲͲ ͶͻʹͲ͸ × �ଶ (8)

2.4 Two-phase flow model

A developed modified version of the dynamic two-
phase flow tube model of the ThermoSysPro 3.1
library is used. Pressure drop correlations were
modified from the original version. The two-phase
flow tube model is connected to the tube wall model
through a thermal port and to other fluid components
through fluid ports. The ThermoSysPro structure
model and the two-phase flow tube model (highlighted
in a circle) are pictured on Figure 4.

Tubes are discretized only in the longitudinal

direction, since ratio between length and diameter is
very large. Pressure ܲ and specific enthalpy ℎ are state
variables. Mass, energy, and momentum conservation
equations, for each i segment of cross section area �
yield:

 � ݀� ቆ���ℎ[�] �ℎ�� [�+] + ���ܲ[�] ��ܲ� [�+]ቇ= ܳ[�] − ܳ[�+]
(8)

� ݀� [ቆℎ�+ ���ܲ[�] − ቇ��ܲ� [�+]+ ቆℎ�+ ���ℎ[�] + �[�]ቇ �ℎ�� [�+]]= ℎ௕[�]ܳ[�] − ℎ௕[�+]ܳ[�+]+ ݀ [ܹ�]

(9)

 � ��ܳ� [�] ݀� = [ܲ�] − [ܲ�+] − ݀��[�] − ݀�݃[�]− ݀��[�]
(10)

With the density �, pressure P, mass flow rate Q,

cell boundary specific enthalpy ℎ௕, exchanged thermal
power ܹ݀, friction pressure loss ݀��, gravity pressure
loss ݀�݃, acceleration pressure loss ݀��. Dynamics
terms in equation (10), like the acceleration pressure
term or the inertia term (left hand side) can be set to
zero for computations without a full dynamic

Figure 4: ThermoSysPro collector and tube
model diagram

Session 8B: Power, Energy & Process Applications 1

DOI
10.3384/ecp15118595

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

597

modeling. A Staggered grid is used for the spatial
discretization, with the momentum balance equation (10)
computed at control volume boundaries.

2.4.1 Closure equations: pressure losses

The gravity pressure loss and the acceleration pressure
loss terms are computed with homogeneous flow
assumptions. The friction pressure loss is computed
using separate flows assumption and the Martinelli-
Nelson method: In two-phase flow regions, friction
pressure loss is computed as the product of the liquid
only-pressure loss and a two-phase flow multiplier:

 ݀��ଶ� = ∅௅ைଶ × ݀��௅ை (11) ݀��௅ை is computed as the friction pressure drop with
only liquid flowing at full rate, using classical
equations. The multiplier ∅௅ை is computed using the
Friedel empirical correlation, which was implemented
in the model and is considered as the best correlation
for this range of mass fluxes:
 ∅௅ைଶ = ܧ + ͵.ʹͶ × ܨ × ܪ × ଴.଴ସହܹ݁−଴.଴ଷହ (12)−�ܨ

with ܧ = ሺ − �ሻଶ + �² ���௚ �௅ை��ை

ܨ (13) = �଴.଻଼ሺ − �ሻ଴.ଶଶସ (14) ܪ = ቆ���௚ቇ଴.ଽ (ߤ௚ߤ�)଴. ଽ (− �ߤ௚ߤ)଴.଻
(15)

�ܨ = ܳଶ�ଶ�̅ଶ݃ܦ�௨௕௘
(16)

ܹ݁ = ܳଶܦ�௨௕௘�ଶ�̅�௦
(17)

With � the steam fraction, �� the liquid water density, �௚ the steam density.
Liquid-only and steam-only friction coefficients are
computed using classical equations involving liquid-
only and steam-only Reynolds numbers:
 �௅ை = Ͳ.Ͳ͹ͻ�݁௅ை଴.ଶହ (18)

��ை = Ͳ.Ͳ͹ͻ�݁�ை଴.ଶହ (19)

 ௚ are the water and steam densities, �௦ theߤ and �ߤ
surface tension. ܨ� and ܹ݁ are the Froude and Weber
dimensionless numbers. The average density �̅ is
computed the following way:
 �̅ = ቆ ��௚ + − ��� ቇ−

(20)

2.4.2 Closure equations: heat transfer coefficient

For each tube segment, the absorbed heat flux is
computed with the tube inner wall temperature �� and
the fluid segment temperature ��: ܹ݀ = ℎ × ݀ܵ × ሺ�� − ��ሻ (21)
The heat transfer coefficient in single-phase flow
region is computed using Dittus-Boelter equation: ℎ = Ͳ.Ͳʹ͵ ௨௕௘�ܦ� �݁଴.଼ ܲ�଴.ସ (22)

With � thermal conductivity. In two-phase flow region,
the heat transfer coefficient is computed using the
superposition method of the Chan correlation,
described in (Odeh, Morrison, & Behnia, 1998) : ℎଶ� = ��ℎ ܧ + ܵ ℎ௘௕ (23)

The single-phase convective boiling term ℎ�� is
computed with the Dittus-Boelter equation (22). ܧ is
its related corrective term and is computed with a
correlation to the Martinelli parameter and the boiling
number ܧ :ܱܤ = + ʹͶͲͲͲ ܱܤ . ଺ + .͵͹ ܺ��−଴.଼଺ (24)

With ܺ�� the Martinelli parameter:

ܺ�� = (− ��)଴.ଽ (�௚��)଴.ହ ቆߤ�ߤ௚ቇ଴. (25)

ℎ௘௕ is the nucleate boiling contribution term and is
computed with an empirical correlation to the ratio of
the working pressure to the critical pressure, derived
from Stephan and described in (Odeh et al., 1998). The
nucleate boiling corrective term ܵ is computed as a
function of ܧ and the liquid Reynolds number, an
empirical correlation from Gunger & Winterton and
described in (Odeh et al., 1998): ܵ = /[+ ሺ . ͷܧ − ͸ × ଶܧ × �݁ . ଻ሻ] (26)

2.4.3 Closure equations: flow properties

Flow properties are computed using the IAPWS IF97
water/steam tables and functions. As pressure and
enthalpy are computed for each tube segment and each
time step, those state variables are used as argument to
call properties functions like temperatures, densities,
steam fractions, thermal capacities and conductivities,
viscosities, etc.

2.5 Other pressure drops

Pressure drops outside the collectors, ie. in the
connections between them, are modeled with specific

Modeling of Linear Concentrating Solar Power using Direct Steam Generation with Parabolic-Trough

598 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118595

ThermoSysPro pressure drop components. The
experimental pressure data include the loop inlet and
outlet pressures, and the pressure drops for each
collector. One can then extract the loss induced by the
connections between the collectors, and use them to
compute pressure drop coefficients to be used in the
singular loss models. The coefficient can then be
manually adjusted to match the experimental data.

2.6 Boundary conditions

The inlet of the collectors line, along with the small
injection cooling at the last collector inlet, are modeled
as a flow source with imposed mass flow rate values
and imposed specific enthalpy values. Those values are
directly extracted from the DISS loop experimental
data.
 The flow outlet of the collectors line is modeled as a
pressure sink, with imposed values also directly
extracted from the experimental data.
 The parabolic collector inputs, direct normal
irradiation, ambient temperature, and incidence angle
are also directly extracted from the experimental data.
As these data are given physical sensors, they require
some smoothing with signal processing tools, for the
sake of simulations stability.

3 Simulation of a clear sky day

A first simulation is carried out with the described
model and the input data of a good sunny day of April.
Figure 5 shows the measured DNI at the DISS test site
on April 22, 2002. Data start at 09:00:00 and the
collectors are defocused at 15:56:40, so the simulation
is carried out on this time range.

Figure 5: DNI and collector focusing of April 22, 2002

3.1 Input data for boundary conditions

3.1.1 Collector optical model input

As previously stated, the measured DNI is directly
used as input data in the collector optical model. The
measured ambient temperature is also used as input to
the model, but for the sake of simulation stability, its
noisy signal is interpolated with a 5th degree
polynomial, as pictured on figure 6.

The sun incidence angle � evolution for April 22, 2002
is extracted from the MeteoNorm database (location:
Almeria airport) with an hour time step.

3.1.2 Flow inlet

The measured mass flow rate is used as input in the
mass flow rate source of the model. The data is
processed with a sliding averaging function to smooth
the signal, as shown on figure 7. The test loop is given
a temperature setpoint change during the operation,
which is why two main evolution sections are visible
on the inlet flow rate plot.

Figure 7: Inlet mass flow rate measured data and model

input

For the energy state at the inlet, the ThermoSysPro
flow source component requires the specific enthalpy
as an input. Available experimental data including
temperature and pressure at the first collector inlet,
specific enthalpy is computed from those values with
the IAWPS IF97 tables, and used as model input.
 The injection cooling at the inlet of the last collector,
whose role is to keep the outlet temperature on
setpoint, is modeled the same way. Its flow rate
evolution can be seen on Figure 8.

Figure 6: Ambient temperature measured data
and model input

Session 8B: Power, Energy & Process Applications 1

DOI
10.3384/ecp15118595

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

599

Figure 8: Injected mass flow rate for cooling

3.1.3 Flow outlet

The imposed pressure at the collector outlet also comes
from experimental data. The outlet pressure control
valve is closed until the loop reaches the setpoint
pressure at the outlet (loop is then said to operate in
sliding pressure mode), then the valve is controlled to
keep the pressure at the setpoint (which is an operation
in constant pressure mode). For the simulation, no
control valve is modeled, and it is simply the outlet
pressure that is taken as boundary condition. The
pressure field in the loop is then computed from the
outlet value and the pressure drops models. As can be
seen on Figure 9, the DISS loop is operated to about 31
bars on that day.

Figure 9: Loop outlet pressure evolution

3.2 Results and discussions

3.2.1 Pressure field in the loop

Figure 10 shows the pressure at the first collector inlet,
thus representing the overall pressure loss in the
collector.

Figure 10: Inlet and outlet pressure in the loop

It can be seen that the computed pressure inlet of the
model is quite close to the experimental value, with a
small over-prediction of about 1 bar at nominal
operation. The dynamic behavior resulting from the
change in the boundary conditions is also well
described, although the model pressure rises more
fastly than the experiment. We assume that this
difference is due to the fact that temperatures in the last
collectors reach saturation level more fastly in the
model (as can be seen in the next section temperature
plots), since computation starts with higher enthalpy
levels than the experiment (for solver stability reasons).
Therefore, if vaporization starts more quickly in the
model, a higher pressure drop is observed. The fact that
the inertia term of the momentum balance equation
(10) is set to zero can also explain this difference
between model and experiment, as well as the delay of
pressure drop peaks between model and experiment,
visible on the following figures.
It seems also interesting to compare specific pressure
drops in some collectors. Figure 11 shows the pressure
drop inside collectors 1 and 3. The model clearly
under-predicts the pressure loss of collector 1, where
flow is only liquid, whereas the prediction is rather
good for collector 3, where the flow has two phases.
Figure 12 shows the same data for collector 5 and 8.
For those two collectors, where a two-phase flow is
present, the model under-predicts the pressure loss.
Finally, figure 13 shows the pressure losses for the
collectors in the superheating section, collectors 10 and
11, where superheated steam is found. The prediction
for the loss in collector 10 is rather good, whereas a
large difference is found with collector 11. This could
be explained by the fact that the model does not
describe the physics of the injection cooling very well.
This phenomenon produces a pressure drop that is not
taken into account in the model, which is a simple
energy balance flow mixing component. For collector
1, it is assumed that the large difference between model
and experiment is due to the presence of steam bubbles
in the first collector of the experimental loop. Indeed,
although the average temperature is below saturation, it
can locally reach saturation, thus generating small
vapor bubbles that will quickly condensate, but will

Modeling of Linear Concentrating Solar Power using Direct Steam Generation with Parabolic-Trough

600 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118595

generate additional pressure drops. Those bubbles
cannot be “seen” by the model, since it uses a
homogeneous flow assumption.

Figure 11: Pressure drop in collectors 1 and 3

Figure 12: Pressure drop in collectors 5 and 8

Figure 13: Pressure drop in collector 10 and 11

So it can be seen with the previous figures that
although the overall pressure drop along the loop is
slightly over-predicted, model pressure losses in each
collector are almost always less than experimental data.
It is therefore the singular pressure loss components,
modelling the connections between collectors, which
correct the error. In terms of dynamics, simulation
results seems to show a similar behavior as
measurements, but smoother.

3.2.2 Temperatures and steam fractions

Figure 14 shows the temperature evolution for some of
the 8 first collectors. Collectors 2,3,5 and 8 all reach
saturation temperature at about 240°C, which shows
that they feature a two-phase flow. The inlet
temperature of collector 1 is both the actual
experimental value and the model boundary condition.
For each of the other collectors, the agreement is good
between experimental and modeling values.

Figure 15: Temperatures of collectors 9 to 11

Figure 15 pictures the temperatures of collectors
located in the superheating section of the modeled
loop. The model results show indeed that at collector 9
inlet, the temperature is already greater than saturation
value. It is not the case for the experimental results,
which show that inlet temperature of collector 9
remains at saturation level, although briefly going over
it. It means that for the model, superheating starts
somewhere in collector 8. This is confirmed by figure
16 which shows the steam fraction evolution in each of
the collector discrete cell. It can be seen that the
fraction is 1 from cell 4 on. The experimental results
show that inlet temperature of collector 10 is above
saturation level, which means that superheating in the
experimental loop starts somewhere in collector 9.

Figure 14: Inlet temperatures of collectors 1,2,3,5 and 8

Session 8B: Power, Energy & Process Applications 1

DOI
10.3384/ecp15118595

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

601

Therefore there is a significant difference between
experiment and model of about one collector’s length
as to the location of the superheating “beginning”. It is
also and simply visible by the significant temperature
difference between model and experiment for each of
the collectors inlets in this superheating section. We
assume that this difference comes from the fact that
thermal losses are under-evaluated by the parabolic
collector model, especially in the superheating section.
In particular, the convection losses model uses a fixed
heat transfer coefficient, when it actually is a function
of many parameters and may be much higher than the
value used in the model. Also, the model does not
account for the thermal losses in the connections
between collectors. Lower thermal losses can also
explain the larger temperature peaks visible with the
model results. In the experimental loop, larger thermal
losses prevent large temperature peaks. Thermal losses
can also be under-evaluated in the vaporizer section,
but the effect is not visible since temperature remains
at saturation value.

Figure 16: Steam fraction evolution in collector 8

Another source of error is probably the modeling of the
injection cooling, or “desuperheating”. It is modeled as
a simple enthalpy balance component, whereas a
complex atomization process actually takes place, with
physical phenomenon that are not described by this
type of modeling, and which are beyond the scope of
this work.

A first general calibration of the model is done by
modifying two coefficients. The first one is the
modification from the original value of the convection
thermal losses coefficient h. The coefficient is
computed using a free convection correlation (a no-
wind situation is assumed) extracted from Chan and
described in (Forristall, 2003). The second
modification is done on the peak optical efficiency of
the collectors: it is reduced by 5%, from 73% to 68%.
As can be seen on the temperature plots of Figure 17,
model results are then significantly improved.

Figure 17: Temperature of collectors 9 to 11, after
general model calibration

Better agreement if found for collector 9, the simulated
inlet is at saturation temperature. Agreement is also
slightly better for collector 10 and at collector 11 inlet,
but the difference remains large, in collector 11 in
particular. Also, it can be noted that simulated
temperatures in collector 11 show transient behaviors
that are significantly different from measurements.
Since outlet steam conditions are particularly important
for DSG systems, it can be stated that the accuracy of
those results is not sufficient.

Those remarks, along with previous remarks made
about pressure drops, highlight the fact that precise
collector-wise calibration should be made in order to
improve model performance (indeed, pressure drops
coefficients and thermal losses coefficients are
assumed to be respectively equal in every collectors,
when they are most likely different), and further
simulations should be done with a focus on the
transient behavior.

4 Conclusions

A Modelica model of the direct steam generation
parabolic-trough experimental loop DISS has been
developed. Simulations have been carried out, using
experimental data from the loop as model input and
boundary conditions. For the simulated April sunny
day, results show a good general behavior agreement
between model and experiment, but adjustments have
to be made for a better fit to the experimental data,
since outlet steam conditions are important in DSG
sytems. Special attention will be given to computed
flux from the optical model in the parabolic collector
model, and to calibration of losses coefficients
collector by collector. Also, the simulation of a cloudy
day with irradiation transients remains to be done, with
full dynamic modeling of the two-phase flow.
 The perspective of this work and the validation of
the model is the study of advanced control strategies
for the handling of irradiation transients, which are key

Modeling of Linear Concentrating Solar Power using Direct Steam Generation with Parabolic-Trough

602 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118595

to the use of direct steam generation in linear CSP
plants. Indeed, knowledge of the dynamics taking place
in DSG systems is useful for the parameterization of
the control loops.
 Simulations with the nuclear two-phase flow code
CATHARE are also currently being carried out, for
comparison with the Modelica models.

Acknowledgements
The authors would like to thank their fellow colleagues of
CIEMAT for providing the experimental data of the DISS
test loop. This collaboration was made possible thanks to
the funding from the European Energy Research Alliance
(EERA) with the European project N° 609837 “Scientific
and Technological Alliance for Guaranteeing the
European Excellence in Concentrating Solar Thermal
Energy - STAGE STE”.

References

Eck, M., Benz, N., Feldhoff, J. F., Gilon, Y., Hacker, Z.,
Müller, T., Riffelmann, K.-jürgen, et al. (2008). The
potential of direct steam generation in parabolic
troughs - results of the German project DIVA.
Proceedings of the 14th Biennal CSP SolarPACES

Symposium.

Feldhoff, J. F., Eck, M., Benitez, D., & Riffelmann, K.-
jürgen. (2009). Economic Potential of Solar Thermal
Power Plants with Direct Steam Generation compared
to HTF Plants. Proceedings of the ES2009 Conference
(pp. 663-671).

Forristall, R. (NREL). (2003). Heat Transfer Analysis and

Modeling of a Parabolic Trough Solar Receiver

Implemented in Engineering Equation Solver Heat

Transfer Analysis and Modeling of a Parabolic

Trough Solar Receiver Implemented in Engineering

Equation Solver.

OECD/IEA. (2014). Technology Roadmap Concentrating

Solar Thermal Electricity.

Odeh, S. D., Morrison, G. L., & Behnia, M. (1998).
MODELLING OF PARABOLIC TROUGH DIRECT
STEAM GENERATION SOLAR COLLECTORS.
Solar Energy, 62(6), 395-406.

Valenzuela, L., Zarza, E., Berenguel, M., & Camacho, E. F.
(2004). Direct steam generation in solar boilers, using
feedback to maintain conditions under uncontrollable
solar radiations. IEEE Control Systems Magazine, 15-
29.

Valenzuela, L., Zarza, E., Berenguel, M., & Camacho, E. F.
(2005). Control concepts for direct steam generation in

parabolic troughs. Solar Energy, 78, 301-311.
doi:10.1016/j.solener.2004.05.008

Session 8B: Power, Energy & Process Applications 1

DOI
10.3384/ecp15118595

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

603

604 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Transient Simulation of the Power Block in a Parabolic Trough

Power Plant

Heiko Schenk
1
 Jürgen Dersch

2
Tobias Hirsch

3
 Thomas Polklas

4

1
German Aerospace Center (DLR), Institut of Solar Energy, Germany,

{Heiko.Schenk,Juergen.Dersch
2
,Tobias.Hirsch

3
}@dlr.de

4
MAN Diesel & Turbo SE, Process Industry/Engineering Steam Turbines, Thomas.Polklas@man.eu

Abstract

In the field of concentrated solar power (CSP) plants,
parabolic trough systems with thermal oil as heat

transfer fluid represent the technically and
economically most mature technology. Due to storage

systems these plants produce electricity on demand.
However, a considerable portion of the annually

collected thermal energy is consumed for the start-up

procedure. In fact, after shut-down periods thermal
masses must be reheated and additionally further

energy losses due to imperfect start-up procedures

occur. The present work has been carried out within the
TURIKON project. The main goal is to evaluate and to

optimize the transient behavior, namely the start-up of
parabolic trough plants with thermal oil. For this

purpose, a dynamic model was developed. An internal

DLR solar library was used for the modelling of the
solar field while the power block is modelled with the

publically available ThermoPower library where some

components had to be adapted for the needs of CSP
plants. In the present publication first results are shown

in order to demonstrate the capabilities of the plant
model. The dynamic behavior of the power plant

during normal operating mode and during a warm and

a hot start-up procedure is evaluated and the warm
start-up procedure energetically optimized.

Keywords: transient power block simulation, parabolic
trough, concentrated solar power

1 Introduction

With the penetration of fluctuating renewable energy

resources, such as wind and photovoltaic,
dispatchability gets more into focus. Concentrated

solar power plants offer the possibility to produce
electricity on demand due to their cost-effective

thermal storage systems. In the sector of point focus

systems solar tower power plants aim at high process
temperatures, using molten salt as heat transfer fluid or

gas in order to operate high temperature gas turbines.

In the sector of parabolic trough plants, the aim is to
develop high-temperature processes with direct steam

generation or molten salt as heat transfer fluid.
However, parabolic trough power plants with thermal

oil represent the state-of-the-art. With more than 2
GWel installed in Spain (Protermo Solar, 2015), these

plants are the economically most mature technology

amongst all CSP system. In these plants thermal oil is
heated in the solar field and thermal power is

transferred to a conventional water-steam cycle, where
electricity is produced. Several plants are equipped

with a two-tank molten salt storage system which is

connected with the oil circuit with a heat exchanger.
The storage system allows decoupling the electricity

production from the solar energy input. However, the

process parameters of these plants are limited due to
the decomposition temperature of the thermal oil of

400 °C.
The modelling and simulation work presented in this

paper has been carried out within the TURIKON

project. In this project DLR, MAN Diesel & Turbo and
the University of Duisburg Essen work jointly

together. Among other goals, the aim is to examine and
to optimize the transient operation and the start-up

procedure of solar field and power block. In fact, the

thermodynamic behavior of both subsystems is
characterized by their thermal inertia that stems from

fluid and steel masses. These thermal masses have a

smoothing effect on the electricity production during
cloudy periods. After plant shut-down, fluid and steel

masses cool down individually. During the start-up
process they have to be heated-up. The energy

consumption of the start-up processes can account for 5

to 10 % of the annual heat production, depending on
the plant’s configuration and meteorological

conditions. From here, it becomes clear, that the start-
up procedure presents a considerable energetic

optimization potential

In previous works on the start-up procedure of
parabolic trough plants with direct steam generation,

(Hirsch et al, 2006), and with thermal oil, (Hirsch et al,

2012), a DLR-internal Dymola library was used for the
modelling of the solar field. The present publication

focuses on the modelling of the power block, for which
the freely available ThermoPower library was used

with some adaptions and was coupled with the DLR-

internal solar library.

DOI
10.3384/ecp15118605

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

605

2 Reference System

For the modelling and simulation a parabolic trough

power plant similar to the commercial systems in Spain
was chosen. Figure 1 shows the hydraulic layout of the

plant with all relevant components. Table 1 gives an

overview of relevant thermodynamic parameters, as
well as heat transfer fluid (HTF) and steel masses. In

the same manner parameters of the power block are
shown in Table 2. As already explained, the heat

transfer fluid is heated up in the solar field and the heat

is transferred through the steam generator (SG) to the
power block (PB). There, electricity is produced in a

conventional water-steam cycle. Heat can also be
transferred to the thermal energy storage (TES) system

via a heat exchanger. The sensible heat is stored in

molten salt, which is pumped from the cold to the hot
tank. The flow direction is reversed for discharge

mode). During start-up, in case the thermal power must

be limited, the power block by-pass is activated.

The steam generator consists of an economiser,

evaporator, superheater and 2 reheaters, one for low
and one for high temperature. There are two high-

pressure (HP) turbine stages and 5 low-pressure (LP)

turbine stages. The power block is equipped with a
regenerative feed-water system, where the feed-water

tank is connected to the first bleed of the low pressure

turbine and is situated between low-pressure pre-
heaters and feed-water pump.

Table 1. Parameters of the solar circuit

Parameter Specification

HTF VP1, thermal oil

Collector Eurotrough

Length of collector 150 m

Aperture Width of Collector 5,77 m

Total number of collectors 576

Nominal SF mass flow, �̇SF 1053 kg/s

Nominal SF temperature

(inlet/outlet), �inSF, �outSF
293°C; 393°C

Thermal power at 837.5 W/m²

(perpendicular irradiation)
~ 285 MW

TES capacity 7 h

total steel mass 965 t

total HTF mass 1390 t

Figure 1. Hydraulic plant scheme

i Parabolic trough collector field 2 HP-by-pass valve 9 Condenser

ii Fossil auxiliary heater 3 HP inlet valve 10 Condenser pump

iii Molten salt storage system 4 HP turbine 11 LP pre-heater

iv Solar field pump 5 LP-by-pass valve 12 Feed-water tank

v Expansion vessel 6 LP inlet valve 13 Feed-water pump

vi Power block by-pass 7 LP turbine 14 HP pre-heaters

1 Steam generator compound 8 Generator

G

H
D

-U
m

le
it
u

n
g

E
in

s
p

ri
tz

u
n

g

HP LP

1

2 3

4

14

6

7

8

9

10

11

12

13

Gas

i ii
iii

iv

v

vi

�̇out
SF

 �̇SF toPB

�̇in
HP�in
HP�in
HP

 �̇in
LP�in
LP�in
LP

�VaHP
 �VaLP

�̇LP byp

�̇H
P

b
y

p

�̇P
B

b
y

p

�̇TES

�̇in
SF

5

Transient Simulation of the Power Block in a Parabolic Trough Power Plant

606 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118605

Both turbines are equipped with a by-pass valve and
an inlet valve. In nominal operating mode the inlet

valves are fully open and the by-pass valves are closed

and the power block works in sliding pressure mode.
During start-up procedure pressure and temperature

gradients at the inlets of the turbines and in the steam

generator are restricted. Furthermore, depending on the
phase, live- and reheat steam mass flow is restricted.

Live-steam and reheat mass flow are therefore
controlled with the inlet valves. At the same time, live-

steam and reheat steam pressure can be limited by

opening the by-pass valves. In that manner steam is
transferred to the condenser where it is finally

condensed and heat is dissipated leading to a pressure
reduction.

Table 2. Parameters of the power block

Parameter Specification

Nominal gross electric power 50 MW

nominal thermal power 125 MW

nominal gross efficiency 39.9 %

nominal live-steam parameters �inHP, �inHP, �̇inHP

101 bar; 381 °C;

53 kg/s

nominal steam parameters

re-heater, �inLP, �inLP

20 bar; 381 °C;

45 kg/s

No. of turbine stages 2 HP, 5 LP

Nominal operating Mode sliding pressure

SG volume water / steam 70 m³

SG volume HTF 115 m³

SG steel mass 435 t

FWS volume water / steam 80 m³

FWS steel mass 50 t

The split design of reheaters is not common in all

commercial plants but the standard configuration of the
Danish company Aalborg CSP, see (Aalborg CSP,

2015). Furthermore, unlike some other parabolic

trough plants, that are equipped with tube-and-shell
heat exchangers, Aalborg CSP only delivers header-

type heat exchangers for this application. Aalborg’s
evaporator is realized as two separate evaporator

vessels (with thermal oil in the internal piping and

water in the external pass) and a steam drum connected
with so-called risers and downcomers. The evaporator

works with natural circulation. Aalborg CSP provided

DLR with geometric and thermodynamic data of their
steam generators. The data is confidential, but can be

used for the simulation within the Turikon project.
The turbine configuration is similar to a commercial

system of MAN Diesel & Turbo. MAN provided DLR

with parameters and data about restrictions during
start-up procedure. There are 3 start-up procedures for

cold, warm, and hot start-up. The start-up procedure
depends on the temperature of the casings of the

turbines and their inlet valves. Amongst other
constraints the following temperatures of the casing of

the HP inlet valve are prescribed:

• hot start-up: t > 240 °C

• warm start-up: t > 180

• cold start-up: t < 180
The temperature of the casing depends on the cool-

down process and on the insulation of the turbine

components. In the example in section 4 after 3:45
hours of cool-down time, a hot start-up can be carried

out, while in the second example a cool down time of
12:45 hours entails a warm start-up. Since cold start-up

represents a rather rare event, in the present simulation

study only that case was not examined.

3 Modelling

3.1 Solar Library of the DLR

The solar field model was built up with components
from the DLR solar library. In the field of line focus

systems the first modelling work in DLR with Dymola

was carried out in the framework of a thesis, see
(Hirsch, 2005). A comprehensive dynamic library of

solar field components, namely for direct steam
generation systems, was developed, see (Hirsch et al,

2005). This library was later extended in order to use

single-phase fluids as thermal oil and also molten salt,
see (Hirsch et al, 2012). Due to the utilization of

standard Dymola connectors, such as Modelica 3.x
fluid connectors, the library can be combined with

standard Modelica libraries.

3.2 ThermoPower Library

The power block of the plant model was built up with

components from the freely available ThermoPower
library which has been developed in the Politecnico di

Milano since 2003, see (Casella et al, 2003; Casella et

al, 2006). The library contains dynamic models of all
relevant components of conventional water-steam, gas

turbine, and combined cycle power plants. Power
plants also including control system and grid

connection can be build up and simulated with the

library. Nowadays, the ThermoPower library also
support fluid connectors of the Modelica 3.x standard,

see (Casella, 2015) and can hence be coupled with

other Modelica libraries. The newest Version of the
ThermoPower Library is 3.1 Beta 0, while for the here-

presented simulations a preliminary version from 2013
was used.

In the standard version, the ThermoPower library

does not support thermal oil as heat transfer fluid.
Therefore, some additional components had to be

developed for the here-presented plant model.

3.3 Plant Model

Figure 3 shows the first layer of the plant model in
Dymola. The model is subdivided in submodels

Session 8B: Power, Energy & Process Applications 1

DOI
10.3384/ecp15118605

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

607

representing the HTF circuit (solar field and storage

system), the power block, and a separate control
system for both. In the solar field and in the power

block all major fluid and steel volumes are represented.

The model comprises all components that are
necessary for nominal operation and start-up

procedure. In a real plant there is a multitude of
additional pipes and valves, which are necessary for

rare operating modes or maintenance, which are not

accounted for in the model.
The pipes of the solar field are represented as one-

axis discretized pipe models. As published in (Hirsch

et al, 2010) the solar field is represented by one
collector loop and a representative header system. The

steel and fluid masses correspond to the ones of the
real solar field. For the sake of brevity, the model of

the solar field is not described here in detail.

Heat exchangers of the power block are also built up
with one-axis discretized pipes models. The power

block model comprises turbines, valves, pumps, heat
exchangers, and vessels. The presented reference

system differs in some details from conventional water

–steam power blocks. In most cases standard models
from the ThermoPower library could be used with

some adaptions for the modelling of the power block.

Figure 3. First layer of the plant model

In contrast to plant models in stationary simulation

tools set point values cannot be prescribed. Therefore,

Figure 2. Model of the power block

4

1

5

1 Economisor, evaporator and superheater 2 Reheaters high and low temperature

3 HP turbine with inlet and by-pass valve 4 LP turbine with inlet and by-pass valve

5 Electricity generating system 6 Turbine bleeds and feed-water system

2

3

6

Transient Simulation of the Power Block in a Parabolic Trough Power Plant

608 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118605

a comprehensive control system had to be developed.
This system controls for example:

• outlet temperature of the solar field

• fill-level of vessels, e. g. in evaporator and
feed-water system

• live-steam pressure and mass flow during
start-up

In the following paragraphs some examples of the
plants submodels are shown.

3.4 Model of the Power Block

The model of the power block is shown in Figure 2.

Blue lines represent the water / steam piping and green

lines the HTF piping. The two models which are used
for the steam generator are described in the following

sections. High and low-pressure turbines, inlet and by-
pass valves are built up entirely with models from the

ThermoPower library. The relation between pressure

and mass flow is implemented with Stodola’s law.
Turbine casings and valve boxes are modelled as

cylindrical steel masses.
The standard models from the ThermoPower library

had to be adapted for the feed-water system. Every

preheater and aftercooler, as well as feed-water tank
are modelled. Only the fill-level of the pre-heaters are

controlled. The bleed mass flows of the turbines adjust

themselves depending on the heat exchange
coefficients and the temperatures of the preheaters.

3.4.1 Economisor, Superheater, and Reheater

Figure 4 shows the model of a heat exchanger which is
used for the economizer, the superheater, as well as the

low and the high temperature part of the reheater.

Figure 4. Model of economizer, superheater and reheater

The model is based on the heat exchanger models of

the ThermoPower library, see for example (Casella et
al, 2006). However, the flue gas on the external pass

was replaced by thermal oil and the parameters had to

be adapted. In the superheater and in the reheaters the
internal pass is filled with steam and in the economizer

there is liquid water. External and internal pass are
modelled as a representative one-axis discretized

circular flow and in between there is a cylindrical steel

wall. The heat transfer between the two passes is
counter current. In addition to the standard model of

the ThermoPower library there is also a cylindrical

steel wall representing the shell of the heat exchanger.
A heat loss from the shell surface to the environment is

implemented, as well. The complex 3-dimensional heat
transfer and the flow geometry of the tube bundle of

the real heat exchanger are not represented in detail.

However, the model is using the fluid and steel
volumes, the throughput-time, and the load-dependent

heat transfer coefficient of the real heat exchanger and
represents therefore an adequate simplification.

3.4.2 Model of the Evaporator

Figure 5 shows the model of the evaporator. Different
from the economizer superheater, and reheaters water

and steam is in external pass while the thermal oil
circulates trough the internal pass. The thermal oil flow

is modelled as a circular flow. There is a cylindrical

steel wall between internal and external pass
representing the wall of the piping. The steam drum is

modelled as a volume with steel wall that contains a

water phase and a steam phase in equilibrium. As in
the models of the previous section the complex 3-D

geometry of the evaporator is not represented but fluid
and steel volumes, and heat transfer coefficients match

the ones of the real evaporator.

Figure 5. Model of evaporator

4 Simulation of Load Changes

A second plant model was built with the

thermodynamic cycle tool Ebsilon Professional in
order to derive parameters and to calibrate the Dymola

model. Since Ebsilon Professional is well-respected
tool in the field of steady-state analysis of thermal

power plants, the here presented scenario serves as a

validation for the Dymola power block model in
stationary operating points.

Session 8B: Power, Energy & Process Applications 1

DOI
10.3384/ecp15118605

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

609

Figure 6 shows a step-wise simulation of part-load
points from 50 MWel to 10 MWel with the Dymola

model. The HTF mass flow through steam generator

and hence the thermal power to the power block was
adapted in order to adapt the electrical power. The

adaption time of the mass flow is set to two minutes. In

the same diagram the electrical power of the steady-
state model is shown. With identical gross electrical

power in stationary conditions, the corresponding
thermal power delivered to the power block deviates

between both models by less than 0.5 % in full-load

and less than 2 % in part-load. The differences between
both models are due to different model assumptions

namely in the part-load calculation. Since the focus of
the Dymola model is the simulation of transient

behavior this deviation is considered as acceptable.

Due to its inertia the Dymola model needs a settling

time, �sett to reach stationary conditions. As a criterion,

the point in time is chosen when the electric power �el(�) differs by less than 1 % from the final value �el,final:
 ���el,final − �el(�)�el,final ����sett+�ramp� < 0.01 (1)

Since, the ramp of the load change takes 2 minutes �ramp is deduced.

Figure 6. Electric power and mass flow

From Figure 6 it can be concluded that the settling

time is load-dependent. Three examples are given:

• from 50 to 45 MW, 6 min

• from 35 to 30 MW 9 min

• from 15 to 10 MW, 25 min

The settling time is much longer, in part load operating
points. The reason for that is that the heat stored or

released from the fluid and steel masses is, compared
to the totally transferred thermal power, much more

important in part load than in full load.

5 Start-up Simulation

5.1 Heat Balance and Start-up Losses

A heat balance is established in this section in order to

evaluate the energy consumption of the start-up
procedure. For this purpose the thermodynamic state of

the plant is introduced, see equ. (2). �state represents

the total heat in all fluid and steel masses in the system
compared to a reference state. For water, usually,

liquid state at 0 °C is taken as reference. However, the

choice of reference state is arbitrary and not of
importance since in the present paper only the

difference between two states is calculated. �state = ���f,�(�� ,�� , ��) ∗ �f,���
1

+���s,���� − �ref� ∗ �s,���
1

(2)

with: �, �, � temperature, pressure and steam quality �ref reference temperature �f,�s fluid and steel mass �f specific internal energy of fluid �s specific heat capacity of steel

After shut-down the plant cools down and this heat
must be compensated during start-up. The theoretical

energy for the heat-up phase, index HU, of the Solar

field, index SF, of all thermal masses between cold

state, at point in time �0, and the hot state, at �1, writes:

 �HUSF = �stateSF (�1)− �stateSF (�0) (3)

For the power block accordingly:

 �HUPB = �statePB (�1)− �statePB (�0) (4)

The heat-up energy also represents the minimal

thermal energy need for a start-up procedure in case no

other heat losses occur. However, during the start-up
procedure of the solar field, heat losses of headers and

piping occur, index l,HP. Furthermore, the solar field
must partly be defocused, index l,def, in some cases in

order to avoid overheat of collectors. Hence, the total

start-up energy, of the solar field including these losses
writes:

 �SUSF = �HUSF + �l,def + �l,HP (5)

During the power block start-up heat is dissipated

when the turbine by-passes are open, as already
described in section 2. The power block start-up energy

hence is the sum of the heat-up energy and the energy
that is lost due to by-pass operation, index l,byp:

0

100

200

300

400

500

600

0

10

20

30

40

50

0 1 2 3 4 5 6 7 8

m
a

ss
 f

lo
w

 [
k

g
/s

]

el
ec

tr
ic

a
l

p
o

w
er

 [
M

W
]

time[h]

P_el_gross stationary
P_el_gross Dymola
mflow_HTF

Transient Simulation of the Power Block in a Parabolic Trough Power Plant

610 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118605

�SUPB = �HUPB + �l,byp (6)

The total energy for plant start-up then writes:

 �SU = �SUPB + �SUSF (7)

As defined in (Hirsch et al, 2012) the relation
between the minimal start-up consumption (equals the

heat-up energy) and the start-up consumption of the

real process writes
 � =

�SU�HU (8)

 � is always greater than 1 and can be used to

parameterize simplified models for annual electrical
yield analysis calculation.

5.2 Test Scenario

A scenario was chosen in which daily operation, cool-
down phase, and start-up procedures can be tested. The

scenario comprises two consecutive days, which are
generated with a clear-sky model for a typical Spanish

site for the 21
st
 of March. The simulation results are

shown in Figure 7. The upper diagram shows the direct
normal irradiation (DNI) in W/m², as well as the

effective DNI, which is corrected by all angle losses.

Typical for a north-south aligned parabolic trough
plant, the effective DNI peaks in the morning and in

the evening. The diagram in the middle shows the solar
field temperatures and mass flows, index SF, and the

thermal oil mass flow to the steam generator, index

SG. Due to model limitations the mass flow of the
solar field cannot be zero. Therefore, even in the night

the solar field is in recirculation mode. Since, the
influence of the mass flow on heat losses is marginal

this simplification does not affect the energy balance of

Figure 7. Plant Operation during two clear-sky days

Session 8B: Power, Energy & Process Applications 1

DOI
10.3384/ecp15118605

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

611

the cool-down procedure. The lower diagram shows
the mechanical shaft power of the turbine and the gross

electrical power which includes the efficiency of the

generator. The plant operates in a purely solar driven
mode. That means that electricity shall be produced as

long as possible. Load scheduling is not foreseen.

The scenario begins in the first evening with an
empty storage system. The extended cool-down phase

in the first night leads to a warm turbine start-up
procedure during the first morning. During the first

operating day, the solar field mass flow drops around

16:00 since the storage system is fully charged. In the
evening after sunset, the plant is operated from storage

until shortly after 4:00. During storage discharge
operation, the temperature of the thermal oil is

considerably lower due to the temperature difference of

the heat exchanger. This leads to lower live-steam
temperatures and to a reduced electrical power. The

short cool-down phase of the power block entails a hot

start-up procedure in the morning of the second day.

5.3 Detail Start-Up Procedure

Warm and hot start-procedures are shown in Figure 8.
On the left and on the right the upper diagrams show

temperatures and pressures in the water steam-cycle at
the outlet of the superheater (SH), reheater superheater

part (RHs), as well as the temperatures of the casing of

the high-pressure turbine (VaHP) and the thermal oil at
the steam generator inlet (SG).

The diagrams below show the gross electrical power

relative to 50 MW in %, as well as the steam mass
flows at the inlet and the by-pass valve of the low

pressure turbine (LP, LPbyp) and the high pressure
turbine (HP, HPbyp). As indicated as well in Figure 8,

the start-up procedure is subdivided into phases A, B,

C, which are between shut-down and nominal mode of
the power block. For further information about the

phases see Table 3. As soon as the irradiation
conditions allow, the solar field is heated-up in

recirculation mode. When the temperature is high

enough, a part of the recirculation mass flow is
deviated through the steam generator. This mass flow

is called �̇SFtoPB (compare with Figure 1) and is set to

300 kg/s in this section. During start-up, the live- and

reheat steam mass flows are controlled with the HP and
LP inlet valves. The pressure is controlled, with the by-

pass valves. The constraints for pressure and

temperature are prescribed by the manufacturers of
steam generator and turbine and are confidential. In

principle in the hot and in the warm start-up procedure
there are the same phases and the same constraints,

however with different values.

The purpose of phase A is to preheat the casings of
HP and LP turbine and to reach minimal live and

reheat steam conditions. In that phase the mass flow is

very small. In phase B the turbine is turned and
synchronized, also with a small mass flow. The

purpose of phase C is to increase the electrical power
by opening turbine inlet valves and closing the by-pass

valves. During that phase gradients for mass flow,

temperature, pressure, and electrical power must kept
below a certain value. At the end of the phase, the

power block is in nominal mode with sliding pressure.

 Table 3. Phases of the start-up procedure

A pre-heat
Task: preheat of turbine (valve) casing

Limits: steam pressure and mass flows

B
Synchro-
nization

Task: start-up and synchro of turbines

Limits: steam pressure and mass flows

C
charge
increase

Task: increase of electr. production

Limits: Gradients of electrical power,

pressure and temperature

The zero point of the x-axes in Figure 8 is defined as
the beginning of the synchronization phase (B). During

warm start-up procedure, left diagrams, phase B begins
at 8:15 in morning of the first day. The preheat phase

begins at 7:42 (not visible on the diagram) and phase C
ends at 8:37. In the hot start-up procedure Phase B

begins at 8:06 (zero point on of the x-axis). The

preceding phase A takes only 1 minute since the valve
boxes are already at a high temperature and the

minimal live- and reheat steam conditions are attained
quickly. The start-up procedure is terminated at 8:31.

The upper diagrams (Figure 8) show the ramp up of

superheater and reheater temperatures and the live-
steam pressure. It becomes visible, that the live- and

reheat steam pressure are limited during phases A and

B and are increased in phase C during the transition to
the nominal operating mode. The lower diagrams

(Figure 8) show the limitation of the steam mass flows
during phase A and B, as well as the ramp-up in phase

C. The ramp-up of the electrical power is in phase with

the steam mass flows. Furthermore, the diagrams also
show the by-pass mass flows which are due to the

pressure control of the bypass valves. It becomes

visible, that during the warm start-up procedure, more
steam is condensed than in the hot start-up. The bypass

steam is finally condensed. Therefore, thermal energy
is dissipated which represents an energy loss.

The balance equations of section 5.1 are used in the

following to establish an energetic evaluation of the
start-up procedure, see Table 4. The total heat-up

energy of power block and solar field, �HU sums up to

133.2 MWhth and the total start-up energy, �SU to

180.7 MWhth during the warm start-up. This represents
almost 1.5 power block full load hours (equivalent to

125 MWhth). The difference between heat-up and start-

up energy, �l,SU = 47.5 MWhth is 38 % of the energy

demand for a full-load-hour and also represents the
maximal optimization potential for the start-up

procedure. During the hot start-up the solar field heat-
up energy almost equals to the one of the warm start-

Transient Simulation of the Power Block in a Parabolic Trough Power Plant

612 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118605

up procedure, since the cool-down period of the solar

field is similar. However, the power block start-up
demands less energy due to the shorter stand-still time.

In total �HU is 126.6 MWh and �SU 154.7 MWh.

Therefore, the optimization potential, �l,SU is

28.1 MWh representing 23 % of the energy demand for

a full-load-hour. The start-up factor for the warm start-

up is 1.35 and 1.22 for the hot start-up

Table 4. Energy Balance of the start-up

 Warm start-up Hot start-up �stand−still [h] 11:45 h 3:55 h �HUSF [MWh] 114.2 114,0 �HUPB [MWh] 19.0 12.6 �SUSF [MWh] 135.8 134.0 �SUPB [MWh] 44.9 20.7 �l,SU [MWh] 47.4 28.1 � [−]
180.7

133.2
= 1.35

154.7

126.6
= 1.22

5.4 Optimization of the start-up procedure

The previous section has shown possible reduction

potential of energy losses during start-up. On the one

hand, the surplus power that is delivered from solar

field to power block is dissipated due to by-passing.
On the other hand, when the solar field reaches

nominal operating state before the power block, losses

occur due to defocusing, since also the charge power of
the storage system is also limited. An minimum is

supposed to be reached when power block and solar

field reach nominal operating state at the same time.
The thermal oil mass flow through the steam generator �̇SFtoPB, which controls the thermal power transferred
to the power block was set to 300 kg/s in the scenario

of the previous section. This mass flow is now varied

in order to find energetic optimum. Figure 9 shows the

evolution of the losses and their sum �l,SU for �̇SFtoPB

from 50 kg/s to 350 kg/s. As expected, with an

increasing �̇SFtoPB more heat is delivered to the power

block and more heat must be dissipated and therefore �l,byp increases. At the same time more heat is drawn

from the solar field, and the need to defocus, hence �l,def, decreases. The heat losses of the solar field

piping and equipment, �l,def, remain almost unaffected,

since they are only temperature-dependent. The

minimal value of 36.7 MWhth for �l,SU is attained with �̇SFtoPB = 100 kg/s – compared to 47.5 MWhth at 300

kg/s. The same variation was carried out for the hot

Figure 8. Warm and hot start-up. Phases: A preheat, B Synchronization, C load increase

A B C nominal A B C nominal shut-down

Session 8B: Power, Energy & Process Applications 1

DOI
10.3384/ecp15118605

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

613

start-up procedure, which leads to a very flat optimum.

Since the optimization potential of �l,SU is almost

negligible, the results are not shown here.

Figure 9. Energetic Start-up consumption over mass

flow during warm start-up procedure

6 Conclusions and Outlook

A model of a parabolic trough power plant with
thermal oil was developed with the DLR solar library

and the publically available ThermoPower Library.
The main focus of the modelling was put on the

transient behavior, namely the start-up procedure, of

the power block. With the model, the interaction
between solar field, storage system and power block

during start-up and the impact of transient effects is

examined.
In a first step, the dynamic behavior of the power

block during nominal operation with load changes is
examined. As expected the thermal masses lead to a

delayed behavior of the electricity production.

In a second step a scenario of two consecutive clear-
sky days was chosen for a simulation. During the first

night an empty storage system entails a cool-down time
of almost 12 hours which is followed by a warm start-

up procedure in the next morning. The totally

consumed energy of the start-up procedure is 180.7
MWhth. 133.2 MWhth are necessary for the heat-up of

the thermal masses and 47.5 MWhth represent

additional thermal mainly due to defocusing and by-
passing. In the second night, a fully charged storage

system leads to a hot start-up after a cool-down time of
less than 4 hours. The energy consumption is 154.7

MWhth. In both cases the heat demand for the thermal

masses of the solar field is the same, since the solar
field cool-down time is equal in both cases.

In a last step, the thermal oil mass flow to the power

block and hence the thermal power input during the
start-up procedure was varied, leading to a reduction of

around 11 MWhth for the warm start-up procedure.
Finally, the paper shows the potential of the

dynamic plant model in Dymola. With further

simulations the impact of the inertial behavior of the
power block could be evaluated with regards to

dispatchability. Additional start-up simulations with

modified plant configurations could provide more data
on start-up consumption, for example as a function of

plant size, cool-down time and irradiation conditions.

Furthermore, new control strategies during start-up can
be tested.

7 Acknowledgements

The authors would like to thank the German Federal

State of North Rhine-Westphalia and the European
Regional Development Fund for the financial support

of the project TURIKON in the frame of the program

progress NRW and the goal 2-program 2007-2013,
Phase VI (Grant No. 64.65.69-EN-2019).

The authors would also like to thank Aalborg CSP

for providing comprehensive data of their steam
generators and Politecnico di Milano for making

available the ThermoPower library.

References

Aalborg CSP. Aaalborg CSP steam plant configuration,

2015/04/16, www.aalborgcsp.com.

Francesco Casella and Francesco Schiavo. Modelling and

Simulation of Heat Exchangers in Modelica with Finite

Element Methods, 3rd International Modelica Conference,

pp. 343-352, 2003.

Francesco Casella and Francesco Pretolani. Fast Start-up of a

Combined-Cycle Power Plant - a Simulation Study with

Modelica.pdf, 5th International Modelica Conference, pp.

7, 2006.

Francesco Casella. ThermoPower - Open library for thermal

power plant simulation, 2015/04/17,

http://thermopower.sourceforge.net/.

Tobias Hirsch. Fortschritt-Berichte Energietechnik, Reihe 6,

No. 535, VDI Verlag, Dynamische Systemsimulation und

Auslegung des Abscheidesystems für die solare

Direktverdampfung in Parabolrinnenkollektoren, 2005,

ISBN: 3-18-353506-8.

Tobias Hirsch, Markus Eck, Wolf-Dieter Steinmann.

Simulation of transient two-phase flow in parabolic trough

collectors using Modelica, 4th International Modelica

Conference, Vol. 1, pp. 403-412, 2005.

Tobias Hirsch and Markus Eck. Simulation of the Start-Up

Procedure of a Parabolic Trough Collector Field with

Direct Solar Steam Generation, 5th International Modelica

Conference, pp. 135-143, 2006.

Tobias Hirsch, Heiko Schenk, Norbert Schmidt, Richard

Meyer. Dynamics of Oil-based parabolic Trough Plants -

Impact of transient Behaviour on Energy Yields, 16th

SolarPACES Conference, pp. 8, 2010.

Tobias Hirsch, Jan Fabian Feldhoff, Heiko Schenk. Start-Up

Modeling for Annual CSP Yield Calculations, Journal of

Solar Energy Engineering, 134 (3), pp. 031004-1..9, 2012,

DOI: 10.1115/1.4006268.

Protermo Solar. Protermo Solar - Asociación Española de la

Industria Solar Termoeléctrica, 2015/04/16,

http://www.protermosolar.com.

0

10

20

30

40

50

60

50 100 150 200 250 300 350

th
er

m
al

 E
n

er
g

y
 [

M
W

h
]

mflow_SFtoPB [kg/s]

Q_HP Q_def Q_byp Qloss

Transient Simulation of the Power Block in a Parabolic Trough Power Plant

614 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118605

Fault Detection and Diagnosis with Modelica Language using

Deep Belief Network

Dongkyu Lee1 Byoungdoo Lee1 Jin Woo Shin2

1Green City R&D Team, R&D Division, Hyundai Engineering and Construction Company, South Korea

2Department of Electrical Engineering, KAIST, South Korea

Abstract

The air handling unit (AHU) is the main
component of heating, ventilation and air-
conditioning (HVAC) systems, and irregular faults
in AHUs are major sources of energy consumption.
For energy efficient operation of HVAC, this paper
aims to detect and diagnose three abnormal states
in the AHU with the popular deep learning model,
called Deep Belief Network (DBN), where we
train it using various data generated by Modelica.

 Key words: Fault detection and diagnosis, Air-

handling unit, Deep Belief Network, Modelica

1 Introduction

There has been a consistent significant increase
in the awareness of the importance of control
strategies for heating, ventilation, and air
conditioning (HVAC) systems in the building
energy sectors. It is available for use energy more
efficient with great qualities of monitored data and
well-operated control components which are
essential for achievements of entire HVAC control
systems. Despite its benefits, however, energy
wastes are still considered the main disadvantage
with HVAC systems, and therefore, the
development of fault detection and diagnosis
(FDD) strategies for energy saving in buildings are
considered crucial. With this, there have been
many studies about FDD in HVAC systems:
Massieh Najafi presented modeling and
measurement constraints in fault diagnostics for
HVAC systems (Najafi et al, 2012); Zhimin Du
developed a wavelet neural network-based fault
diagnosis in an AHU. The AHU, as one of the

main components of HVAC systems, is the heat
exchange station between air and water (Du et al,
2008). With this, Modelica is used in the AHU for
FDD to identify and prevent application faults and
the difficulties they cause.

Generally, the methods of FDD are divided into
three different categories which are rules-based,
model-based and data-driven methods. The rules-
based FDD methods are achieving with expert
knowledge and experience rules without any
mathematical models (House et al, 2001, Schein et
al, 2006). Analysis of detection and diagnosis with
checking rules of expert knowledge and
experience is accomplished. Contrasting from
rules-based methods, model-based FDD methods
are attaining based on systematic physical and
mathematical models (Salsbury et al, 2001, Yu et
al 2002). This method is achieving detection and
diagnosis of abnormal states with comparing real
values with data gained from models. Nowadays,
data-driven FDD method is adopted to apply due
to a lot of data are available for gaining from
building energy management system (BEMS).
Data-driven FDD method is using historical data
to detect and diagnose and include different
analysis such as neural network (Wang et al, 2002,
Lee et al, 2004), wavelet analysis (Du et al, 2008),
and the statistic methods (Du et al, 2007, Xiao et
al 2009) etc.

The aim of this research is to use a deep belief
network (DBN) which is one of data-driven FDD
methods achieving detection and diagnosis

DOI
10.3384/ecp15118615

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

615

Nomenclature

HVAC
AHU
FDD
DBN
SAT
RAT
EAT
HIAT
HOAT
HIWT
HOWT
SAP
RAP
SAE
RAE
OAD
EAD
RAD
OADT
OAWT
IT
EAF
OAF
RAF
SAF

heating, ventilation and air conditioning
air handling unit
fault detection and diagnosis
deep belief network
supply air temperature
return air temperature
exhausted air temperature
heat exchanger input air temperature
heat exchanger output air temperature
heat exchanger input water temperature
heat exchanger output water temperature
supply air fan power
return air fan power
supply air enthalpy
return air enthalpy
outdoor air damper
exhausted air damper
return air damper
outdoor air dry-bulb temperature
outdoor air wet-bulb temperature
indoor temperature
exhausted air flow rate
outdoor air flow rate
return air flow rate
supply air flow rate

abnormal states in AHU. If using data-driven FDD,
it is important to use historical data appropriately.
Therefore, data mining and machine learning are
proper method to conduct FDD with historical data.
The normal and abnormal data are gathered from
model using Modelica. In this research, proper
location and number of sensors are important to
conduct FDD system AHU. It is difficult to apply
faults in real system, through this procedure;
therefore, Modelica is made use of applications of
FDD in AHU like as a real system. Considering
the data gained from model using Modelica, the
machine learning framework uses two kinds of
data: training data and test data. After machine
learning, the DBN is used to detect and diagnosis
specific faults, which will be mentioned in Section
2 of this paper. Figure 1 illustrates the detailed
process of the entire fault detection and diagnosis
procedure.

Figure 1. Process of fault detection and diagnosis
using machine learning

The paper is organized in four different sections:
Section 1 provides an introduction of fault
detection and diagnosis with Modelica; Section 2
defines HVAC systems and discusses the faults in
the system identified through Modelica; Section 3
is a method of fault detection and diagnosis using
machine learning; and finally, Section 4 ends this
research with a conclusion.

2 System Description

2.1 Typical system of AHU and HVAC

Figure 2 shows a typical HVAC system in a
building. Here, the supply air, the mixture of the
outdoor air and recycled air, exchanges heat and
humidity with the chilled water in the AHU. The
chilled water coming from the chillers is delivered
by the pumps to the AHU. After being cooled
down by the chilled water, the supply air is
delivered to each air conditioning zone by the
variable-speed supply fan. Moreover, the return air
is divided into two streams by the variable-speed
return fan: one stream is exhaust air to the outside
of the building, and the other is recycled in the
next air circulation (Du et al, 2014).

Fault Detection and Diagnosis with Modelica Language using Deep Belief Network

616 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118615

Figure 2. Typical Heating, Ventilation and Air-
conditioning (HVAC) system in a building

The supply fan speed is regulated based on the
duct static pressure. The return fan controller
tracks the supply fan air flow rate reduced by a
fixed offset. The duct static pressure is adjusted so
that at least one VAV damper is 90% open. The
economizer dampers are modulated to track the set
point for the mixed air dry bulb temperature.
Priority is given to maintain a minimum outside
air volume flow rate. In each zone, the VAV
damper is adjusted to meet the room temperature
set point for cooling, or fully opened during
heating. The room temperature set point for
heating is tracked by varying the water flow rate
through the reheat coil. There is also a finite state
machine that transitions the mode of operation of
the HVAC system among the modes: occupied,
unoccupied off, unoccupied night set back,
unoccupied warm-up, and unoccupied pre-cool. In
the VAV model, all air flows are computed based
on the duct static pressure distribution and the
performance curves of the fans. Local loop control
is implemented using proportional and
proportional–integral controllers, while the
supervisory control is implemented using a finite
state machine.

To model the heat transfer through the building
envelope, a model of five interconnected rooms is
used. The five room model is representative of one
floor of the new construction medium office
building in Seoul, Korea. There are four perimeter
zones and one core zone. The thermal room model
computes transient heat conduction through walls,
floors, and ceilings, and long-wave radiative heat
exchange between surfaces. The convective heat
transfer coefficient is computed based on the
temperature difference between the surface and the

room air. There is also a layer-by-layer short-wave
radiation, long-wave radiation, convection and
conduction heat transfer model for the windows.

Each thermal zone can have air flow from the
HVAC system, through leakages of the building
envelope (except for the core zone) and through
bidirectional air exchange through open doors that
connect adjacent zones. The bidirectional air
exchange is modeled based on the differences in
static pressure between adjacent rooms at a
reference height plus the difference in static
pressure across the door height as a function of the
difference in air density. There is also wind
pressure acting on each facade. The wind pressure
is a function of the wind speed and wind direction.
Therefore, infiltration is a function of the flow
imbalance of the HVAC system and of the wind
conditions (ASHRAE, 2006; Deru et al, 2009;
Modelica Buildings Library ; TARCOG, 2006).

2.2 Modeling of HVAC System with Modelica

Most researches accomplished FDD through
simple amounts of sensors or regardless of real
control logic of HVAC system. However,
Modelica can make the AHU and HVAC system
like as a real system. Modelica Buildings library
carried out the modeling for the HVAC system of a
building as shown in Figure 2 in its illustration of
specific components of the HVAC system like in
Figure 3.

Figure 3. HVAC system accomplished by Modelica

Aside from the modeling of the entire system,

Session 8C: Safety & Formal Methods

DOI
10.3384/ecp15118615

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

617

the operation logic is also necessary to operate
using Modelica. As described in Section 1, this
research aims to apply cooling operation only. The
operation logic of cooling is as follows.

▶ Cooling Logic

▪ Cooling Coil Control Valve: proportional integral
(PI) control is applied to maintain the temperature
of supply air at 16°C (k: 0.01, Ti: 600 sec).

▪ Chiller: set temperature of chilled water at 8°C.

▪ Chiller on/off:

- On: schedule of occupants, temperature
range of cooling coil inlet at more than 12°C

- Off: temperature range of cooling coil inlet
at less than 8°C

▪ Cooling Circulation Pump: PI control to remain
pressure of cooling pipe (k: 0.0005, Ti: 100 sec,
flow rate: 10 kg/s)

▪ Fan for Cooling mode: Unoccupied night set
back, unoccupied pre-cool, safety mode

▪ Fan for Cooling on/off: VAV and PI control to
maintain pressure of indoor area at 410 Pa (k: 0.5,
Ti : 15sec)

▶ Terminal Box Logic

Terminal Unit Dampers: PI control of damper
proportion according to the set temperature of the
indoor area (k: 0.1 Ti: 120 sec)

Referenced by Buildings of Library developed by LBNL
1.5/Examples/VAVReheat/Controls/Economizer.mo

2.3 Modelica Testing

This research determined specific data of
sensors compared to typical available sensors to
check the accuracy of fault detection and diagnosis.
Table 1 described the sensors’ 21 kinds of data
achieved in the research. Determined data of
sensors are applied through Modelica.

Data

from

Sensors

SAT
RAT
EAT
HIAT
HOAT
HIWT
HOWT

SAP
RAP
SAE
RAE

OAD
EAD
RAD

OADT
OAWT

IT
EAF
OAF
RAF
SAF

Table 1. Sensors generated by Modelica

As shown in Figure 4, various but necessary sensors
in HVAC with Modelica.

Figure 4. Location of each Sensor in Modelica

2.4 Fault Characteristics

The FDD system is applied to modern engineering
fields to detect and diagnose abnormal conditions,
faults, or malfunctions occurring in the routine
operations of a system before these situations
worsen or lead to additional damage to the entire
AHU system. In the classification of faults, those
with sensors and controllers are considered as one
type only because feedback controllers are
normally applied to modern engineering systems
that mainly guarantee stability if the controller
gains are suitably selected (Yuebin et al, 2014).
This research focused on the three common faults
of supply fans, valves, and heat exchangers. These
faults are related to fans getting stuck, leakage of
the cooling coil and the low efficiency of the
coefficient of performance (COP) of each system.
Modelica was used to change the parameters that
are commonly used in normal systems.

Fault Detection and Diagnosis with Modelica Language using Deep Belief Network

618 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118615

2.4.1 Instances of Supply Fan Getting Stuck

The instance of a fan getting stuck is one of the
major problems in the use of supply fans. When a
fan gets stuck, flow rates through the fan are
decreased. Based on this theory, the instance of a
fan getting stuck is achieved by Modelica by
decreasing the flow rates at 60% compared to the
normal operation of a supply fan. 60% of flow
rates in the fan are assumed that flow rates are
decreased when the fan getting stuck. Figure 5
described the control of the flow rates of a supply
fan.

Figure 5. Implementation of supply fan getting stuck
with Modelica

2.4.2 Leakage in Cooling Coil Valves

Leakage in cooling coil valves gives rise to an
abnormal operation state. Modelica language can
set the fault of leakage in cooling coil valves. The
parameter of leakage value is represented by “L”
and to accomplish the change of valve leakage
from 0.0001 to 0.1 ((L=Kv(y=0)/Kv(y=1). “y=0”
means fully closed state of the valve, “y=1” means
fully opened state of the valve. Figure 6 describes
the possible method to control the leakage in a
cooling coil valve.

Figure 6. Implementation of leakage in cooling coil
with Modelica

2.4.3 Low Efficiency of Heat Exchanger

The heat exchanger of the AHU is located between
the return fan and supply fan. When the capacity
of the heat exchanger is lower than that in its
normal operation, the HVAC system will
malfunction. Low thermal conductance means that
there is low efficiency between the components of
the heat exchanger. In this logic, the fault of the
heat exchanger is achieved by Modelica by
changing the thermal conductance from 30 kW to
15 kW. Figure 7 describes how the thermal
conductance of the heat exchanger can be changed.

Session 8C: Safety & Formal Methods

DOI
10.3384/ecp15118615

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

619

Figure 7. Implementation of low efficiency of heat
exchanger with Modelica

2.5 Simulation

A total 21 kinds of data from sensors and their
respective simulation with Modelica of normal
state and 3 different faults states are achieved in 10
days of the summer period. Normal states of
simulation are calibrated based on the logic of
operation. With the results of simulation with
Modelica, this research achieved various results
between the normal state and the three different
faults of the HVAC system. Difference between
normal state and three different faults are shown
from Figure 8 to Figure 10.

However, it is difficult to detect and diagnose
various faults not just in the application of results
of simulation in various circumstances. This
means that one fault of the HVAC system has
different effects on the data of sensors compared to
other faults. Therefore, with machine learning,
Section 3 explains the method on how to deal with
wide usage involving various fault detection and
diagnosis instances.

Figure 8. Comparison flow rates of return air
between normal and instances of supply fan getting
stuck with Modelica simulation

Figure 9. Comparison water temperature of heat
exchanger outlet between normal and leakage of
valve with Modelica simulation

Figure 10. Comparison room temperature between
normal and heat exchanger with Modelica simulation

Fault Detection and Diagnosis with Modelica Language using Deep Belief Network

620 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118615

3 Fault Detection and Diagnosis

After the application of results with Modelica as
the normal and abnormal data, the fault detection
and diagnosis process using machine learning is
achieved as shown below. Data are filtered
through the pre-process procedure, machine
learning with a classifier procedure, and fault
detection and diagnosis accomplished by the post-
process procedure.

Figure 11. Process of FDD

3.1 Pre-processing

“Pre-processing” is a necessary procedure to
minimize several irregular a number of results
from sensors of AHU in Modelica due to status of
building and environments. First, normalization
process is essential process for the analysis of data
gained by Modelica to standardize irregular data
which are regardless of times and seasons into
regular data. Mean and standard deviation values
are attained in normalization process, and these
values are normalized to distinguish normal from
abnormal states. Second, there is a need to binarize
all data because of the structure of a DBN. DBN
only uses to binarized data. The binarized data
have great effects of accuracy to establish the
performance before classification (Masmoudi et al,
2013). After normalization, most data are shown
near the value of zero, assuming low frequency
when the values are far from zero. In this process,
the data are quantized and assigned with their
respective bits—to be compressed into either 8 bits
or 10 bits. The error rates of 8 bits and 10 bits are
as follows. The research assumed that 8 bits and
10 bits are enough to conduct the performance
appropriately.

Figure 12. Performance differences of DBN
according to compressibility

As a result, 10 bits of compressibility have better
performance compared to others. Therefore, this
research applied 10 bits of compressibility of data
into fault detection and diagnosis.

3.2 Classifier: Deep Belief Network

“Classification” is the process of fault detection
and diagnosis when the data of the sensors with
Modelica are attained. Among the various
classification methods such as support vector
machines (SVM), k-nearest neighbors (K-NN) and
so on based on other researches, this research used
the “deep learning method,” which is one of the
most popular machine learning methods available.
Because there is no information on normal or
abnormal data of sensors with Modelica using a
classifier, this research made use of a deep belief
network (DBN) as a classifier, which uses various
data to assess whether the data are normal or
abnormal. Before using the DBN classifier,
durations (number of iterations) and structures are
needed to be determined. Tests are repeatedly
carried out to attain the appropriate the number of
iterations and structures of the DBN. The results of
such tests are as follows.

Session 8C: Safety & Formal Methods

DOI
10.3384/ecp15118615

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

621

Figure 13. Performance differences of DBN
according to structure

The structures of DBN are attained from 2-layer
models to change the number of nodes of layers.
As in the first row of Figure 11, 800/1,600 means
that the test conducted 800 nodes of the first layer
and 1,600 nodes of the second layer.

Also, this research conducted the number of
iterations that is suitable to achieve optimal values.
The results of 300 and 1000 as the number of
iterations are as follows.

Figure 14. Performance differences of DBN
according to the number of iteration

As the results, 800–1,600 of 2-layers and 300 as
the number of iterations are appropriate to the
application of the DBN. In this research, 2-layers
are enough to accomplish the performance due to
short-time calculations.

In Section 2, three faults are appointed and the
results of fault detection and diagnosis are shown
in Table 2.

Faults Detection and Diagnosis (%)

Supply Fan 81%
Valve 85%
Heat

Exchanger
99.16%

Table 2. Results of FDD

3.3 Post-processing

“Post-processing” is the process that increases the
rates of detection and diagnosis, and this is where
the deferral rate is set. “Deferral rate” means the
instance in which no decision is made as the

judgment does not ensure whether which is normal
or abnormal. If there is a deferral rate of 11%, 89%
of the data are used to determine the test. The
results of the detection and diagnosis rates that
take the deferral rates into consideration are shown
in the Table 3.

Faults
Detection and

Diagnosis (%)

Deferral

Rate (%)

Supply Fan 95% 11%
Valve 95% 31%
Heat

Exchanger
99.16% 0%

Table 3. Results of FDD considering deferral rates

4 Conclusion

Various researches on fault detection and diagnosis
in HVAC systems have been published; however,
these studies lack inclusion of data on real sensors
and disposal of noises. In addition, actual
application of data measurement of simple
correlation is difficult despite the use of
complicated models and methods. To overcome
such limitation, this research used the machine
learning method, and verified fault detection and
diagnosis using specific data with Modelica like as
a real AHU of HVAC system. The accuracy of the
results of this study’s fault detection and diagnosis
was given an approximate score of above 95%.
With this, it is necessary to verify actual data from
real buildings for future studies.

Acknowledgments

The research of this paper is supported by Hyundai
Engineering and Construction Company.

References

Massieh Najafi, David M, Auslander, Peter L. Bartlett,
Philip Haves, Michael D, Shon, Modeling and
measurement constraints in fault detection and
diagnostics for HVAC systems, 2010

Zhimin Du, Singiao Jin, Yunyu Yang, Wavelet neural
network based fault diagnosis in air handling unit,

Fault Detection and Diagnosis with Modelica Language using Deep Belief Network

622 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118615

2008

J.M.House, H.Vaezi-Nejad, J.M.Whitcomb. An expert
rules set for fault detection in air handling units,
ASHRAE Trans. 107, 858-871, 2001

J.Schein, S.T. Bushby, N.S. Castro, J.M. House, A rule-
based fault detectioin method for air handling units,
Energy Build. 38, 1485-1492, 2006

T.I.Salsbury, R.CDimond, Fault detection in HVAC
systems using model-based feed forward control,
Energy Build. 33, 403-415, 2001

B.Yu, A.H.C. van Passen, S. Riahy, General modeling
for model-based FDD on building HVAC systems,
Simulat, Pract,,Theory 9(6-8), 387-397, 2002

ASHRAE. Sequences of Operation for Common
HVAC Systems. ASHRAE, Atlanta, GA, 2006.

Deru M., K. Field, D. Studer, K. Benne, B. Griffith, P.
Torcellini, M. Halverson, D. Winiarski, B. Liu, M.
Rosenberg, J. Huang, M. Yazdanian, and D. Crawley.
DOE commercial building research benchmarks for
commercial buildings. Technical report, U.S.
Department of Energy, Energy Efficiency and
Renewable Energy, Office of Building Technologies.
2009.

Modelica Buildings Library developed by LBNL.
Modelica library for building energy and control
systems. http://simulationresearch.lbl.gov/modelica

Top of Alabama Regional Council of Governments.
TARCOG: Mathematical models for calculation of
thermal performance of glazing systems with our
without shading devices, Technical Report, Carli, Inc.
2006.

Masmoudi,Y, Turkay, M, Chabchoub, H, A binarization
strategy for modelling mixed data in multigroup
classification, Acvanced Logistics and Transport,
345-353, 2013

Yuebin Yu, Denchai Woradechjumroen, and Daihong
Yu (2014): A Review of Fault Detection and
Diagnosis Methodologies on Air-handling Units.
Energy and Buildings, 82:550–562, 2014.

Zhengwei Li, Adaptable, scalable, probabilistic fault
detection and diagnostic methods for the HVAC
secondary system. Dissertation. Georgia Institute of
Technology. 2012.

Zhimin Du, Bo Fan, Xingqiao Jin, and Jinlei Chi
(2014): Fault Detection and Diagnosis for Buildings
and HVAC Systems Using Combined Neural
Networks and Subtractive Clustering Analysis.
Building and Environment, 73:1–11, 2014.

Geoffrey E. Hinton, Simon Osindero, Yee-Whye The,
A fast learning algorithm for deep belief nets, Neural
Computation, 1527-1554, 2006

Session 8C: Safety & Formal Methods

DOI
10.3384/ecp15118615

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

623

624 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Formal Requirements Modeling for Simulation-Based Verification

Martin Otter1, Nguyen Thuy2, Daniel Bouskela2, Lena Buffoni3, Hilding Elmqvist4,

Peter Fritzson3, Alfredo Garro5, Audrey Jardin2, Hans Olsson4, Maxime Payelleville6,

Wladimir Schamai7, Eric Thomas6, Andrea Tundis5

1Institute of System Dynamics and Control, DLR, Germany, Martin.Otter@dlr.de
2EDF, France, {Daniel.Bouskela,Audrey.Jardin,N.Thuy}@edf.fr

3PELAB, Linköping University, Sweden, {Lena.Buffoni, Peter.Fritzson}@liu.se
4Dassault Systèmes AB, Sweden, {Hilding.Elmqvist, Hans.Olsson}@3ds.com

5DIMES, University of Calabria, Italy, {Alfredo.Garro, Andrea.Tundis}@unical.it
6Dassault Aviation, France, {Eric.Thomas, MP}@dassault-aviation.com

7Airbus Group Innovations, Germany, Wladimir.Schamai@airbus.com

Abstract

This paper describes a proposal on how to model

formal requirements in Modelica for simulation-based

verification. The approach is implemented in the open

source Modelica_Requirements library. It requires

extensions to the Modelica language, that have been

prototypically implemented in the Dymola and Open-

Modelica software. The design of the library is based

on the FOrmal Requirement Modeling Language

(FORM-L) defined by EDF, and on industrial use cases

from EDF and Dassault Aviation. It uses 2- and 3-

valued temporal logic to describe requirements.

Keywords: requirements, verification, physical

systems, 3-valued logic, temporal logic.

1 Introduction
1

1.1 Overview

To ensure the proper operation of complex physical

systems such as power plants, aircraft or vehicles,

requirements are issued all along the system’s

lifecycle: from the preliminary design phase to the

operation phase. Typically, the requirements capture

the spatiotemporal and quality of service conditions

that a system should fulfill. They may be quite

complex and numerous. Testing the compliance of the

system with the requirements may be quite

challenging, due to the many items that should be

examined and verified for a given test scenario, and the

number of test scenarios to be considered to have a

satisfying verification coverage.

This paper tries to improve the current situation, by

(a) providing the open source library Modelica_-

Requirements to define and model requirements in a

formal way using 2- and 3-valued linear temporal logic

(LTL); (b) associating requirement models with

behavioral models; (c) testing whether the defined

1 This section uses material from the internal reports (Bouskela et al.

2015) and (Otter et al., 2014).

requirements are violated by the system design

currently studied when the underlying behavioral

models are simulated. This approach requires

extensions to Modelica, that have been prototypically

implemented in Dymola (Dassault Systèmes, 2015)

and in OpenModelica (Open Source Modelica

Consortium, 2015). The library has been tested and can

be used by both of these Modelica simulation

environments.

The main purpose of this approach is to check

formally defined requirements by simulation. It is not

intended to perform formal model verification by

model checkers as done by tools such as NuSMV
2
,

SPIN
3
, Prover Plug-in

4
 for discrete systems or

SpaceEx
5
, KeYmaera

6
 for hybrid systems. For

example, a differential-algebraic equation system may

be solved numerically to compute a pressure p in a

pipe, and the requirement is formulated as p ≥ pcavitate.

Model checkers for discrete systems cannot be used in

this case, and verification tools for hybrid systems can

only handle simple sets of differential and discrete

equations, but not large models of industrial

applications like power plants or aircraft.

1.2 State-of-the-art to Define Requirements

The standard in industrial applications is still to define

requirements in natural language in textual form. As a

typical example see the requirements for electrical

systems in US military aircraft MIL-STD-704F

(Department of Defense, 1984). Such specifications are

defined in reports by using for example Microsoft

Word, or with dedicated tool support. The latter

especially to get support for collaboration, traceability,

coverage analysis of textually defined requirements.

Moreover, visual modeling languages for system

2 NuSMV: http://nusmv.fbk.eu/
3 SPIN: http://spinroot.com/spin/whatispin.html
4 Prover Plug-in: http://www.prover.com/products/prover_plugin/
5 SpaceEx: http://spaceex.imag.fr/
6 KeYmaera: http://symbolaris.com/info/KeYmaera.html

DOI
10.3384/ecp15118625

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

625

engineering are very common, such as SysML
7
, a

general-purpose modeling language for systems

engineering applications, that defines requirement and

parametric diagrams for supporting the modeling of

system properties. In particular, requirement diagrams

provide constructs and mechanisms to express and

compose system requirements, as well as to allocate

them to system components; parametric diagrams can

be used for supporting performance analysis and

quantitative assessment. There are a number of tools in

this area, for example: Rational DOORS from IBM
8
,

Reqtify from Dassault Systèmes
9
, OSRMT (GPL2)

10
,

formalmind Studio (free)
11

. The most important xml-

based exchange format seems to be ReqIF (OMG,

2013).

Defining and processing requirements formally is an

area of active research. The exploited mathematics uses

propositional logic, temporal logic, set theory and

others; see for example (Baier and Katoen, 2008;

Lamport, 2015). There are many publications, but the

pure mathematical notation is quite far away from a

language an engineering practitioner would be able to

use.

For electronic circuit design, there is a proposal for

an Analog Specification Language (ASL) by

(Steinhorst and Hedrich, 2009), with a detailed

proposal of language elements and some examples. In

(Schamai, 2013) the idea for formalizing a natural-

language requirement into a requirement violation

monitor is presented. In runtime verification, monitors

are expressed in some variant of linear temporal logic

expressions and to generate efficient code for the actual

monitors (Leucker and Schallhart, 2009).

The SIMULINK toolbox “Verification and

Validation”
12

 from MathWorks is used to define formal

requirements in SIMULINK and to automatically test

and verify requirements by simulation. In the master

thesis (Tunnat, 2011) the toolbox has been applied to

an aircraft system. Figure 1 is an example from this

thesis that shows the essential elements (in the thesis a

script was implemented for the report generator of

SIMULINK, that combines the textual description in a

Word file with the screen shot of the formal definition

in Stateflow): The Detector delays and/or synchronizes

Boolean signals, the Implies block is the logical

implies operator of Boolean algebra, and Assertion

expects that its input is always true and triggers a

requirements failure if this is not the case. Note, that

requirements are defined with 2-valued logic.

7 SysML: http://www.omgsysml.org
8 DOORS: http://www-03.ibm.com/software/products/en/ratidoor
9 Reqtify: http://www.3ds.com/products-

services/catia/capabilities/requirements-engineering/reqtify/
10 OSRMT: http://sourceforge.net/projects/osrmt/
11 formalmind studio: http://formalmind.com/studio
12 SIMULINK toolbox “Verification and Validation“:

http://www.mathworks.com/products/simverification

Figure 1. An example of a requirement definition with

the SIMULINK toolbox “Verification and Validation”.

Text and figure from (Tunnat, 2011).

1.3 Modelica_Requirements Prerequisites

In two recent ITEA projects, EUROSYSLIB
13

 and

OPENPROD
14

, part of the research was devoted to

how to model requirements in Modelica. The

EUROSYSLIB results are reported in (Jardin et al.,

2011) and resulted in conceptual work and a prototype

Modelica library. The OPENPROD results are partially

reported in (Schamai, 2013).

In the ITEA MODRIO
15

 project, EDF developed a

complete concept for a central industrial scenario: First

defining the requirements for a system, then

performing an architectural design that shall comply

with the requirements and finally evaluating and fine-

tuning the architectural design with behavioral models

(Bouskela et al., 2015). Furthermore, EDF developed

the special language FORM-L (Thuy, 2014) to

describe requirements in a formal way but close to the

(textual) notation used by system designers. EDF

evaluated and refined the language on a larger

benchmark example (Thuy, 2013). In (Garro et al.,

2014) it was systematically evaluated how to map

FORM-L language elements and ideas to Modelica.

The above work, including new investigations of

Dassault Aviation, finally resulted in the

Modelica_Requirements library described in the

following sections.

2 Modelica_Requirements Library

The top-level view of this library is shown in Figure 2.

The library has about 200 model and block

components and about 50 functions. It is provided

under the Modelica License 2, and can therefore be

used in commercial applications without essential

restrictions. The most important sub-libraries are

discussed in the following sub-sections.

13 EUROSYSLIB: https://itea3.org/project/eurosyslib.html
14 OPENPROD: https://itea3.org/project/openprod.html
15 MODRIO: https://itea3.org/project/modrio.html

Back-up Performance
10 seconds after the BFan is faulty or off, the BUV shall be in

FO position and the inflow into the avionic compartment shall

be less or equal than 1.5 KG/s and greater or equal than 1 kg/s.

Formal Requirements Modeling for Simulation-Based Verification

626 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118625

2.1 Two- and Three-valued Logic

Defining elements with formal logic requires defining

an appropriate data type. All programming languages

support two-valued logic. In Modelica, the data type

Boolean is used for this purpose. FORM-L uses three-

valued logic. Also, several publications in this area

suggest using three-valued logic, see for example

(Schamai, 2013).

Important reasons for using three-valued logic are:

(1) In certain situations it is not possible to state

whether a property is violated/false or satisfied/true.

For example the FORM-L operator
 during(condition, check)

is defined as: “As long as the condition is true,

check must be true”. However, what return value

should be used, when condition is not true? (e.g.

when the component to be checked is not “in

operation”). This case is not defined and therefore the

operator should neither return false nor true, but

undefined. There are also operators where during a

first time range, the return value of the operator is not

defined and therefore the best meaningful value to

return is undefined. With two-valued logic the user

has to either return two Booleans to describe this

situation, or somehow select a value false or true in

such cases. The problem is that logical expressions that

depend on such an arbitrarily selected value may make

a required property violated or satisfied, although in

reality it is undecided and this may either give an

overly optimistic or an overly pessimistic view.

(2) Simulations with requirement models should

determine whether a required property is violated. A

simulation may, however, not evaluate a defined

requirement model (e.g. if only simulations are

performed where the

model to be checked is

not “in operation”). With

three-valued logic this

situation can be

indicated by, e.g. the

value undecided. With

two-valued logic it

cannot be stated that a

simulation did not test all

required properties, and

when the simulation run

returns with “all required

properties satisfied”, this

might be too optimistic

or simply wrong.

Three-valued logic has

the following drawbacks:

(1) There are several

types of three-valued

logic definitions, such as

Kleene's, Lukasiewicz's,

Bochvar's and other logics (Lukasiewicz, 1920;

Bochvar, 1937; Breuer, 1972; Rescher, 1969). Some

operators, like “or” and “and” are identical in the

different schemes, but the implies(a,b) operator is

not. For an user it is not obvious which three-valued

logic is used in a system and what the consequences

are.

(2) Modelica has already many operators and

functions for two-valued logic and also users will have

many models utilizing two-valued logic. If three-

valued logic alone were to be used for requirements

modeling, then a large amount of existing code could

not be reused.

It is clear that two-valued logic must be supported in

order to use existing code and to support the well-

known view of the user on logical expressions, as well

as language elements such as if/else or while. On

the other hand, two-valued logic alone has

disadvantages for requirements modeling as sketched

above. For these reasons, in the Modelica_-

Requirements library two-valued logic, as well as a

restricted form of three-valued logic is used. The three-

valued logic is defined by enumeration Property (in

sub-library Types):

type Property = enumeration(Violated,
 Undecided,
 Satisfied);

Only functions and blocks with three-valued logic

input and/or output arguments are used where the

semantics can be defined mathematically in a uniquely

accepted way that is also natural and obvious for the

user. For example, the function

 during(condition, check)

is provided with Boolean input arguments

condition and check, and a Property return value.

On the other hand, a function implies(..) with

three-valued logic input/output arguments is not

provided because different types of three-valued logics

are in use and the result value is not obvious for a user.

Also cast functions from Boolean and Integer to

Property and from Property to Boolean and

Integer are provided. The mapping from Property

to Boolean is not unique, because it is not obvious

how to map the value “Undecided” to a Boolean.

This issue is resolved by requiring users to specify the

mapping with a second input argument:

 Property p = …;
 Boolean b;
equation
 b = PropertyToBoolean(p,undecided=true);

To simplify the view for the user, most functions and

blocks have at most one input argument and/or one

output argument of type Property. The only

exceptions are the 3-valued blocks to model the or,

and, not operators in 3-valued logic, for which a

Figure 2. Modelica_-

Requirements library.

Session 8C: Safety & Formal Methods

DOI
10.3384/ecp15118625

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

627

commonly accepted unique definition exists. For

example, the LogicalBlocks.PropertyOr block is

defined as (in the next figure, three connection lines

have been drawn to instance “or1”):

input Property u[:];
output Property y;

where y = u[1] or u[2] or u[3] or …, and using the truth-

table (here for two inputs):

u[1] or u[2] Violated Undecided Satisfied

Violated Violated Undecided Satisfied

Undecided Undecided Undecided Satisfied

Satisfied Satisfied Satisfied Satisfied

2.2 Graphical Layout

It is expected that the Modelia_Requirements library is

utilized by users, such as system architects, without

requiring that they be simulation specialists. For this

reason an effort was made to improve the usual

graphical appearance of models/blocks (within the

limitations of Modelica). The following principles are

used:

(1) All entries of a parameter menu are displayed in

the icon, in order that it not be necessary to inspect

the menu to understand the parameterization (as a

consequence, a menu, and therefore a block, must

be simple and can have at most 3 or 4 input fields).

(2) All such menu entries are defined as “input fields”

to make visually clear that the user can provide

values (see examples below).

(3) The instance name is displayed above the icon, but

in light grey, in order that it not disturbs the layout

too much. One could remove the instance name

completely from the icon, but it is then no longer

so easy to select plot variables by name.

Here are some examples:

ݕ ൌ ݑ ൐ ʹͳͲ

ݕ ൌ ܾͳ ൐ ܾʹ

y = true when off has

been true for more than 6

accumulated seconds

during any 10 second

time window.

2.3 Definition of Required Properties

In sub-library Verify

blocks are present to (a)

define that a Property or

Boolean signal is a

required property and (b) to print a log summary after a

simulation (see figure). An example for the usage of

block Requirement is shown in the next figure:

Figure 3. Example on how to define a required property.

The left hand arrow is an input signal of type

Property. In the icon, the content of parameter text

is displayed that should contain a textual description of

the required property. For this, a new annotation

“AutoLineBreak” is proposed that displays a String

parameter in the icon with automatically selected line

breaks (so that the text with a given font, here 8pt, is

displayed within the surrounding box):

 parameter String text annotation(AutoLineBreak=true);

The Requirement block monitors its property input

over a simulation and computes its status at the end of

the simulation run:

 Requirement is violated:

Input is Violated at least once.

 Requirement is untested:

Input is Undecided for the complete simulation run

 Requirement is satisfied:

Input is Satisfied at least once, and is never

Violated.

Determining this status is more difficult than one

would expect, because during event iteration a

requirement may become temporarily violated, but at

event restart the requirement may no longer be

violated. To avoid false messages of this type, one has

to determine whether a requirement is violated at event

restart. This is achieved with the following Modelica

code:

when not terminal() and change(property) then
 if not pre(atLeastOneFailure) and

 property == Property.Violated then
 atLeastOneFailure = true;
 firstFailureTime = time;
 elseif pre(atLeastOneFailure) and

 time <= firstFailureTime and
 (property==Property.Satisfied or
 property==Property.Undecided) then
 atLeastOneFailure = false;
 firstFailureTime = startTime - 1;
 end if;
end when;

The when-clause becomes active, whenever property

changes its value. If property became Violated the

first time, this is marked with atLeastOneFailure =

true. If property is changing at the current event

iteration, determined by time <= firstFailureTime

Formal Requirements Modeling for Simulation-Based Verification

628 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118625

(time is not changing at an event, and therefore this

expression will be true at the same event instant), again

a check is made whether property is no longer

Violated. In this case, atLeastOneFailure is set

back to false.

The information about the instance name of the

requirement, the requirement text and its status are

stored on a log file in textual format. This log file could

be processed after the simulation run for example by a

script. Additionally, the user can drag the block

PrintViolations to the top level of his/her model,

see Figure 4.

Figure 4. Defining requirement status log

(left figure: icon; right figure: parameters of the block)

This block prints a detailed summary of the status of all

requirements to the output window. The output can be

configured, see right side of Figure 4. Furthermore, the

“satisfaction” factor, that is the percentage of

requirements with status = Satisfied, are dynami-

cally displayed in the icon (see left side of Figure 4)

and stored in the result file, to give a quick overview

about the requirement status.

2.4 Checks in Fixed Windows

In sub-library ChecksIn-

FixedWindow (see figure to

the right) blocks are present

that determine whether a

particular property is

fulfilled or not in a given

time window: Whenever the

Boolean input condition

is true, the property is

checked, otherwise the

property is not checked (and

the output is set to

Undecided). Properties that

can be checked are for

example, that input check

 must be true for a

minimum and/or a

maximum duration,

 must have a minimum

and/or a maximum

number of rising edges.

For example, with block MaxRising, see Figure 5, it is

stated that the number of rising edges of check is

limited during every true condition phase. The left

input arrow is condition and the lower input field is

check = engineStart, so that at most three tries of

engineStart (becoming true) are allowed in the

Figure 5. Example for MaxRising block.

start phase (condition = true).

In a first design, check was not provided by an

input field, but by an additional input connector to the

left. In larger use cases, like the EDF Backup Power

Supply (Thuy 2013), it turned out that the diagram

layer of the requirement models became hard to

understand due to the many connection lines. This

issue could be reduced by using an input field with a

name for the check signal instead of a connector.

The implementation of most of the blocks in this

sub-library is straightforward. For example, the

MaxRising block is implemented as
16

:

initial equation
 countRising = 0; // number of rising edges
 y = if condition then Property.Satisfied

 else Property.Undecided;
equation
 when condition then
 countRising = 0; y = Property.Satisfied;
 elsewhen condition and check then
 countRising = pre(countRising) + 1;
 y = if countRising <= nRisingMax then

 Property.Satisfied else Property.Violated;

 elsewhen not condition then
 countRising = 0; y = Property.Undecided;
 end when;

A typical simulation result is shown in the next figure:

Figure 6. Simulation result for example of Figure 5.

Note, that between 3.4s .. 3.5s the output is Violated,

because there have been 4 rising edges of check.

16 Rising edges are not counted at the time instant when condition

becomes true or when it becomes false.

Session 8C: Safety & Formal Methods

DOI
10.3384/ecp15118625

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

629

Figure 7. Example for WithinDomain block

(left figure: point is within the domain,

right figure: point is outside the domain)

WithinDomain is a more complicated block, see left

part of Figure 7. This block defines a domain with a

polygon and the requirement is that the input point (a

vector of size 2 defining the x- and y-coordinate of the

point) must be within this domain. For example, in a

passenger aircraft the “time to complete a cabin

pressure change” (x-coordinate) and the “cabin

altitude rate of change” (y-coordinate) must be within

a given 2-dimensional domain that can be described by

the WithinDomain block.

The actual polygon is displayed in the icon, together

with the point (= green circle) and the nearest distance

of the point to the polygon. After a simulation run, a

diagram animation shows the actual status. In the right

part of Figure 7 the point is outside of the polygon and

then the domain and the point is displayed in red.

Output y is

 Undecided if condition = false,

 Satisfied if condition = true and the

point is within the polygon and

 otherwise it is Violated.

Displaying the polygon, the point and the distance in

the icon is performed with the standard Modelica

annotation DynamicSelect(..) that allows an element

in an icon to be displayed dynamically. Determining

the distance of a point to a polygon is a standard task in

computer graphics. In the block a pure Modelica

implementation is used. The relationships of one line

of the polygon are displayed in Figure 8:

Figure 8. Relationships between one polygon line 1→2,

point P and the closest distance d of P to this line.

The corresponding equations are: ࢘ͳʹ 	 ൌ ʹ࢘ െ ݌ͳ࢘ͳ࢘ ൌ ݌࢘ െ ݀࢘ͳ࢘ ൌ ͳ࢘ ൅ ߣ ∙ ʹͳ࢘
(1)

The cosine ߮ of the angle between vectors ࢘ଵଶ and ࢘ଵ௣

can be either computed with the relationships in a

triangle, or with the dot-product, where ߣ with Ͳ ൑ ߣ ൑ ͳ characterizes the point ࢘ௗ on the line with

the shortest distance to P: cos ߮ ൌ ߣ ∙ ห݌ͳ࢘ͳʹ|ห࢘| ൌ ʹͳ࢘ ∙ |ʹͳ࢘|݌ͳ࢘ ∙ ห࢘ͳ݌ห (2)

and therefore ߣ ൌ max ൬min ൬࢘ͳʹ ∙ ʹͳ࢘݌ͳ࢘ ∙ ʹͳ࢘ , ͳ൰ , Ͳ൰ ݀ ൌ ห࢘ͳ݌ െ ߣ ∙ ͳʹห࢘ (3)

Equations (3) are applied on every segment of the

polygon, and the smallest distance d to all of the

segments is selected. Another algorithm computes

whether point P is within or outside of the polygon and

d is set to a negative value if P is outside of the

polygon.

2.5 Time Locators

The condition inputs of the blocks from sub-library

ChecksInFixedWindow are Booleans that may

originate from quite different

sources. Due to the importance of

these conditions, sub-library

TimeLocators provides often

occurring continuous-time locators,

that are temporal operators to

define the condition interval of

interest (see figure to the right).

The outputs of these blocks are

Booleans that can be used directly as condition inputs

to the blocks of ChecksInFixedWindow. FORM-L

(Thuy, 2014) has also more complex type of time

locators. It is planned to support them as well.

Modelica does not have an “Event” data type.

Instead, rising or falling edges of Boolean variables are

used to define a time instant of interest that might be

described in other modeling systems by an “Event”.

The following blocks of sub-library TimeLocators are

currently available:

 Every: Output is true during every interval for a

defined duration.

 Until: Output is true until first rising edge of

input.

 After: Output is true after first rising edge of

input.

 AfterFor: Output is true after rising edge of input

for a defined duration.

 AfterUntil: Output is true, after rising edge of

input 1 until the rising edge of input 2

The implementation of these blocks is straightforward.

In Figure 9 an example from (Thuy, 2013) is shown

using block AfterUntil. This example concerns the

generator of a Backup Power Supply system:

Formal Requirements Modeling for Simulation-Based Verification

630 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118625

Figure 9. Example for block AfterUntil.

The generator can signal several events (= rising edges

of Boolean signals), including eStart (it has started)

and eStop (it has stopped). Therefore, Figure 9 defines

the time periods where the generator is running. For

these time periods required properties might be defined

with blocks from sub-library ChecksInFixed-
Window.

The AfterUntil block is implemented as:

 input Boolean u1 "Boolean input 1 (after)";
 input Boolean u2 "Boolean input 2 (until)";
 output Boolean y "= true, after rising edge of u1

 until rising edge of u2";
initial equation
 y = u1;
equation
 when u1 then
 y = true;
 elsewhen u2 then
 y = false;
 end when;

A simulation result is shown in Figure 10: The

generator is running (afterUntil.y = true)

between two rising edges of eStart and eStop.

2.6 Checks in Sliding Windows

In sub-library Checks-
InSlidingWindow

(see figure to the right)

blocks are present that

determine whether a

particular property is

fulfilled or not in a

sliding time window.

For example, if a

sliding time window

has size T and t is the

actual time instant, then

in every time range ሾݐ െ ܶ, ሿ the propertyݐ

must be fulfilled.

Evaluating a

property in a sliding

time window requires

storing the values of

the relevant signals in a

buffer that covers

“essential” signal

values in the past at least up to time t - T, and operating

on this buffer. For Boolean signals a buffer has been

Figure 10. Simulation result for example of Figure 9.

designed which is available as Internal.Sliding-

Window (see the figure on the right). This is a package

consisting of a record

Buffer in which past

values are stored and a set

of functions operating on

this record. The current

implementation is a pure

Modelica implementation

to gain experience and

figure out the right

function interfaces. Since a

“memory” is needed that is

passed between Modelica

functions, the size of this

memory must be fixed at

compilation time and the

complete buffer must

always be copied, once an

element in this buffer is

changed. It is planned to

replace this implementation by a C-implementation

with a Modelica ExternalObject to get rid of these

restrictions.

The SlidingWindow buffer package is basically a

queue where elements with a time stamp t are inserted

at the top and elements with a time stamp older then t-

T are removed at the bottom. The memory of the queue

is defined as (where nBuffer=20 is a defined

constant):

record Buffer "Memory of sliding window"
 Modelica.SIunits.Time T "Length of sliding time win.";
 Modelica.SIunits.Time t0 "Time instant where sliding

 time window starts";
 Modelica.SIunits.Time t[nBuffer] "Time instants";
 Boolean b[nBuffer] "Values at corresp. time instants";
 Integer first "Index of first element in buffer";
 Integer last "Index of last element in buffer";
 Integer nElem "Number of elements in the buffer";
end Buffer;

Session 8C: Safety & Formal Methods

DOI
10.3384/ecp15118625

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

631

Some of the functions operating on this buffer are

sketched at hand of block MinAccumulated-

Duration2, see Figure 11.

Figure 11. Example for MinAccumulatedDuration2

This example models the following requirement from

(Thuy, 2013):

When the MPS (Main Power Supply system) is

switched off, signaled by Boolean Off, then the MPS

must be declared Unavailable when it has been off

for more than 6 accumulated seconds during any 10

seconds time window.

This is achieved in the following way: Component

minAccumulatedDuration2 outputs true, if in any

time window of length 10 s variable Off was

accumulated true for at least 6 s. This signal is the

input to component during which requires that

whenever the input is true, variable Unavailable

must be true as well. In that case the block outputs

Satisfied. If the input of during is true and

Unavailable = false, the requirement is clearly

violated and the during block outputs Violated (if

the input is false, the block outputs Undecided).

Block MinAccumulatedDuration outputs a

Property whereas MinAccumulatedDuration2

outputs a Boolean. The difference is only during the

initial phase ݐ ൏ ଴ݐ ൅ ܶ where the first block returns

Undecided if the property is violated, and the second

returns false. The MinAccumulatedDuration2

block is implemented in the following way

 import Modelica_Requirements.Internal.SlidingWindow.*;

 parameter Modelica.SIunits.Time window;
 parameter Modelica.SIunits.Time lowerLimit;
 input Boolean check(start = false);
 output Boolean y "= true if property satisfied";
 output Real accDuration;

protected
 Buffer buffer "Buffer for sliding window";

initial equation
 buffer = push(init(T,time), time, check);
 pre(check) = check;

equation
 when change(check) then
 buffer = push(pre(buffer), time, check);
 end when;
 accDuration = accumulatedDuration(buffer, time, check);
 y = accDuration >= lowerLimit;

The Buffer functions have the following tasks:

 init(T,time) returns an instance of Buffer and

initializes it with the length of the sliding time

window T and the initial time instant time t.

 push(init(T,time), time, check)

generates and initializes a Buffer and stores one

element (= the initial time instant and the value of

check) in the buffer. At the same time, this call

removes values from the buffer that have a time

stamp older then time - T. The function returns a

copy of the buffer.

 The code
 when change(check) then

 buffer = push(pre(buffer), time, check);

 end when;
is executed whenever check changes its value (and

at that time instant an event occurs). The function

call stores the actual time instant and the value of

check in the buffer from the last event instant and

removes older values from the buffer. The updated

buffer is then returned at the actual event instant.

 The code
 accDuration = accumulatedDuration(buffer, time, check);

is executed during continuous-time integration,

that is whenever the integrator requires a model

evaluation. The function call accumulatedDuration(..)

computes the accumulated time duration where the

values of check in the buffer have been true during

the time window time – T and returns this value. The

third argument check of this function call is usually

ignored, but is used if the buffer is empty.

 The code
 y = accDuration >= lowerLimit;

triggers a state event when the accumulated time

duration crosses its limit and y changes its value

from false to true or from true to false

depending on the crossing direction.

2.7 Utility Functions and Blocks

Besides of the already discussed core blocks, the

Modelica_Requirements libray has also quite a lot of

utility functions and blocks that might be useful to

formally define a requirement:

Sub-library SignalAnalysis consists of blocks to

compute exact or approximate derivatives, an

integrator that can be controlled by a trigger signal, a

moving average filter, and other blocks.

Sub-library LogicalBlocks provides blocks to

convert between Boolean, Integer and Property signals,

comparing Real signals as well as logical operators

(not, or, and) on Property signals. Some of these

blocks are also available in the Modelica Standard

Library. However, since they seemed to be often

needed for requirements modeling, they have been

provided additionally with the graphical layout used

for the Modelica_Requirement blocks.

When textually modeling or when implementing

blocks, a set of useful functions for 2- and 3-valued

Formal Requirements Modeling for Simulation-Based Verification

632 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118625

logic have been collected in sub-library

LogicalFunctions. Some of these functions are

motivated by the FORM-L language and provide set-

like functionality on Modelica vectors. For example

function exist(..) has a Boolean input vector and

returns true if at least one element of this vector is true.

In combination with Modelica’s reduction expressions,

quite powerful compact formulations are possible, as

shown in the next example:

 // Define a set of pumps
 Pump pumps[3] = {Pump(isActive=time < 1 or

 time > 2 and time < 3),
 Pump(isActive=time < 0.5 or time > 2.5),
 Pump(isActive=time > 1.5 and time < 1.9)};

 // At least one pump must be active all the time
 Boolean atleastOnePumpActive =

 exists({p.isActive for p in pumps})

Sub-library Examples contains a large set of examples

to demonstrate and assess the components of the

library. Every component of the library is present in at

least in one example (so class coverage is 100 %).

There is also a growing set of application specific

examples that can be used as templates in actual

projects. For example, sublibrary Modelica_Require-

ments.Examples.AircraftRequirements contains

typical requirement definitions used in aircraft systems:

Figure 12. Sub-library of aircraft specific requirements

from Dassault Aviation.

Every example contains a short definition of the

requirement (as it is typically present in design

documents), the corresponding Modelica model to

verify the requirement together with some simple test

signals. For example, the requirement “In the cabin

area, the temperature increase should not exceed 3°C

per hour.” is verified with the following model (the

input is cabin temperature as function of time defined

in a table):

Figure 13. An aircraft requirement to assess the limited

allowed temperature increase in the cabin area.

3 Textual Definition of Requirements

In the previous examples requirements have been

defined graphically. Some users prefer, however, a

pure textual definition because requirements can be

formulated and inspected in a more compact form. It

turned out that with current Modelica it is not possible

to define requirements in a convenient way, if the

requirement model contains a memory. For this reason,

section 3.1 sketches a proposal for a Modelica

extension to improve this situation.

3.1 Calling Blocks as Functions

The goal is to introduce functions with memory and

events into Modelica. Since blocks already support

memories and events, the simplest extension seems to

be to introduce the feature that blocks can be called as

functions. However, functions have a different type

system than blocks: Arguments in functions can be

identified by position, whereas in blocks they must be

identified by name. For this reason, the “function

calling” mechanism of a block is naturally restricted to

named arguments. Since functions have an optional

mechanism for named input arguments, but not for

named output arguments, functions are generalized for

named output arguments first. Afterwards, the optional

calling mechanism of functions and the required

calling mechanism of blocks are identical.

The basic idea is simple: (a) A block is called using

its class name, (b) the inputs to the block call are

defined by the usual modifiers of a block declaration,

(c) one output of a block must be defined as return

value of the call, by appending its name with “.name”

to the “function call”. Take for example the block

MaxRising of Figure 5. It could be expressed as a

declaration in a pure textual form:

 import Modelica_Requirements.ChecksInFixedWindow.*;
 import Modelica_Requirements.Types.Property;

 Property property = MaxRising(condition = start,
 check = engineStart,
 nRisingMax = 3).y;

Note, (…).y defines that output variably y of block

Modelica_Requirements.ChecksInFixedWindow.MaxRising is

computed and assigned to variable property. The above

declaration is transformed (conceptually) to standard

Modelica with a formal mapping rule resulting in:

Session 8C: Safety & Formal Methods

DOI
10.3384/ecp15118625

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

633

 MaxRising MaxRising_1(condition = start,
 check = engineStart,
 nRisingMax = 3);
 Property property = MaxRising_1.y;

This shows that a tool has to introduce a declaration for

an auxiliary component (here: MaxRising_1) and use the

output of this block (here: MaxRising_1.y) in the

expression where the call of MaxRising occurred.

The block calling can be nested in expressions.

However, in order that the simple mapping rule above

can be applied by a tool, several restrictions are

necessary. Most importantly: A block can be called as

a function only in the declaration section (with the

additional restriction that it cannot be called in an if-

expression). The proposed extension above was

implemented in prototypes of Dymola and

OpenModelica (Buffoni and Fritzson, 2014)

3.2 Examples

In the Modelica_Requirements library several textual

examples are present in sub-library Examples.Textual,

especially part of the EDF Backup Power Supply

benchmark (Thuy, 2013). Example code:

Requirement R1(property=WhenRising(condition=Off,

 check=MPSVoltage < 170).y,
 text="MPS CAN be declared Off when

 the voltage gets below 170 V");

Requirement R2(property=during(MPSVoltage < 160,

 check=Off),
 text="MPS MUST be declared Off when

 the voltage gets below 160 V");

It is a matter of taste whether a user prefers a graphical

or a textual definition – the Modelica_Requirements

library supports both choices.

4 Utilizing Requirement Models

Once requirements are defined they are typically

associated with behavioral models and various

techniques are used to verify these requirements based

on simulations. Integrating the modelled requirements

manually in test scenarios of behavioral models may be

a tedious task and there is a clear need to automate this

process. Several proposals have been discussed within

the MODRIO project for this purpose, especially

(Bouskela et al., 2015; Schamai, 2013; Schamai et al.,

2014) and also on using Modelica scripts for

associating requirements with behavioral models. In

(Elmqvist et.al, 2015) two new Modelica language

constructs are proposed to simplify this “automatic

binding” task. These language elements are also useful

for other applications, for example to compute the total

mass of a multibody system or for contact handling.

The current development stage allows to check in

every simulation run whether the defined requirements

are satisfied or violated (or are not tested). Industrial

applications would typically involve additional

software on top of this base functionality, such as:

 Monte Carlo Simulation

Various initial conditions, operating points, and/or

external disturbances are randomly generated

within meaningful bounds and for every scenario

simulations are performed. This brute force

method for evaluation of dynamic systems is

standard in many software tools.

 TestWeaver

TestWeaver (Junghanns et al., 2008) is a software

tool from QTronic to construct automatically test

scenarios, especially also for Modelica models.

The goal of the tests is to drive the system in a

state where it violates its specifications. A major

application area are systems where the inputs have

a countable number of values or areas (and these

values vary over time).

 Anti-Optimization

A technique used at DLR-SR to evaluate controller

designs, see e.g. (Joos, 2011): A special parameter

optimization problem is formulated, in order to

find an operating point of the system (e.g. height

or speed of an aircraft), where the controller works

as badly as possible. The major application area

are systems where the operating region and the

requirements are described by continuous signals.

5 Conclusions and Outlook

In this article the design of a new, open source

Modelica library was presented to formally model

requirements for industrial applications. The design

was driven by applications of EDF (power plants,

electrical systems) and Dassault Aviation (aircrafts).

The basic design is based on the FOrmal Requirements

Modeling Language FORM-L from (Thuy, 2014). The

library in the current form (July 2015) is in an Alpha

version. It is planned to additionally implement

FORM-L components with overlapping sliding time

windows, to include dynamic response and FFT

requirement blocks from (Kuhn et al., 2015), to

introduce continuous indicators for the properties

where this is possible (in order that property blocks can

be directly used as constraints or criteria for

optimization-based methods), to add use cases of EDF

and Dassault Aviation, and to connect the library to

existing verification frameworks, such as TestWeaver.

Acknowledgements

This paper is based on research performed within the

ITEA2 project MODRIO. Partial financial support of

the German BMBF, the French DGE, and the Swedish

VINNOVA are highly appreciated.

Helpful discussions with Martin Kuhn (DLR) are

appreciated. Furthermore, helpful discussions with

members of the Modelica Association to define the fine

details of the “calling-blocks-as-functions” approach,

are also appreciated. Finally, improvement suggestions

of the reviewers of this paper are appreciated.

Formal Requirements Modeling for Simulation-Based Verification

634 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118625

References

C. Baier and J.-P. Katoen. Principles of Model Checking.

MIT Press. ISBN 978-0-262-02649-9, 2008.

D. Bochvar Ob odnom trekhznachnom ischislenii i ego

primenenii k analizu paradoksov klassicheskogo

rasshirennogo funkciona’nogo ischislenija. In

Matematicheskij Sbornik 4, no 46, pp. 287–308. 1937.

D. Bouskela, N. Thuy, and A. Jardin . D2.1.1 – Modelica

extensions for properties modelling, Part II: Modeling

Architecture for the Design Verification against System

Requirements. Internal report, ITEA2 MODRIO project,

March 2015.

M.A. Breuer. A Note on Three-Valued Logic Simulation.

IEEE Transaction on Computer C-21, no. 4, pp. 399-402,

1972.

L. Buffoni and P. Fritzson. Expressing Requirements in

Modelica. Proceedings of the 55th International

Conference on Simulation and Modeling (SIMS 2014),

October 21-22, Aalborg, Denmark, 2014.

Dassault Systèmes. Dymola 2016., 2015.

http://www.Dymola.com

Department of Defense Aircraf.t Electric Power

Characteristics (MIL-STD-704F). 1984. Download:

http://everyspec.com/MIL-STD/MIL-STD-0700-

0799/MIL-STD-704F_1083/

A. Garro, A. Tundis, and M. Otter. D2.1.1 – Modelica

extensions for properties modelling, Part IVb: FORM-L

and Modelica: syntax and relationships. Internal report,

ITEA2 MODRIO project, Sept. 2014.

H. Elmqvist, H. Olsson, and M. Otter. Constructs for Meta

Properties Modeling in Modelica. Accepted for

Modelica’2015 conference, 2015.

A. Jardin and D. Bouskela. D2.1.1 – Modelica extensions

for properties modelling, Part I: Users motivation. Internal

report, ITEA2 MODRIO project, Sept. 2014.

A. Jardin, D. Bouskel, N. Thuy, N. Ruel, E. Thomas, L.

Chastanet, R. Schoenig, and S. Loembé. Modelling of

System Properties in a Modelica Framework. Proceedings

8th Modelica Conference, Dresden, Germany, March 20-

22., pp. 579-592, 2011. Download:

http://www.ep.liu.se/ecp/063/065/ecp11063065.pdf

H. D. Joos. Worst-case parameter search based clearance

using parallel nonlinear programming methods. In:

Optimization based Clearance of Flight Control Laws.

Lecture notes in control and information sciences, 416.

Springer, pp. 149-159, 2011. ISBN 978-3-642-22626-7.

ISSN 0170-8643.

A. Junghanns, J. Mauss, and M. Tatar. TestWeaver – A Tool

for Simulation-based Test of Mechatronic Designs.

Proceedings of the Modelica’2008 Confererence, pp. 341-

348, March 3-4, 2008. Download:

https://www.modelica.org/events/modelica2008/Proceedin

gs/sessions/session3c4.pdf

M. Kuhn, M. Otter and T. Giese. Model Based Specifications

in Aircraft Systems Design. Accepted for Modelica’2015

conference, Sept. 2015.

L. Lamport. Principles and Specifications of Concurrent

Systems, 2015. Hyberbook:

http://research.microsoft.com/en-

us/um/people/lamport/tla/hyperbook.html

M. Leucker, and C. Schallhart, C. A Brief Account of

Runtime Verification. Journal of Logic and Algebraic

Programming 78, no. 5, pp. 293-303, 2009.

J. Levy, S. Hassen, and T.E. Uribe. Combining Monitors for

Runtime System. Electronic Notes in Theoretical Computer

Science 70, no. 4, pp. 112-127, 2002.

J. Łukasiewicz. On three-valued logic. In L. Borkowski

(ed.), Selected works by Jan Łukasiewicz, North–Holland,

Amsterdam, pp. 87–88, 1920. ISBN 0-7204-2252-3.

Modelica Association. Modelica, A Unified Object-Oriented

Language for Systems Modeling.

Language Specification, Version 3.3, May 9, 2012.

https://www.modelica.org/documents/ModelicaSpec33.pdf

OMG. Requirements Interchange Format (ReqIF), 2013.

Download:

http://www.omg.org/spec/ReqIF/1.1/PDF/

http://www.omg.org/spec/ReqIF/20110401/reqif.xsd

Open Source Modelica Consortium. OpenModelica, 2015.

https://openmodelica.org/

M. Otter M, L. Buffoni, P. Fritzson, M. Sjölund, W.

Schamai, A. Garro, A. Tundis, and H. Elmqvist. D2.1.1 –

Modelica extensions for properties modelling, Part IV:

Modelica for properties modeling. Internal report, ITEA2

MODRIO project, Sept. 2014.

N. Rescher. Many-valued Logic, McGraw-Hill, 1969.

W. Schamai. Model-Based Verification of Dynamic System

Behavior against Requirements: Method, Language, and

Tool. Ph.D. Thesis, No. 1547, University of Linköping,

2013.. Download: http://liu.diva-

portal.org/smash/record.jsf?pid=diva2:654890

W. Schamai, L. Buffoni, and P. Fritzson. An Approach to

Automated Model Composition Illustrated in the Context

of Design Verification. Journal of Modeling, Identification

and Control, volume 35- 2, pages 79—91, 2014.

S. Steinhorst and L. Hedrich . Targeting the Analog

Verification Gap: State Space-based Formal Verification

Approaches for Analog Circuits. CAV 2009, Grenoble,

France, 2009. Download

http://www.em.cs.uni-

frankfurt.de/FAC09/papers/FAC_09_Steinhorst.pdf

N. Thuy. D8.1.3 – Part 1 The Backup Power Supply. Internal

report, ITEA2 MODRIO project, Nov. 2013.

N. Thuy. D2.1.1 – Modelica extensions for properties

modelling, Part III: FOrmal Requirements Modelling

LAnguage (FORM-L). Internal report, ITEA2 MODRIO

project, Sept. 2014.

M. Tunnat. Integration modellbasierter Methoden in den

Entwicklungsprozess hybrider Flugzeugregelungssysteme

am Beispiel des Ventilation-Control-System. Master thesis,

Technical University Hamburg-Harburg, Institut für

Flugzeug-Kabinensysteme, 2011.

Session 8C: Safety & Formal Methods

DOI
10.3384/ecp15118625

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

635

636 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Towards a Formalized Modelica Subset†

Lucas Satabin1 Jean-Louis Colaço1 Olivier Andrieu1 Bruno Pagano1

1Esterel Technologies/ANSYS SBU, France, firstname.lastname@ansys.com

Abstract

The ever growing requirement for safety in embedded

systems, together with the willingness of having a mod-

elling language to describe both the physics and the

software that controls it makes Modelica an interesting

candidate to design, simulate and implement complex

systems. Originally designed to address multi-physics,

since its version 3.3 Modelica integrates constructions to

describe discrete controllers. Now the question of using

Modelica to design critical embedded software arises.

In this paper we address the problem of defining a

practical Modelica subset that can be entirely formalized

and we sketch the formalization of this subset with the

concrete example of static name resolution. This work

should serve as a basis to define a suitable language that

can be used to both simulate systems and generate em-

bedded critical code.

Keywords: embedded systems, safety, code generation,

formalization, name resolution

1 Introduction

Designing a complete programming language is a heavy

task that involves many different aspects. The more fea-

tures it contains, the more interactions between them are

to be considered to ensure its correctness.

Modelica is an object-oriented language that was de-

signed to simulate multi-physics systems. It is quite rich

with a lot of constructs that are both static and dynamic.

To make it a useful language, having a consistent behav-

ior in its different implementations is a key point that can

only be reached if it has a well documented and non-

ambiguous semantics.

Moreover, the Modelica specification version 3.3 in-

troduced new synchronous features that make it usable

to design discrete controllers. It becomes tempting to use

these features of Modelica to both simulate the physics

with the controller and generate code for the controller,

so that the same model is used for both activities.

Embedding code into critical systems (such as air-

planes) requires some guarantees on the language and

†This work has been partially supported by the European Commis-

sion within the framework of the Clean Sky CertMod project with call

identifier SP1-JTI-CS-2012-01.

tools used for their development; the most important

ones are: determinism and absence of ambiguities. For

example, implicit and undefined behaviors are problem-

atic in such settings and would lead to additionnal verifi-

cation activities (e.g. tests or reviews) to satisfy the cer-

tification objectives. Hence, the need for a programming

language with unambiguous semantics appears clearly if

one wants to use it in the development of safety-critical

software.

Formalizing the language is a good way to ensure its

correctness and analyze the safety issues it could raise.

In the scope of the CertMod project1, we worked on

formalizing the static semantics of a Modelica subset as

a basis for a qualified code generator development. In

the remainder of this paper we use the terms qualifica-

tion and certification as defined in DO-330 (2011): “Tool

qualification is the process necessary to obtain certifica-

tion credit for a tool.” The current paper relates part of

the results we produced during this project, which aims

to provide a complete specification that can be used to

develop a qualified code generator for Modelica. We fo-

cus on the basis elements identified in the scope of the

CertMod project.

The contributions of this paper are the following:

• the definition of a practical subset of Modelica that

can be formalized and used in a safety-critical con-

text,

• a framework to formalize the various static aspects

of Modelica and

• a formalization of static name resolution in

Modelica.

The remainder of this paper is structured as follows:

section 2 is a review of existing related work. Section 3

outlines the Modelica subset that is considered. Section

4 defines the formalization framework that will be used

together with the notations. Section 5 depicts the name

resolution within the formalism. Section 6 details the

open points and future work.

1http://cordis.europa.eu/project/rcn/111584_

en.pdf

DOI
10.3384/ecp15118637

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

637

2 Related Work

Modelica Association (2012) is the reference document

for Modelica specification; it describes in natural lan-

guage in a pretty free style all the constructs of the lan-

guage and their behaviours in different contexts. The

description of a given construct can be scattered over

the entire specification document. This makes it hard to

ensure that an implementation entirely respects it. For-

malizing the language requires to be systematic in the

description, in the sense of identifying the different as-

pects of correctness (naming, typing, clocking, ...) and

for each of them going through each construct and define

its correction condition with respect to this aspect. One

of the first benefits of a formalization is to provide an or-

ganization of the different concerns. It was already iden-

tified in Broman et al. (2006) that the Modelica specifi-

cation could benefit from a more formal definition. The

language has grown complex and a lot of constructs in-

teract with each other, hence it has become hard to reason

about Modelica models. Another benefit of a formal de-

scription is to reduce the possible interpretations to the

intended one; this goal is reached by the use of mathe-

matical and well defined notations.

Modelica was not designed with safety-critical em-

bedded controllers in mind. This means that some lan-

guage features are either not relevant or not defined ap-

propriately for such applications. This was discussed in

Thiele et al. (2012) where a Modelica sub- and superset

was sketched to address safety requirements. Our subset

is based on the one identified in this work, but we decided

to define a strict subset and no superset of Modelica. This

decision to have a strict subset is motivated by the will-

ingness to seamlessly integrate with existing implemen-

tations. No change is required between the model being

simulated and the one generating the actual code.

Implementations compliance rapidly arises when sev-

eral implementations of Modelica exist and different be-

haviors are observed. For example, protected el-

ements in OpenModelica2 may be accessed with the

dot-notation whereas Dymola3 does not allow to access

protected classes. Also, the specification may be in-

complete on some points and implementations must in-

terpret it. For instance, defining the scope in which re-

declaration as modifications takes place is subject to con-

troversy4.

c l a s s A
r e p l a c e a b l e c l a s s R end R ;

end A;

c l a s s S type T = Real ; end S ;

2https://openmodelica.org/
3http://www.3ds.com/products-services/catia/

products/dymola
4For instance https://trac.modelica.org/Modelica/

ticket/1680

c l a s s B
ex tends A(r e d e c l a r e c l a s s R = S) ;
ex tends C ;

end B ;

c l a s s C
c l a s s S type T = I n t e g e r ; end S ;

end C ;

According to the specification, it is unclear what

B.R.T represents, whether it is C.S.T (i.e. Integer)

or .S.T (i.e. Real). Even though the various imple-

mentations agree on this particular ambiguity, it is still

problematic in the context of a certification process, be-

cause the specification is the reference, not the imple-

mentation.

To address such problems, test suites can help disam-

biguating situations. A Modelica compliance test suite5

is being developed that aims to validate various imple-

mentations of Modelica. Such test suites are useful to

validate a compiler but can become hard to maintain

up-to-date over time. In any case, these tests need or-

acles to validate implementation outputs and these ora-

cles must be defined by the language specification. This

is particularly important in a certification process such

as DO-178C (2011), which requires to have test oracles

based upon the specification. The typical approach used

for software development is to write requirement based

specification documents and test oracles are written us-

ing these requirements. This process allows for a clear

traceability between requirements and test cases.

As of today, if the goal were to implement a quali-

fied code generator for Modelica, the specification from

Modelica Association (2012) coupled with a test suite

would probably not satisfy a certification authority re-

quirements.

In the industry, languages used to write embedded

controllers are not all formalized. For instance, the C

programming language is standardized6 but implementa-

tions of certain constructs diverge depending on the com-

piler or the target platform. In the embedded software

world, some rules and constraints are widely accepted

and used to define a subset of C that aims to be safer.

These guidelines are known under the name MISRA C7.

The ultimate step in the formalization direction is hav-

ing a formally described language and formally proven

compiler, which gives a comprehensive formal proof that

each transformation in the compiler preserves the se-

mantics of the input program. The most advanced work

in this area is incarnated by the CompCert C compiler

Leroy (2009).

Finally, in the model-based approach to embedded

software development, Scade 6 is the industrial dialect

of the dataflow language Lustre, Halbwachs et al. (1991),

extended with state machines, Colaço et al. (2005).

Since the latest major evolution of the language called

5https://github.com/modelica-compliance
6For example by the ISO/IEC 9899:1999 aka. C99 standard.
7http://www.misra.org.uk/

Towards a Formalized Modelica Subset

638 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118637

Scade 6, the entire language static semantics is formally

defined by various type systems that cover all constructs

of the language. This work follows the approach chosen

in the design of Lucyd Synchrone Pouzet (2006). This

formalization is the basis of the Scade 6 certified com-

piler implementation. The present work is based on the

very same idea and aims to provide a similar formalism

level for a Modelica subset.

3 A Practical Modelica Subset

As we mentioned in the introduction, Modelica has a

lot of constructs. Historically designed to model multi-

physics systems with continuous time, it gains only re-

cently the ability to describe synchronous controllers.

In the scope of qualified embedded controllers devel-

opment, only these synchronous features are of interest.

Moreover, continuous time features are hard to formally

describe and lots of behaviors depend on the solver at

runtime. That is why we made the choice to formally de-

scribe a Modelica subset instead of taking the complete

language.

To be of any practical use, the subset must be as com-

plete as possible so that its expressiveness is not sacri-

ficed for the sake of the formalization simplicity.

A first subset was described in Thiele et al. (2012),

which was quite conservative. For example, import

clauses where excluded from this subset. This kind of re-

striction can rapidly become annoying when dealing with

existing libraries that make heavy use of import clauses

(including the Modelica standard library. Our work is

based on this subset with some additions to make it a

more realistic subset.

3.1 Declarations

In the Modelica specification the language is defined

as an EBNF8 but syntactically allows for incorrect con-

structs. For instance, the EBNF does not prevent one

from writing

f u n c t i o n F
input I n t e g e r i ;
output I n t e g e r o ;
equat ion

o = i ∗ 3 ;
end F ;

This kind of class declaration is illegal (Modelica As-

sociation, 2012, section 12.2) as functions may not have

equations but only statements in an algorithm section.

However, this declaration is syntactically allowed (Mod-

elica Association, 2012, section 4.5).

In comparison, the subset aims to syntactically enforce

as many constraints as possible. Syntactically enforc-

ing constraints allows for less normalization steps and

checks after parsing, and makes the formalism simpler.

8Extended Backus-Naur Form

We added more syntactical restrictions on declara-

tions. For example a package can only be defined in-

side a package and not inside other specialized classes.

The same constraint exists for functions, which can only

be declared in packages. Having a function declared in

something else than a package makes it parameterized by

all components of the class it is declared in. This restric-

tion was thought as a way to improve modularity. In the

following, we do not reason about the flattened model

but about the structured input models. Checks that are

described can be done in a modular way (i.e. without

effective computation of the flattened model). Modifica-

tions in classes makes modular reasoning more complex.

Also, we see functions as pure functions (Modelica As-

sociation, 2012, section 12.3) in the sense that they are

side-effect free, and thus must not depend on the context

of instantiation.

Modelica also allows many of type prefixes, or mod-

ifiers, for components. They are not all present in the

subset. For instance, inner and outer components are

not included, as they introduce an implicit binding that

makes it hard to reason about. We will discuss this in

section 6.

Declarations in Modelica can also be redeclared in

inheriting classes. This features makes it possible to

change the behavior of an inherited component by re-

placing it with another component. Although it is not

forbidden by certification processes such as DO-178C

(2011) and its object-oriented extension DO-332 (2011),

we identify this feature as dangerous. Replacing or

redeclaring components in this context requires more

checks and validation to be performed to ensure that the

global behavior and invariant of the inherited model are

respected. This feature is not included in the subset,

however parameter modifications are.

3.2 Equations

The selected subset contains basically all kind of equa-

tions that are meaningful in the context of synchronous

models. It means the subset accepts these equations:

• simple equations that are flow definitions.

• if-equations

• clocked when-clauses

• connect-clauses

The only missing equation kind are for-equations.

Their general form as defined in (Modelica Association,

2012, section 8.3.2) may introduce patterns that cannot

be statically verified. Even though the expression the

loop iterates over is required to be a parameter, it still al-

lows to multiply define some cells of a vector or to leave

some other cells non-initialized. However, adding for-

equations that reduce to a map operator will be consid-

ered in future developments.

Session 8C: Safety & Formal Methods

DOI
10.3384/ecp15118637

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

639

3.3 Expressions

The restrictions on the expressions are essentially the

same as in Thiele et al. (2012). All continuous-time

related operators are not included as they do not make

sense in this context. On the other hand, most of the ex-

pressions related to synchronous features are included.

The aim of this paper is not to describe the subset en-

tirely, and the complete grammar could not fit here. For

the complete, refer to Satabin et al. (2015).

4 Formalization framework

The main contribution of this paper is to define a frame-

work that can be used to formalize various aspects of the

Modelica language. In programming language theory, it

is used to distinguish two aspects of a language seman-

tics:

• the static semantics, which corresponds to a certain

(language dependent) level of correctness of syn-

tactically correct programs required before execu-

tion, this aspect is statically checked at compile-

time (i.e. without execution) and

• the dynamic semantics, which describes the behav-

ior of the programs that are both syntactically and

statically correct.

This separation reduces the set of programs to be consid-

ered by the dynamic semantics, in which one can assume

that all the static aspects are respected.

In this work we focused on the static semantics of

Modelica, which encloses:

• Static name lookup (Modelica Association, 2012,

section 5.3).

• Type checking (Modelica Association, 2012, chap-

ters 6 to 14).

• Clock checking (Modelica Association, 2012,

chapter 16).

For each of these aspects we defined a dedicated sys-

tem of inference rules, derived from the Modelica spec-

ification. The formalism used is based on works such

as Igarashi et al. (2001), Igarashi (1999) for the object-

oriented and type part or Forget et al. (2008) for the clock

checking.

The Modelica syntax is rich and each construct may

have several shapes. While writing a formalization it is

more readable to have only one shape for each construct.

That is why, the first step before formalizing is the nor-

malization of declarations. 9

9Note that this normalization must preserve correctness i.e. an in-

correct program cannot normalize into a correct one and reciprocally.

4.1 Component Clauses

Components in Modelica are declared with component

clauses. One such clause can declare several components

of different array types. Moreover, clauses are grouped

into public and protected sections which defines the vis-

ibility of each component declared in this section. Even

though these syntactic constructs are allowed in our sub-

set, component clauses are normalized so that:

• each clause declares exactly one component;

• each clause has a visibility, written ν, which corre-

sponds to the section it is declared in;

• each clause has a set of modifiers (with restrictions

discussed in section 3) written µ. If a declaration

has no modifiers µ is the empty set, written ∅;

• each array subscript appears after the component

name.

The normalization of component clauses is depicted

in figure 1 where :

• c, c1, ..., ci represent component declara-

tions with potential array subscripts ;

• T represents a type identifier with potential array

subscripts and

• t is a type identifier.

Hence, a component declaration is written ν µ T c.

We will also use lists of components in the following

which will be written ν µ T c. This notation is a short-

cut for ν1 µ1 T1 c1, ..., νn µn Tn cn for some

n ∈ N∗

4.2 Short Class Definitions

Modelica allows for so-called short class definition

(Modelica Association, 2012, section 4.5.1). It is pre-

sented as syntactic sugar for simplified standard class

definitions which does not introduce a new scope. Our

subset allows for such declarations only for type and

connector. The normalizing function rewriteShort is

given in figure 2.

The component name λ is a fresh name which is gen-

erated during rewriting. Referring to a component whose

type is declared with short class definition is equivalent

to accessing the λ component. Enumerations are not

rewritten because their only possible shape is with the

short class definition. In the following, special rules will

be written to handle them.

Towards a Formalized Modelica Subset

640 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118637

normDecl(ν µ t [n1, ..., np] c;) = ν µ t c[n1, ..., np];

normDecl(ν µ T c1, ..., cq;) = normDecl(ν µ T c1;) ... normDecl(ν µ T cq;)

normDecl(ν µ t c;) = ν µ t c;

Figure 1. Normalization of component clauses

rewriteShort(connector C = µ T) = connector C µ T λ; end C

rewriteShort(type C = µ T) = type C µ T λ; end C

rewriteShort(type C = µ T[n]) = type C µ T λ[n]; end C

where each occurrence of λ is fresh.

Figure 2. Normalization of short class definitions

4.3 Names

Components in Modelica are referred to by either simple

names of the form C or by composite names of the form

A.B.C (Modelica Association, 2012, chapter 5). These

composite names, or paths, can be absolute, in which

case they start with an dot, as in .A.B.C. To handle

all paths uniformly in the upcoming formalization, we

introduce the root package name, written ⋆. Absolute

paths are thus written ⋆.A.B.C and all paths have the

same shape.

In the following, we will differentiate between ab-

solute resolved paths and unresolved paths (which can

be either relative or absolute). For the sake of read-

ability we will use notation P for absolute paths of the

form ⋆.A.B.C and P for unresolved paths of the form

A.B.C.

4.4 Class Table

A Modelica model usually contains several classes or-

ganized into packages. These classes are stored in a ta-

ble, written CT , that maps absolute class paths to their

definition. A same path can only refer to at most one

class definition. Construction of CT is done by walk-

ing through the syntactic structure of the model and by

adding each encountered class definition name prefixed

by its enclosing package path. This construction may

fail if two classes are located at the same path. If it

succeeds, all classes of the model are present in this ta-

ble. The function dom is used to check whether an abso-

lute path is an existing class with the notation A.B.C ∈

dom(CT).

In the remainder of this paper, we consider that CT was

successfully built.

After the short class definition rewriting that was dis-

cussed previously we can see classes in CT as the sets of

components that are syntactically declared in them. For

example, let’s consider the class C below:

c l a s s C ;
I n t e g e r C1 ;
parameter Boolean C2 ;

end C ;

Conceptually this class is equivalent to the set of com-

ponent declarations C1 and C2, written {Integer C1;

parameter Boolean C2}. We will use the notation

Integer C1 ∈ CT(A.B.C) as a way to express the

fact that a component is declared in a class.

4.5 Specialized Classes

The Modelica specification defines several specialized

classes (Modelica Association, 2012, section 4.6). Most

of the time, the specialized class kind does not matter,

and they all are treated the same way and we will use

the notation ckind to denote any specialized class kind.

However sometimes the kind of specialized class is rele-

vant to check some restrictions or allow some extensions.

To this end, we define a function named kind, depicted

in figure 3, that, given a class absolute path, returns the

kind of specialized class it represents.

kind(⋆) = package

kind(C) = ckind if CT(C) = ν ckind C . . .end C

kind(C) = type if CT(C) = ν type = enumeration(. . .)

Figure 3. Specialized class kind

5 Name Resolution

As part of the formalization of Modelica’s static seman-

tics, the first aspect to consider is the name resolution. It

is crucial in the sense that there must exists no ambiguity

on what is referred to when a name is used in a model

and neither correction can be decided nor compilation

Session 8C: Safety & Formal Methods

DOI
10.3384/ecp15118637

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

641

done without linking referenced names to the definition

of the identified entity. Modelica has several features that

are involved in this step and several rules that must be re-

spected. It has modularization features, such as packages

and visibility, that are to be taken into account.

In this section we propose a formalism for name res-

olution in our subset discussed in 3. It is written as a

bunch of inference rules, each of which will be linked to

the sections in the Modelica specification it was derived

from.

5.1 Import Clauses

Classes and components can be imported in other classes

to shorten the name that are referred to. There are four

kinds of import clauses in Modelica (Modelica Associa-

tion, 2012, section 13.2.1):

1. import A.B.C where C becomes visible in the

lexical scope of the import clause.

2. import A.B.{C, D, E} where C, D and E be-

come visible in the lexical scope of the import

clause

3. import A.B.* where all elements defined in

A.B become visible in the lexical scope of the

import clause.

4. import D = A.B.Cwhere A.B.C becomes vis-

ible with name D in the scope of the import clause.

Clauses of the second form can be reduced to case

one by duplicating import clauses as many times as

there are imported elements and will be treated as such

in the following. In case three the import clause is said

to be unqualified and has lower priority than other import

clauses that are said to be qualified (Modelica Associa-

tion, 2012, section 5.3.1). Case four allows to introduce

a different local name for imported elements that other-

wise would conflict.

Imported names are always fully qualified names

(Modelica Association, 2012, section 13.2.1.1). It means

that if one writes import A in Modelica, it will be

treated as import ⋆.A. In other words, only absolute

composite names are imported.

We define the imports function that will be used in

the following to get the list of unresolved import from

a resolved path. Each import returned by this function

is the pair containing the import name and the imported

path. In the case of unqualified imports, the empty set

symbol ∅ is returned instead of a name.

imports(C) = { namePath(imp) |imp ∈ CT(C) }

where function namePath is defined by:

namePath(import A.B) = (B, A.B)

namePath(import C = A.B) = (C, A.B)

namePath(import A.*) = (∅, A)

5.2 Inheritance

Modelica is an object-oriented language that allows for

multiple inheritance (Modelica Association, 2012, sec-

tion 7.1.1). A class may contain as many extends

clauses as wanted in any order. We define the func-

tion extends which returns the list of unresolved extended

path of a resolved path.

extends(C) = { X | extends X ∈ CT(C) }

5.3 Visibility

Modelica defines two level of visibility: public and

protected. The protected visibility means that the

element cannot be accessed via the dot notation (Model-

ica Association, 2012, section 4.1). Visibility appears in

several kinds of clauses: extends clauses, component

clauses and class definition. An extends clause may

be protected, which means that all inherited components

and classes are considered protected from the inherit-

ing class (Modelica Association, 2012, section 7.1.2).

When resolving names, we would need to check that

a name is visible when accessing it with the dot notation

(Modelica Association, 2012, section 4.1).

5.4 Static Name Lookup

Based on the previous definitions, we can define name

lookup in our Modelica subset. It starts with the static

name lookup, where all the classes and their component

names are resolved. The complete set of rules are de-

picted in figure 4.

Judgements of these rules must be read as follows:

• P ⊢ C
•
⇒ Dmeans “the simple name C seen from

P is resolved to path D.”

• P ⊢ C
◦
⇒ Dmeans “the simple name C seen from

P is resolved to path D by only using named ele-

ments of P or its super classes.”

• P ⊢ C
◦

⇑ means “the simple name C seen from P

cannot be resolved by only using named elements

of P or its super classes.”

• P ⊢ C
•

⇑ means “the simple name C seen from P

cannot be resolved by using named elements of P

or its super classes nor import clauses of P.”

Conceptually, the class path on the left of the ⊢ sym-

bols gives the scope of the lookup and unambiguously

describes where the search must start.

Several aspects of the static name lookup are of inter-

est in this formalization. First, visibility is not taken into

account. The reason why and impacts will be discussed

in section 6. Then, we can see that few rules are needed

Towards a Formalized Modelica Subset

642 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118637

N-Root
⊢ ⋆

◦
⇒ ⋆

P ⊢ C
◦
⇒ D

N-Self
P ⊢ C

•
⇒ D

P.C ∈ dom(CT) ν µ T C < CT(P)
N-InCT

P ⊢ C
◦
⇒ P.C

P.C < dom(CT) ν µ T C ∈ CT(P)
N-Comp

P ⊢ C
◦
⇒ P.C

C.D < dom(CT) ν µ X D < CT(P)

X ∈ extends(C), (C ⊢ X
•
⇒ Y ∧ Y ⊢ D

◦
⇒ T)

∀ Z ∈ extends(C), C ⊢ Z
•
⇒ W ∧ (W ⊢ D

◦
⇒ T ∨ W ⊢ D

◦

⇑)
N-Super

C ⊢ D
◦
⇒ T

P.C < dom(CT) ν µ X C < CT(P) ∀ X ∈ extends(P), P ⊢ X
•
⇒ Y ∧ Y ⊢ C

◦

⇑
N-NoSelf

P ⊢ C
◦

⇑

C ⊢ D
◦

⇑

(D, X.Y) ∈ imports(C) ⋆ ⊢ X
•
⇒ P P ⊢ Y

◦
⇒ E kind(P) = package

N-ImportQual
C ⊢ D

•
⇒ E

C ⊢ D
◦

⇑ (D, _) < imports(C)

(∅, X) ∈ imports(C) ⋆ ⊢ X
•
⇒ P P ⊢ D

◦
⇒ E kind(P) = package

N-ImportUnqual
C ⊢ D

•
⇒ E

P ⊢ C
◦

⇑ (D, _) < imports(C) ∀ (∅, X) ∈ imports(P), P ⊢ X
•
⇒ Y ∧ Y ⊢ C

◦

⇑
N-NoImport

P ⊢ C
•

⇑

CT(P) = ckind P ...end P P.C ⊢ D
•

⇑ P ⊢ D
•
⇒ E

N-Encl
P.C ⊢ D

•
⇒ E

CT(P) = encapsulated ckind P ...end P P.C ⊢ D
•

⇑ ⋆ ⊢ C
•
⇒ E

N-Encaps
P.C ⊢ D

•
⇒ E

P ⊢ C
•
⇒ D D ∈ dom(CT) D ⊢ E

◦
⇒ F kind(D) = package

N-Dot
P ⊢ C.E

•
⇒ F

Figure 4. Static Name Lookup

Session 8C: Safety & Formal Methods

DOI
10.3384/ecp15118637

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

643

to formally describe the entire static lookup semantics. It

represents aspects that are scattered in the specification,

all put together here in a unified framework.

N-Root indicates that the root package name ⋆ always

resolves to itself. It is the base case when looking up

in the enclosing classes. All predefined types (such as

Integer) and predefined functions (such as abs) are

considered to be defined in the root package.

N-Self simply states that if a simple name can be re-

solved with the named elements of a class or its super

classes, then it is resolved. It is kind of a weakening rule

for name resolution since the premise gives a stronger

information than the conclusion.

The base rules N-InCT and N-Comp look up for a sim-

ple name in the current class. They state that if a simple

name is declared in the current class, then it resolves to

this name augmented with the path of the current class.

The same name cannot be defined twice in the same class

(Modelica Association, 2012, section 5.6.3).

The rule N-Super treats the case where a simple name

is defined in inherited classes. A same name C can be in-

herited multiple times if and only if all inherited elements

with name C are exactly identical (Modelica Association,

2012, section 7.1). In this rule identical means that the

resolved path is the same for all inherited elements with

name C.

If the rules we saw so far do not apply to resolve a

simple name C, then we conclude that it is not defined in

the current class. This is what the rule N-NoSelf means.

In such a case, the rules N-ImportQual and

N-ImportUnqual may be applied, to lookup for the sim-

ple name in the import clauses. The former rule looks

up for the name in qualified imports, while the latter

one looks up in unqualified import if no qualified im-

port clause allowed to resolve the name (Modelica As-

sociation, 2012, section 5.3.1). Imported paths are re-

solved starting in the root package (Modelica Associa-

tion, 2012, section 13.2.1.1) and names can only be im-

ported from packages (Modelica Association, 2012, sec-

tion 13.2.1.2). Our subset allows packages to be defined

only packages, that is why it is sufficient to check that

only the last element of the path is a package.

If none of the import-related rules described in the pre-

vious paragraph applies to resolve a simple name C, then

we conclude that it is not defined in the current class, nor

is it imported. This is the meaning of rule N-NoImport.

Only in this case, the simple name must be resolved

by looking up in the enclosing classes. Two different

cases may apply at this point depending on the defi-

nition of the current class. If the current class is de-

clared encapsulated, rule N-Encaps applies and the

name is looked up in the root package (Modelica As-

sociation, 2012, section 5.3.1). In the case the class is

not encapsulated, rule N-Encl applies and the name

is looked up in the directly enclosing class.

Finally, the last case deals with composite names. The

set of rule deals only with static name resolution, which

means that composite names corresponding to compo-

nent accesses of class instances are not treated here. We

will discuss such cases in section 5.5. Static resolution

of composite names is only allowed for names defined in

packages, as stated by rule N-Dot. The last name in the

path is looked up among elements defined or inherited in

the package resolved so far (Modelica Association, 2012,

section 5.3.2).

5.5 Component Lookup

In the previous section we covered the static name

lookup only. This is, the resolution of class names in

packages and component names in packages. Compos-

ite names that access components inside components re-

quire some typing information to be resolved. They in-

deed require to be aware of the structure of the com-

ponent to decide what component the name represents.

This structure is only known once all static names are

resolved. We can then gather the list of components in

a component using the components function depicted in

figure 5. The extendComponents function allows to re-

trieve all inherited components.

Components of a resolved class are all the components

defined in this class or inherited. Resolving accesses to

components is done by the type checking. The type sys-

tem is beyond the scope of this paper, but the typing rule

T-Dot which describes component access in a compo-

nent would look like this.

n: T ν µ C c ∈ components(T)
T-Dot

n.c: C

It reads as: if a simple name n has a resolved type T,

then we can resolve and type n.c if c is a component

of T with type C. Of course this rule is just a sketch and

more concepts are taken into account by the real type

system.

5.6 Class Resolution

A class in Modelica is said to be resolved if several con-

straints are respected:

• All component types can be resolved ;

• All import-clauses can be resolved ;

• All extends-clauses can be resolved ;

• All components defined in a class must have names

distinct from inherited components. In Modelica

component may have the same name if they are syn-

tactically equal (Modelica Association, 2012, sec-

tion 7.1). The specification recommends to emit a

warning in this case, but we decided to forbid it, as

it does not bring anything to define twice compo-

nents that are exactly the same, and most probably

it is a symptom of model design problem ;

Towards a Formalized Modelica Subset

644 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118637

extendComponents(C) =
⋃

D ∈ extends(C) { νx µx X x | νx µx X x ∈ components(D) }

components(C) =



















{ public C Ei | i∈ [1..n] } if CT(C) = enumeration(E1, . . ., En)

{ ν µ X x | ν µ X x ∈ CT(C) } ∪ extendComponents(C) otherwise.

Figure 5. Component Lookup Function

• All qualified import-clauses to distinct names ;

• All unqualified import-clauses bring distinct

names into scope ;

Rule N-Class in figure 6 gives the rule that ensures

that all names are resolved in a class. And that all con-

straints defined above are respected.

6 Discussion and Future Work

In the context of the CertMod project, we also formalized

type checking and clock checking of models based on

similar rules. This work is the basis that we used to write

a complete Modelica front-end that performs all static

checks we described on input models. It can also be used

to write or verify oracles in a compliance test suite, and

then test the model checker against these oracles.

Some restrictions present in the current subset could

be removed, and some omissions could be added. For

instance, we did not take visibility of elements into

account. This was motivated by our tests on various

Modelica implementations which did not agree with nei-

ther the specification nor between each other. Adding

visibility to the name resolution rules would be quite

easy though. Only rules N-Import and N-Dot would

need to take this visibility into account. The extends

function would also require to return the visibility of the

extends clause. Similarly the sketched T-Dot rule would

require that ν is public.

Other constructs that were not taken into account in

name resolution rules in this paper are inner/outer

declarations (Modelica Association, 2012, section 5.4).

These constructs introduce an implicit name, inherited

from an enclosing class. They represent a handy way

of having global parameters in a model that we do

not bother passing explicitly to each part requiring it.

Adding these constructs to the subset would require to

add rules to resolve outer names. These rules would

be quite complex, considering the restrictions and con-

straints that exists on them. The rules must represent

the fact that the closest inner component with the same

name is selected when the class is instantiated.

Redeclarations in inheriting classes are also not in-

cluded in our subset. Redeclaring classes allows for hav-

ing a class name denoting a completely different path

in a sub-class than in the inherited one. Remember the

lookup scope problem for redeclarations we discussed in

section 2. Formalizing redeclarations would definitively

help clarify the situation by having a non ambiguous way

of describing the lookup scope. However, the resulting

rules would be quite complex because for each name one

should lookup for the current redeclaration, if any.

This added complexity makes it harder to read and un-

derstand the rule, but is symptomatic of an intrinsic com-

plexity in the language construct. As a rule of thumb, the

fact that a construct introduces complexity in the formal-

ism can be seen as a hint whether the construct is legit or

not. A too high complexity reflects a construct that will

be hard to understand for modelers, and to implement

correctly by tool providers.

7 Conclusion

In this work, we described all the rules related to name

resolution as described in the Modelica specification. It

was interesting and enlightening to compile the rules and

constraints that appear at various places in the specifi-

cation into a single place. It also allowed us to detect

some features that may be problematic to write a qual-

ified code generator for Modelica. For example, in the

rules depicted in figure 4, the involved concepts are usual

in object-oriented languages. However, the unqualified

import clause lookup described by rule N-ImportUnqual

implies a priority in name lookup that would require

more validation activities to be used. The mix with quali-

fied imports makes it also harder for the modeler to deter-

mine which element is selected. The safest way to deal

with this problem would be to avoid unqualified imports

all together, and to exclude them from the subset. More-

over, the encapsulated concept appears to be quite exotic

and would also require extra checks to be performed as

it introduces some irregularities in the lookup algorithm.

Language features must ensure the highest possible level

of safety, and restricting some constructs can benefit to

developers. Expressiveness is important in a language

but for safety-critical software development, safety and

non ambiguity is even more important.

The considered subset presented here only includes

discrete synchronous features of Modelica and the for-

malization only deals with static aspects of this subset.

Adding the dynamic semantics of the subset appears to

be an important step to take to achieve a comprehensive

formal description of the language. Such a semantics

would describe how a model behaves when it is instan-

tiated and how the generated code must behave as well.

This can be used to write oracles in the test suite and then

Session 8C: Safety & Formal Methods

DOI
10.3384/ecp15118637

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

645

∀ ν µ X x ∈ CT(C), C ⊢ X
•
⇒ _

∀ (_, X) ∈ imports(C), C ⊢ X
•
⇒ _

∀ X ∈ extends(C),

(

C ⊢ X
•
⇒ X ∧ ∀ νc µc C c ∈ CT(C),X ⊢ c

◦

⇑

)

∀ ((N, X), (N, Y)) ∈ imports(C)× imports(C),

(

⋆ ⊢ X
•
⇒ D ∧ ⋆ ⊢ Y

•
⇒ D

)

∀ ((∅, X),(∅, Y)) ∈ imports(C)× imports(C),





























⋆ ⊢ X
•
⇒ A

∧ ⋆ ⊢ Y
•
⇒ B

∧ A ⊢ C
◦
⇒ _ =⇒ B ⊢ C

◦

⇑





























N-Class
C

Figure 6. Class Resolution

validate simulators as well as code generators and check

that they agree on the behavior through the test suite.

A complete formal semantics of a language brings

also the possibility to write proofs on the language. This

is useful to ensure that the type-system is sound and that

the language has a deterministic behavior. Reaching this

point naturally requires a lot more work to be done, and

the continuous part of Modelica would be quite problem-

atic to semantically describe.

The presented work is a first small step toward hav-

ing a formally described version of Modelica. Although

we only covered a small part of the various aspects of

the language, it sets up a framework for a more com-

prehensive formalization. It already brings some clar-

ity where rules written in English may be misinterpreted.

It is also a comprehensive, concise and non-ambiguous

way to describe these rules. We believe that it is a huge

step forward and that it can help clarifying things when

it is hard to interpret the specification. We also believe

that this work can help in writing the next versions of the

Modelica specification. Not necessarily does it mean that

this exact formalism must be included in it, but having

this way of describing behaviors in mind helps writing

more comprehensive and rigorous specification.

Acknowledgments

We would like to particularly thank Martin Otter, Bern-

hard Thiele and Daniel Schlabe for their precious help

and their answers during this work. We also want to

thank Marc Pouzet for his comments on the clock cal-

culus we developed in this project.

References

David Broman, Peter Fritzson, and Sébastien Furic. Types in

the modelica language. In Proceedings of the Fifth Interna-

tional Modelica Conference, 2006.

Jean-Louis Colaço, Bruno Pagano, and Marc Pouzet. A Con-

servative Extension of Synchronous Data-flow with State

Machines. In EMSOFT’05, September 2005.

DO-178C. DO-178C Software Considerations in Airborne

Systems and Equipment Certification, December 2011.

DO-330. DO-330 Software Tool Qualification Considerations,

December 2011.

DO-332. DO-332 Object-Oriented Technology and Related

Techniques Supplement to DO-178C and DO-278A, De-

cember 2011.

Julien Forget, Frédéric Boniol, David Lesens, and Claire

Pagetti. A multi-periodic synchronous data-flow language.

In HASE 2008. 11th IEEE. IEEE, 2008.

Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel

Pilaud. The synchronous dataflow programming language

lustre. In Proceedings of the IEEE, 1991.

Atsushi Igarashi. Formalizing Advanced Class Mechanisms.

PhD thesis, University of Tokyo, 1999.

Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler.

Featherweight java: A minimal core calculus for java and

gj. ACM Trans. Program. Lang. Syst., May 2001.

Xavier Leroy. Formal verification of a realistic compiler. Com-

munications of the ACM, 52(7), 2009.

Modelica Association. Modelica – A Unified Object-Oriented

Language for Systems Modeling, version 3.3. http://

modelica.org, May 2012.

Marc Pouzet. Lucid Synchrone, version 3. Tutorial and refer-

ence manual. Université Paris-Sud, LRI, April 2006.

Lucas Satabin, Olivier Andrieu, Bruno Pagano, and Jean-Louis

Colaço. Formalization of A Modelica Subset for Safety-

Critical Software Development. Technical report, Esterel

Technologies, 2015.

Bernhard Thiele, Stefan-Alexander Schneider, and Pierre R

Mai. A Modelica Sub-and Superset for Safety-Relevant

Control Applications. In Proceedings of the Ninth Inter-

national Modelica Conference, 2012.

Towards a Formalized Modelica Subset

646 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118637

Fundamental EoS Implementation

for {Water+Ammonia} in Modelica

Leonard Becker1 José L. Corrales Ciganda1

1 Department of Energy Engineering, Technische Universität Berlin, Germany

jose.l.corralesciganda@tu-berlin.org, mail@leo-becker.de

Abstract

The implementation of a library for the calculation of

thermodynamic properties for the mixture {water + am-

monia} based on a fundamental equation of state (EoS)

for the Helmholtz free energy is developed and pre-

sented. The model uses the formulation of Tillner-Roth

and Friend (1998a) in order to provide the best avail-

able single state thermodynamic data. The calculation

of the vapour-liquid equilibrium (VLE) using the fun-

damental equation of state is examined. However due

to difficulties found under certain pressure and tempera-

ture conditions, another method for calculating the VLE

had to be used. The problems found included unreliable

results and difficulties setting the initial values. Satura-

tion temperature polynomials by Johnson et al. (2001)

have been found to be faster and more reliable and have

been implemented instead. It’s possible to calculate ther-

mophysical properties in single and two-phase region at

pressures from the melting point up to 40 MPa.

Keywords: Ammonia + Water, fundamental EOS, ther-

modynamic properties, Helmholtz energy

1 Introduction

The description of the thermodynamic properties of the

involved substances is crucial in modelling an industrial

process. Today, the most accurate EoS available are fun-

damental EoS in terms of Helmholtz energy. Using such

an EoS it is possible to calculate all thermodynamic state

properties. In addition the fugacity coefficients used to

receive the VLE-states are available through the partial

derivatives of the Helmholtz energy. Another popular ap-

proach is the use of polynomial fitted VLE-data. These

explicit equations are quick to solve and also invertible.

The comprehensive CoolProp library by Bell et al.

(2014) (included in ExternalMedia) has an implemen-

tation of the mixture {water + ammonia} as an incom-

pressible fluid using polynomials. The ammonia content

is also restricted to 30 % which limits use in sorption

devices. In these devices the refrigerant has ammonia

contents above 90 %. A fundamental EoS in terms of

Helmholtz energy is implemented in the HelmholtzMe-

dia library by Thorade (2012) for single substance work-

ing fluids.

Carluccio et al. (2014) presented a simulation model

for gas absorption heat pumps using {water + ammonia}.

For this model the thermodynamic properties were calcu-

lated using correlations presented by Xu and Goswami

(1999) based on the work of Ziegler and Trepp (1984).

The formulation of the latter is based on a Gibbs Free

Energy fundamental EoS and the measurement data used

are older than those used by Tillner-Roth and Friend.

2 Formulation of the Helmholtz

energy fundamental EoS

Tillner-Roth and Friend (1998b) performed a compre-

hensive assessment of available measurements on ther-

modynamic properties of the mixture {water + ammo-

nia}. Using a formulation of the Helmholtz energy this

resulted in the best available EoS regarding the accu-

racy and domain of definition (Tillner-Roth and Friend,

1998a).

The Helmholtz energy f is a function of temperature

T , specific volume v and mole fraction x. In order to

represent all influences on the Helmholtz energy it is di-

vided into several parts. At first it is separated in ideal

φ ◦ and residual φ r parts which both consist of a part for

each substance and mixing terms. The Helmholtz energy

is made dimensionless φ using the specific gas constant

R and the temperature T and calculated in Equation (1).

f

RT
= φ = φ ◦(τ,δ ,x)+φ r(τ,δ ,x) (1)

The arguments of the function are also made dimen-

sionless using normalization temperature Tn and volume

vn calculated in Equations (2). In the ideal-gas part

Tn = 500K and vn = 15kmol/m3 are chosen arbitrarily.

For the residual part reducing functions containing four

parameters are introduced. These are needed for an ac-

curate representation but are not introduced here.

τ =
Tn

T
, δ =

vn

v
(2)

DOI
10.3384/ecp15118647

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

647

As explained above the ideal part φ ◦ is split into pure

substance and mixing sub-parts. In Equation (3) the log-

arithmic terms represent the ideal mixing terms. The

mixing part ∆φ r of the residual part (Equation (4)) is fit-

ted using up to 56 parameters.

φ ◦ = (1− x)φ ◦01 + xφ ◦02 +(1− x)ln(1− x)+ xlnx. (3)

φ r = (1− x)φ r
1 + xφ r

2 +∆φ r (4)

The modular structure allows the use of proven formu-

lations for the residual parts of the pure substances. For

water IAPWS from Wagner and Pruß (2002), which is

already implemented in the Modelica Standard Library,

is used. Ammonia properties are approximated with the

formulation from Tillner-Roth et al. (1993).

All the parameters and equations, together with an as-

sessment of the database may be found in the original

article from Tillner-Roth and Friend (1998a).

2.1 Calculating Auxiliary Properties

In order to calculate any auxiliary property at first the

Helmholtz energy with its arguments has to be known

(see Section 4.3). To get the thermodynamic properties

from the Helmholtz energy partial derivatives are used.

The algorithms shown in Table 1 are derived from the to-

tal differential of the Helmholtz energy and the property

in question. The process is described in detail in Thorade

and Saadat (2013). Here one may also find a derivation

of several partial derivatives of the Helmholtz energy in

the one- and two-phase region.

As shown in Table 1, partial derivatives with respect

to the molar fraction are only needed for the algorithms

calculating the fugacity for both substances.

Table 1. Equations for auxiliary properties

Property Equation

pressure p = RTρ

(

1+δ
∂φ r

∂δ

)

inner energy u = RT

(

τ◦
∂φ ◦

∂τ◦
+ τ

∂φ r

∂τ

)

enthalpy h = RT

(

1+ τ◦
∂φ ◦

∂τ◦
+ τ

∂φ r

∂τ
+δ

∂φ r

∂δ

)

entropy s = R

(

τ◦
∂φ ◦

∂τ◦
+ τ

∂φ r

∂τ
−φ ◦−φ r

)

specific heat cv =−R

(

τ◦2
∂ 2φ ◦

∂τ◦2
+ τ

∂ 2φ r

∂τ2

)

fugacity coef. ϕammonia =
exp(φ r +δ

∂φ r

∂δ
− xFϕ)

1+δ
∂φ r

∂δ

ϕwater =
exp(φ r +δ

∂φ r

∂δ
− (1− x)Fϕ)

1+δ
∂φ r

∂δ

fugacity var. Fϕ =
∂φ r

∂x
+

∂δ

∂x

∂φ r

∂δ
+

∂τ

∂x

∂φ r

∂τ

3 Vapour-Liquid Equilibrium

3.1 Solving the PDE in Modelica

The vapour-liquid equilibrium for the mixture {water +

ammonia} is defined through the three equilibria:

mechanical equilibrium: pvapour = pliquid (5)

thermal equilibrium: Tvapour = Tliquid (6)

chemical equilibrium: ḠNH3,vapour = ḠNH3,liquid (7)

ḠH2O,vapour = ḠH2O,liquid (8)

For VLE-calculations equations (5) to (8) have to be used

in combination with the EoS formulation of Helmholtz

energy. To get thermodynamic information in the VLE-

region temperature, specific volume and molar fraction

for both phases are needed. With these values in hand

the other state properties may be calculated using the al-

gorithms from Section 2.1. Six variables are to be found

and four equations given resulting in a algebraic equation

system with a degree of freedom of two. In practice two

variables out of temperature, pressure and molar fraction

of the phases are used. Several approaches to solve the

VLE in an efficent and robust way can be found in the lit-

erature, like in Privat et al. (2013). In this first approach

however the set of equations are written with Modelica

and the system solved providing two inputs variables and

using standard compiler and solvers.

The chemical equilibrium in Equations (7),(8) may be

converted to the chemical potential µ for the species k

using the definition of the partial molar Gibbs energy Ḡ.

Equation (9) is converted into Equation (10) to enable

the use of fugacity coefficients ϕ provided by the EoS

µk,vapour = µk,liquid (9)

xk,vapourϕk,vapour = xk,liquidϕk,liquid (10)

For a given couple of temperature and pressure the VLE

has been computed using the PDE resulting from the EoS

with a Modelica model solved with the DASSL solver.

As shown In Figure 2 the solver is not able to find a so-

lution under certain combinations of T and p.

3.2 Polynomial Saturation Curves

A widely used approach to approximate VLE-data is fit-

ting with polynomial saturation curves. Patek and Klom-

far (1995) introduced a methodology which is refined by

Johnson et al. (2001). The measurement datasets used

for the formulation of the Helmholtz energy are also used

here which results in similar results. The temperature,

pressure and molar fraction data is forming a three di-

mensional surface, which is fitted using a weighted least

square algorithm. The result are saturation temperature

curves Tphase(p,x) with the form of Equation (11) using

Fundamental EoS Implementation for {Water+Ammonia} in Modelica

648 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118647

56 parameters.

Tphase(p,x) = t0 ∑
i

aix
qi

phase(1− xphase)
ri

[

ln

(

p0

p

)]si

(11)

The polynomials are build as Lagrange polynomials to

ensure pure substance saturation lines equal to Equations

(12) and (13).

TH2O(p) = 269.8p0.08839 +52.79p0.3663 +130.4 (12)

TNH3
(p) = 177.9p0.09397 +40.28p0.3898 +79.83 (13)

The equations are taken from Reynolds (1979). Oscil-

lation can be problematic in numeric algorithms. This

behavior of the fitted polynomials was reduced near the

pure substance data. Multiple new datasets are gener-

ated to punish oscillation in the least square method. The

methodology in detail and the parameters of Equation

(11) may be found in Johnson et al. (2001).

4 Modelica Implementation

extendsHThermoFluid

BaseProperties

SingleSubstanceData

f setState_pTX

setState_phXf

VLE

Test

Internal

H2O_NH3_TillnerRoth

+

+

+

+

+

...f

Figure 1. Basic structure

The general implemen-

tation of the library

H2O_NH3_TillnerRoth

is shown in Figure 1 and

is mostly based on the

Modelica Standard Li-

brary. To calculate fluid

properties the model

BaseProperties

may be used. Here

all basic properties are

included for easy use.

All the functions can be

accessed independently, too. The folder VLE includes

the VLE computation using the polynomial saturation

curves discussed in Section 3.2. Some tests may be car-

ried out using the functions contained in the package

Test (see Sec. 4.4).

The implemented library H2O_NH3_TillnerRoth

provides functions and models for the calculation of ther-

modynamic properties and vapour-liquid equilibrium of

ammonia-water mixtures. For the VLE calculation the li-

brary makes use of the polynomial saturation curves pre-

viously presented. It is also possible to solve the VLE

using the Helmholtz energy fundamental EoS.

A new interface Thermofluid is introduced, that

extends the standard PartialMedium interface. To

ensure compatibility all of the defined functions and

records are used. In Thermofluid all the newly in-

troduced registers are implemented. For example the

record FluidConstants is extended with the data,

that are needed for the dimensionless expression of the

variables in the fundamental equation of state, such as

density and molar mass at critical points.

To calculate fluid properties in one phase several steps

are taken successively:

1. At first the thermodynamic state vector (d,T,x) has

to be determined. This is described in Section

4.3. The state vector is assigned to the record

ThermodynamicState, which contains the ar-

guments of the Helmholtz energy, in their mass

based form.

2. As input for the Helmholtz energy EoS the state

vector has to be made dimensionless in the

function taudeltax_.

3. Actual partial derivatives (Section 4.1) can now

be calculated. The algorithms are found in the

package Internal.EOS and assigned to the

record TauDeltaX.

4. Lastly the high-level functions defined in the Mod-

elica Standard Library access the derivatives to cal-

culate the thermodynamic property as described in

Section 2.1.

The implementation for the EoS is based on the

‘HelmholtzMedia’ library presented by Thorade (2012).

Some modifications are needed however due to the fact

that HelmholtzMedia was developed for single sub-

stances and not mixtures. This also adds an extra inde-

pendent variable for the EoS, changing the definition of

the thermodynamic state vector and the system of equa-

tions for the VLE.

4.1 Partial derivative calculation

The partial derivatives of the formulation needed for the

algorithms have been implemented using two different

approaches. Firstly, the Modelica feature of automated

symbolical derivatives is used. This is a very conve-

nient solution, producing little program code and effort

to implement. The implementation is described in Ols-

son et al. (2005) for single substance use. The partial

derivative of the residual part of the Helmholtz energy
∂φ r

∂δ
is calculated using

function dphir_ddelta = der(phir_, delta);

with the function phir_ from Equation 4 and the

argument delta.

However the use of this feature has not been shown

as completely satisfactory. The calculation of the deriva-

tives is not reliable since errors often appear caused by

division by zero in logarithmic expressions. It was not

possible to find a way to avoid these errors, because the

algorithm used to automatically calculated the deriva-

tives was not known, not manipulable and beyond the

scope of this work.

Finally a second approach was used, implementing

analytically determined derivatives. The formulation of

Session 8D: Thermofluid Systems, Models and Libraries 1

DOI
10.3384/ecp15118647

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

649

Mole Fraction Ammonia [mol=mol]

0 0.2 0.4 0.6 0.8 1

P
re
ss
u
re

[b
ar
]

1

10

100

T=-20/C

T=30/C

T=160/C
T=250/CT=320/C

A Saturated Liquid

Sat. Vapour !

Figure 2. Solution of the VLE in Modelica for different tem-

peratures

the Helmholtz energy is derivable analytically due to it’s

structure as mostly a sum of small terms. With this sec-

ond method the errors can be avoided through substitut-

ing the unfeasible terms with zero. The price is more

complex Modelica code and the work load for the model

maker associated with analytically solving the deriva-

tives.

4.2 Vapour-Liquid-Equilibrium Calculation

As shown in Figure 2, the use of the DASSL solver to

solve the equation system of the VLE resulting from the

EoS formulation of Helmholtz Energy is not successful

in certain regions. Especially for low pressures (below 1

bar) and for mole fractions close to the single substances

is not possible for the solver to find a solution.

In addition the solver is only able to solve the PDE if

the given start values are very close to the solution. This

can become a problem for dynamic simulations with big

changes in pressure, temperature or mole fractions, since

the start values have to be supplied to the model as pa-

rameters. Computed data from other components or for-

mer time steps is stored as variables. In the current ver-

sion of Modelica parameters can’t be calculated using

variables. Not being able to use simulation data makes

it very difficult to supply good start values to the VLE

equation system.

For these reasons, the alternative implementation us-

ing the polynomial saturation curves is preferred, since

it shows no convergence problems for the whole work-

ing region and the deviation of its results from those of

the EoS implementation is in the range of measurement

error reported by Tillner-Roth and Friend (1998a).

4.3 Finding the Thermodynamic State

As outlined by Thorade (2012) in engineering applica-

tions often the known variable combinations are (p,T,x)

Input:

♣ {pressure}

❤ {enthalpy}

① {mole fraction ammonia}

t♦❧❡r❛♥❝❡ {calculation accuracy}
Inner Variables:

❘❊❙ {[2]-residual vector}

❏❛❝♦❜✐ {[2x2]-Jacobi-matrix}

◆❙ {[2]-Newton-step vector}
Output:

st❛t❡ {thermodynamic state vector}

st❛t❡✳① ← ① ✭❛ss✐❣♥ ♠♦❧❛r ❢r❛❝t✐♦♥✮

if ❤ < 900 kJ ✭✐❞❡♥t✐❢② ♣❤❛s❡✮

true false

st❛t❡✳❞ ← liquid initial

st❛t❡✳❚ ← liquid initial

st❛t❡✳❞ ← vapour initial

st❛t❡✳❚ ← vapour initial

while [| ◆❙ | < ❚♦❧❡r❛♥③]

❘❊❙ ←
[

[♣ −p(st❛t❡)] [❤ −h(st❛t❡)]
]

❏❛❝♦❜✐ ←

[

∂p
∂d

∂p
∂T

∂h
∂d

∂h
∂T

]

(st❛t❡)

◆❙ ← - ❏❛❝♦❜✐ −1· ❘❊❙ ✭s♦❧✈❡❞ ❡①t❡r♥❛❧❧②✮

state.d← state.d + NS ✭❝❤❛♥❣❡ ♣r❡ss✉r❡✮

state.T← state.T + ◆❙ ✭❝❤❛♥❣❡ t❡♠♣❡r❛t✉r❡✮

Figure 3. Nassi-Shneiderman-Diagram of setState_phx

or (p,h,x) instead of (d,T,x), the arguments of the

Helmholtz energy. This is particularly important for

users of the Modelica Fluid library, since its connectors

share the combination (p,h,x) between components.

In the Library H2O_NH3_TillnerRoth the func-

tions setState_pTx and setState_phx are im-

plemented. These functions iteratively determine a ther-

modynamic state (d,T,x) starting from (p,T,x) or (p,h,x).

The Nassi-Shneiderman-Diagram for the function

setState_phx is shown in Figure 3 as an example.

After the unchanged mass fraction is assigned the phase

needs to be determined. In the case of given (p,h,x)

this can easily be achieved, because in the area of def-

inition the enthalpy identifies the phase unambiguously.

Afterwards a two-dimensional Newton-Raphson method

is executed.

Firstly the input pressure is compared to the pressure

computed by the current iteration of the state vector. To-

gether with the analogue difference for the enthalpy the

residual vector is assigned. In the Jacobi matrix the par-

tial derivatives of pressure and enthalpy with respect to

temperature and density are calculated using the current

state vector. The equation NS =−Jacobi−1 ·RES is rear-

ranged to Jacobi ·NS = RES and solved with the Gaus-

sian elimination implemented in the Modelica Standard

Library to receive the Newton step vector NS. Finally the

Fundamental EoS Implementation for {Water+Ammonia} in Modelica

650 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118647

Iteration [-]

0 2 4 6 8 10

T
em

p
er

at
u
re

E
rr
or

[K
]

10!14

10!11

10!8

10!5

10!2

10+1

2nd Order Convergence

A setState phX

Figure 4. Temperature convergence of getState_phx

state variables temperature and density are changed.

Convergence behaviour

To test the reliability and speed of the getState func-

tions convergence examinations are carried out. A list of

27 sample points in both phases and different tempera-

tures and pressures was used. In Figure 4 the difference

of the calculated temperature and the analytic solution

is plotted on the iteration. It can be seen that the con-

vergence is higher than the upper bound of the Newton-

Raphson method, convergence of second order.

Having said that, for temperature errors below 10−12

the method is not able to converge any more in some

cases. These artefacts have been removed through a cap-

ping of the tolerance. In result the getState functions

are able to find a solution in mostly three iterations with

an error lower to the inaccuracies of the formulation in

question.

4.4 First Evaluation using PartialTestModel

A first test of the usability and performance of the Li-

brary was undertaken using the PartialTestModel

from the Modelica Standard Library. The model shown

in Figure 5 includes models for a source, volume,

pipe and sink and follows a principle recommended by

Tummescheit (2002). In Equation (14) the start condi-

Volume

V=0.1 m³

m

Source

ṁ=1 kg/s

SinkShort Pipe

k=1/0.1 kg/sbar p=1 bar

Figure 5. Diagram view of the PartialTestModel

tions of the system is defined. For the source the values

are slightly different (Eq. (15),(16)) which are then ad-

Time [ms]

0 40 80 120 160 200

D
en

si
ty

[k
g
= m

3
]

0.38

0.4

0.42

0.44

0.46

Volume !

" Source

Figure 6. Dynamic simulation of PartialTestModel: density

vanced in the system through the mass flow.

pstart = 1bar, Tstart = 200 ◦C, xstart = 0.5 (14)

TSource = 1,2Tstart = 294,8◦C (15)

xSource = 0,5xstart = 0,25kg/kg (16)

The results from Figure 6 and 7 show that the model

is able to calculate thermodynamic states for dynamic

changing conditions.

In Figure 6 the density in the simulated volume is plot-

ted. The density of the fluid in the volume changes with

changing pressure and temperature. The changes of pres-

sure and temperature with time are shown in Figure 7.

The temperature of the volume changes from the start-

ing 200 ◦C since more and more fluid is flowing into the

volume from the source with a constant temperature of

∼300 ◦C. The pressure in the volume changes dynam-

ically when fluid starts flowing until an stationary state

is found (the source provides a constant mass flow rate).

The density rises at the beginning as a consequence of the

increasing pressure, but afterwards for constant pressure

decreases with increasing temperature. The obtained re-

sults follow the expected behaviour for such a system.

Time [ms]

0 50 100 150 200

P
re

ss
u
re

[P
a]

1

1.02

1.04

1.06

1.08

1.1

#105

" Volume

Time [ms]

0 50 100 150 200

T
em

p
er

at
u
re

[K
]

480

500

520

540

560

A Volume

Source

Figure 7. Dynamic simulation of PartialTestModel: pressure

and temperature

Session 8D: Thermofluid Systems, Models and Libraries 1

DOI
10.3384/ecp15118647

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

651

5 Summary and Outlook

A Modelica library for the calculation of thermodynamic

properties of the mixture ammonia-water has been pre-

sented and discussed. The formulation of the Helmholtz

energy fundamental equation of state using Modelica has

been demonstrated. For the partial derivatives needed

in the EoS, the automated symbolical derivation imple-

mented in Modelica has been tested with not reliable re-

sults, and previously analytically solved differentials has

been used instead.

For the solution of the vapour-equilibrium equations

two alternative approaches have been tested. A first ap-

proach, solving the resulting PDE with Modelica has

been found possible but inconvenient, since it requires

quite accurate start values,takes long CPU-calculation

times and is not able to solve the equation system un-

der certain conditions. Instead, a second approach using

polynomial saturation curves is preferred, and has been

tested with regards of convergence using different meth-

ods.

In future works, the library will be extended to include

calculation of non-state properties like surface tension,

viscosity or thermal conductivity. that are relevant for the

simulation of absorption heat pumps and chillers. Possi-

ble improvements can be made regarding the automatic

recognition of the fluid phase to improve initialisation

and simulation speed. An algorithm for the calculation

of the VLE PDE could also be implemented.

A new Modelica Media connector for multiple phase

mixtures (similar to FluidPort) would be very useful for

heat transfer simulations, and would also require the

adaptation of the presented library. The results obtained

with this library are still to be compared with those ob-

tained by the correlation equations implemented by Car-

luccio et al. (2014) or those obtained accessing external

data base properties like REFPROP from Lemmon et al.

(2013) or CoolProp from Bell et al. (2014).

References

Modelica Association et al. The modelica standard library - 3.3

revision 1. Online, URL: http://www.modelica.org/, 2014.

I.H. Bell, J. Wronski, S. Quoilin, and V. Lemort. Pure and

pseudo-pure fluid thermophysical property evaluation and

the open-source thermophysical property library coolprop.

Industrial & Engineering Chemistry Research, 53(6):2498–

2508, 2014. doi:10.1021/ie4033999.

F. Carluccio, G. Starace, and C. Bongs. Modeling and simula-

tion of a gas absorption heat pump: Proceedings ishpc 2014,

106. 2014.

D. U. Johnson, W.E. Lear, and S. A. Sherif. Curve Fitting

of Ammonia-Water Mixture Properties: An Improvement of

Patek and Klomfar’s Ammonia-Water Correlations. PhD

thesis, University of Florida, 2001.

EW Lemmon, ML Huber, and MO McLinden. Reference

fluid thermodynamic and transport properties-refprop, ver-

sion 9.1. National Institute of Standards and Technology

Standard Reference Database 23, 23, 2013.

H. Olsson, H. H Tummescheit, and H. Elmqvist, editors. Using

automatic differentiation for partial derivatives of functions

in Modelica, 2005. Citeseer.

J. Patek and J. Klomfar. Simple functions for fast calcula-

tions of selected thermodynamic properties of the ammonia-

water system. International Journal of Refrigeration, 18

(4):228–234, 1995. ISSN 01407007. doi:10.1016/0140-

7007(95)00006-W.

R. Privat, J.N. Jaubert, and Y. Privat. A simple and unified

algorithm to solve fluid phase equilibria using either the

gamma–phi or the phi–phi approach for binary and ternary

mixtures. Computers and Chemical Engineering, 50:139 –

151, 2013. ISSN 0098-1354.

W. C. Reynolds. Thermodynamic properties in si. graphs, ta-

bles and computational equations for forty substances, de-

partment of mechanical engineering, 1979.

A. Thorade, M.and Saadat. Helmholtzmedia - a fluid properties

library. In Proceedings of the 9th International Modelica

Conference. doi, volume 10, page 3384, 2012.

M. Thorade and A. Saadat. Partial derivatives of thermody-

namic state properties for dynamic simulation. Environmen-

tal Earth Sciences, 70(8):3497–3503, 2013. ISSN 1866-

6280.

R. Tillner-Roth and D. G. Friend. A helmholtz free energy

formulation of the thermodynamic properties of the mixture

{water + ammonia}. Journal of Physical and Chemical Ref-

erence Data, 27(1):63–96, 1998a. ISSN 0047-2689.

R. Tillner-Roth and D. G. Friend. Survey and assessment of

available measurements on thermodynamic properties of the

mixture {water+ ammonia}. Journal of Physical and Chem-

ical Reference Data, 27(1):45–61, 1998b. ISSN 0047-2689.

R. Tillner-Roth, F. Harms-Watzenberg, and H. D. Baehr.

Eine neue fundamentalgleichung für ammoniak. DKV

TAGUNGSBERICHT, 20:67, 1993. ISSN 0172-8849.

H. Tummescheit. Design and implementation of object-

oriented model libraries using modelica. PhD thesis, Lund

University, 2002.

W. Wagner and A. Pruß. The iapws formulation 1995 for the

thermodynamic properties of ordinary water substance for

general and scientific use. Journal of Physical and Chemical

Reference Data, 31(2):387–535, 2002. ISSN 0047-2689.

Feng Xu and D.Yogi Goswami. Thermodynamic properties

of ammonia–water mixtures for power-cycle applications.

Energy, 24(6):525 – 536, 1999. ISSN 0360-5442.

B Ziegler and Ch Trepp. Equation of state for ammonia-water

mixtures. International Journal of Refrigeration, 7(2):101

– 106, 1984. ISSN 0140-7007.

Fundamental EoS Implementation for {Water+Ammonia} in Modelica

652 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118647

MultiComponentMultiPhase – a framework for thermodynamic

properties in Modelica

Johan Windahl1 Katrin Prölss1 Maarten Bosmans2 Hubertus Tummescheit1 Eli van Es2 Awin
Sewgobind2

1Modelon AB, Lund, Sweden,
{johan.windahl,katrin.prolss,hubertus.tummescheit}@modelon.com

2VORtech, Delft, Netherlands, {maarten.bosmans,eli.vanes,awin.sewgobind}@vortech.nl

Abstract
This paper describes the development and requirement
specification of an open-source framework for multi-
phase multi-component thermo properties in Modelica.
The goal is to have a standardized interface to
multi-component multi-phase fluids with access to
external property packages in Modelica. This will
make it easier to develop models for e.g. the process
industry. The library uses a model based interface and
implications of such a design are analyzed and
compared with the traditional function based interface.

The work has been carried out in collaboration with
Modelon AB and VORtech within the umbrella of
Methods and tools as part of the CleanSky SGO
project.

Keywords: CAPE-OPEN, FluidProp, RefProp, fluid

properties, flash calculations

1 Introduction

Properties of working fluids define the achievable
baseline accuracy for fluid system simulations. The
availability of properties for steam and flue gases
initiated the use of Modelica in the power industry,
where it today is a well-established technology with
several commercial and open source libraries available
(Modelica Libraries, 2015). High quality fluid
properties are laborious to produce and their non-
availability is therefore a typical blocking argument for
the use of a certain tool or technology.

Published work of modeling chemical process
systems in Modelica exists, see (Tummescheit et al,
2002; Dietl et al 2011; Baharev et al 2012). But until
today, the use of Modelica has not been widely spread
to this area even though it would be well-suited to
describe these processes. Modelica is equation based,
similar to gPROMS, which is well established in the
process industry. However, it is lacking a standardized
interface for multi-component multi-phase fluid
properties. For an overview of equation oriented
methods for chemical and related process flowsheets,
see (Morton, 2002).

In this project a Modelica library for multi-phase
multi-component fluids has been developed together
with an external C/C++ Modelica property interface
with back ends to CAPE-OPEN, RefProp (Lemmon et

al, 2013) and FluidProp (Fluid property library, 2015).
The framework also contains a Modelica library for
distillation processes for verification and testing of the
media interface design.

2 Background

Modelica.Media is a freely available Modelica package
contained in the Modelica standard library. It consists
of property models from ideal gases up to high
accuracy models of WaterIF97 and R134a. The current
version 3.2.1 is restricted to pure two-phase or single
phase mixtures. The goal is to extend the capabilities
of Modelica.Media with support of multi-component
multi-phase mixtures and to find an interface structure
that is user-friendly both from an implementer and end-
user perspective.

In order to collect input for the interface design, a
meeting in Delft (Oct 2013) was held that gathered 17
people from academia, industry and members of the
Modelica design group. During the meeting it became
clear that technical challenges to implement such a
property interface efficiently using the current structure
of Modelica.Media are high. A large part of the project
has therefore been focused on finding an interface
structure both within and outside the limits of the
Modelica specification 3.3.

2.1 Application overview

The framework developed in this project must cover a
wide range of processes. The following types of
processes have been identified where multi-phase
multi-component fluids are used:

DOI
10.3384/ecp15118653

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

653

2.1.1 Thermodynamic cycle processes

Typical applications are refrigeration, heat pumps
(vapor compression cycles) and Organic Rankine
cycles using a blend of different working fluids, which
may be available in RefProp. Models are usually
characterized by a homogenous treatment of properties
and flows, usually modelled with mass based units as is
common in the energy and power industry. System
may operate in overcritical conditions.

These applications fit well into the Modelica.Media
structure as it was created with these processes in
mind. Flexible models are required due to the number
of present phases in a model can change during
simulation.

2.1.2 Thermal separation processes (with and

without chemical reactions)

Typical applications are rectification and absorption
processes where the numbers of phases usually are
limited to vapor and liquid and models use a mole
basis. It is common to include chemical reactions and
fluids are often taken from databases via CAPE-OPEN.

Figure 1. Example of thermal separation processes. Column

tray (left) and column packing (right).

2.1.3 Transport of multiphase flows

Typical applications are compositional pipe network
simulations, which are computationally expensive. In
this case multiple phases may coexist and a
homogenous assumption is not valid.

2.2 Context

Following types of usage are possible:
• Dynamic simulation
• Steady-state simulation
• Optimization

From an interface perspective a difference is in the
requirement of differentiation of properties. Solving an
optimal control problem also involves the Hessian
(Boyd et al) Even if these can be calculated
numerically the performance and robustness increase if
analytical derivatives can be provided (Åkesson et al,
2012) An interface should therefore support the usage
of analytical derivatives if these can be provided.

2.3 Phase equilibrium calculation

A phase equilibrium calculation determines subject to
specified constraint, e.g. fixed pressure and
temperature, present phases and the composition and
fraction of each present phase. It is an iterative
calculation which often uses specialized algorithms;
see (Parekh et al, 1998; Gernert et al, 2014).

Phase equilibrium calculations are time consuming
and will dominate the total CPU usage, up to 95%
according to (Trapp, 2014). Similar numbers have also
been observed in this work.
To achieve competitive performance:
1. The number of phase equilibrium calculations

should be minimized. This can be achieved by
designing fluid and application library interfaces
so that calculation result can be shared between
components. This may require expanding the
connector class with additional variables to avoid
redundant calculations.

2. For each phase equilibrium calculation, the
number of iterations inside these algorithms needs
to be minimized. This can be achieved by
providing good iteration guess values.

3 Modelica media interface

There are several possibilities to define an interface
due to Modelica support both models and functions.

The first step in the design process was to analyze
and list requirements.

3.1.1 General media requirements

1. User-friendliness and structure
• The structure should be easy to understand and

use. Implementation details such as external
objects should be hidden from the user.

• Interface that can be used by both a native
Modelica and external C-code media
implementation.

• Calculation of parameters, preferable also
structural parameters, from property functions
that may have a dependency on external
code/external object.

2. Possibility to create a media structure using
inheritance. To easily create new media from
existing templates and interfaces.

3. Performance
• The interface should be designed with efficiency

in mind. It should support differentiation of
properties and caching through external
objects.

• Possibility to provide additional information
about present phases that can be used to
simplify or skip computational expensive phase
equilibria calculations.

V

L

L V

MultiComponentMultiPhase - A Framework for Thermodynamic Properties in Modelica

654 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118653

• Support to add initial guesses of start values.
4. Derivative functions
• It should be possible to specify derivative

functions needed for: state variable
transformations, index reduction and generation
of analytic Jacobians.

5. Additional
• It should be possible to extend the interface with

new functionality such as reaction properties.

3.1.2 Multi-component multi-phase requirements

There is a wide range of different properties that may
be needed but here we consider the most basic usage.
• Calculation of phase equilibrium.
• Calculation of properties for a specified phase at

phase equilibrium.
• Support for common properties such as fugacity

and activity coefficients.
• Support of both molar and mass based properties.

The chemical process industry usually works in
mole while the energy industry works in mass
based units.

• No restriction of the number of supported phases.

3.1.3 Additional requirement

• Take advantage of unit declaration. The
possibility to declare units is a powerful feature
in Modelica that should be used.

• Uniquely identify phases and compounds.

3.2 Design restrictions

When designing a property interface in Modelica
following restrictions (Modelica Association,
Specification, 2015) needs to be considered.
1. Functions need to be pure, i.e. they are not

allowed to have any side effect. This is a
fundamental assumption in Modelica that makes it
possible for a tool to apply symbolic
transformation and rearrange calculations.

2. Records are not suited to be used as function
inputs. This is due to the fact that it is not allowed
to specify a derivative function if the record
contains a non-real variable. It is also not efficient
to use a record with additional variables due to all
variables needs to be considered for
differentiation. A record is also not allowed to
contain an external object.

3. It is not possible to access a previous value of a
continuous variable. There is no such operator in
Modelica.

3.2.1 Iterative algorithms

A consequence of the restrictions is that it is inefficient
to implement explicit iterative algorithms in native
Modelica. This is due to that functions are not allowed
to have internal memory between function calls and
there is no operator to access a previous value of a
continuous variable. The start value of a variable in an
algorithm is therefore equal to its start attribute during
simulation. This is a drawback for function based
media property calculations that need to be solved by
an iteration process. If instead a model based interface
is used and the algorithm is replaced with an implicit
equation formulation, the tools non-linear solver can
use the last solution point as a start for the next
iteration (Olsson et al, 2005).

3.3 Model based interface structure

Based on the requirements and restrictions it was
decided that the interface structure should be model
based (this does not hinder the implementation to be
function based).
Main advantages with a model based structure are:
• Possible to implement a medium using a

declarative approach as demonstrated in
(Olsson et al, 2005). It makes it possible to
quickly create a medium with good
performance, see section 5.1

• Possible to share interface between an external
code based media and a native Modelica based
media.

• User friendly as implementation details can be
hidden from the user and the possibility to
work graphically and by that taking advantage
of a tool support of e.g. unit conversion.

• Possible with a minimalistic interface as it is not
necessary to create new models for new input
combinations. The model based interface may
not specify the causality of the variables.

• Avoid the need for a tool to support common-sub
expression elimination as the result of an
expensive calculation can be stored in a model.

• Possible to use block and models in an
implementation, e.g. the Modelica Standard
Library tables.

There are also disadvantages that should be considered:
• A model can’t be instantiated inside a function

which limits the scope where a media
calculation can be executed.

• It is user unfriendly to calculate parameters from
a media. It requires setting a parameters fixed
attribute to false and an additional equation in
the initial equation section.

Session 8D: Thermofluid Systems, Models and Libraries 1

DOI
10.3384/ecp15118653

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

655

• Not possible to calculate a property on demand as
a model needs to be instantiated.

3.3.1 MultiPhaseMixture interface

The current interface structure is shown in Figure 2, it
consists of a few models and helper functions.

Figure 2. Screenshot of the current interface structure
of MultiPhaseMixture. Note that it is currently under

development and is therefore subject to change.

3.3.2 Example of usage

An example of how to use the ThermoProperties model
is shown in Listing 1.

4 External interface

Developing thermodynamic property models for multi-
phase multi-component fluids is fairly complex and
requires specialist knowledge. There already exist tools
like MultiFlash and FluidProp that have been
developed in the process industry and in academia over

a long time. It is therefore useful for the new Media
library to be able to interface with external fluid
property tools and databases.
The overall structure of the external framework is
illustrated in Figure 3.

Figure 3. Overview of external framework structure.

4.1 Previous work in Modelica

There exists previous published work with interfacing
external properties in Modelica, see (Tummescheit,
2002; Trapp 2014; Wellner 2014). There is also an
open-source framework available, ExternalMedia
(Casella, 2008), but it is limited to pure two-phase
media.

4.2 Using external code in Modelica

Modelica has an external function interface to C which
makes it possible to use external routines within a
Modelica function. Following issues have been
considered when building the new Modelica libraries
around external code:
• Differentiation
• Error messages
• Use of external objects

An advantage of using native Modelica code over
external code is that the Modelica compiler has access
to structural information on the dependency between
inputs and outputs. This makes it possible to
automatically differentiate, create analytical Jacobians
and explore sparsity patterns that will increase
robustness and performance of a simulation.

For external functions, derivative information needs
to be specified by the user. In the general case it would
require full knowledge about the implementation. For
thermodynamic properties the effort on providing this
information can be decreased by taking advantage of
thermodynamic properties definitions. But it is
important that there are test cases as wrongly

model ExampleOfUsage
 package Medium=MultiPhaseMixture.Air_PureModelica;
 Medium.ThermoProperties thermoProperties(
 inputs=MultiPhaseMixture.Interfaces.Inputs.pTY,
 p=100000,
 T=298.15,
 Zm=Medium.reference_Y);
 Density d;

equation
 d= thermoProperties.d;
end ExampleOfUsage;

Listing 1. Modelica code showing the usage of a
property calculation using the model based interface.

MultiComponentMultiPhase - A Framework for Thermodynamic Properties in Modelica

656 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118653

calculated derivatives will lead to convergence failure
which may be very hard to debug.

Another important aspect is implementation of
appropriate error messages, as otherwise the simulation
may crash without leaving any information to the user.

4.2.1 External object

With the use of external objects there is a defined way
to allocate and de-allocate resources. It is also possible
to store internal information between function calls
which may be used to cache iteration start values. The
C-interface is therefore based on external objects.

Disadvantages are restrictions on how they can be
used in Modelica (Modelica Spec, 2015) and it is not
clear how they work in combination with symbolic
transformation such as inverse functions and sub-
expression elimination. We have also encountered
bugs related to the use of them, however it seems more
stable with more recent versions of Modelica tools.

4.3 Modelica external media interface

MultiPhaseMixture.ExternalMixture is a template that
implements the Modelica MultiPhaseMixture interface.
It consists mainly of:
• Functions that call the external C- code interface.
• Wrapper functions for various property and input

combinations.
• Calculations of multi-phase properties and

derivatives
With the wrapper functions it is possible to specify
derivative annotations and support differentiation of
external properties.

4.3.1 Derivatives

Neither CAPE-OPEN nor RefProp supports total
overall properties derivatives, which may be needed for
dynamic simulation, especially for state variable
transformation. It was therefore decided that these
types of calculations should be implemented on the
Modelica side and not in the C-interface. For a pure
fluid, the calculations are straight-forward and there are
publications available (Thorade et al, 2013). For
mixtures they are more complicated (Li, 1955). The
difficult part is when several phases coexist. In that
case they are currently calculated numerically.

4.3.2 Mole vs mole fractions

A recommendation was given to use mole numbers
instead of mole fractions (Szczepanski, 2013). The sum
of all mole fractions is equal to 1: ∑��

� = (1)

Mole fractions are not independent and are therefore
more difficult to differentiate. This is further explained
by (Molerup et al, 2002) where they state “Derivatives

with respect to mole fractions are best avoided, as they

require a definition of the ‘dependent’ mole fraction
and in addition lead to more complex expressions

missing many important symmetry properties.”

protected
 Auxilary.Properties properties;
 final parameter ExternalMediaObject eo=
ExternalMediaObject(setupInfo);
equation
 if (inputs == Inputs.pT) then
 properties =Auxilary.calcProperties_pTX(p=p,T=T,X=Z,eo=eo);
 d =Auxilary.Wrapper_pTX.density_pTX(p=p,T=T,X=Z,
 state=properties);

function density_derh_p
 input Properties state;
 input MExternalMediaObject eo "External object";
 output Real ddhp "Density derivative wrt h at constant pressure";
protected
...
algorithm
 if (state.nbrOfPresentPhases == 1) then
 pd:=state.dpdd_TN_1ph[integer(state.presentPhaseIndex[1])];
 …
 ddhp:= -
state.d_overall*state.d_overall*pt/(state.d_overall*state.d_overall*pd*
cv + state.T_overall*pt*pt);
 elseif (nC == 1 and nP== 2) then
 …
 dpT := (vap_s - liq_s)*liq_d*vap_d/(max(liq_d -vap_d,eps));
 ddhp:=-state.d_overall*state.d_overall/(dpT*state.T_overall);
 else
 // multiple phases - calculate ddhp numerically
d_deltah:= Wrapper_phX.density_phX(p=state.p_overall, h=state.h_o
verall+deltah,X=X,
state=calcProperties_phX(p=state.p_overall,h=state.h_overall+deltah,
X=X,eo=eo),eo=eo);
 ddhp:=(d_deltah-state.d_overall)/deltah;
 end if;

Listing 2. Code snippet of a Modelica implementation of
density derivative wrt to specific enthalpy at constant pressure.

Listing 3 Code snippet of the MultiPhaseProperties model for
the external media template.

Session 8D: Thermofluid Systems, Models and Libraries 1

DOI
10.3384/ecp15118653

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

657

What is not described is how this can be applied to a
thermodynamic framework for dynamic simulation
which may contain intensive continuous state variables
or connector variables.

Implications of changing the input mole fraction
vector to a molar substance vector in a function
interface are:
• A media model that is written in intensive form

needs to add an extra conversion inside all
functions. There may be cases where there are
transformations back and forth. This affects the
performance as it makes automatic
differentiated code more complicated. This was
seen in a simulation of the DistillationColumn
model using the native Modelica media, where
the total CPU time was increased with 7%
when the input to the fugacity was changed
from mole fraction to molar substance. Another
disadvantage is that the code might get more
verbose as it may require auxiliary variables
with an appropriate unit when converting
between fraction and substance.

• Advantages are that it will possible to support
and calculate property models written in
extensive variables and have better support of
partial derivatives from external properties
tools.

Currently the C-interface supports both mole fraction
and molar substance by having an extra input that
defines the unit of the fraction vector.

4.3.3 External object

The external object is a pointer to an instance of a
Material class on the C++ side. It consists of:
• A pointer to a property calculator, i.e. an instance

of e.g. RefProp or CAPE-OPEN where one
calculator instance is shared between external
objects with the same calculator key.

• An instance of a cache which may be used by a
calculator to extract start values for iterative
calculations.

On the Modelica side an external object should be
associated with variables from one thermodynamic
state set. An advantage with the model based approach
is that these details can be hidden from the user which
avoids the risk of a user breaking the rule and thereby
mess up the caching.
An illustration of the structure is found in Figure 4.

Figure 4. Illustration of the external object structure.

4.4 Challenges with external property code

Most of the available external property packages have
not been designed to be used for dynamic simulations.
General problems are:
• Error handling when calling properties outside

their validity region.
• Limited support for partial derivatives.
• Lack of support to speed up iterative calculation

by providing good start values.
• No access to the used tolerances, which may

cause numerical problems when creating
numerical derivatives.

• Non converging regions.
We have seen in this project that without any
additional handling of the validity region issue,
simulation will often crash during initialization or
simulation. An explanation is that even if a simulation
model is set-up to operate within the validity region,
the solver might call property routines with invalid
inputs when it tries to find a solution for a system of
non-linear equations or when it test a large step-size.

In the external interface we decided that it should be
the property calculator responsibility to handle this as
different property types such as e.g. transport and
equation of state based properties may have different
validity regions and might be a function of
composition.

4.5 CAPE-OPEN

“CAPE-Open standards are the uniform standards for

interfacing process modelling software components

developed specifically for the design and operation of

chemical processes” (Colan, 2015).
The only currently widely adopted standard for
thermodynamic property packages is the CAPE-OPEN
Thermodynamic and Physical Properties. The backend
that has been developed supports both the 1.0 and 1.1
version of the specification.

MultiComponentMultiPhase - A Framework for Thermodynamic Properties in Modelica

658 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118653

4.5.1 Disadvantages

Following disadvantages with the CAPE-OPEN
thermo interface should be considered (Szczepanski,
2013).
• Missing calculations of: critical properties, phase

boundaries, phase stability test.
• No support of flash derivatives (derivatives of

flash outputs w.r.t flash specifications with
phases in equilibrium)

• Single calculation, in some circumstances it
would be useful to calculate properties for an
array of inputs

Another disadvantage is that it contains several internal
function calls which create an overhead in computation
time. And although it was intended as a cross-platform
specification, in practice CAPE-OPEN is only
supported on Windows.

4.6 RefProp interface

A backend to RefProp has been developed. An early
version of the interface was successfully tested on a
full air-conditioning cycle model using the single
component media R134a. The computational time of
the simulation was in the same order as when a
corresponding native Modelica implementation of
R134a was used. But RefProp does not seem to be
suited to be used for larger system simulations for
mixtures due to the disadvantages mentioned in chapter
4.4 and that it by default use highly precise multi-
parameter equation of state which is rarely used for
mixtures due to the computational effort (Schultze,
2014). To overcome these limitations further analysis
is needed.

5 Application test case

To verify the overall interface structure a Modelica
application library DistillationColumn was created
based on work by (Yasaman, 2012). The library has
been modified so it is easy to test different continuous
state selections and property function inputs.

5.1 Native Modelica Air media

A native Modelica air media was implemented based
on work by (Yasaman, 2012). It is a three component
model were the phase equilibria conditions are
described by the Rachford-Rice equation (Lämås,
2012) using a declarative approach. The equations are
solved by the tool’s non-linear solver. The vapor phase
is described by an ideal gas volumetric equation of
state, a linear polynomial for the heat capacity and
polynomials adapted to experiment data of the
fugacities. The liquid phase uses an incompressible
assumption where density and specific heat capacity

are constant and activity coefficients have been
adapted to experimental data.

5.2 Air separation column

The lower pressure column in a cryogenic air
separation unit was chosen to be used as a test case.
Nitrogen and argon is separated from the liquid at
atmospheric pressure and a temperature around 85-
115K. Liquid with high concentration of oxygen is
extracted from the bottom. The column is modeled by
40 equilibrium stages with a total of 164 continuous
time states using a 3 component media (nitrogen,
oxygen, argon)

5.2.1 Experiment description

Boundary conditions were set to fixed values except
for the heat source which increase its value after 100
seconds. Initial transients are present due to the model
is not initialized in steady-state

Figure 5 Model of the lower pressure column in a
cryogenic air separation unit.

The model was simulated with Dymola 2015 FD01
using the Dassl solver with a relative tolerance of 1e-5
and a non-equidistant time grid. A standard desktop
computer (Intel i7, 8GB Ram and 64-bit Windows
operating system) was used for the simulation.

Session 8D: Thermofluid Systems, Models and Libraries 1

DOI
10.3384/ecp15118653

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

659

5.2.2 Case 1: Simulation with native Air Modelica

media

Result, the simulation finished in 9.46s using 383
successful time steps. The result agreed with result
presented in (Yasaman, 2012).

Figure 6. CPU-time with native Modelica media.

The result shows that it is possible to implement an
efficient media with the proposed interface using a
declarative approach. But good start values are
required to succeed with the initialization.

5.2.3 Case 2: Simulation with RefProp Air media

The same model was simulated with a 3 component air
media from RefProp. Several different states selection
and property input combinations were tested but the
tests were unsuccessful due to solver failure when
calling properties outside their validity region or due to
the solver getting stuck.

Explanation for the slow simulation might be that
RefProp uses very high accurate media models that are
computational expensive to calculate and that each new
flash calculation restarts from scratch every time it is
called. For the general flash routines there is no
possibility to provide start values. Currently the
Modelica-C interface does not support differentiation
of all properties which creates numerical Jacobians
which are more computational expensive. There might
also be other explanations why the simulation
performance is not satisfactory. This has to be analyzed
further.

6 Limitations

Currently there are restrictions from the used tool and
in the Modelica language which makes it harder to use
the model based media structure.

6.1 Modelica tools

Following limitations have been observed for different
tools:

• Not possible to calculate iteration start values
from a property model.

• Not possible to calculate structural parameters
from a function using an external object.

The first limitation is severe if a model contains
iteration variables that are not equal to a model’s start
value parameters. If the specific enthalpy is an iteration
variable it should be calculated from the given start
value parameters as illustrated in Listing 4.

The second limitation requires that the user manually
specify the number of phases and compounds in the
property declaration.

6.2 Modelica specification

Currently it is inconvenient to use a model or block
based structure to calculate parameters as illustrated in
Listing 4. It would be more user friendly if a model or
block could be used in a similar way as a function to
calculate parameters.

6.2.1 Solver callback interface

The external interface ExternalMixtureMedia has been
designed with a structure that supports caching. The
idea is to cache result from a calculation and use it as
start values in a next coming calculation to decrease
the number of internal iterations and increase
robustness. A problem with this approach is that it is
not possible to distinguish a function call during
normal continuous simulation from one where the
steady-state solver desperately tries to find a solution.

During continuous simulation a good strategy would
be to use values from the last accepted step. For the
steady-state case it might be an idea to let the non-
linear solver update the starting values of the iteration
variables hidden in these algorithms, when the solver
makes good progress.
A solution would be to have the possibility to register a
solver callback interface, which could be used to
update iteration start values in a controlled way.

0 4000 8000

0

4

8

 Simulation time (s)

CPUtime

parameter SpecificEnthalpy h_start (fixed=false)
annotation(Evaluate=true);
SpecificEnthalpy h(start=h_start);

Medium.MultiPhaseProperties
 flash_init(Z=Z_start,p=p_start,T=T_start,
 presentPhases=presentPhases,
 presentPhasesStatus=presentPhasesStatus,
 init(p=p_start, x=fill(Z_start, Medium.nP)),
 inputs=MultiPhaseMixture.Interfaces.Inputs.pTX)
initial equation
 h_start=flash.h;

Listing 4. Calculation of parameters from a
model.

MultiComponentMultiPhase - A Framework for Thermodynamic Properties in Modelica

660 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118653

A suggestion:
• onSolverAcceptedStep() - called by

solver/simulation environment when an
accepted step has occurred. Place to implement
updates of iteration start variables.

• onSolverSteadyStateProgress() - called by
solver/simulation environment when progress
in steady-state solver. Place to update iteration
start values variables.

Advantages with introducing callback methods are that
the iteration start values can be updated in a controlled
way and thereby avoiding the risk of an update during
a bad steady-state iteration step.

7 Conclusions

A new framework for thermodynamic properties with
support for multi-component multi-phase has been
presented. It is the authors hope that this work will
initiate a similar development in the process industry as
those that have already taken place in the automotive
and power industries, where innovative companies
have built their innovation processes for systems
engineering around the Modelica technology.

The developed Modelica thermo property library use
a model based interface which is in line with the
Modelica spirit of equation based modelling. The
model based interface makes it possible to implement a
thermo property model using a declarative approach
and the concept was demonstrated by simulating a
column in a cryogenic air separation unit.

This work should be seen as a starting point for a
model based framework for multi-component multi-
phase thermo properties in Modelica. It is possible to
improve the framework in following directions:
• Implement an infrastructure for native Modelica

implementation of fluids with support of
various equations of states and mixing rules
including phase equilibrium solvers. The later
could be an interesting research topic on how to
best formulate these algorithms in a declarative
way. A difficulty with the equation based
approach is the initialization part, where it
would be interesting to see how property
models can be formulated to better support
initialization. For example by using the
homotopy operator.

• Extend the C-interface back end to support more
property packages such as MultiFlash.

• Adding additional functionality such as reaction
properties.

It would also be interesting to create use cases for the
other application mentioned in section 2.1. We

encourage people to take part of continuing the
development.

Acknowledgements

The work has been partially funded by the Seventh
Framework Programme of the European Union (project
MODELICAPROP, Clean Sky number 325975). The
financial support from the European Union is highly
appreciated.

References

Ali Baharev and Arnold Neumaier. Chemical Process
Modeling in Modelica, Proceedings of the 9th

International Modelica 2012 Conference, Munich,
Germany, September 3-5 2012.

Stephen Boyd and Lieven VandenBerghe. Convex
Optimization, Cambridge University Press.

CAPE OPEN, Thermodynamic and Physical Properties v1.1,
May 2011, Downloaded from http://www.colan.org
(accessed 2015-05-17).

Francesco Casella and Christoph Richter, ExternalMedia: A
Library for Easy Re-Use of External Fluid Property Code
in Modelica, Modelica Conference Proceedings, 2008.

Colan, http://www.colan.org/index-16.html, accessed 2015-
05-17.

Karin Dietl, Kilian Link and Gerard Schmitz. Thermal
Separation Library: Examples of Use, Proceedings of the

8th International Modelica 2011 Conference, Dresden,
Germany, March 20-22 2011.

Fluid property library; a common interface to various state-
of-the-art thermodynamic and transport property models.
http://www.asimptote.nl/software/fluidprop/ (accessed
2015-05-17).

Johannes Gernert, Andreas Jäger and Roland Span.
Calculation of phase equilibria for multi-component
mixtures using highly accurate Helmholtz energy equations
of state, Fluid Phase Equilibria 375 (2014) 209–218.

Lemmon, E.W., Huber, M.L., McLinden, M.O. NIST
Standard Reference Database 23: Reference Fluid
Thermodynamic and Transport Properties-REFPROP,

Version 9.1, National Institute of Standards and

Technology, Standard Reference Data Program,
Gaithersburg, 2013.

James C. M. Li, Clapeyron Equation for MultiComponent
Systems, The Journal of Chemical Physics volume 25.

number 3 september. 1956.

Hans Lämås, Algorithms for Multi-component Phase
Equilibrium Models in Modelica, MSc Thesis, Chalmers
University of Technology, Gothenburg, Sweden, 2012.

Yasaman Mirsadraee. Dynamic modeling and simulation of a
cryogenic air separation plant, Msc Thesis, Linköping,
Sweden, 2012

Session 8D: Thermofluid Systems, Models and Libraries 1

DOI
10.3384/ecp15118653

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

661

J.M. Mollerup and M.L. Michelsen. Calculation of
Thermodynamic Equilibrium Properties, Fluid Phase

Equilibria 74 (1992) 1–15. 1992

W Morton. Equation oriented simulation and optimization,
Proc Indian Natn Sci Acad 69, (2003) pp. 317-357. 2003

Hans Olsson, Hubertus Tummescheit and Hilding Elmqvist.
Using Automatic Differentiation for Partial Derivatives of
Functions in Modelica, Proceedings of the 4th

International Modelica 2005 Conference, Hamburg,
Germany, March 7-8 2005.

Vipul Parekh and Paul Mathias, Efficient flash calculations
for chemical process design – extension to the Boston-Britt
Inside-Out flash algorithm to extreme conditions and new
flash types, Computers and chemical engineering, vol 22
pp 1371-1380 (1998)

Modelica Association, Modelica Language Specification,
Version 3.3, 2015
https://www.modelica.org/documents/ModelicaSpec33.pdf
, accessed 2015-05-17.

Modelica Association Libraries. Available at
https://www.modelica.org/libraries, accessed 2015-05-17.

C. Schultze, A Contribution to Numerically Efficient
Modelling of Thermodynamic Systems, PhD thesis,
Technische Universität Braunschweig, Fakultät für
Maschinenbau., (2014)

Richard Szczepanski, Physical Property Modelling –
MultiFlash and CAPE-OPEN. Presentation for

ModelicaProp Workshop 9-10 Oct, Delft, 2013.

Mathis Thorade and Ali Saadat, Partial derivatives of
thermodynamic state properties for dynamic simulation,
Environ Earth Sci 70:3497–3503. 2013

C. Trapp, F.Casella, T. Stelt, P. Colonna. Use of External
Fluid property Code in Modelica of a Pre-combustion Co2
Capture Process Involving Multi-Component, Two-Phase
Fluids, Proceedings of the 10th International Modelica

2014 Conference, Lund, Sweden, March 10-12 2014.

Hubertus Tummescheit, Jonas Eborn, Chemical Reaction
Modeling with Thermofluid/MF and MultiFlash,
Proceedings of the 2

nd
 International Modelica Conference,

Munich, 2002.

K. Wellner, C. Trapp, G. Schmitz and F.Casella. Interfacing
Models for Thermal Separation Processes with Fluid
Property Data from External Sources, Proceedings of the

10th International Modelica 2014 Conference, Lund,
Sweden, March 10-12 2014.

J.Åkesson, W. Braun, P.Lindholm, B.Bachmann, ,
Generation of Sparse Jacobians for the Function Mock-Up
Interface 2.0, Proceedings of the 9

th
 International

Modelica Conference, Munich, 2012.

MultiComponentMultiPhase - A Framework for Thermodynamic Properties in Modelica

662 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118653

Modeling of the German National Standard for High Pressure

Natural Gas Flow Metering in Modelica R©

von der Heyde, Michael1 Schmitz, Gerhard2 Mickan, Bodo3

1Institut für Elektrische Energiesysteme und Automation, TUHH, Germany, heyde@tuhh.de
2Institut für Thermofluiddynamik, TUHH, Germany, schmitz@tuhh.de

3Physikalisch-Technische Bundesanstalt, Germany, bodo.mickan@ptb.de

Abstract

The German national metrological institute

Physikalisch-Technische Bundesanstalt uses a High

Pressure Piston Prover as the primary standard for high

pressure natural gas flow meters. The High Pressure

Piston Prover measures the gas flow rate using the time

a piston needs to displace a defined enclosed volume

of gas in a cylinder. Fluctuating piston velocity during

measurement can be a significant source of uncertainty

if not considered in an appropriate way (Mickan et al.,

2010). A computational model written in Modelica R©

was developed to investigate measures for the reduction

of this uncertainty. Validation of the model shows good

compliance of the piston velocity in the model with mea-

sured data for certain volume flow rates. Reduction of

the piston weight, variation of the start valve switching

time and integration of a flow straightener were found

to reduce the piston velocity fluctuations in the model

significantly.

Keywords: Modeling of Multi-Domain Physical Systems,

Modelica R©, High Pressure Piston Prover, High Pressure

Natural Gas Flow Metering

1 Introduction

The German national primary standard for high pressure

natural gas flow metering is a High Pressure Piston

Prover (HPPP). It is used to calibrate transfer standards

for high pressure natural gas flow metering and is

traceable to the standards of length and time. The HPPP

is described in the references (Schmitz and Aschen-

brenner, 1990; Physikalisch Technische Bundesanstalt,

1991; Physikalisch- Technische Bundesanstalt, 2009). It

is operated and owned by the German national metro-

logical institute Physikalisch-Technische Bundesanstalt

(PTB) and currently installed on the calibration site for

gas flow meters pigsarTM in Dorsten, Germany. The

calibration facility pigsarTM is also further described in

the references (Uhrig et al., 2006; Mickan et al., 2008).

Figure 1 shows a picture of the HPPP.

Figure 1. Picture of the High Pressure Piston Prover

(Physikalisch- Technische Bundesanstalt, 2009).

The uncertainty of high pressure natural gas flow me-

ters and therefore also the uncertainty of the HPPP as

their primary standard in Germany is of major impor-

tance for the trade with natural gas.

2 The Calibration Setup Including

the HPPP

The HPPP is the central element of the setup used

to calibrate transfer standards. The HPPP consists

basically of a piston in a cylinder. Several indicators are

mounted on the cylinder to signal the piston position.

The pressure and temperature at the HPPP are measured

downstream of the cylinder. For the calibration process

several other components need to be included in the

setup and considered, such as the transfer standards,

valves and a nozzle bank.

The HPPP can be operated with inlet pressures up

to 90bar and flow rates up to 480m3/h (Physikalisch

Technische Bundesanstalt, 1991).

The whole calibration setup including the HPPP is

shown in Figure 2.

DOI
10.3384/ecp15118663

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

663

4-Way Valve

Gas Inlet

Start Valve 2

Start Valve 1

Safety Valve

TM 1 TM 2 Nozzle Bank

Gas Outlet

Check Valve

a1 a3 a5

a1,a5 : Position Indicator

a2,b2,c2 : Measurement Start Indicator

a3 : Half-Way Indicator

a4,b4,c4 : Measurement Stop Indicator

p, T

a4

b4b2
c2

a2

c4

A-B C-D

A

B

C

D

High Pressure Piston Prover

Figure 2. Scheme of the calibration setup using the High Pressure Piston Prover (Schmitz and Aschenbrenner, 1990).

Start valve 2 is used to initiate the movement of the

piston, whereas start valve 1 is needed to prevent move-

ment of the piston in between calibration runs due to

the pressure drop across start valve 2. The 4-way valve

is needed to revert the gas flow direction and move the

piston back to its starting position after each calibration

run. A check valve is used to prevent gas from flowing

past the piston during the start of the reverse movement

and a safety valve is included to prevent high forces on

the piston at the end of the piston reverse movement.

Turbine Meters (TM) are used as transfer standards.

TM measure the mass flow rate using the rotational

speed of a turbine inserted in the fluid flow. The rota-

tional speed of the turbine is metered using magnetically

induced discrete signals. Two TM are connected in a

row to minimize random measuring errors. The pressure

at the TM is measured at their reference point and the

temperature 2 diameters downstream of the TM.

The nozzle bank is used to set the flow rate. The

critical nozzles are not necessary for the operation of

the HPPP but provide the advantage to decouple the

calibration setup from pressure fluctuations downstream

of the nozzle bank. It consists of several critical flow

nozzles in parallel connection. The pressure downstream

of the nozzles is always low enough to ensure critical

flow in the nozzles.

3 The Calibration Process

The closing of start valve 2 commences the running-in

phase. The motion of the piston is indicated by the pis-

ton position indicator a1. The measurement phase starts

as the piston passes indicators a2,b2,c2 and ends as the

piston passes the indicators a4,b4,c4. The volume flow

rate is determined as stated in equation 1 from the vol-

Modeling of the German National Standard for High Pressure Natural Gas Flow Metering in Modelica

664 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118663

ume in between the indicators VPP and the time span ∆PPt

as given by the piston position indicator signals. It is

therefore traceable to standards of length and time.

V̇PP =
VPP

∆PPt
(1)

The signals of the TM are simultaneously counted.

The volume flow rate V̇TM can be determined using the

relationship between the number of signals per time

period indicated by the TM and the volume flow rate,

known from previous calibration of the TM.

The calibration result is the relative deviation of the

corrected volume flow rate as indicated by the TM V̇ c
TM

and the corrected volume flow rate as indicated by the

HPPP V̇ c
PP. The relative deviation f is determined in

equation 2. It can be used to correct the TM in further

measurements or calibration steps.

f =
V̇ c

TM −V̇ c
PP

V̇ c
PP

(2)

Several corrections are used in equation 2 to improve

the calibration accuracy. These corrections are explained

in the following.

1. The volume flow rate indicated by the turbine me-

ters V̇TM is corrected as shown in equation 3 to pre-

vent an error caused by the discrete nature of the

TM signals. ∆PPt is the duration of the measure-

ment phase as determined from the piston position

indicator signals. ∆TMt is the time span from the

first TM signal after the start of the measurement

phase to the first TM signal after the end of the mea-

surement phase.

V̇ c
TM = V̇TM

∆PPt

∆TMt
(3)

2. The temporal mean density over the measurement

phase at the piston prover ρ̄PP and at the TM ρ̄TM,

both determined from measured pressure and tem-

perature, are used to take the density changes along

the gas flow direction into account as shown in the

first term of equation 4.

V̇ c
PP = V̇PP

ρ̄PP

ρ̄TM
+

VE

∆PPt

ρS −ρE

ρ̄TM
(4)

3. The temporal change of stored mass in between the

cylinder and the TM during the measurement phase

is taken into account as shown in the second term

of equation 4, with VE being the enclosed volume,

ρS the spatial mean density in the enclosed volume

at the start of the measurement phase and ρE the

spatial mean density in the enclosed volume at the

end of the measurement phase.

4 Uncertainty of the Calibration and

Motivation for the Model

Several possible errors in the calibration process lead to

the measurement uncertainty of the calibrated TM. These

are

1. uncertainty in the determination of the volume in

between piston position indicators,

2. uncertainty in the determination of the mean den-

sity,

3. repeatability of the TM measurement,

4. leakage between piston and cylinder,

5. dynamic error of the TM,

6. uncertainty in the determination of the stored mass

in the enclosed volume.

The dynamic error of the TM is a consequence of

the incorrect measurement of fast fluctuating volume

flow rates due to turbine inertia. This error can be

diminished using a mathematical correction method

(Mickan et al., 2010), but the correction method as well

leads to uncertainties.

The uncertainty of the calibrated transfer standards is

0.06 % (Physikalisch- Technische Bundesanstalt, 2009;

Mickan et al., 2008). The last two listed errors combined

lead to an uncertainty of 0.035% (Mickan et al., 2010).

They are of dynamic nature and a consequence of piston

velocity fluctuations. Figure 3 shows measured data

for the piston velocity fluctuations in the measurement

phase.

0 0.2 0.4 0.6 0.8 1

−2

0

2

Normalized Measuring Time

∆
v

in
%

Figure 3. Relative deviation of the measured piston veloc-

ity from it’s mean velocity ∆v over the normalized measuring

time.

The developed model is aimed to reproduce these

piston velocity fluctuations and to find measures to re-

duce the fluctuations and therefore the uncertainty of the

HPPP.

Session 8D: Thermofluid Systems, Models and Libraries 1

DOI
10.3384/ecp15118663

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

665

5 Description of the Model

Modelica R© was chosen as the language to describe the

dynamic and physical system. A graphical representa-

tion of the model is shown in Figure 4.

Several general assumptions were used in the model.

Those are

1. pressure losses are proportional to the dynamic

pressure,

2. the gas flow is one dimensional,

3. the system is adiabatic,

4. potential energy of the gas can be neglected,

5. no leakage occurs,

6. the heat transfer in the gas can be neglected in com-

parison to convective energy transport.

The gas at the inlet to the HPPP is assumed to have

a constant temperature and pressure. This is consistent

with data from measurements and is modeled using a

supply volume of infinite size from the Modelica Stan-

dard Library (MSL). Equation 5 and 6 set these bound-

ary conditions with TIN being the inlet temperature and

pIN the inlet pressure.

TIN = const. (5)

pIN = const. (6)

The nozzle bank sets another boundary condition. It

can be modeled as a single nozzle with a larger critical

diameter. The used nozzles comply with ISO 9300 (In-

ternational Organization for Standardization, 2005). The

nozzle is modeled using a constant critical volume flow

rate V̇N as shown in equation 7.

V̇N = const. (7)

Equation 8 is used to determine the mass flow through

the nozzle ṁN from the critical volume flow rate V̇N and

the upstream density ρ .

ṁN = V̇Nρ (8)

The valves are taken from the MSL. They have a linear

opening function Y (t) and the mass flow ṁV is propor-

tional to the pressure drop across the valve ∆V p as shown

in equation 9 with ṁn
V and ∆n

V p being the nominal mass

flow and pressure drop.

ṁV = ∆V p
ṁn

V

∆n
V p

Y (t) (9)

The start valves are used in the HPPP model to

eliminate the influence of guessed initial conditions on

the piston movement, as the stationary flow condition at

the beginning of the running-in phase is not known.

The medium in the HPPP is natural gas. Due to the

high pressure and high precision of the HPPP a real

gas model is necessary. A Modelica Implementation of

GERG 2008 with a constant gas composition out of 10

elements is used. GERG 2008 derives the equation of

state for natural gas from the free energy. It is described

in detail in the references (Kunz et al., 2007; Kunz and

Wagner, 2012).

The enclosed gas volumes in the measuring cylinder

change with piston movement. They can store mass m

and internal energy mu as stated in equation 10 and 11.

The volumes have i inlets or outlets. h is the specific en-

thalpy, v the mean velocity in a cross area A, p the static

pressure and V the Volume. The pressure losses at inlets

and outlets ∆p are considered using constant coefficients

ζA as shown in equation 12 with ρ̄ being the mean den-

sity. No gradient for the thermodynamic state and no

fluid friction is considered in the volumes.

dm

dt
=

n

∑
i=1

ṁi (10)

d

dt
(mu) =

n

∑
i=1

ṁi

(

hi +
v2

i

2

)

+ pV̇ (11)

∆p =ζA
ρ̄

2
v2

A (12)

The position of the piston is determined from the

equation of motion 13 with FF,P being the friction force

on the piston, ∆P p the pressures difference across the pis-

ton, AP the piston cross area, mP the piston weight and aP

the piston acceleration.

aP =

{

0 for |FF,P| ≥ |∆PP p|AP
∆P pAP−FF,P

mP
for |FF,P|< |∆PP p|AP

(13)

The friction force on the piston is described as the sum

of velocity independent coulomb friction FC, velocity

proportional friction FPvP and stribeck friction FSe−kvP

as stated in equation 14.

FF = FC +FPvP +FSe−kvP (14)

The coulomb friction FC is modeled as a function

of the piston position sP. This function is determined

by measuring the power consumption of a linear motor

moving the piston slowly through the cylinder. Mea-

sured data is only available for 80 % of the cylinder

length. After that the coulomb friction is assumed

Modeling of the German National Standard for High Pressure Natural Gas Flow Metering in Modelica

666 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118663

Supply Volume

Valve 1

Valve 2

Piston

s

p1

Pipe 1Pipe 2Pipe 3 TGM 2 TGM 1Nozzle Bank

ṁ,p,h

Medium System

l2l1

l

ṁ,p,h

ṁ,p,h

ṁ,p,h

ṁ,p,h

ṁ,p,h

ṁ,p,hṁ,p,h,ṁ,p,hṁ,p,hṁ,p,h

p2

Volume 1 Volume 2

Figure 4. Graphical representation of the computational model.

constant. The measured coulomb friction is shown in

Figure 5.

1 2 3 4

80

90

100

110

Piston Position in m

C
o
u
lo

m
b

F
ri

ct
io

n
in

N

Figure 5. Measured coulomb friction as a function of the pis-

ton position.

The velocity proportional friction FP was determined

from measuring the pressure difference across the piston

for different piston velocities and by linear interpolation

of the measured data points.

The pipes are taken from the MSL. They can store

mass m, internal energy mu and momentum mv as stated

in equations 15, 16 and 17. A spatial discretisation in

the direction of fluid flow is used, leading to a number

of finite volumes in the pipe. Each volume reaches from

cross area i to cross area i+ 1. In equation 15, 16 and

17 ṁ is the mass flow, h the specific enthalpy, v the mean

velocity, A the cross area, p the pressure and FF the pipe

friction force.

dm

dt
=ṁi + ṁi+1 (15)

d

dt
(mu) =ṁihi + ṁi+1hi+1+

1

2
(vA(pi+1 − pi)+ vFF) (16)

d

dt
(mv) =ṁi|vi|+ ṁi+1|vi+1|−A(pi+1 − pi)−FF (17)

The turbine meters are modeled using a constant pres-

sure loss coefficient ζTM as stated in equation 18 with

∆TM p being the pressure loss, ρ̄ the spatial mean density

and vA the mean velocity in the cross area A.

∆TM p = ζTM
ρ̄

2
v2

A (18)

The pressure loss coefficient ζTM is taken from mea-

surements. The relation between the indicated volume

flow rate V̇ ind
TM and the true volume flow rate V̇TM in the

TM can be modeled as shown in equation 19 (Mickan

et al., 2010). The time constant τ is modeled as stated

in equation 20 using a linear relation between the time

constant and the initial mass flow ṁIC as approximately

found in measurement.

d

dt

(

V̇ ind
TM

)

=
V̇ ind

TM −V̇TM

τ
(19)

τ = kṁIC (20)

Session 8D: Thermofluid Systems, Models and Libraries 1

DOI
10.3384/ecp15118663

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

667

6 Verification of the Model

As measure for the verification and validation the relative

deviation of the piston velocity from it’s mean velocity

in the measurement phase ∆v is used. ∆v represents the

piston velocity fluctuations and is calculated as shown in

equation 21 using the piston velocity vP and the mean

piston velocity v̄P determined from the distance ∆l and

the duration of the measurement phase ∆t. For easy com-

parison of different volume flow rates a normalized time

tn is used in the figures. It is determined in equation 22

from the time t, the start time of the measurement phase

ts and the duration of the measurement phase ∆t.

∆v =
vP − v̄P

v̄P
with v̄P =

∆l

∆t
(21)

tn =
t − ts

∆t
(22)

For Integration the Solver Dassl included in Dymola R©

is used (Dassault Systemes, 2014) with a relative toler-

ance of 10−6. Further decrease of the relative tolerance

does not change the model trajectory as shown in Figure

6. No major change in the trajectories is detected when

using other high order variable step solvers implemented

in Dymola R©.

0 1 2 3 4 5 6
−2

−1

0

1

2

Measuring Time in s

∆
v

in
%

Figure 6. Relative deviation of the piston velocity from the

mean velocity ∆v in the model for different relative solver tol-

erances using Dassl.

TOL = 10−4 TOL = 10−6 TOL =
10−8

Due to calculation time it is not functional to use a

high number of finite pipe volumes in conjunction with

real gas behavior. Here 4 discrete volumes in the first

pipe and 2 volumes in the 2nd and 3rd pipe are used.

The verification of the model shows increasing

frequency and decreasing deflection of the relative

piston velocity deviation for increasing inlet pressures

as shown in Figure 7.

Due to a shorter duration of the running-in phase,

the piston velocity fluctuation resulting from piston

0 1 2 3 4 5 6
−2

−1

0

1

2

Measuring time in s

∆
v

in
%

Figure 7. Relative deviation of the piston velocity from the

mean velocity ∆v in the model over the measuring time for

different inlet pressures.

pIN = 50bar pIN = 20bar

acceleration remains active during the measuring phase

for higher volume flow rates as shown in Figure 8.

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

Normalized Measuring Time

∆
v

in
%

Figure 8. Relative deviation of the piston velocity from the

mean velocity ∆v in the model over the measuring time for

different volume flow rates.

V̇N = 100m3/h V̇N = 25m3/h

7 Validation of the Model

The model accuracy is highly relevant due to the low

measuring uncertainty of the High Pressure Piston

Prover. It depends on the uncertainty of the measured

parameters used for the calibration of the model, the

mentioned general assumptions, the simplified mathe-

matical description and the accuracy of the numerical

algorithm.

Measured data for the piston velocity is used to

validate the model. The piston velocity was measured

for volume flow rates up to 100m3/h using a laser

distance measurement system.

The model validation shows relatively good ac-

cordance of the piston velocity fluctuations with

measurement data for a volume flow rate of 100m3/h, as

Modeling of the German National Standard for High Pressure Natural Gas Flow Metering in Modelica

668 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118663

shown in Figure 9. The ground oscillation as well as the

superimposed high frequency oscillation show similar

characteristics for a volume flow rate of 100m3/h. This

is also valid for different inlet pressures.

0 0.2 0.4 0.6 0.8 1

−2

0

2

Normalized Measuring Time

∆
v

in
%

Figure 9. Comparison of the relative piston velocity deviation

∆v over the normalized measuring time in the model and in

measured data for a volume flow rate of 100m3/h and an inlet

pressure of 20bar.

Simulation Measurement

For lower volume flow rates the model is not able to

reproduce the measured piston velocity fluctuations. As

an example the piston velocity fluctuation in the model

is compared with measurement data for a volume flow

rate of 25m3/h in Figure 10. It can be seen, that the

high frequency fluctuation in the measured data is not

present in the model for a volume flow rate of 25m3/h.

0 0.2 0.4 0.6 0.8 1

−4

−2

0

2

4

Normalized Measuring Time

∆
v

in
%

Figure 10. Comparison of the relative piston velocity devia-

tion ∆v over the normalized measuring time in the model and

in measured data for a volume flow rate of 25m3/h and an inlet

pressure of 20bar.

Simulation Measurement

Physical effects that are not included in the model and

measurement uncertainties, both during the determina-

tion of the parameters for calibration and of the data for

validation, might play an important role for low volume

flow rates.

8 Constructional Means for Piston

Velocity Fluctuation Reduction

The model is used to evaluate three different ways to

reduce the piston velocity fluctuations in the measuring

phase. The maximum deviation of the piston velocity

from it’s mean velocity ∆maxv is used as a measure

for the piston velocity fluctuations. The mean piston

velocity deviation would not be an adequate measure

here, as it does not limit the important piston velocity

deviation at the start and end of the measurement phase,

whereas the maximum piston velocity deviation does.

Accordingly to verification and validation the Solver

Dassl included in Dymola R© (Dassault Systemes, 2014)

with a relative tolerance of 10−6 and 4 discrete volumes

in the first pipe as well as 2 volumes in the 2nd and 3rd

pipe are used.

Here the results for a volume flow rate of 100m3/h

and an inlet pressure of 20 bar are shown.

Figure 11 shows the maximum relative deviation

of the piston velocity from it’s mean velocity in the

measuring phase for different piston weights. A lower

piston weight leads to lower maximum piston velocity

fluctuation in the model. The real piston weight is

21,7kg. Reducing the piston weight by 50 % would lead

to a significant drop of the piston velocity fluctuations.

A way to achieve this reduction can be a change of

the piston material from aluminum to fiber reinforced

polymers.

10 15 20 25

1.5

2

2.5

3

Piston Weight in kg

∆
m

ax
v

in
%

Figure 11. Maximum deviation of piston velocity from mean

velocity in measuring phase for different piston weights.

Another way to reduce the piston velocity fluctuations

in the model is shown in Figure 12. As can be seen, the

switching time of start valve 1 has a strong influence

on the maximum deviation of the piston velocity from

its mean velocity during the measuring phase below a

switching time of 0,4s. The switching time would have

to be be adopted for other volume flow rates using a

controller.

Session 8D: Thermofluid Systems, Models and Libraries 1

DOI
10.3384/ecp15118663

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

669

0.2 0.4 0.6 0.8 1

1.5

2

2.5

3

Switching Time of Start Valve 1 in s

∆
m

ax
v

in
%

Figure 12. Maximum deviation of piston velocity from mean

velocity in measuring phase for different switching times of

start valve 1.

Figure 13 shows the maximum relative deviation

of the piston velocity from it’s mean velocity in the

measuring phase as a function of the pressure loss

coefficient of pipe 1. A significant reduction of the

piston velocity fluctuations can be achieved for higher

pressure loss coefficients. A possibility to raise the

pressure loss coefficient would be the integration of a

flow straightener. The error due to a higher pressure loss

between the HPPP and the TM could be avoided using

correction step 2 as described in section 3.

5 10 15 20

1.5

2

2.5

3

Pressure Loss Coefficient ζ of Pipe 1

∆
m

ax
v

in
%

Figure 13. Maximum deviation of piston velocity from mean

velocity in measuring phase for different pressure loss coeffi-

cients in pipe 1.

9 Conclusions

Modelica R© proved the adequate language for the mod-

eling of the High Pressure Piston Prover. It was possible

to use several components from the Modelica Standard

Library containing equations from various physical

domains, such as tribology, thermodynamics and fluid

flow. Parts of the model are replaceable and reusable

due to Modelica R© being object-oriented. The structure

of the model follows the physical structure of the High

Pressure Piston Prover closely. As a consequence of

the Modelica R© acausality the physical equations in the

model are comprehensible and errors are easier located

during the modeling process.

Three independent ways to reduce piston velocity

fluctuations were demonstrated using the developed

model. A significant reduction of the maximum piston

velocity fluctuation during the measuring phase was

found achievable by lowering the piston weight, an

appropriate setting of the start valve switching time and

the integration of a flow straightener. These measures

are expected to reduce the High Pressure Piston Prover

measuring uncertainty and can be realized with low

effort.

References

Dassault Systemes. Dymola Dynamic Modeling Laboratory,

2014.

International Organization for Standardization. ISO 9300,

2005.

O. Kunz and W. Wagner. The GERG 2008 wide range equation

of state for natural gases and other mixtures. Journal of

Chemical Engineering, 2012.

O. Kunz, R. Klimeck, W. Wagner, and M. Jaeschke. The

GERG 2004 wide range equation of state for natural gases

and other mixtures. GERG Technical Monograph, 15, 2007.

B. Mickan, R. Kramer, H. Müller, V. Strunck, D. Vieth, and

H.-M. Hinze. Highest precision for gas meter calibration

worldwide: The high pressure gas calibration facility pigsar

with optimized uncertainty. In International Gas Union Re-

search Conference, 2008.

B. Mickan, R. Kramer, V. Strunck, and T. Dietz. Transient

response of turbine flow meters during the application at

a high pressure piston prover. In 15th Flow Measurement

Conference (FLOMEKO), 2010.

Physikalisch- Technische Bundesanstalt. PTB mitteilungen,

special issue volume 119 no.1, 2009.

Physikalisch Technische Bundesanstalt. Prüfschein der

Rohrprüfstrecke, 1991.

G. Schmitz and A. Aschenbrenner. Experience with a piston

prover as the new primary standard of the federal republic

of germany in high pressure gas metering, 1990.

M. Uhrig, P. Schley, M. Jaeschke, D. Vieth, K. Altfeld, and

I. Krajcin. High precision measurement and calibration

technology as a basis for correct gas billing. In 23rd World

Gas Conference, 2006.

Modeling of the German National Standard for High Pressure Natural Gas Flow Metering in Modelica

670 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118663

Automatic Regression Testing of Simulation Models and

Concept for Simulation of Connected FMUs in PySimulator

Adeel Asghar1 Andreas Pfeiffer2 Arunkumar Palanisamy1 Alachew Mengist1
Martin Sjölund1 Adrian Pop1 Peter Fritzson1

1PELAB – Programming Environment Lab, Dept. Computer Science, Linköping University, Sweden,
{adeel.asghar,arunkumar.palanisamy,alachew.mengist,
martin.sjolund,adrian.pop,peter.fritzson}@liu.se

2DLR Institute of System Dynamics and Control, 82234 Weßling, Germany, andreas.pfeiffer@dlr.de

Abstract

The Modelica and FMI tool ecosystem is growing each
year with new tools and methods becoming available.
The open Modelica standard promises portability but it
is important to ensure that a certain model behaves the
same in different Modelica tools or in a different
version of the same tool. It is also very important (for
model evolution) to check that a new version of the
same model produces comparable results. Finally, it is
desirable to verify that a model exported in FMU form
from a Modelica tool gives exactly the same results as
the original model. This paper presents a framework
for automatic regression testing as part of PySimulator
which provides an efficient and concise way of testing
if a model or a range of models behaves in the same
way in several tools or versions of a tool by checking
that the results produced are essentially identical.

The FMI standard has been adopted by many tool
vendors and is growing in popularity each year. This
paper proposes a concept for building and simulating a
system made from connected FMUs generated by
different tools. The FMUs for Co-Simulation can be
connected together using a GUI. The system model
built graphically in this way can be saved for later use
or simulated directly inside PySimulator. Active
development is going on to support simulation of
connected FMUs for Model Exchange.

Keywords: PySimulator, Regression Testing,

Connected FMUs, Parallel Simulation, Wolfram

Simulator plugin

1 Introduction

Due to the success of Modelica and FMI many
different tools support these open standards (e.g., see
the table of Modelica tools on www.modelica.org/tools
and FMI tools on www.fmi-standard.org/tools). To
ensure a high quality of models, tools, and their
interoperability, it will become increasingly important
to have tools available for automatic testing of models
with different Modelica / FMI tools. As a first step, the
Modelica Association has financed the development of

a CSV comparison tool (ITI, 2013). Currently a tool to
test the examples of the Modelica Standard Library is
being developed within the Modelica Association
(Otter, 2015).

Some Modelica tool vendors have their own features
to test models, but only by using their own tool (e.g.
OpenModelica or Dymola). What is currently missing
is a platform to perform regression testing among
different tools. The open source environment
PySimulator (Pfeiffer et al, 2012), see also
www.pysimulator.org, has the potential to contribute to
such a platform because it already supports several
different simulator tools and result file formats.

PySimulator is an environment implemented in
Python that provides a graphical user interface for
simulating different model types (currently Functional
Mockup Units, Modelica models, and SimulationX
models), plotting result variables and applying
simulation result analysis tools. The modularity
concept of PySimulator enables easy development of
further plugins for both simulation and analysis.

In Section 2 of the paper we have extended the list
of simulator plugins for PySimulator by implementing
a plugin for Wolfram’s SystemModeler. In Section 3
we present the analysis plugin, testing, for PySimulator
that enables different features necessary to provide
convenient regression testing with good performance.
In Section 4 we introduce functionalities like automatic
simulation of models given by a list in a text file as
well as parallel simulation and regression analysis to
considerably speed up the computation time on multi-
core machines.

As PySimulator is aimed at playing the role of an
integration platform, the support of connected FMUs is
a further topic of this paper. It is an important feature
to run simulations of connected FMUs from different
suppliers since the suppliers can protect their
knowledge within the FMU and a whole system
consisting of several components (represented by
FMUs) can be simulated. In Section 5 a concept is
introduced on how to describe and simulate connected
FMUs within PySimulator.

DOI
10.3384/ecp15118671

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

671

2 Simulator Plugin for Wolfram

SystemModeler

PySimulator supports simulation of models in FMU
form or using different Modelica tools via extension
plugins. From previous work simulator plugins for
tools such as Dymola, SimulationX, and
OpenModelica (Ganeson et al, 2012) are available.
This section presents a new simulator plugin developed
for Wolfram SystemModeler.

Using the existing plugin interface for simulator
plugins in PySimulator a new simulator plugin has
been implemented: the Wolfram plugin. It enables
PySimulator to load and numerically simulate
Modelica models using Wolfram SystemModeler
(Wolfram SystemModeler, 2015).

The Wolfram plugin is integrated into PySimulator
via MathLink (Wolfram SystemModeler, 2015) and
Pythonica (Edwards, 2012) which connects to
Mathematica (Wolfram Mathematica, 2015) and
SystemModeler. We used the Wolfram SystemModeler
API to support loading a Modelica model, simulating
it, and reading the simulation setting file (.sim) which
is an XML file to build the variable tree in the
variables browser of PySimulator. The overall
communication setup with SystemModeler is given in
Figure 1.

Figure 1. Communication setup with SystemModeler.

All the simulator plugins of PySimulator are controlled
by the same Integrator Control GUI. The Wolfram
SystemModeler simulator supports five different
numerical integration methods (DASSL, CVODES,

Euler, RungeKutta, and Heun), all the simulation
menu options are supported (error tolerance, fixed step
size, etc.).

The start and stop time for the integration algorithm
can be changed and one of the integration algorithms
can be selected. Depending on the integration
algorithms the user can change the error tolerance or
the fixed step size before running the simulation.

It is also possible to simulate the list of models using
the Wolfram plugin, see Figure 9 in Section 4. The
existing PySimulator interface automatically includes
the new plugin to the simulators list for simulating a
list of models, see also Section 4.1.

3 Regression Testing – Design and

Appearance

In this paper, regression testing means the automated
simulation of models and the automated comparison of
the simulation results with some kind of baseline
results (normally also automatically simulated). An
automatically generated summary report gives the
overview of the whole test results.

Possible applications of such test procedures are the
following (Pfeiffer et al, 2013):

• Different versions of a model exist and they are
compared to the original version of the model
within one tool (model evolution and validation).

• A Modelica model is simulated by different tools
and the results are compared to a reference solution
(tool validation).

• A Modelica model and its corresponding FMU
exported by a tool are compared to each other
(FMU export model validation).

• An FMU is exported by different tools for the same
model. The results of the FMUs are compared to
each other (FMU export tool validation).

The applications are described for one model but they
can also be applied to a list of models, e.g., all example
models of a Modelica library.

Several parts are necessary to realize the mentioned
features within PySimulator:

• Enable the automatic simulation of a given list of
models by a defined list of simulator plugins, see
Section 4.1.

• Compare the variables of simulation result files
with different simulation result formats like
Dymola’s mat-format, CSV-format, MTSF-format
(Pfeiffer, Bausch-Gall et al, 2012).

• Compute a numerical measure for the deviation of
two time-dependent signals.

• Enable automatic walk through result file
directories and find result files that can be
compared.

• Generate HTML-reports that document the
outcome of comparing the variables in the result
files.

3.1 Comparing Variables in Result Files

The concept of how to compare the results of model
simulations is mainly based on the comparison of two
result files. In PySimulator several plugins for different
simulation result file formats have been created by the
previous work of several contributors1, see Figure 2.

1 A. Pfeiffer, M. Otter (DLR), I. Bausch-Gall (Bausch-Gall GmbH),
T. Beutlich (ITI GmbH)

PySimulator
MathLink

via

Pythonica

Mathematica

SystemModeler

Automatic Regression Testing of Simulation Models and Concept for Simulation of Connected FMUs in
PySimulator

672 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118671

Figure 2. Different result file formats.

These plugins are used to read (and partly write) the
simulation result files after the simulation run.
Internally in PySimulator the data of the result files is
structured according to time series. The concept of
time series is in the style of the MTSF format, see
(Pfeiffer, Bausch-Gall et al, 2012) for details. All
variables based on the same time grid are grouped into
a time series. Typically, three types of time series can
be found in result files:

• Parameters and constants (a special time series
without a time grid),

• Discrete variables (time grid is according to
events),

• Continuous variables (time grid is given by the
output points of the integrator and by events).

In the current implementation the basic algorithm to
compute the deviation between two time dependent
signals / variables �(�) and �(�) relies on the following
measure:

 �(�,�) ≔
�(� − �)

1 + �(�) + �(�)

with �(�) ≔
1�� − �0 � |�(�)| ��.��

�0

The deviation measure � can be understood as a
combination of the absolute and relative integral error
between the two signals � and � on the time
interval [�0, ��]. Due to adding 1 to �(�) + �(�), the
denominator is always greater than zero. The
inequalities 0 ≤ � ≤ 1 hold because of the triangle
inequality �(� − �) ≤ �(�) + �(�). For constant
signals �, � (like parameters or constants of models)
we have �(�,�) =

|� − �|

1 + |�| + |�|
.

E.g. for � = 2 and � = 2.01 we get � ≈ 2e-3 which is
in the order of magnitude of the relative error
0.01 2 = 5⁄ e-3.

To get time dependent functions for the signals of a
simulation result file the result points are linearly
interpolated. The integrals of piecewise linear
functions can easily be computed by an analytic
approach – also including discontinuities introduced by
events during numerical integration. The main parts of
the algorithm and of the computation time is concerned
with the (possibly different) time grids of � and �.

Therefore the time series concept fits very well into the
algorithm. For each time series only one time grid is
defined and the corresponding computational effort for
the grid is only done once. On the other hand the time
series concept enables reduction of the simulation
result file size because only result points are saved
when possible changes in the variable can be expected.
Because there is no best way to compare signals, the
implemented algorithm can easily be exchanged by
another (user-defined) algorithm – if necessary.

It is clear that linear interpolation of the result points
introduces an error between the linear interpolation and
the numerical solution normally available with (much)
higher precision. The error of linear interpolation is �(∆�2) with the time grid width ∆�, whereas for a
numerical integration method e.g. of order 4 the global
error between the analytical solution and the numerical
approximation is �(ℎ4) for the time step size ℎ. This
means that it does not make sense to compare results
accurately computed by high order integration
algorithms and finally to compare them on different
(wide spaced) time grids with linear interpolation
between. Consequently, it is highly recommended to
generate equal time grids for the result files to be
compared using the dense output functionality by novel
integration algorithms.

The concept to define a measure has the advantage
that really a number is computed for the deviation
between two signals. The alternative approach to only
check, if two signals are identical within a given error
tolerance gives a true / false information but does not
specify how far the signals are away to be within the
tolerance. Of course, the deviation number can also be
used to check if it is below the error tolerance.

For the user of PySimulator and the testing plugin a
GUI has been developed to define regression tests, see
Figure 3.

Figure 3. Compare result files GUI.

In the baseline result directory there are result files that
are used as a reference to be compared to the result
files in the given list of result directories. Each
directory is searched for a result file with the same
name as the baseline result file (without file suffixes).
If there are files with the same names except the file
suffix, then these files will be compared using the

Session 10A: Testing & Diagnostics

DOI
10.3384/ecp15118671

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

673

algorithm described above. Before starting the analysis,
the user has to specify an error tolerance up to what
deviations between signals are acceptable. The
regression report and all corresponding files are
generated into the report directory to be defined by the
user.

3.2 HTML Report for Regression Testing

The result of the regression testing is a generated
HTML report which presents the results of the analysis
in a compact and concise way. We have been iterating
over the appearance of the HTML report in order to
make it more clear and compact while providing
enough information to the user about the regression
analysis.

The appearance of the current version of the HTML
report is given in Figure 4. It includes a table with the
given models for simulation and the results obtained by
running the given tools. The top left corner gives
general information about the regression analysis such
as tolerance, used disk space, how many files and
signals were compared, generation time, etc.

The legend which gives the meaning of the colors is
given below the table with the results and linked from
above so that more useful information is displayed
close to the top.

The table gives information about the regression
testing including: how many comparisons passed or
failed, the largest difference between the signals, and
the total number of signals in the reference file and in
the file generated via simulation. An overview column
called “Status” is also present to quickly spot the
problematic tests.

Figure 5. HTML view with all the signals that differ.

Figure 4. The HTML report for regression analysis.

Automatic Regression Testing of Simulation Models and Concept for Simulation of Connected FMUs in
PySimulator

674 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118671

The columns in the right part of the report table show
as a link how many signals differ with respect to the
given tolerance. For example, there are 14 variables for
the Rectifier FMU (FMI 2.0) that differ from the
baseline simulation by Dymola. One can click on that
number and another HTML page will be presented
with an overview of the differences (Figure 5). On this
page one can see a table containing all the signals that
differ, sorted either by the variable name or by the
error between signals. To switch between the sorted
pages, one can click on the column headers of the table
namely “Name” and “Detected Error” to navigate to
the respective sorted page.

In this view the user can click on the variable names
and a new interactive page is displayed with more
information about the difference in the signals.

Figure 6. Interactive HTML view with the difference
between signals.

In the interactive signal difference HTML view (Figure
6) the user can zoom in and see the actual difference
between the selected variables.

3.3 Speed-up of Regression Testing

For many models or models with long simulation times
and / or large result files, the task to run the whole
regression testing analysis may take a long time. To
improve the performance two kinds of parallelization
techniques are applied:

• Simulate different models in parallel,

• Compare different result files in parallel.
The simulation of different models is presented in
Section 4.1 and the benefits of parallelization in
Section 4.2. The comparison of different result files in
parallel and the speed-up achieved versus serial
comparison is given in Section 4.3.

4 Performance of Regression Testing

In this section we detail the functionality available to
simulate models and to perform the regression
analysis. The performance improvements gained when
parallelization is applied are also presented.

4.1 Automatic Simulation in Batch Mode

In the initial design (Pfeiffer et al, 2012) of simulator
plugins in PySimulator the main interface to run a
numerical integration of a model was to click and edit
through the Integrator Control GUI. This is convenient
when experimenting with a few models and the
according result files. However, if we want to simulate
several models to generate result files (as needed for
regression testing), the original procedure will get
tedious and error-prone.

For this case we introduced a text file based
interface for PySimulator to specify the simulation
parameters of a list of models. The format of the text
file is rather simple. Currently, data for nine columns
has to be inserted for each model to be simulated.
Comment lines beginning with # can also be put in the
file. The user has to specify:

• The file name (possibly with full path name) of the
model or the library,

• The unique model name inside the library,

• An optional name of a sub-directory, where the
result file has to be saved,

• The start and stop time of the integration,

• The error tolerance or the fixed step size
(depending on the default integration algorithm),

• The number of output intervals for the result file,

• True or false, if result points at events shall be
included in the result file.

An example how a simulation setup file looks like is
given in Figure 7.

The setup file can easily be generated by some other
tools. A prototype is implemented in a scripting
function in Dymola to generate the setup file for all
models of a Modelica library with an “experiment”
annotation.

The setup file can be loaded using the PySimulator
GUI interface. An example of how to start the GUI and
load the setup file is given in Figure 8.

Setup file for simulation of several models by PySimulator
Columns to be filled:
modelFile modelName subDir tStart tStop tol stepSize nIntervals includeEvents
List of models to be simulated:
"D:/BoucingBall.mo" BouncingBall "" 0.0 2.0 1e-6 10 500 true
"D:/Rectifier.mo" Rectifier "" 0.0 0.1 1e-6 10 500 true
"D:/Rectifier_10.fmu" Rectifier "FMU1.0" 0.0 0.1 1e-6 10 500 true
"D:/Rectifier 20.fmu" Rectifier "FMU2.0" 0.0 0.1 1e-6 10 500 true

Figure 7. Content of the simulation setup file Setup.txt.

Session 10A: Testing & Diagnostics

DOI
10.3384/ecp15118671

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

675

Figure 8. Starting the simulation list of models from GUI.

Figure 9. GUI to load a setup file and select the simulator
tools from the list.

After selecting “Simulate List of Models…” from the
menu, the GUI interface pops up as shown in Figure 9.
After loading the setup file the user can select several
simulator plugins that shall run the models specified in
the setup file. The simulator plugins are able to
recognize if they can simulate all model types given in
the setup file. Models that cannot be processed are just
ignored. Currently, all simulator plugins for Modelica
models ignore FMUs and the FMU Simulator ignores
Modelica models. The parallel simulation of the
models to speed up the whole simulation process is
explained in the following section.

4.2 Parallel Simulation

The parallel simulation approach allows the user to
simulate models in parallel in different processes, using
as many cores as the machine has available, resulting
in improved performance. Each model in the list is
simulated in a separate directory in order to avoid
conflicts that would occur if models use the same file
names. Generating the files with the same name can
occur due to simulating the same model multiple times
in the same project, or due to the simulator using the
same name for all models (e.g. dsin.txt, output.log in
Dymola).

The Python Multiprocessing Library (Python, 2015)
was used to implement the parallelization of simulation
runs. Multiprocessing is a package that supports
spawning processes using an API similar to the
threading module. The multiprocessing package offers
both local and remote concurrency, effectively side-
stepping the global Python interpreter lock by using
sub-processes instead of threads. Due to this the
multiprocessing module allows the programmer to

fully leverage multiple processors on a given machine.
The library provides the cross-platform support and is
compatible with both UNIX / Linux and Windows
operating systems.

We measured the performance of parallel simulation
against serial simulation. The list of models is taken
from the example models in the Modelica Standard
Library 3.2.1 (Modelica Association, 2013). The tests
have been performed with the following system
configuration:

OS: Windows 8, 64 bit
Processor: 4-core CPU @ 2.20 GHZ
RAM: 8 GB

A selection of measurements is listed in Table 1.

Table 1. List of measurements between serial and parallel
simulation using the OpenModelica simulator.

Models Serial [s] Parallel [s]
Speed-up

factor

10 134.9 35.5 3.80

26 349.3 84.1 4.15

52 648.1 195.6 3.31

100 1279.3 381.8 3.35

The table shows that parallel simulation is roughly
three to four times faster than serial simulation. If the
number of processor cores in the system increases, the
speed-up will increase accordingly, as long as there is
no shared global memory or disk bottleneck.

4.3 Parallel Regression Analysis

The regression testing as shown in Section 3 is
parallelized in the same way as described in the
previous section for the simulation runs. The
comparison of two result files including loading the
files is run in parallel for several result file pairs.

We measured the performance of serial regression
testing when compared with the parallel
implementation. The tests are performed with the same
system configuration as specified in Section 4.2. A
selection of measurements is listed in Table 2.

Table 2. List of measurements between serial and parallel
regression testing.

Total size

of files

[MB]

Files

com-

pared

Total

variables

compared S
e

ri
a

l
[s
]

P
a

ra
ll

e
l

[s
]

S
p

e
e

d
-u

p

fa
ct

o
r

1.2 20 387 9 4 2.25

2.4 45 872 19 8 2.37

17.6 100 11206 52 20 2.60

30.0 200 24164 90 27 3.33

47.6 325 36347 178 55 3.23

From the above measurements the parallel regression
testing is roughly two to three times faster than serial
regression testing.

Automatic Regression Testing of Simulation Models and Concept for Simulation of Connected FMUs in
PySimulator

676 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118671

5 Simulation of Connected FMUs

It is often required to simulate a model containing
several FMUs connected to each other. The FMU
simulator plugin of PySimulator so far has relied on
FMI 1.0 for Model Exchange. As preparation work to
support connected FMUs (FMI 2.0), we extended the
plugin to cover the FMI standard in version 2.0
(Modelica Association, 2014a) for Model Exchange
and for Co-Simulation of a single FMU. Further, we
have developed a new simulator plugin which allows
connection and simulation of several FMUs. Some
details are shown in this section.

5.1 Connections between FMUs

The information about how several FMUs are
connected is stored in an XML file. It contains the
details about the FMUs and their respective
connections required for the simulation. This makes it
possible to write the XML file manually and open it in
PySimulator.

We have also designed a connection GUI shown in
Figure 10 which allows the user to select FMUs and
make connections between them. The information is
saved into the XML file and can be used again in later
sessions.

Figure 10. Graphical user interface to connect FMUs.

The according XML schema in Figure 11 contains two
main sections namely fmus and connections. Each
fmu has a unique name, which is also used as instance
name in the simulator, and a path to define where the
FMU is stored. Each connection contains:

• fromFmuName: the instance name of the sending
FMU,

• toFmuName: the instance name of the receiving
FMU,

• fromVariableName or toVariableName: the
name of the variable as it is declared in the
ScalarVariable section of the FMU.

Figure 11. XML schema for connected FMUs.

If the units or the types of connected input and output
variables are different, then this is automatically
detected by the simulator before starting the
simulation. For example, if fromVariableName is a
Boolean variable and toVariableName is a Real
variable, then the connection is not allowed and will be
reported as an error.

5.2 Simulation Procedure

The new simulator plugin uses the existing FMU
Simulator in PySimulator as a base. The simulator
creates instances of the FMU Simulator classes
depending on the FMUs defined in the XML file. In
other words the FMUs are the component instances of
the model. When the user adds the FMU, the simulator
assigns a unique instance name to it. Thus, it is
possible to have several instances of the same FMU.
The simulator resolves the connections, i.e., getting
and setting the values, between the time steps. From
the point of view of the FMU simulator plugin it is just
another FMU, thus the interface to the simulator is the
existing FMU Python interface. Inside this Python
interface the functions of the different FMU instances
are called in the order defined by the connections. To
determine the connection order evaluation, Tarjan’s
algorithm (Tarjan, 1972) is used. Algebraic loops are
currently not supported. If there are no connections
between the FMUs, then the order does not matter and
each FMU is simulated independently.

Session 10A: Testing & Diagnostics

DOI
10.3384/ecp15118671

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

677

The first prototype supporting the simulation of
connected FMUs for Co-Simulation is complete. Some
tests were performed using the Modelica library
FMITests.SimpleConnections (Modelica
Association, 2014b), see a plot of the results in Figure
12. The FMUs are generated using Dymola. The tests
are also provided as part of PySimulator’s examples.
The work on simulation of connected FMUs for Model
Exchange is still under development.

6 Conclusions and Future Work

Comparing results of model simulation is very
important for model portability and model evolution.

This paper presents a framework for regression
analysis that can simulate models very efficiently and
report how their results differ. Support for simulation
of models in FMU form or using several Modelica
tools including Dymola, SimulationX, and
OpenModelica was previously present in PySimulator
and has been extended in this work with a new
simulator plugin for Wolfram SystemModeler.

Efficient regression analysis is provided by
parallelization of model simulations and result
comparisons.

A first prototype to simulate connected FMUs for
Co-Simulation is complete. Ongoing work is focused
on having fully functional simulation of connected
FMUs for both Model Exchange and Co-Simulation.

The Modelica Association project System Structure

and Parameterization of Components of Virtual System

Design (SSP) aims at solving the problem where there
is need to design, simulate, and execute a network of
components. The project is in an early phase now but
we might consider using its results to describe the
connection of FMUs.

Acknowledgements

Part of the work is financed by the CleanSky Joint
Undertaking project PyModSimA (JTI-CS-2013-2-
SGO-02-064). This support is highly appreciated.
Financial support of DLR by BMBF (BMBF funding
code: 01IS12022A) for the FMU simulator in
PySimulator according to FMI 2.0 within the ITEA2
project MODRIO (ITEA 2 – 11004) is also highly
appreciated. The authors thank Jakub Tobolar (DLR
Institute of System Dynamics and Control) for his tests
and support of the regression testing feature in an
earlier stage and his implementation of the automatic

Figure 12. Simulation results of connected FMUs for Co-Simulation using an example from the Modelica Library
FMITests.SimpleConnections.

Automatic Regression Testing of Simulation Models and Concept for Simulation of Connected FMUs in
PySimulator

678 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118671

generation of the simulation setup file by Dymola. The
authors also thank Martin Otter (DLR) for the fruitful
discussions about the topics presented in the paper.

References

Benjamin Edwards. Pythonica, 2012. https://github.com/
bjedwards/pythonica (accessed: 19th of May 2015).

Anand K. Ganeson, Peter Fritzson, Olena Rogovchenko,
Adeel Asghar, Martin Sjölund, and Andreas Pfeiffer. An
OpenModelica Python Interface and its use in
PySimulator. Proceedings of the 9th International

Modelica Conference, 3.-5. Sep. 2012, Munich, Germany.

ITI GmbH. Csv-compare tool, 2013. https://github.com/
modelica-tools/csv-compare (accessed: 19th of May
2015).

Modelica Association. Functional Mock-up Interface for
Model Exchange and Co-Simulation, Version 2.0, July 25,
2014. http://www.fmi-standard.org (accessed: 19th of May
2015).

Modelica Association. Functional Mock-up Interface.
Subversion repository, 2014. https://svn.fmi-
standard.org/fmi/branches/public/Test_FMUs/_FMIModel
icaTest/FMITest (accessed: 21st of July 2015).

Modelica Association. Modelica Standard Library 3.2.1,
2013. https://github.com/modelica/Modelica/releases/
tag/v3.2.1+build.2 (accessed: 30th of July 2015).

Martin Otter. Private communication, 2015.

Andreas Pfeiffer, Ingrid Bausch-Gall, and Martin Otter.
Proposal for a Standard Time Series File Format in HDF5.
Proceedings of the 9th International Modelica Conference,
3.-5. Sep. 2012, Munich, Germany.

Andreas Pfeiffer, Matthias Hellerer, Stefan Hartweg, Martin
Otter, and Matthias Reiner. PySimulator – A Simulation
and Analysis Environment in Python with Plugin
Infrastructure. Proceedings of the 9th International

Modelica Conference, 3.-5. Sep. 2012, Munich, Germany.

Andreas Pfeiffer, Matthias Hellerer, Stefan Hartweg, Martin
Otter, Matthias Reiner, and Jakub Tobolar. System
Analysis and Applications with PySimulator. Presentation

at the 7th MODPROD Workshop on Model-Based Product

Development, 4.-6. Feb. 2013, Linköping, Sweden.

Python: multiprocessing — Process-based “threading”
interface. https://docs.python.org/2/library/
multiprocessing.html (accessed: 20th of May 2015).

Robert Tarjan: Depth-first search and linear graph
algorithms. SIAM Journal on Computing, Vol.1, No.2,
1972.

Wolfram: Wolfram Mathematica. http://www.wolfram.com/
mathematica (accessed: 19th of May 2015).

Wolfram: Wolfram SystemModeler. https://www.wolfram.
com/system-modeler (accessed: 19th of May 2015).

Session 10A: Testing & Diagnostics

DOI
10.3384/ecp15118671

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

679

680 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Abrasive waterjet intensifier model for machine diagnostics

Gianni Ferretti1 Michele Monno2 3 Bruno Scaglioni1 3 Massimo Goletti2 3 Marco Grasso2 3

1Dipartimento di Elettronica, Informazione e Bioingegneria DEIB, Politecnico Di Milano,

Via Ponzio 34/5, 20133 Milano, Italy
2Dipartimento Meccanica, Politecnico di Milano, via La Masa 1, 20156, Milano, Italy

3MUSP Lab, Via Tirotti 9, Le Mose, 29122 Piacenza, Italy

Abstract

This paper investigates the dynamics of a waterjet plant

with multiple phased single-acting plungers. An object

oriented dynamic model is proposed and discussed. The

simulator may be tuned to generate signals under differ-

ent health conditions to train multi-fault diagnosis tools.

In fact, due to the challenging pressure conditions and

the aggressiveness of abrasive materials, the reliability

of machine tool components is a major concern. The

information throughput provided by the model is val-

idated with respect to real-industrial data, acquired in

reference cutting scenarios.

Keywords: Waterjet Cutting; High Pressure Pump;

Object-Oriented Modeling; Condition Monitoring

1 Introduction

Waterjet/abrasive waterjet (AWJ) cutting machines

are used for several industrial applications thanks

to the great flexibility of the technology, which

is suitable for cutting a wide range of materials

[Kovacevic et al., 1997]. This kind of machine tool in-

cludes an Ultra High Pressure (UHP) pump to generate

the necessary pressure energy that is then converted into

kinetic energy by the orifice into the cutting head. Dif-

ferent components, either belonging to the UHP pump

or to the cutting head, are subject to different kinds of

faults and performance degradation, due to the chal-

lenging pressure conditions and the aggressiveness of

abrasive particles.

The reliability of AWJ cutting machines is therefore

a topic of major concern in industry. A fast detection of

a faulty state and the automatic identification of the root

cause for observed symptoms are expected to provide

several benefits, including the reduction of unexpected

machine stops, a quick leakage recovery, the minimiza-

tion of wastes, the enhancement of maintenance oper-

ations, etc. There are several studies in the literature

devoted to AWJ process monitoring [Peržel et al., 2012,

Krenickỳ and Rimár, 2012, Axinte and Kong, 2009,

Rabani et al., 2012, Choi and Choi, 1997], mainly

related to the determination and possible improve-

ment of the cut quality. Nevertheless, very few

authors investigated the development of automated

tools for in-process monitoring and diagnosis of

machine tool health conditions [Annoni et al., 2009,

Grasso et al., 2013, Grasso et al., 2014]. One of major

challenges consists of characterizing the AWJ plant

behavior under both healthy and faulty conditions, in

order to train fault classifiers.

Real data under faulty states are always difficult and

expensive to collect, which makes purely data-driven di-

agnostic methods poorly attractive for a practical use.

Model-based methods are expected to yield more effec-

tive diagnostics capabilities, thanks to the possibility of

simulating the plant behavior under different operating

conditions.

This paper investigates the dynamics of an AWJ

plant with multiple phased single-acting plungers and

it represents a first attempt to design an object-

oriented dynamic model for such a kind of system.

The model may be tuned to generate simulated sig-

nal patterns under different health conditions in or-

der to train multi-fault diagnosis tool. Moreover, the

model’s behavior can be compared with the measure-

ments and give indications on the failures, a diagnostic

method based on object-oriented models is proposed in

[Bunus and Lunde, 2008]. The proposed model gener-

ates simulated water pressure and plunger displacement

patterns, which can be used to characterize the AWJ

working cycle. The injections of degraded states and

faulty conditions into the model allows to characterize

the pattern deviations from the natural state, and hence

to develop novel model-based fault detection and classi-

fication toolkits. The real industrial data include signals

under healthy states and in the presence of faults affect-

ing either the UHP pump components (cracked cylin-

DOI
10.3384/ecp15118681

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

681

ders) or the cutting head components (broken orifices).

The paper is organized as follows: Section 2 describes

the model, in Section 3 a comparison between exper-

imental results and simulations is presented in case of

normal and faulty conditions, and the model tuning is

presented. Section 4 concludes the paper.

2 UHP intensifier model

In this section, the model of the CMS Tecnocut 60 HP

intensifying machine is described, a picture of the de-

vice is reported in Fig. 1. This intensifier is able to reach

more than 4000 bars by means of 3 single-acting cylin-

ders with a maximum water flow rate of 5 l/min (orifices

up to 0.4 mm in diameter). The machine scheme is re-

ported in Fig. 2.

The intensifier is based on the Pascal principle: an

oil circuit is pressurized by means of an electric pump,

the oil flows into a single acting cylinder with a ratio

of areas 1/ν producing a pressure in the water circuit

given by the input oil pressure multiplied by ν . It must

be pointed out that at least three cylinders are required

in order to keep a quasi-constant output pressure, since

the work cycle of the machine is composed by three

strokes: the pre-compression stroke, where the outlet

valve of the cylinder is closed and the oil flowing into

the chamber heightens the water pressure, the compres-

sion stroke, where the outlet valve is open and the water

flows from the cylinder to the orifice, and finally the

back stroke, where the piston returns to the original po-

sition. The oil circuit is composed of two subcircuits,

the high-pressure oil circuit depicted in black, and the

back-stroke circuit depicted in red, the oil is pressur-

ized by a variable displacement piston pump equipped

with an hydraulic feedback control system.

It must be pointed out that the timing mechanism of

the plungers is controlled by a PLC based on contact-

less proximity sensors. This mechanism, along with the

displacement control system of the electric pump, plays

a crucial role in the water pressure signal behavior. As

will be seen later, the modeling phase of these compo-

nents has been carried out in great detail.

The water circuit (blue in Fig. 2), is composed by a

series of high pressure pipes connecting the outlet ports

of the cylinders to the final orifice. The Modelica model

of the intensifier has been carried out my means of the

Hydraulics library [Hyd, 2014], which provided all the

basic components for the model construction. In par-

ticular, fluid components for compressible water and oil

are unavoidable in the application of interest, where the

extremely high pressures compresses water by a factor

of 20%.

The fluids properties are made available to the hy-

draulic components by means of the inner/outer

statements, hence the global machine model has been

split in two main components, namely the water and oil

circuits, where two different fluids have been adopted.

The submodels are connected by means of translational

1D flanges, which represent the cylinders interfaces.

The water circuit, shown in Fig. 3, is composed by

three chambers representing the part of the cylinders

in contact with water, the supply circuit and the final

orifice, modeled as an hydraulic resistance. It must be

pointed out that the length and compliance of the pipe

connecting the pressure intensifier and the final orifice

are not negligible, hence a longline component has

been used. The purpose of the aforementioned compo-

nent is to model the dynamics of long pipes, such as the

water hammer effect, and to consider the compliance

of the pipe’s walls subject to the water pressure. The

final orifice was modeled by means of the Orifice

model, a component of the Hydraulics library, where

either laminar or turbulent flow can be used depending

on the pressure drop on the component. The thermal ef-

fects on the orifice were not considered as the machine

is self-coolant and no significant temperature gradient

was detected, nor reported in literature.

The model of the oil circuit, shown in Fig. 4 is more

involved, as it contains the oil pistons, the PLC, the

group of mechanisms that feeds the oil to the cylinders

and the variable displacement pump with its hydraulic

feedback control system.

The oil feeding mechanism of the pistons is shown in

Fig. 5. The circuit’s valves are directly controlled by

the PLC but the commutation delays are not symmet-

ric with respect to the command signal, hence the delay

is acquired as an external parameter, depending on the

direction of commutation. It must be pointed out that

valves commutation timing has great consequences on

the pressure signal, therefore, accurate tuning of the de-

lays is required. The influence of these parameters will

be discussed in Section 3.

The model of the main oil circuit, including the pump

and the displacement control system is shown in Fig. 6.

The operating nominal pressure of the circuit, which di-

rectly controls the water pressure, is regulated by means

of a relief valve that opens if the pressure exceeds the

nominal value. The pump is equipped with an internal

volume regulator, with the aim of optimizing the overall

efficiency of the machine with respect to the various op-

eration points. The regulator controls the volume of the

pump by applying a pressure on the swash plate. The

Abrasive Waterjet Intensifier Model for Machine Diagnostics

682 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118681

volume is determined by the outflow rate through a sys-

tem of valves and springs whereof parameters are not

known. The dynamics of the control system was mod-

eled as follows:

Ct(t) =











1 if Qout < Qs

1− Qout(t)−Qs

Qm−Qs
if Qs < Qout < Qm

0 if Qout > Qm

(1)

C(s) =
1

(1+T s)
e−τsCt(s) (2)

with C(s) and Ct(s) being the Laplace transforms of the

control output C(t) and the signal Ct(t), while Qs is the

flow rate condition of maximum displacement and max-

imum operative pressure, Qm is the flow rate at which

the displacement of the pump is zero and finally T and

τ are the parameters describing the inertia of the sys-

tem. The parameters of the control system, as well as

the valves’ delays, were collected from the datasheets

[Par, 2011].

Figure 1: Pressure Intensifier

Figure 2: CMS Tecnocut UHP intensifier

Figure 3: Water Circuit

Figure 4: Oil model

Figure 5: Feed circuit

Session 10A: Testing & Diagnostics

DOI
10.3384/ecp15118681

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

683

Figure 6: Main oil circuit

3 Simulation and model tuning

The model was simulated in the Dymola environment

[Dynasim AB,] and validated with respect to experi-

mental data. The experiments were carried out with

a nominal water pressure of 3600 bar and a final ori-

fice of 0.33 mm. The stroke of the three cylinders and

the water pressure signal were acquired by means of a

pressure sensor and three linear position transducers. It

must be pointed out that the simulation of an hydraulic

system characterized by pressures in the order of 107

Pa and flow rates of 10−6 m3/s can run into serious

numerical stiffness problems. Moreover the commuta-

tion of the hydraulic valves can lead to situations where

the pressure drop is close to zero in components with

turbulent flow models, leading to numerical problems

as the gain dQ/dP of the components goes to infin-

ity as the pressure drop goes to zero, as described in

[Hyd, 2014], hence the Esdirk45a integration algorithm

has been used with a relative tolerance of 10−3, which

is a higher-order, A-stable algorithm suitable for stiff

problems. It must also be pointed out that the classical

DASSL algorithm often looses stability with tolerances

between 10−3 and 10−5, and could even not converge in

reasonable time with smaller tolerances.

Fig. 7 shows the comparison between the experi-

mental signal, depicted in red, and the simulated pres-

sure signal, in blue. As it is apparent, the simulation is

in good accordance with the experiments, the average

pressure is similar as well as the in-cycle fluctuations,

nonetheless experimental signals exhibit a decreasing

trend with the periodicity of one cycle.

The observation is confirmed by the analysis of the

power spectrum of the signals, visible in Fig. 8. A 1X-

cycle component is visible in the experimental signal

but it is missing in the simulated signal. The discrep-

ancy was attributed to a difference between the cylin-

ders’ friction coefficients, whose parameter’s values are

Index Value

Simulated signal: Standard deviation 62.56 bar

Experimental signal: Standard deviation 42.86 bar

Correlation Coefficient 0.7147

Table 1: Model validation results

difficult to obtain. It must be pointed out that the Hy-

draulics lib implements a friction model described in

[Tustin, 1947].

In order to fit the experimental data, the model was

updated by assigning different values of viscous damp-

ing to the three cylinders. Figures 9 and 10 show the

signal and the power spectrum with different damping

values, the experimental pressure is faithfully repro-

duced and the power spectrum correctly identifies the

1X-cycle component. The standard deviation and cor-

relation of experimental and simulated pressure signals

were compared for the sake of model validation, and

the results are shown in Table 3. Note in particular that

the correlation coefficient between the signals is higher

then 0.7.

Figure 7: Real signal vs Simulated

Figure 8: Power spectrum of experimental and simu-

lated pressures

3.1 Faults injection

One of the main purposes of the developed model is to

act as a virtual test bench for fault simulation, hence,

a set of faults whose experimental data were available

have been implemented in the model. Then, suitable

indicators have been identified, based on the simulated

and experimental signals.

One of the most frequent and important fault in the

AWJ machines is a crack in the cylinder body, often

Abrasive Waterjet Intensifier Model for Machine Diagnostics

684 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118681

Figure 9: Experimental and simulated pressures with

different friction coefficients

Figure 10: Power spectrum of experimental and simu-

lated pressures with different friction coefficients

caused by the high pressures involved in the process.

The fault was modeled as a leakage between the water

chamber and the external environment and the conduc-

tance parameter was tuned on the advice of the cylinder

manufacturer. It must be pointed out that the specific

value of the leakage was tuned on the specimen under

study, but the qualitative behavior of the system in fault

condition is similar for a wide range of the conductance

parameter. Fig.11 shows the cepstrum of the pressure

signals. The Cepstrum of a signal [Childers et al., 1977]

is defined as follows:

X(T) = |FFF [ln(|FFF [x(t)] |)] | (3)

Where x(t) is the signal in the time domain, X(T) is

the cepstrum and FFF is the Fourier transform operator.

It represents the Fourier transform of the logarithm of

the Fourier transform of the signal, and it is a good in-

dicator of the main harmonics of the signal. In partic-

ular it is useful in the analysis of the water pressure as

it clearly shows the length of the pumping cycle. The

indipendent variable of a cepstrum analysis is the que-

frency, measured in seconds. Note that the period of

the pumping cycle decreases from 4.8 to 4.2 seconds

in both cases, showing a good indicator for this kind of

fault. Moreover, the strokes of the cylinders, shown in

Fig. 12 exhibit a remarkable difference in the precom-

pression stroke of the cracked cylinder with respect to

the remaining ones.

The fault condition caused by a consumed final ori-

fice was also investigated. The physical fault consists in

a wear of the orifice, whose diameter increases and as-

sumes irregular shape, with negative effect on the cut-

ting quality. The fault was reproduced experimentally

by installing a fatigued orifice on the machine, while

in the simulation environment, the diameter of the ori-

fice was set to 0.35 mm according to the results of a

geometrical analysis of the component. In the case of

faulty orifice, a global reduction of the pumping cycle

duration can be expected rather then a difference be-

tween the cylinders stroke signals. Fig. 13 shows the

cepstrum of the simulated and experimental signal, the

1X − cycle component of the cepstrum reduces from a

quefrency of 4.8 s to 3.2 s in the simulation and 3.3 s in

the experiments, showing good accordance.

Figure 11: Cepstrum of the pressure signal, cracked

cylinder

Figure 12: Cylinder strokes in case of fault

Figure 13: Cepstrum of the pressure signal, broken ori-

fice

4 Conclusion

The object-oriented model of a complex machine tool,

involving ultra high pressure water circuit, interaction

between fluid mechanics and control system was pre-

sented. The model was tuned, and subsequently vali-

dated by means of a comparison with experiments ex-

erted on a real industrial machine tool. Two different

types of fault were introduced with the aim of reproduc-

ing the behavior of the machine in the case of malfunc-

tion. The developed model lays the groundwork for a

model-based condition monitoring system which is ex-

pected to yield more effective diagnostics capabilities

Session 10A: Testing & Diagnostics

DOI
10.3384/ecp15118681

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

685

by means of the on-line identification of faulty condi-

tions. The development of the monitoring system will

be addressed in a future work.

References

[Par, 2011] (2011). Parker Hannifin Corporation, Se-

ries D1VW, D Style catalog, USA: Parker.

[Hyd, 2014] (2014). Modelon AB - Hydraulics Library

- Version 4.1.

[Annoni et al., 2009] Annoni, M., Cristaldi, L., Lazza-

roni, M., and Ferrari, S. (2009). Nozzles classifi-

cation in a high-pressure water jet system. Instru-

mentation and Measurement, IEEE Transactions on,

58(10):3739–3745.

[Axinte and Kong, 2009] Axinte, D. and Kong, M.

(2009). An integrated monitoring method to

supervise waterjet machining. CIRP Annals-

Manufacturing Technology, 58(1):303–306.

[Bunus and Lunde, 2008] Bunus, P. and Lunde, K.

(2008). Supporting model-based diagnostics with

equation-based object oriented languages. pages

121–130.

[Childers et al., 1977] Childers, D. G., Skinner, D. P.,

and Kemerait, R. C. (1977). Cepstrum: A guide to

processing. Proceedings of the IEEE, 65(10):1428–

1443.

[Choi and Choi, 1997] Choi, G. S. and Choi, G. H.

(1997). Process analysis and monitoring in abrasive

water jet machining of alumina ceramics. Interna-

tional Journal of Machine Tools and Manufacture,

37(3):295–307.

[Dynasim AB,] Dynasim AB. Dymola. Lund, Swe-

den.

[Grasso et al., 2013] Grasso, M., Goletti, M., Annoni,

M., and Colosimo, B. M. (2013). A new approach for

online health assessment of abrasive waterjet cutting

systems. International Journal of Abrasive Technol-

ogy, 6(2):158–181.

[Grasso et al., 2014] Grasso, M., Pennacchi, P., and

Colosimo, B. (2014). Empirical mode decomposi-

tion of pressure signal for health condition monitor-

ing in waterjet cutting. The International Journal of

Advanced Manufacturing Technology, 72(1-4):347–

364.

[Kovacevic et al., 1997] Kovacevic, R., Hashish, M.,

Mohan, R., Ramulu, M., Kim, T., and Geskin, E.

(1997). State of the art of research and development

in abrasive waterjet machining. Journal of manufac-

turing science and engineering, 119(4B):776–785.

[Krenickỳ and Rimár, 2012] Krenickỳ, T. and Rimár,

M. (2012). Monitoring of vibrations in the technol-

ogy of awj. In Key Engineering Materials, volume

496, pages 229–234. Trans Tech Publ.

[Peržel et al., 2012] Peržel, V., Hreha, P., Hloch, S.,

Tozan, H., and Valíček, J. (2012). Vibration emis-

sion as a potential source of information for abra-

sive waterjet quality process control. The Interna-

tional Journal of Advanced Manufacturing Technol-

ogy, 61(1-4):285–294.

[Rabani et al., 2012] Rabani, A., Marinescu, I., and

Axinte, D. (2012). Acoustic emission energy trans-

fer rate: a method for monitoring abrasive waterjet

milling. International Journal of Machine Tools and

Manufacture, 61:80–89.

[Tustin, 1947] Tustin, A. (1947). The effects of back-

lash and of speed-dependent friction on the sta-

bility of closed-cycle control systems. Electrical

Engineers - Part IIA: Automatic Regulators and

Servo Mechanisms, Journal of the Institution of,

94(1):143–151.

Abrasive Waterjet Intensifier Model for Machine Diagnostics

686 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118681

Optimica Testing Toolkit: a Tool-Agnostic Testing Framework for

Modelica Models

Anders Tilly1 Victor Johnsson1 Jon Sten2 Alexander Perlman2 Johan Åkesson2

1Lund University, Sweden, {ada09ati,ada10vjo}@student.lu.se
2Modelon AB, Sweden, {jon.sten,alexander.perlman,johan.akesson}@modelon.com

Abstract

The need for regression testing increases as the size and
complexity of software projects grow. The same is true
for Modelica libraries and Modelica tools. Large Mod-
elica projects often involves several Modelica tools and
libraries which are under development. In those situa-
tions, with several orthogonal code bases, the need for
systematic regression testing is needed.

In this paper we investigate a new way to create and
run tests by developing a tool-agnostic testing frame-
work. Additionally a graphical user interface for test au-
thoring and management was created.

Keywords: Cross Testing, Testing Framework, Test

Authoring, Regression Testing, User Interface, Modelica,

FMI

1 Introduction

Optimica Testing Toolkit (OTT) is a tool-independent
framework for performing automatic testing on Model-
ica models. It supports both static and script-based test-
ing. Static testing is used to perform predefined tests on a
subset of models in a library, where the user provides the
specific library as well as a criteria for selecting which
models to test. Each model is automatically compiled
and simulated and the resulting trajectories are compared
to reference trajectories. Script-based testing enables the
test author to write finely tuned tests that interact with
the compilation and simulation process and to test indi-
vidual models with specific compiler and simulator sce-
narios. OTT supports cross-tool testing with several dif-
ferent Modelica compilers and simulation environments
using FMI.

The purpose of OTT is not only to provide a frame-
work for testing Modelica models, but also to provide
a testing pipeline that is tool agnostic. OTT provides
the same testing pipeline regardless of what compiler
and simulator performs the actual model compilation and
simulation. Tool agnosticism is provided by means of an
abstraction layer between OTT and the actual tools. Each
tool is hooked into the abstraction layer via a plugin tai-

lored specifically to that tool.
As part of the development cycle a Graphical User In-

terface (GUI) was developed (Tilly and Johnsson, 2015).
The GUI can be used for test authoring, test configura-
tion and test execution. One important aspect considered
during development was to ensure that the GUI had good
usability. We used a number of different user studies to-
gether with the users in order to discover usability prob-
lems, and then used iterative development to address and
fix those issues.

OTT was initialy developed by Modelon as an in-
house tool for performing library testing and verification
using several Modelica tools. It has since been extended
with the GUI and other features and is now provided and
maintained as a commercial product by Modelon 1.

2 Background

In software development, a test is usually run and
checked towards an expected result (Burnstein, 2004).
Testing Modelica models are tested using the same con-
cept. More specifically, testing a Modelica model means
testing if it: (a) can be translated and simulated without
error, (b) delivers the expected results, and (c) represents
reality adequately (Samlaus et al., 2014). For aspect b,
there are reference values that are considered to be the
“correct” values. The result of a test is checked to be
within a specific tolerance of that value. If the modeler
deems the new value to be better than the reference value,
the modeler may choose to overwrite the old reference
value and use the new value as future reference.

Testing consists of test authoring, test configuration
and test execution. Authoring a test for a model means
to select some variables to compare against references,
and also changing some parameters in the model. Test
configuration refers to choosing the appropriate settings
for the test, such as which compiler to use, and test exe-
cution refers to running the tests.

In Modelica, models can be created and represented
both textually and graphically. Using a graphical user in-
terface is sometimes more efficient than using a program-

1http://www.modelon.com/

DOI
10.3384/ecp15118687

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

687

model SimpleDeclaration

extends Icons.TestCase;

Real x = 3;

Real y = x;

annotation(

__ModelicaAssociation(TestCase(

shouldPass=true)),

experiment(StopTime=0.01),

Documentation(

info="<html>Tests simple component

declarations.</html>"));

end SimpleDeclaration;

Listing 1. An example of TestCase
and experiment annotations. This example is taken from the
Modelica Compliance Library Guide (Open Source Modelica
Consortium, 2013).

matic approach (Chen and Zhang, 2007). Test authoring
on the other hand is usually done programmatically.

The Modelica language contains the concept of an-
notations for storing meta information about the model.
Examples of such information are: graphics, documenta-
tion and versioning (Modelica Association, 2014). There
are two types of annotations that are relevant for testing:

• experiment: The experiment annotation indi-
cates that the model can be simulated and it also
provides simulation settings, such as start or stop
time (Modelica Association, 2014). See listing 1 to
see an example of this annotation.

• TestCase: The TestCase annotation extends the
experiment annotations and specifies additional in-
formation, such as whether the test should pass
or fail (Open Source Modelica Consortium, 2013).
See listing 1 to see an example of this annotation.

2.1 Testing Frameworks

The testing process in software development is either au-
tomated or manual. Constructing an automated test is
often more expensive than performing a single manual
test. However, once the automated test has been speci-
fied, running it is much more efficient than performing
the test manually. Because of this, automated testing
is well suited for regression testing. Regression testing
means performing tests continuously throughout the de-
velopment process. This is done to discover possible in-
troduced errors when making changes in the software.
Manual testing on the other hand is done by a human.
Manual testing is often required for GUI applications
where how things look and feel is of interest. Performing
automated tests for this purpose can be difficult.

Automated tests can be built and run using testing
frameworks. A testing framework provides a way for
specifying and executing tests. Some examples of estab-
lished testing frameworks are:

• JUnit, a testing framework for the Java program-
ming language (Gamma and Beck, 1999).

• Nose, a testing framework for the Python program-
ming language (Arbuckle, 2010).

2.2 Usability

When we talk about usability in this paper, we mean the
usability of software. Usability can be viewed as includ-
ing a wide range of quality factors, for example main-
tainability. However, this paper focuses on the aspects
of daily operation as defined by Soren Lauesen (2005).
Lauesen defines usability to consist of six usability fac-
tors:

• Fit for use: Does the software have the needed func-
tionality?

• Ease of learning: Is it easy to learn?

• Task efficiency: Is it efficient for the frequent user?

• Ease of remembering: How easy is it to remember
for the occasional user?

• Subjective satisfaction: Does the user feel satisfied
when using the software?

• Understandability: Does the user understand what
happens in the software?

2.3 Related Work

Testing and automatic testing is nothing new to Mod-
elica and FMI. Two examples of such implementa-
tions are: UnitTesting (Tiller and Kittirungsi, 2006) and
MoUnit (Samlaus et al., 2014).

UnitTesting is a Modelica based library targeted at
unit testing of Modelica models. Tests are created by
defining Modelica models which extends the UnitTesting
library. One big aspect of the testing library is to provide
a wide range of metrics for the tested models. Exam-
ple of supported metrics are component-, condition- and
static-coverage.

MoUnit is a framework for automatic Modelica model
testing. Tests are written in a language defined by
MoUnit. MoUnit is integrated into the Modelica IDE
OneModelica which supports the user during test au-
thoring and test execution. However MoUnit can also
be used standalone when integrated into automatic build
environments such as Jenkins and Hudson. MoUnit pro-
vides result reporting and comparison against reference
results.

The solution presented in this paper differs from these
implementations. It is tool-agnostic, plugin-based and
supports enhanced cross-testing. This enables library de-
velopers to verify their library with different Modelica
and FMI tools. Additionally it allows for cross-testing
between different compilation and simulation tools.

Optimica Testing Toolkit: a Tool-Agnostic Testing Framework for Modelica Models

688 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118687

3 Test Methodology and Require-

ments

3.1 Static

Static testing is primarily used to test a large set of mod-
els that share one or more properties, e.g. package con-
tainer, base class, annotation etc. A static test session
begins with a set of Modelica packages containing test
models as input, as seen in figure 1. The packages are
traversed and models with properties matching a given
set of criteria are selected. When a selection is made
the test cycle; translation, compilation, simulation and
verification begins. After verification is complete, infor-
mation collected during test execution is passed to a set
of output modules responsible for rendering the results,
this completes the test cycle. The test session terminates
when no more models are found.

Figure 1. OTT static test cycle

The following types of static tests are currently sup-
ported:

• Experiments, tests models containing the
experiment() annotation

• Test cases, tests models containing the
__ModelicaAssociation(TestCase())

annotation

A test session may be explicitly setup to run its test
cycles up to and including a certain operation and still be
considered completed (this is true of all static tests except
for the Test cases tests where a test may be specifically
designed to fail during one of the operations).

Due to the limitations of the experiment and test-
case annotations, a new test specification format is un-
der development. The format facilitates additional in-
put and output for the test, such as modifiers for param-
eters, reference variables, tool specific options and much
more. The current implementation of this test specifi-
cation stores most of the information in an Extensible
Markup Language (XML) file, but in some cases uses

other formats, such as tool-specific scripts and reference
results. This paper will not explore this specification for-
mat further due to its current state.

3.2 Scripted

Script-based testing is primarily used to perform fine-
grained and diversified testing of models which, unlike
the models used for static testing, share none or very few
properties. The OTT script-based testing pipeline gives
the user total control over the testing process.

Much like static testing, OTT automatically retrieves
relevant tests based on the sieve provided by the user.
But that is where the similarities to static testing ends. It
is the user defined test that is the driving factor during
execution of scripted tests. Instead, OTT provide conve-
nient and uniformed interfaces to the different Modelica
tools and result reports. This gives the user full control
of the test execution and less worry about tool specific
interfaces. Additionally OTT provides mechanisms for
populating and producing test reports.

Scripted tests are written in Python and resembles
tests written for the Nose testing framework. However,
unlike Nose, OTT provides interfaces to common Mod-
elica and FMI tools.

3.3 GUI

The basic workflow when using the GUI is as follows:
the modeller (a) creates a test for a specific model, (b)
selects variables and parameters to include in the test, (c)
runs the test and (d) examines the results.

When running a test in the GUI, the included variables
and parameters and their values are extracted from the
test and run using OTT. OTT then produces the results
in the form specified, and if the results contain a HTML
report, the report is displayed in the GUI.

The requirements for the GUI were that it should be
user-friendly and it should provide all the necessary fea-
tures. The workflow and features were discovered using
user studies with the users, see 4.2.1 for more about this.

4 Implementation

OTT is a plugin-based tool written in Python and Java. It
is able to interface to FMI and Modelica compliant tools
either through Python interfaces or sub-process calls.

4.1 OTT Core

OTT Core contains functionality for collecting and per-
forming static and scripted testing. It also contains ab-
straction layers for the different test steps, compilation,
simulation and verification.

Session 10A: Testing & Diagnostics

DOI
10.3384/ecp15118687

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

689

4.1.1 Overview

For static testing OTT uses the Optimica Compiler
Toolkit (OCT)2 to traverse Modelica libraries. During
the traversal the user configurable sieve is used to col-
lect tests by filtering the target library. Depending on the
user’s command OTT will then take the tests through the
different test steps. Each test step provides one or more
tool implementations. Current version of OTT supports
OCT and Dymola both for compilation and simulation.
Result verification is currently done using CSV Result
Compare tool (CSV compare) developed by ITI GmbH,
see figure 2.

Each test produces a test report containing information
collected during execution. The test report is in an inter-
mediate format which can be converted into any type of
presentation format. OTT has a presentation layer which,
like the tool abstraction layer, relies on plugins. OTT has
the following set of default output plugins:

• HTML, produces reports in human readable form,
see figure 3.

• JUnit, produces reports in machine readable form,
suitable for build servers.

• Pickle (Python), produces serialized Python test re-
port objects.

• Hash, produces a file mapping model names to
hashed filenames.

The main entry point to OTT is through the MRTT
command line program. It allows the user to specify a
wide range of settings, such as: target library, what tools
to use for the different steps, output type and tool specific
settings. An overview of the OTT Core can be found in
figure 4.

Scripted testing works in a similar fashion as static.
However, unlike static tests, scripted tests control the
execution flow. OTT only facilitates integration to sup-
ported Modelica and FMI tools. OTT also simplifies the
generation of various report artifacts by providing access
to the presentation layer. This allows the user to focus
on authoring tests instead of writing report files, such as
HTML and JUnit reports.

4.1.2 Jenkins Integration and JUnit

OTT can easily be integrated into common Continuous
Integration (CI) frameworks such as Jenkins and Hud-
son. This is done by configuring OTT to output a JUnit
test report. This report is then parsed by the CI frame-
work. The JUnit report contains status information for
the different test steps, each with its own pass/fail flag.
This enables the framework to detect changes in tests
that changes between two failing states, i.e. if a model
goes from compilation failure to simulation failure.

2http://www.modelon.com/

4.2 GUI

The OTT GUI allows the user to create, modify and ex-
ecute tests. It was developed with usability in mind to
ensure that it would be user-friendly.

4.2.1 User Feedback

We continuously evaluated the GUI by using the meth-
ods described by Lauesen (2005). Every iteration began
with an evaluation of the GUI in the form of a user study
followed by a response in the form of implementation in
the GUI. The features that were implemented often di-
rectly addressed some usability concern.

Here are some important usability concerns we ad-
dressed:

• How to find the names of variables and parameters
that will be included in the test.

• How to update the reference value of a test.

• How to view the results of the test.

• How to create many similar tests, and how to update
them.

4.2.2 Features

In the GUI, as seen in figure 5, variables and modifiers
(parameters) are displayed in tree views. Every tree view
has a filter to make it more flexible to navigate the view.

The GUI has support for test inheritance, primarily to
make it easier to create many similar tests. Test inheri-
tance means that a subtest can be created to an already
existing test. The subtest inherits all of the included vari-
ables and modifiers of the parent. The subtest can then
change the value of those modifiers and add additional
modifiers or variables. If the parent tests is updated all
subtests will be updated. For example, as seen in fig-
ure 5, test c is a subtest of test a. Test a includes the
modifiers driveAngle and inertia1.J. Test c in-
herits these two modifiers and also changes the value
of inertia1.J. Test c also includes its own modifier
inertia2.J.

After a test or suite of tests are run, the results will be
displayed in the GUI. Reference results can be updated
by pressing a button in the displayed results file. This
allows the modeler to overwrite the old reference value
if the new value is deemed more appropriate. When up-
dating the reference, all variables specified in the test are
updated.

Some basic features included in the GUI are: un-
do/redo operations, keyboard shortcuts and a run con-
figuration.

Optimica Testing Toolkit: a Tool-Agnostic Testing Framework for Modelica Models

690 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118687

Figure 2. One variable compared to the reference value in the result file.

Verification Report

Models Compilation

ime

[s] Simulation Time [s]

atio

n

ime[

s] Rate
Modelica.Blocks.Examples.PID_Controller pass 4.46 pass 0.41 pass 1.91 100%

Modelica.Blocks.Examples.Filter pass 5.81 pass 0.92 fail n/a
Either the result file or the

reference file does not exist

Modelica.Blocks.Examples.FilterWithDifferentiation pass 5.53 pass 0.48 pass 0.96 100%

Modelica.Blocks.Examples.FilterWithRiseTime pass 4.69 pass 0.36 pass 1.11 100%

Modelica.Blocks.Examples.InverseModel pass 3.29 pass 0.46 pass 0.72 100%

Modelica.Blocks.Examples.ShowLogicalSources pass 3.34 pass 0.27 pass 0.42 100%

Modelica.Blocks.Examples.LogicalNetwork1 pass 3.37 pass 0.35 pass 0.48 100%

Modelica.Blocks.Examples.RealNetwork1 pass 3.40 pass 0.41 pass 0.91 100%

Modelica.Blocks.Examples.IntegerNetwork1 pass 3.64 pass 0.41 pass 0.87 100%

Modelica.Blocks.Examples.BooleanNetwork1 pass 4.25 pass 0.40 pass 1.11 100%

Modelica.Blocks.Examples.Interaction1 pass 4.25 pass 0.41 pass 0.95 100%

Modelica.Blocks.Examples.BusUsage pass 3.32 pass 0.35 pass 0.57 100%

Summary

Modelica.Blocks

Passed compilation: 12/12 Passed simulation: 12/12 Passed verification: 11/12

Figure 3. The results from testing a package with OTT.

Session 10A: Testing & Diagnostics

DOI
10.3384/ecp15118687

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

691

Other

Pickle

JUnit

HTMLOutput

Implementation

Implementation

Implementation

Implementation

OCT

OTT Core

Verifier

Simulator

Compiler

Sieve

MRTT

Figure 4. Overview of OTT Core

5 Conclusion and Future Work

In this paper, we presented a solution for tool agnostic
regression testing in Modelica. By using a plugin like
structure we have shown that it is possible to achieve a
clear separation between the different testing steps. This
allows us to use one Modelica tool to compile the model
and another FMI tool to simulate the model, thus pro-
viding true cross-testing of Modelica libraries and tools.
We have also shown why both scripted and static test-
ing is necessary in Modelica development and how it
can be implemented in a testing framework. The plu-
gin structure also facilitates extendable and customiz-
able test reports. One demonstration of this extendability
was exemplified by showing the integration to automatic
build systems such as Jenkins/Hudson by creating a out-
put module that writes JUnit reports.

Additionally we present a GUI which enables the user
to do test authoring, test execution and viewing of test re-
sults. We show how the GUI can improve the efficiency
of test authoring by providing tools for efficient selection
of test variables and parameters in the test model. We
also show how the usability of the GUI was improved
using iterative user studies and development.

In the future we plan to extend the number of sup-
ported Modelica and FMI tools, which will further
strengthen the cross-testing capabilities. In order to im-
prove the usability of the GUI we plan to integrate a
graphical model viewer that has previously been imple-
mented (Sten, 2012). Likewise we plan to render model
icons correctly by integrating a previously developed
icon rendering framework (Olsson and Moraeus, 2011).

References

Daniel Arbuckle. Python Testing: Beginner’s Guide. Packt
Publishing Ltd, 2010.

Modelica Association. Modelica - a unified object-oriented
language for systems modeling, language specification ver-
sion 3.3 revision 1. page 31, 2014.

Ilene Burnstein. Practical Software Testing : A Process-

Oriented Approach. Springer, 2004.

Jung-Wei Chen and Jiajie Zhang. Comparing text-based and
graphic user interfaces for novice and expert users. In AMIA

Annual Symposium Proceedings, volume 2007, pages 125–
129. American Medical Informatics Association, 2007.

Open Source Modelica Consortium. Modelica Compliance Li-

brary Guide. 2013.

Erich Gamma and Kent Beck. Junit: A cook’s tour. Java Re-

port, 4(5):27–38, 1999.

ITI GmbH. Csv result compare tool. https://github.

com/modelica-tools/csv-compare. Accessed:
2015-05-19.

Soren Lauesen. User Interface Design - A Software Engineer-

ing Perspective. Addison-Wesley, 2005.

Kristina Olsson and Lennart Moraeus. Eclipse-based graphical
rendering and editing of modelica code. Bachelor’s Thesis,
Lund University, 2011.

Roland Samlaus, Mareike Strach, Claudio Hillmann, and Peter
Fritzson. MoUnit - A Framework for Automatic Modelica

Model Testing. Proceedings of the 10th International Mod-
elica Conference, 2014. doi:10.3384/ecp14096549.

Jon Sten. Graphical editing in jmodelica.org. Master’s thesis,
Lund University, 2012.

Michael M Tiller and Burit Kittirungsi. UnitTesting: A Library

for Modelica Unit Testing. 2006.

Anders Tilly and Victor Johnsson. Developing a test authoring
tool for a modeling language. Master’s thesis, Lund Univer-
sity, 2015.

Optimica Testing Toolkit: a Tool-Agnostic Testing Framework for Modelica Models

692 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118687

Figure 5. The OTT GUI

Session 10A: Testing & Diagnostics

DOI
10.3384/ecp15118687

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

693

694 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Status of the TransiEnt Library: Transient simulation

of coupled energy networks with high share of renewable energy

Lisa Andresen1 Pascal Dubucq2 Ricardo Peniche Garcia3

Günter Ackermann2 Alfons Kather3 Gerhard Schmitz1

Hamburg University of Technology, Am Schwarzenberg-Campus 1, Hamburg, Germany
1Institute of Thermo-Fluid Dynamics, {andresen,schmitz}@tuhh.de

2Institute for Electric Power Systems and Automation, {dubucq,ackermann}@tuhh.de
3Institute of Energy Systems, {peniche,kather}@tuhh.de

Abstract

The Modelica library TransiEnt is being developed

within the research project TransiEnt.EE. After comple-

tion, the library will be freely available and will pro-

vide a framework to model coupled energy supply grids,

i.e. electricity, district heating, and gas grids, includ-

ing their corresponding producers, consumers and stor-

age systems. This paper presents the current status of the

library and outlines the library’s structure and the mod-

eling concept. The application possibilities of the library

are presented in an exemplary simulation where the city

of Hamburg is selected as the reference system. The im-

pact of a high share of fluctuating renewable energy gen-

eration in the electric grid and the integration of excess

electricity in the district heating network is presented.

Keywords: coupled energy grids, electricity, district

heating, gas, dynamic simulation, renewable energy

1 Introduction

In 2011, the European Union set ambitious emission re-

duction targets to contribute to the abatement of climate

change. These targets pursue a 80 to 95 % reduction of

greenhouse gas emissions by 2050 compared to the 1990

emission levels (European Commission, 2011). To reach

this goal, Germany aims to cover 80 % of its gross elec-

tric energy consumption with renewable energies (RE)

by the year 2050 (BMWi, 2014). However, the timely

offset between RE generation and electricity demand, to-

gether with limited inter-regional electricity transport ca-

pacities leads already to regional imbalances, which re-

sults in RE curtailment.

The so-called energy triangle that illustrates the main

goals of energy policy considers not only environmental

protection, but also economic efficiency and security of

supply. With Germany’s Energiewende the objective of

less greenhouse gas emissions is heavily promoted. This

must not lead to an unaffordable and unreliable energy

supply system. Thus, all three objectives should be taken

into account when comparing different future scenarios.

Consequently, simulations are necessary.

The research project TransiEnt.EE (Hamburg Univer-

sity of Technology, 2013-2016) currently being executed

at the Hamburg University of Technology has two main

objectives: a) to analyze and compare different strategies

for the integration of renewable energies in urban energy

systems considering transient effects derived from cou-

pling of energy grids and b) to develop a freely available

Modelica library which allows this kind of studies. The

project started in May 2013 and will be finished in Octo-

ber 2016.

After completion, the library TransiEnt (Transient

Energy Networks) will be made available under the terms

of the Modelica license agreement. The current devel-

opment is performed using Dymola (Dassault Systemes,

2012). Modelica was chosen as the developing lan-

guage because it allows multi-domain simulation, which

is handy when simulating coupled electricity, district

heating and gas grids. Besides, its object-oriented fea-

tures simplify the development process and usability of

the library.

This paper is structured as follows: first, the technical

background of coupled energy grids is presented. Af-

terwards, the library’s package structure and modeling

approach are presented, together with a brief description

of other used Modelica libraries and the definition of the

main interfaces. Finally, an example simulation is pre-

sented which shows the applicability of the library.

2 Technical Background

The TransiEnt library covers the whole energy infras-

tructure with its corresponding producers, consumers,

grids and storage systems. A brief description of these

and the properties and basic differences of the electric-

ity, heating and gas networks will be given.

DOI
10.3384/ecp15118695

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

695

Figure 1. Scheme of coupled electricity, district heating and gas energy supply systems including their corresponding small-

and large-scale producers, consumers, and storage systems.

2.1 The Energy Supply Infrastructure

The energy supply infrastructure can basically be

grouped into four parts: the producers, the distributing

grids, the consumers, and the storage systems, which are

briefly defined in the following:

• Producers are small- to large-scale technical units

that convert energy into electric power, and / or

thermal power.

• Grids serve for transporting and distributing energy

from the sources or producers to the consumers.

• Consumers devalue the final energy by "using"

it. They are characterized by electric and thermal

power loads.

• Storage systems are technical units that accumulate

a form of mechanical or inner energy. They can be

localized at any point of the energy supply infras-

tructure and serve for timely decoupling of produc-

tion and utilization.

Figure 1 shows schematically the electric, heat and gas

supply infrastructure with its participants. In the top third

of the scheme, large scale fossil and renewable power

plants, as well as central storage units are shown. In the

middle, the three distributing grids are displayed. Fur-

thermore, different consumers, smaller storage units, and

decentralized energy converters are shown in the bottom

of the scheme.

As coupled energy grids are the purpose of modeling,

the links between the grids shall be described briefly in

the following. Some of them are well-known and defined

by the conversion of gas to electric or thermal power or

both. For consistency reasons these shall be called gas-

to-power, gas-to-heat, and gas-to-power-and-heat tech-

nologies, respectively. Recently, other connection tech-

nologies are in development and tested in pilot plants.

These are often called power-to-heat and power-to-gas

technologies. The name indicates the direction of en-

ergy conversion. Power-to-gas units use electric power

to split up water into hydrogen and oxygen. The hydro-

gen can be further deployed in the methanation process

to obtain methane. Both products can be used directly or

fed into the natural gas grids. Power-to-heat units convert

electric into thermal power, either directly by using resis-

tance heaters or electrode boilers or thermodynamically

more efficient by the use of heat pumps. The thermal

energy can then be used directly or fed into the district

heating grid. Both, power-to-gas and power-to-heat sys-

tems, could be used in the future to adapt and increase

the amount of electrical renewable generation used.

Status of the TransiEnt Library: Transient Simulation of Coupled Energy Networks with High Share of
Renewable Energy

696 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118695

2.2 Differences and Dynamics of the Grids

There are some differences between the electricity, heat-

ing, and gas infrastructures. To begin with, natural gas

is a primary energy carrier and needs to be converted to

be usable, whereas in the heating and electricity grids

the transported energy has already gone through at least

one lossy conversion. Another difference is that in heat-

ing and gas grids energy can be stored to some extend.

In the electricity grid, on the other hand, almost no ca-

pacity is available for storage. Thus, demand and sup-

ply have to be equal at any time, which makes the sta-

bility of the electricity grid a challenging task. This is

why there exists an European integrated network coor-

dinated by the ENTSO-E (ENTSO-E, 2015) to balance

skew positions supra-regionally, in an efficient and fast

way. Consequently, the electricity networks of cities or

even countries are not isolated, which has to be consid-

ered in the modeling. This is different for district heating

and gas grids. Heating grids only supply smaller regions

at most as big as cities. The thermal power is produced

by local (combined) heat (and power) plants correspond-

ing to the local demand. Germany’s gas economy highly

relies on imports, which normally do not coincide with

the demand but are done according to the price, storing

gas during summer and releasing it in winter. Delivery

bottlenecks are rather seldom and are not accounted for

in the modeling. Gas markets are regional and the chem-

ical composition of the gas mixture differs regionally and

could be more and more influenced by local biogas and

hydrogen feed-in in the future. Therefore, heating and

gas grids need to be modeled with mass transfer and lo-

cal sources and sinks to some extent.

As the name of the library suggests, transient simu-

lations of the coupled energy networks are carried out.

This is to account for ramp rates, reaction times, and

dead times of the coupled system’s components. The

need for dynamic simulations shall be explained by two

examples. For instance, the off-take of gas from the grid

is not constant during the year or even the day. Conse-

quently, the maximum volume flow rate of hydrogen -

only a defined Vol.-% H2 is allowed - fed into the natu-

ral gas grid varies. Thus, there could be moments with

excess renewable power where the gas grid is not able to

take up more hydrogen. Another example concerns the

inertia of the heating grid. The propagation velocity of a

change in temperature in the district heating grid is ap-

proximately 8.7 km/h for a heating water mass flow of

3300 t/h (Chudzienski, 1987). This means, that a sud-

den rise in thermal power consumption takes around 2.3

hours to be noticeable by means of a lower return tem-

perature at the production plant in 20 km distance. In the

electricity network, on the contrary, changes in demand

are noticeable instantaneously. The model has to account

for these different time constants.

Figure 2. Top level tree of the TransiEnt library package.

3 The TransiEnt Library

The broad range of physics and fields considered in

the TransiEnt library demands some effort in readable

modeling and an user-friendly structure. Moreover, the

level of detail (LoD) of the models has to be suitable for

the task of simulation: complex single and coupled en-

ergy supply systems with various producers, consumers,

storage systems, and distribution networks as well as

their links for areas as big as cities.

In the following, the content of the library package

is described, the modeling principles is explained, and

a brief introduction to other used Modelica libraries as

well as details to the main interfaces are given.

3.1 Library Structure

Figure 2 shows the top level tree of the TransiEnt li-

brary. The layout of the library was chosen carefully

in the purpose of reuse-ability by applicants as well

as expand-ability by model developers. The Basics

package contains supporting classes like functions, units,

blocks, media records, data tables, icons, and interfaces.

Single components, e.g. electrical machines, pumps, and

pipes, are structured within the Components package.

These first two packages are meant to be used and mod-

ified by advanced users and developers only, whereas

the remaining packages are meant for users that want

to build up energy systems in order to examine differ-

ent scenarios. These packages are named after the four

participating groups in the energy supply system: pro-

ducer, consumer, distribution, and storage. Within the

Producer package there are small and large, conven-

tional and renewable plants converting primary energy

into electric work, heat or both. The Consumer pack-

age comprises models of electric power and thermal

power loads for households, commercial buildings, in-

dustry as well as for bigger areas like city districts or

whole cities. Distribution is composed of electric,

heat, and gas distribution elements. Within the Storage

package there are different power-to-power (e.g. pumped

Session 10B: Power, Energy & Process Applications 2

DOI
10.3384/ecp15118695

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

697

hydro storage), heat-to-heat (e.g. sensible water stor-

age tanks), gas-to-gas (e.g. caverns), as well as power-

to-heat and power-to-gas converters. The last package

Examples contains examples for the different system

models in general and for the examined system of the

city of Hamburg. These examples allow the users to eas-

ily understand the usage of components and the scope of

application of the library.

3.2 Global Parameters and Statistics

A basic concept that was partly taken from the ClaRa

library (ClaRa Library, 2015) and was extended to the

requirements of the TransiEnt library is the concept of

the global SimCenter model. This model has basically

three purposes within the TransiEnt package:

• setting global parameters for the three energy sup-

ply infrastructures, e.g. the media in the gas and

heat grids or the nominal frequency in the electric

grid,

• choosing ambient condition time lines, which can

be changed and extended easily by extending a

modified MSL CombiTimeTable and setting the

path to the data file in ASCII or MAT-file format,

and

• collecting simulation statistics, i.e. the produced

and consumed power and energy, the costs for heat

and electricity, and the CO2 emissions, each statis-

tic variable calculated in every time step.

Each sub-component within the TransiEnt package

has an outer instance of the model SimCenter called

simCenter. The executable model then has to have an

inner simCenter. Here, the settings for the simulated

system and all its objects are defined and the statistics

are collected.

To avoid the need of post-processing steps for the

analysis of scenarios the SimCenter model provides

the user with summarized results of the simulated en-

ergy system. For this purpose, it contains four gather-

ing blocks: electric power, heating power, incurred costs

and emissions. Each block gathers information from dis-

tributed sensors located within the component models

and allocates them to specific types, e.g. total produced

energy by RE.

3.3 Modeling Principles

In general, the principles of the modeling within the

TransiEnt package can be summarized as follows:

• flat hierarchy for high readability,

• high flexibility by means of exchangeable models

with different physical effects considered, and

• easily changeable boundary conditions.

The modeling principles mainly arose due to the com-

plexity of a coupled energy supply system, containing

systems with very different time constants (s. section

2) and also control units. Simulating a big coupled sys-

tem is a challenge, which is why the systems can be

built up of simple models (with low level of detail) in

the first instance. If the analysis of the results shows

that some effects should be more detailed, this can be

done by replacing the simple model by a more advanced

one. The choice of the physical effects and also dynam-

ics to be considered highly depend on the question to be

answered. On the other side, the level of detail (LoD)

is restricted by the number of equations and computing

power, respectively. For instance, the model resolution

can be higher if only a city district shall be simulated

and not a whole city. One of the questions to be an-

swered within the scope of the TransiEnt.EE project is

a about the level of detail of the subsystems. Since the

accuracy of the whole system depends on the accuracy of

the subsystems, the LoD of the latter have to be in such a

way that all physical and transient effects that have a con-

siderable impact on the overall results (CO2 emissions)

are modeled. On the other hand, the simulation of the

whole system should still be computationally manage-

able within reasonable CPU times.

3.4 Level of Detail

As mentioned before, the purpose of the TransiEnt li-

brary is not the optimization of a single component of the

system, e.g. the efficiency of a battery stack, but rather

the optimization of the interaction of various components

in order to improve the integration of renewable energies.

Therefore, there exists a certain limitation in the level of

detail of the subsystems that won’t be exceeded.

Besides distinguishing between static and dynamic

models, the modeling approaches can generally be clas-

sified into table-based models, models that are based on

characteristic lines and / or transfer functions, spatially

averaged, and spatially discretized balance equation-

based models. Table-based models are based on the

CombiTimeTable and require data input. Some elec-

tric and thermal power data for consumers and electric

power data for renewable energy plants are provided in

quarter hourly resolution for Hamburg.

For the main participating groups (s. section 2.1) the

following approaches are implemented:

• Producer: table-based models, transfer function-

based models, balance equation-based models,

• Grids: electrical grid only considers power flow

and center of inertia grid frequency; heating and

gas grids are built up of pipes that can be spatially

discretized and use real fluid mixtures to consider

evaporation in the heating network and hydrogen

feed-in in the high pressure gas grid,

Status of the TransiEnt Library: Transient Simulation of Coupled Energy Networks with High Share of
Renewable Energy

698 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118695

Figure 3. Example of a subsystem composed of models with

different levels of detail.

• Consumer: table-based models, balance equation-

based models,

• Storage: transfer function-based models, balance

equation-based models.

The model complexity of coupled urban energy sys-

tems leads to a need of simplifying the subsystem mod-

els. A trade-off between simplicity and high LoD is re-

quired. In the TransiEnt library, this is achieved by

combining table-based, transfer function-based and bal-

ance equation-based models. To illustrate this concept,

a very simple combined heat and power (CHP) plant

model is shown in Figure 3. The incoming set val-

ues for the electricity and heat production are received

from external schedulers via real input connectors and

then transferred to a table-based model and to first order

blocks. The table-base model in this example is a look-

up table with plant-specific heat input rates. These values

can then be used to calculate load-dependent efficiency

values. On the other hand, the first order blocks can

be parameterized to represent plant-specific power gra-

dients. A balance equation-based heat exchanger model

from the ClaRa library is used in this example to cal-

culate the heat transfer to the district heating water. Fi-

nally, the four collecting sensors at the bottom of the fig-

ure calculate generation costs, emissions and generation

values and transfer these results to the inner simCenter

instance.

More detailed combined models and models based

solely on balance equations are currently under devel-

opment. The later models can be used for detailed anal-

ysis of smaller time-frames. However, their complexity

makes their usage for annual simulations of coupled en-

ergy systems impractical.

3.5 Usage of Other Libraries

Besides the Modelica Standard Library (MSL),

TransiEnt mainly uses two other libraries, that will be

introduced briefly.

The free Modelica library ClaRa (ClaRa Library,

2015; Brunnemann et al., 2012) was released in March

2015 and is the main product of the research project Dyn-

Cap (Kather et al., 2014). ClaRa (Clausius Rankine)

models the transient thermal behavior of power plants

and power systems. The library contains all components

of the water-steam cycle and the gas treatment path of

power plants. Basic components like pipes and heat ex-

changers are used in the TransiEnt library in the heat-

ing systems. Power plant models with a low level of

detail can be used as well. ClaRa does not use media

models from the MSL but from the TILMedia Suite.

TILMedia (TLK Thermo GmbH, 2015) is an inter-

face library to provide thermophysical properties from

various existing fluid and solid property databases as

well as own implementations to different applications,

e.g. Modelica/Dymola or Matlab/Simulink. Media mod-

els used in ClaRa are provided and can be used freely.

Further necessary models for the TransiEnt library

(e.g. natural gas) will also be freely available. For other

implementations beyond the scope of the TransiEnt.EE

research project a supplementary license will be neces-

sary.

TILMedia was chosen due to better numerical perfor-

mance and robustness compared to Modelica.Media

which was tested during the DynCap project (Brunne-

mann et al., 2012; Kather et al., 2014). These factors

are regarded as critical for simulation of big coupled

and closed loop systems considered here. Furthermore,

Modelica.Media so far does not provide media prop-

erties for real gas and fluid mixtures.

3.6 Interfaces

There are two different types of interfaces: one for fluids

and one for electric terminals. The fluid interface is taken

from ClaRa - since most basic components (e.g. pipes

for the heating grids) are used and extended from here.

The medium model in the connector is an extension of

the TILMedia class BaseVLEFluid (s. Listing 1). For

real fluid behavior this type of medium class is favored.

For ideal gas behavior (e.g. assumed for exhaust gas), a

GasTypes class from TILMedia is used (not displayed

here). An adapter to Modelica.Fluid is provided in

ClaRa.

The second type of interface is for the electric systems.

The main interface has two variables: active power and

frequency (s. Listing 2). Most of the electric models

in the coupled energy system models use this interface,

since it is sufficient for surveys that do not consider volt-

age stability, load flow calculations or non-symmetrical

Session 10B: Power, Energy & Process Applications 2

DOI
10.3384/ecp15118695

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

699

three phase systems. There are two more electrical in-

terfaces implemented, one adding voltage and reactive

power and the the other considering an adjustable num-

ber of phases. However, using these advanced electric

interfaces to simulate electromagnetic phenomena with

time constants in the range of milliseconds has proven to

be unmanageable for coupled energy system simulations

because of computational restrictions.

Listing 1. Interface for real fluids.

connector F l u i d P o r t " F l u i d p o r t i n

T r a n s i E n t l i b r a r y "

TILMedia .VLEFluidTypes .BaseVLEFluid

Medium " Medium model " ;

f low M o d e l i c a . S I u n i t s . M a s s F l o w R a t e m_flow

" Mass f low r a t e from t h e c o n n e c t i o n

p o i n t i n t o t h e component " ;

M o d e l i c a . S I u n i t s . A b s o l u t e P r e s s u r e p "

Thermodynamic p r e s s u r e i n t h e

c o n n e c t i o n p o i n t " ;

s t r e a m M o d e l i c a . S I u n i t s . S p e c i f i c E n t h a l p y

h _ o u t f l o w " S p e c i f i c thermodynamic

e n t h a l p y c l o s e t o t h e c o n n e c t i o n p o i n t

i f m_flow < 0 " ;

s t r e a m M o d e l i c a . S I u n i t s . M a s s F r a c t i o n

x i _ o u t f l o w [Medium.nc−1] " I n d e p e n d e n t

m i x t u r e mass f r a c t i o n s m_i /m c l o s e t o

t h e c o n n e c t i o n p o i n t i f m_flow < 0 " ;

end F l u i d P o r t ;

Listing 2. Simple electrical interface.

connector E l e c t r i c P o w e r P o r t _ L 1 " G e n e r a l

e l e c t r i c a l i n t e r f a c e i n T r a n s i E n t

l i b r a r y "

f low M o d e l i c a . S I u n i t s . A c t i v e P o w e r P "

A c t i v e power i n c o n n e c t o r " ;

M o d e l i c a . S I u n i t s . F r e q u e n c y f " Frequency

of g r i d " ;

end E l e c t r i c P o w e r P o r t _ L 1 ;

4 Example of Use: Transient Simula-

tion of Coupled Energy Grids

In this section, an example for a coupled energy grid sim-

ulation will be given. Results from the simulated coupled

energy system model are presented in order to illustrate

the application possibilities of the library.

4.1 Description

The Dymola diagram of the system is shown in Figure 4.

For consumer and renewable energy power plants static

table-based models are used. The models of the electric

power and storage plants are also table-based but con-

sider transient effects. The model approach of the large-

scale CHP plants is described in Section 3.4. The model

of the power-to-heat system is first order-based with an

equation-based heat exchanger.

As an application example an assumed energy system

of Hamburg in the year 2050 is simulated. In this context,

energy system means electricity grid and district heating

network (DHN). The general assumptions for this future

scenario are:

• The electric and district heating demand profiles are

the same as in 2012.

• The additional capacities of RE generators in 2050

are based on the expansion scenrios of the Renew-

able Energy Law (EEG) (Federal Republic of Ger-

many, 2014).

• The structure of the conventional generation park is

based on the 2012 generation park in Germany but

without nuclear power which is removed without

replacement.

• The generation park is scaled down using the peak

load of Germany (82 GW) and Hamburg (2 GW),

respectively.

• Wind and PV generation profiles (normalized by in-

stalled capacity) is the same as in 2012 and taken

from 50Herz Transmission GmbH (2015).

• The district heating grid is fed by two black coal

CHP plants (CHP Wedel in the west and CHP Tief-

stack in the east of the city) and one natural gas

peak load heating plant (Heating Plant Hafen in the

center of the city).

• The distribution of electric power is not constrained

by physical bottlenecks of the transmission or dis-

tribution networks.

Prior to the simulation in Dymola the unit commit-

ment schedule of the conventional power park is gener-

ated. For this purpose a mixed-integer linear program-

ming model has been derived that is explained in detail

in Dubucq and Ackermann (2015) and is solved using

the Matlab Optimization Toolbox (The MathWorks Inc.,

2014). In essence, this approach allows to minimize the

total operational cost of a given electric generation park

subject to a list of physical and economic constraints.

These are:

• The thermal and electricity demand has to be cov-

ered at every instant.

• All power plants are restricted by a minimum and

maximum power level and a maximum power gen-

eration gradient.

• The pumped storage plant is additionally con-

strained by energy storage capacity.

Status of the TransiEnt Library: Transient Simulation of Coupled Energy Networks with High Share of
Renewable Energy

700 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118695

Figure 4. Dymola diagram of the simulated example for the coupled energy grids of Hamburg, showing the electricity generation

park (top) and district heating network including the Power-to-Heat units (bottom).

• Minimum and maximum electric generation of

CHP plants is depending on the current thermal heat

generation.

• RE generation has feed-in priority.

• In every time step a symmetric electric reserve ca-

pacity of ±142 MW has to be available to ensure

grid stability.

4.2 Results

The resulting quarter hourly electricity production

schedule is used in the coupled Modelica model (see Fig-

ure 4) where the simulation is carried out over an entire

year with a variable step solver and the time resolution

of the input table data is quarter hourly. All parameters

for the considered generation park in this scenario can be

found in Table 1.

Figure 5 shows the resulting weekly generated en-

ergy by renewable and must-run plants together with the

weekly energy demand in 2050. The resulting share of

renewable energies in the simulated year is 64 % whereas

the targeted value by the German Renewable Energy

Law for 2050 is 80 %. The reason for this small share

in relation to the targeted value is a large amount of

RE generation that can not be integrated into the elec-

tric grid due to its fluctuating nature on the one hand

and non-dispatchable generation units on the other hand.

The non-dispatchable generation consists of three com-

ponents: the first component is the above mentioned

electric reserve capacity of ±142 MW that must be avail-

able in order to compensate power imbalances and thus

ensuring electric grid stability. Secondly, every CHP

plant has a specific minimum electric power generation

depending on the current thermal heat generation needed

to match the district heating demand. The third compo-

nent is the RE generation that has priority feed-in by the

EEG (Federal Republic of Germany, 2014). However, as

can be seen from Figure 5, the renewable generation can-

not fully be used, due to the first two components of non-

dispatchable generation and a lack of storage capacities.

This leads to the operational necessity to curtail renew-

able energy generation in 3831 hours of the year which

amounts to 2.39 TWh. Even though the yearly gener-

ated energy from non-dispatchable sources (13.3 TWh)

is only 3 % higher than the electric energy consumption

(12.9 TWh), a fossil generation of 4.66 TWh is needed to

match the electric demand at all times.

Session 10B: Power, Energy & Process Applications 2

DOI
10.3384/ecp15118695

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

701

Table 1. Parameters of the simulated electricity generation park.

Plant Type Capacity Efficiency CO2-Emissions Minimum Maximum Power Var. Costs Start-up Costs

Power Gradient

MW % g/kWhth,fuel % %/min e/MWh e/MW

Brown Coal 574 34 403 40 6 22.7 81.8

Black Coal 688 40 337 30 8 27.9 81.8

CCGT 598 52 202 20 10 48.2 30.5

Gas Turbines 133 35 202 20 12 100.2 16.5

Pumped Storage 173 0 0 100 35.3 0

Biomass 322 0 0 100 38.3 0

Run-Off Water 123

Photovoltaic 2446

Wind Onshore 2753

Wind Offshore 1327

Sum 9137

1 4 8 12 16 20 24 28 32 36 40 44 48 52
0

100

200

300

400

Weeks of year 2050

W
ee

k
ly

en
er

g
y

in
G

W
h

Figure 5. Weekly averaged energy consumption (), and

must-run generation: Spinning reserve (), Minimum gen-

eration from CHP plants (), Run-Off Water (), Wind

() and Photovoltaic () plants.

These results demonstrate the need for storage capac-

ities and flexibility options to reach higher shares of RE

generation. The objective of the developed library is

to investigate measures resulting from a coupled system

simulation approach that takes into account not only the

electric but also the heat demand. One option follow-

ing from this approach is to use the excess electricity to

cover the heat demand (Power-to-Heat) and thereby us-

ing the district heating grid as a flexibility option. In fact,

it has been proposed to install up to four 25 MW electric

steam generators in the district heating grid of Hamburg

together with a 1.9 GWh hot water storage in order to

increase the flexibility of heat production in the western

CHP plant (Erker, 2013). In order to assess the impact of

such a measure another yearly simulation has been car-

ried out in which such electric steam generators and a hot

water storage have been added to the model. The results

for electric and thermal power generation from this sim-

ulation together with the results from the base scenario

can be found in Figure 6 for the first week of 2050 in

quarter hourly resolution. As can be seen from the illus-

trated week very large amounts (up to 2 GW) of excess

generation occur in the year 2050 which can not be used

in the electric grid due to lack of storage capacities. The

173 MW pumped storage plant can only shift 162 GWh

of otherwise curtailed electric generation to periods of

low renewable generation, whereas the total surplus en-

ergy amounts to 2.39 TWh during the entire year. While

the renewable generation covers most of the demand, the

must-run generation from the two CHP plants that cover

the district heating grid demand is always present during

the illustrated winter week. Despite the large excess gen-

eration from RE generators their non-dispatchable nature

becomes clear visible in some periods (e.g. Monday

morning and Friday noon), where dispatchable plants

have to start up to cover demand in order to compensate

for the decreasing wind energy offer.

The increased flexibility of the energy system in-

troduced by the Power-to-Heat units leads to a use

of 362.4 GWh of otherwise curtailed renewable energy

(15.2 %) as can be seen in the bottom, right part of Figure

6. While the Power-to-Heat unit has only minor impact

on the electric dispatch it does replace thermal genera-

tion from the black coal CHP plant by virtually emission

free generation from RE sources. This effect can fur-

ther be examined in Figure 7 where the mass of CO2

emissions in both future scenarios and a 2012 base sce-

nario are illustrated for the entire year. Comparing the

results for the 2012 scenario and the future scenarios the

effect of RE integration on CO2 emissions becomes ob-

vious with a total reduction of 5.9 million tons of CO2

emissions from electricity generation which is equiva-

lent to a 70.8 % reduction of emissions in the simulated

energy system. This is also equivalent to a 80 % reduc-

tion with respect to emission from electricity in 1990

which is equal to the value stated by the German govern-

ment coalition agreement (Federal Republic of Germany,

2013). However, it should be noted that this targeted

value applies to the total CO2 emissions in germany (in-

cluding emissions from transportation, etc.). The spe-

Status of the TransiEnt Library: Transient Simulation of Coupled Energy Networks with High Share of
Renewable Energy

702 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118695

01.01. 02.01. 03.01. 04.01. 05.01 06.01. 07.01. 01.01. 02.01. 03.01. 04.01. 05.01 06.01. 07.01.
0

200

400

600

800

Time in days

T
h
er

m
al

p
o
w

er
in

M
W

01.01. 02.01. 03.01. 04.01. 05.01 06.01. 07.01. 01.01. 02.01. 03.01. 04.01. 05.01 06.01. 07.01.
−2

−1

0

1

2

3

Time in days

E
le

ct
ri

c
p
o
w

er
in

G
W

Figure 6. Simulated electric (top) and thermal (bottom) power generation in Hamburg for the first week (Sunday till Satur-

day) of 2050 scenario without Power-to-Heat (left) and with Power-to-Heat (right). CHP Wedel CHP Tiefstack

Biomass Pumped Storage Run-Off Water Onshore Wind Offshore Wind Photovoltaic

Excess Electricity Generation Heating Plant Hafen Power-to-Heat Electric Demand (top), Thermal

Demand (bottom).

cific emission from electricity generation of the 2012 ref-

erence simulation amounts to 587 g/kWh whereas sta-

tistical evaluations in (Umweltbundesamt, 2015) give a

slightly lower value of 562 g/kWh. This deviation is due

to the replacement of nuclear plants that are emission-

free.

The additionally used RE generation in the Power-to-

Heat future scenario leads to a reduction of 51.2 thou-

sand tons of CO2 emissions. This is equivalent to a 8.3 %

reduction of emissions from district heating grid opera-

tion and 1.7 % of total emissions in the simulated cou-

pled system (electricity grid and DHN) with respect to

the future scenario without Power-to-Heat. The specific

emissions of district heating generation are reduced from

143 g/kWh to 131 g/kWh. The States of Germany work-

ing group of energy balances quantifies the specific DHN

emissions of Hamburg in 2012 to 203 g/kWh (LAK-

Energiebilanzen, 2015). One reason for this deviation

is that the total production, hence total CO2 mass flow

emission, of the CHP plants is lower due to the increased

RE electric generation. Another possible explanation is

the method used for the allocation of CO2 emissions to

heat and electricity production from CHP plants. In the

presented results the allocation is done using the simpli-

fied efficiency method described in (Mauch et al., 2010):

ṁCO2,el = ṁCO2, tot ·
ηth

ηth +ηel

(1)

ṁCO2, th = ṁCO2, tot ·
ηel

ηth +ηel

(2)

where ṁCO2, tot denotes the total CO2 emissions and ηth

and ηel are the thermal and electric efficiency of the CHP

plant respectively. This method however, allocates a

larger amount of emissions to the electrical side since the

electrical efficiency is smaller than the thermal heat pro-

duction efficiency which takes into consideration the fact

that electricity is pure exergy and in this sense thermody-

namically more valueable. The allocation method used

in (LAK-Energiebilanzen, 2015) is the alternative gener-

ation method which leads to somewhat higher emissions

on the thermal side (Mauch et al., 2010). In the final li-

brary different methods for CO2 allocation will be made

available to the user using replaceable models.

The time evolution of the CO2 emissions from DHN

operation is dependent on the season which is noticeable

by the slope of the curve that is high during heating pe-

riods and low during the summer. This also applies to

emissions from electricity generation because a decrease

Session 10B: Power, Energy & Process Applications 2

DOI
10.3384/ecp15118695

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

703

0 2,000 4,000 6,000 8,000
0

0.5

1

1.5

2

2.5

3

Time in hours

C
O

2
em

is
si

o
n
s

in
m

il
li

o
n

to
n
s

Figure 7. CO2 emissions in future base scenario (empty sym-

bols) and future scenario with Power-to-Heat units (filled sym-

bols). Total emissions of electricity generation and DHN op-

eration (), emissions from electricity generation () and

emissions from DHN thermal generation ().

in heat demand also leads to a decrease of must-run ca-

pacity (see also Figure 5).

5 Summary and Outlook

In this paper the development status of the TransiEnt

library is presented. The library is being developed

within the TransiEnt.EE research project. After project

completion, the library will be made freely available un-

der the terms of the Modelica license agreement. Al-

though the library is still in the development phase, its

current status already allows the simulation of RE inte-

gration scenarios.

In particular, the exemplary simulation showed that

the curtailment of RE could be effectively reduced by

the use of power-to-heat and heat storage units. Under

the selected assumptions, 15.2 % of the originally cur-

tailed energy could be integrated. This additional flexi-

bility measure also leads to a reduction of the system’s

CO2 emissions. Under the selected assumptions, the

CO2 emissions of the electricity generation and district

heating operation together are reduced by 1.7 %. The

CO2 emissions of the district heating network operation

are reduced by 8.3 %.

In the following project phase, the development team

will focus on the detailed definition of the project scenar-

ios, which include a central-oriented scenario, a decen-

tralized scenario, a demand-side-management scenario

and a storage scenario. In the mean time, the devel-

opment of the library will continue. This development

pursues the modeling of additional components and the

improvement of existing ones, considering the require-

ments evolving from the scenarios.

6 Acknowledgements

The authors would like to acknowledge all supporters of

the TransiEnt.EE research project, especially XRG Sim-

ulation GmbH and the project’s advisory board. The

project is funded by the German Federal Ministry for

Economic Affairs and Energy on the basis of a decision

by the German Bundestag (BMWi 03ET4003).

References

50Herz Transmission GmbH. Grid Data, 2015. URL http:

//www.50hertz.com/en/Grid-Data.

BMWi. Ein Strommarkt für die Energiewende - Diskus-

sionspaper des Bundesministeriums für Wirtschaft und En-

ergie (Grünbuch). Technical report, Bundesministerium für

Wirtschaft und Energie, 2014.

Johannes Brunnemann, Friedrich Gottelt, Kai Wellner, Ala

Renz, Andre Thüring, Volker Roeder, Christoph Hasenbein,

Christian Schulze, Gerhard Schmitz, and Jörg Eiden. Status

of claraccs: Modelling and simulation of coal-fired power

plants with co2 capture. In Proceedings of the 9th Interna-

tional Modelica Conference, September 2012.

Ernst Chudzienski. Hamburgs größte Wärmetransportleitung

im Bau. Fernwärme International, 5(16):328–338, 1987.

ClaRa Library, 2015. URL http://www.claralib.

com/.

Dassault Systemes. Dymola, 2012. URL http:

//www.3ds.com/products-services/catia/

products/dymola.

Pascal Dubucq and Günter Ackermann. Frequency Control in

Coupled Energy Systems with High Penetration of Renew-

able Energies. In International Conference on Clean Elec-

tric Power, pages 336–342, Taormina, 2015. IEEE.

ENTSO-E. European Network of Transmission System Oper-

ators for Electricity, 2015. URL http://www.entsoe.

eu.

Martin Erker. Innovationskraftwerk Wedel, 2013.

European Commission. A Roadmap for moving to a compet-

itive low carbon economy in 2050. Technical report, Euro-

pean Commission, 2011.

Federal Republic of Germany. Coalition agree-

ment 18th legislative period, 2013. URL

http://www.bundesregierung.de/

Content/DE/StatischeSeiten/Breg/

koalitionsvertrag-inhaltsverzeichnis.

html.

Federal Republic of Germany. Gesetz für den Aus-

bau erneuerbarer Energien (Erneuerbare-Energien-

Gesetz - EEG 2014), 2014. URL http:

//www.bmwi.de/BMWi/Redaktion/PDF/G/

gesetz-fuer-den-ausbau-erneuerbarer\

-energien,property=pdf,bereich=

bmwi2012,sprache=de,rwb=true.pdf.

Status of the TransiEnt Library: Transient Simulation of Coupled Energy Networks with High Share of
Renewable Energy

704 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118695

Hamburg University of Technology. TransiEnt.EE Project,

2013-2016. URL http://www.tu-harburg.de/

transient-ee.

Alfons Kather, Volker Röder, Christoph Hasenbein, Ger-

hard Schmitz, Kai Wellner, Friedrich Gottelt, and Lasse

Nielsen. DYNCAP - Dynamische Untersuchung von

Dampfkraftprozessen mit CO2-Abtrennung zur Bereitstel-

lung von Regelenergie. Final report, Bundesministerium für

Wirtschaft und Energie, 2014.

LAK-Energiebilanzen. Spezifische CO2-Emissionen

der Strom- und Fernwärmeerzeugung in kg

CO2/GJ (Stand 20.07.2015), 2015. URL http:

//www.lak-energiebilanzen.de/dseiten/

co2BilanzenAktuelleErgebnisse.cfm.

Wolfgang Mauch, Roger Corradini, Karin Wiesemeyer, and

Marco Schwentzek. Allokationsmethoden für spezifis-

che CO2 - Emissionen von Strom und Wärme aus KWK-

Anlagen. Energiewirtschaftliche Tagesfragen, 55(9):2–4,

2010.

The MathWorks Inc. Optimization Toolbox, 2014.

URL http://de.mathworks.com/products/

optimization/.

TLK Thermo GmbH. TILMedia Suite, 2015.

URL http://www.tlk-thermo.com/en/

software-products/tilmedia.html.

Umweltbundesamt. Entwicklung des CO2-Emissionsfaktors

für den Strommix in Deutschland in den Jahren

1990 bis 2012 (in Gramm pro Kilowattstunde),

2015. URL http://de.statista.com/

statistik/daten/studie/38897/umfrage/

co2-emissionsfaktor-fuer-den-strommix\

-in-deutschland-seit-1990.

Session 10B: Power, Energy & Process Applications 2

DOI
10.3384/ecp15118695

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

705

706 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Mathematical Model of Soot Blowing Influences in Dynamic

Power Plant Modelling

C. Gierow1 M. Hübel1 J. Nocke1 E. Hassel1

1Chair of Technical Thermodynamics, University of Rostock, Germany ,

{conrad.gierow,moritz.huebel,juergen.nocke,egon.hassel}@uni-rostock.de

Abstract

Due to the increasing integration of renewable energy

sources in the existing power grid the conventional

power plants have to set their focus more on flexibil-

ity and grid stabilization than supplying the base load.

Since this task was not foreseeable when designing the

currently existing power plants, they will have to suffer

completely different load scenarios than expected. Dy-

namic modelling of complete steam cycles is a promis-

ing way to study the power plant operation of various

future scenarios. To adapt the model to real power plant

behaviour, especially with a focus on control events, the

implementation of effects due to steam blown into the

gasside part of the boiler in order to detach soot from

the heating surfaces (soot blowing) seem to bring great

efforts concerning model validity. Furthermore special

control optimizations can be done, for example on spray

injection at soot blowing events. In this study temper-

ature measurement data is used in combination with a

highly detailed boiler model of a 550 MW hard coal fired

power plant to build a mathematical model of soot blow-

ing influence on the different heat exchangers.

Keywords: Dynamic Modelling, Power Plant, Soot

Blowing, Mathematical Modelling, ClaRa, Validation

1 Introduction

During normal operation of a power plant different

chemical reactions lead to solid particles that are carried

by the flue gas through the entire boiler. The amount and

the composition of these particles mainly depend on two

parameters. The first is the kind of fuel that is burned

in the furnace. Using hard coal for example will lead to

much less produced solid particles compared to burning

waste and biomass as a substitute fuel. Secondly the ar-

rangement and type of the burners influences the forma-

tion of the flame and thus influences the homogeneity of

heat release and flame temperatures which might result

in particle formation.

Parts of the produced amount of soot are taken up by

the heat exchangers that are passed by the flue gas. This

mechanism is called fouling. As written in (Effenberger,

2000) there are different impacts on the furnace. The rate

of heat transfer of the tube bundles decreases which af-

fects the temperature field such that it increases towards

the end of the boiler. Furthermore the reduction of the

flue gas cross section leads to higher flue gas velocities.

Overall the plant efficiency decreases with rising fouling

of the heat exchange surfaces because of a higher flue

gas pressure drop over the boiler and decreasing steam

temperatures.

Due to this facts, the aim is to have a minimum foul-

ing. Since frequent shut-downs of the entire plant to

clean the heat exchangers are not desired, so called soot

blowers are used to blow the attached particles from the

heat exchangers. To avoid a cool down of the outer layer

of the heat exchangers, superheated steam is used for this

purpose.

2 Informative Background

This study has been carried out under the programme

"THERRI" (THermisches ERmüdungsRIsswachstum -

thermal fatigue crack growth) that is funded by the Ger-

man Federal Ministry for Economic Affairs and Energy.

The aim of this project is the development of a method

and guideline for the fracture-mechanical assessment of

thick-walled components in fossil-fueled power plants.

The Chair of Technical Thermodynamics Rostock devel-

ops dynamic power plant models to provide thermody-

namic boundary conditions, i.e. thermal and mechan-

ical loads for subsequent fracture-mechanical tests and

analyses. The dynamic model was developed within the

software environment "Dymola" using the programming

language "Modelica". The components used to build the

model are largely from of the ClaRa library that is de-

scribed in the following part.

2.1 Used Library - ClaRa

The ClaRa (Clausius-Rankine) is an open source library

that has been developed under the programme "Dyncap"

which was as well as "THERRI" funded by the German

DOI
10.3384/ecp15118707

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

707

Federal Ministry for Economic Affairs and Energy. It

is written in Modelica modelling language. It allows the

user to model highly detailed complete power plants with

a strong focus on their dynamic behaviour (ClaRa, 2015;

Brunnemann et al., 2012).

Figure 1. Example of Parameter GUI in ClaRa Library

(ClaRa, 2015)

The library is divided into the following subpackages:

Table 1. Overview of the ClaRa library structure

UsersGuide
modelling concept, contacts,

license

Examples introducing examples

Basics
base models and

informational structure

Components
component models, see

Table 2

SubSystems
definition of subsystems for

large projects

Visualisation
tools for visualisation, e.g.

time plots

StaticCycles
static models for calculation

of initial values

The ClaRa is delivered with a package containing a set

of stationary models which can be used to create a sim-

plified, static and parameter-based mimic of the dynamic

cycle. The result, a load depending set of parameters for

mass flow, pressure and enthalpy for the complete cycle,

can be used as initial guess values when linked to the

respective parameters of the dynamic cycle. This allows

the user to give flexible and consistent initial values at all

dynamic components considering system topology and

the possibility to use a cascaded initialisation with values

of upstream components for varying design points. The

same procedure can be used to calculate nominal values

for the main cycle.

The usable components are divided into base types

containing various models at different levels of detail.

Thus the user is able to create models that are as detailed

as necessary and as simple as possible. Table 2 gives

an overview of the implemented component classes. All

Table 2. Overview of the ClaRa subpackage Components

BoundaryConditions
sinks and sources for

water, steam and gas

TurboMachines
fans, compressors pumps

and turbines

HeatExchangers
different heat exchanger

types

Mills
mills for preparation of

solid fuels

VolumesValvesFittings

volumes, valves and

fittings for water, steam

and gas

MechanicalSeparation
gravitational phase

separation, storage

Furnace
base models for setting up

entire boilers

Electrical electrical machinery

Sensors
sensors for pressure, mass

flow, temperature, etc.

Control
base models for control

purposes

Adapters
adapters for related

Modelica libraries

FlueGasCleaning

denitrification,

desulfurization and

dedusting of flue-gas

component models are validated based on literature data

and/or measurement data of existing components.

The ClaRa comes with a non-profit version of the

TILMedia. Three different media types needed for the

simulation of coal fired power plants are available. For

pure mediums like water/steam there are table based and

spline interpolated data available which are very encour-

aging concerning simulation speed and simulation stabil-

ity, see (Schulze, 2013). The flue gas is described by a

gas-vapour mixture similar to humid air. A mixture of

Mathematical Model of Soot Blowing Influences in Dynamic Power Plant Modelling

708 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118707

real fluids for application in CO2-separation processes is

supported too. For pressure loss and heat transfer the

FluidDissipation library is used. For special purposes

additional heat transfer correlations and radiation mod-

els can be used inside the combustion chamber.

For heat transfer the Modelica.Thermal connectors are

used. The fluid connectors are in principle the same as

the Modelica.Fluid connectors (despite the use of Tem-

perature instead of enthalpy for gas flows) but they are

using external substance properties and media types of

the TILMedia ClaRa library making an own connector

necessary. One main reason for the use of TILMedia

ClaRa is that it is capable of calculating single and mul-

ticomponent vapor liquid equilibrium substances. The

use of an external library comes with the advantage of

a faster translation process and independence from the

Modelica.Media being able to administrate, adapt and

expand the needed substance properties according to the

focus and requirements of the ClaRa.

2.2 Reference Power Plant

The investigated power plant is a hard-coal fired super-

critical mono-block power plant Rostock. It is shown in

Figure 2. The produced electric output is about 550 MW

Figure 2. Investigated reference power plant Rostock

with an overall efficiency of approximately 43.2% at full

load. The maximum thermal output of the tower ar-

ranged forced circulation boiler is 1370 MW. At full load

the plant operates with 417 kg/s feed water mass flow

and a live steam pressure of 262 bar at 545◦C. After

depressurizing in the high-pressure turbine the steam is

reheated to 562◦C. In order to increase the fuel utiliza-

tion ratio the plant is designed to decouple a maximum

of 300 MWth in combined heat and power cycle mode.

Through this the utilization ratio can be risen up to 62%.

A simplified schematic diagram is shown in Figure 3 in

order to avoid an explanation of the entire layout of the

plant.

3 Reduced Dynamic Model

There are two reasons in dynamic modelling why for de-

tailed investigation on particular parts it is very useful to

cut out the most interesting part of the model and rep-

resent the left parts by boundary conditions. Firstly the

duration of a simulation is heavily dependent on the de-

posited model size. Therefore a reduced model gives the

ability to run the simulation more often e.g. for testing

different sets of parameters. Secondly one get rid of the

influences of uncertainties and assumptions made in the

modelling of other devices and thus can compare differ-

ent model results separately. For these reasons the com-

plete plant has been reduced to the detailed boiler model

that is described below. The model can be divided into 3

different parts, namely the gas side, water side and coal

mill and combustion air section. The last part will not be

treated in this paper, since its influence is not necessary

for the investigations that will me made.

3.1 Gas Side

The gas side (see Figure 4a), which is responsible for

modelling the heat release of the burned fuel, the trans-

port of the flue gas through the entire boiler and the heat

transfer via convection and radiation, is basically con-

sisting the following submodels:

• Hopper and 4 Burner levels with coal dust inlet and

an ideal combustion approach

• 2 Flamerooms with a port for tertiary air input

• 4 Superheater levels containing tube bundles and

carrier tubes

• 2 Reheater levels containing tube bundles and car-

rier tubes

• Economizer with finned tubes and carrier tubes

For each of these submodels the exact geometries of

the surrounding walls and the tubes are implemented

as well as the combustion formulas and different heat

transfer correlations. The submodels are connected to

their corresponding neighbours through flue gas and heat

transfer ports. The latter ones are used to model the ra-

diation between the different boiler levels. Besides that,

each submodel has one heat transfer interface to model

the heat transfer to the surrounding wall. Addition-

ally the superheater, reheater and economizer submod-

els contain one heat port defining the interaction with the

tube bundles and another one describing the heating of

the carrier tubes.

As already mentioned, the regarded heat transfer

mechanisms are convection and radiation. For the radi-

ation part the formula to calculate the heat flow is based

on the Stefan-Boltzmann law of radiation. In accordance

with (VDI, 2006) it can be calculated according to equa-

tion (1),

Q̇rad = Aeffσ
εW

αG + εW −αGεW

(
αGT 4

W − εGT 4
G

)
(1)

Session 10B: Power, Energy & Process Applications 2

DOI
10.3384/ecp15118707

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

709

Figure 3. Schematic plot of the simplified water-steam cycle

where the emission and absorption coefficients of gas

(εG, αG) and the emission coefficient of the wall (εW)

are approximated using the partial pressures of pCO2
and

pH2O and the equivalent thickness sgl as well as the ash

and coke load of the flue gas. TG and TW are the tem-

peratures of the gas and the surrounding wall. σ stands

for the Stefan-Boltzmann-Constant and the effective heat

transfer area Aeff is defined as the actual heat transfer area

multiplied by a fouling factor FF which is used as the ele-

mentary connection between the physical and the devel-

oped mathematical model. Its behaviour will be further

discussed in chapter 5.

The convective heat transfer is based on Newton’s law

with the same convention for Aeff and the Temperatures

of the wall and the gas, Tw and Tg,

Q̇conv = Aeffα
(
Tw −Tg

)
. (2)

The heat transfer coefficient α is defined as

α =
Nuλ

L
(3)

where L denotes the characteristic length and Nu is a

function of Re and Pr for laminar and turbulent flow.

3.2 Water / Solid Side

This submodel basically consists of pipe, valve and wall

models. Each pipe has its assigned wall parametrized

with the necessary information for heat transfer and ther-

mal inertia like inner and outer diameters (ri,ro), mate-

rial properties (e.g. the coefficient of thermal conduc-

tion λ) and the total heat transfer surface. The conduc-

tive heat transfer through the walls is calculated based on

(O’Kelly, 2012) with the Fourier law of heat conduction,

Q̇ =−2πλ l
∆T

ln ro
ri

=
λA∆T

ro − ri

(4)

wherein ∆T denotes the temperature difference between

the inner and the outer phase of the pipe wall and the

effective heat conduction surface A follows equation (5).

A = 2πl
ro − ri

ln ro
ri

(5)

The pressure drop of the water/steam in the pipes is cal-

culated with a nominal value ∆pnom and a linear mass

flow dependency,

pin − pout = ∆pnom
ṁ

ṁnom
. (6)

The convective heat transfer between the inner phase

of the pipe and the fluid inside is assumed as well to be

linear mass flow dependent with a nominal heat transfer

coefficient. The different pipe diameters and geometries

of the evaporator are regarded through different mod-

els for the hopper, burner, flame room and superheater

Mathematical Model of Soot Blowing Influences in Dynamic Power Plant Modelling

710 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118707

(a) Gas Side (b) Water Side

Figure 4. Gasside and Waterside parts of the developed boiler

model

levels. Implementing this the relationship between the

pipe lengths, the according heat transfer surfaces and the

prevalent flue gas temperatures are taken into account. A

schematic overview of this discretisation is given in Fig-

ure 4b. The arrowed connection lines are points where

boundary conditions are applied. For controlling the

steam temperatures in different levels, preheated water is

sprayed into the steam pipe. The corresponding spray at-

temperators ("SA") are located between the superheaters

1 & 2, 3 & 4 as well as the reheaters 1 & 2. In the de-

veloped model the volume of main steam and spray is

designed ideally stirred.

4 Analysis of Soot Blowing Influence

The soot blowing has complex physical effects on the

heat transfer at the gas side part of the boiler. The at-

tached constituents are partially blown away and chem-

ical reactions may occur. For the applied 0D-/1D ap-

proach it appears to be sophisticated to design the physi-

cal background to model the exact behaviour. Addition-

ally to the physical mechanisms the unit control is influ-

enced as well. All these facts lead to the approach for

this study, which is a hybrid method combining mathe-

matical and physical modelling approaches.

0 5 10 15 20
200

300

400

500

600

Time / h

b
ar

,
k
g s
,
◦

C

Pressure

Massflow

Temperature

Figure 5. Live steam parameter of investigated load scenario

To identify the transfer functions, a real scenario of

one day from the reference power plant (see Chapter 2.2)

with steady load is used as database. This decision has

been made due to the advantage, that in case of no load

changes the soot blowing effects can be investigated sep-

arately without regarding other influences. The signif-

icant live steam parameters, as they can be seen in Fig-

ure 5, are nearly constant. Since the steam parameters do

not change significantly the steam mass flowing through

the whole boiler can be seen as stationary. This allows

in further calculations to use the temperature difference

between the inlet and the outlet of a superheater as an

indicator for the heat flow.

In this study the focus of investigation lies on the first

and fourth superheater. Nevertheless the method can be

used to determine the soot blowing influence of further

heat exchangers in the boiler. In Figure 6 the direct influ-

ence of soot blowing on one of the corresponding super-

heaters is shown. During the process the reached temper-

ature difference rises and afterwards it decreases slowly

until a certain normal level of ∆T ≈ 12K in this example.

In addition to that the investigated process also affects

the heat transfer of other heat exchanger areas. In this

study the coherences between the heat transfer of super-

heater 1 and 4 are used as an exemplary case. There-

fore Figure 7 shows the temperature difference of super-

heater 4 for the same scenario. In this plot, addition-

ally to the former, the soot blowing intervals of some

other heating surfaces are illustrated. It appears that the

temperature difference decreases when blowing in super-

heater 1 level which is located approximately 4.5 m be-

low the superheater 4. After these events it takes several

hours to reach the previous amount of temperature dif-

ference or even a new operating point.

Another influence that can be seen is the soot blowing

of the superheater 2 level that is located directly below

the superheater 4. Having a look on Figure 7 it seems

that the lance of superheater 2 also detaches some soot

Session 10B: Power, Energy & Process Applications 2

DOI
10.3384/ecp15118707

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

711

0 5 10 15 20
10

12

14

16

18

Time / h

∆
T

/
K

∆TSH1,measured

∆TSH1,stat

∆TSH1,stat+in

Figure 6. Steam temperature difference of superheater 1 with

soot blowing interval (grey)

0 5 10 15 20
40

45

50

55

60

65

S
H

2
S

H
2

S
H

4

Time / h

∆
T

/
K

Figure 7. Steam temperature difference of superheater 4 with

soot blowing interval of superheater 1 (grey) and superheater 2

and 4 (light blue)

and particles from superheater 4.

The steep ramp at 18 h is caused by a spray attemper-

ator event and thus remains unregarded in this study.

5 Model Design

As already mentioned an exact physical approach is too

complex to model in 0D/1D environments. Perhaps it

would be worth to examine the behaviour using a de-

tailed 3D-CFD method which is not part of this study.

The strategy of this study is to use a condensed math-

ematical model based on simple transfer functions. As

described through the equations (1) and (2) in chapter

3.1 the heat flow of a superheater can be adjusted by the

effective heat transfer area or more specifically the foul-

ing factor FF. This context is used to affect the different

tube bundles due to the soot blowing. To increase the

overall heat transfer ability of a superheater, one raise

the fouling factor of the according submodel at the gas

side model and vice versa. Therefore the ClaRa imple-

mentation of FF as a fixed parameter has been changed

to a variable real value that is modifiable from outside

the specific submodel. The method to identify the differ-

ent values of the fouling factors is described in (Gierow

et al., 2015) and thus is regarded as known for this study.

As an simplification for the modelling of the soot

blowing influence, FF is divided into two parts, FF =
Fstat + Fin. Herein Fstat describes the stationary or off-

set part of the fouling factor at the current status. The

corresponding temperature difference ∆Tstat is marked as

a green line in Figure 6. The soot blowing is assumed

to have no influence on this part. The second term is de-

noted as an influence factor, changing its value due to

soot blowing events. Through this assumption it is pos-

sible to model and modify just the transient part of the

fouling factor. In case of a stationary operation with no

soot blowing it will remain at zero. This gives the huge

advantage of the possibility to connect it to a binary sig-

nal indicating the on/off-state of the soot blowers. The

entire mathematical model for this approach is described

in the following.

As it may be seen by the red line in Figure 6, the tran-

sient temperature response is assumed to be proportional

with a first order delay, also known as a PT1-element.

Since all soot blowers in the boiler have to be taken into

account, the complete system is defined with multiple in-

puts u and outputs x (MIMO). For m heat exchangers and

n soot blowers the system is in the state-space represen-

tation form
















∆Ṫin,11

∆Ṫin,12

...

∆Ṫin,1n

∆Ṫin,21

∆Ṫin,22

...

∆Ṫin,mn
















︸ ︷︷ ︸

ẋ

= S
















∆Tin,11

∆Tin,12

...

∆Tin,1n

∆Tin,21

∆Tin,22

...

∆Tin,mn
















︸ ︷︷ ︸

x

+K u (7)

where u means a column vector of states of the inves-

tigated soot blowers. Active blowers are treated as ui = 1

and inactive ones as ui = 0. The state and input matrices

are built as follows,

S = diag(S11,S12, . . . ,S1n,S21,S22, . . . ,Smn) (8)

K =








diag(K11,K12, . . . ,K1n)
diag(K21,K22, . . . ,K2n)

...

diag(Km1,Km2, . . . ,Kmn)








(9)

Mathematical Model of Soot Blowing Influences in Dynamic Power Plant Modelling

712 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118707

The entries of the state matrix S contain the time con-

stants of the delay part of the PT1 element in the form

Si j =−τ
−1
i j . Since the fouling factors itself have no phys-

ical influence on each other, the non-diagonal entries of

the matrix can be treated as zeros, Si j = 0 for i 6= j. The

input matrix K represents the proportional gains between

the soot blowers and the heat exchanger fouling factors.

Since, considering the equations (1) and (2), the fouling

factor influences the temperature difference in the first

approximation linearly, the stationary temperature differ-

ences and fouling factors can be used to convert the state

vector x to the desired values of F in by multiplication

with the output matrix C,








Fin,1

Fin,2

...

Fin,m







= diag(c1,c2, . . . ,cm)
︸ ︷︷ ︸

C

x (10)

with

ci =
[
ci ci . . . ci

]

︸ ︷︷ ︸

n−times

(11)

After the identification process the whole mathemati-

cal model of the soot blowing influence is implemented

into the physical model of the gas side of the boiler as

shown in Figure 8.

◦ K +
∫

C +•

S
◦

u

Fstat

FFF in

Figure 8. Block diagram of implementation in Dymola

6 Results and Validation

To avoid oversized matrices, the mathematical model is

shrinked to the heat exchange of the superheaters 1 and 4

and the soot blowing in superheater 1 and 2 as already

mentioned in chapter 4. Unfortunately the spray attem-

perator event at approx. 18h cannot be reproduced with

the current status of the dynamic boiler model. For this

reason the investigated time span for identification and

validation is reduced by seven hours. During this time

the soot blower of superheater 4 is not active and thus

will be neglected from now on. Since the soot blower

of the superheater 2 is located above the superheater 1,

there is no influence between. For this reason the ap-

propriate rows and columns in the matrices are omitted.

This simplifies the model to the following form:

ẋ = −






τ
−1
SH1,1 0 0

0 τ
−1
SH4,1 0

0 0 τ
−1
SH4,2










∆Tin,SH1,1

∆Tin,SH4,1

∆Tin,SH4,2





︸ ︷︷ ︸

x

+

+





KSH1,1 0

KSH4,1 0

0 KSH4,2





[
uSH1

uSH2

]

[
Fin,SH1

Fin,SH4

]

=

[Fstat,SH1

∆Tstat,SH1
0 0

0
Fstat,SH4

∆Tstat,SH4

Fstat,SH4

∆Tstat,SH4

]

x

(12)

The identification problem thus is reduced to 6 inde-

pendent variables. For handling this problem it is split

into two sub-problems and then solved with the system

identification toolbox of MATLAB®.

Table 3. Identified parameters

Variable SH1 SH4

∆Tstat [K] 12.2 50.2

Fstat 0.64 0.61

c = Fstat
∆Tstat

[
1
K

]
0.05246 0.01216

τ1 [s] 3992 5437

τ2 [s] - 4.5e9

K1 2.154e-3 -2.364e-3

K2 - 4.22e-3

For the investigated scenario the parameters in Table 3

have been identified. There are different aspects that can

be deduced from some parameters. For instance the soot

blowing at the superheater 1 has a negative gain for the

temperature difference of superheater 4 and thus will re-

duce the temperature difference over this tube bank. An-

other point is the high delay time τ2 of superheater 4. It

appears that it is so high, that the delay part is negligible.

This means the influence has only an integrative charac-

ter.

Figure 9 and Figure 10 show the results of the already

mentioned scenario simulated using the highly detailed

boiler model described in chapter 3 with an implemented

soot blowing model containing the parameters shown in

Table 3. Both temperature trajectories can be reproduced

using the developed model approach. The deviation after

12h in Figure 10 is reasoned by the rough discretisation

of the measurement data which is used for the boundary

conditions during the simulation. Based on the overall

results the applied approach assuming a first-order be-

haviour appears to be sufficient.

Session 10B: Power, Energy & Process Applications 2

DOI
10.3384/ecp15118707

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

713

0 5 10 15 20
10

12

14

16

18

Time / h

∆
T

/
K

Measurement

Simulation

Figure 9. Comparison of simulated and measured steam tem-

perature difference of superheater 1 with the corresponding

soot blowing interval (grey)

0 5 10 15 20
40

45

50

55

60

Time / h

∆
T

/
K

Measurement

Simulation

Figure 10. Comparison of simulated and measured steam tem-

perature difference of superheater 4 with soot blowing interval

of superheater 1 (grey) and superheater 2 (light blue)

7 Summary and Outlook

In this paper an innovative and in terms of computa-

tional costs resource-efficient algorithm to include the

soot blowing influence into a dynamic power plant has

been presented. The model allows to investigate both,

the direct influence of soot blowing on the appropriate

superheater and how it affects the superheaters that com-

ing afterwards in flue gas direction. For a steady load

scenario the accuracy and validity of the method has been

shown.

In the next stages further studies will follow concern-

ing load changes and scenarios with different stationary

fouling factors. Furthermore this study could be com-

pared to a more physical approach considering chemi-

cal reactions and the enthalpy flow into the flue gas. In

case of completely validated models, control optimisa-

tions could be possible, e.g. to avoid any influence of

soot blowing on the spray injection dynamics.

8 Acknowledgement

The authors would like to thank the German Federal

Ministry for Economic Affairs and Energy for funding

the project. Furthermore we would like to thank all the

partners in the project, especially the people working at

the reference power plant for supporting us incessantly

and giving us all the necessary information and data for

the dynamic modelling. In addition we would like to

thank the development team of the ClaRa and TILMedia

ClaRa libraries from XRG Simulation GmbH and TLK-

Thermo GmbH for their competent and fast support.

References

Johannes Brunnemann, Friedrich Gottelt, Kai Wellner, Ala

Renz, André Thüring, Volker Roeder, Christoph Hasenbein,

Christian Schulze, Gerhard Schmitz, and Jörg Eiden. Sta-

tus of ClaRaCCS: Modelling and simulation of coal-fired

power plants with CO2 capture. In Proceedings of the 9th

International Modelica Conference, 2012.

ClaRa. dyncap | ClaRa - Simulation von Clausius-Rankine-

Kreisläufen, May 2015. URL www.claralib.com.

Helmut Effenberger. Dampferzeugung. Springer, 2000. ISBN

3-540-64175-0.

Conrad Gierow, Moritz Hübel, Jürgen Nocke, and Egon Has-

sel. Vergleich von Algorithmen zur Identifikation der

Heizflächenverschmutzung. In In Print: Kraftwerkstechnis-

ches Kolloquium, Dresden, 2015.

P. O’Kelly. Computer Simulation of Thermal Plant Operations.

Springer New York, 2012. ISBN 978-1-461-44256-1.

Christian Schulze. Numerisch effizientes Modellieren von

thermodynamischen Systemen. In 16. ITI Symposium, Dres-

den, 2013.

VDI. VDI-Wärmeatlas. Springer, Berlin, Heidelberg, 10th

edition, 2006. ISBN 978-3-540-25503-1.

Mathematical Model of Soot Blowing Influences in Dynamic Power Plant Modelling

714 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118707

Flexibilization of coal-fired power plants

by Dynamic Simulation

Marcel Richter1 Florian Möllenbruck1 Andreas Starinski1 Gerd Oeljeklaus1 Klaus Görner1
1Chair of Environmental Process Engineering and Plant Design, University of Duisburg-Essen, Germany

{marcel.richter, florian.moellenbruck}@uni-due.de

Abstract

Due to the strong expansion of renewable energies, the
economical and technological boundary conditions for
coal-fired power plants in Germany changed
significantly over the last few years. Nowadays the
flexibility in power production becomes increasingly
important. This increasing flexibility requirement is
caused by a more and more volatile residual load
through the fluctuating power output from
weather-dependent renewable energies such as wind
power and photovoltaics. A similar trend can be
observed in other European countries and even
world-wide, where the expansion of renewable
energies is pursued to reduce the emission of carbon
dioxide. Dynamic simulation models play a central role
in improving the flexibility of power plants as they
offer a tool for the evaluation and improvement of the
resulting highly transient operation. This paper
presents the dynamic modeling of a coal-fired power
plant in Modelica/Dymola using the power plant
library ClaRa (Clausius-Rankine). The focus is on the
detailed non-steady-state modeling of the steam
generator and the validation of the dynamic simulation
model. Additionally, first results of simulation studies
about the integration of a thermal energy storage and
the increase of the load change rate are presented.
Keywords: thermodynamics, dynamic simulation,

steam power plant, flexible power plant, steam

generator, validation, thermal energy storage, load

change rate

1 Introduction

The share of renewable energies in power production
in Germany increased significantly during the last
years. This development has been supported by the
German Renewable Energy Sources Act (EEG) which
guarantees preferred feed-in into the electrical grid for
renewable energies. The development of the power
generation capacity in Germany between 2002 and
2012, shown in Table 1, illustrates the expansion of the
renewable energies. The substantial growth of the total
installed capacity from 127.0 to 184.4 GW is mostly
covered through the renewable energies wind and sun
(photovoltaics). The share of renewable energies in
power production in Germany increased from 7 % in

2001 to nearly 25 % in 2013 [1]. According to the
latest version of the EEG from August 2014 this
development is to be continued towards the targets of
40 - 45 % in 2024, 50 - 60 % in 2034 and 80 % in 2050
[6].

Table 1: Power generation capacity in Germany in GWel

based on energy data [5] for 2002 and 2012 and on the
assumptions of the Netzentwicklungsplan* (grid
development plan) for 2024 and 2034 (scenario B) [7]

in GWel 2002 2012 2024* 2034*

Hard coal 30.1 29.8 25.8 18.4
Lignite 21.6 24.2 15.4 11.3
Fuel oil 5.3 4.2 1.8 1.1
Gas 20.3 26.4 28.2 37.5
Nuclear 23.6 12.7 0 0
Water 8.9 10.4 14.7 15.7
Wind 12.0 31.3 67 97.3
Photovoltaic 0.3 32.6 56 59.5
Biomass 0.8 6.2 8.7 9.2
Other 4.1 6.6 5.2 5.0
Conventional 104.3 102.3 84.9 81.7
Renewable 22.7 82.1 138.6 173.3
Total 127.0 184.4 223.5 255

The requirements for a stable grid operation rise due to
this growing share of renewable energies and the
volatile character of their weather-dependent power
production. The transformation of the electricity
system leads to fundamental structural changes in the
residual load, defined as the demanded power (load)
minus a proportion of fluctuating power (e.g. from
wind and sun).

Figure 1 shows the distribution of the residual load
in the year 2012 as well as predicted values for 2024
and 2034. There will be periods in the future where the
load is fully covered by the supply of the renewable
energies. This leads to the appearance of negative
residual loads. The shift of the residual load
distribution towards lower values implicates the
necessity for fossil fueled power plants to run at the
lowest possible minimum load. Additionally, the
requirement for fast and economic start-up and
shut-down procedures can be derived from this figure,
because conventional power plants have to perform

DOI
10.3384/ecp15118715

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

715

these procedures more often. A further aspect is that
the maximum residual load in 2034 is still in a similar
dimension in comparison to today. To ensure security
of supply during periods of high residual loads as well,
controllable steam power plant capacity has to be
available – as long as not enough storage capacity (e.g.
pumped storages, power2gas, etc.) is built-up to
compensate the fluctuating power production of
renewable energies.

Figure 1. Histogram of the residual load in Germany
(width of the histogram bars is ± 5 GW) [8]

Figure 2 shows the histogram of the residual load
change between consecutive hours. The diagram
illustrates a shift towards higher residual load changes
for the future, both for negative and positive directions.

Figure 2. Histogram of the residual load changes
between consecutive hours (width of the histogram
bars is ± 1 GW/h) [8]

The rising volatility of the residual load results in
increasing flexibility requirements to fossil fueled
power plants regarding the load change rate, the
start-up and shut-down procedures as well as the
supply of control energy.

As a consequence of this development, the
flexibilization of conventional power plants is one of
the key challenges for the next years. This
flexibilization is necessary to enable further integration
of renewable energies while ensuring an economic
operation of conventional steam power plants which
ensure security of supply.

2 Applications of dynamic power plant

simulation

Taking into account the future flexibility requirements
to conventional power plants, the importance of
dynamic power plant simulation increases. The
dynamic power plant simulation offers a tool to model
and calculate the transient operational behavior of
existing or planned power plants.

The use of dynamic simulation models enables
investigations about the following improvements in the
power plant process [10]:

 Reduction of the minimum load
 Increase of the load change rate
 Reduction of the start-up and shut-down time
 Evaluation of the supply of control energy
 Evaluation of (thermal) energy storage

concepts
 Evaluation of process quality during transient

power plant operation

3 Simulation Software

ClaRa (Clausius-Rankine) is a free of charge and open
source library of power plant components written in
the modeling language Modelica. The library allows
modeling and simulation of coal-fired power plants as
well as heat recovery power plants, giving deep insight
into their dynamic behavior [2], [3]. Both once-through
and circulation boilers are supported. The library is
structured component-wise including models for
pumps, fans, turbines, heat exchangers, furnaces,
electric motors, mills, valves, piping and fittings, as
well as storage tanks and flue gas cleaning units. The
library provides component models at different levels
of detail supporting the user in creating system models
tailored to their specific needs. The advantage of this
concept is that the physical precision of a complex
power plant model can be adapted to cope with the
given simulation task without an unnecessary excess of
computing time. The models are validated against
literature and/or measurement data of existing plants,
exemplified shown for the results of a pump in
figure 3.

Figure 3. Validation results of a pump model

0

500

1000

1500

2000

2500

-20 -10 0 10 20 30 40 50 60 70 80

N
u

m
b

er
 o

f
h

o
u

rs
 p

er
 y

ea
r

Residual load in GW

2012
2024
2034

0

500

1000

1500

2000

2500

≤-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 ≥12

N
u

m
b

er
 o

f
h

o
u

rs
 p

er
 y

ea
r

Residual load change in GW/h

2012
2024
2034

Flexibilization of Coal-fired Power Plants by Dynamic Simulation

716 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118715

The library uses robust and fast media data from the
TILMedia library as well as functions for pressure loss
and heat transfer from the FluidDissipation library. In
addition, special heat transfer correlations and radiation
models are available for the flue gas path inside of a
steam generator.

4 Modeling of steam power plants

Figure 4 shows the water-steam cycle of the modeled
coal-fired power plant. This process flow diagram
illustrates the three turbine groups (high, intermediate
and low pressure turbine), the condenser, the feed
water tank, the four low pressure and two high pressure
preheaters and the subcomponents of the steam
generator. The steam generator, as exemplarily shown
later in figure 5, is an once-through boiler.

4.1 Procedure of model build-up

For dynamic simulations, the components of a power
plant can be divided into steady and non-steady. The
distinguishing criterion is the change rate of the
component answering to a change in the
thermodynamic boundary conditions (e.g. a change in
temperature) reaching a new state of equilibrium.
Table 2 shows the classification of the power plant
components into steady and non-steady for the
dynamic simulation model presented in this paper.
Steady components have significantly smaller time
constants in comparison to the non-steady components
which means low influence to the dynamic behavior.

Table 2: Classification of power plant components into
steady and non-steady based on [4]

Steady components Non-steady components

Steam turbine Heat exchanger
Pump Steam pipe
Valve Mixing point
Compressor Feed water tank
.. Coal mill

..

Based on this distinction, the procedure during the
build-up of the dynamic simulation model can be
divided into three steps, taking into account the
difference between a steady-state simulation and a
dynamic simulation. In the first step, a stationary
simulation model with a detailed consideration of the
steam generator (each heating surface is modeled and
calculated) is developed using Ebsilon®Professional.
The stationary simulation model provides the starting
values for the parameterization and initialization of the
dynamic simulation model, which is built-up in the
second step using the power plant library ClaRa in
Modelica/Dymola. The dynamic simulation model
consists of the combination of steady and non-steady
components based on table 2 and a detailed
consideration of the implemented control structures.

In the third step, the dynamic simulation model is
validated by comparing the calculated values with
measured operating data of the underlying power plant.
After successfully completing this step, the dynamic
simulation model offers the possibility to perform
investigations to improve the flexibility of the regarded
power plant process.

Figure 4: Process flow diagram of the modeled power plant

Session 10B: Power, Energy & Process Applications 2

DOI
10.3384/ecp15118715

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

717

4.2 Detailed modeling of a steam generator

The structure of a detailed steam generator model
within the ClaRa library is modular. The steam
generator model itself can be divided into four areas:

1. Coal preparation and distribution
2. Flue gas path
3. Heating surfaces (walls and tube bundles)
4. Water flowing through the steam generator

pipes

Figure 5. Exemplarily drawing of a steam generator [9]

Figure 6 illustrates the modular structure of the steam
generator model in the ClaRa library. On the left side,
the vertically discretized flue gas path is shown. The
flue gas path is divided into several volume elements
for every heat transfer section. Each component of the
flue gas path can combine different functionalities,
such as burner and/or heat transfer surface. Every
component provides a model for the geometry, the
velocity of coal and ash particles and the heat transfer
correlation (e.g. radiative heat transfer within the flame
room and/or convective heat transfer within the tube
bundle heating surfaces).

The combustion chamber with the burners is
represented by the component “Evaporator” at the
starting point of the flue gas path. For the distribution
of coal and combustion air, this component is
connected with the coal and combustion air mass flow
rates. The time-dependent behavior of the coal mills is
represented by transfer functions. In flow direction of
the flue gas the sections of a flame room (SH1) and the

tube bundle heat exchangers (SH2, SH4, RH2, SH3,
RH1, ECO) are following. Each component in the flue
gas path has a connector (red lines in figure 6) for the
heat flow to the pipe wall. The components
representing the sections for tube bundle heat
exchangers have two additional connectors for the heat
transfer to carrier tubes and tube bundle.

Figure 6. Modular structure of the steam generator

The material of the steam generator pipes is considered
through a thin wall between flue gas and water-steam
cycle, as exemplarily shown in figure 7. The
tube-elements representing the water-steam side can be
discretized by the user into several volume elements.

Figure 7. Wall-concept in ClaRa

The feed water initially flows through the economizer.
This component is located at the end of the flue gas
path and is connected in countercurrent. From the
economizer the water flows through the downpipe
drains to the evaporator. The following pipe wall
(SH1) is arranged vertically and is modeled as a flame
room. Subsequently, the steam flows through the three
superheater surfaces of SH2, SH3 and SH4. The
reheating takes place in the two reheater surfaces
(RH1/RH2). Injection coolers are located between the
surfaces of SH2/SH3, SH3/SH4 and RH1/RH2.

Flexibilization of Coal-fired Power Plants by Dynamic Simulation

718 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118715

4.3 Control System

Besides the dynamic modeling of the power plant
process, the control system has to be considered during
the build-up of a dynamic simulation model. The
control structures implemented within the control
system have a major influence on the transient
behavior of a power plant and consequentially also on
the results of a dynamic power plant model. The goal
of the power plant control system is the coordination of
the interaction between boiler, turbine and generator to
ensure efficient and safe operation of the power unit.
The control system calculates setpoints and
manipulated variables for the transient operation of a
power plant. The entire control system has a high
complexity and consists of a plurality of subordinate
control loops for the command and control of various
components and auxiliary units. The following control
structures are implemented in the presented dynamic
simulation model to achieve sufficient accuracy of the
simulation results:

 Unit control
 Feed water control
 Steam temperature control
 Control of coal mills & fresh air

The main task of the unit control, shown in simplified
form in figure 8, is to adapt the actual power output to
the required target power output [12].

Figure 8. Simplified structure of the unit control
implemented in the dynamic simulation model

To comply with the plant limits, the target output
limiting ensures that the setpoint power output does not
exceed the maximum permissible output Pperm and
maximum permissible rate of change �̇perm. A step
change of the target power output is thereby transferred
into a straight line with the permissible rate of change �̇perm (in MW/min) as the gradient. The time behavior
of the steam generator (especially coal mills and heat
transfer) is represented by a PT3-element. Following
this, the difference between setpoint and actual power
output is given to the power correction controller
which determines an appropriate correction factor.

Figure 9 illustrates the simplified schematic
structure of the steam temperature control. The
regulation of the live steam temperature to the setpoint
is achieved through the injection of cool water in front
of the surfaces of SH3 and SH4. The mass flow of
water to the injection coolers is controlled by a cascade
connection of two PI controllers [11].

Figure 9. Simplified structure of the steam temperature
control implemented in the dynamic simulation model

5 Validation against operating data

In order to prove the validity of the dynamic simulation
model, measurement data from the underlying power
plant are compared to the simulation results. The
regarded load profile is characterized by several
positive and negative load changes between minimum
load and nearly full load.

Figure 10. Comparison of the simulated power output
(blue line) and measured values (orange line)

As described above, the power output is mainly
controlled by the unit control with the target power
output as the input variable (black dashed line). The
results of the dynamic simulation model (blue line)
show a high level of accordance to the measurement
data (orange line) concerning the power output during
the load profile. In particular, the rate of change during
the load change processes is very well reproduced by
the dynamic simulation model. This is due to the
correct setting of the maximum permissible rate of
change �̇perm within the unit control, as presented in the
previous section.

40

50

60

70

80

90

100

6:30 7:30 8:30 9:30 10:30 11:30 12:30 13:30 14:30 15:30 16:30

P
o
w

er
 o

u
tp

u
t

in
 %

Time in h

Target power output

Simulation power output

Measurement power output

Session 10B: Power, Energy & Process Applications 2

DOI
10.3384/ecp15118715

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

719

Figure 11. Comparison of the simulated power output
(blue line) and measured values (orange line) between
7:45 and 9:25

Figure 11 shows a shorter section of this validation
over a period of 100 minutes. In the time range
between 8:15 and 8:35 a noticeable deviation has to be
recognized between simulation and measurement. Due
to a lower rate of change during this time range, the
measurement data needs approximately ten minutes
more to reach the target power output. This deviation
can be explained by the fact, that the unit control
implemented in the dynamic simulation model is a
simplified structure in comparison to the highly
complex structure of the underlying reference power
plant. Here the authors see further development
opportunities of the dynamic simulation model.
Nevertheless, figure 11 shows that the power plant’s
dead and balancing times are simulated in a sufficient
accuracy. Thereby, the dynamic simulation model is
valid for the simulation studies about the integration of
a thermal energy storage and the increase of the load
change rate as presented later in section 5.

Figure 12: Comparison of simulated (blue) and measured
(orange) water-steam temperatures

Figure 12 shows the comparison of simulated (blue)
and measured (orange) water-steam temperatures to

prove the validity of the dynamic steam generator
model. The diagram is normalized to the set value of
the live steam temperature. The economizer inlet
temperature, the evaporator outlet temperature and the
live steam temperature show a good match between
simulated and measured values during the load profile.
Thereby, the detailed dynamic simulation model of the
steam generator - as presented in section 4.2 - is proven
successfully what can be claimed as a considerable
achievement. Furthermore, the control of the live steam
temperature to the set point confirms that the
implemented steam temperature control is working
sufficiently.

Figure 13: Comparison of simulated and measured mass
flow of the evaporator

Finally, the time curve of the simulated evaporator
mass flow, illustrated in figure 13, also shows a
sufficient accuracy during the load profile.

Summing up, the comparison of simulated and
measured values shows a good accordance in different
load points and also during load changes. Thereby the
validity of the dynamic simulation model is proven
successfully and the model enables further
investigations to increase the flexibility of the power
plant process.

6 First results of the dynamic simulation

model concerning flexibilization

6.1 Integration of a thermal energy storage

The integration of a thermal energy storage is one
possible flexibilization measure that can be evaluated
by the dynamic simulation model. A thermal energy
storage can have different effects on the flexibility,
depending on concept, point of integration and
capacity. A thermal energy storage can be used to
improve the power plant start-up procedure or to
increase the load change rate. Furthermore, the
integration of a thermal energy storage can offer the
possibility of a load shift between minimum load and
full load. If a power plant is operated in minimum load
- usually in times with a low spot market price - the

50

60

70

80

90

100

7:45 7:55 8:05 8:15 8:25 8:35 8:45 8:55 9:05 9:15 9:25

P
o
w

er
 o

u
tp

u
t

in
 %

Time in h

Target power output
Simulation power output
Measurement power output

30

40

50

60

70

80

90

100

110

6:30 7:30 8:30 9:30 10:30 11:30 12:30 13:30 14:30 15:30 16:30

N
o
rm

a
li

ze
d

 s
te

a
m

 t
em

p
er

a
tu

re
s

in
 %

Time in h
Measurement live steam Simulation live steam
Measurement outlet Evap Simulation outlet Evap
Measurement inlet Eco Simulation inlet Eco

40

50

60

70

80

90

100

6:30 7:30 8:30 9:30 10:30 11:30 12:30 13:30 14:30 15:30 16:30

S
te

a
m

 m
a

ss
 f

lo
w

 r
a

te
 i

n
 %

Time in h

Measurement Evaporator

Simulation Evaporator

Flexibilization of Coal-fired Power Plants by Dynamic Simulation

720 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118715

storage can be charged with energy from the
water-steam cycle. Thus, charging the storage results in
a reduction of the electrical minimum load. In times of
high spot market prices the energy from the storage can
be integrated into the preheating route, leading to an
additional electrical power output in full load by
reducing bleed steam.

The integration of such a thermal energy storage
system to the underlying power plant process is shown
in figure 14. The storage is charged with energy from
the cold reheat steam. During discharge-mode energy
from the storage system is integrated between low
pressure preheater 4 and the feed water tank.

Figure 14. Extract of the process flow diagram with the
integration of a thermal energy storage system

The integration of the thermal energy storage system
has been realized by adding a heat consumer (charging)
and a heat source (discharging) to the existing dynamic
simulation model. To ensure reasonable results, a
terminal temperature difference of 30 K was assumed.
At this stage, the simulation stays conceptually and
technologically open regarding design and used storage
material. Figure 15 shows the results of the dynamic
simulation model concerning the load shift between
minimum load and full load as described above.

Figure 15. Simulation results for the load shift between
minimum load and full load

Charging the storage system with a heat flow of
80 MWth leads to a reduction of the electrical minimum
load in the amount of 3.7 percent. During
discharge-mode the integration of 80 MWth enables an

additional electrical power output in full load in the
amount of 2.8 percent. This corresponds to a thermal
efficiency of the storage system of about 75 percent.
The maximum heat flow is limited to 80 MWth to
ensure the minimum mass flow rate of heating steam in
the direction of the feed water tank (deaerator).

Based on these first results, the storage concept has
to be designed in more detail in the next step.
Furthermore, simulations about the increase of the load
change rate by reducing the power plants dead and
balancing time through the thermal energy storage
system will be performed using the dynamic simulation
model. Additionally, further concepts with the target of
a multiple purpose storage will be developed. Multiple
purpose storage means, that the concept is able to
combine different flexibilization options (e.g. load
change rate, primary control energy and start-up
time/costs).

6.2 Load Change Rate

In this section, a simulation study is described showing
a comparison of different maximum permissible rates
of change �̇perm within the unit control and the
evaluation of the resulting load change rates of the
power plant process.

Figure 16 describes the determination of the load
change rate with the 90 percent method [12].

Figure 16: Determination of the load change rate with the
90 percent method

The calculation of the load change rate with the
90 percent method is based on the following equation: dPdt = Ͳ.9 ∙ ∆PLCT0.9∙∆PLC (1)

where LC is the target load change in MWel.

For the illustrated example shown in figure 16, the load
change rate is calculated to dPdt = Ͳ.9 ∙ ʹͲ %ͳ͵ min ≈ ͳ.Ͷ % min⁄ (2)

That is 70 % related to the maximum permissible rate
of change, represented by the red line in figure 16
(�̇perm = 2 %/min = 100 %).

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11

P
o
w

er
 O

u
tp

u
t

in
 %

Time in hCharge
Discharge
Simulation power output with thermal energy storage
Simulation power output
Target power output

75

80

85

90

95

100

105

-10 0 10 20

P
o
w

er
 o

u
tp

u
t

in
 %

Time in min

Target power output
Setpoint power output
Simulation power output

Ͳ.9 ∙ ∆P20

T0.9∙∆P20

Session 10B: Power, Energy & Process Applications 2

DOI
10.3384/ecp15118715

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

721

Figure 17 shows the simulation results for a load
change from 80 percent to 100 percent. The figure
focuses on the period of 40 minutes, 10 minutes before
and 30 minutes after the load change. The slow
behavior at the beginning of the load change can be
justified by the sluggish behavior of the process, in
particular by the temporal behavior of the coal mills,
the transport processes, the heat delivery and the heat
transfer in the heating surface tubes. Due to the
simplified implementation of the unit control, as
explained in section 4.3, the simulated power output
overshoots the target power output. Hence, the exact
time curves have to be treated with caution. But the
comparison of the configurations with three different
maximum permissible rates of change �̇perm is
admissible.

Figure 17. Comparison of the simulated power output
with different maximum permissible rates of change �̇perm

The evaluation of the three different rates of change
and the resulting load change rates (determined with
the 90 % method) is presented in figure 18 for different
load changes.

Figure 18. Evaluation of the resulting load change rates
by specifying different rates of change �̇perm

It can be seen, that a doubling of �̇perm in the unit
control does not lead to a doubling of the achieved load
change rate of the power plant process. This fact can be
explained through the slow behavior at the beginning
of the load changes. Furthermore, figure 18 shows that
the load change rate is higher for higher load changes,
as the influence of the inertia of the power plant
process is getting smaller.

7 Summary and Outlook

Through the increasing share of fluctuating renewable
energies in power production the operating flexibility
of conventional steam power plants becomes
increasingly important. Thereby dynamic simulation
models are gaining in relevance as they offer a tool to
evaluate measures to face the increasing flexibility
requirements.

This paper presented the development of a dynamic
simulation model for a coal-fired steam power plant
with the open source library ClaRa with a focus on the
detailed non-steady-state modeling of the steam
generator. The results of the dynamic simulation model
regarding the power output as well as the mass flow
rates show a good accordance to operating data during
a load profile. The validation of the detailed steam
generator model was also proven successful by the
comparison of water-steam temperatures during the
load profile.

Furthermore, first results of the integration of a
thermal energy storage system for a load shift between
minimum load and full load were presented. The
integration of the thermal energy storage system can
lead to a reduction of the electrical minimum load
during charging-mode and can supply additional
electrical energy during discharge-mode in full load. In
addition, first results regarding the variation of the
maximum permissible rate of change �̇perm were
presented.

In the next steps, the dynamic simulation model will
be developed further, especially regarding a more
detailed implementation of the unit control and the
extension of the thermal energy storage evaluations
towards multiple purpose storages. Also further
simulations about possible flexibilization measures
regarding the improvement of the start-up procedure,
the increase of the load change rate or the supply of
(primary) control power will be performed with the
dynamic simulation model.

Acknowledgements

The authors would like to thank the German Federal
Ministry for Economic Affairs and Energy (BMWi)
and E.ON, RWE and Vattenfall
for the financial support of the
project in the frame of the
COORETEC program (Grant
No. 03ET7017G) [13].

75

80

85

90

95

100

105

-10 0 10 20 30

P
o
w

er
 O

u
tp

u
t

in
 %

Time in min

Target power output
Simulation power output (1x P_perm)
Simulation power output (2x P_perm)
Simulation power output (3x P_perm)

0

1

2

3

80 % → 100 % 60 % → 100 % 50 % → 100%

N
o
rm

a
li

ze
d

 L
o
a

d
 c

h
a

n
g

e
ra

te

[(
M

W
/m

in
)/

(M
W

/m
in

) n
o
m

in
a
l]

1x P_perm - Specification in unit control
1x P_perm - Load change rate determined with 90 percent method
2x P_perm - Specification in unit control
2x P_perm - Load change rate determined wit 90 percent method
3x P_perm - Specification in unit control
3x P_perm - Load change rate determined with 90 percent method

Flexibilization of Coal-fired Power Plants by Dynamic Simulation

722 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118715

References

 [1] AG Energiebilanzen. Bruttostromerzeugung in

Deutschland von 1990 bis 2013, 12.12.2013.

 [2] J. Brunnemann, F. Gottelt, K. Wellner, A. Renz,
A. Thüring, V. Röder, C. Hasenbein, C. Schulze,
G. Schmitz, J. Eiden. Status of ClaRaCCS: Modelling

and Simulation of Coal-Fired Power Plants with CO2

capture, 9th Modelica Conference, Munich, Germany,
2012.

 [3] ClaRa http://www.claralib.com

 [4] B. Epple, R. Leithner. Simulation von Kraftwerken und

Feuerungen, Springer, Wien, 2012.

 [5] German Federal Ministry for Economic Affairs and
Energy (BMWi). Energiedaten, Berlin, 21.10.2014.

 [6] German Renewable Energy Sources Act, current
version from 01.08.2014.

 [7] German Transmission System Operators.

"Netzentwicklungsplan 2014 (erster Entwurf),"

http://www.netzentwicklungsplan.de/netzentwicklungs
plan-2014-zweiter-entwurf

 [8] Market simulation data from the Institute of Energy
Economics at the University of Cologne in the frame of
the Project Partner Steam Power Plant [13].

 [9] Mitsubishi Hitachi Power Systems Europe GmbH,
reference list.

[10] M. Richter, G. Oeljeklaus, K. Görner. Dynamic

Simulation of Coal-Fired Power Plants focusing on the

Modeling of the Steam Generator, 10th European
Conference on Industrial Furnaces and Boilers, Porto,
Portugal, 2015.

[11] VDI/VDE 3503. Steam Temperature Control in Fossil

Fired Steam Power Stations.

[12] VDI/VDE 3508. Unit control of thermal power stations

[13] VGB PowerTech e.V., VGB Research Project 375:

Partner steam power plant for the regenerative power

generation.
http://www.vgb.org/en/research_project375.html

Session 10B: Power, Energy & Process Applications 2

DOI
10.3384/ecp15118715

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

723

724 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Where impact got Going

Michael Tiller1 Dietmar Winkler2

1Xogeny Inc., USA, michael.tiller@xogeny.com
2Telemark University College, Norway, dietmar.winkler@hit.no

Abstract

This paper discusses the impact package manager. The
primary goal of this project is to support the development
of a healthy eco-system around Modelica. For many
other languages, the existence of an easy to use pack-
age manager has made it easier for people to explore and
adopt those languages. We seek to bring that same kind
of capability to the Modelica community by incorpo-
rating useful features from other package managers like
bower, npm, etc.

This paper is an update on the status of the impact
package manager which was discussed previously in
(Tiller and Winkler 2014). This latest version of
impact involves a complete rewrite that incorporates
a more advanced dependency resolution algorithm. That
dependency resolution will be discussed in depth along
with many of the subtle issues that arose during the de-
velopment of this latest version of impact. Along with
a superior dependency resolution scheme, the new ver-
sion of impact is much easier to install and use. Fur-
thermore, it includes many useful new features as well.
Keywords: Modelica, package management, GitHub, de-

pendency resolution, golang

1 Introduction

1.1 Motivation

The motivation behind the impact project is to support
two critical aspects of library development. The first is to
make it very easy for library developers to publish their
work. The second is, at the same time, to make it easy
for library consumers to both find and install published
libraries.

We also feel it is important to reinforce best practices
with respect to model development. For this reason, we
have made version control an integral part of our solu-
tion. Rather than putting users in a position to have to
figure out how to make impact work with a version
control system, we’ve build impact around the version
control system. Not only do users not have to find a
way to make these technologies work together, impact
actually nudges those not using version control toward

solutions that incorporate version control. In this way,
we hope to demonstrate to people the advantages of both
impact and version control and establish both as “best
practices” for model development.

By creating a tool that makes it easy to both publish
and install libraries, we feel we are creating a critical
piece of the foundation necessary to establish a healthy

ecosystem for model development.

1.2 History

Earlier, we mentioned that impact has been completely
rewritten. In fact, the very first version of impact was
just a single Python script for indexing and installing
Modelica code (Tiller 2013). It eventually evolved into
a multi-file package that could be installed using the
Python package management tools.

2 Requirements

After building the original Python version, we gave
some thought to what worked well and what didn’t
work well. One issue we ran into almost immediately
was the complexity of installing the Python version of
impact. Python is unusual in that it has two package
managers, easy_install and pip. It comes with
easy_install, but pip is the more capable package
manager. So in order for someone to install impact,
they first needed to install Python, then install pip and
then install impact. This was far too complicated. So
we wanted to come up with a way for people to install
impact as a simple executable without any run-time
or prerequisites.

Another issue we ran into with the Python version
was the fact that there are two different and incompat-
ible versions of Python being used today (i.e., 2.x and
3.x). Trying to support both was an unnecessarily ineffi-
cient use of resources. We also had some difficulties in
the Python version with support for SSL under Windows
(StackOverflow 2010). Because we were doing lots of
“crawling” (more on this shortly), we needed a platform
that provided solid HTTP client support. For these rea-
sons, we felt we needed to move away from Python alto-
gether.

DOI
10.3384/ecp15118725

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

725

Although most Modelica users run their development
tools and simulations under Windows, there are several
tools that support OSX and Linux as well as Windows.
So as to not neglect users of those tools and to support
more cross-platform options, we also wanted to be able
to compile impact for all three major platforms.

Furthermore, we wanted to provide a simple exe-
cutable for all platforms without having to have actual
development machines for each of these different plat-
forms. For this reason, cross compilation between dif-
ferent platforms was an important consideration as well.

Of course, we also wanted to have good performance.
For most package management related functions, the
speed of the internet connection is probably the biggest
limiting factor. So CPU performance wasn’t that high
on the list. But, as we shall discuss shortly, the compu-
tational complexity of the dependency resolution algo-
rithm we implemented could lead to some computation-
ally intensive calculations for complex systems of depen-
dencies.

For these reasons, we ultimately rewrote impact in
Go (Go-Developers 2014). Go is a relatively new lan-
guage from Google that stresses simplicity in language
semantics but, at the same time, provides a fairly com-
plete standard library. You can think of Go as being quite
similar to C with support for extremely simple object-
oriented functionality, automatic garbage collection and
language level support for CSP-based concurrency. With
Go, we were able to satisfy all the requirements above.

3 Version Numbering

Before we dive into all the details associated with crawl-
ing, indexing, resolving and installing, it is useful to
take a moment to briefly discuss versioning. Modelica
supports the notion of versions through the use of the
version and uses annotations. These two annota-
tions allow libraries to explicitly state what version they
are and what versions of other libraries they use, respec-
tively.

But there is one complication to the way Modelica
deals with versions. In Modelica, a version is simply
a string. This by itself isn’t a problem. But it becomes
a problem, as we will discuss in greater detail shortly,
when you need to understand relationships between ver-
sions. In particular, there are two important things we
would like to determine when dealing with version num-
bers. The first is an unambiguous ordering of versions.
In other words, which, of any two versions, is the “latest”
version? The second is whether a newer version of a li-
brary is “backwards compatible” with a previous version.
These are essential questions when trying to resolve de-
pendencies and the current string based approach to ver-
sions in Modelica is not semantically rich enough to help
us answer either of these.

This issue is not unique to the Modelica world. These

same questions have been asked for a very long time and
various approaches have been invented to deal with an-
swering these questions. One recent and widely used
approach is to employ what is called semantic ver-

sioning (Preston-Werner 2014). Semantic versioning is
pretty much what it sounds like, an approach to defining
version numbers where the version numbers have very
explicit meanings associated with them.

A very simple summary of semantic versioning would
be that all versions have exactly three numerical compo-
nents, a major version number, a minor version number
and a patch. A semantic version must have all of these
numbers and they must be .-separated. For this rea-
son, the following versions are not legal semantic version
numbers: 1, 1a, 1.0, 1.0-beta5, 4.0.2.4096.
Each of the three numbers in a semantic version means
something. If you make a non-backward compatible
change, you must increment the major version. If you
make a backward compatible version, you must incre-
ment the minor version. If you make a change that should
be completely compatible with the previous version (e.g.,

doesn’t add any new capability), you increment only the
patch version.

There are additional provisions in semantic versioning
to handle pre-release versions as well as build annota-
tions. We will not discuss those semantics here, but they
are incorporated into our implementation’s treatment of
version numbers.

Our use of semantic versioning is aligned with our
goal of strongly encouraging best practices. It is im-
portant to point out that the use of semantic versions is
completely legal in Modelica. In other words, Modelica
allows a wider range of interpretations of version num-
bers. By using semantic versions, we narrow these inter-
pretations but we feel that this narrowing is much better
for the developer since it also provides meaning to the
version numbers assigned to a library.

However, because Modelica libraries are free to use
nearly any string as a version number, we need to find a
way to “bridge the gap” between past usage and the us-
age we are encouraging moving forward. Although in-
ternally impact understands only semantic versions, it
is still able to work with nearly all existing Modelica li-
braries. This is achieved through a process of “normaliz-
ing” existing versions. When impact comes across ver-
sions that are not legal semantic versions, it attempts to
create an equivalent semantic version representation. For
example, a library with a version string of 1.0 would be
represented by the semantic version 1.0.0.

For this normalization to work, it is important to make
sure that the normalization is performed both on the ver-
sion number associated with a library and on the version
numbers of the libraries used. In other words, it must
be applied consistently to both the version and uses
annotations.

Where impact got Going

726 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118725

4 Indexing

As mentioned previously, there are two main functions
that impact performs. The first is making it easy for
library developers to publish their libraries and the other
is making it easy for consumers to find and install those
same libraries. Where these two needs meet is the li-
brary index. The index is built by collecting informa-
tion about published libraries. The same index is used

by consumers searching for information about available
libraries.

Building the index involves crawling through repos-
itories and extracting information about libraries that
those repositories contain. In the following section we
will discuss this crawling process in detail and describe
the information that is collected and published in the re-
sulting index.

4.1 Sources

Currently, impact only supports crawling
GitHub (GitHub 2014) repositories. It does this by
using the GitHub API (GitHub-Developers 2014) to
search through repositories associated with particular
users and to look for Modelica libraries stored in those
repositories. We will shortly discuss exactly how it
identifies Modelica libraries. But before we cover those
details it is first necessary to understand which versions

of the repository it looks into.
Each change in a Git repository involves a commit.

That commit affects the contents of one or more files in
the repository. During development, there are frequent
commits. To identify specific versions of the repository,
a tag can be associated with that version. Each tag in the
repository history that starts with a v and is followed by
a semantic version number is analyzed by impact.

4.2 Repository Structure

For each version of a repository tagged with a seman-
tic version number, impact inspects the contents of
that version of the repository looking for Modelica li-
braries. There are effectively two ways that impact
finds Modelica libraries in a repository. The first is to
check for libraries in “obvious” places that conform to
some common conventions. For cases where such con-
ventions are insufficient, impact looks for a file named
impact.json to explicitly provide information about
the repository.

4.2.1 Conventions

With respect to impact, the following is a list of “ob-
vious” places that impact checks for the presence of
Modelica libraries:

• ./package.mo The entire repository is treated as
a Modelica package.

• ./<dirname>/package.mo or
./<dirname> <ver>/package.mo The di-
rectory <dirname> is presumed to be a Modelica
package.

• ./<filename>.mo or
./<filename> <ver>.mo The file
./<filename>.mo is a file containing a
Modelica library.

In all cases, the name of the library is determined by
parsing the actual Modelica package definition and is
not related to the name of the repository. As can be seen
from these conventions, only files and directories that ex-
ist at the root level are checked for Modelica content.

4.2.2 impact.json

For various reasons, library developers may not wish to
conform to the repository structure patterns discussed
previously. Furthermore, there may be additional in-
formation they wish to include about their libraries.
For this reason, a library developer can include an
impact.json file in the root of the repository di-
rectory that provides additional information about the
contents of the repository. For example, a repository
may contain two or more Modelica libraries in sub-
directories. The impact.json file allows informa-
tion about the storage location of each library in the
repository to be provided by the library developer. Fur-
thermore, the author may wish to include contact infor-
mation beyond what can be extracted from information
about the repository and its owner. These are just a few
use cases for why an impact.json file might be use-
ful for library developers. A complete schema for the
impact.json file can be found later in Section 4.4.2.

4.3 Handling Forks

The Modelica specification implicitly assumes that each
library is uniquely identified by its name. This name is
used in both the version and uses annotations as well
as any references in Modelica code (e.g., Modelica in
Modelica.SIunits). This assumption works well
when discussing libraries currently loaded into a given
tool. But when you expand the scope of your “names-
pace” to include all libraries available from multiple
sources, the chance for overlap becomes possible and
must be dealt with.

Previously, we mentioned the importance of support-
ing best practices in model development and the specific
need to accommodate version control as part of that pro-
cess. Up until now, we have leveraged version control to
make the process of indexing and collection libraries eas-
ier. However, version control does introduce one com-
plexity as well. That complexity is how to deal with
forks.

Forks are common in open source projects and typi-
cally occur when there are multiple perspectives on how

Session 10C: Modelica Tools

DOI
10.3384/ecp15118725

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

727

development should progress on a given project. In some
cases, rather than reconciling these different perspec-
tives, developers decide to proceed in different direc-
tions. When this happens, the project becomes “forked”
and there are then (at least) two different libraries being
developed in parallel. Each of these libraries may share a
common name and perhaps even the same version num-
bers but still be fundamentally different libraries.

A fork can arise for another, more positive, reason.
When someone improves a library they may not have
permission to simply fold their improvement back into
the original library. On GitHub in particular, it is ex-
tremely common for a library to be forked simply to en-
able a third-party to make an improvement. The author
of the improvement then sends what is called a pull re-

quest to the library author asking them to incorporate the
improvement. In such a workflow, the fork is simply a
temporary measure (akin to a branch) to support concur-
rent development. Once the pull request is accepted, the
fork can be removed entirely.

Regardless of why the fork occurs, it is important
that impact accommodates cases where forking occurs.
This is because forking is a very common occurrence in
a healthy eco-system. It indicates progress and interest
and we should not do anything to stifle either of these.
The issue with forking is that the same name might be
used by multiple libraries. In such cases, we need a bet-
ter way to uniquely identify libraries.

For this reason, impact records not only the library

name, but also a URI associated with each library. In
this way, the URI serves as a completely unambiguous
way of identifying different libraries. While two forks
may have the same name, they will never have the same
URI.

4.4 Schema

We’ve mentioned the kinds of information impact col-
lects while indexing as well as the kind of informa-
tion that might be provided by library developers (via
impact.json files). In this section, we will provide a
complete description of information used by impact.

4.4.1 impact_index.json

As part of the indexing process, impact produces an in-
dex file named impact_index.json. This is a JSON
encoded representation of all the libraries found during
indexing. The root of an impact_index.json file
contains only two elements:

version A string indicating what version of impact
generated the index. The string is, of course, a se-
mantic version.

libraries The libraries field is an array. Each ele-
ment in the array describes a library that was found.
The order of the elements is significant. Libraries

that occur earlier in the list take precedence over li-
braries that appear later. This is important in cases
where libraries have the same name.

For each library in the libraries array, the follow-
ing information may be present:

name The name of the library (as used in Modelica)
description A textual description of the library
stars A way of “rating” libraries. In the case of

GitHub, this is the number of times the repository
has been starred. But for other types of sources,
other metrics can be used.

uri A URI to uniquely identify the given library (when
it shares a common name with another library)

owner_uri A URI to uniquely identify the owner of
the library

email The email address of the owner/maintainer of
the library

homepage The URL for the library’s homepage
repository The URI for the library’s source code

repository
format The format of the library’s source code repos-

itory (e.g., Git, Mercurial, Subversion)
versions This is an object that maps a semantic ver-

sion (in the form of a string) to details associated
with that specific version

The details associated with each version are as fol-
lows:

version A string representation of the semantic ver-
sion (i.e., one that is identical to the key).

tarball_url A URL that points to an archive of the
repository in tar format.

zipball_url A URL that points to an archive of the
repository in zip format.

path The location of the library within the repository.
isfile Whether the Modelica library is stored as a file

(true) or as a directory (false)
sha This is a hash associated with this particular ver-

sion. This is currently recorded by impact during
indexing but not used. Such a hash could be useful
for caching repository information locally.

dependencies This is an array listing the dependen-
cies that this particular version has on other Model-
ica libraries. Each element in this array is an object
with one field, name, giving the name of the re-
quired library and another field, version, which
is the semantic version of that library represented
as a string (see previous discussion on normaliza-
tion in 3).

4.4.2 impact.json

As mentioned previously in Section 4.2.2, each directory
can include a file named impact.json that provides
explicit information about Modelica libraries contained

Where impact got Going

728 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118725

in that repository. The root of the impact.json file
contains the following information:

owner_uri A link to information about the libraries
owner

email The email address of the owner or maintainer
alias An object that whose keys are the names of li-

braries and whose associated values are the unique
URIs of those libraries. This information can,
therefore, be used to disambiguate between depen-
dencies where there may be multiple libraries with
that name.

libraries This is an array where each element is
an object that contains information about a library
present in the repository.

For each library listed in the libraries field, the
following information may be provided:

name The name of the library
path The path to the library
isfile Whether the entity pointed to by path is a

Modelica library stored as a file (true) or as a di-
rectory (false).

issues_url A link pointing to the issue tracker for
this library

dependencies An explicit list of dependencies for
this library (if not provided, the list will be based
on the uses annotations found in the package def-
inition).

Each dependency in the list should be an object that
provides the following information:

name Name of the required library

uri Unique URI of the required library

version Semantic version number of the required li-
brary (represented as a string)

5 Installation

The previous section focused on how impact collects
information about available libraries. The main applica-
tion for this information is to support installation of those
libraries. In this section, we’ll discuss the installation
side of using impact.

5.1 Dependency Resolution

5.1.1 Background

To understand the abstract problem behind the concept of
a dependency, we refer to the formal study undertaken in
(Boender 2011). There, a repository is defined as a triple
(R,D,C) of a set of packages R, a dependency function
D : R → P(P(R)), and a conflict relation C ⊆ R×R.

At that level, version numbers have been abstracted to
(distinguishable) packages: Every version yields a dis-
tinctive package p ∈ P.

The dependency function D maps a package p to sets
of sets of packages d ∈ D(p), where each set represents a
way to provide one required feature of p. In other words:
If for each d ∈D(p) at least one package in d is installed,
it is possible to use p.

Currently, there is no way to express conflicts directly
in a Modelica package. However, due to the existence
of external libraries (which could conflict in arbitrary
ways), it is likely that such a need will arise in the fu-
ture. Additionally, current Modelica makes it impossible
to refer to two different versions of a library from the
same model. Hence, we consider different versions of
the same package conflicting.

The dependency resolution of impact fits into Boen-
der’s model. Therefore, the conclusions drawn in (Boen-
der 2011) can be applied to impact as well:

The set of packages impact installs for a given
project needs to fulfill two properties, Boender calls
abundance and peace. Informally, abundance captures
the requirement that all dependencies be met while peace
avoids packages that are in conflict with each other. A
set of packages that is peaceful and abundant is called
healthy and a package p is called installable w.r.t. a given
repository if and only if there exists a healthy set I in said
repository such that p ∈ I.

The problem of finding such an installable set is how-
ever a hard one. In fact, Boender proves by a simple
isomorphism between the boolean satisfiability problem
and the dependency resolution that finding such a set is
NP-hard. Fortunately, for the current typical problem
size, this isn’t really an issue.

5.1.2 Resolution Algorithm

The indexing process collects quite a bit of information
about available libraries. Most of the complexity in im-
plementing the installation functionality in impact is in
figuring out what to install. And most of that complex-
ity is in finding a set of versions for the required libraries
that satisfy all the dependency relations. This process is
called dependency resolution.

The resolution algorithm starts with a list of libraries
that the user wants to install. In some cases, this may
be a single library but, in general, the list can be of any
length. For each library in the list, the user may specify
a particular version of the library they wish to install, but
this isn’t mandatory. One important point here is that we
refer to this as a list, not a set. Order is significant here.
The libraries that appear first are given a higher priority
than those that appear later.

Let’s explain why this priority is important. Consider
a user who wishes to install libraries A and B. If the user
has not explicitly specified what version of each library
they are interested in, impact assumes the user wants

Session 10C: Modelica Tools

DOI
10.3384/ecp15118725

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

729

the latest version, if possible. But what if the latest ver-
sion of both cannot be used? To understand this case,
consider the following constraints:

A:1.0.0 uses B:2.0.0

A:2.0.0 uses B:1.0.0

where A:1.0.0 means version 1.0.0 of library A.
This example is admittedly contrived, but the underly-
ing issue is not. We can see here that if we want the
latest version of A, we cannot also use the latest version
of B (and vice versa) while still honoring the constraints
above. The ordering of the libraries determines how we
“break the tie” here. Since A appears first, we assume it
is more important to have the latest version of A than to
have the latest version of B.

Let’s take this extremely simple example to outline
how the resolution algorithm would function in this case.
In later sections, we’ll introduce additional complexities
that must be dealt with.

If a user asks for libraries A and B to be installed, the
question that the dependency algorithm has to answer is
which versions do we use. Assuming that each library
has a version 1.0.0 and 2.0.0, then each “variable”
in this problem has two possible values. The following
table essentially summarizes the possibilities:

Version of A Version of B
1.0.0 1.0.0

1.0.0 2.0.0

2.0.0 1.0.0

2.0.0 2.0.0

This is a simple enumeration of the possibilities. But
remember, we assume the user wants the most recent ver-
sion and we assume A is more important than B. Seman-
tic versioning provides us with a basis for determining
which version is more recent. Given these we reorder
these combinations so that the most desirable combina-
tions appear first and the least desirable appear last:

Version of A Version of B
2.0.0 2.0.0

2.0.0 1.0.0

1.0.0 2.0.0

1.0.0 1.0.0

Now we see the impact of the dependency con-
straints. Specifically, the first (most desirable) combi-
nation in this table does not satisfy the dependency con-
straints (i.e., A:2.0.0 does not work with B:2.0.0).
If we eliminate rows that violate our dependency con-
straints, we are left with:

Version of A Version of B
2.0.0 1.0.0

1.0.0 2.0.0

In summary, we order the combinations by their de-
sirability (considering both the relative priority of the

libraries and their version numbers) and then we elimi-
nate combinations that don’t satisfy our dependency con-
straints.

This gives an overview of how the algorithm works
conceptually. But, as you may have guessed, the problem
is not quite this simple. Consider now a slightly more
complex case with the following dependencies:

1 A:3.0.0 uses B:1.2.0

2 A:3.0.0 uses C:1.1.0

3 B:1.2.0 uses C:1.2.0

4 A:2.0.0 uses B:1.1.0

5 A:2.0.0 uses C:1.0.0

6 B:1.1.0 uses C:1.1.0

7 A:1.0.0 uses B:1.0.0

8 A:1.0.0 uses C:1.0.0

9 B:1.0.0 uses C:1.0.0

Now we have three variables we need to solve for, A, B
and C. For each variable, we have three possible values.
As we’ve already described, newer versions are preferred
over older versions while searching. This means that the
first combination we will consider will be. . .
A:3.0.0, B:1.2.0 and C:1.2.0

. . . and the last combination we will consider will be. . .
A:1.0.0, B:1.2.0 and C:1.2.0
There are several interesting things to notice about this

case. First, although the problem is not particularly large
(3 libraries with 3 versions each), the number of combi-
nations to check is significant (i.e., 3 ·3 ·3= 27). Of these
27 combinations, only the last one to be considered (i.e.,

the least desirable) satisfies the dependency constraints.
There is nothing we can really do about the fact that the
oldest version of each of these libraries must be used (this
is dictated by the dependencies themselves and has noth-
ing to do with the algorithm). But the complication is
that we must consider all of them (in this contrived case)
before finding the one we want.

In reality, we would not actually enumerate all possi-
bilities a priori. Instead, we would simply consider each
“variable” one at a time and loop over all possible ver-
sions. If, at any point, we find a conflict with our con-
straints, we simply break out of the inner most loop. This
is referred to as backtracking. In Modelica pseudo-code,
the algorithm (for this specific case) might look like this:

for A in ["3.0.0", "2.0.0", "1.0.0"] loop

for B in ["1.2.0", "1.1.0", "1.0.0"] loop

if not are_compatible(A,B) then

break;

end if;

for C in ["1.2.0", "1.1.0", "1.0.0"] loop

if not are_compatible(B,C) then

break;

end if;

if not are_compatible(A,C) then

break;

end if;

//If we get here, we have a solution

end for;

end for;

end for;

Where impact got Going

730 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118725

Using this backtracking, we can more efficiently tra-
verse the possibilities by eliminating lots of cases that
we know are a dead end (especially in larger problems).
Any search based on backtracking is vulnerable to poor
performance under certain (typically pathological) con-
ditions. We’ll return to this point later when we talk
about performance of our current implementation.

There is one last complication we must deal with when
resolving dependencies. Consider the following simple
set of dependencies:

1 A:2.0.0 uses B:1.2.0

2 A:2.0.0 uses C:1.1.0

3 B:1.2.0 uses C:1.2.0

4 A:1.0.0 uses B:1.1.0 or
B:1.0.0

(i.e., A can use B:1.1.0 or B:1.0.0)
5 A:1.0.0 uses D:1.1.0

6 B:1.0.0 uses C:1.1.0

7 C:1.2.0 uses D:1.0.0

8 B:1.1.0 uses C:1.2.0

We can also represent this set of dependencies graphi-
cally as shown in Figure 1. Graphically, we have a box to
represent each library and that box contains the different
versions available. These versions are connected by the
constraints shown in the table above.

Library A

A:2.0.0

A:1.0.0

Library B

B:1.2.0B:1.1.0B:1.0.0

1

4 4
Library C

C:1.2.0C:1.1.0

3

8

2

6

Library D

D:1.1.0

D:1.0.0

5

7

Figure 1. Graphical representation of package dependencies

Given these dependencies and the fact that the user
wishes to install both A and B, what are the variables
in our dependency resolution algorithm? Obviously, we
must consider all the versions of both A and B (i.e., we
must pick a version from the box for library A and B in
Figure 1). But what about C and D? It makes no sense to
enumerate all combinations of versions for these four li-
braries because in many cases D isn’t even required. Fur-
thermore, what is their relatively priority (i.e., if a choice

is required, is it more important to have the latest version
of C or D?)

When resolving dependencies, we only introduce new
libraries when necessary (i.e., if they are needed by our
current choices of existing libraries) and their relative
priority is determined by the relative priority of the li-
brary that introduced them.

To understand how the resolution works in this case,
first consider the case of A:2.0.0. This version cannot
be chosen. This is because A:2.0.0 wants C:1.0.0
while B:1.2.0 wants C:1.1.0. So no choice for C is
valid. Furthermore, we don’t even consider D because it
isn’t required in any of these cases.

Now if we move to the case of A:1.0.0, things
are more complicated. Now we do need to consider
both D and C. However, note that because A:1.0.0
depends directly on D, we consider D more important.
This is important because when considering A:1.0.0

we have two versions of B that are compatible1 (i.e.,
B:1.1.0 and B:1.0.0). Given that we are consid-
ering A:1.0.0 and we’ve already ruled out B:1.2.0,
we are left with the following combinations:

Version of B Version of D Version of C
1.1.0 1.1.0 1.2.0

1.1.0 1.1.0 1.1.0

1.1.0 1.0.0 1.2.0

1.1.0 1.0.0 1.1.0

1.0.0 1.1.0 1.2.0

1.0.0 1.1.0 1.1.0

1.0.0 1.0.0 1.2.0

1.0.0 1.0.0 1.1.0

Notice the ordering of the columns? Since the user
originally asked for both A and B, B comes first. But
when it comes to C and D, having a more recent version
of D is more important than having a more recent version
of C.

As mentioned previously, we don’t construct every
combination. Furthermore, we don’t always consider all
libraries. The best way to understand how this search
proceeds is to enumerate the partial combinations that
our search generates and the point at which backtrack-
ing occurs. In such a case, we can think of the search as
proceeding as follows:

1It is not possible to express this kind of “or” dependency currently
in Modelica, but it is supported by impact. This capability exists in
impact both to support anticipated future capabilities in Modelica
(Tiller 2012) and/or to support cases we will discuss shortly that con-
sider cases of compatibility implicit in semantic versions.

Session 10C: Modelica Tools

DOI
10.3384/ecp15118725

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

731

A:2.0.0 ❯
A:2.0.0 & B:1.2.0 ❯
A:2.0.0 & B:1.2.0 & C:1.2.0 ✘→#2
A:2.0.0 & B:1.2.0 & C:1.1.0 ✘→#3
A:2.0.0 & B:1.1.0 ✘→#1
A:2.0.0 & B:1.0.0 ✘→#1
A:1.0.0 & B:1.2.0 ✘→#4
A:1.0.0 & B:1.1.0 ❯
A:1.0.0 & B:1.1.0 & D:1.1.0 ❯
A:1.0.0 & B:1.1.0 & D:1.1.0 & C:1.2.0 ✘→#7
A:1.0.0 & B:1.1.0 & D:1.1.0 & C:1.1.0 ✘→#8
A:1.0.0 & B:1.1.0 & D:1.0.0 ✘→#5
A:1.0.0 & B:1.0.0 & D:1.1.0 & C:1.2.0 ✘→#6
A:1.0.0 & B:1.0.0 & D:1.1.0 & C:1.1.0 ✔

This elaboration of the search shows the role that
the relative priority of libraries and versions has on the
search order but also how a particular library is not even
considered until a dependency on that library is intro-
duced by choosing a particular version that depends on
it.

It should be noted that there are a variety of other spe-
cial cases we also deal with like self dependency and
cyclic dependency. But these are constraints like any
other and don’t really impact the algorithm in any sig-
nificant way.

The actual algorithm is implemented
by the findFirst method on the
LibraryGraph type found in the
github.com/xogeny/impact/graph pack-
age. The inputs to this function are:

mapped Any existing decisions about specific versions
of each library (initially empty)

avail The set of all (remaining) possible versions for
each library (initially all versions of all libraries)

rest A list of libraries that are required based on ex-
isting decisions but for which no version choice has
yet been made (initially the libraries the user wants
installed in the order specified by the user)

The algorithm then proceeds as follows:

1. Is rest empty? If so, we are done and we have a
solution (i.e., mapped)

2. Consider the first library in rest

3. Loop over available versions (based on avail)

(a) Add this choice to mapped

(b) Find any new library dependencies resulting
from this choice

(c) If incompatible decisions have already been
made about these new dependencies, back-
track

(d) Update avail to include version of new de-
pendencies that are compatible with our pre-
vious choices

(e) If there are no possible versions for any li-
brary we depend on, backtrack

(f) Return the result of calling this function
again recursively using updated values for
mapped, avail and rest.

5.1.3 Formulating Constraints

The default assumption is that dependencies will come
from the uses annotation in Modelica. There is a pro-
posal to extend the uses annotation to allow multiple
compatible versions to be listed (vs. only a single com-
patible version today). As mentioned previously, such
an or relationship is already supported by impact. So
this change would not impact the resolution algorithm
used by impact.

Although it hasn’t yet been implemented, one pro-
posed fallback mode for impact is to ignore the ex-
plicit dependencies contained in Modelica code and in-
stead rely on the dependency relationships implicit in
semantic versions. In other words, if a library B has two
versions, 1.1.1 and 1.1.2, and those versions strictly
follow semantic versioning conventions, then we know
that any library that depends on B:1.1.1 must also be
compatible with B:1.1.2. Such a fallback mode could
be employed when impact is unable to find a solution
using explicit constraints.

6 Go Implementation

We’ve created an implementation of impact using Go.
This implementation includes different sub-packages for
dealing with crawling repositories, resolving dependen-
cies, parsing Modelica code and managing configuration
settings. It also contains a sub-package for implementing
the command-line tool and all of its sub-commands. This
structure means that impact is not only a command-
line tool, but also a Go library that can be embedded in
other tools.

The Go implementation includes the following com-
mands:

search Search library names and descriptions for
search terms.

install Install one or more libraries and their depen-
dencies.

index Build an index of repositories.
version Print out version and configuration informa-

tion.

For each command, you can use the -h switch to find
out more about the command and its options.

Earlier we described our requirements. The main rea-
son we moved to Go from Python was Go’s support for
cross-compiling between all major platforms and the fact

Where impact got Going

732 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118725

that it generates a statically linked binary that doesn’t de-
pend on any runtime. The Go compiler includes a com-
plete implementation of HTTP for both the client and
server. In fact, the standard library for Go is fairly com-
plete. At the moment, the only third party dependencies
for impact are a Go implementation of the GitHub v3
API and an implementation of semantic versioning.

The performance of compiled Go code is quite good.
In Section 5.1.2 we described how the algorithm we are
using could, in a worst case scenario, search every po-
tential combination before finding either a solution or
failing. We constructed several test cases with n vari-
ables where each variable had 2 possible values. The re-
sult is that there will be 2n possible combinations. These
cases were contrived so that the least desirable combina-
tion was the only one that would satisfy the dependency
constraints. We tested the time required for find a solu-
tion for different values of n and we got the following
performance results:

n Time (ms)
10 45
12 141
14 646
20 52,000

It is important to keep in mind that this is a con-

trived case to demonstrate the worst possible case for
resolution. There may very well be other algorithmic
approaches that will find identical solutions but search
more efficiently. But given what we know about Model-
ica libraries and their dependencies, we found this per-
formance more than sufficient for our application.

One last point worth making about the implementa-
tion of impact has to do with security. In order to gen-
erate an index from GitHub repositories, it is necessary
to crawl repositories. In order to accomplish this, many
API calls are required. GitHub will only allow a very
limited number of “anonymous” API calls. This limit
will be reached very quickly by impact. In order to in-
crease the number of allowed API calls, GitHub requires
an “API key” to be used. Such a key can be provided to
impact but it cannot be provided via a command line
option or a configuration file. This is to avoid this sensi-
tive information being inadvertently recorded or exposed
(e.g., by committing it to a version control repository).
Instead, such tokens must be provided as environment
variables.

The impact source code is licensed under an MIT
license and is hosted on GitHub. The GitHub reposi-
tory (Xogeny 2015) includes a LICENSE, README.md
and CONTRIBUTING.md which provide a detailed li-
cense, introductory documentation and instructions for
contributors, respectively. We’ve linked the GitHub
repository to a continuous integration service so that each
commit triggers tests and emails out build status to the
maintainers.

7 impact on library developers

What does all this mean for library developers wanting to
make their library accessible via impact? Let us first
have a look at the past “sins” that were restricting the
development work on Modelica libraries.

7.1 Observations

1. We noticed that the MODELICAPATH concept is
not properly understood by the users and often gets
in their way. Therefore we should not rely on it
but rather work with all of our files collected into
a working directory (which should always part of
the MODELICAPATH and made first priority for the
look-up in the tool).

2. If we go away from having to collect all Mod-
elica libraries in the MODELICAPATH then there
is no longer a need to store the version num-
ber with the library folder name. I.e., simply
“<PackageName>” is sufficient and no need for
“<PackageName> <Version>”.

3. Until now, we advised the lib developers to keep the
current development version in a master branch
and merge master into a release branch where
the directory structure can be changed (e.g., into
“<PackageName> <Version>” and any gen-
erated content can be added). Finally, developers
should then place a tag on the release branch. This
was done for the following reasons:

• The link to the tag provided a (tar)zip
file that contained the library with the
“<PackageName> <Version>” format
ready to be used with MODELICAPATH.
However, we no longer need to rely on
MODELICAPATH any more we don’t need to
add the <Version> identifier to the folder
anymore.

• If we would like to see what stage a certain
release in master was at, then we needed
to either inspect the git history (following
backwards from the release tag) or use an ad-
ditional tag (e.g., “1.2.3-dev”) which is
rather cumbersome and seems unnecessary.

But since GitHub also supports new alternatives
(see below) there is no longer a need for a specific
release branch. That is to say, libray developers
can still use it if they think it useful but they don’t
have to anymore.

7.2 Repository structure recommendations

There are new features/mechanisms made available both
by GitHub and impact:

Session 10C: Modelica Tools

DOI
10.3384/ecp15118725

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

733

• GitHub’s support for assets (GitHub-Blog 2013) al-
lows us to upload additional files to tagged releases

• impact does not use the MODELCAPATH model
but rather uses a “one working directory per
project” approach where (one version) of all re-
quired libraries and their dependencies live in one
(working) directory.

We recommend that library developers make the most
out of the new features above and change the structure in
which they organize their library repositories.

1. Get rid of the release branch as long as it was
only for the sake of providing a download-able
zip-file with a customized structure or providing
additional generated files. Instead use the new
GitHub Releases (GitHub-Blog 2013) which allows
uploading of additional assets for download.

• E.g., rather than adding HTML documenta-
tion to the Resources sub-folder and com-
mitting this to the release branch and then
tagging it, tag the master branch and then
generate a zip-file which contains that state
and add the generated files to the tagged re-
lease. GitHub also provides some informa-
tion on “Creating Releases” (GitHub-Help
2015a) and there exists, for example, the
aktau/github-release tool (Hillegeer
2015) to help automating that process.

• Another benefit of the release assets is that
the GitHub API (GitHub-Developers 2014)
allows you to get the download count for
your releases (GitHub-Help 2015b). This was
not possible for the simple taggged-zip-ball
downloads.

2. Get rid of the <PackageName> <Version>

formatted folder names. The version number does
not belong in the master (i.e., development)
branch anyway and the version annotation is con-
tained in the version annotation which tools will
happily display for you. When you install a pack-
age with impact it will strip that version number
in any case.

7.3 Changes for the library listing

The listing of Modelica libraries on https://

modelica.org/libraries is generated by parsing
the GitHub API and creating a static HTML file that con-
tains all information with links. Currently it is a stand-
alone Python script but we are thinking of adding this
functionality as a sub-module to impact itself.

Up to May 2015 the listing pointed directly to the
(tar)zip-ball URL of the latest tag of a library. This
worked fine if the library used the old release branch

model where the “ready to install” version was placed.
Clicking on that coloured version link resulted in a di-
rect file download.

This has now been changed in such a way that if one
clicks on the listed “Last Release” button one will get
redirected to the “Releases” page of that project show-
ing the last release. This has the advantage that one does
not immediately download the (tar)zip ball but gets to
see proper release notes first and is given a choice of
what version of a release to download (e.g., pure source
distribution of that tag, customized version with addi-
tional files, different platform dependent versions with
pre-compiled binaries).

7.4 Which license is best for your library

The Modelica Standard Library (Modelica) (Model-
ica Association 2013) is licensed under the “Modelica
License Version 2.0” (Modelica Association 2008). So
in order to stay compatible with the Modelica library
most user libraries chose the same license. This seemed
like a natural choice. However, there is one problem
which is not immediately apparent to most library devel-
opers. This is that the “Modelica License Version 2.0”
contains the section “4. Designation of Derivative Works
and of Modified Works” which says that:

“. . . This means especially that the (root-level) name of

a Modelica package under this license must be changed

if the package is modified . . . ”.
This clause makes perfect sense for a main library like

the Modelica library that is developed and maintained
by a major group centrally and wants to protect its prod-
uct name. But what does this mean for open-source
projects that no longer are hosted centrally but rather
decentralized on platforms like GitHub and GitLab but
were contributions no longer are made by committing di-
rectly into one central repository? In the de-centralized
case contributions are given by first “forking” (i.e., gen-
erating a copy of the original repository), modifying that
fork and then sending the contribution back via a “pull-
request” (i.e., offering the originating project to accept
the changes made on the fork). The problem is that the
very first step of “forking” the library generated a copy
with the identical “(root-level) name” and at a different
location. One could argue that this alone is already a
violation of the terms of the “Modelica License Version
2.0”.

So what should the library developer do? The simplest
solution is to not use the “Modelica License Version 2.0”
for libraries but rather go for standard licenses (Open
Source Initiative 2015) that are more compatible with
open source, community driven development (e.g., MIT
or BSD licenses). Interestingly, the old “Modelica Li-
cense Version 1.1” is still suitable for user libraries since
it does not contain the restrictions of having to change
the package name.

So what about “copyleft style” licenses? The most

Where impact got Going

734 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118725

famous copyleft license is the GNU General Public Li-
cense. People might think this would be a good choice
for a license in order to protect parts of their library from
being used inside proprietary libraries without any bug-
fixes and improvements being fed back to them as “up-
stream” developers. Unfortunately the GPL also forbids
that any other non-GPL library (even the Modelica Stan-

dard Library) uses the GPL licensed library and is dis-
tributed that way. So what about the LGPL, this allows
the usage and distribution alongside with other non-gpl
libraries. The problem here is that it does not allow static
linking. Something that typically happens when one cre-
ates a compiled version of a simulation model that uses
different Modelica libraries. A typical example would be
the generation of an FMU (Modelica Association 2015).
A way out of this is the “Mozilla Public License” which
is very much alike the LGPL but allows generated code
to be statically linked together with non-GPL licensed
code.

In conclusion, libraries should, if possible, avoid the
“Modelica License Version 2.0” as this was primarily
designed for the requirements of the Modelica Standard

Library. Perhaps there will be a future revision that is
adapted to current open-source development models. But
until then, we suggest the use of standard licenses along
the lines of BSD/MIT or MPL.

8 Future Development

8.1 Dependency Constraints

As already mentioned, there is currently no way to ex-
press conflicts between different packages. However, it
is highly likely that such conflicting pairs will exist as
more and more packages are published. For instance,
two Modelica models might depend on different, specific
versions of an external library that cannot be linked or
loaded at the same time, an already published package
might contain known bugs etc. Hence, impact could
be extended by the means to express conflicts as well.

Boender introduces the notions of strong dependen-

cies and strong conflicts to optimize the handling of very
large repositories. This kind of optimization might not
be necessary in the Modelica ecosystem right now, but
could provide helpful performance enhancements in fu-
ture versions of impact.

8.2 Crawling

At the moment, impact is only able to crawl GitHub
repositories. There is nothing particularly special about
GitHub and/or its APIs. The authors are confident that
indices could be constructed for many different storage
types. The most obvious next steps for crawling sup-
port would be to add support for GitLab and Bitbucket
(Mercurial and Subversion) repositories. Pull requests to
introduce such functionality are welcome.

On a related note, we anticipate there will be many use
cases where impact could be useful for closed source
projects that involve private repositories. We think this is
an important use case and we hope to provide support for
crawling such repositories. This would, for example, al-
low model developers at companies that have made a sig-
nificant investment in building Modelica related models
and libraries to use impact to search and install these
proprietary libraries via their corporate intranet.

8.3 Project Details

We have already created a number of issues that require
users to provide more explicit information about how
they want impact to function on a per project basis. For
example, when working with forked libraries (where the
index contains multiple libraries with the same name),
it is useful to use the URIs associated with each library
in the index to disambiguate which particular library to
use. Furthermore, there may be cases where the user is
actually interested in doing development work on the de-
pendencies as well. In such cases, those dependencies
shouldn’t simply be installed, they should be checked

out from their repository to make modifying and re-
committing easier.

For these and other project related features, we feel
there is a need to introduce another file to provide such
additional information that is project specific.

8.4 Web Based Search

Other package managers often provide a web site where
users can search for a specific package through the web,
read documentation, log issues and/or even download the
packages. Because impact is organized into libraries
(and not just a command line tool), we feel this kind of
functionality could be added in the future.

8.5 Installers

Finally, when installing software, it is common for de-
velopers to distribute “installers” (i.e., executables that,
when run, unpack and install the software). Another po-
tential extension of impact could be to generate such
installers. In this case, we could once again leverage
Go’s static executable generation to build such installers
from the index. Instead of installing the needed files lo-
cally, the installer could simply bundle them up and at-
tach them to an installation program using one of the
many Go extensions (Riemer 2015; Tebeka 2015) for
concatenating static content onto executables or simply
downloading some pre-specified libraries over the net-
work.

Session 10C: Modelica Tools

DOI
10.3384/ecp15118725

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

735

9 Conclusion

In conclusion, impact leverages information already
available in Modelica source code along with some com-
mon conventions in order to help users find and in-
stall Modelica libraries. It does this by crawling repos-
itories and indexing their contents. An index of pub-
licly available libraries created by impact is hosted on
modelica.org for use by the impact command line
tool.

If present, the impact command line tool is already
used by OpenModelica to help find and install depen-
dencies. By making the impact executables available
across platforms and providing a version of the source
code that can also be embedded as a library, we hope
the Modelica community will benefit from having first
class package management capabilities, just like other
software eco-systems.

10 Acknowledgements

The authors would like to thank Christoph Höger
of Technische Universität Berlin, Martin Sjölund of
Linköping University, Francesco Casella of Politecnico
di Milano and Peter Harman of ESi Group for their con-
tributions to this project.

References

Boender, Jaap (2011). “A formal study of Free Software
distributions”. PhD thesis. Université Paris-Diderot-
Paris VII.

Go-Developers (2014). The Go Programming Language

Specification. URL: http://golang.org/ref/
spec.

GitHub (2014). Build software better, together. URL:
https://github.com/.

GitHub-Blog (2013). Release Your Software. URL:
https : / / github . com / blog / 1547 -

release-your-software.
GitHub-Developers (2014). GitHub API v3. URL:
http://developer.github.com/v3/.

GitHub-Help (2015a). Creating Releases. URL: https:
/ / help . github . com / articles /

creating-releases/.
– (2015b). Getting the download count for your re-

leases. URL: https://help.github.com/
articles / getting - the - download -

count-for-your-releases.
Hillegeer, Nicolas (2015). aktau/github-release. URL:
https : / / github . com / aktau / github -

release.
Modelica Association (2008). Modelica Licence Ver-

sion 2.0. URL: https : / / modelica . org /

licenses/ModelicaLicense2.

– (2013). Modelica - Free library from the Modelica

Association. URL: https : / / github . com /

modelica/Modelica.
– (2015). Functional Mock-up Interface. URL: https:
//fmi-standard.org.

Open Source Initiative (2015). Licenses. URL: http:
//opensource.org/licenses/.

Preston-Werner, Tom (2014). Semantic Versioning 2.0.0.
URL: http://semver.org/.

Riemer, Geert-Johan (2015). go.rice. URL: https://
github.com/GeertJohan/go.rice.

StackOverflow (2010). How to install Python ssl module

on Windows? URL: http://stackoverflow.
com / questions / 2261866 / how - to -

install - python - ssl - module - on -

windows.
Tebeka, Miki (2015). nrsc - Resource Compiler for Go.

URL: https : / / bitbucket . org / tebeka /
nrsc.

Tiller, Michael (2012). Modelica Change Pro-

posal For Package Handling. URL: https :

//trac.modelica.org/Modelica/raw-

attachment / ticket / 573 / Package -

Proposal_asMCP.doc.
– (2013). Gist of first version of impact.py. URL:
https : / / gist . github . com / xogeny /

fac3ea9174e74275e7fe.
Tiller, Michael and Dietmar Winkler (2014). “im-

pact - A Modelica Package Manager”. In: Proceed-

ings of the 10th International Modelica Conference,

March 10-12, 2014, Lund, Sweden. Ed. by Hubertus
Tummescheit and Karl-Erik Årzén. Modelica Associ-
ation. Linköping University Electronic Press, pp. 543–
548. URL: http://www.ep.liu.se/ecp/
096/057/ecp14096057.pdf.

Xogeny (2015). impact code repository on GitHub. URL:
https://github.com/xogeny/impact.

Where impact got Going

736 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118725

Visualizing Simulation Results from Modelica Fluid Models

Using Graph Drawing in Python

Marcus Fuchs Rita Streblow Dirk Müller

RWTH Aachen University, E.ON Energy Research Center, Institute for Energy Efficient Buildings and Indoor

Climate, Aachen, Germany, mfuchs@eonerc.rwth-aachen.de

Abstract

Models of large thermo-fluid networks can be useful to

better understand the dynamic behavior of complex sys-

tems. Yet, numerical outputs and line plots of individual

variables may not be sufficient ways of processing the

simulation results for the user. Thus, the aim of this pa-

per is to present a visualization approach by means of

graph drawing. To demonstrate the approach, we use an

example from the Modelica Standard Library and the use

case of a district heating system model. We parse the

Modelica model code to generate a System graph that

represents the model structure and its graphical layout.

The graph drawing subsequently visualizes the results

for every time-step. In the examples, we vary line thick-

ness to visualize mass flow rates between two nodes and

line color to show temperatures of the medium. We ar-

gue, that this approach can be a useful tool for modeling

and analysis.

Keywords: Visualization, Graph Drawing, Modelica

Fluid, District Energy System

1 Introduction

One reason for using the Modelica modeling language is

the high re-usability of component models from model

libraries. In this context, the acausal connections be-

tween component models can be used to efficiently as-

semble larger system models (Dizqah et al., 2015). For

thermo-fluid systems, the Modelica.Fluid (Casella

et al., 2006) package includes the concept of stream con-

nectors, which facilitates the modeling of flow networks

with possible flow-reversals. In energy systems mod-

eling, e.g. for building or district heating systems, this

enables the assembly of large system models from only

a limited number of component models like pumps and

pipes.

When connecting multiple Modelica.Fluid com-

ponent models in a pipe network, the fluid flow is driven

by pressure differences between connectors. Often, mod-

els provide a relationship between mass flow rate and the

pressure drop between the component’s ports. This leads

to a network of mass flows between different pressure

levels. In many cases, another key aspect of modeling

are the thermal properties of the fluid flow and parts of

the components. A system model containing information

about all these aspects can be very useful to understand

the system’s dynamic behavior. Yet, with increasing sys-

tem size this amount of data increases at a rate that can

make it hard to comprehend and verify simulation re-

sults. In these cases, numerical outputs and line plots of

individual variables may not be sufficient ways of pro-

cessing simulation results for the user. Thus, the aim of

this paper is to present an approach to visualize the infor-

mation from thermo-fluid system simulations by means

of graph drawing and animation.

The need for additional visualization approaches

when dealing with complex Modelica system models

and its advantages for the user’s understanding has been

highlighted before. Previous work on this topic has

mainly focused on 3D visualization. To this end, Höger

et al. (2012) present an approach called Modelica3D,

in which Modelica code is used to communicate with 3D

rendering tools. They show the applicability of this ap-

proach for multi-body systems as well as in a building

energy system context, with a focus on the 3D visual-

ization of each component. In addition, Hellerer et al.

(2014) give a wide range of examples for their DLR

Visualization Library with a focus on multi-

body simulations. Both these papers also give a similar

overview of other previous work on this topic. Further-

more, simulation environments like Dymola offer func-

tionalities for plotting and animations of 3D objects, also

with a focus on multi-body animations.

In addition to the focus on multi-body and 3D visu-

alization, the field of thermo-fluid modeling has also in

part relied on post-processing simulation results using

the programming language Python. As a result, there

are several Python packages with different functional-

ities available. One such package is BuildingsPy

(LBL-SRG, 2015), which among other functionalities

contains methods for managing simulations, unit testing

model libraries, and processing result files. The package

awesim (De Conick, 2015) is a tool that helps to man-

age a variety of simulations and result files and so is use-

DOI
10.3384/ecp15118737

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

737

ful for multiple simulations and parameter studies. In ad-

dition, the package ModelicaRes (Davies, 2015) pro-

vides a user-friendly approach to process and plot simu-

lation results. There are thus various approaches to read

and work with Modelica simulation results in Python.

When considering the processing of simulation re-

sults for thermo-fluid networks, a promising method to

represent the model structure is in graph format. In a

non-Modelica context, e.g. Fang and Lahdelma (2014)

use a graph notation to describe a district heating net-

work with pipe elements as edges connecting the net-

work nodes. One useful approach to use such graph nota-

tion in Python is to use the package networkXHagberg

et al. (2008). networkX is a free package providing

data structures and algorithms for different graph types

and work involving different kinds of complex networks.

Furthermore, its open design allows for a wide variety of

data to be represented by nodes and edges. Together with

the powerful plotting package matplotlib (Hunter,

2007), networkX can be used to visualize graphs in

many ways.

Building on the previous work done by the Python de-

velopers mentioned above, we set out to present an ap-

proach for visualizing the dynamic behavior of complex

thermo-fluid networks modeled in Modelica by means of

a Python post-processing.

2 Process Overview

The approach presented in this paper aims at producing

a visual output, helping to better comprehend and ana-

lyze the data produced by simulating complex thermo-

fluid networks in Modelica. To this end, we use a post-

processing routine in Python. Python was chosen as a

programming language, in part because of its accessibil-

ity through easy syntax, wide use, and being platform-

independent. Another advantage of using Python is the

possibility to build on the previous work done in post-

processing Modelica results as described in section 1.

Fig. 1 shows a schematic representation of the ap-

proach presented in this paper. The information con-

tained in a Modelica model is used to initialize a Model

graph object. As it is often helpful to make abstrac-

tions from the original model design for visualiza-

tion, this Model graph is transformed to a System

graph in a subsequent step. After reading the Mod-

elica model’s simulation results to the System graph,

this class can generate a visual output in the form of

static plots and video animations. Both the python

classes for the Model and the System extend the class

nx.Graph from networkX, so that it inherently has

all of networkX’s well established functionalities for

graph handling and analysis. In order to read the Model-

ica result files and process the data, the code uses the

ModelicaRes package. This way, the Model and

System classes can be focused on performing the vi-

Figure 1. Flow chart for creation of visual output from Mod-

elica model

sualization without the overhead of reproducing graph

and result handling functionalities already available else-

where.

Reading information from a Modelica model to the

Model class in Python marks the start for the described

process. This information is represented in the graph by

placing edges between the nodes. In order to arrive at a

more intuitive display of the model structure, especially

for complex pipe networks, the Model graph is trans-

formed to a System graph. One major change in that

transformation is the introduction of network nodes be-

tween sub-models. In a further step, pipe models are

transformed from individual nodes to edges connecting

the network nodes. With pipes serving as connecting el-

ements in real-world systems, this representation may be

more user-friendly for the following visualization. The

process is described in more detail in section 3.

As a second input to the visualization process, the

System class uses methods from ModelicaRes to

read data from the result file into Python. This data can

be selected according to the purpose of the visualization.

Yet, for analyzing thermo-fluid systems, we will concen-

trate on the processing of mass flow rates, pressures, en-

thalpies, and temperatures. In order to handle this data

efficiently, networkX allows to attach almost any kind

of data and objects to individual nodes and edges. Thus,

each node and edge representing a model component can

hold its relevant information from the Modelica result

file. As the dynamic behavior of the system is of special

interest, each dataset contains the time-series of data for

every time-step of the simulation.

The data attached to nodes and edges can subse-

quently be used to visualize the overall system behavior

Visualizing Simulation Results from Modelica Fluid Models Using Graph Drawing in Python

738 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118737

by means of graph drawing. In addition to static graph

drawings showing the graph’s structure, the information

contained in the graph drawing can be extended by dif-

ferent means. For this demonstration, we will use the

line thickness and color of edge connections to represent

mass flow rates and temperatures for every simulation

time-step. In section 7 we will point to further possi-

bilities of enriching this data visualization approach in

future work.

After visualizing the system properties for every time-

step, we create a video from the individual plots, which

as a final outcome produces an accessible and intuitive

way to animate an amount of data for a complex sys-

tem that would be hard to process for a human user in a

standard 2D line plot. In the following sections, we will

present the individual steps outlined above in more detail

for an example model from the Modelica Standard Li-

brary. After that, we will present a use case of a campus-

scale district heating network to demonstrate the capabil-

ities of the visualization approach in an applied context.

3 Translation of Modelica Model to

Graph

As outlined above, the developed Model class

aims at a representation of the Modelica model

in a graph structure using Python. We will use

the model IncompressibleFluidNetwork

from the Modelica Standard Library’s

Modelica.Fluid.Examples package to illus-

trate the process description. The model’s diagram view

is shown in Fig. 2. This system consists of a piping

network with 11 pipes and 3 valves, transporting fluid

flows from a source on the figure’s left side to a sink on

the figure’s right side. For reasons of clarity, we will

limit the processing of this example to basic functions.

The full capability of the presented approach in its

current state will be shown in section 6 for the example

of a district heating network model.

For the first processing step, the Model class includes

methods to parse the Modelica code of a given file and

extract information from its declaration sections as well

as from the equation section. These functionalities are of

limited scope, however, as they focus only on mapping

the model structure into a graph in Python. More com-

plex Modelica features such as extending and redeclaring

are not processed by this simple parser. For the compo-

nent model declarations, the parser extracts data about

the component’s class, its instance name as well as the

coordinates of its graphical representation, which can be

read from the corresponding annotation. At the current

stage, this step will process only declarations of compo-

nents that have been selected in advance. This limitation

arises from the fact that later in the process, special sub-

classes are needed to extract relevant information from

the simulation results for each type of component.

Figure 2. Diagram view of the example model for an incom-

pressible fluid network from Modelica.Fluid

Figure 3. Representation of the example model in a Model

graph

In the example model, we prepared only for the fluid

components to be processed. As a result, sub-models

that are not an integral part of the fluid network, like the

system model in the lower right corner of Fig. 2 and

the control inputs for the valve openings are not taken

into account to be part of the Model graph. If of spe-

cial interest, a processing of these sub-models could also

be implemented into the presented framework. Yet, for

larger fluid networks, this may compromise the clarity of

the visualization.

Having set all the graph’s nodes according to the rel-

evant model components, the parser returns to the Mod-

elica model file to extract the connection statements. For

each connection statement involving those component

instances that are represented as a node, an edge is added

to the graph accordingly. In order to conserve all rele-

vant graphical information from the Modelica code, the

parser also processes the annotations of the connection

statements. If a connection in the Modelica code is not

drawn directly between two ports as a straight line, the

intermediate points given in the annotations are inserted

to the graph as separate network nodes. As a result, the

graphical representation of the graph will better match

the original Modelica model. For the example model

shown in Fig. 2, the Model graph is displayed in Fig.

3.

Before reading simulation data to the graph, we sug-

Session 10C: Modelica Tools

DOI
10.3384/ecp15118737

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

739

Figure 4. Representation of the example model in a System

graph. Network nodes are displayed in blue

gest converting the Model graph to a System graph.

This transformation can help to make the visualization

more intuitively comprehensible to the user. In this ex-

ample, we transform the Model graph in such a way

that the pipes are converted to be edges between network

nodes instead of nodes themselves. For this example, we

decided to keep the valves as nodes, thus showing both

possible pathways of keeping a component type as nodes

and converting nodes to edges for the pipes. This could

be changed according to the specific application with lit-

tle effort.

Fig. 4 shows the result of the conversion, with the net-

work nodes marked in a blue color and the pipes being

represented by edges. Even though the advantages of this

transformation may not be highly significant for this sim-

ple example, the use case in section 6 will demonstrate

the benefits in the context of a larger pipe network. Fur-

thermore, the distinction between Model and System

graphs allows for more dedicated class definitions with

focus on parsing the Modelica file for the Model class

and focus on visualization for the System class.

4 Reading Result Data to Graph

The System graph is created as a data structure and

template to visualize the dynamic system behavior. In

order to read the simulation result data into this struc-

ture, the System class can access top-level system data

directly by making use of result handling methods from

the package ModelicaRes. For handling result data

of the individual components, System calls special

Component classes. A basic Component class de-

fines methods for extracting certain data from the re-

sult file for a component in a general way. Exam-

ples for such methods are get_mass_flow_rate or

get_temperature, which return the time-series of

mass flow rate or temperature in the component respec-

tively.

As the identifiers for each component’s variables may

be different, we extend this general Component class

for every relevant component type and assign it its own

class with specific identifiers and in some cases with

special functionalities. In the example of 2, three such

classes are needed, i.e. the classes Boundary, Valve,

and Pipe. As extending the Component class requires

relatively little effort, we prefer this method over the at-

tempt to have only one Component class that tries to

manage all different component types and their differ-

ences.

In terms of processing the data, when adding a node to

the Model graph, a Component object is automatically

initialized and attached to the respective node. To this

end, networkX allows for setting data and objects as at-

tributes to nodes, edges, or the graph itself. In the imple-

mented approach, each object that is attributed to a com-

ponent’s graph representation is also moving from the

Model into the System graph. As a result, all data re-

garding the component can be accessed by user-friendly

methods like the get_mass_flow_rate mentioned

above for each node and edge. Thus, the object-oriented

approach from the Modelica model is followed also in

the post-processing by an object-oriented Python imple-

mentation.

For components that do not correspond to any Model-

ica component directly, in some cases the code will as-

sign the object of a neighboring graph element. For ex-

ample a network node may thus be attributed an instance

of the neighboring pipe object, so that it will return the

pipe’s mass flow rate when queried for such data. In

some cases, like for an edge between two network nodes,

there may also not be a neighboring object that directly

represents a Modelica model component. For this situa-

tion, we sometimes prefer not to attach any data to it in

order to not give any wrong impression in the visualiza-

tion. Yet, there is the possibility to interpolate some of

this data when the user wants it visualized in a certain

way.

When thinking about ways to visualize different kinds

of data for various components, some ways of display

seem more intuitive than others. As mentioned above,

some of the most relevant data to visualize for a thermo-

fluid network are mass flow rates, pressures, enthalpies,

and temperatures. Often, mass flow rates and temper-

atures are of special interest. In a non-Modelica con-

text, Köcher (2000) reported a way of visualizing pres-

sures and temperatures in a district heating network at the

nodes. Yet, in the System class representation shown in

Fig. 4, most of the mentioned information concerns the

edges rather than the nodes. Thus, the way the edges

are drawn in a graph plot are a central part of the visu-

alization. In order to prepare that visualization, we use

selected data to calculate edge weights and edge colors

to be used in the plotting.

The selection of what values to represent by edge

weights and colors is up to the user. The System

class contains methods for both calculations, that take

as arguments the variable that is to be represented, e.g.

temperature or mass flow rate. Based on this

selection, the edge weight and color will be calculated

and attributed to the corresponding edge. In the case of

color representation, a relative value between the mini-

Visualizing Simulation Results from Modelica Fluid Models Using Graph Drawing in Python

740 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118737

Figure 5. Schematic view of the visualization grid structure

mum and maximum value will be calculated and mapped

to a color coding using matplotlib’s color-mapping

function.

After the graph construction, transformation, and re-

sult file handling, the System graph will contain all rel-

evant data for visualization. This data structure concept

has proven to be user-friendly and efficient, making all

data easily accessible and fast to process. The System

representation as described above presents a compromise

between the most intuitive design and strictly follow-

ing the Modelica model setup. This compromise may

be evaluated for each use case and the graph representa-

tion adjusted accordingly. This is possible with moder-

ate manual effort, as the object-oriented and graph-based

code structure should be reasonably transparent for the

user.

5 Visualization of Fluid Flows

In order to keep the visualization output as flexible as

possible, we define a framework for sub-plots using

matplotlib’s grid structure. Fig. 5 illustrates the con-

cept. The only fixed properties are the spaces A and B

that serve as placeholders for the network graph drawing

and the corresponding color map. In many cases, one

can argue that such a graph drawing has advantages over

a multitude of standard 2D line plots. Yet, we do not

want to argue that it is inherently always superior to the

clarity and simplicity of a line plot. Therefore, any num-

ber of line plots can be placed beneath the graph drawing

in any number of spaces C, D, and so on. The System

class allows the user to name the variables that should be

plotted in addition to the graph drawing.

Regarding the graph drawing for space A in Fig. 5, the

user can select different visualization types. Most times,

this will consist of a 2D view recreating the System

graph as illustrated in Fig. 4, with the edge weights

and colors varying according to the preselected variables.

For the future, we will also work on 3D plots, where

the value of an additional variable can be visualized by

use of a z-axis. This is especially interesting to visu-

alize pressure levels so that mass flows will flow from

nodes plotted at greater z-axis levels to those with lesser

z-values.

In any case, the Python routine will create a plot fol-

lowing the structure shown in Fig. 5 for every time-step

in the simulation result file or for a user-selected period

within the simulation time limits. The graph drawing

will loop over all nodes and edges, plotting them into

space A and adjusting their appearance according to data

like the node type, edge weight, and edge color stored in

the networkX graph data structure. For the line plots,

the lines will be drawn from the time-step at the begin-

ning of the visualization until the current time-step for

this plot. Thus, when the individual static plots are com-

piled into a video, this will give the impression of a line

plot tracking the behavior of the corresponding variable

with each time-step.

Returning to the illustrative example introduced with

Fig. 2, we can demonstrate the graph drawing part of

the visualization output. Unfortunately, as the presented

approach directly aims at overcoming the limits of static

data plotting, it is hardly possible to show the benefits

of an animated visualization in the form of this paper.

Therefore, we attempt to mitigate this shortcoming in the

paper by using the timeline representation given in Fig.

6. In order to avoid distractions, we limited the display

to the plain graph drawing for four steps during the sim-

ulation time of 200 s.

There are three changes happening during simulation,

namely the closing of valve 1 after t = 50 s, the partial

closing of valve 2 at t= 100 s and the partial closing of

valve 3 after t = 150 s. The graph drawings show how

these changes affect system behavior. After the closing

of valve 1, the upper pipe branch is cut off from the flow

between the source at left and the sink at right. The par-

tial closing of valves 2 and 3 shows the effect of a re-

duced mass flow rate in the whole system, depicted by a

thinner line thickness for all connections.

In order to better demonstrate the functionalities of the

color mapping, we made one slight change to the original

model from Modelica.Fluid. In the original model,

the temperature at the source is kept constant, and the

heat source in pipe 8 only has a limited effect on the

system as a whole. Therefore, we changed the source

temperature to start at 80 ◦C and decrease linearly until

the end of the simulation to 20 ◦C. This decreasing tem-

perature can be seen in Fig. 6, represented by the chang-

ing edge colors. In calculating the edge colors, we used

temperature values derived from the average enthalpy be-

tween the two fluid ports of a component.

For animating the individual plots in a video, we

use the lightweight and freeware software Images to

Video (Sivic, 2015). This software can be called via

a command line interface with all settings saved in an

XML file. As these steps can be executed from within

the Python environment, the solution requires no effort

Session 10C: Modelica Tools

DOI
10.3384/ecp15118737

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

741

Figure 7. Diagram view of the district heating network model

from the user. Also, the user is free to work directly with

the individual plots created or use different software to

create a video. Still, this part could be improved upon

if a Python package for creating the video could be used

instead for a more integrated process.

6 Use Case: District Heating Net-

work

In the previous sections, we used a rather academic ex-

ample to demonstrate the process and functionalities of

the presented approach. In this section, we show a use

case for which the presented visualization tools were

originally developed. We investigate a district heating

network that supplies about 120 buildings with heat from

one central heating plant. To model this system, we use

simplified component models for pipes, the building sub-

stations, and the supply. The graphical representation of

the system model is shown in Fig. 7. The pipe models

calculate a pressure drop depending on the mass flow rate

and have a thermal connection to the ground temperature

to calculate thermal losses. The building substation mod-

els include a control valve, adjusting the mass flow rate

according to building heat demand given as a table in-

put. The supply model consists of a simple pump model

and an ideal heat source, controlling the network’s sup-

ply temperature to a set temperature depending on the

outdoor air temperature.

Considering the about 120 buildings, over 200 pipe

elements in the supply and return lines, and the loops

Figure 8. The district heating network’s System graph

in both, the district heating network qualifies as a com-

plex thermo-fluid system. Using only 2D line plots to

visualize mass flow rates and temperatures for the en-

tire system can thus be cumbersome. In this context, the

presented visualization approach can help to verify and

better understand the system behavior of the model.

For the system model, there are two largely identi-

cal pipe networks, one for the supply lines from sup-

ply plant to the buildings and one for the return lines

from buildings to the supply plant. We modeled both

these networks, but only used graphical annotations for

the Modelica code of the supply lines. Therefore, the

return pipes and their connections are not shown in the

diagram view of the Modelica model. This leads to a

clearer model view, yet makes it even more important to

verify the model results in order to ensure that all these

connections are correct.

As the Model class processes the Modelica code in

terms of declaration statements, connections, and their

graphical annotations, the missing graphical annotations

lead to the return components neither being represented

in the Model nor in the System graph. The resulting

System graph for the district heating network is shown

in Fig. 8. Nevertheless, the values of the return pipes can

be shown in the graph in place of the supply pipes’ val-

ues, as the return lines are placed at the same locations

as the supply lines. For the data handling of each com-

ponent, we extend the general Component class and

Figure 6. Using graph drawing to visualize system behavior over time

Visualizing Simulation Results from Modelica Fluid Models Using Graph Drawing in Python

742 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118737

Figure 9. Visualization output for the district heating network

at a low-load operation at the beginning of the simulation

define the identifiers for different variables in the result

file as described in section 3. Thus, it is possible to use

a Pipe component class that retrieves the supply or the

return pipes’ data at the user’s selection. Similarly, we

use a Supply and a Building class to handle the data

of these components.

To demonstrate the visualization approach for this use

case, we use a simulation of the district heating network

model for a simulation time of 2500 hours with an hourly

time-step. Starting at the beginning of the year, this illus-

trates the first part of the year with significant heat loads.

Following the layout of Fig. 5, we use the graph drawing

to visualize mass flow rates and the temperatures in the

supply lines as well as two line plots. One line plot shows

the supply plant’s supply and return temperatures and the

second line plot shows the ambient outdoor temperature

as read from the weather input file.

Again, this paper is limited to show static plots of the

visualization for given time-steps. A further application

is to compile a video from all the plots to animate the

dynamic system behavior. For this demonstration, Fig.

9 shows the state of the system near the beginning of

the simulation while Fig. 10 shows the system closer

to the end of the simulation. By varying the line width

of the pipe connections according to pre-calculated edge

weights that depend on the mass flow rate, it is possible

to show the mass flow rates for all of the supply lines’

over 100 pipe elements in one single plot. Together with

the color mapping of water temperatures within the pipe

to the color bar given on the upper right, the plots give

an impression of the energy flows in the network.

A comparison of Fig. 9 and Fig. 10 illustrates the

concept of line plotting in the lower part of the figures.

As the line is plotted from the beginning until the cur-

rent time-step, it gives an impression of monitoring the

Figure 10. Visualization output for the district heating network

at a medium-load operation near the end of the simulation

selected simulation results when animated into a video.

Furthermore, it serves as an indicator of the current time-

step even in a static plot and enables the plotting of data

that would be difficult to represent by color and line

thickness or variables that are not directly part of the

thermo-fluid network like the ambient temperature. This

enriches the context for the graph drawing visualizing

the energy flows in the network.

By visualizing energy flows in the graph drawing,

the presented approach can be a useful tool in verifying

simulation results. For verification purposes, the main

advantage of the graph-drawing based visualization ap-

proach over simple line plots is that various system vari-

ables are shown together and in context of the system

behavior. Furthermore, it would be possible to not only

display simulation result variables in such a visualiza-

tion, but to also display deviations from measurement

data, if such data is available.

Once verified, the visualization can also be used as a

tool to better understand system behavior and thus as-

sist in planning of the system operation. In real-world

thermo-fluid networks, the exact ways the energy flows

take is often not known. Especially in district heating

networks that include multiple loops and where the pipes

are buried in the ground, it can be hard to measure the

direction and flow rates of all the pipes. In these cases,

as Fig. 10 indicates, the visualization can help to identify

main routes of energy flows as well as pipe elements with

low flow rates. Yet, to draw conclusions for the operation

of the actual system, efforts must be made to verify such

observations in the real-world system, as model assump-

tions and malfuntions in the actual system can lead to

deviations between simulation and real-world operation.

Session 10C: Modelica Tools

DOI
10.3384/ecp15118737

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

743

7 Conclusions

This paper presents an approach that uses post-

processing of Modelica simulation results and graph

drawing in order to better visualize the dynamic behav-

ior of complex thermo-fluid networks than standard line

plots of individual result variables. Using a graph and at-

tributes for nodes and edges as a data-structure to handle

Modelica simulation results has proven a feasible con-

cept, as it can mirror the object-oriented structure of the

Modelica model into the post-processing. This allows

for a low-maintenance framework that nevertheless of-

fers flexibility for adjustments and options to tailor the

visualization output to the specific aims of the visualiza-

tion and to the requirements of the used models.

Regarding the computational performance, processing

the data as well as the Model and System graphs cre-

ates little overhead and takes a few seconds on a standard

laptop computer. The time for the plotting will largely

depend on the model size, time-step, simulation time,

and the required resolution of the output data. There-

fore, this part of the process can currently take from a

few minutes up to 2 hours for a very high-resolution ani-

mation of a large district heating system simulation with

small time-steps and a duration of 1 year. Yet, it is likely

that the time this part of the process can be efficiently

reduced by parallelization of the plotting.

The functionality of the presented approach was

demonstrated for a simple example from the Modelica

Standard Library as well as for a real-world application

of a district heating system model. In this proof of con-

cept, we used line thickness to visualize mass flow rates

from one node to another and line colors to indicate tem-

perature levels. Other possible uses include visualiz-

ing pipe diameters with line thickness or flow velocities

with line colors. Also, we limited our graph drawing to

2-dimensional representations of the system, which re-

sembles the diagram view of the corresponding Model-

ica models. In this process, parsing the Modelica code

for the graphical information in the annotations leads to

nodes in the graph with corresponding coordinates. In

future work, it will be interesting to visualize certain

values in a pseudo-3-dimensional way, where the model

representation can stay in the x- and y-axes while sim-

ulation result values can be shown on a corresponding

z-axis. This is especially promising to visualize pres-

sure levels of supply and return lines for thermo-fluid

networks or deviations between simulation results and

measurement data.

We argue that the presented approach can be a use-

ful tool in handling the complexity of larger thermo-fluid

networks and their dynamic system behavior. On the one

hand, the visualization of energy flows and other simu-

lation result data can help modelers to verify their model

setups and assumptions. On the other hand, the visu-

alization can be used to inform about relationships and

interactions of system components. Yet, drawing con-

clusions from such visualization for the operation and

design of actual systems, similar to all aspects of mod-

eling and simulation, requires critical verification of the

models used and the results obtained.

Furthermore, the process of visualizing Modelica sim-

ulation results introduces methods to parse Modelica

code and handle information about model structure and

behavior in a Python-based graph structure. For the

future, it will be interesting to use these resources for

the automated generation and modification of Modelica

models. To this end, we are working on a bi-directional

work-flow to generate Modelica models for district en-

ergy systems from different input data with the System

graph at the conceptional core. Possible input data in-

cludes data from geographic information systems (GIS)

or CityGML. In reverse, these models and their results

can again be processed by the System graph as de-

scribed in this paper. Thus, the System graph can be

used as the foundation in an integrated workflow for

model generation as well as result analysis and visual-

ization. We think that such an approach has the poten-

tial to address handling the complexity of input and out-

put data of large-scale energy system models, which has

been identified as one of the key challenges in modeling

such systems (Keirstead et al., 2012).

This will hopefully reduce manual effort in modeling

complex system like district energy systems and lead to

insights from modeling these systems for real-world ap-

plications. To this end, we plan to release the developed

Python code as an open-source package in the near fu-

ture. In addition, the Modelica component models for

the district heating network modeling will be made avail-

able through the open source model libraries AixLib1

and its contributions to the Annex 60 library2, which is

a joint effort within the International Energy Agency’s

Annex 60 programme.

Acknowledgment

We gratefully acknowledge the financial support by

BMWi (German Federal Ministry of Economic Affairs

and Energy), promotional reference 03ET1260A.

References

Francesco Casella, Martin Otter, Katrin Proelss, Christoph

Richter, and Hubertus Tummescheit. The Modelica Fluid

and Media library for modeling of incompressible and com-

pressible thermo-fluid pipe networks. In Modelica Associ-

ation, editor, Proceedings of the 5th International Modelica

Conference, pages 631–640, 2006.

Kevin Davies. ModelicaRes python package, 2015. URL

http://kdavies4.github.io/ModelicaRes/.

1httpd://github.com/RWTH-EBC/AixLib
2https://github.com/iea-annex60/modelica-annex60

Visualizing Simulation Results from Modelica Fluid Models Using Graph Drawing in Python

744 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118737

Roel De Conick. awesim python package, 2015. URL

https://github.com/saroele/awesim.

Arash M. Dizqah, Alireza Maheri, Krishna Busawon, and Pe-

ter Fritzson. Standalone DC microgrids as complementar-

ity dynamical systems: Modeling and applications. Control

Engineering Practice, 35:102–112, 2015. ISSN 09670661.

doi:10.1016/j.conengprac.2014.10.006.

Tingting Fang and Risto Lahdelma. State estimation of dis-

trict heating network based on customer measurements. Ap-

plied Thermal Engineering, 73(1):1211–1221, 2014. ISSN

13594311. doi:10.1016/j.applthermaleng.2014.09.003.

Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Explor-

ing network structure, dynamics, and function using Net-

workX. In Proceedings of the 7th Python in Science Con-

ference (SciPy2008), pages 11–15, Pasadena, CA USA, Au-

gust 2008.

Matthias Hellerer, Tobias Bellmann, and Florian Schlegel. The

DLR Visualization Library - recent development and appli-

cations. In the 10th International Modelica Conference,

March 10-12, 2014, Lund, Sweden, Linköping Electronic

Conference Proceedings, pages 899–911. Linköping Uni-

versity Electronic Press, 2014. doi:10.3384/ECP14096899.

Christoph Höger, Alexandra Mehlhase, Christoph Nytsch-

Geussen, Karsten Isakovic, and Rick Kubiak. Model-

ica3D - platform independent simulation visualization. In

Modelica Association, editor, Proceedings of the 9th In-

ternational Modelica Conference, pages 485–494, 2012.

doi:10.3384/ecp12076485.

John D. Hunter. Matplotlib: A 2D graphics environment.

Computing In Science & Engineering, 9(3):90–95, May-Jun

2007.

James Keirstead, Mark Jennings, and Aruna Sivaku-

mar. A review of urban energy system models: Ap-

proaches, challenges and opportunities. Renewable

and Sustainable Energy Reviews, 16(6):3847–3866, 2012.

doi:10.1016/j.rser.2012.02.047.

Ralf Köcher. Beitrag zur Berechnung und Auslegung von

Fernwärmenetzen. PhD thesis, Technische Universität

Berlin, Berlin, 2000. URL http://d-nb.info/

960177469/34.

LBL-SRG. BuildingsPy python package, 2015. URL https:

//github.com/lbl-srg/BuildingsPy.

Jaromir Sivic. Images to video v4.0, 2015. URL http://

en.cze.cz/Images-to-video.

Session 10C: Modelica Tools

DOI
10.3384/ecp15118737

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

745

746 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Reuse of Physical System Models by means of Semantic Knowledge

Representation: A Case Study applied to Modelica

Elena Gallego1, Jose María Álvarez-Rodríguez1 and Juan Llorens1
1 Knowledge Reuse Group,

Department of Computer Science and Engineering,
University Carlos III of Madrid, Spain,

{elena.gallego,jmalvarez,llorens}@kr.inf.uc3m.es

Abstract

This paper presents the design and development of a
solution to store and reuse physical system models by
indexing and retrieving their content and metadata. To
do so, a mapping between the representation modelling
language and a semantic-based representation model
(Relationship-RSHP) is defined. More specifically,
electrical circuits designed in Modelica have been
mapped to RSHP. A two-step process has been designed
and implemented to parse Modelica artifacts and index
the contents into a system knowledge repository.
Afterwards, a case study has also been conducted to
compare text vs. concept based information retrieval
processes. A dataset of 25 electrical circuits and a set of
30 queries have been designed to extract precision and
recall metrics assessing that the presented approach
improves the retrieval of Modelica artifacts. As main
conclusion, it is possible to state that a domain specific
technology such as RSHP for knowledge representation
can help the management of Modelica artifacts as
knowledge assets.

Keywords: Information Representation, Physical

System Models, Modelica Language, Model Reuse,

Knowledge Reuse.

1 Introduction

Cyber-physical systems (CPS), a set of collaborative
computational resources controlling physical entities,
are considered “the next computing revolution”
(Rajkumar et al. 2010) (K.-D. Kim and Kumar 2012).
The design and deploy of these systems is currently
based on the 5C architecture (connection, conversion,
cyber, cognition, and configuration). Physical system
models are designed at different levels of abstraction to
analyze and study the mathematical equations that
govern the CPS under different excitation
configurations.

To do so, software tools (Fritzson 2015) supporting
physical modelling languages are used to design and run
the simulations that represent the physical system model
behavior. During this stage of design and development
a good number of logical artifacts are generated. In this
context and with the aim of easing the development of
the 5C architecture, software developing environments

usually provide libraries of reusable components (M.
Kim et al. 2010) through application patterns (Choi et
al. 2013) and other techniques. These components are
commonly represented in a particular modelling
language and tagged with a predefined set of metadata
properties that can only be accessed from the same
development environment that produced them.

In order to reuse a component, the first step lies on
the capability to search for them through a traditional
interface, filtering the potential results depending on
keywords or fixed values in the metadata fields.

Assuming that a physical system model in some
modelling languages, such as Modelica, is a software
artifact, it is possible then to apply the well-known
techniques for information and software reuse
(Jacobson, Griss, and Jonsson 1997) (Karlsson 1995).
Reuse of information and software may have the
potential of increasing productivity of engineers,
improve quality and create a cost efficient development
environment for cyber-physical systems.

However, the systematic support of reuse is affected
by technical and non-technical issues (Smolárová and
Návrat 1997):
1. Economical, organizational, educational or

psychological issues and
2. Lack of standards to represent all software artifacts,

lack of reusable component libraries or appropriate
tools for boosting reuse among tools.
In the context of technical issues, those considered in

this paper, the classical principles of (software) reuse:
abstraction, selection, specialization and integration,
can be found in a very good number of works (Jacobson,
Griss, and Jonsson 1997) (Karlsson 1995) (Mcilroy
1969). In particular, abstraction (management of the
intellectual complexity of an artifact) can be considered
the essential feature for any reuse technique in order to
specify when an artifact could be reused and how to
reuse it. Selection refers to the discovery of artifacts
covering from the representation and storage to the
classification, location and comparison. Specialization
consists on the set of parameters and transformations
required to reuse an artifact, while integration refers to
the capability of systems to communicate, collaborate
and exchange data.

DOI
10.3384/ecp15118747

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

747

Thus, the reusability factor of artifacts will directly
depend on how they are abstractly described, how they
can be selected and specialized for reuse, and how they
will integrate in the new complete system.

Currently, knowledge management has gained
momentum in the software domain as a means to elevate
the meaning of the implicit knowledge represented into
software pieces. Software is becoming a commodity that
is embedded in any work product or business process,
being a new kind of intellectual asset that can be used to
reduce costs and time to market by generating
competitive advantage.

In this light, knowledge management techniques
(Nonaka and Takeuchi 1995) can be applied to capture,
structure, store and disseminate software-based artifacts
to directly support the aforementioned software reuse
principles of selection and integration. However, the
selection of a proper knowledge management
mechanism is still an open issue (Hull and King 1987)
due to the fact that a suitable representation model can
be reached in several ways.

In the context of cyber-physical systems
development, physical system models seem to be a good
candidate to take advantage of knowledge management
and reuse techniques. Based on this concept, the
Modelica modelling language (Fritzson and Engelson
1998) (Fritzson 2015) provides a comprehensible model
data structure (Schamai, Fritzson, and Paredis 2013) in
which it is possible to develop, design and run
simulations.

However, there is much more at stake than the simple
representation in a modelling language. Physical
systems are represented by equation systems or by
graphical models that represent their behavior. This
valuable information must be organized and stored to be
able to provide high-accurate information retrieval
processes. One of the main challenges emerges from the
complexity to transform physical systems into a logical
structure that can be modeled and understood by
knowledge management tools.

Semantic knowledge representation models appeared
around year 2000 to cope with complex information
representation problems. The most representative
example of them can be Resource Description
Framework (RDF) (Hayes 2004) and RSHP
(pronounced “arship”) (Llorens, Morato, and Genova
2004). RDF was created from the beginning to cope with
web information management while RSHP’s main goal
was to represent information from all industrial work-
products.

In order to overcome the existing limitations on
reusing physical system models knowledge, a mapping
between the Modelica modelling language and the
RSHP information representation model is defined and
implemented (Modelica2RSHP). Due to the intrinsic
RSHP capabilities, it is possible to represent any kind of
information such as textual descriptions, design models,

code or even any piece of relation data under the same
schema. A tool implementation for managing industrial
work products has been developed by The Reuse
Company (The Reuse Company Inc. 2014), named
knowledgeMANAGER, enabling the possibility of
applying knowledge management techniques to
engineering domain.

As motivating example, Figure 1 shows a simple
amplifier circuit comprising different electrical
elements. This block could certainly be reused in
different cyber-physical systems. However, in order to
allow reuse the proper mechanisms must be provided to
represent the elements and relationships within the
circuit (metadata and contents), to store such elements
in a repository, to define a retrieval algorithm that would
allow the identification of physical models by content
and to retrieve the block according to different queries.
For instance, an engineer should be able to look up this
circuit, see Figure 1, by expressing the next query: “Give

me all electrical circuits that contain a sine voltage

source directly connected to an operational amplifier by

a 20kΩ resistor”. In current Modelica environments,
these tasks are hard to accomplish since they were not
designed for these purposes. Advanced regular
expressions could be a solution but an approach taking
advantage of describing elements and relationships can
really improve the retrieval of Modelica artifacts
boosting the reusability factor of existing physical
system models.

Figure 1. Simple Amplifier circuit which uses an
operational amplifier (see example in Electrical-Analog
circuits in OpenModelica).

2 Physical system models as software

artifacts

Software reuse (Smolárová and Návrat 1997) as a
discipline has been widely studied and surveyed from
different perspectives. Reuse depending on software
metrics and models (Frakes and Terry 1996), reuse of
software libraries (A. Mili, Mili, and Mittermeir 1998),
software repositories (Guo and others 2000),
components in the industry (Land et al. 2009), success

Reuse of Physical System Models by means of Semantic Knowledge Representation: A Case Study applied to
Modelica

748 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118747

factors (Basili and Rombach 1991) and reuse in software
product lines (Thüm et al. 2014). In all of them, the
different authors have explored and classified the
mechanisms to store and retrieve software assets. One
of the main conclusions in these studies is that
successful reuse will come with sophisticated software
components storage, representation and retrieval
techniques. In this light, the authors in (Guo and others
2000) define a set of orthogonal attributes and six broad
classes of methods for software reuse. They also
establish criteria (technical, managerial and human
factors) to assess and compare classes of methods for
software reuse.

Other very relevant works have been focused on
applying control engineering techniques (H. Mili 2002)
for software reuse. Although some of good experiences
have been reported (Tracz 1995), success and failure
facts outlined in (Morisio, Ezran, and Tully 2002) and
(Desouza, Awazu, and Tiwana 2006) are still open. This
situation of software reuse is becoming critical in cyber-
physical systems where the time to design, develop and
deploy a system is more complicated due to the
collaboration with other software and hardware
components.

2.1 Physical system models sharing and reuse

When thinking about models reuse, engineers have to
deal with the underlying information of a shared model
and its relation with the design. Human experience is
important to correctly understand, share or reuse models
efficiently, while machines usually fail because of the
tacit knowledge involved.

In (Winsberg 2001) the authors present a semantic
driven design reuse for a 3D scene designed by
computing the properties while modelling and enabling
the system to recognize similar types by a vertex statics
based algorithm.

As (Groza et al. 2009) outlines, over 20 billion CAD
models exist with similar geometric aspects. Currently,
indexers use alphanumeric numbers with different
formats for each group. The developer could be able to
design new models based on existing ones and reuse
their similar components. More than 75% of new
models design could be reused from previous models
ensuring that the model fulfills the functionality for
which it has been designed.

After this brief analysis, there are many technical
problems (including data protection or copyrights) to
create agreed knowledge-based representations such as
ontologies that can ease the sharing and reuse of
physical system models produced by different tools.

One of the most necessary elements, once a common
knowledge representation is defined, is to have a good
search engine supported by domain knowledge. This is
the main goal for future works, to be able not only to
store physical system models, but also to look for similar

models and retrieve their information using concepts
and relationships.

Functional Mock-up Interface (FMI) is described in
(Otter, Blochwitz, and Arnold 2013) as a solution to
model sharing and reuse. FMI allows to work with
different simulation environments, as Modelica,
Simulink and SIMPACK just in one interface to
enhance model sharing avoiding incompatibilities.

Using current design tools it is possible to get both
analytical and visual representation for every developed
physical system model.

The analytical information describes the physical
laws that model the system while the visual
representation usually shows them graphically. Visual
information represents a simplified view of the world
that the system is modelling. When thinking about reuse
of physical models, the approach should be to work with
the analytical information, because of the knowledge
contained. The analytic part of a model represents the
different behaviors that could be in the real world for
many configurations.

That is why; the choice made in this work is to index
the analytical information of any physical system
model, which can be complemented by graphical
information when retrieving it easing the understanding
of the underlying knowledge.

3 Physical System Models

The complex world where we live has the inherited
characteristic to be governed by physic laws, which
humans continuously try to control. Every physical
system that engineers want to better understand has
elements that behave according to a set of physical laws
(Winsberg 2001).

Physical systems models represent the reality by
means of relationships between physical and
mathematical theories and their effect in the reality.
There exist many ways to design physical system
models but, almost all of them, are constructed under the
same theories.

Therefore, if we are aware of the elements that define
the system and the physical laws that govern it, we have
the required information of the physical system model,
in order to get the knowledge, with different abstraction
levels, which can be used in other processes or projects.

Physical system models can be as complex as the
reality they represent, thus, it is needed to clearly define
the purpose of the model in order to get a reasonable
result.

The goal, when modelling physical systems, is to get
a mathematical representation of the system’s behavior
in terms of its variables. Depending on the nature of the
system, electrical, mechanical or thermal, the system
variables change. Despite of the differences, a common
concept between the disciplines is energy, so it is
possible to design the physical components of the
system as energy manipulators (Wellstead)

Session 10C: Modelica Tools

DOI
10.3384/ecp15118747

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

749

Physical system models are built to represent the real
world where the model is going to be used and its
response to particular stimuli. The needs to create
physical system models are described in (Valášek et al.
2003) as the real world system, the question to be
answered by the simulation of the model, and the
interpretation of the output is the solution.

3.1 Physical systems modelling environments

There are many models design environments that offer
different capabilities depending on the domain.

Modelica-based modelling and simulation
environments such as Dymola (Dempsey 2006),
OpenModelica (Asgha and Tariq 2010) or JModelica
(Åkesson et al. 2010), are examples of integrated
development environments that make easier the visual
development of models in domains such as: electric,
mechanic or thermodynamic.

More specifically, the Modelica language is an
object-oriented programming language that allows
physical systems modelling. Models can be expressed
by differential, algebraic and discrete equations.
Modelica allows reuse and share models by reducing the
modelling effort (Martin-Villalba, Urquia, and Dormido
2008). Nevertheless, the knowledge management
capabilities of these environments are restricted as it has
been outlined in the introduction.

4 Knowledge representation of Physical

System Models

In order to provide the proper knowledge management
services for cyber-physical systems, it is necessary to
select an adequate knowledge representation paradigm.
Obviously, different types of knowledge require
different types of representation (Davis, Shrobe, and
Szolovits 1993) (Groza et al. 2009). In this light,

expressions, rule-based systems, regular grammars,
semantic networks, object-oriented representations,
frames, intelligent agents or case-based models, to name
just a few, are some of the main approaches to
information and knowledge modelling.

More specifically, knowledge management also
implies the standardization of data and information, that
is, any block of information must be structured and
stored for supporting other application services.

In this context, two main approaches can be
highlighted: 1) the ISO 10303-STEP (“Standard for the
Exchange of Product model data”), is an standard for the
computer-interpretable representation and exchange of
product manufacturing information and 2) the Open
Services for Lifecycle Collaboration (Ryman, Hors, and
Speicher 2013) (OSLC), an OASIS standard, that is
seeking new methods to easily integrate System
Engineering tools and build an ideal development and
operations environment with special focus on
interoperability.

Although both approaches represent very relevant
actions to standardize and provide interoperable
environments for developing complex systems, they do
not directly define a knowledge model (Alvarez-
Rodríguez et al. 2015) for representing metadata and
contents of work products and artifacts. Besides, it has
been demonstrated that the retrieval of information
resources does not imply the need of any underlying
logic formalism but a powerful framework for
expressing concepts and relationships. Due to this fact
and previous experiences (Alvarez-Rodríguez et al.
2015), the RSHP universal knowledge representation
model has been selected as meta model to semantically
describe the elements and relationships that can be
found in a physical system model.

Figure 2. The RSHP representation model in UML.

Reuse of Physical System Models by means of Semantic Knowledge Representation: A Case Study applied to
Modelica

750 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118747

4.1 RSHP in a nutshell

The RSHP universal knowledge representation model
(Llorens, Morato, and Genova 2004), see Figure 2, is
based on the ground idea that whatever information can
be described as a group of relationships between
concepts forming a conceptual graph. For example,
Entity/Relationship data models (Chen 1976) are
certainly represented as relationships between entities,
processes can be represented as causal/sequential
relationships between sub-processes, UML (Unified
Modelling Language) or SysML meta models can also
be modeled as a set of relationships between meta model
elements, etc. Furthermore, free text information can
certainly be represented as relationships between terms
by means of the same structure. To represent human
language text, a set of well-constructed sentences,
including the subject + verb + predicate (SVP) should
be used. The SVP structure can be then considered as a
relationship typed V between the S and the predicated
P. RSHP includes a repository model to store
information and relationships with the aim of reusing all
kind of knowledge chunks. The RSHP formal
representation model, see Figure 2, is based on the
following principles:

 The main description element is the
relationship since it is the element in charge of
linking knowledge elements.
 A Knowledge Element (KE) is an atomic

knowledge brick that appears into an artifact and that
is linked by one or more relationships with other KEs,
to build information. It is defined by a concept, and it
can also be an artifact (an information container
found inside a wider artifact). A concept is
represented by a normalized term (a keyword coming
from a controlled vocabulary, or domain). Artifacts
are knowledge containers of KEs and their
relationships.
In RSHP, the simple representation model for

describing the content of whatever artifact type
(requirements, risks, models, tests, maps, text docs or
source code) should be:

RSHP representation for artifact
α = �α = {ሺRSHPଵሻ, ሺRSHPଶሻ, … , ሺRSHP୬ሻ}

where every single RSHP is called RSHP-description
and must be described using KE.

One important consequence of this representation
model is that there is no restriction to represent a
particular type of knowledge. Furthermore, RHSP has
been used as underlying information model to build
general-purpose indexing and retrieval systems, domain
representation models (Dı́az et al. 2005), quality
assessment of requirements and knowledge
management tools such as knowledgeMANAGER (The
Reuse Company Inc. 2014) .

4.2 Mapping the Modelica language to RSHP

The use of Modelica as language for modelling complex
physical systems is gaining momentum in the industry
domain (Samlaus and Fritzson 2015). On the other hand,
RSHP has been used for a long time in the Systems
Engineering discipline for knowledge management.
Given this situation, a strategy to map Modelica
physical system models to RSHP must be defined. To
do so a direct mapping is defined to perform simple
transformations and to provide a basis for defining and
comparing more complex transformations.

In order to design this direct mapping, both models
are represented using the commonly defined abstract
data types set and list. The definitions follow a type-as-
specification approach (Schamai, Fritzson, and Paredis
2013); thus models are based on dependent types that
can also include cardinality. More specifically, Table 1
and Table 2 show both specifications as a kind of regular
tree grammars that can be used to specify a rule-based
transformation between two grammars (denotational
semantics). Thus, a transformation between a partial set
of production rules of the Modelica language and RHSP
can be defined as a function, Mode��caʹRSHP, that
takes the Modelica grammar (v3.2), GM୭ୢୣ୪iୡa, a valid
Modelica model, Mode��ca୩, the RSHP grammar GୖୗHP
and a set of direct mapping rules, ��௢ௗ௘௟�௖�ଶ௥௦ℎ௣ (see
Table 3 where sub-indexes refer to attributes and
relationships of the elements), to generate a valid ܴܵܪ ௚ܲ௥�௣ℎ.

:ܲܪܴܵʹ�ܿ��݁݀݋� �௢ௗ௘௟�௖�ܩ × ௞�ܿ��݁݀݋� × ×��ோௌܩ ��௢ௗ௘௟�௖�ଶ௥௦ℎ௣ → ܪܴܵ ௚ܲ௥�௣ℎ

Table 1. Selected Production rules of the Regular Tree
Grammar of Modelica: ࢉ࢏�ࢋࢊ࢕�ࡳ�

(1) class_definition ::= class_prefixes

class_specifier

(2) class_prefixes ::= (model)

(3) class_specifier::= long_class_specifier |

(4) short_class_specifier

(5) long_class_specifier ::=

 IDENT string_comment composition end IDENT

| extends IDENT [class_modification]

(6) string_comment composition end IDENT

(7) short_class_specifier
::= IDENT "=" base_prefix name [array_subs

cripts] [class_modification] comment

 | IDENT "=" enumeration "(" ([enu

m_list] | ":") ")" comment

(8) component_clause ::= type_prefix

type_specifier [array_subscripts]

component_list

(9) type_specifier ::= name

(10) name ::= ["."] IDENT {"." IDENT }

(11) component_list ::= component_declaration {
"," component_declaration }

(12) component_declaration ::=declaration

[condition_attribute] comment

(13) declaration ::= IDENT [array_subscripts]

[modification] ->KE | Term

Session 10C: Modelica Tools

DOI
10.3384/ecp15118747

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

751

(14) connect_clause ::= connect "("

component_reference "," component_reference

")

(15) component_reference ::= ["."] IDENT

[array_subscripts] {"." IDENT

[array_subscripts] }

Table 2. Regular Tree Grammar of RSHP: ࡼࡴࡿࡾࡳ

(1) Artifact ::= (Set(RHSP), MetaProperty{0,*})

(2) RSHP ::= (Subject, Verb, Object, Semantics)

(3) Subject ::= KE {0,1}

(4) Verb ::= KE {0,1}

(5) Object ::= KE {0,1}

(6) KE :: = (Term {0,1}) | Artifact

(7) Term ::= (lexicalForm, languageTag,

TermTag)

(8) TermTag ::= lexicalForm

(9) MetaProperty ::= (Tag, Value)

(10) Tag ::= {KE, lexicalForm}

(11) Value ::= {KE {0,1}, lexicalForm {0,1}}

(12) SemanticCluster ::= (Term)

Table 3. Set of mapping rules ��ࢉ࢏�ࢋࢊ࢕�૛࢖ࢎ࢙࢘ to transform
Modelica physical system models into RSHP

(1) class_definition ::= Artifact

(2) class_prefixes ::= MetaProperty

(Tag=“type“, Value=“model“)
(3) class_specifier::= long_class_specifier |

short_class_specifier

(4) long_class_specifier ::=

Artifact(physical_name=IDENT)

(5) short_class_specifier ::=

Artifact(physical_name=IDENT)

(6) component_clause ::= type_prefix

type_specifier [array_subscripts]

component_list

(7) type_specifier ::= name

(8) name ::= SemanticCluster (Term=IDENT)

(9) component_list ::= component_declaration {
"," component_declaration }

(10) component_declaration ::= declaration [

condition_attribute] comment

(11) declaration ::= KE (Term = IDENT)

(12) connect_clause ::=RSHP(KE, KE, KE, KE)

(13) component_reference ::= KE (Term = IDENT)

Although, the presented mapping does not cover all
production rules in ܩ�௢ௗ௘௟�௖�, it is correct since only
valid Modelica and RSHP models will be accepted and
generated.

1 The CAKE (Computer Aided Knowledge Environment)
API (Application Programming Interface).
2http://trac.jmodelica.org/browser/trunk/Compiler/Modeli
caCompiler

4.3 Implementation details

In order to implement the mapping rules presented in
Table 3, a stepwise process has been carried out. Taking
into account that RSHP and its underlying technology
(the CAKE API1) are implemented in the .NET platform
and considering the diversity of Modelica parsers, we
selected the option of building the JModelica sources
(Java) for Modelica version 3.2.

More specifically, the last JModelica sources2 were
checked out (January 2015) and built using Apache Ant
for Java. Afterwards, a JAR (Java Archive) analyzer
tool3 was used to extract the dependencies between the
different Java libraries and to generate a script that
transformed the required Java libraries to .NET DLLs
(Dynamic-link library).

This approach was enough to demonstrate the
possibility of integrating a Modelica parser in the .NET
platform. Thus, it is possible now to offer a universal
information representation model to index and retrieve
physical system models metadata and contents.

Figure 3. Process to index, search and retrieve a
physical system model.

These DLLs are then interpreted in .NET through the

IKVM4 (a Java interpreter for this platform) providing
a port and implementation of the Modelica parser.
Finally, this set of .NET libraries are used to implement
the set of mapping rules in Table 3 and to connect to the
CAKE API as Figure 3 shows. Moreover, the
knowledgeMANAGER tool can be used to manage all
the generated artifacts, see Figure 4.

3 https://code.google.com/p/jar2ikvmc/
4 http://www.ikvm.net/

Reuse of Physical System Models by means of Semantic Knowledge Representation: A Case Study applied to
Modelica

752 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118747

Figure 4. Representation of the physical system models in knowledgeMANAGER

5 Case Study: Indexing and retrieval of

Modelica physical system models

To illustrate the approach for reusing physical models, a
case study based on the comparison of precision and
recall measures of the two approaches to retrieve
physical system models (OpenModelica vs
knowledgeMANAGER) is presented below.

Figure 5. Example of physical system model retrieval in
knowledgeMANAGER.

5.1 Research design

One of the main stages in a reuse process consists on
looking up the proper artifacts according to a set of
preferences or query. This can be interpreted as a search
system in which given a query (text-based or even a
target model) and a set of resources (a set of physical
models), it is necessary to stablish which are the best

models that match the input query. To do so, the
following steps will be carried out:
3. Design a domain-based vocabulary, ܱ, to represent

the concepts and relationships that will be used to
represent physical models. In this case, the built in
domain ontology in the knowledgeMANAGER has
been used. It is actually a taxonomy comprising three
main entities: System, Subsystem and Component
and hierarchy relationships (part-of, is-a,

broader/narrower).
4. Define a test dataset of physical models

specifications � = {݀ଵ, ݀ଶ, … , ݀௞ , … , ݀௡}. To do
so, the public dataset of electrical circuits available
in OpenModelica has been selected. This dataset
comprises 25 physical system models for electrical
circuits that have been also indexed in
knowledgeMANAGER, see Figure 4.

5. Define a set of queries and expected results, Q where
each query ݍ௞ will return a set of physical models �௞.
To do so, a random walk process on top of the dataset � has been implemented to automatically generate
search queries based on the combination of the
different elements that can be found in a circuit
(between 1-5). Afterwards, a panel of three experts
has validated the expected circuits for every query,
see Table 4. ܳ = { ሺݍଵ, �ଵሻ, ሺݍଶ, �ଶሻ, … ሺݍ௞ , �௞ሻ … , ሺݍ௡, �௡ሻ}.

6. Run the indexing and retrieval processes
implemented on top of the knowledgeMANAGER
APIs and the OpenModelica editor. See an example
in Figure 5.

7. Extract measures of precision (ܲሻ, recall (ܴሻ and the
F1 score (the harmonic mean of precision and recall)
making a comparison of the expected and generated
results. Being ܲ = ௧௣௧௣+௙௣, ܴ = ௧௣௧௣+௙௡ and , ܨͳ = ଶ �∗ோ�+ோ where given a target dataset of physical

Session 10C: Modelica Tools

DOI
10.3384/ecp15118747

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

753

models, � , and a query ݍ௞ which expected results is
the set �௞:

 �݌ (true positive) is the number of physical models

in �௞ that have been retrieved and are in � ,
 ݂݌ (false positive) is the number of physical models

in �௞ that have been retrieved and are not in �,

 �݊ (true negative) is the number of physical models

in �௞ that have not been retrieved and are not in �
and

 ݂݊ (false negative) is the number of physical models

in �௞ that have not been retrieved and are in �.

Table 4. Set of queries to search for physical system
models. ࡽ Human-based query ݍଵ Step voltage source with an RLC filter ݍଶ LC filter with any kind of voltage source ݍଷ Step voltage source connected to a filter with at least

two capacitors ݍସ Step voltage source and operational amplifier ݍହ Comparator operational amplifier ݍ଺ Diode connected to a sine voltage source ݍ଻ Ideal Operational amplifier integrator ଼ݍ Rectifiers with ideal diodes ݍଽ Sine voltage source connected to a load by a diode ݍଵ଴ Sine voltage source connected to a load by two ideal
thyristors ݍଵଵ Sine voltage source connected to a load by one ideal
thyristor ݍଵଶ Circuits with thermal resistor and LC filter ݍଵଷ Sine voltage source connected to a potentiometer
(variable resistor) before a RC filter ݍଵସ Sine voltage source connected to a potentiometer
(variable resistor) ݍଵହ Rectifiers with inductances to any load ݍଵ଺ Inductance filter to a sine voltage source ݍଵ଻ Sine voltage source connected to a potentiometer to
supply a resistive load ݍଵ଼ Circuits with sine voltage source and a variable resistor ݍଵଽ Sine voltage source connected to a resistor ݍଶ଴ Constant voltage source connected to a LR filter by a
switch ݍଶଵ Constant voltage source connected to a load by a switch ݍଶଶ Sine voltage source and operational amplifier ݍଶଷ Simplified transformer connected to a resistive load by
resistors ݍଶସ Simplified transformer connected to a resistive load by
inductors ݍଶହ Ideal transformer connected to a sine voltage source ݍଶ଺ switch controlled by a sine voltage source ݍଶ଻ Sine voltage source with an RLC filter ݍଶ଼ Sine voltage source connected to a transistor ݍଶଽ Circuit whit thermal conductor and heat capacitor ݍଷ଴ Sine voltage source connected to a capacitive load

8. Check the robustness of the comparison by
performing statistical hypothesis testing.

5.2 Results and Discussion

Table 5 shows the metrics of precision, recall and the F1
measure of the different executions. The first column
corresponds to the query identifier; the next three
columns contain the metric values when the
OpenModelica search capabilities are used to look up
circuits. After that, the second experiment shows the
metric values when the presented approach
implemented on top of knowledgeMANAGER is
executed. According to the results, it seems clear that the
presented approach is better than the results provided by
OpenModelica, as Figure 6 depicts. The main reason of
this behavior is due to the fact that the presented
approach can take advantage of exploiting semantic
relationships (knowlegeMANAGER) while the text-
based approach (OpenModelica) can only perform
string comparisons.

Nevertheless, the precision values can be improved
and higher-values would be expected in both
approaches. In the case of knowledgeMANAGER, this
is because of the detail of the query, when it has more
components to compare, the precision is higher. The
tool prefers not to return false positives keeping
precision higher.

 On the other hand, a statistical hypothesis testing has
been carried out to demonstrate if results will vary
depending on the type of method or tool used to search
physical models. To do so, a comparison of the precision
values of both tools and approaches has been formulated
through the next hypotheses: ࢕ࡴ: There is no change in the calculation of precision
when searching using OpenModelica or
knowledgeMANAGER. ࡴ૚: There is change in the calculation of precision when
searching using OpenModelica or
knowledgeMANAGER.

In order to run the statistical hypothesis testing, the
F-Test with alpha 0.05 has been carried out to ensure
that variances are unequal (there is statistical
significance). After that, the t-Test of two-sample
assuming unequal variances has been performed with
alpha 0.05 to assert whether ܪ௢ is rejected or not.
According to Table 6, ܪ௢ can be rejected, since the t
Stat is less than “-t Critical (two tail)”. In conclusion, the
knowledgeMANAGER tool method exploiting
semantic relationships can improve in terms of precision
the problem of retrieving the proper physical system
models.

Reuse of Physical System Models by means of Semantic Knowledge Representation: A Case Study applied to
Modelica

754 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118747

Table 5. Precision and recall metrics for a retrieval process
in OpenModelica and knowledgeMANAGER.

 OpenModelica knowledgeMANAGER ܳ P R F1 P R F1 ݍଵ 0.017 0.500 0.032 1.000 0.080 0.148 ݍଶ 0.017 1.000 0.033 1.000 0.040 0.077 ݍଷ 0.034 1.000 0.066 1.000 0.120 0.214 ݍସ 0.200 1.000 0.333 1.000 0.080 0.148 ݍହ 0.300 1.000 0.462 1.000 0.083 0.154 ݍ଺ 0.018 1.000 0.035 1.000 0.000 0.000 ݍ଻ 0.300 1.000 0.462 1.000 0.083 0.154 ݍ 0.080 0.042 1.000 0.069 1.000 0.036 ଼ݍଽ 0.006 0.500 0.012 1.000 0.042 0.080 ݍଵ଴ 0.000 0.000 N/A 1.000 0.000 0.000 ݍଵଵ 0.000 0.000 N/A 1.000 0.000 0.000 ݍଵଶ 0.000 1.000 0.000 1.000 0.000 0.000 ݍଵଷ 0.002 1.000 0.004 1.000 0.040 0.077 ݍଵସ 0.004 1.000 0.008 0.333 0.045 0.080 ݍଵହ 0.006 0.500 0.012 0.500 0.043 0.080 ݍଵ଺ 0.000 0.000 N/A 0.200 0.056 0.087 ݍଵ଻ 0.002 1.000 0.004 1.000 0.040 0.077 ݍଵ଼ 0.002 1.000 0.004 1.000 0.000 0.000 ݍଵଽ 0.100 1.000 0.182 0.500 0.048 0.087 ݍଶ଴ 0.077 1.000 0.143 0.500 0.042 0.077 ݍଶଵ 0.077 0.500 0.133 0.500 0.043 0.080 ݍଶଶ 0.100 1.000 0.182 0.333 0.043 0.077 ݍଶଷ 0.007 1.000 0.015 1.000 0.040 0.077 ݍଶସ 0.007 1.000 0.015 1.000 0.040 0.077 ݍଶହ 0.007 1.000 0.015 1.000 0.040 0.077 ݍଶ଺ 0.011 1.000 0.022 1.000 0.040 0.077 ݍଶ଻ 0.000 1.000 0.000 1.000 0.000 0.000 ݍଶ଼ 0.011 0.500 0.022 1.000 0.042 0.080 ݍଶଽ 0.006 1.000 0.011 0.667 0.083 0.148 ݍଷ଴ 0.000 0.000 N/A 1.000 0.000 0.000

Table 6. The t-Test of two-sample assuming unequal
variances to compare OpenModelica vs
knowledgeMANAGER for physical models retrieval.

OpenModelica

Precision

knowledgeMANAGER

Precision

Mean 0.044886824 0.851111111

Variance 0.006732369 0.068102171

Observations 30 30

Hypothesized 0

Df 35

t Stat -16.14230163

P(T<=t) one-tail 4.32626E-18

t Critical (one tail) 1.689572458

P(T<=t) two tail 8.65252E-18

t Critical (two tail) 2.030107928

Figure 6 Precision and recall for every query and
approach.

5.3 Research Limitations

Some key limitations of the presented work must be
outlined. The first one relies on the sample size; our
research study has been conducted in a closed world.
More specifically, the physical models have been taken
from a public repository and the set of queries has been
automatically generated through a random walk process.
That is why results in a broad or real scope could
change, in terms of precision, since more complex
relationships in circuits and queries could be designed.
Nevertheless, the research methodology, the design of
experiments and the creation of a kind of benchmark for
testing retrieval processes have been demonstrated to be
representative and creditable.

Regarding the generation of queries, the process
creates queries similar to the way a domain expert would
do. In this case, we have focused on a random
combination of circuit elements due to the fact that the
handmade creation of queries requires a more in-depth
analysis of every circuit. This situation also implies a
high probability of losing robustness due to the fact that
the same domain can be interpreted according to
different experts and domain discourses. However, we
consider that the precision and recall metrics are helpful
to make a first estimation of the advantages of using a
domain ontology and knowledge representation
mechanisms to retrieve physical models.

Besides, it has not been possible to fully compare
both OpenModelica Connection Editor with
knowledgeMANAGER because of the structure of the
queries. In the text-based browser of OpenModelica it is
complicated to look for several components at the same
time and no advanced query mechanisms such as regular
expressions are available. That is why, the precision is
lower but the recall is most of times very high.

Building on the previous comments, we cannot either
figure out the internal budget, methodologies, domain
vocabularies, experience and background of specific
domain-experts to create and query physical models.
We merely observe and re-use existing public and on-
line knowledge sources to provide an accurate
information reuse process for physical model artifacts.

Session 10C: Modelica Tools

DOI
10.3384/ecp15118747

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

755

6 Conclusions and Future Work

Physical system models are not anymore isolated pieces
of code to design a physical system. Current trends to
develop and deploy cyber-physical systems imply the
need of applying knowledge management techniques to
save time and to develop safer and more secure systems.
In this context, the reuse of existing and well-tested
knowledge embedded into physical system models is a
challenging task that can be carried out by using the
proper mechanism for knowledge management. The
RSHP representation model offers a flexible technique
to represent any kind of knowledge through concepts
and relationships. It also includes technology support
through the knowledgeMANAGER tool. It seems clear
that the shifting of the underlying information in
physical system models to a more adequate
representation improves the capabilities to discover and
reuse existing knowledge.

As future work, we plan to extend the approach to any
kind of physical system model (full support to the
Modelica language) providing semantic engines for
indexing and retrieving information. Furthermore, we
will extend the experiments to make comparisons in a
broad scope (tools, models and queries) releasing also
the information under the principles of the OpenScience
initiative.

Acknowledgements

The research leading to these results has received
funding from the ARTEMIS Joint Undertaking under
grant agreement Nº 332830-CRYSTAL (CRitical
sYSTem engineering AcceLeration project) and from
specific national programs and/or funding authorities.
This work has been supported by the Spanish Ministry
of Industry.

References

Åkesson, J., K. E. Årzén, M. Gäfvert, T. Bergdahl, and H.
Tummescheit 2010 Modeling and Optimization with
Optimica and JModelica.org-Languages and Tools for
Solving Large-Scale Dynamic Optimization Problems.
Computers and Chemical Engineering 34(11): 1737–1749.

Alvarez-Rodríguez, Jose Maria, Juan Llorens, Manuela
Alejandres, and Jose Fuentes 2015 OSLC-KM: A
Knowledge Management Specification for OSLC-Based
Resources. In Proceedings of the 25th Annual INCOSE
International Symposium (Accepted).

Asgha, Syed Adeel, and Sonia Tariq 2010 Design and
Implementation of a User Friendly OpenModelica
Graphical Connection Editor.

Basili, V. R., and H. D. Rombach 1991 Support for
Comprehensive Reuse. Softw. Eng. J. 6(5): 303–316.

Chen, Peter Pin-Shan 1976 The Entity-Relationship
Model—toward a Unified View of Data. ACM
Transactions on Database Systems (TODS) 1(1): 9–36.

Choi, Jong-Seok, Tim McCarthy, Maneesh Yadav, et al. 2013
 Application Patterns for Cyber-Physical Systems. In

Cyber-Physical Systems, Networks, and Applications
(CPSNA), 2013 IEEE 1st International Conference on Pp.
52–59. IEEE.

Davis, Randall, Howard Shrobe, and Peter Szolovits 1993
What Is a Knowledge Representation? AI Magazine 14(1):
17.

Dempsey, Mike 2006 Dymola for Multi-Engineering
Modelling and Simulation. 2006 IEEE Vehicle Power and
Propulsion Conference, VPPC 2006.

Desouza, Kevin C., Yukika Awazu, and Amrit Tiwana 2006
Four Dynamics for Bringing Use Back into Software Reuse.
Commun. ACM 49(1): 96–100.

Dı́az, Irene, Juan Llorens, Gonzalo Genova, and José Miguel
Fuentes
 2005 Generating Domain Representations Using a
Relationship Model. Information Systems 30(1): 1–19.

Frakes, William, and Carol Terry 1996 Software
Reuse: Metrics and Models. ACM Computing Surveys
(CSUR) 28(2): 415–435.

Fritzson, Peter 2015 Principles of Object-Oriented
Modeling and Simulation with Modelica 3.3: A Cyber-
Physical Approach. 2. ed. New York: John Wiley & Sons
Inc.

Fritzson, Peter, and Vadim Engelson 1998 Modelica - A
Unified Object-Oriented Language for System Modelling
and Simulation. In ECOOP’98 - Object-Oriented
Programming, 12th European Conference, Brussels,
Belgium, July 20-24, 1998, Proceedings Pp. 67–90.
http://dx.doi.org/10.1007/BFb0054087.

Groza, Tudor, Siegfried Handschuh, Tim Clark, S
Buckingham Shum, and Anita de Waard 2009a A
Short Survey of Discourse Representation Models.

Groza, Tudor, Siegfried Handschuh, Tim Clark, S
Buckingham Shum, and Anita de Waard 2009b A
Short Survey of Discourse Representation Models.

Guo, Jiang, and others 2000 A Survey of Software Reuse
Repositories. In Engineering of Computer-Based Systems,
IEEE International Conference on the Pp. 92–92. IEEE
Computer Society.

Hayes, Patrick 2004 RDF Semantics. World Wide
Web Consortium. http://www.w3.org/TR/rdf-mt/.

Hull, Richard, and Roger King 1987 Semantic Database
Modeling: Survey, Applications, and Research Issues.
ACM Computing Surveys (CSUR) 19(3): 201–260.

Jacobson, Ivar, Martin Griss, and Patrik Jonsson 1997
Software Reuse: Architecture, Process and Organization for
Business Success. New York, NY, USA: ACM
Press/Addison-Wesley Publishing Co.

Karlsson, Even-André, ed. 1995 Software Reuse: A
Holistic Approach. New York, NY, USA: John Wiley &
Sons, Inc.

Kim, Kyoung-Dae, and Panganamala R Kumar 2012 Cyber–
physical Systems: A Perspective at the Centennial.
Proceedings of the IEEE 100(Special Centennial Issue):
1287–1308.

Kim, Minyoung, M-O Stehr, Jinwoo Kim, and Soonhoi Ha
2010 An Application Framework for Loosely Coupled
Networked Cyber-Physical Systems. In Embedded and

Reuse of Physical System Models by means of Semantic Knowledge Representation: A Case Study applied to
Modelica

756 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118747

Ubiquitous Computing (EUC), 2010 IEEE/IFIP 8th
International Conference on Pp. 144–153. IEEE.

Land, Rikard, Daniel Sundmark, Frank Lüders, Iva Krasteva,
and Adnan Causevic 2009 Reuse with Software
Components-a Survey of Industrial State of Practice. In
Formal Foundations of Reuse and Domain Engineering Pp.
150–159. Springer.

Llorens, Juan, Jorge Morato, and Gonzalo Genova 2004
RSHP: An Information Representation Model Based on
Relationships. In Soft Computing in Software Engineering.
Ernesto Damiani, Mauro Madravio, and LakhmiC. Jain,
eds. Pp. 221–253. Studies in Fuzziness and Soft Computing.
Springer Berlin Heidelberg. http://dx.doi.org/10.1007/978-
3-540-44405-3_8.

Martin-Villalba, Carla, Alfonso Urquia, and Sebastian
Dormido 2008 An Approach to Virtual-Lab
Implementation Using Modelica. Mathematical and
Computer Modelling of Dynamical Systems 14(4): 341–
360.

Mcilroy, Doug 1969 Mass-Produced Software Components.
In Proceedings of Software Engineering Concepts and
Techniques. J. M. Buxton, P. Naur, and B. Randell, eds. Pp.
138–155. Garmisch, Germany: NATO Science Committee.
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato19
68.PDF.

Mili, Ali, Rym Mili, and Roland T Mittermeir 1998 A
Survey of Software Reuse Libraries. Annals of Software
Engineering 5: 349–414.

Mili, Hafedh 2002 Reuse Based Software Engineering:
Techniques, Organization and Measurement. New York:
Wiley.

Morisio, M., M. Ezran, and C. Tully 2002 Success and
Failure Factors in Software Reuse. IEEE Transactions on
Software Engineering 28(4): 340–357.

Nonaka, Ikujiro, and Hirotaka Takeuchi 1995 The
Knowledge-Creating Company: How Japanese Companies
Create the Dynamics of Innovation. New York: Oxford
University Press.

Otter, Martin, Torsten Blochwitz, and Martin Arnold 2013
Functional Mock-up Interface for Model Exchange and Co-
Simulation: 1–120.

Rajkumar, Ragunathan Raj, Insup Lee, Lui Sha, and John
Stankovic
 2010 Cyber-Physical Systems: The next Computing
Revolution. In Proceedings of the 47th Design Automation
Conference Pp. 731–736. ACM.

Ryman, Arthur G., Arnaud Le Hors, and Steve Speicher 2013
OSLC Resource Shape: A Language for Defining
Constraints on Linked Data. In LDOW.

Samlaus, Roland, and Peter Fritzson 2015 Semantic
Validation of Physical Models Using Role Models.
Simulation 91(4): 383–399.

Schamai, Wladimir, Peter Fritzson, and Christiaan J. J.
Paredis 2013 Translation of UML State Machines to
Modelica: Handling Semantic Issues. Simulation 89(4):
498–512.

Smolárová, Mária, and Pavol Návrat 1997 Software
Reuse: Principles, Patterns, Prospects. CIT. Journal of
Computing and Information Technology 5(1): 33–49.

The Reuse Company Inc. 2014 knowlegeMANAGER
(KM). Industry website. knowledgeMANAGER.
http://www.reusecompany.com/knowledgemanager,
accessed October 15, 2014.

Thüm, Thomas, Sven Apel, Christian Kästner, Ina Schaefer,
and Gunter Saake 2014 A Classification and Survey of
Analysis Strategies for Software Product Lines. ACM
Computing Surveys 47(1): 1–45.

Tracz, Will 1995 Confessions of a Used Program Salesman:
Institutionalizing Software Reuse. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc.

Valášek, M, P Steinbauer, J Kolář, and J Dvořák 2003
Concurrent Design of Railway Vehicles by Simulation
Model Reuse 43(6): 9–15.

Wellstead, Peter E 1979 Introduction to Physical System
Modelling. London: Academic Press.

Winsberg, Eric 2001 Simulations, Models, and
Theories: Complex Physical Systems and Their
Representations. Philosophy of Science 68(S1): S442.

Session 10C: Modelica Tools

DOI
10.3384/ecp15118747

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

757

758 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Mass Conserving Models of Vapor Compression Cycles

Christopher R. Laughman Hongtao Qiao

Mitsubishi Electric Research Laboratories {laughman,qiao}@merl.com

Abstract

Many dynamic models of vapor compression systems ex-

perience nonphysical variations in the total refrigerant

mass contained in the system when common modeling

approaches are used. Rather than use the traditional state

variables of pressure and specific enthalpy, the use of

density as a state variable can eliminate these variations.

A set of test models is developed in Modelica to study the

effect of the state variable selection on the overall system

charge, and results indicate that this alternative approach

has significant benefits for maintaining a specified mass

of refrigerant in the cycle.

Keywords: vapor compression cycle, simulation, mass

conservation

1 Introduction

Trends toward increased integration in building and

transportation systems, as well as perennial demands for

improved system performance, have continued to en-

courage interest in the development of dynamic mod-

els of vapor compression cycles. Such dynamic cycle

models can be used for a variety of purposes, including

system design, specification, control, and fault diagnos-

tics, and can be applied to a wide variety of residential,

commercial and industrial applications to understand and

predict the behavior of field-installed systems. These dy-

namic models can also be coupled with other systems to

examine and design the behavior of systems-of-systems

to achieve specified requirements for the overall system

and satisfy constraints that must be enforced on the phys-

ical hardware.

This wealth of interest in dynamic models of va-

por compression cycles has resulted in a corresponding

growth in both the literature and the number of docu-

mented models for these cycles (Li et al., 2014b). The

Modelica language is particularly appropriate for the de-

velopment of these system models, due to its object-

oriented, declarative, and acausal modeling approach.

This can be seen in the variety of references that have

been published over the past 15 years regarding models

of vapor compression cycles, such as those found in Li

et al. (2014a), among many others.

The performance of physical system models is often

evaluated by comparing particular characteristics or out-

puts of their simulations to the related characteristics of

an experimentally observed system. Since, as George

E.P. Box said, “all models are wrong, but some are use-

ful,” (Box and Draper, 1987), model creators and users

must examine the most salient characteristics of their

model to ensure that it accurately describes the behavior

of interest. This is particularly important for such com-

plex physical systems as vapor compression cycles; it is

essential that engineers compare and validate dynamic

cycle models against known experimental behavior and

data before expecting to obtain reliable model output.

One such variable that can easily be compared between

simulation and experiment is the the cycle’s refrigerant

mass inventory, or charge, which is usually known to

a fairly high degree of precision, and is also constant

over extended time intervals. Such stability and ease of

measurement is theoretically well-suited to use in model

parameterization and calibration, and is convenient for

study in dynamic system models.

Unfortunately, many model formulations for vapor

compression cycles demonstrate significant variations in

the total system charge (Cecchinato and Mancini, 2012)

that do not correspond to observed behavior in experi-

mental systems. This is significant for a few reasons;

perhaps the most important of these is that the dynam-

ics associated with the variations in the cycle charge will

be coupled to the other system dynamics and introduce

aberrant behavior that would not be observed in an exper-

imental system. In addition, the dynamics of the refrig-

erant mass may also be important of themselves, particu-

larly as pertains to ongoing efforts to develop cycles with

minimized refrigerant charge (Corberan et al., 2011). Fi-

nally, the relative ease and precision with which the re-

frigerant mass can be measured, particularly in relation

to other quantities such as the specific enthalpy, can be

invaluable in calibrating dynamic models of these sys-

tems to experimental data.

One contribution to the related field of evapora-

tor charge management was made by Cecchinato and

Mancini (2012), in which the authors develop a moving-

boundary formulation of a single evaporator that con-

serves refrigerant mass. Previous work related to the

dynamics associated with the cycle charge also includes

that of Bonilla et al. (2012), in which the authors study

DOI
10.3384/ecp15118759

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

759

the effect of system oscillations and numerical instabil-

ity resulting from variations in the density in an evap-

orator. Other work with a similar focus includes that

of Tummescheit (2002), which discusses both chattering

(oscillations around a phase boundary) and the selection

of different state variables due to different parameteriza-

tions for the equations of state for various fluids.

There are two primary objectives of this paper: ex-

ploring the causes of the variations in the cycle charge,

and developing an alternative modeling approach that

conserves refrigerant mass. This study will be done via

the use of a simplified cycle model, developed in Mod-

elica, that eliminates extraneous complexity yet main-

tains the salient characteristics of models that cause vari-

ations in the cycle charge. While common cycle mod-

els have many important additional characteristics, such

as the use of detailed heat transfer or frictional pres-

sure drop correlations, these characteristics are not es-

sential to the analysis of, or solution to, the variations

in the cycle charge. One additional effect that is signif-

icant for experimental systems but has been neglected

for this initial study is that of the refrigerant oil; while

some of the refrigerant charge in experimental systems

is inevitably dissolved in the oil and a charge inventory

that ignores this effect will inevitably be lower than ex-

perimentally observed system charge, the challenges in-

herent in modeling the refrigerant-oil interactions and

the need for initial work in this area elicited a focus on

single-component working fluids.

Following this introduction, Section 2 discusses the

causes of the variation in the cycle charge in the context

of the finite volume pipe model, as well as a method of

eliminating these variations. Section 3 presents a discus-

sion of the construction and implementation of the com-

ponent models used in the simplified cycle models which

are both conservative and nonconservative, as well as an

approach for initializing these models to achieve a spec-

ified cycle charge. The results of simulating these modi-

fied models to eliminate the fluctuations in cycle charge

are discussed in Section 4, while the final section sum-

marizes the work presented in the paper and suggests fer-

tile areas for exploration future work.

2 Cycle Mass Variation

Basic vapor compression cycles consist of a compressor,

an expansion valve, and two heat exchangers. Common

simulation architectures are designed to take advantage

of the different timescales for the dynamics of the differ-

ent components; since the time constants of the compres-

sor and expansion valve are such smaller than those of

the heat exchangers, algebraic models are used for these

components, and dynamic models are used for the heat

exchangers. One common type of models for the heat

exchanger dynamics used in this research are so-called

finite volume models, which use the method of lines to

discretize the partial differential equations (PDEs) de-

scribing the mass, momentum, and energy conservation

in the system. The resulting model formulation consists

of a set of ordinary differential equations (ODEs) that

can be integrated forward in time to study the dynam-

ics of the system, as well as a set of algebraic constraints

including those introduced by the compressor and expan-

sion valve models. While the high complexity of the fi-

nite volume models makes them somewhat slower than

other heat exchanger modeling approaches, their abil-

ity to describe spatial variations in the heat exchanger

behavior has made them quite popular (Elmqvist et al.,

2003; Franke et al., 2009; Laughman, 2014).

As is the case with the development of any physical

system model, it is essential to clearly define the pur-

pose for which a model is constructed to ensure that it

uses an appropriate set of assumptions to describe the

desired behavior. Since the behavior of the refrigerant

mass in the cycle are the focus of this research, the mod-

els constructed in this paper only describe the behavior

of the working fluid in the pipe, rather than the dynam-

ics of the coupled primary fluid / tube wall / secondary

fluid system of a prototypical air-source vapor compres-

sion cycle. The conservation equations were also sim-

plified by neglecting both gravitational forces and ax-

ial heat conduction in the direction of the fluid flow.

Other model assumptions used in this work include that

of one-dimensional pipe flow, thermodynamic equilib-

rium in each discrete volume of the refrigerant pipe at

each instant in time, and a homogeneous flow field in the

two-phase region, meaning that the liquid and vapor ve-

locities are equal. These assumptions were employed to

avoid additional complexity in the models in an effort to

focus on the underlying causes of variations in the cycle

mass.

Under these assumptions, the PDEs describing the

conservation equations for a volume of fluid in the re-

frigerant pipe are

∂ (ρA)

∂ t
+

∂ (ρAv)

∂x
= 0 (1)

∂ (ρvA)

∂ t
+

∂ (ρv2A)

∂x
=−A

∂P

∂x
−Ff (2)

∂ (ρuA)

∂ t
+

∂ (ρvhA)

∂x
= vA

∂P

∂x
+ vFf +

∂Q

∂x
, (3)

where additional information about the symbols and

nomenclature used in these equations can be found in

the table at the end of this paper. The Reynolds transport

theorem can be used to relate the changes in state for a

control volume of fixed dimension to the the fluid flow-

ing into and out of that control volume. The resulting

expressions can then be discretized to generate a set of

Mass Conserving Models of Vapor Compression Cycles

760 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118759

ODEs, e.g.,

d(ρ jVj)

dt
= ṁk − ṁk+1 (4)

d(ṁil)

dt
= ρ jv

2
jA j −ρ j+1v2

j+1A j+1+

A j +A j+1

2
(Pj+1 −Pj)+Ff ,i (5)

d(ρ ju jA j)

dt
= Ḣk − Ḣk+1+

v jA j(Pj+1 −Pj)+ vFf ,i + Q̇ j, (6)

where the set of ODEs corresponds to the number of vol-

umes used to subdivide the length of the refrigerant pipe,

and the indices refer the fact that we are using a stag-

gered flow grid (Patankar, 1980). In these equations, the

i indices are referred to the momentum grid, the j indices

are referred to the thermal grid, and the k = j+1 indices

refer to the boundaries of the thermal grid. In addition,

the term Ḣk is defined as

Ḣk = ṁkh̄upstream, j, (7)

and the mixed-cup specific enthalpy h̄ is equal to the in

situ specific enthalpy under the homogeneous flow as-

sumption (Laughman, 2014).

Thermodynamic property relations also play an im-

portant role which is complementary to the differen-

tial equations of fluid motion. These property rela-

tions, which are also algebraic, describe the relations

between the intensive and extensive fluid properties for

a given volume of fluid in thermodynamic equilibrium.

These properties include temperature, pressure, specific

enthalpy, and density, among many others. As a result

of the Gibbs phase rule, there are two degrees of free-

dom for a single-component pure fluid when there is only

one phase present, so that knowledge of two intensive

properties is sufficient to determine any other property.

When there are two-phase flows, there is only one degree

of freedom, but the specification of an intensive mixture

property is also needed to determine the state of the two-

phase mixture (Bejan, 2006). For example, the specifi-

cation of pressure P and mixture specific enthalpy h will

theoretically allow the calculation of any other properties

in the thermodynamic phase space.

The calculation of thermophysical properties for dy-

namic simulation generally needs to be very fast and ac-

curate, due to the number of function evaluations used

in a typical system model. As a result, the use of

standard equations of state is discouraged in favor of

other interpolating methods, such as cubic polynomials

or splines (Aute and Radermacher, 2014). Such methods

use function approximation to describe each of a set of

desired properties as a function of a much more limited

set of properties that are calculated at each time step in

the simulation. Many thermophysical property routines

for refrigerants use P and h as coordinates in the func-

tion approximation space to quickly calculate the variety

of necessary properties.

The construction of a dynamic model of a refrigerant

pipe must take into consideration both the structure of

the equations of fluid motion, as well as the implementa-

tion of the thermophysical property calculation methods,

to generate a computationally efficient simulation. The

selection of an infelicitous set of coordinates in which

to integrate the conservation equations 4-6 can result in

the generation of a large set of nonlinear equations that

must be solved to calculate the fluid properties at every

time step and for every fluid volume, resulting in poten-

tial numerical and practical challenges.

The most common approach taken in this regard is the

selection of pressure P and specific enthalpy h as the state

variables for the equations of motion, since these are of-

ten also used as the coordinates for calculating the fluid

properties. The derivatives of M(P,h) and U(P,h) in the

above equations can thus be written as

dM

dt
=V

(

dρ(P,h)

dt

)

(8)

=V

(

∂ρ

∂P

∣

∣

∣

∣

h

dP

dt
+

∂ρ

∂h

∣

∣

∣

∣

p

dh

dt

)

(9)

dU

dt
=V

(

d(ρ(P,h)u(P,h))

dt

)

(10)

=V

[

(

h
∂ρ

∂P

∣

∣

∣

∣

h

−1

)

dP

dt
+

(

∂ρ

∂h

∣

∣

∣

∣

p

h+ρ

)

dh

dt

]

.

(11)

The use of these property relations, along with the

stateSelect attribute, can help the Modelica compiler

to select P and h as the state variables for the model. By

selecting these properties as state variables, they can be

integrated by the solver used in a given Modelica tool,

such as DASSL or Radau IIa.

The selection of a set of coordinates for the system can

have a significant impact on many other variables of the

system. One particular variable that is strongly affected

by this choice of state variables is the total mass of the

system Mtotal . Since no mass is stored in the compres-

sor or expansion valve models, an expression for Mtotal

can be developed by summing all of the masses for the

individual control volumes in the pipe model, e.g.,

Mtotal = ∑
k

ρkVk = ∑
k

ρk(P,h)Vk. (12)

Because the integration of the state variables results in

some error, however, it is important to note that a more

accurate description of this sum might be

Mtotal = ∑
k

ρ̂k(P+ ε,h+ ε)Vk, (13)

where ε is the error tolerance of the integration rou-

tine and ρ̂ represents the numerical approximation of

Session 10D: Thermofluid Systems, Models and Libraries 2

DOI
10.3384/ecp15118759

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

761

ρ . While these integration errors are not problematic in

many fluids for which the relation between P, h, and ρ
is nearly linear, two-phase refrigerant flows experience

large changes in density as the fluid passes from the liq-

uid region into the two-phase region. These large den-

sity derivatives can effectively amplify small deviations

in either P or h, resulting in large changes in the density

between subsequent time steps. Consequently, small er-

rors in the integration of both of these quantities can ac-

cumulate quickly and lead to significant and unexpected

changes in the total system mass.

Further consideration of Equation 12 suggests an al-

ternative choice of state variables that can reduce these

undesirable changes in the refrigerant mass; since the

ultimate objective of reducing nonphysical variations in

the system charge is equivalent to reducing the errors in

the cell density calculations, the selection of ρ as a state

variable will allow the integrator to minimize the errors

in the density directly, rather than through ρ(P,h). While

this choice may appear to be unconventional because of

the potential for numerical chattering caused by the large

density changes that accompany the movement of the

fluid state across the saturated liquid line, the choice of P

and ρ as state variables will eliminate the amplification

of errors in the density calculation, resulting in a corre-

sponding reduction in the variation of the total system

mass.

The alternative formulation of the state variables re-

sults in the following expressions for the derivatives of

M(P,ρ) and U(P,ρ) for each control volume, e.g.,

dM

dt
=V

dρ

dt
(14)

dU

dt
=

d(ρu(P,ρ)V)

dt
(15)

=V

[(

ρ
∂h

∂P

∣

∣

∣

∣

ρ

−1

)

dP

dt
+

(

ρ
∂h

∂ρ

∣

∣

∣

∣

P

+h

)

dρ

dt

]

.

(16)

As might be expected, the selection of ρ does also im-

pose additional costs to the simulation. Perhaps the most

significant of these is that the use of ρ as a state variable

will result in smaller time steps because of the large val-

ues of the derivatives at low static qualities of the flow.

In addition, the selection of these state variables will also

have an effect on the final set of equations that are gener-

ated because the change in coordinates will result in the

construction of a different set of equations to calculate

the remaining fluid properties, such as the calculation of

h(P,ρ). In the case that these equations are nonlinear, the

simulation time could also be longer than would be for

the case with the selection of the original state variables.

However, these costs may be outweighed by the benefit

of having a constant cycle charge.

Another alternative method for describing the dynam-

ics of the differential control volume involves expanding

the number of state variables to include pressure, specific

enthalpy, and density. While this approach does result in

a larger number of state variables, it has the advantage

of simultaneously minimizing the variations in system

charge while enabling the use of P and h for calculat-

ing other refrigerant properties. Such a method uses the

same differential equations as the (P,ρ) model, but also

includes the additional ODE

dh

dt
=

∂h

∂P

∣

∣

∣

∣

ρ

dP

dt
+

∂h

∂ρ

∣

∣

∣

∣

P

dρ

dt
. (17)

It is also important to note that the set of property

derivatives ∂h/∂P and ∂h/∂ρ from Equations 14 and 16

do not need to be separately calculated in the property

routine to use P and ρ as state variables. The original

set of property derivatives can instead be manipulated to

provide the needed derivatives, i.e.,

∂h

∂P

∣

∣

∣

∣

ρ

= −
∂ρ

∂P

∣

∣

∣

∣

h

∂h

∂ρ

∣

∣

∣

∣

P

(18)

∂h

∂ρ

∣

∣

∣

∣

P

=
1

∂ρ
∂h

∣

∣

∣

P

. (19)

3 Mass Conserving Models

A simplified cycle model, described in the following

section, was developed to evaluate the efficacy of these

different approaches at maintaining a specified cycle

charge. Details about the components and construction

of this test cycle model model will be discussed in this

section, as well as the means of initializing this cycle to

achieve a specified system charge.

3.1 Component Models

The simplified cycle model developed in this section in-

cludes three components: a refrigerant pipe, a pump, and

an “enthalpy adjuster”. These components were used to

create a system cycle model which maintained mass and

energy balances. While the main focus of this work is

the refrigerant pipe, the pump is needed to define a re-

lation between the mass flow rate and the pressure drop,

so that these variables can be controlled and varied to ex-

amine their effect on the total cycle mass. An additional

component, referred to as an enthalpy adjuster, was also

used to enforce the conservation of energy throughout

the system; this component included no pressure drop,

but only modified the enthalpy of the working fluid flow-

ing through it so that energy was conserved over the cy-

cle. Neither the pump nor the enthalpy adjuster stored

any refrigerant mass; consequently, these components

had no state and imposed only algebraic constraints on

the system to achieve a desired system balance point.

The state variables were therefore only associated with

the refrigerant pipe.

Mass Conserving Models of Vapor Compression Cycles

762 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118759

A simplified pipe model, governed by the equations

described in Section 2, was developed to test the impact

of the state variable selection on the dynamics of the cy-

cle charge. In addition to the governing ODEs, these

models also required the inclusion of a set of closure

relations describing the heat transfer and the frictional

pressure drop. An ideal heat transfer connection was

assumed for the sake of simplicity, so that the thermal

energy was directly added to the refrigerant stream in

each control volume, rather than being governed by the

temperature gradients between the refrigerant pipe wall

and the bulk fluid. A simplified momentum equation that

only accounts for the steady-state frictional pressure drop

in both the single and two-phase regions was also as-

sumed, in which

∆P = K
∆P0

ṁ2
0

ṁ2, (20)

and the nominal values of ∆P0, ṁ0, and the adjustable

constant of proportionality K were set at the top level of

the model. A numerical regularization method was also

implemented to improve the numerical robustness of the

model for small values of the mass flow rate and pressure

drop (Casella et al., 2006).

One feature of the pipe model that was particularly

important to this work was the ability to use different

models for the relations between the property differen-

tials. This was achieved by implementing the set of dif-

ferential models as a replaceable model inside the larger

pipe model. Each pipe model includes its own differen-

tial volume model, but computes the same terms dMs and

dUs. While each of these underlying differential models

implements different relationships between the proper-

ties, the instantiating pipe model only needs to equate the

differentials of the mass and internal energy to the terms

on the right hand side of Equations 4-6. This is demon-

strated in the following simplified excerpt from the re-

frigerant pipe model.

// DIFFERENTIAL VOLUME MODEL

replaceable model DifferentialModel =

DifferentialModel_ph

constrainedby

PartialDifferentialModel;

DifferentialModel diffVolume(

redeclare Medium=Medium,

n=n,

fluidVolumes=fluidVolumes,

ps={mediums[k].p for k in 1:n},

hs={mediums[k].h for k in 1:n},

ddhps={mediums[k].ddhp for k in 1:n},

ddphs={mediums[k].ddph for k in 1:n},

stateChoice=stateChoice);

equation

dms = diffVolume.dms;

dUs = diffVolume.dUs;

By further establishing a PartialDifferential-

Model from which all of these differential models can

inherit, the differential volume model can be replaced

while maintaining some moderate restrictions on the pos-

sible types of replacement, enabling the state variables to

be changed without changing any of the other equations

in the pipe model.

This implementation of these differential vol-

ume models also required the careful use of the

stateSelect attribute, as the selection of states was

based upon the choice of state variables managed with

the differential volume model. A ThermoStates

enumeration with literals including states_ph,

states_pd, and states_phd was therefore used to

coordinate the use of a given differential volume model

and the corresponding state selection attribute for the

Modelica compiler.

A pump model and an enthalpy adjuster model were

also created to study the closed loop cycle dynamics. The

pump model used a scaled version of the basic relation-

ship between mass flow rate and pressure drop (Equa-

tion 20) to calculate the pressure rise across the pump for

the nominal pump speed that is inversely proportional to

the pressure drop for pipe model including a given num-

ber of control volumes, e.g.,

ṁ =

(

N

Nnom

)

ṁ0

√
∆P0

√

∆P
(

Nnom
N

)2
. (21)

As no mass was stored in this component, the mass flow

rates into and out of the pump were equal, and the energy

change across the pump was a quadratic function that

compensated for the change in enthalpy across the pipe

due to pressure loss. This term was much smaller than

the energy change in the pipe due to the heat flux into

the pipe. As was the case for the pressure drop model of

the pipe, regularization methods were also used to com-

pensate for numerical singularities.

An analogous enthalpy adjuster model was also cre-

ated to compensate for the change in the specific en-

thalpy across the pipe due to the applied heat flux. This

model included no pressure drop or mass storage, and

only modified the specific enthalpy for the working fluid

travelling to include the effect of the total applied thermal

energy gain as the fluid travels through the pipe. Con-

sequently, the equations describing the simplified model

used to fulfill the energy balance for the overall system

are

ṁout = ṁin (22)

Pout = Pin (23)

hout = inStream(hin) + Q̇in/min (24)

hin = inStream(hout) − Q̇in/min. (25)

This model is very similar to that of

Modelica.Fluid.Pipes.StaticPipe, but also

Session 10D: Thermofluid Systems, Models and Libraries 2

DOI
10.3384/ecp15118759

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

763

includes a change in the outlet enthalpy corresponding

to the applied heat gain. Stream connectors and reg-

ularization methods around zero mass flow rate were

also used in these individual components to improve the

numerical robustness of the simulation.

3.2 Initialization

The problem of achieving a specified constant charge for

a cycle simulation can be effectively split into two related

problems: the initialization of the simulation so that the

cycle mass starts at the specified value, and the main-

tenance of the cycle charge at that value over the dura-

tion of the simulation. While the previous sections of

the paper address how to maintain the cycle charge at

a constant value, this brief section addresses the means

by which a specific value of the cycle charge may be at-

tained. In general, the total refrigerant mass contained

in the cycle at initialization depends on the initial refrig-

erant state in each volume of the system. Because the

refrigerant state at zero mass flow rate is relatively easier

to determine, the system was initialized as this condition

so that the pump speed was zero and there was no heat

flux applied to the pipe or the enthalpy adjuster, and then

these inputs were turned on after the conclusion of the

initialization transient.

The initial conditions for the system were developed

using basic thermodynamic reasoning. The specification

of a value of cycle charge Mtotal for a given system vol-

ume V effectively specifies the average density of the

fluid in the system ρinit ; this specifies one variable that

determines the state of the system. Independent specifi-

cation of one other variable for the system, such as the

system pressure Pinit at zero pump speed and zero heat

flux, determines the state of the refrigerant in the sys-

tem. The specific enthalpy hinit for every component and

control volume can therefore be directly calculated from

this refrigerant state in a set of initial equations. Since it

is common to initialize most components with pressure

and specific enthalpy, these calculated initial values for

the pressure and specific enthalpy of the working fluid

were then used to initialize all of the components in the

system to achieve the desired cycle charge.

4 Results

The models described in Section 3 were implemented in

Modelica and tested to evaluate the efficacy of the pro-

posed strategy for maintaining a constant cycle mass.

Three related models were created with identical geo-

metric parameters and input waveforms. These models

used the R410a refrigerant property model included in

the AirConditioning/ThermoFluidPro library, written by

Modelon (Modelon AB, 2015), as well as the simple

relationship between frictional pressure drop and mass

flow rate described in Equation 20, where ∆P0 = 500 Pa

and ṁ0 = 10 g/s. Other salient parameters of the model

are included in Table 1. These models were tested in sim-

Table 1. Common parameters for the test cycle models.

Parameter Name Value

Pipe diameter 8 mm

Pipe length 12 m

Maximum heat input 130 W/cell

(3120 W total)

Initial pressure 1 MPa

Initial system charge 150 g

Number of pipe control volumes 24

ulation using Dymola 2015 FD01, and were executed on

an i7 PC with 8G of RAM.

Figure 1. Inputs of pump speed (upper) and heat input (lower)

applied to the test cycle.

Because the variations in the cycle charge are related

to phase transitions in the fluid volumes across the liq-

uid saturation line, a series of inputs was designed to re-

peatedly produce these transitions in an effort to induce

variations in the cycle charge. These input waveforms,

both for the pump speed and the heat source, are illus-

trated in Figure 1. After the cycle was initialized with the

specified refrigerant mass and zero mass flow rate, the

pump speed was initially ramped up at 50 seconds from

0 to 1800 rpm over 5 seconds. The resulting transients

were then allowed to subside before ramping up the heat

source at 350 seconds from 0 to 3120 W over 100 sec-

onds, with the heat being distributed equally over each

of the 24 control volumes in the pipe. Finally, a ramp

sawtooth waveform was applied to the pump speed to

repeatedly cause transitions across the liquid saturation

line; the resulting pump speed had a minimum value of

1800 rpm, a maximum value of 2800 rpm, a period of 50

seconds, and a duty ratio of 0.052. All of the simulations

used identical input waveforms, and were integrated by

using the DASSL solver.

Mass Conserving Models of Vapor Compression Cycles

764 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118759

Figure 2. Total cycle mass for three different numerical toler-

ances with identical applied inputs.

The effect of this waveform on the model using P and

h as state variables are illustrated in Figure 2. While

many notable features are evident, perhaps the most

striking is the amount of variability in the total cycle

charge. Such large changes in the total cycle charge can

be quite problematic, as they will have a significant im-

pact on the behavior of the cycle. The amount of varia-

tion in the total cycle mass is strongly correlated with the

tolerance of the solver, suggesting that it is indeed related

to the integration tolerances. Moreover, the changes in

the mass inventory usually occur by steps, suggesting

the presence of a discontinuity that gives rise to these

changes.

Figure 3. Static quality x at the first, second, and third control

volumes in the pipe during the increasing portion of the pump

speed waveform, as well as the total system charge at the same

moment.

Figure 3 illustrates the relation between the discon-

tinuity caused by the changes in the static quality x =
Mvap/Mtotal for control volumes 1, 2, and 3 and the varia-

tions in the total system charge. The dashed line drawn at

t = 603 seconds shows a strong correlation between the

time that the static quality for all three of these control

volumes goes above zero and the time of the step discon-

tinuity in the total system charge. It is also particularly

interesting to note that while the quality of the third con-

trol volume increases above zero a number of subsequent

times in this plot, there are no other variations in the to-

tal system charge. This phenomenon suggests that the

variations in the refrigerant charge are related not only to

a transition across the liquid saturation line, but also to

the rate and duration of this transition. The small magni-

tude of the abrupt excursions over x = 0 for control vol-

umes 1 and 2 which are associated with large changes in

the refrigerant density, as well as the corresponding large

changes in the cycle mass, is compatible with the asser-

tion that the variations in the total system charge could

be caused by the errors in the state variables.

Figure 4. Cycle mass inventory for M(P,ρ) and M(P,h,ρ)
models, with an integration tolerance of 1e-04.

In comparison to the large variations in the total sys-

tem charge exhibited in Figure 2 for the system using

(P,h) as state variables, the minuscule variations present

in Figure 4 demonstrate that the models that use either

(P,ρ) and (P,h,ρ) as state variables have much improved

behavior. The variations in the mass for both of these cy-

cles are on the order of 0.25 milligrams, or 1.7×10−4%

of the total cycle charge. This compares quite favorably

to the output of the simulation of the (P,h) model with

the same tolerance, which resulted in an 82% change in

the total cycle charge. Further reductions in the error tol-

erance for the (P,ρ) and (P,h,ρ) simulations will result

in a corresponding reduction in the variation in the total

cycle charge.

Additional insights can be gained from the informa-

tion contained in Table 2, which compares the errors in

the simulations and the total time required to run each

simulation for different sets of state variables and er-

ror tolerances. The errors in this table were generated

by calculating the maximum deviation between the total

system charge and 150.0 grams, which was the specified

charge. As might be expected, the error in the total sys-

tem charge is far greater for the model with the (P,h)

Session 10D: Thermofluid Systems, Models and Libraries 2

DOI
10.3384/ecp15118759

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

765

Table 2. Max and percentage errors and CPU time for different

choices of state variables and integrator tolerances.

State Var Tol Max Error % Error Time

M(P,h) 1e-4 -122.6 g 81.7% 277 s

1e-5 3.96 g 2.6% 127 s

1e-6 -19.3 g 12.8% 1925 s

M(P,ρ) 1e-4 1.9e-4 g 1.2e-4% 766 s

1e-5 2.0e-4 g 1.3e-4% 1250 s

1e-6 2.0e-4 g 1.3e-4% 1374 s

M(P,h,ρ) 1e-4 2.0e-4 g 1.3e-4% 137 s

1e-5 2.0e-4 g 1.3e-4% 315 s

1e-6 2.0e-4 g 1.3e-4% 450 s

state variables than for the other models. One particu-

larly striking and counterintuitive trend is the decrease in

the simulation time for the (P,h) models that accompa-

nies the reduction in the tolerance from 1e-4 to 1e-5; this

can be attributed to the stiffness of the system of equa-

tions during the abrupt changes in the mass inventory in

the simulation with the higher tolerance. It is also in-

teresting to note that the simulation time for the (P,h)
model with a tolerance of 1e-6 is much greater than for

any of the other simulations for any combination of state

variables. This can potentially be attributed to the pres-

ence of so many discontinuities in the simulation wave-

form due to the changes in the refrigerant mass; since the

solver must take very small time steps past each discon-

tinuity to maintain the specified error tolerance, the sum

effect of these discontinuities is that the average time step

of the solver must be much smaller than might otherwise

be necessary.

Comparison of the simulation time of the (P,h) mod-

els to the (P,ρ) models indicates that the (P,ρ) models

are slower, as expected, because the large variations in

refrigerant density cause the solver to take correspond-

ingly smaller time steps. Finally, it is also evident from

Table 2 that the (P,ρ) and (P,h,ρ) methods have identi-

cal accuracy for practical intents and purposes, but the

time required to run the (P,h,ρ) simulations is much

smaller than that of the (P,ρ) simulations. This can

potentially be attributed to the nonlinear equations that

must be solved to calculate h(P,ρ) when h is not used as

a state variable.

5 Conclusions and Further Work

Over the course of this paper, the causes of variations in

the total system charge were studied and two alternative

selections of the state variables that can essentially elim-

inate such variations were proposed. The effect of these

different state variable selections was demonstrated on

a simplified cycle model, and the manifestations of the

underlying causes for the cycle variation when P and

h are solely used as state variables were examined by

analyzing the simulation output. While both the (P,ρ)
and (P,h,ρ) models had similar accuracy for simulating

the total system charge, the (P,h,ρ) models simulated

much faster because h(P,ρ) does not have to be calcu-

lated when it is also included as a state variable. More-

over, though one ostensible motivation for using (P,h)
as state variables is the speed by which the property cal-

culations can be executed, the dynamics associated with

the variation in total system charge can somewhat iron-

ically result in simulations that take longer to run than

simulations with (P,ρ) as state variables because of the

small step sizes required. Models for refrigerant pipes

that include either (P,ρ) or (P,h,ρ) as state variables

could therefore result in simulations that are both faster

and more accurate than might be possible with a choice

of (P,h) as state variables.

The results obtained in this work may be extended in

a number of directions for future investigation. As sug-

gested in the introduction, an extension of these meth-

ods to models which describe the behavior of refriger-

ant/oil mixtures would be quite valuable. In addition,

an error analysis to rigorously demonstrate the causes

of these cycle variations would clarify the observations

discussed in this paper, and a study of the energy con-

servation for the system might also provide interesting

results. While it is expected that these general trends

would hold for different solvers, choices of the nominal

attributes of the states, or reference values of the specific

enthalpy, further work to explore such trends would be

beneficial. Additional study of alternate thermodynamic

coordinates might also yield fruitful results; for example,

specific entropy is sometimes used to decouple the hy-

draulic and thermal equations describing fluid flow, and

the selection of this or alternate coordinates may also

be relevant to these applications. We hope that future

studies of these and associated phenomena will continue

to yield new insights into these complex and fascinating

systems.

Nomenclature

A cross-sectional area

Ff frictional pressure drop

Ḣ enthalpy flow rate

K proportionality constant for ṁ → ∆P relation

M mass

N pump speed

P pressure

Q̇ heat transfer rate

U internal energy

V volume

h in situ specific enthalpy

h̄ “mixed-cup” specific enthalpy

ṁ mass flow rate

t time

u specific internal energy

Mass Conserving Models of Vapor Compression Cycles

766 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118759

v velocity

ρ density

ρ̂ numerical approximation of density

References

V. Aute and R. Radermacher. Standardized polynomials for

fast evaluation of refrigerant thermophysical properties. In

International Refrigeration and Air-Conditioning Confer-

ence at Purdue, 2014.

A. Bejan. Advanced Engineering Thermodynamics. Wiley, 3

edition, 2006.

J. Bonilla, L.J. Yebra, and S. Dormido. Chattering in dynamic

mathematical two-phase flow models. Applied Mathemati-

cal Modeling, 36:2067–2081, 2012.

G.E.P. Box and N.R. Draper. Empirical Model-Building and

Response Surfaces. Wiley, 1987.

F. Casella, M. Otter, K. Proelss, C. Richter, and

H. Tummescheit. The Modelica Fluid and Media li-

brary for modeling of incompressible and compressible

thermo-fluid pipe networks. In Proceedings of the 5th

Modelica Conference, 2006.

L. Cecchinato and F. Mancini. An intrinsically mass con-

servative switched evaporator model adopting the moving-

boundary method. International Journal of Refrigeration,

35:349–364, 2012.

J.M. Corberan, I. Martinez-Galvan, S. Martinez-Ballester,

J. Gonzalvez-Macia, and R. Royo-Pastor. Influence of the

source and sink temperatures on the optimal refrigerant

charge of a water-to-water heat pump. International Journal

of Refrigeration, 34:881–892, 2011.

H. Elmqvist, H. Tummescheit, and M. Otter. Object-oriented

modeling of thermo-fluid systems. In Proceedings of the

3rd Modelica Conference, 2003.

R. Franke, F. Casella, M. Sielemann, K. Proelss, M. Otter,

and M. Wetter. Standardization of thermo-fluid modeling in

Modelica.Fluid. In Proceedings of the 7th Modelica Con-

ference, 2009.

C. Laughman. A comparison of transient heat pump cycle sim-

ulations with homogeneous and heterogeneous flow models.

In International Refrigeration and Air Conditioning Confer-

ence at Purdue University, 2014.

P. Li, Y. Li, J.E. Seem, H. Qiao, X. Li, and J. Winkler. Recent

advances in dynamic modeling of HVAC equipment. Part

2: Modelica-based modeling. HVAC&R Research, 20(1):

150–161, 2014a.

P. Li, H. Qiao, Y. Li, J.E. Seem, J. Winkler, and X. Li. Recent

advances in dynamic modeling of HVAC equipment. Part 1:

Equipment modeling. HVAC&R Research, 20(1):136–149,

2014b.

Modelon AB. Air Conditioning Library User Guide, 2015.

v1.9.0.

S.V. Patankar. Numerical Heat Transfer and Fluid Flow.

Hemisphere Publishing Co., 1980.

H. Tummescheit. Design and Implementation of Object-

Oriented Model Libraries using Modelica. PhD thesis,

Lund Institute of Technology, 2002.

Session 10D: Thermofluid Systems, Models and Libraries 2

DOI
10.3384/ecp15118759

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

767

768 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

EPSILON Modelica library for thermal applications

Laurent Lachassagne1 Arnaud Colleoni1 Hervé Feral1 Nicolas Dolin1
1Epsilon Ingénierie, France, {llachassagne,acolleoni,hferal,ndolin}@epsilon-alcen.com

Abstract

This paper presents the Modelica library built by the
French company “Epsilon Ingénierie” in order to
provide system models of several technologies for
thermal applications. The Epsilon library has its own
structure for media definition, allowing simulation of
two-phase phenomena in the library models. This
library also includes several heat transfer technologies
models such as heat exchangers, thermo-electric
generators, heat pipes, loop heat pipes, etc… This
paper presents two examples of system modeling with
the Epsilon library using OpenModelica: a capillary
pumped loop and a Fresnel solar plant.

Keywords:Modelica library, heat transfer, systems,

medium, two-phase, solar

1 Introduction

The current trend in industry is to electrify and
downsize gradually the mechanical and hydraulic
technologies. This evolution can only succeed by
managing the excessive heat that needs to be
evacuated. As the thermal systems have to be more
efficient using smaller exchange areas to meet industry
needs, designing the thermal architecture of any system
becomes more and more difficult with average heat
transfer technologies. New promising technologies,
such as two-phase heat transfer devices which are
innovative heat transport systems with high efficiency,
need to be studied and implemented in engineering
phases. A variety of physical conditions, such as the
working fluid, have also to be studied. And eventually,
smart meters need to be integrated to be able to
compare all the available solutions.
Under these circumstances, manufacturers and system
designers need easy-to-use modeling tools in order to
include all these new technologies inside global
models, modify the physical conditions, and to assess
their potentials. Epsilon has chosen Modelica to
develop its own heat transfer technologies models,
enriched by its background in spatial, aeronautic, and
process thermal challenges over the years. The main
objective is to use these models for any applications
where global thermal management is needed, such as
planes, district heating or power plants for example.

2 EPSILON library

The Epsilon library (Figure 1) includes two main
subsections: “Media” where materials are defined and
“Systems” where models are located. The other
packages are “toolboxes” for users. They gather several
useful components for system models and mostly
inspired by Epsilon from the ModelicaStandard library,
especially the FluidHeatFlow library. Thus, Epsilon
library connectors design is the same as in the
FluidHeatFlow library. The objective is to make all
components of the Epsilon library compatible with
components of the ModelicaStandard library and this
connector design seems to be adapted to thermo-
hydraulic modeling.

Figure 1.Structure of Epsilon library.

2.1 “Media”

In order to develop modular models, able to model
phase change, where materials will be easily
replaceable, Epsilon has decided to develop its own
structure (Figure 2). This Media library is filled with
material data and properties functions gathered by
Epsilon over time. All materials (solids, fluids or
gases) are called the same way: EspiLib.Media.Name.

Phase.Temperature dependence (only for fluids).Type

of laws.Properties functions. This makes easier the

DOI
10.3384/ecp15118769

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

769

change of material in the studied models by modifying
Name.
Regarding to fluids, models need only mass enthalpy
and pressure as inlet variables. Temperature and vapor
quality are computed inside fluid model. This way two-
phase flows can be managed in systems models, such
as the Capillary Pumped Loop presented in section 3.

Figure 2.Structure of Epsilon “Media” library

The user can also choose to work with only one fluid
state, by choosing “Liquid” or “Gas” instead of
“TwoPhase” in the medium call Phase, to avoid non-
linearity or to use lightest models. For the moment
Epsilon has not encountered applications with
multicomponent mixture media.

2.2 “Systems”

The Epsilon “Systems” library (Figure 3) is divided
into several packages depending on the technical
applications of thermal management Epsilon has
already encountered and simulated. “ThermalStorage”
contains Phase Change Materials models. “Solar”
includes models and sub-models for designing solar
power plant as the Fresnel solar plant described in
section 4. “HeatExchanger” gathers different models of
heat exchangers, evaporators and condensers.
“Electrical” contains Thermo-electric Generators
models (such as Peltier cells). “Diphasic”gathers
systems where two-phase fluids rule, such as heat
pipes, loop heat pipes, heat pumps, etc… Eventually,
“Building” package includes models for buildings
energy management. These packages are not
exhaustive and the Epsilon library is defined to be
filled over time with applications coming from Epsilon
expertise or client needs.

Figure 3.Structure of Epsilon “Systems”library.

2.3 Implementing indicators

When designing a thermal system, modeling has to
supply answers to help choose between several
configurations. To do so, several smart meters have to
be included. Based on the “extends” possibilities of
Modelica, the creation and integration of smart meters
in system modeling is simplified.
Hence, a Modelica block has been created, containing
the necessary equations to calculate costs at each time
step with the following parameters:

 P0, initial cost of purchase
 P1Active, a Boolean when using P1,

representing the cost of running energy
 P2, maintenance cost

EPSILON Modelica Library for Thermal Applications

770 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118769

 TimePeriod, for the maintenance time
frequency

 P3, renewal facilities cost

To integrate a cost in a model, one only need to call the
cost block “extends CostBlock(P0=xx, P1Active=true,
P2=xx, P3=xx)” and to add an equation relative to P1.
Moreover, a small icon with the Euro symbol will be
added on the diagram view, allowing for a connection
of the cost of each component to be treated in an
economic model (as illustrated in figure 17).

Eventually, the generic structure of this meter makes it
easy to create other indicators such as, CO2 generated,
size, mass, footprint … Hence, models developed in
the Modelica Library can support simulations over
multiple time scales: seconds to minutes for local
dynamics/controls studies and days or years for overall
economic value propositions studies. An example
using these cost indicators is given in section 4 of this
paper concerning modeling of a solar Fresnel power
plant.

3 Example: Capillary Pumped Loop model

A first example of using the Epsilon library is the
model of a complex innovative system: a capillary
pumped loop. This system is mostly used to transfer
heat from sources with high heat fluxes densities to a
cold source. It was first developed around fifty years
ago for space applications (Stenger, 1966) to transfer
heat from dissipating cells to solar panels. For around
ten years, these systems are also used for terrestrial
applications (railway, planes) such as power
electronics cooling (Vasiliev et al, 2009).

3.1 Principle

Capillary pumped loop (CPL) or Loop Heat pipes
(LHP) are two-phase devices based upon the heat pipe
working principle (Maydanik, 2004). The phase change
of a pure fluid is used to transfer heat from the hot spot
(evaporator) to the cold source (condenser). A porous
media is inserted inside the evaporator to act like a
pump for the fluid. The fluid flows in the loop due to
combination of capillary pumping of liquid inside the
porous wick and evaporation at the top of the wick.
Liquid and vapor flow in separated lines between
evaporator and condenser. A reservoir is added to the
system to ensure that the evaporator wick will always
be fed with enough liquid. The position of the reservoir
determines the kind of loop and can impact the system
behavior (Figure 4).

Figure 4.CPL vs. LHP.

The device used for this study is a particular kind of
CPL: the capillary pumped loop for integrated power
(CPLIP) developed by the Belgian company “Euro
Heat Pipe”. Its particularity is the reservoir position,
which is located above the evaporator (Figure 5). Then
gravity has an influence on reservoir/evaporator
coupling, making this design halfway between CPL
and LHP. This system has been tested for a terrestrial
application and results are available in literature
(Lachassagne et al, 2012). Epsilon society has
developed and validated a Modelica system model of
this device.

Figure 5.View of a Capillary Pumped Loop for
Integrated Power(Lachassagneet al, 2012).

3.2 Elementary cell

The fluid generic volume (Figure 6) is the key
component of Epsilon two-phase and one-phase device
models. This “generic pipe” model is fitted with two
fluid connectors (inlet and outlet) and one heat
connector (heat exchange through the volume frontier).
Variables exchanged by the “flowPorts” are mass
enthalpy, mass flow, enthalpy flow and pressure. The
variables exchanged by the “heatPort” are heat flow
and temperature.
This elementary model has been tested using fluids of
Epsilon library “Media” with a set of boundary
conditions (Figure 7). It works both for one-phase and
two-phase fluid flows. Flow change of direction is also
possible. Several heat transfer and pressure losses
correlations are available in the Epsilon library
package “Tools” and can be chosen by the user.

Session 10D: Thermofluid Systems, Models and Libraries 2

DOI
10.3384/ecp15118769

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

771

Figure 6.View of the elementary fluid volume
variables.

Figure 7.Test model of the elementary fluid volume
“genericpipe” of the Epsilon library.

3.3 CPL system Model

By connecting several components of the Epsilon
library, a complete CPLIP system model can be
developed (Figure 8). According to the structure of
Espilon media library, this model allows to change
working fluid and materials with only one clic. Loop
geometry parameters and heat transfer correlations can
also be changed by the users.

Figure 8.Test model of the CPLIP in the Epsilon
library.

3.4 Validation

This model has been validated at steady-state by
comparing with literature results (Lachassagne et al,
2012). These results were experimental data of a
CPLIP test bench with ethanol as working fluid. Two
kinds of models have been tested: one with a
“complex” evaporator with many thermal and fluid
couplings and the other “simplified” with only one
coupling for the evaporation interface. On Figure 9 and
Figure 10, dots stand for experiments results, dotted

lines stand for the simplified evaporator model and
plain lines stand for the complex evaporator models. It
appears that both model fit the experiments results
well, with little more precision for the complex
evaporator model. The error remains greater for the
hydraulic variables than for the thermal ones, which is
still acceptable considering the great instabilities due to
condensation in these systems.

Figure 9.Temperatures vs. Heat power applied at the
CPLIP evaporator.

Figure 10.Pressure losses in the CPLIP components
vs. Heat power applied at the CPLIP evaporator.

After comparing efficiency of these two CPL models,
the last tests performed were numerical tests. Figure 11
shows the simulation duration function of number of
elementary cell in the condenser. The objective of
these tests was to assess the numerical reliability of the
model not only for different complexity (two kinds of
evaporator), but also for different model sizes
(condenser discretization). Blue line stands for tests of
the complex evaporator model and yellow line stands
for the simplified evaporator model. Dots appearing on
the abscissa axis represent a simulation crash for the
corresponding number of condenser cells. The
simplified model shows a quadratic behavior whereas
complex evaporator model seems to have an
exponential increasing of simulation duration with the
condenser discretization. It also appears that complex
model has many simulation crashes contrary to
simplified one. Tests have also shown that the stability
of the complex CPL model will be increased if the user

0

20

40

60

80

100

0 500 1000 1500 2000 2500 3000 3500 4000

Qapp(W)
T

(°
C

)

vaporline

vaporline_V0

vaporline_exp

liquidline

liquidline_V0

liquidline_exp

res_evapo

res_evapo_V0

res_evapo_exp

bâti

bâti_V0

bâti_exp

-11000

-6000

-1000

4000

9000

0 500 1000 1500 2000
Qapp(W)

d
el

ta
P

(P
a)

vaporline

vaporline_V0

vaporline_exp

liquidline

liquidline_V0

liquidline_exp

res_evapo

res_evapo_V0

res_evapo_exp

evaporator

evaporator_V0

evaporator_exp

condenser

condenser_V0

condenser_exp

EPSILON Modelica Library for Thermal Applications

772 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118769

is particularly careful of the boundary and start
conditions of the model.

Figure 11. Simulation duration vs. CPLIP condenser
cellsnumber.

It remains hard to explain this numerical behavior
because of complexity of these kinds of models
couplings. It is well-known that phase-change
modeling leads to large discontinuities in fluid
properties and then numerical issues. This will be
investigated by Epsilon in the future, based on
literature analysis (Bonilla et al, 2012). The fluid flow
connector design can also be discussed. Epsilon has
chosen to use the Modelica FluidHeatFlow connector
design, as the Fluid library was not compatible with
OpenModelica when the library development started,
but the use of stream connectors, (Franke et al, 2009)
which seems more robust, will be investigated for the
future versions of Epsilon library.
To conclude, the interest for Epsilon of using Modelica
for this kind of modeling is its modularity. It is really
easy to have many levels of complexity for the system
models and the user can choose what fits better with
his objectives: more precision but less stability or less
precision but more stability and short simulation
durations.

4 Example: Fresnel solar power plant

A second example of using the Epsilon library is the
model of a solar power plant.

4.1 Principle

Fresnel solar power plants (Figure 12) are linear
thermal solar concentrators formed by an assembly of
flat mirrors named “compact linear reflectors”. Each
reflector can spin according to sun location in order to
reflect and concentrate sunbeams to one or more fixed
receiver pipes. The fluid flowing through these pipes
can then turn into vapor up to 500°C. This vapor is
available for industrial process or electricity generation
for instance.

Figure 12.Linear Fresnel solar power plant principle.

Some studies about Fresnel solar power plants propose
modeling of reflectors behavior (Pino et al, 2013). One
study in particular has been performed using Modelica
in order to simulate working points of the Fresnel solar
power plant developed by Alsolen society (Rodat et al,
2014). This model still suffers some limitations, such
as no storage modeling or also calling an external
simulation code for mirrors modeling.

4.2 Components

4.2.1 Receiver

The power plant receiver has been developed using the
elementary fluid volume described in Figure 6. The
power plant receiver is subjected to three major
thermal phenomena: solar heat flux absorption,
radiations to environment and convection losses. These
phenomena appear in the receiver detailed model
developed by Epsilon in its library (Figure 13).

Figure 13.Receiver Modelica model structure.

The receiver component (Figure 14) is fitted with six
ports:
 two fluid ports,
 one “heatport” for air temperature and one real port

for convection coefficient, both depending on
weather conditions,

 one “heatport” for received solar heat flux,
 one real port “Cost” for receiver cost transmission

to global models.
Like all Epsilon library components, this receiver has
been validated by simple test models.

y = 0,5989x
2
 + 8,9937x + 30,27

R
2
 = 0,9994

y = 124,25e
0,2234x

R
2
 = 0,9826

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 5 10 15 20 25 30 35

N

t
(s

)

V0

V0_bugs

modèle_complexe

modèle_complexe_bugs

Polynomial (V0)

Exponentiel (modèle_complexe)

Session 10D: Thermofluid Systems, Models and Libraries 2

DOI
10.3384/ecp15118769

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

773

Figure 14.Receiver component design in Epsilon
library.

4.2.2 Mirrors

A component describing optical behavior of a Fresnel
mirror has been developed thanks to literature studies
(Pino et al, 2013). This component can take into
account the receiver shade on the mirrors field and the
shade of mirrors to each other. This component appears
in Figure 15 and is made of:
1. Weather data.
2. Solar angle calculation
3. Fresnel mirror.
4. Shade calculation.
5. Reflected solar heat flux.
6. Mirrors field cost calculation.

Figure 15.Mirror field assembly modeling.

4.3 Solar power plant model

The Fresnel solar power plant of this study is similar to
the one has been developed by Alsolen company
(Figure 16). Its features are:
 A 1000 m2 solar field,
 Therminol66 as working fluid,
 rock-bed thermal storage,
 a secondary heat loop by organic Rankine cycle.

Figure 16.Linear Fresnel solar power plant of Alsolen
company.

One main hypothesis has been made in the Espilon
modeling of this plant (Figure 17): heat absorbed by
the receiver working fluid is totally exchanged to the
secondary loop which is currently not taken into
account in the global model.

The components of the solar power plant are then:
1. Weather data, using classical weather files from

building codes.
2. Solar receiver.
3. Fresnel mirrors field.
4. Thermocline thermal storage.
5. Mass flow rate regulation.
6. Total cost calculation.

Figure 17.Epsilon Modelica model of the Alsolen
Fresnel solar power plant.

EPSILON Modelica Library for Thermal Applications

774 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118769

4.4 Results

The solar power plant has first been tested for three
different locations in France (Table 1): Rouen (north of
France), Toulouse (south of France) and Perpignan
(extreme south of France).

Table 1.Solar power plant efficiency at three locations.

location Rouen Toulouse Perpignan

Solar resource

(kWh/m2/year)
905 1261 1441

Reflected heat flux

(kWh/m2/ year)
733 1033 1188

Optical efficiency 0.81 0.82 0.82

Absorbed heat flux

(kWh/m2/ year)
436 661 772

Thermal efficiency 0.59 0.64 0.65

Cost / exergy

(€/kWh) 1.26 0.88 0.75

Those first results allow checking the order of
magnitudes obtained. Logically, Rouen is less
favorable than Perpignan for the implantation of such
central, decreasing the absorbed heat flux and the
thermal efficiency (as the external temperature is
lower). Eventually, the order of magnitude of the
cost/exergy is realistic, with 75cts per kWh, based on
an hypothesis on 20 years funding (Nixon et al. 2012).

The Epsilon Modelica model of the solar power plant
has also allowed to test the impact of spacing
arrangement of mirrors on the plant efficiency (Table
2) and the cost/exergy.

Table 2.Solar power plant efficiency function of mirror
spacing arrangement.

mirrors spacing

/ mirrors width
0 0.5 1 2 3

Solar resource

(kWh/m2/ year)
1261 1261 1261 1261 1261

Reflected heat

flux (kWh/m2/

year)

901 1033 1056 1050 1030

Optical

efficiency
0.71 0.82 0.84 0.83 0.82

Absorbed heat

flux (kWh/m2/

year)

560 661 678 664 642

Thermal

efficiency
0.62 0.64 0.64 0.63 0.62

Cost / exergy

(€/kWh) 0.85 0.88 0.99 1.32 1.59

The spacing arrangement of mirrors is optimal when
equal to the mirror width, when looking at the reflected

heat flux. A smaller spacing arrangement creates
shadowing between mirrors whereas a bigger spacing
implies optical losses due to the angular position of
mirrors to aim at the receiver.
The cost/exergy analysis gives a different result, where
the optimal spacing between mirrors should be null, to
minimize the ground size occupied (and so its cost).
However, this solution is unrealistic since for
maintenance and cleaning reasons, it is necessary to be
able to circulate between the mirrors.

5 Conclusion

Epsilon has developed its own library of thermal
solutions modeling with Modelica. This library is
based upon a proper structure with media calculation
allowing to simulate phase change phenomena well as
integrating indicators (such as cost calculation) in
global system models. Some models have already been
developed and validated, such as capillary pumped
loop model. This library provides several kinds of
components which can be used for global system
modeling, such as power plant modeling. Epsilon will
continue to add new components for thermal control
with the maximum return of experience available.

References

Yuri F. Maydanik, Loop Heat Pipes, Applied Thermal

Engineering, No 25, pp. 635-657, 2004.

Laurent Lachassagne, Vincent Ayel, Cyril Romestant and
Yves Bertin. Experimental study of capillary pumped loop
for integrated power in gravity field.Applied Thermal

Engineering, No 35, pp. 166-176, 2012.

doi:10.1016/j.applthermaleng.2011.10.019

F.J. Stenger, Experimental Feasibility Study of Water-filled
Capillary-pumpedHeat-transfer Loop, NASA TM X-1310,
Lewis Research Center, Cleveland, OH, 1966.

Leonid Vasiliev, David Lossouarn, Cyril Romestant, Alain
Alexandre, Yves Bertin,Yauheni Piatsiushyk and Vladimir
Romanenkov. Loop heat pipe for cooling of high-power
electronic components. International Journal of Heat and

Mass Transfer. No 52, pp. 301–308, 2009.

J. Bonilla et al. Chattering in dynamic mathematical two-
phase flow models, Applied Mathematical Modelling.No
36(5), pp. 2067-2081, 2012.

doi:10.1016/j.apm.2011.08.013

R. Frankeet al. Stream Connectors - an Extension of
Modelica for Device-Oriented Modeling of Convective
Transport Phenomena, Proc. 7th International Modelica

Conference, Como, Italy, Sep. 20-22, 2009, pp. 108-121.

F. J. Pino, R. Caro, F. Posa and J. Guerra.Experimental
validation of an optical and thermal model of a linear
Fresnel collector system.Applied Thermal Engineering, No
50, pp. 1463-1471, 2013.

Session 10D: Thermofluid Systems, Models and Libraries 2

DOI
10.3384/ecp15118769

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

775

S. Rodat, J. V. D. Souza, S. Thebault, V. Vuillerme and N.
Dupassieux. Dynamic simulation of Fresnel solar power
plant.Energy Procedia, No 49, pp. 1501-1510, 2014.

J.D. Nixon and A. Davies, Cost-exergyoptimisation of linear
Fresnel reflector.Solar EnergyNo 86, pp. 147-156, 2012.

EPSILON Modelica Library for Thermal Applications

776 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118769

Multi-objective optimization of dynamic systems

combining genetic algorithms and Modelica:

Application to adsorption air-conditioning systems

Uwe Bau1 Daniel Neitzke1 Franz Lanzerath1 André Bardow1

1Institute of Technical Thermodynamics, RWTH Aachen University, Germany,
andre.bardow@ltt.rwth-aachen.de

Abstract

The Modelica language enables the fast and convenient
development of physical simulation models. These mod-
els are often used for simulation studies. The re-use
of simulation models for optimizations requires model-
adaptions, additional tools or libraries. In this paper,
we present a framework to connect Modelica models de-
veloped in Dymola to MATLAB’s optimization toolbox.
As optimization algorithm, we use a multi-objective ge-
netic algorithm. The optimization procedure is tested
for an adsorption air-conditioning design. Compared to
a full factorial design, the optimization procedure pro-
duces better solutions using less evaluations.
Keywords: multi-objective, optimization, Pareto-

solution, dynamic systems, full factorial design, genetic

algorithms, MATLAB, gamultiobj, NSGA-II, adsorption

air-conditioning systems

1 Introduction

Modelica is an acausal, object-oriented and equation-
based programming language with a high number of
physical model libraries available. These language fea-
tures allow for fast and convenient development of phys-
ical models. These models are used to enhance system
understanding and performance by simulation and pa-
rameter variations. To go beyond parameter variations,
optimization functionality is desired, e.g. for product de-
sign, parameter estimation or optimal control. To reduce
development costs and effort, it would be desirable to
employ simulation models directly for optimization.

The currently available options to transform a simu-
lation model into an optimization model differ widely,
starting from commercial Modelica libraries to freely
available external tools . Several optimization tools are
available specifically for Modelica:

For Dymola, the commercial library Design/Opti-
mization exists, which includes different optimization al-
gorithms, such as Sequential Quadratic Programming or
Genetic Algorithm (Pfeiffer, 2012).

The open-source project JModelica provides Optim-
ica, an extension of the Modelica language. Optimica al-
lows for high-level formulation of optimization problems
using modelica models (Lind et al., 2012; Dietl et al.,
2014).

OMOptim is an optimization framework based on the
open source OpenModelica platform. OMOptim in-
cludes meta-heuristic optimization algorithms such as
genetic algorithms and is under further development
(Thieriot et al., 2011).

Alternatively, Modelica models can be connected to
external optimization tools:

GenOpt is such an open source optimization frame-
work, which can be used for any simulation tool allow-
ing input file modification and output reading. GenOpt
includes several optimization algorithms, such as Gen-
eralized Pattern Search or Particle Swarm Optimization
(Wetter, 2000).

Modelon provides a commercial Functional Mockup
Interface (FMI) for MATLAB’s widely used optimiza-
tion toolbox (Henningsson et al., 2014). This FMI allows
Modelica models to be optimized with MATLAB.

FMI has also been used to connect Modelica models to
connect via FMI to the optimization code MUSCOD-II
for gradient-based dynamic optimization (Gräber et al.,
2011; Leineweber et al., 2003).

Which optimization approach suits best, depends on
the resources and experience of the developer. In this
work, we present a convenient approach connecting
MATLAB’s optimization toolbox for multi-objective op-
timization tasks to existing Modelica models. Here we
used Modelica models developed within Dymola using
our LTT Adsorption Energy Systems Library (Bau et al.,
2014). We coded the MATLAB-Dymola interface us-
ing Modelica script files (.mos) embedded within the
MATLAB-code.

In this paper, we present the developed interface for
a design case study of an adsorption air conditioning
system for battery-driven busses. As optimization algo-
rithm, we use a multi-objective genetic algorithm, which
is robust and has few requirements regarding model char-

DOI
10.3384/ecp15118777

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

777

acteristics. The problem has 8 design parameters, which
are optimized regarding 2 objective functions.

In Section 2, we describe the optimization algorithm
used and the MATLAB/Dymola interface. Section 3 con-
tains the non-linear dynamic process model used for the
design task. In Section 4, we discuss the obtained op-
timization results and compare the genetic optimization
algorithm with a full factorial design. Finally, we sum-
marize our findings in Section 5.

2 Optimization procedure

This paper studies the optimization of conflicting key
performance indicators. Therefore, we define the result-
ing multi-objective optimization problem in Section 2.1.
In Section 2.2, we present the applied optimization algo-
rithm followed by the framework to interact with Mod-
elica in Section 2.3. The handling of infeasible solutions
and unsatisfied path-constraints is discussed in Section
2.4.

2.1 Multi-objective optimization problem

A designer often seeks to optimize several conflicting
key performance indicators of a product by varying inde-
pendent design parameters. Each parameter has usually
a certain feasible range. Furthermore, feasible solutions
often need to satisfy additional constraints (e.g. physical
or operational limits).

The nO relevant key performance indicators are here
called objectives O with

Oi = fi (x,z, p) , i = 1, . . . ,nO (1)

as a function of differential states x(τ), algebraic states
z(τ) and independent design parameters p. τ represents
time with

τ ∈ [0,T] (2)

The np design parameters or decision variables p are
restricted to a feasible decision or solution space S ∈R

np

within the constraints or bounds [LB,UB]. Furthermore,
the differential and algebraic states x and z are required
to satisfy so called path-constraints LB∗ ≤ x,z ≤ UB∗ at
any given moment in time τ .

The problem can be mathematically defined as:

min
x,z,p

O (3)

s.t. ẋ = f (x,z, p) (4)

0 = g(x,z, p)

LB ≤ p ≤UB

LB∗ ≤ x,z ≤UB∗ ∀τ

x(τ = 0) = x0

p ∈ S , S ∈ R
np

The designer is concerned about the global optimum.
When two solutions are compared regarding their ob-
jective values, the solution Odom = f (pdom) is said to
dominate solution Oinf = f (pinf), if none of the objec-
tives Oi,dom is worse than Oi,inf and at least one objective
Oj,dom is strictly better than Oj,inf.

The set of solutions that are not dominated by any
other solution in the entire feasible solution space S are
called Pareto-optimal.

2.2 Optimization algorithm

The dynamic system studied in this paper consists
of complex, non-linear and spatial discrete differential
equations. The differentiation of the objectives O with
respect to the design parameters p can be complicated
and time consuming, especially for dynamic and com-
plex systems. Deterministic gradient-based optimization
algorithms also require good initial guesses. The rela-
tively high number of 8 design parameters and possible
combinations complicates this approach.

In this paper, we therefore use a genetic algorithm, be-
longing to the group of derivative-free or heuristic algo-
rithms. Other possible heuristic algorithms are reviewed
in Konak et al. (2006) or Jones et al. (2002).

A genetic algorithm tries to imitate the evolutionary
process of nature. It interprets solutions as individuals
and design parameters as their genes, which are passed,
mixed and mutated from parents to a new generation
of children. Ultimately, only the fittest individuals with
most optimal objective values “survive” and are chosen
as new parents.

In case of incomplete or imperfect information on the
behavior of the objective functions or limited computa-
tion capacity, stochastic meta-heuristics like genetic al-
gorithms offer a satisfying approach to analyze the com-
plex correlation of the design parameter’s influence on
the objective values. Especially in case of a highly non-
convex shaped solution space S, gradient-based algo-
rithms are susceptible to converge to local optima (Blum
and Roli, 2003). In contrast, heuristic approaches with
random initialization and spontaneous mutation of genes
allows to move the population away from local optima
(Tomoiagă et al., 2013).

According to Audet and Vicente (2008), a genetic al-
gorithm generally has a tendency to rapidly converge to
generally “good” solutions in early iterations and pre-
dominantly “smooth” the distribution of Pareto-solutions
in later iterations. Therefore, a genetic algorithm is
best suited to successfully address an optimization prob-
lem for cases in which three major aspects apply: First,
the differentiation of the objective functions within the
bounds of the domain is expensive and similar ap-
proaches to approximate the derivatives (e.g. by finite-
difference) are prohibited. Second, the objective func-
tions are not excessively non-smooth (e.g. event-based
binary factorization). And third, finding a “good” lo-

Multi-Objective Optimization of Dynamic Systems combining Genetic Algorithms and Modelica: Application
to Adsorption Air-Conditioning Systems

778 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118777

cal optima fast is significantly more important than defi-
nitely converging to the global optimum.

Several different software packages or libraries con-
tain heuristic optimization methods, such as the global
optimization toolbox for MATLAB. We use MATLAB’s
gamultobj-function, which is based on a variant of the
Non-dominated Sorting Genetic Algorithm-II (NSGA-
II). The NSGA-II not only favors elite, but also diverse
solutions and therefore covers a wide range of the solu-
tion space S (Deb, 2001). The gamultobj-function itself
offers a set of variable algorithm options to customize
key randomization properties as well as termination con-
ditions regarding computation time.

Genetic algorithms generate a fixed number of n new
parameter sets to be evaluated at each generation. These
parameter sets can be split for parallel processing on
multi-core computers, which can reduce computation
significantly. However, since both algorithms applied in
this paper (genetic and full-factorial) can be processed
parallel, this topic is not discussed any further.

2.3 Optimization framework

Our implementation employs current versions of both
MATLAB (R2014a) and Modelica (2014 v3.2). The
model of the presented case study in this paper is based
on Modelica models from our LTT Adsorption Energy
Systems Library (Bau et al., 2014).

A framework to connect gamultiobj to existing Model-
ica models in Dymola is implemented, so that no further
commercial optimization program is required. gamulti-

obj treats the Modelica model as a black-box. gamultiobj

sets parameters as input values for the Modelica model,
which produce objectives as output values.

A flow chart of the framework’s procedure is dis-
played in Figure 1 and can be described as followed. The
procedure first calls

p = gamultiobj(ffitness,nvars,A,b, . . .

Aeq,beq,LB,UB,options
)

(5)

which randomly selects a set of parameters p as initial
population (1 → 2). The (in-)equalty constraints and pa-
rameter bounds satisfy the following equations:

A · p ≤ b (6)

Aeq · p = beq (7)

LB ≤ p ≤UB (8)

However, we only use Equation 8 and set A = b =
Aeq = beq = [], the empty matrix. In each iteration, ga-

multiobj calls a fitness-function

O = ffitness (p) (9)

The fitness function usually contains the models equa-
tions describing the correlation between the objective O

and the parameters p. Here, we call a Modelica script
file (.mos), which executes the Dymola command simu-

lateExtendedModel() while passing the parameter set p

(2 → 3). The objective values are stored in a MATLAB
data file (.mat) and evaluated in ffitness. Finally, the re-
sulting objective values of each solution are returned as
output variables of ffitness to gamultiobj (3 → 4). The ge-
netic algorithm then processes the fitness and diversity of
the solution and selects the best (elite) and most diverse
solutions as the parent individuals of the next generation
(4). Due to random recombination, mutation and mi-
gration of individuals (5), a new set of parameters p is
generated and the iteration starts over until a termination
criteria applies (6 → 7,2). For example, one criteria can
be the exceeding of the maximum generation number.

In order to apply this procedure for any given opti-
mization problem for an existing Modelica model, the
user only has to define the design parameters and their
corresponding bounds, as well as the objective functions.
Neither the model, nor the algorithm needs to be altered
to suit a tailor-made optimization. Even the modification
of the algorithm options in gamultiobj is optional.

One such option is the population size, which is con-
stant for each generation. This can lead to the loss of
Pareto-solutions over generations. Therefore, we store
every Pareto-set of each generation in a seperate file to
keep all elite solution.

Figure 1. Procedure of optimization with genetic algorithm
using MATLAB’s global optimization toolbox and Dymola for
evaluation (system simulation and objective calculation).

2.4 Handling infeasible solutions and unsat-

isfied path-constraints

The parameter constraints LB ≤ p ≤UB are satisfied by
gamultiobj by choosing only feasible parameter values
p for a simulation. However, the satisfaction of path-
constraints and the feasibility of the simulation (e.g. due

Session 10D: Thermofluid Systems, Models and Libraries 2

DOI
10.3384/ecp15118777

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

779

to unsolvable stiff differential equations) depend on the
choice of parameters and can only be checked after each
simulation. Therefore, we implement an evaluation stage
in MATLAB, which adds a penalty function PF to the
objective function O:

O∗ = O+PF (10)

The penalty function PF is a piecewise function

PF =

{

0, LB∗ ≤ x,z ≤UB∗

∞, else
. (11)

Infeasible solutions and unsatisfied path-constraints lead
to positive infinite objective values and are therefore un-
favored by the minimization problem. Alternative means
of implementing penalty functions are possible (e.g. con-
tinuous penalty function or penalty function as separate
objective value), but are not discussed in this paper.

3 Case Study: Adsorption-storage

air-conditioning system

An adsorption air-conditioning system for electrical
busses serves as representative case study of a dynamic
and complex system in this paper. For electric busses, the
air-conditioning takes up to 50% of the battery capacity
when using a battery-driven compression chiller (Bot-
tiglione et al., 2014). The adsorption air-conditioning
(AC) system aims at providing cooling and heating.
Since thermal energy is stored as latent and adsorption
enthalpy, operating the AC system requires only a small
of the battery capacity for ventilation. In the following
Sections 3.1 - 3.4, the cooling mode is presented. For
additional information see also (Bau et al., 2015).

3.1 Concept

The presented adsorption air-conditioning concept is
based on the Pennington cycle (Pennington, 1955). Dur-
ing a bus ride, the adsorption AC system provides cool-
ing and dehumidification (see Figure 2):

• Bus air (green arrows) flows through the desiccant
module, which contains the sorbent material. In the
desiccant module, moisture is adsorbed and hot and
dry air leaves the module (4) → (5).

• The hot and dry air is cooled by a heat exchanger (5)
→ (6). As coolant stream, ambient air (blue arrows)
is used, which is cooled by evaporative cooling (1)
→ (2) before it enters the heat exchanger and takes
heat from the hot and dry bus air (2) → (3).

• The bus air (6) is finally cooled down to the desired
temperature by evaporative cooling (6) → (7).

Within this study, the AC system is optimized assum-
ing a dry adsorption module at beginning of bus ride.

20

30

40

50

60
70

10%

20%

30%

40%

50%

60%
70%
80%
90%

100%

1

2

3

4

5

6

7

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12 14 16 18 20

T
em

p
er

at
u

re
 i

n
 °

C

Humidity ratio in g/kg

Ambient pressure:

1013,25 mbar
Specific

 enthalpy in
 kJ/kg

R
el

at
iv

e
h

u
m

id
it

y
 i

n
 %

Figure 2. Cooling mode of adsorption storage: Process
scheme (top) and Mollier diagram (left).

3.2 Model

The main parts of the model are the desiccant module
and the heat exchanger (see Figure 3). Within these mod-
els, the air volume, the heat exchanger plates and the ad-
sorbent are coupled by heat and mass transfer models.
The Modelica model is built by using the LTT Adsorp-
tion Energy Systems library (Bau et al., 2014) and the
TLK TIL library (Gräber et al., 2010). For further infor-
mation regarding the heat and mass transfer correlations
used, see Bau et al. (2014).

3.3 Key performance indicators (objectives)

The system performance can be quantified by two per-
formance indicators: Specific cooling power (SCP) and
coefficient of performance (COP). The specific cooling
power (SCP) measures the power density by the ratio of

Multi-Objective Optimization of Dynamic Systems combining Genetic Algorithms and Modelica: Application
to Adsorption Air-Conditioning Systems

780 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118777

Figure 3. Structure of the dynamic model: Evaporative
cooling (left), heat exchanger (middle) and desiccant module
(right). The air flows correspond to Figure 2.

the average cooling power during a bus ride Q̇cooling to
the mass of the system m

SCP =
Q̇cooling

m
(12)

The mobile coefficient of performance (COPmobile) mea-
sures the efficiency by the ratio of the average cooling
power Q̇cooling to the average electric power consumption
Pbattery during the busride:

COPmobile =
Q̇cooling

Pbattery
(13)

Pbattery is required only for ventilation in the adsorption-
based AC system.

3.4 Design parameters

As design case, we choose a hot summer day in Germany
with ambient temperature Tambient = 30 ◦C and humidity
φambient = 50%.

The system is optimized for np = 8 design parameters
p with lower and upper bounds: 5 heat exchanger design
parameters, 2 adsorber parameters and the ratio between
bus and ambient air mass flow rates. All design parame-
ters are listed in Table 1.

4 Results

In order to properly assess the benefit of a genetic op-
timization algorithm, we first introduce the results of a
simple full factorial design as benchmark. In Section 4.2,
we evaluate the development of the Pareto solutions pro-
duced by gamultiobj() for increasing generation numbers
regarding convergence and diversity. Finally, we discuss
the case study results.

Table 1. Design parameters p of adsorption air-conditioning
system

Design parameter LB UB Unit

lengthHX 0.1 2 m
heightHX 0.1 2 m
widthHX 0.1 2 m
duct heightbus 0.001 0.006 m
duct heightambient 0.001 0.006 m
diametersorbent 0.0005 0.008 m
heightadsorber 0.4 0.08 m
ṁambient

ṁbus
0.5 5 -

4.1 Full factorial design

A full factorial design evaluates all possible combina-
tions of each np factors or parameters and its k assigned
levels or discrete states. If we assign to each parameter
the same number of discrete states, the number of re-
quired experiments or simulations nsim amounts to

nsim = knp (14)

In our case study, we chose to assign to each of our np =
8 parameters its upper and lower bounds a and b and the
arithmetic average as possible discrete states:

p =

[

LB,
LB+UB

2
,UB

]

(15)

Therefore, 38 = 6561 simulations in total are required.
Since a single simulation of our model takes about 8 s
of computation time, a full factorial design amounts to
14.5 h CPU-time in total. The results of all feasible so-
lutions with positive values for both objectives are dis-
played in Figure 4 with the final Pareto solutions high-
lighted in red.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

COP
mobile

[-]

S
C

P
 [
W

/k
g
]

fac

Figure 4. All data points of full factorial design (6561 simula-
tions) and the obtained Pareto front (red line).

Session 10D: Thermofluid Systems, Models and Libraries 2

DOI
10.3384/ecp15118777

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

781

From the 6561 simulations, we receive 29 Pareto solu-
tions within the maximum range of COPmobile,max = 50.2
and SCPmax = 98.9Wkg−1. The Pareto solutions are not
equidistantly distributed on either dimension. This re-
sults in occasional spacious gaps between the objective
values of adjacent Pareto-solutions. If the designer aims
to reach a certain benchmark or minimum limit for one
objective, those gaps might force the designer to accept
significant losses on the other objective.

4.2 Genetic algorithm

The Pareto solutions for selected generations of the ge-
netic algorithm are displayed in Figure 5 in compari-
sion to the Pareto solution of the full factorial design.
Each generation consists of 164 simulations and there-
fore represents the equivalent computation time of ap-
proximately 2.5% of the complete full factorial design
with 6561 simulations.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

1
 g

e
n

5
 g

e
n

1
0

 g
e

n

2
0

 g
e

n

4
0

 g
e

n

fac

COP
mobile

[-]

S
C

P
 [
W

/k
g
]

Figure 5. Development of Pareto solutions by the genetic al-
gorithm (in shades of blue) compared to Pareto solutions by
a full factorial design with the same number of simulations:
38 ≈ 164 ·40 = 6560.

After 40 generations, the genetic algorithm pro-
duced 80 Pareto solutions within the maximum range of
COPmobile,max = 48.0 and SCPmax = 99.6Wkg−1. The
range of Pareto solutions is comparable for the full fac-
torial design and the genetic algorithm, however, the ge-
netic algorithm produces more than twice as many solu-
tions, which are more evenly distributed. Also, the max-
imum range of every objective increases for each gener-
ation, which supports the fact that the genetic algorithm
favors diverse solutions and minimizes the risk of run-
ning into local optima. Thus, the designer has a higher
resolution of solutions to choose from.

As predicted in Section 2.2, the genetic algorithm con-
verges to relatively good solutions in early stages. The
Pareto solutions of the genetic algorithm outperform all
but 3 of those of the factorial design after 5 generations
already. This corresponds to 12.5% of the respective

CPU-time of all factorial design simulation runs. Despite
the fact that the initial guess is selected randomly, the al-
gorithm converges quickly and can therefore be consid-
ered robust to initial conditions. To study its robustness
with respect to the initial guess, the genetic algorithm
was started several times using different initial popula-
tions leading to slightly different evolution paths and fi-
nal Pareto-solutions respectively.

The genetic algorithm produces better Pareto solutions
than the factorial design with generally higher objective
values. The evolution of the Pareto-front over each gen-
eration implicates that the range of the solution space S

can continue to expand. If the designer is interested in
more “extreme” solutions, we suggest to continue the al-
gorithm for additional generations.

In summary, the genetic algorithm can be favored over
the factorial design regarding robustness, convergence,
Pareto solution value quality and quantity. By implica-
tion, the necessary computation time can be significantly
reduced to obtain comparable results.

4.3 Case Study Results

To interprete the optimization results, a benchmark is
needed. As benchmark, we regard a conventional com-
pression chiller for busses with a fixed specific cooling
power SCP = 100 and a fixed coefficient of performance
COPmobile = 1.9 (Spheros GmbH, 2015). Compared to
this conventional system, the optimization results of the
adsorption air-conditioning system show a trade-off be-
tween SCP and COPmobile. This trade-off enables the
designer to choose solutions with high COPmobile values
and still reasonable SCP values. For example, the design
point COPmobile ≈ 20 and SCP ≈ 80Wkg−1 allows the
designer to reduce the needed battery capacity by a factor
of 10 while only loosing 20% of specific cooling power.
Which point is taken as optimal depends on the specific
application; in particular, weight limitations preference
for high SCP, whether battery costs preference for high
COP.

The “smoothing” of the genetic algorithm in later it-
erations (see Section 2.2) has two consequences: First,
adjacent Pareto solutions are more similar. Second, the
number of produced Pareto solutions within the feasible
solution range S is higher than with a full factorial de-
sign. These facts strongly favor the genetic algorithm
over the full factorial design when analyzing parameter-
objective correlations O j = f (pi). One such correlation
is displayed in Figure 6. In Figure 6 we analyze the cor-
relation of the heat exchanger mass flow ratio as the de-
sign parameter pi = ṁambient/ṁbus and the mobile coeffi-
cient of performance as the objective O j = COPmobile.

The Pareto solutions of the genetic algorithm (black
curve) have a much higher resolution than those of the
full factorial design (red), which enables the designer to
identify correlations more easily and adjust the system’s
performance more precisely.

Multi-Objective Optimization of Dynamic Systems combining Genetic Algorithms and Modelica: Application
to Adsorption Air-Conditioning Systems

782 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118777

0 10 20 30 40 50 60
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

gafac

COP
mobile

[-]

h
e
a
t
e
x
c
h
a
n
g
e
r

m
a
s
s
 f
lo

w
 r

a
ti
o
 (

a
m

b
ie

n
t
/
b
u
s
)

Figure 6. Change of the proposed heat exchanger mass flow
ratio ṁambient/ṁbus for Pareto solutions of the genetic algo-
rithm with ascending COPmobile values.

The correlation COPmobile = f (ṁambient/ṁbus) can be
physically explained as followed: A higher ambient mass
flow rate (higher ṁambient/ṁbus) increases the amount
of transferred heat, resulting in higher average cooling
power Q̇cooling (higher SCP). As a trade-off, the effort for
ventilation increases as well and raises the average elec-
tric power consumption Pbattery. The latter aspect dom-
inates. In consequence, the mobile coefficient of per-
formance COPmobile = Q̇cooling/Pbattery decreases for an
increasing heat exchanger mass flow ratio ṁambient/ṁbus.
Other design parameters pi can be analyzed in the same
way.

5 Summary

In this paper, a procedure to connect Modelica models
developed in Dymola to MATLAB’s optimization tool-
box is presented. The non-linear, dynamic process model
is evaluated as a black box and the simulation results
are loaded in MATLAB using Modelica script files. The
framework is illustrated using a genetic algorithm to op-
timize the design of an adsorption air-conditioning sys-
tem. The obtained optimization results are compared to a
full factorial design: The optimization procedure outper-
forms the full factorial design regarding simulation time,
solution diversity and objective values.

6 Acknowledgment

This work is funded by the Excellence Initiative of the
German federal and state governments.

References

Charles Audet and Luís Nunes Vicente. Derivative-Free Opti-
mization: Theory and Practice, 2008.

Uwe Bau, Franz Lanzerath, Manuel Gräber, Heike Schreiber,
Niklas Thielen, and André Bardow. Adsorption en-
ergy systems library - Modeling adsorption based chillers,
heat pumps, thermal storages and desiccant systems. In
10th International Modelica Conference, Lund, Sweden,
Linköping Electronic Conference Proceedings, pages 875–
883. Linköping University Electronic Press, 2014.

Uwe Bau, Heike Schreiber, Franz Lanzerath, and André Bar-
dow. Adsorption-based air-conditioning for battery-driven
electric busses. In 24th IIR International Congress of Re-

frigeration, 2015.

Christian Blum and Andrea Roli. Metaheuristics in Combina-
torial Optimization: Overview and Conceptual Comparison.
ACM Computing Surveys, 35(3), 2003.

Francesco Bottiglione, Tommaso Contursi, Angelo Gentile,
and Giacomo Mantriota. The fuel economy of hy-
brid buses: The role of ancillaries in real urban driv-
ing. Energies, 7(7):4202–4220, 2014. ISSN 1996-1073.
doi:10.3390/en7074202.

Kalyanmoy Deb. Multi-Objective Optimization using Evolu-

tionary Algorithms. John Wiley & Sons, Ltd, Chichester,
2001. ISBN 0-471-87339-X.

Karin Dietl, Stephanie Gallardo Yances, Anna Johnsson, Johan
Åkesson, Kilian Link, and Stéphane Velut. Industrial appli-
cation of optimization with Modelica and Optimica using
intelligent Python scripting. In 10th International Model-

ica Conference, Lund, Sweden, Linköping Electronic Con-
ference Proceedings, pages 777–786. Linköping University
Electronic Press, 2014. doi:10.3384/ECP14096777.

Manuel Gräber, Kai Kosowski, Christoph Richter, and Wil-
helm Tegethoff. Modelling of heat pumps with an
object-oriented model library for thermodynamic sys-
tems. Mathematical and Computer Modelling of Dynam-

ical Systems, 16(3):195–209, 2010. ISSN 1387-3954.
doi:10.1080/13873954.2010.506799.

Manuel Gräber, Christian Kirches, Hans Georg Bock, Jo-
hannes P. Schlöder, Wilhelm Tegethoff, and Jürgen Köh-
ler. Determining the optimum cyclic operation of adsorption
chillers by a direct method for periodic optimal control. In-

ternational Journal of Refrigeration, 34(4):902–913, 2011.
ISSN 0140-7007. doi:10.1016/j.ijrefrig.2010.12.021.

Maria Henningsson, Johan Åkesson, and Hubertus
Tummescheit. An FMI-Based Tool for Robust Design
of Dynamical Systems. In 10th International Modelica

Conference, Lund, Sweden, Linköping Electronic Con-
ference Proceedings, pages 35–42. Linköping University
Electronic Press, 2014. doi:10.3384/ECP1409635.

Dylan Francis Jones, Seyed Keyvan Mirrazavi, and Mehrdad
Tamiz. Multi-objective meta-heuristics: An overview of
the current state-of-the-art. European Journal of Oper-

ational Research, 137(1):1–9, 2002. ISSN 03772217.
doi:10.1016/S0377-2217(01)00123-0.

Session 10D: Thermofluid Systems, Models and Libraries 2

DOI
10.3384/ecp15118777

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

783

Abdullah Konak, David W. Coit, and Alice E. Smith. Multi-
objective optimization using genetic algorithms: A tutorial.
Reliability Engineering & System Safety, 91(9):992–1007,
2006. ISSN 09518320. doi:10.1016/j.ress.2005.11.018.

Daniel B. Leineweber, Irene Bauer, Hans Georg Bock, and Jo-
hannes P. Schlöder. An efficient multiple shooting based
reduced SQP strategy for large-scale dynamic process opti-
mization (Parts I and II). Computers & Chemical Engineer-

ing, 27(2):157–174, 2003.

Alexandra Lind, Elin Sällberg, Stephanie Velut, Stephanie
Gallardo Yances, Johan Åkesson, and Kilian Link. Start-
up Optimization of a Combined Cycle Power Plant. In
9th International Modelica Conference, Munich, Ger-

many, Linköping Electronic Conference Proceedings, pages
619–630. Linköping University Electronic Press, 2012.
doi:10.3384/ecp12076619.

Neal A. Pennington. Humidity changer for air-conditioning:
US Patent 2,700,537, 1955. URL http://www.

google.com/patents/US2700537.

Andreas Pfeiffer. Optimization Library for Interactive Multi-
Criteria Optimization Tasks. In 9th International Modelica

Conference, Munich, Germany, Linköping Electronic Con-
ference Proceedings, pages 669–680. Linköping University
Electronic Press, 2012. doi:10.3384/ecp12076669.

Spheros GmbH. REVO-E Technical Specifications, 2015.
URL http://www.spheros.de/Produkte/

Klimaanlagen/Busse-ueber-12m/REVO-E.

html.

Hubert Thieriot, Maroun Nemer, Mohsen Torabzadeh-Tari, Pe-
ter Fritzson, Rajiv Singh, and John Kocherryc. Towards De-
sign Optimization with OpenModelica Emphasizing Param-
eter Optimization with Genetic Algorithms. In 8th Interna-

tional Modelica Conference, Dresden, Germany, Linköping
Electronic Conference Proceedings. Linköping University
Electronic Press, 2011.

Bogdan Tomoiagă, Mircea Chindriş, Andreas Sumper,
Antoni Sudria-Andreu, and Roberto Villafafila-Robles.
Pareto Optimal Reconfiguration of Power Distribution
Systems Using a Genetic Algorithm Based on NSGA-
II. Energies, 6(3):1439–1455, 2013. ISSN 1996-1073.
doi:10.3390/en6031439.

Michael Wetter. Design Optimization with GenOpt. Building

Energy Simulation, (21):19–28, 2000.

Multi-Objective Optimization of Dynamic Systems combining Genetic Algorithms and Modelica: Application
to Adsorption Air-Conditioning Systems

784 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118777

A new Modelica Electric and Hybrid Power Trains library
Massimo Ceraolo1

1
DESTEC Department, University of Pisa, Italy, massimo.ceraolo@unipi.it

Abstract

This paper describes a new library proposed for

simulation of electric and drive vehicle power trains.

Since is a “first approach” library, it does not make
usage of the Vehicle Interface Library. It does not

overlap with that library, except for minor parts, since

the proposed models of electric drives and battery are

much more detailed than the simple examples available

in the Vehicle Interfaces Library.

This library is fully compatible with both Dymola

2015 and OpenModelica 1.9.2. It is available under the

Modelica License 2, and presented at the 11
th

 Modelica

International Conference

Keywords: Power Train, Electric drive, Model,

Synchronous machine, Asynchronous machine, map-

based model, Electric Vehicle, Hybrid Vehicle, Power-

split device.

1 Introduction

This paper shows a new small modelica library that

is devoted to simulation of vehicular electric power

trains.

There are some important reasons to have a specific

library for this purpose.

Electric propulsion of vehicles is very important

nowadays, since it involves both pure electric vehicles

and electric-hybrid vehicles. Its simulation requires

somewhat specific models: in fact, detailed models of

electrical machines require the variables to follow their

sinusoidal variation, that can have frequencies of

hundreds or thousands of hertz. Detailed simulation of

power converters is even more demanding, since

commutation frequencies are easily up to 50 kHz, and

therefore time steps must be as small as a few

microseconds. This is overkill for vehicular

simulations that typically simulate trips lasting several

minutes. For instance, the well-known standard vehicle

simulation cycle, the NEDC, lasts 1200 s. As a

consequence of this, to simulate vehicular propulsion,

averaged models must be used, that are sufficiently

precise and yet not too demanding in terms of

simulation resources.

The library therefore supplies models of electric

drives that are a compromise between detail and

resource requirements that is adequate for electric

vehicles. In addition it supplies other support models

that are very important in vehicles, i.e. a battery model

and a model for the vehicle drag force.

The library contains four main folders: MapBased,

ElectricDrives, SupportModels, Icons, FullVehicles.

ElectricDrives contains models for synchronous and

asynchronous electric drives and simple examples

showing their behaviour and how they compare to

more detailed MSL models

MapBased. For even more simplified simulations,

map-based models of electric drives are satisfactory.

Here some models of this kind are proposed, that are

tested and then used in some of the full vehicles

examples. This folder contains also two ECUs

(Electronic Control Units) that are used to control the

map-based full vehicle examples.

SupportModels. This folder contains useful models

needed, in addition to electric drives, to create full

vehicle models: two battery, a drag force and a driver

model . The subfolder “Internal” contains models that
are internally used to interface mechanical and

electrical parts of models, and are not intended for final

user usage.

FullVehicles. This folder contains examples of full

vehicle power trains built using the supplied models:

two electric and to hybrid vehicle models are present.

All the models of this library have been checked and

work well with Dymola 2015 and OpenModelica 1.9.2.

The remainder of this paper illustrates the supplied

models as well as the full vehicles examples

2 Electric Drives folder

This folder contains models of electric drives based

on asynchronous and synchronous machines.

2.1 Asynchronous machine models (AMDrive

and AMDrivePU)

The asynchronous machine models are based on

Modelica.Electrical.QuasiStationary library. This way,

the only dynamics of the machine and drive come from

the rotating parts: indeed electrical time constants are

typically much lower than those due to mechanical

inertias.

Moreover these models offer the advantage of easy

interpretation, since the graphical representations

reproduce closely the quasi-static single-phase models

of electrical machines commonly found in textbooks.

Although the asynchronous machine models

provided here are not adequate to simulate machine

behaviour unbalanced currents and heavy transients,

they cover very satisfactorily the simulations

commonly found in electric and hybrid vehicle power

trains.

DOI
10.3384/ecp15118785

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

785

The core of these models is as depicted in figure 1.

Fig. 1: Representation of the QSAsma model inside the

ElectricDrives folder.

The signals entering the model, left in the figure, are

the voltage behind stator resistance (rms per phase) and

frequency. These are applied to the classical quasi-

stationary single-phase asynchronous machine

equivalent circuit, where air-gap power and thus torque

are evaluated. The generated torque is then applied to

the machine inertia (upper part of the picture).

Although it is possible to use this model as is, it was

built to be used inside other library models, i.e.

AMDrive and its per-unit version AMDrivePU.

The AMDrive arrangement is shown in figure 2.

Fig. 2: Internal structure of the proposed WSDrive

component.

The previous asma model of figure 1 is used and fed

by a control system “uContrGen”, that generates
voltage behind stator resistance, according to a classic

voltage proportional to frequency rule (Bondea, Nazar,

2006).

Note that the input signal (above in the figure) is the

slip frequency dWe, that is intended to be as torque

request. In fact, if dWe is not too large, it is nearly-

proportional to the asynchronous machine electro-

magnetic torque, as well known from that machine

theory. This happens only up to dWe= R2/(L1+L2);

that is why the limiter limDWe is introduced in the

scheme.

The drive model computes the power absorbed by

the drive as the sum, obtained in addPdc model, of

qSAsma absorbed power and additional losses created

in the lossF_ block, proportional to machine stator

current, that is often a reasonable estimation of inverter

losses this because on-state losses often dominate and

are proportional to the AC current. The qSAsma

absorbed power is computed in qSAsma model as the

sum of mechanically generated power and copper

losses in R1 an R2 resistances. However the user can

easily enhance this model including additional losses

such as iron and stray losses.

A simple test of the asynchronous machine drive is

supplied in the library, ElectricDrives. | TestingModels

folder, named TestAMDrive.

In this test the proposed drive performance is

compared with a similar drive, but obtained based on

the MSL standard model of asynchronous machine.

This standard model is fed with voltages created using

the U/f=const technique similar to that used inside the

proposed qSDrive, but with quantities that have the

actual variable-frequency sine shape.

Just to have an idea of the expected results, in figure

3 the terminal voltages of the two models are compared

to each other. Note that qSDrive model gives the rms

value; the figure confirms that its behaviour is that of

the aimc terminal voltage peaks divided by sqrt(2).

Similarly, in figure 4 the produced electromagnetic

torques are shown.

Fig. 3. Comparison of MSL aimc and qSAsma model

during a start-up: instantaneous (vs, from MSL), and rms

(U1rms, from psDrive) phase voltage.

A more complex example using the QsDrive model

is provided in FullVehicles library folder and described

later on in this paper.

A variant of AMDrive called AMDrive PU is also

provider. The only difference is that the parameters are

expressed in per-unit. This could be useful when the

precise machine to be simulated is not known; in this

case one could envisage some p.u. values and typically

change only, between simulations, the nominal

apparent power Snom.

L2_

L=L2

ToComplexUin

len

phi

C

const

k=0

torque

tau

P

Pag

tauGen

WmS1 inertia

J=J

ground

PmGen

power

Is1

I

3*(Pag.y.re + R1*toIs.len 2̂)

toPdc

L1_

L=L1

C

C

ag

f

flange_a

P

limDWe

uMax=R2/(L1 + L2)

limDWe

qSAsma

addPdc addPdc

+
+1

+1

k=pp

polePairs
Wm

w

k=lossFact

lossF_

Uo

Un

Wn

uContrGen

flange_a

pin_p

pin_n
0 1 2 3 4 5 6

-400

-200

0

200

400

aimc.vs[1] [V] qSDrive.qSAsma.U1rms

A new Modelica Electric and Hybrid Power Trains Library

786 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118785

0.0 2.5 5.0
-500

0

500

1000

1500

2000

2500

3500

(N.m)

aimc.tauElectrical qSDrive.qSAsma.tauElectrical

time (s)

Fig. 4. Comparison of MSL aimc and qSAsma model

during a start-up: aimc and qSDrive electromagnetic

torques.

2.2 Synchronous, permanent-magnet machine

model (PMDrive)

Permanent magnet machines are more and more

used on vehicles because of the very advantageous

characteristics. Maybe the most important ones are the

possibility to have a very large speed range over base

speed, and a higher specific power, in comparison to

asynchronous machine. The latter feature is mainly due

the fact that PMs produce magnetic field without the

need of current circulation, differently from the squirrel

cage of asynchronous machines. Thus they do not

require rotor cooling (Ehsani et al, 2006).

The control of PM machines must guarantee that the

angle between rotor-generated and stator generated

magnetic fields are optimal, i.e. that guarantees the

Maximum Torque Per ampere (MTPA) condition. In

case of isotropic machine this optimal angle is 90°,

while in case of anisotropic one, where the direct-axis

reluctance is lower than the quadrature axis one, this

optimal value is more than 90 degrees (Schiferl, 1990).

Often instead of the angle between the two fields,

the difference between this angle and 90° is

considered: this new angle, called gamma-angle, has an

optimal value of zero for isotropic machine, while it is

larger than zero when Xq>Xd. An idea of the optimal

gamma-angle trend can be obtained looking at figure 5,

in which example combinations of PM flux, and Xd

and Xq are considered.

The optimal gamma angle is very easily computed

in Modelica: it is just necessary to impose: Ͳ = −�௉� sin � + ሺ�� − �ௗ ሻ�௦ cos ʹ� (1)

That is just an additional equation to be added to the

machine equation set.



Is (p.u.) 0.0 0.5 1.0

0

10

20

30

Lq=1.1 p.u.

Lq=0.8 p.u.

Lq=0.4 p.u.

Lq=0.6 p.u.

Figure 5. Trend of the optimal gamma angle as a function

of stator current for a machine having a magnetic flux

PM=0.6 p.u., a direct inductance Ld=0.34 p.u., and

different values of Lq.

However, as is well known, the optimal gamma can

be selected only at low speeds: at very high speeds the

flux produced by permanent magnets tends to generate

a too high terminal voltage and this tendency must be

contrasted by a flux weakening part of the stator

current produced field. So the condition determining

the gamma angle at these speeds is the one that creates

the set voltage at the machine terminals:

Vmachine=Vset (2)

So equation (1) will be substituted by equation (2)

thus retaining the variable-equation balance of the

model.

Equations (1) and (2), along which an if-equation to

switch between the two, is enclosed in the

“AtomicPmsm” model present in the SupportModels

folder of the library. This is complemented by a loop

that avoids the machine current to overcome a set value

in the PmsmAllFluxLimI model, also present in the

SupportModels folder. In case of conflicting needs for

current, i.e. current is needed to accomplish flux

weakening and to produce the requested torque,

priority is given to flux weakening.

This way, the usage of PMDrive model, that is

rather concise (128 equations) a lot of the PM drive

characteristics are provided for:

 automatic selection of optimal gamma angle

according to (1) at low speeds

 automatic flux weakening at higher speeds

 automatic switching from optimal angle and flux

weakening control

 automatic current limitation

 consideration of machine and inverter losses.

A simple test of the permanent-magnet synchronous

machine drive is supplied in the library, ElectricDrives|

TestingModels folder, named TestPMDrive.

In this test the proposed drive performance is

compared with a similar drive, but obtained based on

the MSL standard model of synchronous machine. This

standard model is fed with voltages created using pre-

Poster Session

DOI
10.3384/ecp15118785

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

787

defined Id-Iq pairs, and converting these currents into

their time-domain counterpart

Creating a logic that reproduces the optimality

obtained in pMDrive just for sake of comparison is too

demanding. Therefore in this simulation the values of

Id – Iq are simply read in the pMDrive part of the

simulation, approximately reproduced by means of two

trapezoidal shapes, and then fed into the MSL smpm

machine.

Figure 6 shows how the trend of Id (left) and Id

(right) are reproduced by trapezoidal sources in the

smpm model

0 2 4 6 8
-50

0

50

100

150
IqRef.y pMDrive....Iq

0 2 4 6 8

-80

-40

0

IdRef.y pMDrive...Id

(A)

time (s)

time (s)

(A)

Fig. 6. Trend of Id (left) and Id (right) as reproduced by

trapezoidal sources in the smpm model.

Figure 7 shows the voltage on phase 1 as well as the

norm of the space-phasor machine voltage that should

in principle equal the peak of the sinusoidally varying

phase smpm voltages. The red curve shows how the

space phasor voltage amplitude VspFF=sqrt(Vd
2
+Vq

2
)

could be in case flux weakening would not take place
1
.

0 2 4 6 8
-200

-100

0

100

200

300

Dymola student version, see www.Dymola.com

smpm.vs[1] [V] pMDrive...VspFF pMDrive...Vsp

Figure 7. Phase voltage (blue) computed Space Phasor

(SP voltage amplitude in absence of flux weakening (red),

set SP voltage amplitude (with flux weakening, black).

1
 The two letters “sp” stand for space phasor”, and “FF”

stand for “Full-Flux”.

Finally in figure 8 the electromagnetic torque

generated in the MSL smpm machine and in the

library’s PMDrive are compared.

3 Map-Based folder

In many circumstances the dynamics to be

considered in vehicle power train studies are much

slower than the faster electric dynamics. In these cases,

the only state variables to be considered in electric

drive models can be those related with the mechanical

inertias of the rotating pars. The rest can be modelled

as being algebraic, i.e. with maps containing operating

regions and efficiencies.

0 2 4 6 8
-50

0

50

100

200

(Nm)

smpm.tauElectrical pMDrive.allFluxLim.tauElectrical

time (s)

Fig. 8. Comparison of MSL smpm and PMDrive model

during a start-up: smpm and PMDrive electromagnetic

torques.

To ease simulations in these cases the map-based

folder has been provided in the library.

The general arrangement of map-based components

can be understood looking at the MBOneFlange model,

whose inner architecture is shown in figure 9.

Fig. 9. Internal structure of the MBOneFlange model.

This model models an electric drive, that tries to

produce and apply to the inertia the mechanical torque

requested from the real input tauRef.

Before applying that torque to the inertia it is

verified if the requests is compatible with the drive

torque limits as determined by the limTau component,

that, as usual in the electric drives, impose a limitation

on the delivered torque and delivered power, whatever

comes first.

Once the torque is applied to the inertia the applied

torque and actual speed determines the operating point

of the electric drives. This point is used by the effMap

abs1

abs

limTau

W

T

ef f Map

M

P

inertia

J=J

torque

tau

k=1

gain

powSensor

power

createTau

min()

f lange_a

pin_p

pin_n

A new Modelica Electric and Hybrid Power Trains Library

788 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118785

component that computes the drive losses as a function

of the operating point, and requires the absorption from

the DC flanges of the total drive power, including

losses, by means of a variable resistor, that has as input

the power to be drawn.

In a similar way also two –flange electric drive

model is internally built.

As regards the ICE model, it follows the same

rationale, but instead of efficiency maps it is deemed

more natural to use fuel consumption maps The

architecture is thus the one shown in figure 10.

Fig. 10. Internal structure of the MBice model.

The fuel consumption is computed by means of the

map “toSpecCons” whose output is in g/kWh, that is
multiplied in the block “toG_perHour” times the kW
power, to generate the wanted consumption expressed

in g/h.

The map-based components come in two flavours:

with the set torque being a Real input signal, and with a

bus connector.

The components having the bus connector have the

advantage that the connectors carry several useful

signals, instead of just the set torque. However they

have some disadvantages:

 the final user must use the correct names for the bus

signals. The usage of connector-based components is

recommended, at least at first, either in association

with the provided Electronic Control Unit models

MBecu1 and MBecu2, or using the converter blocks

MBsupport| ToConnIceTauRef and MBsupport|

ToConnGen TauRef. Examples of the ECU models

usage are provided in FullVehicles folder, while

examples of the MBSupport converter blocks are

provided in MapBased| TestingModels whose names

contain the word “Conn”.
 At most one MBice, one MBOneFlange and one

MBTwoFlange components are simultaneously

allowed, unless some changes are made on the

supplied MB models with bus connectors.

The names that interface with the bus in connector

components are those shown in table I. Note that the

OneFlangeConn component is called “gen”, while the
TwoFlangeConn component is called “mot”. This is a

choice that tends to simplify things, and is consistent

with the meaning of the full vehicles models

FullVehicles| Psecu1 and FullVehicles|Psecu2.

Table I Names and meaning used as bus signals on the

components containing bus connectors.
Name Sender Unit Meaning

i ceTauRef * Nm
Torque that the ice is

requested to deliver

iceW MBiceConn rad/s ICE speed

icePowDel MBiceConn W Power delivered by ICE

genTauRef
MBOneFlan

geConn
Nm

Torque that the gen i s

requested to deliver

genPowDel
MBOneFlan

geConn
W

Power that the gen

del ivers

genTauLim
MBOneFlan

geConn
Nm

Maximum torque gen can

del iver at the actual speed

motTauRef
MBTwoFlan

geConn
Nm

Torque that the mot i s

requested to deliver

motPowDelA
MBTwoFlan

geConn
W

Power that the gen

del ivers through flange A

motPowDelAB
MBTwoFlan

geConn
W

Power that the gen

del ivers summing flange A

and flange B outputs

motTauLim
MBTwoFlan

geConn
Nm

Maximum torque gen can

del iver at the actual speed

*This is the reference torque that is put on the bus by either

ToConnIceTauRef or ToConnGenTauRef or MBecu1 or

MBecu2.

All the map-based components are tested in specific

testing models.

Here, just as an example, the testMBOneFlange is

presented and discussed.

The model is represented in figure 11. It consists on

a one-flange drive that is requested to follow a torque

profile. The requested torque is larger than that the

drive can follow.

Fig. 11. Test model for the MBOneFlange model.

Some significant plots are shown in figure 12.

It can be noted that:

 during the first 10 seconds the generated torque

oneFlange.torque.tau, is 20Nm, as requested from

the input. The maximum torque that can be

generated is not limited by the power limit (thus

state=0)

 between t=10s and 14s the generated torque

continues to follow the input signal; but starting

from t=10.8s the maximum torque that can be

min1

min()

icePow

power

Tice

tau

ICE

J=inertiaJ
toLimTau

k=1e-3

tokW

f lange_a

inertia

J=0.5

loadTorque

tauRef

period=1e6

J=0.5

oneFlange

ground

pow Mech

pow er

pow Elec

P

Poster Session

DOI
10.3384/ecp15118785

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

789

delivered is limited by the maximum drive power

(this is confirmed by the value state=1)

 between t=14 and 18 s, since the drive power has

been reached (10 kW), the generated torque is

automatically reduced to avoid this limit to be

overcome

 between t=18 and t=38 the maximum speed is

reached and therefore the generated torque is

automatically reduced to avoid this limit to be

overcome (state=2)

 above t=38 the torque request is reduced and the

drive is again able to deliver this torque.

0 25 50
0

20

40

60

80
oneFlange.limTau.y tauRef.y oneFlange.torque.tau

0 25 50
-1

0

1

2

3
oneFlange.limTau.state

time (s)

time (s)

Nm

Figure 12. Torques (above) and state (below) of the

TestMBOneFlange test model.

Mechanical and electric powers are shown in figure

13. In the central part of the transient, in which speed is

constant, the ratio of the two powers represents also the

efficiency of the drive in that operating point, that in

this case is 85.7%

4 Support models

4.1 PropDriver

Simulation of vehicular power trains normally needs

drivers to be simulated.

Indeed in the past also the so-called inverse

simulations were common, and used for instance in

Advisor software, at least in its royalty-free version

distributed by USA’s Department of Energy up to 2003
(EERE 2015). But in recent years direct simulations,

typically more realistic and accurate, have become the

standard. Direct simulations require the vehicle driver

to be simulated along with the vehicle power train.

In the first release EHLibrary, discussed in this

paper, a very simple driver model is proposed: the

model reads from the hard disk the speed-time profile

to be followed, and tries to follow it by means of a

purely proportional controller.

Although so simple, it allows very useful

simulations to be performed, as demonstrated in the

full Vehicle model example provided (section 5).

0 25 50
0.0E0

5.0E3

1.0E4

1.5E4

(W)

pow Mech.power pow Elec.power

0 25 50
0

100

200

300

400
 [rad/s] inertia.w

time (s)

time (s)

Figure. 13 Mechanical and electrical powers (above)

and rotational speed (below) of the TestMBOneFlange

test model.

4.2 DragForce

The resistance to movement in vehicles in flat rows

is usually expressed by the following well known

formula: ܴ = �݂݃ + Ͳ.5 ∗ �ܵ���ଶ (3)

The first term simulates rolling resistances,

proportional to vehicle mass m by means of the rolling

coefficient f , the second aerodynamic resistance, and

therefore is proportional to the air density , front area

S, drag coefficient Cx, squared speed.

Indeed formula (3) does not tell all the truth: if we

use it in simulations, at zero speed R would be non-

zero and the vehicle would start backwards.

To correctly simulate resistance to movement hybrid

simulation is needed, e.g.: ܴ = {�݂݃ + Ͳ.5 ∗ �ܵ���ଶ �݂ |�| > Ͳܨ௘௦௧ �݂ � = Ͳ

Where Fest is the applied external force. The vehicle

will start moving whenever Fest overcomes mgf .

Fortunately this is easy in Modelica, and the Drag

Force component implements this hybrid set of

equations. It is directly derived from the MSL

component Modelica | Mechanics | Translational |

Components | Brake.

4.3 Batt1 and Batt1Conn

A very important piece of hardware for electric and

hybrid vehicles is constituted by electrochemical

batteries.

A new Modelica Electric and Hybrid Power Trains Library

790 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118785

The model proposed here derives from the many

years of experience of the author in battery modelling,

with some useful hints coming from the

“BatteryIdealized” model available in the Dassault

Systèmes’ SmartElectricDrives library (Dassault

Systèmes 2015).

For instance, papers (Ceraolo 2000, Barsali 2002)

discuss a whole family of models in which different

numbers n of R-C blocks are used to simulate battery

dynamics. Although developed for Lead-acid batteries,

these models have then proven to be valid for other

kinds of batteries, and in particular lithium batteries

(Ceraolo 2011) A choice of n corresponds to a given

compromise between complexity and precision. In the

EHPowerTrain the compromise chosen refers to one R-

C block, so that the model can be represented by the

equivalent circuit shown in figure 14.

E(SOC)

+
u

+

-

R0

R1

C1
iout

i1
im

ip

Fig. 14. Battery Equivalent circuit with EMF.

In this model the current that contributes to the

charge/discharge process is im, while the current

flowing in the parasitic branch Rp, ip is lost. Indeed, the

state of charge of the battery can be computed starting

from the so called “extracted charge Qe” that is the

integral of im:


t

m

QQ

e dtti
CC

Q
SOC

0
)(

1
11 (4)

In (4) it is assumed that when t=0 the battery is

completely charged, so that Qe is the charge extracted

from the main branch of the electric circuit (the branch

in which im flows) starting from a fully charged

battery.

In general, all the circuit parameters: ip R0, R1, C1

are function of state of charge and electrolyte

temperature; moreover ip is a non-linear function of the

terminal voltage. But for the purpose of EHPowerTrain

all these dependences are neglected, except the most

important one, i.e. the dependence of E on SOC.

Indeed this dependence in many batteries is nearly

linear: ܧ = ଴ܧ + ��ଵܵܧ = ଴ܧ + ଵሺͳܧ − ܳ௘�ொሻ
Thus in these cases the law relating im to E is the

same as the one relating current and voltage in a

capacitor. In EHPowerTrain linear dependence of E on

SOC is assumed, and therefore the circuit of figure 14

is converted into the circuit shown in figure 15.

E(SOC)

+

u

+

-

R0

R1

C1
iout

i1
im

ip

-

Fig. 15. Battery Equivalent circuit with Capacitor-EMF.

It must be noted that it is expected that the library

user knows little about ip of our model.

Therefore, using a technique that can also be found

in SmartElectricDrives Library, ip is indirectly

computed from the full charge/discharge efficiency of

the battery. I.e., the user specifies the global constant-

current charge/discharge efficiency and from this

datum a constant ip is determined.

Naturally, since ip cannot be lower than zero and

adds loss to the energy loss due to R0 and R1, the

user-defined battery efficiency must be not lower than

that corresponding to ip=0 condition.

5 Full Vehicles examples

To realistically simulate full vehicles one of the best

ways is to use the freely available Vehicle Interfaces

library (Modelica Association 2015). However simpler

models allow understanding basic things about

vehicles more easily. Therefore the EHPowerTrain

comes with full vehicle examples that are built from

scratch using just modelica and MSL; it is not difficult,

however, to include some of the supplied models in the

interfaces available in the VehicleInterfaces library,

this way taking best of both libraries.

There is one very simplifying assumption that must

be noted in the proposed FullVehicles models: the

driver outputs a single signal that is a torque reference.

When positive it is intended to be traction torque, as

could be drawn from the position of the accelerator

pedal, while when negative is intended as a brake

torque, as could be taken from the brake pedal. This

unique torque is sent to the electric or hybrid power

trains, that takes care of accelerating or braking. I.e., it

is supposed that the power train can perform all the

braking actions needed by the speed profile, without

additional intervention of mechanical brakes.

These full power train models are stored in the

folder named “FullVehicles”. More models are

intended to be added in future versions of the library.

In the present version of the library the provided

models contain two electric vehicles, one of which

(EvAm_bat) based on an asynchronous machine, the

other (EvPm_bat) on a permanent-magnet synchronous

machine.

The other two (PSecu1 and Psecu2) refer to two

hybrid power trains realised with the Power Split

Poster Session

DOI
10.3384/ecp15118785

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

791

Device component, one of which keeps always on the

engine, the other has also some ON/OFF strategy.

Here, for illustration of what these models can do,

some results on EvPm_Bat and PSecu2 are proposed.

5.1 EvPm_bat model

This simple vehicle model shows how a PMDrive

can be easily and effectively exploited in electric

vehicle models. Its appearance is shown in figure 16.

Figure 17: Graphical view of the Evm_bat model.

In this simulation the driver, simulated by means of

a simple proportional controller, tends to follow the

drive cycle.

The considered drive cycle is the so called "Sort1"

standard [UITP 2010]. It is composed by three simple

triangles of speed versus time: each of them is

composed by three phases: constant acceleration,

constant speed, constant deceleration. The maximum

speeds of these three triangles are 20 km/h, 30 km/h,

40 km/h respectively.

Figure 18 shows some significant plots.

The proposed simulation refers to a rather small car

having a mass of 1300 kg.

In the upper graph the vehicle speed mass.v as long

as the wished vehicle speed driver.from_kmh. It is seen

that this driver is very reactive, and therefore the

vehicle speed closely follows the set driving cycle

In the central plot the generated electromagnetic

torque pmDrive.allFluxlim.tauElectrical is shown: the

plot indicates that the inertia (acceleration and

deceleration) forces dominate. During the constant-

speed parts the torque is due only to drag forces,

composed of rolling friction and air drag. Since the

considered speeds are low, the air drag force is

negligible

Finally, the lower graph shows trend of Id(t) and

Iq(t) that indicate the machine behaviour. Since this

machine is anisotropic, torque is determined by Id and

Iq. If an isotropic machine is chosen instead, Iq will

determine torque, while Id will determine terminal

voltage; Id will stay equal to zero at low speeds, to

reduce drive current

Other interesting plots can be drawn from the

electrical DC circuit. In the next figure 19, the power

delivered by the battery and the State of Charge (SOC)

are shown.

0 50 100 150
-5

0

5

10

15
mass.v driver.from_kmh.y (m/s)

0 50 100 150
-100

0

100

pmDrive.allFluxLim.tauElectrical

0 50 100 150
-100

0

100

pmDrive...Id pmDrive...Iq

time (s)

time (s)

time (s)

(A)

(Nm)

Fig. 18. Some significant plots of EvPm_bat model.

0 40 80 120 160
-1E4

0E0

1E4

dcPow .power (W)

0 40 80 120 160
0.897

0.898

0.899

0.900

0.901
batt.SOC

time (s)

time (s)

Fig. 19. DC power and SOC of EvPm_bat model.

Note the very small SOC window due to the very

short simulation: only three bus stops, for a total of 0.5

km.

The drag force model understands when the vehicle

is standstill and switches into locked mode. This can be

verified checking as shown in figure 20.

Wheel

mass

m=v Mass

ground

driver

pmDrive

idealgear1

ratio=3.5

dcFem=250

+ -

A new Modelica Electric and Hybrid Power Trains Library

792 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118785

0 100

true

false

time (s)

Fig. 20: Value of the boolean variable “dragForce.locked”
for the simulation shown in figures 18 and 19.

5.2 PSecu2 model

This model shows a possible behavior of a power train

based on a Power Split device (PSD) model. Its

appearance is shown in figure 21.

Figure 22: Graphical view of the PSecu2 model.

Moreover it gives the opportunity to show several of

the Map-based library models, in the version

containing a bus connector. It thus exploits

MBOneFlangeConn, MBiceConn, MBTwoFlange-

Conn components.

The management of all these devices is made in the

ECU of the type MBecu2. It tries to satisfy the driver’s
torque command in an effective way, considering the

ICE consumption fuel map. To do this it has an inner

logic that foresees also switching off the ICE at low

loads.

The general idea of this logic, that reproduces what

is published regarding the first release of Toyota Prius

PSD based hybrid, and described in (Toyota, 2003) is

as follows:

1. When the ICE is ON it is made operate at its

maximum torque, i.e. at the maximum throttle, that

for any engine speed corresponds to the lowest

specific consumption. Moreover that torque is

roughly independent on the ice speed, being always

around 90 Nm; this implies that control of the ICE

power is obtained just controlling the ICE speed.

2. As a general rule, the ICE speed is chosen to be the

value that makes it deliver the load power,

measured as an average on the last few minutes of

vehicle operation.

3. The one-flange machine, connected to the PSD sun

and called “gen”, has as purpose to keep the ICE

near its optimal speed.

4. The two-flange machine, connected to the PSD ring

through one flange and the final reduction gear

though the other, is operated so that the vehicle

follows the torque requests from the driver

5. The above logic is modified to keep SOC under

control; this control is obtained by action on ICE

speed obtained, again, in compliance with the above

rule 3, by means of additional action on the gen.

6. Finally, if the engine is delivering for long time too

low power, it is temporarily shut down, using a

simple ON/OFF technique. Determination of too

low ICE power is made by corresponding measure

of ICE speed (compare rule 1 above); an hysteresis

loop is added to avoid too frequent ON/OFF

actions.

When it is decided that switching off the ICE is

needed, its reference speed is brought to zero. The

given consumption map is such that at zero speed there

is also zero consumption. Naturally, although

reasonable this is an approximation. In a real case the

ICE fuel injection would be brought to zero, and then

when also its speed reaches zero some mechanical

brake would be activated to allow the PSD to exchange

torques with the mechanical objects connected to the

other flanges.

In the following figures some results of the

simulation proposed in the EHPowerTrain library are

proposed.

The considered vehicle is the same as for the

EvPm_Bat model. Even the total mass of the two

vehicles is taken as equal. However here instead of the

Sort1 Cycle, the New European Driving Cycle

(NEDC) is used.

Figure 21 shows, from top to bottom, the desired

and obtained vehicle speed; the ice rotational speed

(when it is brought to zero ICE is set to OFF position

and no fuel consumption occurs); the battery SOC that,

despite of some fluctuation, shows a general trend to

stability due to the specific control loop present in

PSecu2.

6 Conclusions

This paper has shown the basic characteristics of a

new library, EHPowerTrain, proposed to be presented

at the 11
th

 Modelica International Conference.

It is intended for people wanting to simulate electric

and hybrid powertrains, with lean models and fast

simulations.

The models have thus defined with limited com-

plexity; yet they are able to give interesting results.

All the models work well under Dymola (2015) and

OpenModelica (1.9.2).

The library will be made available open-source to

the general public, if there is request.

mot

J=0.59

J=0.25

gen gen

J=0.5

ice
idealGear

ratio=3.905

PSD

ratio=78/30

mass

m=vMass

driver

ECU

PSD-MB2

wheel

Poster Session

DOI
10.3384/ecp15118785

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

793

0 500 1000

0

20

40
mass.v driver.from_kmh.y

0 500 1000

true

false
true

false

d.iceON

dragForce.

locked

0 500 1000
0.2

0.4

0.6

0.8

d.batSOC

Fig. 23. Some plots related to simulation PSecu2:

desired and actual vehicle speed (m/s, top);

Ice-ON and vehicle Stop signals (middle),

Battery SOC (dimensionless, bottom).

References

Bondea, S. A. Nazar; “Electric Drives”, CRC Press, Taylor
& Francis Group, 2006 ISBN 0-8493-5220-1, section 8.17.

UITP Project SORT: Standardised On-Road Test Cycles,

2010; data for ordering on www.uitp.org;

M. Ehsani, Y. Gao, A. Emadi: “Modern Electric, Hybrid

Electric, and Fuel Cell Vehicles: Fundamentals, Theory,

and Design”, CRC Press, 2009, ISBN 9781420053982

R. Schiferl, T. Lipo: Power Capability of Salient Pole

Permanent Magnet Synchronous Motors in Variable Speed
Drive Application”, IEEE Transactions on Industry

Applications, l. 26, N. 1, Jan/Feb 1990

Toyota documentation http://www.evworld.com /library

/toyotahs2.pdf, May 2003, retrieved from the Internet on
2015

M. Ceraolo: “New Dynamical Models of Lead-Acid

Batteries”, IEEE Transactions on Power Systems,
November 2000, Vol. 15, N. 4, pp. 1184-1190.

S. Barsali, M. Ceraolo: “Dynamical models of lead-acid
batteries: implementation issues”, IEEE Transactions on

Energy Conversion, Vol. 17, N. 1, Mar 2002, Pages 16-23.

M. Ceraolo, T. Huria, G. Lutzemberger: “Experimentally
determined models for high-power lithium batteries”,
Book Advanced battery technology, ISBN: 978-0-7680-
4749-3 doi:10.4271/2011-01-1365. Also presented at the

SAE 2011 World Congress. Cobo Center Detroit,
Michigan (USA), 12-14/4/2011.

Dassault Systèmes Smart Electric Drives Library

documentation: http://www.3ds.com/fileadmin/

PRODUCTS/ CATIA/ DYMOLA/PDF/dymola-smart-

electric-drives-library.pdf; File available for download

on April 2015

Modelica Association: https://www.modelica.org/libraries ,

Vehicle Interfaces library Link available on April 2015.

EERE Information Center, https://www1.eere.energy.gov/

vehiclesandfuels/pdfs/success/advisor_simulation_tool.pdf
file available for download on April 2015.

A new Modelica Electric and Hybrid Power Trains Library

794 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118785

Initiatives for acausal model connection using FMI in JSAE

(Society of Automotive Engineers of Japan)

Yutaka Hirano1 Satoshi Shimada2 Yoichi Teraoka3 Osamu Seya4

Yuji Ohsumi5 Shintaroh Murakami6 Tomohide Hirono7 Takayuki Sekisue8
1Toyota Motor Corporation, Japan, yutaka_hirano@mail.toyota.co.jp
2Honda R&D Co., Ltd., Japan, satoshi_shimada@n.t.rd.honda.co.jp

3Mazda Motor Corporation, Japan, teraoka.yo@mazda.co.jp
4DENSO CORPORATION, Japan, OSAMU_SEYA@denso.co.jp

5AZAPA Co., Ltd., Japan, yuji-oosumi@azapa.co.jp
6Dassault Systèmes K.K., Japan, Shintaroh.MURAKAMI@3ds.com

7NewtonWorks Corporation, Japan, hirono.tomohide@newtonworks.co.jp
8ANSYS Japan K.K., Japan, takayuki.sekisue@ansys.com

Abstract

Authors initiated trial and evaluation of a new method
to connect physical ports of acausal model and causal
signal ports using FMI as an activity of technical
committee of JSAE (Society of Automotive Engineers
of Japan). We propose a way of model export and
connection using new adaptor models. This method
was tested by a benchmark model of a control system.
Simulation results for the benchmark model showed
good consistency between the original acausal model
and the connected model using FMUs separated from
the original model by this method. Also a guide-line
about using FMI for the model connection using this
method was made in JSAE and is distributed to general
users of Japanese automotive industries. Finally
expectations about future enhancement of FMI for
model exchange and circulation between different
companies are presented.

Keywords: FMI, Model Exchange, Acausal Physical

Connector

1 Introduction

Importance of utilizing simulation is increasing for the
development of automotive systems because both high
functionality and high reliability are required while the
development time is becoming shorter. For large-scale
and multi-domain development of automotive systems,
environment for development which enables to connect
simulation models developed in various companies is
becoming important more and more. Though, in
automotive industries in Japan, various kinds of
physical modeling tools are used for each physical
domain by each organization. Thus it was difficult to
connect those models easily.

Upon above background, the Committee on
Research of Model Development and Circulation
Methods Based on Global Standardized Description
was established since March 2012 in JSAE. In the

Committee, Working Group for Model Connection
Technologies was started to try and evaluate the
efficacy of model connection using FMI. In that
activity authors found that there was a problem of
algebraic loop generated by diving and connecting sub-
models (FMUs) because FMI only provided the way to
connect models by causal signal flows, i.e. defining
causality of input and output of components is required.
On the other hand, acausal modeling tools as Modelica
tools can handle the problem of algebraic loop by
causality analysis and symbolic manipulation of
equations. Thus it seemed effective to connect FMUs
in acausal modeling environment by converting causal
signal ports to acasual physical port and vice versa. In
the following section, the method to use special
adaptor models to divide and connect sub-models via
FMI is proposed. The method was validated by
benchmark models developed in JSAE committee.
Comparison between the simulation result of the
original acausal model and that of a unified model of
divided FMUs was done and we got good consistency
of the simulation results. Finally some expectations for
future enhancement of FMI for model exchange from
Japanese automotive industries are described.

2 Benchmark Model of a Simple Control

System

2.1 Structure of the Benchmark Model

Figure 1 shows one benchmark model of JSAE used
for the evaluation of model connection methods using
FMI. This model is a simple control system of DC
motor for rotational angle feedback control as shown in
Figure 2.

This simple control system consists of three major
sub-systems: PI controller, DC motor and rotational
mechanical system. In each sub-system, the system of
equations are as follows.

DOI
10.3384/ecp15118795

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

795

Figure 1. Benchmark model (Simple control system)

Figure 2. Physical image of the simple control system

PI Controller: ܧ�ሺ�ሻ = ௉ܭ ∙ [��ሺ�ሻ − �௅ሺ�ሻ] + �ܭ ∙ � [��ሺ�ሻ − �௅ሺ�ሻ] (1) ܧெሺ�ሻ = ሺ�ሻ�ܧ − �� ∙ �ெሺ�ሻ (2)
DC Motor: ܧெሺ�ሻ = ெܮ ∙ s�ெሺ�ሻ + �ெ ∙ �ெሺ�ሻ + ሺ�ሻ�ܧ ሺ�ሻ (3)�ܧ = ெܭ ∙ s�ெሺ�ሻ (4) �ெሺ�ሻ = ெܭ ∙ �ெሺ�ሻ (5) �ை௎�ሺ�ሻ = �ெሺ�ሻ − ெܬ ∙ �ଶ�ெሺ�ሻ (6)
Rotational Mechanical System: �ை௎�ሺ�ሻ = ௅ܬ ∙ �ଶ�௅ሺ�ሻ + ௅ܦ ∙ ��௅ሺ�ሻ + ௅ܭ ∙ �௅ሺ�ሻ (7) �ெሺ�ሻ = �௅ሺ�ሻ (8)
Here, ܧ�ሺ�ሻ: Voltage of voltage generator in PI controller ܧெሺ�ሻ: Terminal voltage of DC motor ܧ�ሺ�ሻ: Electromotive voltage of DC motor �ெሺ�ሻ: Current flow of DC motor �ெሺ�ሻ: Driving torque of DC motor �ை௎�ሺ�ሻ: Output torque of DC motor ��ሺ�ሻ: Target rotational angle �ெሺ�ሻ: Rotational angle of DC motor �௅ሺ�ሻ: Rotational angle of the mechanical system
and ܭ௉: Proportional gain of PI controller ܭ�: Integration gain of PI controller ��: Internal resistance of PI controller ܮெ: Inductance of DC motor �ெ: Resistance of DC motor ܭெ: Current - torque coefficient of DC motor ܬெ: Inertia of DC motor ܬ௅: Inertia of the rotational mechanical system ܦ௅: Damping coefficient of the mechanical system ܭ௅: Spring coefficient of the mechanical system

2.2 Adapter Model

Let’s consider to make FMU from the DC motor sub-
model of Figure 1. Here, one portion to divide the
model is the electronic connector between the
electronic output of PI controller and input of the DC
motor. Also the mechanical connector between the
mechanical output of DC motor and the mechanical
input of the rotational motion system should be chosen
as dividing portion. It is important to choose the
appropriate connectors which coincide with the actual
interconnection of parts and systems to handle models
provided by different suppliers easily.

In general, it is the most convenient that such
models are described by acausal modeling tool such as
Modelica tools because there is no necessity to
consider the causality of each system of equations
when assembling the models. But it is still not realized
that every model of necessary sub-systems are made by
acausal modeling tools. There still are many existing
models made by different tools supporting only causal
modeling.

Thus, it is important to enable those causal models
to be connected by using FMI in acausal modeling
environment. However, because FMI is based on only
causal signal connection, it is necessary to prepare
adaptor models to translate acausal physical port to
causal signal connectors. Figure 3 shows the proposed
models of adaptors for electric, rotational mechanical
and translational mechanical domains.

In electronics adopters shown in Figure 3, the
connectors shown by rectangular terminal are acausal
physical ports. The connectors shown by triangle
terminal are causal signal connectors of voltage and
current, and the direction of the triangle head shows the
direction of the corresponding signal flow. There are
following equations between each variable. ܧ ��� = � (9) � = � ��� (10) �ʹ = ���ʹ� (11) ���ʹܧ = − �ʹ (12)

In rotational mechanical adopters shown in Figure 3,

the connectors shown by circle terminal are acausal
physical flanges. The connectors shown by triangle
terminal are causal connectors expressing physical
signals of rotational angle, velocity, acceleration and
torque. As same as the electronic adaptors, the
direction of the triangle head shows the direction of the
corresponding signal flow. There are following
equations between each variable. � ௙���௚௘ = � (13) � ௙���௚௘ = � (14) � ௙���௚௘ = � (15) � = � ௙���௚௘ (16)

Initiatives for Acausal Model Connection using FMI in JSAE (Society of Automotive Engineers of Japan)

796 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118795

Figure 3. Adapter models to connect acausal physical port and causal signal ports

 �ʹ = �ʹ௙���௚௘ (17) �ʹ = �ʹ௙���௚௘ (18) �ʹ = �ʹ௙���௚௘ (19) �ʹ௙���௚௘ = −�ʹ (20)

There is similar relationship between the signals of

acausal physical port and causal signal connectors also
for the mechanical translational adaptors.

It is important to notice that there are minus signs in
the equation (12) and the equation (20). To decide the
sign of every flow variables of acausal connector by
integrated way, we define the polarity of flow variables
as follows.

 Sign of flow variables defined as output of

causal connector is positive when the flow goes

out from the component.

 Sign of flow variables defined as input of causal

connector is positive when the flow comes into

the component.

By above definition, the function of the adaptor
models should become like bellows.
 When transferring flow variable(s) coming into the

component at acausal connector to that of causal
connector, the sign of the variable(s) is plus. (It’s
not necessary to change the polarity of both signals
as shown in the equation (10) and (16).)

 When transferring flow variable(s) going out of the
component at causal connector to that of acausal
connector, the sign of the variable(s) is minus
because of the definition of Modelica Standard
Libraries (MSL): i.e. the sign of flow variables is
plus when they come into the component. This

means that it is necessary to invert the sign of the
corresponding flow variables as shown in the
equation (12) and (20).

By above definition of signal flows, it becomes
possible to utilize the functionality of Modelica tools to
generate the equation about flow variables to be
summed to zero when the physical connectors are
connected. This feature enables us to connect FMUs
generated by using proposed adaptors into acausal
modeling environment. By this way, it becomes
possible to utilize the functionality of Modelica
translator to handle algebraic loops for connected
model of multiple FMUs. We have proposed the above
definition of the adaptor models to Modelica
Association in March 2014. It is desired that this kind
of adaptor models will be prepared in coming future,
hopefully as a part of MSL, also for other physical
domains such as heat transition system, liquid system
and so on.

2.3 Generation of FMU

Next we will show the way to split the sub-model of
DC motor by using adaptor models mentioned in the
above section. We can make the sub-model as shown
in Figure 4 by using one mechanical adaptor and two
electronic adaptors.

Equations for the DC motor become as follows. �ெଶ_ை௎�ሺ�ሻ = �ெ _� ሺ�ሻ − �ெଶ�ಿሺ�ሻ − ெܮ ሺ�ሻ�ܧ ∙ s + �ெ
(21) �ெ _ை௎�ሺ�ሻ = −�ெଶ_ை௎�ሺ�ሻ (22) ܧ�ሺ�ሻ = ெܭ ∙ �ெ_� ሺ�ሻ (23) �ெሺ�ሻ = ெܭ ∙ �ெଶ_ை௎�ሺ�ሻ (24) �ெ_ை௎�ሺ�ሻ = �ெሺ�ሻ − ெܬ ∙ �ெ_� ሺ�ሻ (25)

Poster Session

DOI
10.3384/ecp15118795

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

797

Figure 4. DC motor model with adaptors

Now we can generate FMU from the sub-model of

the DC motor shown in Figure 4 because all of the
variables which are used for interconnecting to other
models are defined by causal (i.e. defined as either of
input or output) connectors.

2.4 Importing and Connection of generated

FMU

When importing the generated FMU in the host tool
(i.e. by Import for ModelExchange or Master for
Cosimulation), the imported FMU looks like Figure 5.
(The appearance is different according to the used
tool.)

Inside the imported FMU model, the relationship
between the input and output becomes as following
equations (26) to (28). �ெଶೀೆ೅ = � ሺ�ெ _� , �ெଶ_� , �ெ_� , �ெ_� , �ெ_� ሻ (26) �ெ _ை௎� = −�ெଶ_ை௎� (27) �ெ_ை௎� = �ଶሺ�ெ _� , �ெଶ_� , �ெ_� , �ெ_� , �ெ_� ሻ (28)

The definition of each function f1 and f2 cannot be
seen from outside. The actual equation of functions are
implemented as dll file in the fmu file (in the case of
using Windows OS).

Figure 5. Imported FMU model of DC motor

Figure 6. System model connecting imported DC motor
FMU model

Next, we will connect the imported FMU model of
the DC motor within the total system model as shown
in Figure 6. In this model, the acausal sub-model of
DC motor in Figure 1 is just replaced by the imported
FMU model. The problem is how to connect the causal
FMU model to the acausal physical model of the total
system. We can solve this problem also by using
adaptor models mentioned above. In the case that the
FMU model outputs voltage signal and inputs current
signal, then we should connect the adaptor which
connects electronic acausal port with voltage signal as
input and current signal as output shown in Figure 3.
Similarly, if a ternimal of rotational mechanics outputs
torque signal and inputs signals of rotational angle,
velocity and acceleration, then we should connect the
adaptor which connects mechanical acausal connector
with torque signal as input and signals of rotational
angle, velocity and acceleration as output shown in
Figure 3. In the case of FMU model shown in Figure 5,
the necessary model connected with adaptor models
becomes like Figure 7.

Figure 7. FMU model with adaptors

Now we can connect the FMU model with adaptors

into the acasaul total model as shown in Figure 6.
Figure 8 shows the result of connecting the FMU
model of the DC motor using the adaptors.

troller

ort

motor

FMI 2.0 ME Import

¸
É
a
Ä

motor

FMI 2.0 ME Import

Initiatives for Acausal Model Connection using FMI in JSAE (Society of Automotive Engineers of Japan)

798 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118795

Figure 8. System model with DC motor FMU model

Similarly, separated FMU models of PI controller
and rotational motion system can be generated by using
proper adaptor models as shown in Figure 9. Then
generated and imported FMU models of those sub-
systems become as shown in Figure 10. Finally we can
make a total system model using those three FMUs as
shown in Figure 11. In this example, FMU of both PI
controller and DC motor output current signal. Also
FMU of both DC motor and rotational motion system
output torque signal. Please be aware that by using the
adaptors it becomes possible to connect output signals
each other between two FMUs via acausal connection
because causality is solved by Modelica translator. It
becomes error if the causal output signals of FMU are
directly connected without using adaptors.

(a) PI controller

(b) Rotational motion system

Figure 9. Separated models for FMU

(a) PI controller (b) Rotational motion system

Figure 10. Imported FMU models

Figure 11. System model using 3 FMUs

2.5 Simulation Results

Figure 12 shows simulation results of the rotational
angle of load shaft for the benchmark model. The
results of the original model without using FMU
(Figure 1) , the model using only FMU of DC motor
(Figure 8) and the model using all three FMUs (Figure
11) are compared. It is confirmed that all the results are
identical. Here, the parameter of the models are set so
that the results become oscillatory and the comparison
is easy. All FMUs were made by ModelExchange
mode.

Figure 12. Simulation results (Rotation angle of load
shaft)

Poster Session

DOI
10.3384/ecp15118795

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

799

3 Full Vehicle Simulation Using FMUs

from Different Tools

Figure 13. Full vehicle model for electric system
evaluation

Another test model to evaluate the electric system
using full vehicle model was developed and tested.
Figure 13 shows the total model of the test model
generated by one VHDL-AMS tool (Sekisue et al.,
2013). Here, we tried to replace sub-models of AC
generator (ACG) and battery with FMUs generated by
other Modelica tools. As same as the benchmark model
shown in Figure 1, we introduced adaptor models to
connect acausal physical terminals and signals of
causal connectors.

Figure 14. Model of ACG

Figure 15. Model of ACG with adaptor models

Figure 16. Model of battery

Figure 17. Model of battery with adaptor models

Figure 14 shows the model of ACG generated by

one Modelica tool. The model to be converted to FMU
was generated as shown in Figure 15 by adding the
adaptor models. On the other hand, battery model was
made using another Modelica tool as shown in Figure
16. Similarly, the modified model to be converted to
FMU was made as shown in Figure 17. It was
necessary to make the above-mentioned adaptor
models also in the VHDL-AMS tool and connect
FMUs from each Modelica tool as shown in Figure 18.

Finally simulation test was done in the VHDL-AMS
tool. One example of the results is shown in Figure 19.
It was confirmed that model connection using FMUs
from different tools was successful by using the
proposed adaptor models.

4 Summary and Future Requests

We proposed and tested a method using some kind of
adaptor models for FMU to realize following functions.
1. Generating FMUs which have connectors of

causal signals from acausal modeling tool.
2. Converting causal FMUs to acausal sub-models

and connecting them by acausal modeling way.

Initiatives for Acausal Model Connection using FMI in JSAE (Society of Automotive Engineers of Japan)

800 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118795

Figure 18. Full vehicle model using FMUs with adaptor
models

This technique enabled us to connect sub-models

developed by different tools (for example, Modelica
tool and VHDL-AMS tool), though it is necessary to
make adaptor models in each tool. Additionally we
made a guideline for using this technique and
published in the web page of JSAE (JSAE Committee,
2014). (Currently only available in Japanese.)

As future works, we plan to do following tasks.
 Extend this method also for FMI for CoSimulation.

 Enhance activity for model development and
exchange between automotive industries using
FMI.

 Push tool vendors to support the newest version of
FMI.

 Request to make better specification of FMI for
actual usage.

As for the last activity, there is high expectation to
the activity by FMI Working Group of Modelic
Association to realize that future FMI will support
automatic decision of causality of signals (i.e. the
definition of input and output). Currently user should
decide the causality of signals of FMU so that there is
no conflict when combining multiple models, but this
task is very troublesome. Additionally it is desired that
as much as possible tools will support automatic
handling of algebraic loops generated by connecting
multiple FMUs by utilizing above capability.

References

JSAE Committee on Research of Model Development and
Circulation Methods Based on Global Standardized
Description, Guideline of Model Connection using FMI in
Acausal Modeling Tools, 2014 (Available online as
http://www.jsae.or.jp/tops/topics/1241/1241-1A.pdf).

T. Sekisue, K. Tsuji, M. Ogawa, T. Fukada, K. Tanimoto, S.
Hikida, M. Ueda, T. Kato, Alternator model for full
vehicle simulation, Proc. JSAE annual conference 2013

Spring, No.407-20135490, 2013 (in Japanese).

Figure 19. Simulation result of the full vehicle model

Poster Session

DOI
10.3384/ecp15118795

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

801

802 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Dynamical Model of a Vehicle with Omni Wheels: Improved and

Generalized Contact Tracking Algorithm

Ivan Kosenko1 Sergey Stepanov2 Kirill Gerasimov3 Alexey Rachkov4

1Department of Theoretical Mechanics, Moscow Aviation Institute, Russia, kosenko@ccas.ru
2Department of Mechanics, Dorodnitsyn Computing Center of RAS, Russia, stepsj@ccas.ru

3Department of Theoretical Mechanics and Mechatronics, Lomonosov Moscow State University, Russia,
kiriger@gmail.com

4Department of Theoretical Mechanics, Moscow Aviation Institute, Russia, alexey-rachkov@yandex.ru

Abstract

A model of the multibody dynamics for an omni wheel
assuming embedded in a frame of wider dynamical envi-
ronment of the whole vehicle is under development and
verification. Modelica base classes developed earlier for
the multibody applications with contacts involving fric-
tion are used. Generalization has been performed for the
model of contact tracking algorithm between roller and
horizontal floor. Generalization includes non-zero angle
between the roller axis of rotation and plane of the omni
wheel. Contact tracking algorithm is implemented in two
cases: (a) implicit and (b) explicit.

Models for these cases (a) and (b) are currently “em-
bedded” into the omni vehicle model earlier verified. For
simplicity we analyze a multibody system comprising
the wheel plus set of rollers being mounted along its
circumference. A remainder of the vehicle is replaced
by the wrench properly arranged in a way such that the
wheel keeps its vertical orientation permanently. The
performed computations have shown that two algorithms
of the contact tracking generate completely identical dy-
namics of the whole multibody system.
Keywords: omni wheel; contact tracking; unilateral con-

straint; angled rollers; model of friction

1 Introduction

A construct of the omni vehicle (Ilon, 1975) dynami-
cal model has been presented in (Kosenko and Gerasi-
mov, 2014), see also papers (Kálmán, 2013; Tobolár
et al., 2009). Simplified model for roller mounting on
the wheel disk has been considered there: the roller axis
of rotation assumed to be in the disk, or equivalently the
angle between this axis and the wheel plane, denote it
by ψ , is equal to zero. We will call this angular param-
eter of the model the angle of the preliminary roller ro-
tation (pre-rotation) about the wheel radius intersecting
the roller axis of rotation at its central point.

Omni wheel for this case is shown in Figure 1. There
one can see the lateral view, fragment (a), of the wheel
being equipped by four axisymmetrical rollers, each hav-
ing a shape of the circular spindle. These rollers have
been enumerated by their numbers. Each roller is con-
nected to the wheel by a joint which axis coincides with
the roller axis of rotation. These latter axes both are
orthogonal to the wheel radius exiting from the central
point O and passing through the the roller central point.
So it is possible for the wheel to have a free rolling in
direction perpendicular to its plane. Corresponding con-
tacting curve with respect to the wheel coordinate sys-
tem, being a circle in the case shown, has a coloured
highlighting. This curve has a circular shape provided
the wheel plane keeps its vertical orientation. Front view
of the omni wheel is shown in fragment (b).

For the case of ψ = 0 being shown in Figure 1 a roller
outer profile, generatrix, along its axis of rotation has evi-
dently a circular shape, see Figure 1, fragment (a), again.
This shape provides smooth transfer from one roller to
another while the motion occurs. Evidently if ψ 6= 0 then
it is not the case. Thus, the contact tracking algorithm for
the case of ψ = 0 implemented in (Kosenko and Gerasi-
mov, 2014) turned out to be simple enough. In the case
of ψ > 0 it becomes visibly complicated. And its imple-
mentation on Modelica language is the main goal of this
paper.

Other details of Figure 1 are the following: R is the
omni wheel radius, R1 is the distance between the wheel
central point O and the roller central point, α is the half
roller angular length from the viewpoint O. Unit vectors
{i, j,k} of the base being connected with the wheel are
shown in their initial positions.

In engineering applications one may encounter fre-
quently a situation with ψ > 0. We proposed in (Kosenko
and Gerasimov, 2014) fast algorithm for tracking a con-
tact provided the omni wheel keeps vertical orientation
of its plane (in frame of the whole vehicle construct).
Thus the task for building up the contact tracking algo-
rithm also for the case of ψ > 0 is of interest. This task

DOI
10.3384/ecp15118803

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

803

Figure 1. The omni wheel vertically aligned: (a) lateral view; (b) front view.

has been completed in this paper. To reach this goal we
accept the working model of a virtual testbench consist-
ing of one wheel equipped by rollers along its rim. One
can see easily that this simplification has mostly method-
ical nature and does not prevent us from integrating all
the construct back into the whole vehicle having gener-
ally several omni wheels previously analyzed (Kosenko
and Gerasimov, 2014).

So let us consider an omni wheel, see Figure 1 its
lateral and front views with four rollers, which is able
to keep vertical orientation of its plane. We will see
later how to arrange an implementation of such a servo-
constraint. Note in addition, that in the case of ψ > 0 a
generatrix of the roller outer surface will not be a seg-
ment of the circle anymore. It is represented by a more
complicated curve. Moreover, point break of contact on
the roller surface does not correspond to the surface tip
for the case of ψ > 0 as it took place for the simple case
of ψ = 0. To arrange correct simulation on event of the
contact exchange between rollers one has to truncate the
roller surface properly.

2 Model of the Omni Wheel

Dynamics

Vehicle equipped by omni wheels might be replaced by a
wrench consisting of force and torque in the multibody,
rigid, representation. The force supposed to act at the
wheel center. Thus approximately we can analyze the
omni wheel dynamics with the wrench applied instead
of a remainder of the vehicle.

Moreover, the vehicle, or a separated wheel, performs
in our example motion on the horizontal floor for sim-
plicity. Thus, the wheel being embedded into the vehicle
in the simplest case should be aligned vertically. To ex-

press such an alignment analytically we can connect with
the wheel the base {i, j,k} originating from the wheel
center. Both unit vectors i, j lie in the wheel plane, and
unit vector k is normal to it. Thus the vertical alignment
of the wheel is equivalent to horizontal alignment for the
vector k. Analytical condition for this is

k ·nA = 0,

where unit vector nA is vertical, or normal to the floor.
In other words, let T ∈ SO(3) be the matrix of trans-
formation from base {i, j,k} to the inertial absolute co-
ordinate system. Then components of vector k are ex-
actly the components of the matrix T = (ti j)

i, j=3
i, j=1 third

column. Thus one can express condition of the wheel
vertical alignment in the form

t23 = 0.

This latter equation shows that the omni wheel multi-
body system undergoes the geometrical servo constraint.
It is easy to see that this constraint may be implemented
via control effort, rotating torque M directed such as to
prevent rotation of the wheel plane w. r. t. horizontal line
belonging to this plane.

For details of the torque vector M computation note
that this vector has to be directed along horizontal line
passing through the wheel center and belonging to its
plane. Directing unit vector l for this line has to satisfy
the equation

l = k×nA/|k×nA|.

Hence
M = λ l

and the multiplier λ is simply a value of torque balancing
the wheel vertical orientation. In the wheel model torque
M has to be added to other torques applied to the wheel

Dynamical Model of a Vehicle with Omni Wheels: Improved and Generalized Contact Tracking Algorithm

804 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118803

Figure 2. The omni wheel dynamics visual model.

under simulation. The value λ is exactly the Lagrange
multiplier corresponding to the servo-constraint above.

It is easy to see the servo-constraint plays here a role
of the virtual testbench for investigating the omni wheel
dynamics. The remainder of the whole vehicle model
is replaced simplistically by the wrench being applied
to the wheel. The whole omni wheel dynamics visual
model is seen Figure 2

As one can detect here the model of the omni wheel
multibody system has been implemented using origi-
nal multibody dynamics class library developed previ-
ously (Kosenko, 2005; Kosenko et al., 2006). One can
use this library independently or with help of the knowm
Modelica Standard Multibody class library or with any
other Modelica library. The better way being recom-
mended for such use is the following one. Firstly, one
can implement mechanical subsystems of the whole sys-

tem under implementation. For instance, mechanisms
having tree structure are modeled in a better way using
Modelica Standard Multibody Library while mechanical
subsystems including unilateral constraints with friction
are better implemented using the aforementioned library
of classes. Secondly, the only issue remained is to im-
plement proper interfaces using models of ports mapping
corresponding signals being tranferred from one subsys-
tems to another.

3 Implicit Contact Tracking

Algorithm

We will assume in the further course that the wheel plane
keeps its vertical orientation permanently. We have to
introduce auxiliary orthonormal bases: b1 = {i1, j1,k1}

Poster Session

DOI
10.3384/ecp15118803

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

805

Figure 3. Contact tracking scheme: (a) lateral view of the omni wheel with a roller has been rotated about line OAOB by the
angle ψ , (b) lateral view of the individual roller.

and b2 = {i2, j2,k2}. Intermediate base b2 characterises
partially position and orientation of the roller, while the
base b1 relates to the omni wheel.

The base b2 coordinate system has its origin OB at the
roller central point. The unit vector i2 is directed along
the roller axis of rotation, see Figure 3, fragment (a). The
unit vector j2 is directed orthogonally to i2 and lies si-
multaneously in the vertical plane. The third unit vector
k2 of the base b2 is defined in a natural way as

k2 = i2 × j2.

Remind here that all unit vectors are computed w. r. t.
given fixed (absolute) coordinate system. We assume
that positions and orientations are known for all bod-
ies belonging to the multibody system for any instant
t ∈ [t0, t1] of simulation process. Therefore, we have

i2 = TB · (1,0,0)T , ρρρ = (rOA
− rOB

)/
∣

∣rOA
− rOB

∣

∣ ,

where TB is the roller current orientation matrix.
Origin of the base b1 coordinate system is located

at the point OA (= O in Figure 1) of the wheel center.
The unit vector i1 is oriented horizontally and belongs
to the wheel plane. The unit vector k1 is orthogonal
to the wheel plane and is identical to one of the wheel
connected base vectors. We assume that using a con-
troller the vector k1 permanently maintains its horizon-
tal state. Supposing vector k1(t) known we also have
j1(t) = (0,1,0)T and i1(t) = j1(t)×k1(t).

Consider now relations providing base b2 construc-
tion. Unit vector i2 has been built above. During roller
and the floor contact the vector i2(t) can not become ver-
tical. Moreover, if the roller distortion takes place, its an-
gle of rotation ψ > 0 about axis OAOB is fixed non-zero,
then the condition i2 6= (0,1,0)T is fulfilled permanently.
So we can assume that the condition

c = i2 × (0,1,0)T 6= 0

is also fulfilled.
Thus, we can define k2 = c/|c|. And after this we can

set j2 = k2 × i2. Geometrical constraints, conditions of
orthogonality to be exact, play important role in the omni
wheel kinematics

ρρρ · i2 = 0, ρρρ ·k1 = 0.

These equations actually apply to computing the unit
vector ρρρ and we have their differential versions

d

dt
ρρρ · i2 +ρρρ ·

d

dt
i2 = 0,

d

dt
ρρρ ·k1 +ρρρ ·

d

dt
k1 = 0.

The value cβ = cosβ = i2 · (0,1,0)T of cosine for the
angle β of the roller axis inclination to vertical (0,1,0)T

plays also an important role in the contact tracking algo-
rithm. If current value of the variable cβ is less than some
limiting parameter cβ max, and simultaneously if an alti-
tude of the point OB defining position of the roller center
is less than value R of the wheel radius then the contact
takes place. Otherwise no contact occurs.

Note here that in order to arrange the unilateral con-
straint in the multibody system dynamics model the de-
veloper usually has to implement anything like hybrid
automata construct. In our omni wheel model, on the
contrary, this is not the case. It turned out sufficient
to implement “simple” “if” construct to switch states
“contact” and “no contact” for each individual roller,
and simultaneously to advance forward “contact” state
from one roller to its neighbour. The whole picture looks
like from time to time neighbouring rollers mutually ex-
change their states. One can find details of the unilateral
constraint implementation in (Kosenko and Gerasimov,
2014). Merely note that “if”-alternatives are the fol-
lowing: (a) “contact” state corresponds to zero-valued
relative acceleration of two contacting surfaces at the
point of contact, (b) “no contact” branch corresponds to

Dynamical Model of a Vehicle with Omni Wheels: Improved and Generalized Contact Tracking Algorithm

806 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118803

the zero-valued reaction mutual for both bodies at con-
tact. All this is according to the Signorini rule. “if”-
condition depends on the roller orientation variables.

Essential role in all these computations plays a con-
tact tracking algorithm. Generally, its implementa-
tion reduces to computation of the contact point/patch
whitch enables computing forces at contact. Usually,
one considers contact of two surfaces participating in
rigid/elastic interaction of two massive bodies. As a rule,
such algotithms are pretty expensive and noticeably slow
the whole simulation process. Fortunately, in case of
omni wheels we found here the simplest way to make
this computation as fast as possible using “elementary”
geometric considerations.

We can also easily see from the Figure 3 that the point
PB of contact between roller and floor is obtained using
formula

rPB
= rOB

+R1ρρρ −Rj1 + µk1,

where the scalar µ is to be computed. Here the value R1
is the distance between points OA and OB. The scalar µ
can be computed if we multiply the last equation by k2
using dot-product. Thus we have

µ = [Rj1 ·k2 −R1ρρρ ·k2]/k1 ·k2

since the vector rPB
− rOB

lies in vertical section of ax-
isymmetrical surface of the roller, and the vector k2 by
construction is orthogonal to this section. As a result the
position rPB

of the contact point PB is uniquely computed.

4 Explicit Contact Tracking

Algorithm

Yet another way to obtain current position rPB
of the con-

tact point PB, or more accurately: the roller point closest
to the floor, is an application of the following chain of
equations. This chain is simply understood from geo-
metrical scheme shown in Figure 3, (a) and (b).

rPB
= rOB

−mi2 −hj1,

where m = R1 sinq/cosq/cosψ , h = R−R1/cosq, q is
the current value for angle of deviation of the vector ρρρ
from direction of the vector j1. So we have

cosq = ρρρ ·nA, sinq = (nA ×ρρρ) ·k1.

Here we give explanations of some details of Figure 3.
Fragment (a) corresponds to the lateral projection of the
wheel and likewise the distorted roller projection. This
latter object is shown here in a general position. Further-
more, PB is the current contact point between the roller
and the horizontal floor, n is a projection of the roller
axial line segment onto the wheel plane. We can see
easily that this projection is computed by the formula
n = mcosψ because the roller axis is turned about OAOB

by the angle ψ , see fragment (b) for the roller axial verti-
cal lateral section. Thus, we have to pass two straight line
segments from the roller center OB to reach the point PB:
(a) the segment of the roller axis of length m; (b) the seg-
ment down the vertical of length h. As we already men-
tioned above all variables needed are computed through
known variables using explicit formulae.

In case of ψ > 0, distortion exists, for both implicit
and explicit algorithms not all the length of the roller
surface generatrix is necessarily in contact. So really we
have to cut tips of rollers to provide regular simulation
process. Length of the tip to be cut we can obtain for in-
stance empirically or compute it explicitly. Indeed, one
can easily see from Figure 3 that the real roller length
should be computed by the formula

L = 2Rsinα/cosψ.

“Ideal” switching of contact takes place in this case:
exactly at the instant of contact loss for current roller a
contact immediately arises for the “next” roller in direc-
tion of the wheel rolling.

5 The Wheel Model Classes

Hierarchy

Figure 4. Contact model by stages of inheritance.

Model of the omni wheel testbench virtual prototype
is a container class including the following objects in-
stantiated: (a) disk of the wheel; (b) objects of rollers

Poster Session

DOI
10.3384/ecp15118803

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

807

Figure 5. Comparison of dynamics for the roller No. 1 central point, its velocity y-coordinate, for cases of: explicit (blue curve)
and implicit (red curve) algorithm of contact tracking.

mounted along the wheel rim; (c) objects of joints con-
necting rollers and the wheel disk; (d) objects of contacts
connecting objects of rollers and the object of the hori-
zontal floor surface; (e) model of base body as a horizon-
tal floor.

Let us analyse in more details a structure of contact
model. This model has many similarities with contact
models previously considered (Kosenko, 2005). Never-
theless important differencies exist. One of them men-
tioned above with regard to organization of the contact
class using simple and efficient construct (Kosenko and
Gerasimov, 2014). Note that in case of ψ > 0 the point of
contact creates a curve with discontinuities at instances
of rollers changes. However, this circumstance does not
prevent the process of regular simulation.

Finally, we apply rigid point contact model as part
of the simplest omni wheel model. For this we use
the base class for constraint/contact models having only
equations of Newton’s third law as a behavioral sec-
tion (Kosenko et al., 2006).

We use class of the contact tracking model on the sec-
ond stage of inheritance, see Figure 4. Cases of this class
organization have been analysed above. Coordinates of
nearest points PA and PB at contact for each pair (floor,
roller) are computed as a result for this class functional-

ity.

Class for computing all kinematical characteristics at
contact needed “works” in case of contact existence on
the next stage of inheritance. On the third stage class for
computing the reactions at contact is “turned on”. Reac-
tions are the following: (a) normal reaction; (b) tangent
force of friction; (c) torque of reactions (zero in the cur-
rent consideration though it is not difficult to compute
torque for several contact models).

To verify an approach for building up the models un-
der analysis we compare the omni wheel dynamics in
cases of implicit and explicit algorithms. The wheel per-
forms free motion (combining rotation and sliding) with
the only restriction: keep vertical alignment of the wheel
disk.

Roller No. 1 central point, its mass center, altitude
was analyzed and verified. More accurately we examine
y-coordinate of the point velocity. Both models turned
out almost identical: in the worst case we have a diver-
gence: in accelerations of order 10−8, in velocities of
order 10−7, in position of order 10−6 over the time span
being equal to 10 units of time. Results of simulation for
velocities are shown in Figure 5. Other divergencies for
the roller No. 1 central point acceleration and position at
time = 10units are shown in Figure 6 and 7 respectively.

Dynamical Model of a Vehicle with Omni Wheels: Improved and Generalized Contact Tracking Algorithm

808 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118803

Figure 6. Divergence for y-components of acceleration.

Figure 7. Divergence for y-components of position.

As expected the model with explicit contact tracking al-
gorithm is faster approximately in 1.5 times.

6 Conclusions

The following effects were found as a results of new
contact tracking algorithms applying to the omni wheel
multibody system:

1. Two contact tracking algorithms were proposed:
implicit and explicit. As expected the second al-
gorithm turned out to be faster almost in 1.5 times.
Both algorithms are simple (and efficient) even in
simpler case of rollers without any distortion.

2. In case of distorted rollers contact curve becomes
discontinuous at instants of rollers change. But sim-
ulation process maintains its regularity.

3. Both algorithms generate identical dynamics.

4. Process of the contact model design using technol-
ogy of “vertical separation” outlined above has an

evident motivation and allows a simple generaliza-
tion both for the normal force computation and for
the tangent friction force model.

7 Acknowledgement

The investigation was performed under financial support
provided by RSF, project 14-21-00068.

References

B. E. Ilon. Wheels for a course stable selfpropelling vehicle
movable in any desired direction on the ground or some
other base. Technical report, US Patents and Trademarks
office, Patent 3,876,255, 1975.

V. Kálmán. Controlled braking for omnidirectional wheels.
International Journal of Control Science and Engineering,
3(2):48–57, 2013.

I. Kosenko and K. Gerasimov. Implementation of the omni
vehicle dynamics on Modelica. In Proceedings of the 10th

International Modelica Conference, pages 311–322, March
2014.

I. I. Kosenko. Implementation of unilateral multibody dynam-
ics on Modelica. In Proceedings of the 4th International

Modelica Conference, pages 13–23, March 2005.

I. I. Kosenko, M. S. Loginova, Ya. P. Obraztsov, and M. S.
Stavrovskaya. Multibody systems dynamics: Modelica im-
plementation and bond graph representation. In Proceed-

ings of the 5th International Modelica Conference, pages
213–223, September 2006.

J. Tobolár, F. Herrmann, and T. Bünte. Object-oriented mod-
elling and control of vehicles with omni-directional wheels.
In Computational Mechanics 2009, November 2009.

Poster Session

DOI
10.3384/ecp15118803

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

809

810 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Kansei Modeling for Delight Design based on 1DCAE Concept

Koichi Ohtomi
The University of Tokyo, JAPAN, koichi.ohtomi@delight.t.u-tokyo.ac.jp

Abstract
The main task of product development is to develop a
good product at lower cost and to bring it to market in a
shorter period. Conventional computer-aided design and
computer-aided engineering (CAD/CAE) systems are
well established in this regard. However, although
upstream design is particularly important in product
development to add value and incorporate the required
functions, it is difficult to apply conventional shape-
based CAD/CAE systems to the upstream design stage
due to the lack of design information at that stage. As a
solution to this issue, we are proposing the development
of a design framework called “1DCAE”, which can be
applied to the early design stage of product development
including the conceptual and functional design phases.
The 1DCAE concept can be applied not only better
design, must design, but delight design. Here we
introduce how 1DCAE concept applies to delight design
and its core technology of kansei modeling.
Keywords: 1DCAE, delight design, kansei, modeling,

better design, must design, CAD/CAE

1 Introduction
The 1DCAE based on a simple but an essential model is
a methodology, a method and a tool to support the whole
design from the early design stage to the detail design
stage and to glance from mechanical, electrical to
software design. 1D means to capture the essence of
things including physical phenomena and to express by
simple model to be easy to understand. 1DCAE can
realize the evaluation by CAE from the upstream to
downstream design. There are three kinds of design
fields to apply 1DCAE concept. They are better design
to realize the low cost and better performance, must
design to realize the safety and security, and delight
design to get to customers’ heart. Delight design has
become more important than ever in manufacturing with
the diversification of recent customer requirement. On
the other hand, we need to model the characteristics of
kansei in delight design in addition to the conventional
physical model for better and must design. Kansei is
originally a Japanese word that refers to the sensitivity
of a human sensory organ at which sensations or
perceptions take place in response to stimuli (e.g., a
product) from the external world. Kansei includes
evoked senses, feelings, emotions, and impressions. The
word kansei has begun to be used internationally

because there is no suitable translation in English.
Figure 1 shows the image of kansei.

Figure 1: what is kansei?

Here we call the model to express the characteristics of
kansei “the kansei model”. Kansei modeling based on
1DCAE can introduce kansei into the flow of
manufacturing and provide a platform of delight design
that does not depend on intuition and experience. Kansei
model is implemented on the 1D tool based on Modelica
language. Kansei model enables quantitative evaluation
because it starts from the physical model.

2 Concept of 1DCAE
Product development starts in a conceptual design and
progresses with functional design, a layout design, a
structural design, and a manufacturing design. However,
in the early design stage of design process design
information is ambiguous. Therefore, it is difficult in the
early design stage of a design to apply conventional
design tool such as CAD/CAE. In a second half of
design process CAD/CAE will become applicable, but
in this stage, there are many design restrictions and then
flexibility of design decreases. Moreover, not only
CAD/CAE but rapid prototyping (RP) and experiment
are possible in the second half of design process.
Therefore, the design methodology/method to be
applicable from the early stage of design process is
desired.
In the matured industrial field, it is sufficient for a
design to start from a layout design and a structural
design, but in the industrial field that is strongly depends
on the voice of customer (VoC), it is required to start
from the upper stage of design process to get the VoC
before starting a detailed design.
Then, we propose the 1DCAE concept to be applicable
from the early stage of design process. “1D” doesn’t

DOI
10.3384/ecp15118811

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

811

mean one dimensional, but it means simple but essential
expression of phenomena. By applying 1DCAE, it
becomes to be able to evaluate from the upper design
stage to the lower design stage by CAE. The CAE
mentioned here means not a simulation but the original
concept of Computer-Aided Engineering.
In case of a product design by 1DCAE, the concept of
product and/or system should be expressed in functional
basis and then can be analyzed by system simulation
tool based on Modelica before creating a shape. This
process enables the totally appropriate design in the
early stage of design process. The output of 1DCAE is
the input of CAD/CAE. Figure 2 shows the design
process based on the 1DCAE concept.

Figure 2: Design process based on 1DCAE concept

The relation between 1DCAE and 3D-CAE is shown in
Figure 3. In 1DCAE, the target of a product
development is set up and a conceptual design and a
functional design are performed. By considering the
function of a product, the preliminary decision of the
design specification is carried out, and it delivers to 3D-
CAE. In 3D-CAE, a structural design and a layout
design are performed based on the specification
received from 1DCAE. 3D-CAE is a part to consider
structure, and a conventional CAD/CAE demonstrates
their power. The result of 3D-CAE is fed back to
1DCAE and performs functional verification as a
system. The 1DCAE in a broad sense is a design
framework combination of 1DCAE and 3D-CAE.

Figure 3: Relation between 1DCAE and 3D-CAE

3 1DCAE and delight design
The 1DCAE has a different configuration depending on
the purpose of design. We classify into three kinds of
design depending on the purpose. Three kinds of design
are classified according to Kano model as shown in
Figure 4.
I. Must design equivalent to commonplace quality:
Design for assurance design. Many of the trouble caused
by neglecting this design. It is not so easy to evaluate the
designers’ effort for this design, but the basics of design.
II. Better design equivalent to performance:
Because the target is so clear, it is easy to approach for
this design. On the other hand, it will fall into cost
competition eventually. The purpose of this design is to
cost minimization, time to market (TTM) minimization,
and performance maximization.
III. Delight design equivalent to attractive quality:
Design concept is the most important in this design.
Many of hit products come from this area.

Figure 4: Three kinds of design

It is crucial to produce emotional products (delight
design) in addition to must design and better design in
the future industry. Therefore we focus on the delight
design in this paper. Figure 5 shows an example of
1DCAE delight design to apply home appliance.
Conventionally, product sound design focused on
reducing the noise level. Here we propose another
aspect of product sound design to add values to products.
To capture the sound as a value rather than noise, it
requires the extraction of the potential needs of
customers on the sound. Because customer needs are
diverse, it is important to set the target in consideration
of this effect. On the other hand, there exists a design
metrics of noise level in case of noise reduction. When
we treat the sound as a value, we need to introduce new
metrics to express comfortable sound as designs can
understand. 1DCAE delight design to product sound
design is to the process to extract customer needs,
develop the metrics of sound, set the target sound, and
realize as products. Product design performed based on
the requirement derived from 1DCAE process, sound

Concept
Design

Functional
Design

Layout
Design

Structural
Design

Manufacturing
Design

0D 1D 2D 3D 4D

3D-CAD

3D-CAE
1DCAE

Starting point of design
(starts from function)

Mechanical

Mechanical
Electrical
Software

Cost
Kansei

…

Move
Support

Cool
Flow

Delight
…

Upstream design / System level optimization
Detailed design / Element level optimization

１ᾓᾒＡᾔ：ᾕῄ᾽ｃῃᾸι᾽

３ᾓ-ᾒＡᾔ：Ｓᾷａ᾿ｅ

Specification from
function to shape

Results to
evaluate function

Totally appropriate design

Individual optimized design

Starting point of design

Kansei Modeling for Delight Design based on 1DCAE Concept

812 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118811

data from prototyping mapped on the metrics of sound
to validate the performance, and finally we got the new
product to satisfy the target sound with comfortableness.
Because delight design was conducted from the early
stages of product development together with must
design and better design, there was no additional cost
and no negative impact on performance.
Delight design treats kansei. Kansei is also one of the
functions of products, but it is difficult to combine
function and structure directly. Therefore, we combine
psychological domain function (worth) with structure
via physical domain function of sound quality metrics as
shown in Figure 6. Sound quality metrics which was
created as a result of the field of psychoacoustic, and can
represent the perception about the human sensitivity to
sound as objective numerical value that was analyzed as
sound data. As shown in Figure 6, loudness, sharpness,
roughness, and fluctuation strength are often used as a
representative sound quality metrics. These metrics
enable us to express comfortable sound as a common
language. In addition, sound quality metrics will be
kansei metrics for sound, which will be described later.

Figure 5: Example of delight design based on 1DCAE

Figure 6: Combination of psychological domain with

physical domain via sound quality domain

4 Kansei modeling based on 1DCAE
We introduce the kansei modeling based on 1DCAE
concept to realize delight design. The technology to
capture the kansei is defined as the kansei modeling and
the resulting model as the kansei model. 1DCAE is done
by using the so-called 1D tool based on Modelica
language. Figure 7 shows a model image of the hair
dryer in which the left half is for the physical model and
the right half for the kansei model. Starting from the
physical model, then kansei model is built by
cooperation with the kansei database. In case of dryer,
air flow, sound, and handling are related to kansei.
Designers perform the delight design by using 1D tool
with kansei model. They can check the degree of
attainment for their ideas by calculating the attractive
metric on 1D tool. Results of delight design obtained in
this process is sent to the mechanical design and circuit
design processes to perform the tangible design.

Figure 7: Image of kansei modeling

5 Kansei modeling in case of sound design
Then, we will introduce the kansei modeling in case of
sound design. The physical model is derived by
analyzing the existing product as truly as possible
considering the physical law. Figure 8 shows the 1D
physical model of a dryer. The basic elements such as a
fan, a motor, and a heater and their related structure,
mechanism, housing, electronics, and software are
expressed by using the 1D tool software.

Figure 8: 1D physical model

Psychological domain
(Worth)

Physical domain
(Structure)

Expensive Expensive

Composed

Pleasant

Dynamic

Strong

Loudness Sharpness Roughness F.S.Sound quality domain
(Function)

Chassis MotorEnclosure
Transmission loss Sound absorbing

coefficient
Rotating speed

Fan
Configuration

Poster Session

DOI
10.3384/ecp15118811

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

813

Figure 9 shows the FS (function and Structure) map in
order to set the development goals of a dryer. The FS
map informs us the design items related to must, better,
and delight design. From the extracted delight design
items, we selected the structure to create comfortable
sound.

Figure 9: FS (Function Structure) map

The acoustic model should be added to the 1D physical
model as shown in Fig.8 as the first step of the kansei
model for sound. Figure 10 shows the 1D physical
model with acoustics.

Figure 10: 1D physical model with acoustic model

Then we build the kansei model for sound as shown in
Figure 11 according to the same procedure as shown in
Figures 5 and 6.

Figure 11: 1D kansei model for sound

Figure 12 shows the example of simulation results to
describe the sound quality metrics and FFT when a dryer
starts to operate from power off condition to low mode
and then high mode.

Figure 12: Example of simulation results

6 Future work
We aim at the delight design for kansei in general. In the
future, kansei models not only for sound quality but for
visual quality, flow quality, and touch quality will be
developed as shown in Figure 13.

Figure 13: Total image of 1D kansei model

7 Conclusion
We introduced the kansei modeling based on 1DCAE
concept. Kansei model was implemented on the 1D tool
based on Modelica language in case of sound design.
Kansei model enabled quantitative evaluation because it
started from the physical model.

Acknowledgements
This research was supported by New Energy and
Industrial Technology Development Organization
(NEDO) of Japan, and we would like to thank them for
their assistance.

Function Structure

Kansei model
(Delight design)

Performance model
(Better design)Dry & Fast

Comfortable
Structure to create comfortable sound

Structure to create pleasant breeze
Structure to create excellent grasp

Risk model
(Must design)

Structure to supply hot &
appropriate flow

Prevent injury Structure to prevent injury to ~

Kansei Modeling for Delight Design based on 1DCAE Concept

814 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118811

References
Ohtomi, K. and Hato, T., “Design Innovation Applying

1DCAE”, July, TOSHIBA REVIEW. (2012)
Ohtomi, K., Design of Worth for Customer Product

Development, What is "What's the Design"? Special Issue
of Japanese Society for the Science of Design vol.16-2
no.62, 31-38, 2009

Ohtomi, K., Hosaka, R., 2008, “Design for product sound
quality”, Internoise2008.

Ohtomi, K. and Hosaka, R., “Product Sound Design”,
September, TOSHIBA REVIEW. (2007)

Ohtomi, K., “Importance of Upstream Design in Product
Development and Its Methodologies”, January, TOSHIBA
REVIEW. (2005)

Yanagisawa, H., Murakami, T., Noguchi, S., Ohtomi, K.,
Hosaka, R., 2007, “Quantification method of diverse kansei
quality for emotional design application of product sound
design”, ASME DETC2007-34627.

Zwicker., E, 2006, “Psychoacoustics: Facts and Models”,
Springer, 3rd Edition, Springer-Verlag, New York Inc.

Poster Session

DOI
10.3384/ecp15118811

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

815

816 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

A Modelica Library Organization Method Supporting Online

Modeling and Simulation

Xiong Tifan1 Zhou Zhiming1 Wan Li1 Li Yongchao1
1CAD Center, Huazhong Univ. of Sci &Tech, China,

{xiongtf ,wanli}@hust.edu.cn, {zhouzm, liyc}@comodel.net

Abstract
Today, the trend of achieving networked collaborative
innovation and design of complex product based on
Modelica is predictable in the industrial field. However,
the existing file-based Modelica library organization
method designed for single-machine environment does
not satisfy the model management requirements for
dynamic collaborative modeling and sharing under the
network environment. Aiming at this problem, a new
organization method of Modelica library based on
database is proposed. The main principle of this
method is that the organization objects are models
rather than files. Through interacting with database
storing metadata describing models, it is available to
achieve model management based on the granularity of
single model. Finally, a network-based multi-domain
unified modeling and simulation platform is developed
on the basis of the model management architecture.

Keywords: Modelica, organization method, online

modeling and simulation

1 Introduction

In recent years, with the increasing complexity of the
products in the field of engineering, it is difficult to
construct all sub-models from different areas for one
person or one team (Zha, 2006), and separate
subsystem simulation in different fields cannot meet
the requirement of the design innovation. The process
of modeling and simulation for complex products is
moving in the direction of integrated multi-domain
modeling. Modelica, as a unified object-oriented
modeling language, can solve this problem properly
well. However, the existing Modelica softwares of
single-machine environment do not support sharing
and reuse of models, which seriously slows down the
process of product innovation. So in order to meet the
challenges of collaborative management and sharing of
models in the internet-distributed environment, it is
extremely necessary to build an online platform to
provide services for different user roles, such as one
person, one team or one enterprise, as shown in Figure
1. A variety of intelligent solutions have been proposed
to explore the network-based system.

组teamindividual

enterprise

Online service platform

Figure 1. Online service platform

Eissen et al. discussed different realization
alternatives for Web-based simulation services and
presented the prototypic implementation of a web
service which is built on the proposed W3C Web
interface stack (Eissen, 2006). This research allows for
the analysis and execution of technical models
described in the well-known Modelica modeling
language. Shi et al. presented an Internet-based
electrical engineering virtual lab (IEEVL) using
Modelica for unified modeling. It uses XML to
represent and exchange information and is only
capable of modeling and simulating for electrical
engineering domain (Shi, 2011). Mohsen et al.
constructed a web-based teaching environment,
OMWeb, which is part of the open source platform
Open-Modelica. It can be used both in engineering
courses as well as for teaching programming languages
(Mohsen, 2011). Oscar built the UN-VirtualLab, this
web platform offers a free web simulation environment
for educational purposes. Users can simulate models
that have been stored on the server though setting
parameters (Oscar, 2011). Zhang et al. researched and
developed a web platform called Proteus. This platform
is designed for education and academic research,
and provides a place where students, educators and
academic researchers can easily create and share their
models of physical systems described using Modelica
(Zhang, 2013).

However, though these research and platforms could
help us to solve some problems in a certain extent,
there exist serious obstacles. They do not break
through the traditional static unstructured organization
method of Modelica library, but just developed as

DOI
10.3384/ecp15118817

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

817

remote presentation systems using the mechanism of
compiler and solving in the single-machine
environment. The functions are too incomplete to get
models reused and shared through the internet and do
not support multi-domain collaborative online
modeling.

This paper mainly aims to propose a decoupled
structured dynamic model library organization method
supporting control on single model by combining the
database with file storage. The method adopts a way of
one file corresponding to one model, to eliminate the
coupling relationship among multiple models within a
single file. So, through managing model metadata by
database and organizing model files by file storage, it
is available to restore the stand-alone environment on
the server for the existing Modelica compiler and meet
the functional requirement of re-use and sharing under
the network environment.

2 Analysis of traditional Modelica library

organization

In the Modelica language specification, the main
compositions are consist of eight types, package,
model, type, connector, block, function, record, and
class (Fritzson,1998). In order to discuss conveniently,
here we just define two types, package and model. The
package of specification is our defined package, and
the remaining types are collectively called as model
type, because their operation and organization in the
database and file storage are same in this paper.

As shown in Figure 2, all Modelica model libraries,
both standard and private, are constructed in the form
of package.mo files. The physical file organization of
Modelica library is based on the file directory,
including folders and mo files, and the logical file
organization takes Package and Model as its objects.
Modelica complier is the core engine of a Modelica-
based multi-domain physical modeling and simulation
platform. When the compiler works, it needs to search
and analyze the referenced or inherited models of
current model, and referenced or inherited models in a
deeper level (Zhao, 2011). The model library
organization based on file directory can well support
the existing compiler’s searching and compiling
function.

As to the traditional organization of model library,
there are two methods, structured organization and
unstructured organization (Modelica Language
Specification Version 3.0). If the folder directory
contain package.mo file, the organization is structured.
In unstructured method, there is no package.mo file,
package classes and sub-classes exist in the same mo
file. For example, as shown in Figure 2, if the
Rotational library is organized by the unstructured way,
there is only a Rotational.mo file, and then it contains
all the information, including sub-models, Spring
and Damper, also including models in sub-library,

AngleSensor and SpeedSensor. A combination of two
ways is applied to the existing software in the single-
machine environment, which will lead to a situation
that one mo file contains multiple packages or multiple

models， as shown in Figure 3.

package Rotational

package Sensors

model AngleSensor

…
end AngleSensor;

model SpeedSensor

…
end SpeedSensor

end Sensors˗

model Spring

…

end Spring˗

model Damper

…

end Damper˗
end Rotational;

Rotational

Sensors

 unstructured organization structured organization

packge.mo

Spring.mo

Damper.mo

packge.mo

AngleSensor.mo

SpeedSensor.mo

Figure 2. Traditional Organization of Model Library

Mo file

Mo file

Mo file

folder

folder

package

package

model

model

model

model

package

model

model

Figure 3. Model organization based on file index

According to the functional requirements of users,
the online platform should supply the modeling service,
simulation service and model management service at
least. Modeling service provides visual modeling to
help to create basic components and models. For
completed models, users can run simulations by setting
the parameters of components through the web-based
simulation service. And the model management service
mainly enables users manage their models
conveniently, including uploading models from local
environment, sharing models, renting models, and so
on. So the current model management organization is
too extensive to satisfy these demands. It mainly
displays in two aspects:

1. Simple file directory mode. As to traditional
Modelica model libraries, there are only mo files
in the file storage, the mo files are taken as control
objects. Though the mode meets the requirements
well for the model-loading of the compiler, it is
negative to achieve the control on single model in
a unified way. To realize the sharing and control of
single model and make it easy to query and

A Modelica Library Organization Method Supporting Online Modeling and Simulation

818 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118817

manage, we need to change the organization of the
model library and organize it orderly based on its
object feature attributes, such as the model's name,
owner, creation time, release time, the release
states, etc.

2. Unstructured model organization method. There
can be coupling relationships in a single file, if the
library is organized by this method. And you may
change other models in a same file when you
change one model, which is not suitable to manage
models based on the granularity of single model.

3 Model Management Architecture

According to the analysis above, in order to achieve
granularity management of single model in the network
environment, it’s required that the organization objects
of library are models rather than files, and the feature
attributes and parameters of single model and
relationships between models, here collectively called
as metadata of models, should be stored on the server.
A relational database can help achieve this purpose.
Under this premise, in order to obtain compiler’s
support to realize the online modeling and simulation,
the single model in the matching relational database
needs to get recognition to search corresponding mo
file from a file system. So one to one mapping
relationship between database and file base is required.

As shown in Figure 4, in the B / S architecture, we
use a combination of model database and model file
base to provide data support for modeling and
simulation, users can interact with the browser to get
the modeling and simulation service and model
management service.

CLIENT SERVER

Browser

Model Management

Service

MODEL

ModelID

Modeling Service

Simulation Service

W
e

b
 S

e
rv

ice

File base

Folder

Folder

Folder

model.mo

Database

One Model

1:1

Figure 4. Model management framework

Database is used to store the basic properties
(metadata) of model and the relationships (reference,
inheritance, etc.) between the models. And file base is
organized by mo files based on file directory to support
the online compiling and simulating service. The
model management service can be achieved on the
basis of attributes of models in the database. For
example, the display and renting authority of model
could be accessed via simply changing publishing state.
If this model has been published, it can be rented and
referenced by other users to acquire re-use. Instead,

others cannot search it on the Internet. The modeling
service saves the models’ mo file in the file base and
the models’ metadata in the database. Besides, solving
results can be stored in the file base by simulation
service. In this framework, one model’s descriptive
information (metadata) in the database corresponds to
one mo file in the file base. So, the management of
model resources based on the granularity of single
model can be reached.

4 Detailed design of management

framework

The framework involves the database design, the file
base design and the dealing with the relationship
between the database and the file base. In addition,
importing the existing libraries, managing library
version and collaborative modeling are also worth
researching. We will discuss these aspects in this part.

4.1 Database design

As shown in Figure 5, we design the metadata of
model object which includes name (Name), creator
(Creator), create date (CreateDate), release date
(PublishDate), status (Status), text information (Text),
model’s parameters (Parameter), industry information
(Industry), major information (Major), model price
(Price), model description (Description) and so on. By
the designing of these attributes, any model can be
acquired, and any operation can be executed. The text
information contains four parts: icon, diagram,
information and used, which is used to displaying
models in different views. Inheritance (Extend) and
reference (Used) relations between models can be used
to searching models. Package object’s attributes
are similar to model, which is included in package.

IdId

ModelModel

NameName

CreateDateCreateDate

PublishDatePublishDate

StatusStatus

TextText

IconIcon

DiagramDiagram

InfoInfo

UsedUsed

ParameterParameter

IndustryIndustry

MajorMajor

PricePrice

DescriptionDescription

ExtendExtend

UsedUsed

IncludeIncludePackagePackage

CreatorCreator

Figure 5. Design of model object

In order to achieve structured display in the client
interface (an internet browser) and management toward

Poster Session

DOI
10.3384/ecp15118817

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

819

single model, it is necessary to use the database to
manage the model library. In accordance with the
model object, we separate sub-models’ details and
relationship from coarse-grained mo files into the
database.

The database structure is shown in Figure 6, Model
table, File table and SVG table are designed to save the
basic information, text information and svg
information (Scalable Vector Graphics, an XML-based
language describing two-dimensional vector graphics
in a graphical format for graphical modeling and
interface icons) of the fine-grained models after
initializing from the model library. And user attributes
are added to achieve the user’s management and
control on models. The Component table stores
components of all models. The Version table helps to
achieve model version management. The Industry table
and Major table can separate models into different
industries and majors. The Parameter table saves
parameter information o models. The Compile Task
table records information of compile task and
Simulation table records information of simulation task.

Model

PK ModelID

 ModelName

FK3 CreatedUserNo

 CreatedTime

 UpdatedUserNo

 UpdatedTime

 PublishedTime

 Status

FK2 IndustryID

FK1 MajorID

FK4 Icon

 Price

 Label

 Description

Version

PK VersionID

FK1 ModelID

 NewVersionID

 Remark

Parameter

PK ParamID

FK2 ModelID

 ParamName

 DefaultValue

 Value

FK1 CreatedUserID

Industry

PK IndustryID

 InterName

 LocalName

 ParentID

Major

PK MajorID

 InterName

 LocalName

 ParentID

User

PK UserID

 Password

 UserName

 Company

 Address

 Telphone

 Email

 ModelPath

File

PK FileID

FK1 ModelID

 FileName

 FileType

 FileSize

 FilePath

FK2 CreatedUserID

 CreatedTime

Md_content

PK MdContentID

FK1 ModelID

 ChildID

 ChildType

Md_ext

PK MdExtID

FK1 ModelID

 ModelType

 ExtModelID

Simulation

PK SimulationID

 SimulationName

 Status

 BeginTime

 EndTime

 ResultPath

FK2 CreatedUserID

 CreatedTime

FK1 ModelID

CompileTask

PK TaskID

 Status

 TaskType

 TaskProperty

 BeginTime

 EndTime

 CreatedTime

FK2 CreatedUserID

FK1 ModelID

SVG

PK IconID

 IconBit

Component

PK ComponentID

FK1 ModelID

 ComponentName

CreatedUserID

Figure 6. Database structure

Inheritance and reference information of models are
critical. These information are included in mo file in
the traditional organization method, and compiler can
get these information by loading the file into the
memory to have a complete model. There will be an
error for server to compile a model’s mo file if the
information is incomplete, which will lead to an
unfriendly user experience. For this reason, inheritance
relational table (Md_Content) and reference relational
table (Md_Ext) are added to store the inheritance and
reference relationship between models. When a user
loads a specific model, the server will load all the
models associated with this model from the relational
database.

Through the designing of database, one user can get
all the corresponding information of himself or herself,
including user information, models, compile tasks,
simulation tasks, and so on. The authority control can
be achieved conveniently.

4.2 File Base Design

The modified model library organization mode is
shown in Figure 7. The physical organizational mode
is still represented by folder and mo file, and also the
logical organizational mode is still organized by
package and model object. But the mapping
relationships between models and packages have been
changed. We abandon the former coupling relationship
between models or packages in mo file, by using a
single mo text to represent a single model or package.

folder

mo file package

model

1:N

1:N

1:1

1:N

1:N

Physical Organizational Mode Logical Organizational Mode

1:1

Mo file

Mo file

folder

folder

model

model

…
…

folder

folder

…
…

…
…

N

Mo filepackage

Organization of model file base

 Figure 7. Mapping between models and packages
Compared to the existing model library organization

mode, all the models separated from an original
package will be stored in a folder named by the
package’s name, and the package.mo file will be the
loading index of the compiler, which do not change the
way of loading models based on file directory. So the
existing compiler can be used in the internet-
distributed environment.

In the database, model is the basic unit of
management. And mo file is the basic organization
object in the file base. After improving organization of
Modelica library, one record of model in the database
can be matched with one mo file in the file base, as
shown in Figure 8. Then any operation to one model
through database can respond to the mo file, like
adding components, modifying parameters and creating
equations. In this way, it is easy to realize synchronous
management of database and file base in the process of
online modeling.

Model

ModelID

Database
File base

One model

Model.mo

1:1

Figure 8. The relationship between database and file base

4.3 Dealing with existing libraries

There have accumulated so many model libraries, since
the softwares in the single-machine environment, such

A Modelica Library Organization Method Supporting Online Modeling and Simulation

820 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118817

as Dymola (Dag, 2002), MWorks (Wu, 2006) and
Openmodelica (Fritzson, 2005), having been used
in machinery, electric, aerospace and other fields for
more than a decade. The network platform should
make full use of these libraries and import them to
expand the library resources, which would be
beneficial to achieving re-use, cutting costs and
shortening the cycle of product development.

For the existing libraries, there are only mo files and
unstructured coupling relationships are common. Then
research on how to split them into single-type mode,
and storing them in the database, would be crucial. The
detailed process of dealing is shown in Figure 9. After
uploading a library file, the splitter of the online
platform analyzes every mo file, splits them into lower-
level mo file one by one, until it just contains one
package or one model, and creates metadata in the
database about corresponding package or model at the
same time. By this way, the existing Modelica libraries
can be stored and reused well on the online platform.

Split top-

package.mo

Contain sub

elements?

model

Over

D
a

ta
b

a
se

F
il

e
b

a
sepackage record ... Store info

(mo,metadata …)

N

Sub elements

Y

Figure 9. Process of splitting mo file

4.4 Collaborative modeling and version

management

The version of one library is labeled as a number
separated by ‘.’, like “3.0”. When a library is created,
the version is defined as 1.0 by default. While one
library is published, a copy of this library will be added
into database and file base, whose state will be set as
published, and meanwhile, the version of original
library would be modified as 2.0, which are still
editable for creator. This published library can be
referenced by others, so the re-use of models is reached
easily.

 For one huge project, it is necessary to create a
group or team on the online platform. All members of
this group can edit this library, but different member
would get different task according to their professions,
and also they would have different authority of task.
The complex model can be implemented through
integrating sub-models of group members by a charge
leader. The progress of collaboration is as shown in
Figure 10, multi-domain collaborative modeling can be
achieved through the division of task.

Library

Package Package Package...

Project

Task Task Task...

Team

...

User User User

Figure 10. The progress of collaborative modeling

5 Application Verification

An online service platform supporting multi-domain
physical modeling and simulation in the web
environment - CoModel (http://www.comodel.net.), as
shown in Figure 11, has been researched and built
based on this organization method of Modelica library.

Figure 11. Online modeling page of CoModel

The architecture of data supporting and modeling
service of CoModel platform is shown in Figure 12.

In the collaborative visualization modeling and
simulation platform, users can interact with the
browser to get the modeling and simulation service and
model managing service. Modeling and simulation
functions are on the basis of file directory in the file
storage, which do not change the way of searching and
loading models of existing compiler, can be
implemented effectively. Solving results are also stored
in file storage, users can download them easily. Model
management can be achieved through contacting with
database and file storage. The platform builds four
kinds of libraries, including standard libraries,
individual libraries, group libraries, and public libraries.
Standard libraries are provided by Modelica
Association (http://www.modelica.org.). Individual
libraries are created by a user. They store users’ private
models and nobody can get the models’ information
except the models’ owner. Group libraries are
developed by a team, aiming at complex and
collaborative product designing. Once individual
libraries and group libraries are uploaded and

Poster Session

DOI
10.3384/ecp15118817

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

821

published on the server, they become public libraries,
and then every user in the platform can rent them to
establish their own models. All the libraries are
organized by a combination of database and file
storage. Database stores all the metadata about
information of model and package, and file storage
stores all mo files by file path. They would respond to

any operation on any model in the process of modeling.
The fact that at present, this data supporting method
based on the decoupled structured dynamic model
library organization shows good performance on the
platform, proves that this method is advanced and
effective to support online modeling and simulation.

Database

(model info)

(model relation)

(user info)

Standard lib

Individual lib

Public lib

Group lib

Result files

File server

DB server

Model management

˄mo and metadata˅

Modeling server

Compiler Queue

Solver Queue

Model.mo

Package.mo

metadata

Search models

Variable.xml

Solver.exe

Compiler nodes

solver nodes

Variable.xml

metadata

Result.msf

outpt

W
C

F
Se

rv
ic

e

File

directory

Client Web Pages Application Servers Database & File Servers

Modeling serverB
ro

w
se

r

File storage

Figure 12. The architecture of CoModel

6 Conclusion

The library organization method acting as the data
support of the web-based general multi-domain
physical modeling and simulation can effectively
achieve dynamic collaborative management and
sharing of models under the network environment. And
based on this method, the technical feasibility of the

reuse and redeveloping of model for further
development can be increased. Of course, this work is
just an initial study of the web platform supporting
online modeling and simulation, and just a
compromised way for existing compiler in stand-alone
environment. The future work involves the
development of networked compiler and improving the
efficiency and performance of online platform.

References

Modelica Association. Modelica – A Unified Object-
Oriented Language for Physical Systems Modeling
Language Specification Version 3.0.
http://www.modelica.org.

Brück Dag, et al. Dymola for multi-engineering modeling
and simulation[C]. Proceedings of Modelica, 2002.

Peter Fritzson, Vadim Engelson. Modelica – A Unified
Object-Oriented Language for System Modeling and
Simulation[J]. Lecture Notes in Computer Science,

1998:67-90. doi: 10.1007/bfb0054087.
Peter Fritzson, Peter Aronsson, Lundvall Håkan, et al. The

OpenModelica modeling, simulation, and development
environment[J]. Simulation News Europe, 2005.

Torabzadeh-Tari Mohsen, et al. OMWeb – Virtual Web-
based Remote Laboratory for Modelica in Engineering

Courses[J]. Tari, 2011. doi ˖
10.1109/ICCSN.2011.6013894.

Duarte Oscar. UN-VirtualLab: A Web simulation
environment of OpenModelica models for educational

purposes[C]. Proc 8th Modelica Conf ． Dresden ，

Germany: ，2011:

30-31．doi：10.3384/ecp11063773.

Eissen S M Z, Stein B. Realization of web-based simulation
services[J]. Computers in Industry, 2006, 57(3): 261-271.
doi: 10.1109/VPPC.2006.364294.

Zhengyin Shi, Shenglin Zhao, Shan-an Zhu. An Internet-
based electrical engineering virtual lab: Using Modelica
for unified modeling[J]. IEEE International Conference on

Communication Software & Networks, 2011:555 - 559. doi˖
10.1109/ICCSN.2011.6013894.

Yizhong Wu. Development of hybrid modeling platform for
multi-domain physical system[J]. Journal of Computer-

Aided Design & Computer Graphics, 2006, 18(1):120-124.
Xuan F. Zha, H. Du. Knowledge intensive collaborative

design modeling and support Part I: Review, distributed
models and framework. Computer in Industry, 57(1): 39-
55, 2006. doi: 10.1016/j.compind.2005.04.007.

Yanshan Zhang, et al. A knowledge-based web platform for
collaborative physical system modeling and simulation[J].
Computer Applications in Engineering Education, 2013.
doi: 10.1002/cae.21572

Jianjun Zhao, Zijun Wu. Multi-domain modeling and co-
simulation based on Modelica[J]. Computer Aided

Engineering, 2011.

A Modelica Library Organization Method Supporting Online Modeling and Simulation

822 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118817

Control Development and Modeling for Flexible DC Grids in

Modelica

Andreas Olenmark1 Jens Sloth2 Anna Johnsson3 Carl Wilhelmsson3 Jörgen Svensson4
1One Nordic AB, Sweden, andreas.olenmark@one-nordic.se.

2Gothia Power, Sweden, jens.sloth@gohiapower.com
3Modelon AB, Sweden, carl.wilhelmsson@modelon.com

4Industrial Electrical Engineering and Automation (IEA), Lund University, Sweden, jorgen.svensson@iea.lth.se

Abstract

This article presents a way of implementing different

control strategies for power electronic converters in

the Modelica modeling language. The different

control modes were fitted into flexible models that

could be interconnected in various power grid

topologies. The power grid examples were

controlled and kept stable during various load

scenarios, using the developed controlled converter

models. The work was performed using the

Modelica tool Dymola. Modelica is an equation-

based object-oriented modeling language. Electrical

components in the Electric power library (EPL) from

Modelon were used to model power electronic units,

grids and other electrical infrastructures. The

outcome of this effort was simulation results which

clearly demonstrate that the developed controllers

enable scalable and controllable DC power grids.

Keywords: HVDC, smart grids, converter control.

1 INTRODUCTION

The need for electrical energy is ever increasing and

an increasing amount of the consumed energy is

generated by renewable energy sources, even local

and small power generators. In practice this means

that the power distribution networks needs to be able

to handle more power flux scenarios than they used

to. This applies to electrical grids of all sizes

whether it is a large national grid or a smaller

household grid. The term “Smart Grids” is
commonly used for these types of more flexible

power grids. Common for these grid setups are that

several units are coupled together and they need to

be intelligently controlled to be able to keep the grid

operational in the desired voltage level. The control

units are power electronic devices e.g. converters

which can operate either on alternating current (AC)

or in direct current (DC). These units are fast enough

so that they supply sufficient grid controllability.

The converter needs to be able to transform AC from

an AC power source to a DC grid or consumer, and

vice versa. It also needs the ability to control power

flow, voltage, current etc. This work accounts for a

simulation model of flexible size which implements

these devices. By modeling these converters and

grids, different applications where these grids are

used can be designed, simulated and studied.

2 CONVERTER CONTROL

Power electronic converters are used for many

different applications such as AC/DC

transformation, DC/DC conversion, electrical drives,

etc. Semiconductor based converters features high

control bandwidth and high energy conversion

efficiency and is therefore an important component

in modern electrical grids.

2.1 THREE PHASE CONVERTER

A three phase converter consists of six transistors

(most commonly IGBT transistors), in parallel with

each transistor there is a freewheeling diode

connected (see Figure 2.1). The converter can be

divided into three transistor half-bridges where each

can be viewed as a switch. The diodes are needed to

provide a path for the inductor currents when the

transistors switch off. Pulse Width Modulation

(PWM) is used to form a switch pattern which in

turn creates a controllable output voltage. It is hence

possible to control e.g. specific machines, eliminate

harmonics when connected to the utility grid or

uninterruptable power supplies (UPS).

DOI
10.3384/ecp15118823

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

823

Figure 2.1 The electric schematic of the three phase

converter connected to a load.

2.2 ACTIVE FRONT END (3-PHASE

CONVERTER)

Usually, power electronic devices are supplied with

DC voltage, conventionally obtained by rectifying

the grid voltage using a diode or a thyristor rectifier

bridge. The drawback with these rectifiers is that

they introduce harmonic content in the current

drawn from the grid and also lower the power factor

due to its nonlinear properties. This result in a

decrease in the power transferred across the line.

An active front end (AFE) is a three phase converter

connected to the utility grid on one side and a DC

grid on the other (see Figure 2.2). It has an

inductance placed between the converter and the

grid to provide voltage boosting, as well as to filter

the currents. Capacitors are placed on the DC side to

provide energy storage and to smooth the DC

voltage. An AFE can be seen as a 4 quadrant DC/DC

Boost Converter meaning that it can boost up the DC

voltage to desired level and that it allows for power

flux in both directions through the AFE (Carlsson,

1998).

By controlling the switching of the transistors the

currents passing through the inductors are altered,

hence the output DC voltage can be controlled. At

the same time as the currents can be modulated to

eliminate harmonics and to keep the power factor

equal to one.

Figure 2.2 The AFE connected to the utility grid with

DC voltage control.

The three-phase currents are controlled by applying

the Park transformation to the currents, converting

them into dq coordinates. The active and reactive

power can then be expressed in terms of the grid

voltage and current and can be controlled separately.

{ܲ = �݁{݁ௗ௤ ∙ �ௗ௤∗} = ݁ௗ�ௗ + ݁௤�௤ܳ = ��{݁ௗ௤ ∙ �ௗ௤∗} = ݁௤�ௗ − ݁ௗ�௤ (3)

Since the grid voltage is aligned with the d-axis it

means that ݁௤ = Ͳ and by controlling �௤ to zero the

reactive power becomes zero. ܲ = �݁{ܵ} = ݁ௗ�ௗ (4)

Q = Im {ܵ} = Ͳ (5)

The power factor is defined as cos� and unity

power factor occurs when cos� = since:

 � = arctan ቀொ௉ቁ (6) ܳ = Ͳ → � = Ͳ → cos ሺͲሻ = (7)

Thus by controlling the ݀� current separately unity

power factor can be achieved. (Sanjuan, 2010)

2.3 POWER CONTROLLED AC/DC

CONVERTER

Power can also be controlled using a three phase

converter, since the transformed currents affect the

active and reactive power. Using a three-phase

converter with a structure as in Figure 2.3, the active

and reactive power can be controlled.

Control Development and Modeling for Flexible DC Grids in Modelica

824 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118823

Figure 2.3 an illustration of the implemented power

controller. The control logic implemented is a cascade

controller, the outer loop controls power and the inner

loop current.

2.4 DROOP CONTROLLED AC/DC

CONVERTER

A combination of power and voltage control is

called droop control. Droop control is in this work

used to ensure voltage stability of the internal DC

grid if, for some reason, the primary voltage source

is disconnected or malfunctioning. The errors of the

power and voltage are added together and the

quantity which deviates most from its reference is

subject of control, this can be seen in equation (8).

By adding weights to the errors the droop control is

achieved. The setup for this control strategy is

shown in Figure 2.4. ݁�−�௢��௥௢��௘௥ = ݁�_஽� ∙ � + ݁௉ ∙ �ଶ (8)

Where

{݁�_஽� = ஽ܸ�_௥௘௙ − ஽ܸ�݁௉ = ௥ܲ௘௙ − ܲ

Figure 2.4 droop control structure.

3 EXPERIMENTAL SETUP

The models of the different kinds of power

electronic converters were put together using

Modelica and Dymola. The control logic of the

converter models were made using infrastructure

from the Modelica standard library (MSL). In order

for the converter models to be flexible, to operate in

different control modes and at different power

levels, a converter component with interchangeable

control schemes was constructed. The flexible-

control converter offers the possibility to choose

between voltage, power or droop control. Depending

on which type of grid that needs to be simulated,

different power and voltage levels need to be

selected in the component. The flexible-control

converter model can easily be set up and

parametrized using records.

3.1 GRID SCENARIO SETUP

To evaluate the converter and grid models, different

scenarios were developed. E.g. a DC grid consisting

of several converters connected in parallel (Multi

Terminal Direct Current, MTDC), and nets with

only two converters connected together. The

converters were always connected with each other

Back-to-Back, regardless of the amount of devices.

In every system there had to be at least one

converter responsible for keeping a constant DC

voltage level on the DC grid. The one controlling the

DC voltage is called master terminal and all other

terminals are called slave terminals. The slave

terminals were responsible for controlling power to

the different sub units. The master terminal was the

Poster Session

DOI
10.3384/ecp15118823

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

825

one maintaining power flow balance in the DC grid

(Haileselassie, 2012).

3.2 MULTI-TERMINAL HVDC SCENARIO

The first grid examined was a MTDC grid for High

Voltage Direct Current (HVDC). In this high voltage

scenario example four multi controlled converters

were connected in parallel and an AFE controlling

the DC voltage was connected to the utility grid. The

DC voltage level was set to be 130 kV. The

converter components, intended to be connected to

different generators, e.g. hydro-power plants or

wind-power plants, were set to perform power

control. The generators and the utility grid were

represented by AC sources with 50 kV line-line

voltage, operating at 50 Hz. The total maximum

power of the generators was assumed to be 400

MW, 250 MW for the two wind-power plants and

150 MW for the hydro-power plant. The wind power

plants were set to generate full power initially and

then vary its output slowly according to a low

frequency sinusoidal reference. The output of the

larger of the two wind-power plants varied between

80-150 MW, with a frequency of 0.01 Hz. The

output of the smaller wind-power plant varied

between 60-100 MW with frequency 0.05 Hz. The

hydro-power plant generated full power and was

shut down periodically. This behavior was achieved

by using square wave as input to the power reference

of the converter connected to it. The Modelica

implementation of the grid setup can be found in

Figure 4.1.

Figure 3.1 Modelica implementation of the HVDC

grid

3.3 HOUSEHOLD WITH LOCAL POWER

PRODUCTION

The second grid topology which was studied was

developed to mimic a typical household with local

power production. Two wind turbines were

connected to the DC grid as well as a model of a

“smart” house. The wind turbines had capacity of 4

kW each. The AC distribution grid was connected to

the DC grid through an AC/DC converter. The

converter was set to control DC voltage to 1.5 kV.

The AC distribution grid was represented by an AC

source operating at 50Hz and 400 V line-line.

Additionally a solar power plant, represented by a

DC source with voltage 100 V, was connected to the

DC grid through a power controlled DC/DC

converter. The power “generated” by the solar plant

varied according to a sinusoidal between 0-2 kW.

The Dymola implementation of the grid setup can be

found in Figure 4.2.

Figure 3.2 The grid setup for the DC grid with Smart

Grid Library and Wind Power Library models

connected

4 RESULTS

4.1 MULTI-TERMINAL HVDC SCENARIO

The power-controlled AC/DC converters should

deliver the power generated by power sources to the

internal DC grid. The voltage at the internal DC-

grid/utility-grid connection point was to be kept

constant. The power generated by the power plants

was to be fed to the utility grid.

Control Development and Modeling for Flexible DC Grids in Modelica

826 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118823

Figure 4.3 The power generated by the wind power

plants fed to the internal DC grid,250MW (top) and

400 MW (bottom).

Figure 4.4 The power generated by the hydro power

plant (bottom) and the power supplied to the utility grid

(top).

Figure 4.5 the voltage at the connection point of the

DC grid to the utility grid (zoomed in bottom).

The power which was generated by “wind-power”
and fed to the internal DC grid can be found in

Figure 4.3. Figure 4.4 shows corresponding for the

hydro power plant. The limiting factor was the speed

of the power controller as visible in Figure 4.4,

where a large change in power control reference

value takes place momentarily. The power controller

responded very quickly to this change and it hence

proved adequate. Sudden changes which were made

to the hydro power plant reference proved to affect

the wind power plants. Sudden changes in power

will of course affect the current flowing through the

circuit and thus the power which had to be supplied

by the power controlled converter connected to the

wind power plants. Even though there was an

undershoot occurring the recovery was swift and the

system maintained stability.

The voltage in the connection point between the

utility and internal DC grid was kept throughout the

simulation and was not affected considerably by the

rapid changes in power flow as can be seen in Figure

4.5.

The generated power was supplied to the utility grid

as visible in Figure 4.4.

Since the resistance of transmission lines is large for

longer lines, a considerable loss in power will occur

while putting current through long transmission

lines. The losses can be minimized by raising the

voltage of the DC grid, but this will put a larger

demand on the power electronic equipment and also

add to the investment cost of this equipment

(Alaküla, 2011).

To keep the power balance the voltage of the

internal DC grid voltage should be kept constant

when changing the load characteristics and with

varying power supply. The power supplied should

be consumed by the load when load is active. The

remaining power should be fed to the AC

distribution grid. On the other hand, the AC

distribution grid supplies power when the local

generation is insufficient.

Figure 4.1 The voltage (top) of the DC grid reacting on

a sudden change in power consumption (bottom) in the

load.

Poster Session

DOI
10.3384/ecp15118823

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

827

Figure 4.2 The power supplied by the generators, in

the wind power plants and for the solar power plant

(top)

Figure 4.3 The power consumed by the load (top) and

the power supplied to/consumed from the AC

distribution grid

4.2 HOUSEHOLD WITH LOCAL ENERGY

PRODUCTION

The voltage of the DC grid could be kept at 1.5 kV

as can be seen in Figure 4.6. When the load was

changed the voltage of the DC grid undershoots, it

was however quickly brought back to the set point of

1.5 kV by the voltage controller. The largest part of

the power that was consumed by the load was

generated by the local wind and solar power plants,

see Figure 4.7 and 4.8. The excess power was fed to

the AC distribution grid as can be seen in Figure 4.8.

In the same figure it is also shown that the AC

distribution grid supplies the remaining power

consumed by the load when local production units

were unable to keep power balance.

5 CONCLUSIONS

The main purpose with the work undertaken was to

implement a scalable, flexible and controllable grid.

The term scalable implies that the grid could have

been used in many different voltage and power

levels, meaning that the grid could represent

different applications.

As seen from the results the converters and the

implemented control strategies maintains grid

voltage and power flow as expected. This shows that

the models can be interconnected and works in a

rather stressed environment. It also shows that an

arbitrary grid can be constructed and simulated using

these flexible models for system and grid analysis.

The two different grid models show the flexibility of

the constructed examples. In addition the

constructed models were tested together with

external library models such as wind power models

and energy consumers with local generation. This

demonstrates compatibility with other libraries.

The compatibility with other libraries enables a

further development of the grid models. In this

article two examples are demonstrated but these

models provides the opportunity to simulate other

scenarios. For example internal grids in vessels,

charging stations for electric vehicles, internal grids

in vehicles or the internal grid of several wind power

plants can be simulated using these flexible models.

The opportunity is given to implement more

efficient systems and to evaluate new ideas. The

models enable integration of new technologies for

renewable power generation and efficient

distribution of power. These models provide the

opportunity to simulate and, in extension, realize

smart grid implementations.

Neither switching nor thermal losses were taken into

account here. In order to get more accurate and

realistic results losses should be included in the

analysis. The EPL components used in the

construction of the models support these kinds of

losses, enabling these effects is however regarded as

future work.

NOMENCLATURE ݁⃗ௗ - d-component of the grid voltage ݁⃗௤ - q-component of the grid voltage ݁⃗ௗ௤ - Grid voltage in dq coordinates ܷௗ� - DC link voltage of the three phase converter

Control Development and Modeling for Flexible DC Grids in Modelica

828 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118823

�� - Output voltage of the three phase converter

phase a �௕ - Output voltage of the three phase converter

phase b �� - Output voltage of the three phase converter

phase c �଴ - Zero potential of the three phase converter ݑఈ - Phase voltage expressed in the real component

of the complex �, ఉݑ .vector ߚ - Phase voltage expressed in the imaginary

component of the complex �, Voltage over the load of the three phase - �ݑ .vector ߚ

converter output phase a ݑ௕ - Voltage over the load of the three phase

converter output phase b ݑ� - Voltage over the load of the three phase

converter output phase c |�⃗| - Magnitude of the maximum output voltage

vector of the three phase converter �ௗ - d-component of the dq current vector

�௤ - q-component of the dq current vector

REFERENCES
M Alaküla, P Karlsson, “Power Electronics: Devices,

Converter, Control and Applications”, Department of

Industrial Electrical Engineering and Automation.

M. Alaküla, L. Gertmar, O. Samuelsson,

”Elenergiteknik”, Lund, Sweden, Lunds Tekniska

Högskola, Department of Industrial Electrical

Engineering and Automation, 2011

A. Carlsson, “The back to back converter control and

design”, Lund, Sweden, Department of Industrial

Electrical Engineering and Automation Lund Institute of

Technology, May 1998.

T. M.Haileselassie; “Control, Dynamics and Operation of

Multi-terminal VSC-HVDC Transmission Systems”,

Norwegian University of Science and Technology

Department of Electric Power Engineering Trondheim

December 2012.

S. L. Sanjuan, “Voltage Oriented Control of Three-Phase

Boost PWM Converters Design, simulation and

implementation of a 3-phase boost battery charger”.

Department of Energy and Environment ,Division of

Electric Power Engineering CHALMERS UNIVERSITY

OF TECHNOLOGY, Göteborg, Sweden, 2010.

Poster Session

DOI
10.3384/ecp15118823

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

829

830 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Towards Enhanced Process and Tools for Aircraft Systems

Assessments during very Early Design Phase

Eric Thomas1 Olivier Thomas1 Raphael Bianconi1 Matthieu Crespo2 Julien Daumas2
1Dassault Aviation, France, {eric.thomas, olivier.thomas, raphael.bianconi}@dassault-aviation.com,

2Liebherr Aerospace, France, {matthieu.crespo, julien.daumas}@liebherr.com

Abstract

This paper deals with an improved process for early to
detailed design phases of complex Aircraft systems. It
is based on experience of Dassault Aviation
(DASSAV) and Liebherr Aerospace Toulouse (LTS) in
aircraft system design, and on works carried out within
several R&D projects, in particular within current FP7
TOICA project (Thermal Overall Integrated
Conception of Aircraft), where new process are
developed to tackle assessments of architectures
composed of many heterogeneous and interconnected
sub-systems using simulation. This new process that
will be described in this paper involves open standards
like Modelica and FMI.

Keywords: Collaborative process, System engineering,

MBSE, multi-levels simulation, PLM/SLM integration

1 Introduction

Aircraft vehicle systems are typical examples of
complex systems, composed of many sub-systems
provided by several companies, which overall
represent a set of thousands of equipments with many
interactions between them. These systems must meet
numerous performance and safety requirements.

Architectures trade-offs require different kinds of
analysis, in particular behavioural assessments. The
purpose of this paper is to define vehicle system
architectures, investigate the current performance
assessment process and propose an improved process
based on models exchanges and simulations, applicable
during preliminary design phases like RFI (Request
For Information) or RFP (Request for Proposal):

The article is structured as follows:
• Section 2 briefly presents aircraft vehicle systems

architecture and their representations.
• Section 3 analyses the current design process.
• Section 4 explains current issues in air system design

and solutions developed within the project
FP7 TOICA

• Section 5 presents solution used within the project
and the challenges ahead to get a full
and efficient set of tools and processes
for future airplane designs

The analysis will start by the description of the current
process for architectures assessments, by defining:

 The content and representation of an architecture

 The required activities to assess architectures
during the different design phases.

2 Aircraft architectures

The Aircraft systems architectures are generally
managed using tree views (product break-down ...) and
2D views as represented in fig.1. They allow to
describe the system by hierachical decomposition
within different levels (e.g. aircrafts, systems, sub-
systems ... components/devices ...) represented here as
boxes with connections between them (Internal Block
Diagram according to SysML).

Figure 1. Typical Aircraft (A/C) Logical Architecture

This global system/product is developped with many
partners for which access rights to the whole aircraft
definition, and associated models, can be restricted and
depend on roles of users (e.g. Dassault Aviation
Architects, Designers, partner designers ...) They have
only access to items they are responsible and, within
limits, to the borders and particular information of
other surrounding systems. So several systems could
appear for users as “white boxes”, with complete
access to all information, “black boxes” or as “grey
boxes”, with only access to several published
information according to user’s role. And this status
could vary along the time and the design phases.

These representations are very useful to describe the
global architecture and for the navigation within it. For
example, if the “vehicle system” node is selected in the
tree view, it is possible to get more information on
elements of this layer and to focus on sub parts to get
more detailed information, as represented in the
following figure 2.

DOI
10.3384/ecp15118831

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

831

 Figure 2. Typical Vehicle Systems Logical Architecture

In addition, for design specialists, elements of the

systems could be represented using standards (e.g.
symbols) or with not standard representations (e.g.
product images ...) to quickly identify main functions
of components. In this way, several typical sub-
systems are represented below with different technical
representations and layout. And, according to the
previous hirarchical representation, their below to
differents levels, here layers N, N+1 et N+2.

Figure 3. Sub-systems and associated components at
different levels (very simplified views)

In fact, representations of complex systems with
multiple viewpoints already exist and we can find
associated tools to manage them in association with the
digital Mock-Up (DMU) to manage them in
collaborative context with IP (Intellectual Properties).

But, because of the large amount of requirements at
aircraft level and attached to each sub-system,
assessments and trade-offs between such architectures
are not easy to perform in a flexible and efficient way.
Furthermore there are currently no assessment means
adapted for complex architectures design in particular
during preliminary phase.

Therefore, new innovative processes and associated
tools are studied and developped within the project FP7
TOICA. For this, Dassault Aviation and Liebherr
Aerospace Toulouse have choosen to rely, as much as
possible, on standards (Modelica, FMI, SysML ...). The
following paragraphs will detail analysis needs, and
process and tools developped using particularly
Modelica and FMI.

3 Analysis of the global design process

To really understand the benefits of the new process
improvements, the current design process, workflows
and involved actors will be explained.

3.1 Current Design process workflow

The figure below (fig.4) tries to illustrate workflows
and traceability links between the different tasks
carried out during the design of the vehicle systems by
Aircraft systems integrator.

Figure 4. Design process workflow

From the top level requirements (R) are established

the aircraft functional analysis which define functions
(F) to be performed by the system, and that will be
fulfilled by parts of it, sub-systems and components
(e.i. equipments …) These functions are then grouped
together to be assigned to sub-systems (L1 view in
fig.4), and then to partners as packages called “Product
Packages”. Partners will then provide solutions
implementing the required functions (L2 view).

3.1.1 Design phases

The works illustrated above vary along the time from
Preliminary system design to detailed Component
development. They are developed within next
paragraphs regarding design phases.

3.1.2 Preliminary Design

Figure 5. Process regarding Preliminary Design and
System Architecture phases (1/2)

Towards Enhanced Process and Tools for Aircraft Systems Assessments during very Early Design Phase

832 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118831

As illustrated above (fig.5), during the Preliminary
Design phase of a new Aircraft, a simplified DMU
(Digital Mock Up), often parametric, is set-up. And
from the preliminary functional requirements, the main
functions are defined.

At that point, first global architectures are defined
and evaluated. For this, consultation of potential
partners is made during the RFI (Request For
Information) and RFP (Request For Proposal) phases.

For the preliminary global architecture assessments,
different activities can be carried out:

 From the functions, it is possible to make
preliminary analysis such as a FHA (Functional
Hazard Analysis)

 From the logical architecture, overall performance,
missions, operational scenarios, it is possible to
make behavioral assessments, reliability and
availability estimates. This is currently based on
Dassault Aviation models and a few available
information provided by partners that are not yet
been selected. In this evaluation phase, there will be
a clear advantage of being able to use more detailed
models from potential partners.

 Other analyses are made in parallel, in particular to
define the aerodynamic shape of the aircraft.

3.1.3 System architecture selection

During system architecture selection, a preliminary
DMU is used to make several types of analysis like
engine burst analysis or space allocation.

Functions are refined and preliminary interfaces are
assigned among potential Product Packages through
ICD (Interface Control Documents).

3.1.4 Component specification

During Development Phase, partners have been
selected. It is now possible to ask them detailed
information on their solution(s), and models to be
evaluated in a more global and multi-systems context.

Figure 6. Process regarding Preliminary Design ad
System Architecture phases (2/2)

3.1.5 Development

During development phases a detailed DMU is set-up
and becomes the main reference to build the aircraft. It
is fixed when all detailed sub-systems are defined with
sufficient details and all Critical Design Reviews
passed.

3.2 Actors

Many actors take part to the aircraft design. They are in
charge of different roles and are allowed to see and
interact on subsets of the whole aircraft definition.
Figure 7 shows some of the actors involved in TOICA
project.

Figure 7. Actors of Dassault Aviation-LTS use case

3.3 Managing alternatives

During early phases, there is a need to manage
alternative architectures. Starting from a high level
Functional representation, sub-level functions can be
grouped together in different ways. Architects and
design experts will select different candidate
architecture according to overall needs, and solutions
provided by potential partners.

Figure 8. Process and management of alternatives

There are thus several possible Functional

representations during early phases which gather sets
of functions. But functions don’t implement all the
requirements. The Non Functional requirements like
constraints must not be forgotten, and they must be
allocated to the sets of functional requirements as
illustrated in fig.9 below.

Poster Session

DOI
10.3384/ecp15118831

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

833

Figure 9. Process and analyses for architecture
assessments

Note that openness on sub-systems requirements left
to partners should allow them to propose more
innovative solutions. But the larger the aperture is, the
greater the industrial or contractual risk may be.

3.4 Multi-systems simulation

In TOICA, one of the purposes is to investigate more
formal exchange by models to allow assessments not
only limited to sub-system, but for an overall analysis
at multi-systems level (air system, including other
boundary systems) and at aircraft level.

For this, models involved in DASSAV-LTS TOICA
use-case are defined just below.

Figure 10. RFI phase models

We can note that partner’s subsystems can be highly

scattered among the whole system.
The associated architecture could be also defined as

below in a SysML (OMG) format:

Figure 11. IBD with LTS systems in blue

4 Enhanced process definition

4.1 Introduction

4.1.1 Current process

To be able to make multi-systems assessment, the
aircraft systems integrators generally ask for models to
system designers. But when trying to build the global
simulation, problems often occur when connecting or
during simulation of the coupled models. The
interfaces don’t match as wished, simulations are much
slower as expected, models don’t publish all expected
variables… according to real needs that are not all
known at the beginning of the system development ...
The process requires more efficiency and flexibility.

4.1.2 New process

The primary purpose is to give to the potential partners
the capability to check the ability of their models to run
efficiently in the Dassault Aviation simulation
framework. An additional target is to allow quicker
design iterations between Dassault Aviation and
partners to test more solutions and potentially more
innovative ones.

In TOICA, the foreseen solution is then to provide
to potential partners a simulation framework allowing
them to carry out previous tasks. This new process of
exchange and use of interfaces values and requirements
by models in a common framework will ensure a better
flexibility, efficiency and traceability.

The Dassault Aviation framework and rules to use it
are detailed in next paragraphs.

4.2 Analyze of current design process.

The current process between Aircraft manufacturer
(Dassault Aviation) and partners (here LTS) at RFI /
RFP phase is analyzed. It is illustrated in the following
figures, as the workflow from the technical
specification provided by Dassault Aviation to partner
selection, and for two activities:

 Modification of technical specifications

 Modification of a sub-system such as an ECS
(Environmental Control System) pack

4.2.1 Modification of Technical specification

The workflow is defined in fig 12. If Aircraft
manufacturer wants to modify one or several technical
requirements, the new issue must be send to the
partners to calculate the impacts on their systems.

Partner’s results have to be sent to the Aircraft
manufacturer. Then aircraft architects analyze impacts
to decide:

 to request partners a system modification or
redesign

 to modify the specification to decrease the
impacts (e.g. a new calculation loop with partners
is needed)

Towards Enhanced Process and Tools for Aircraft Systems Assessments during very Early Design Phase

834 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118831

With this process, iterations between Aircraft
manufacturer and partners are required for any
modifications of specifications. It requires many
sequential tasks which take times to fulfill all the
technical specification items.

Figure 12. Current design workflow

4.3 Modified design process

The new workflow, sketched in fig.13, uses
exchange of models. As it will be described in the
following paragraphs, all needed models to make
systems assessments will be available at Aircraft
manufacturer and at other potential partner’s offices.
Therefore, it allows them to work in parallel.

It enables Aircraft manufacturer to partially evaluate
the impacts of these modifications on the partners
systems.

Aircraft architects will be able to quickly analyze
modification impacts and to decide:

 To request partners some system modifications or
redesign

 To adapt the specification to improve the Aircraft
without partners system modifications

Then, calculations results and specifications
modifications will be sent to partners for validation.

Therefore iterations between Aircraft manufacturer
and partners (LTS and other competitors) are reduced
and the Aircraft architect can evaluate in a shorter time
the impacts of the proposed modification. Aircraft
architect will be able to evaluate and adapt the impacts
of modifications without iterating with partners.

Figure 13. New process

Models exchanges enable partners to evaluate the

impacts of system component modification on the
aircraft before proposing it to Aircraft manufacturer.

The Integrated Air Management System (IAMS)
engineer will be able to evaluate and adapt the impacts
of IAMS components design without iterating with
Aircraft integrator.

4.4 Modification of sub-system

For a sub-system design modification (i.e. ECS
Pack) similar advantages could be pointed out as
figured out in the following fig.14 (but not detailed in
this paper).

Figure 14. Comparaison between the two process

Poster Session

DOI
10.3384/ecp15118831

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

835

Figure 15. Flat representation of a set of inter-connected systems of a traditional Aircraft Vehicle systems architecture

5 Solution to set up the new process

The purpose is to allow an easy connections between
models, checking of simulation capabilities as early as
possible (within partner’s office), before final check
and integration within Dassault Aviation global model.
The current solution is to provide model Interfaces,
boundary models, Mission and test cases to partners.
The solution has been defined and implemented as an
encrypted Modelica/Dymola library to protect IP
(Intellectual Property). It contains the different
elements described below:

Figure 16. Library content

Note that before encryption, which is specific to

Dymola, all components of the library, including
protection annotations, are standard Modelica
(currently according to Modelica Specification issue
3.3).

5.1 Components of the library

The library is mainly composed of models of missions,
sub-systems and tests to allow architectures
evaluations, and also interfaces to integrate partner’s
models. Fig. 38, at the end of the paper, shows more
details on the current library content.

The following paragraphs describe the major
elements and the philosophy of the library.

5.1.1 Principles

The library takes advantage of principles used within
the Modelica VehicleInterface library described
particularly within (M. Dempsey et al, 2006). The
VehicleInterface library, dedicated to automotive
systems and architectures, was derived by Dassault
Aviation for use with Aircraft Vehicle Systems during
ITEA2 EUROSYSLIB project. A traditional Aircraft
Vehicle systems architecture, extract from this library,
is represented in fig.15. It represents the main inter-
connected elements of such architecture as replaceable
components, contrained by predefined interface. All
components are also linked together with Simulation
Control bus in charge of propagation of information

Towards Enhanced Process and Tools for Aircraft Systems Assessments during very Early Design Phase

836 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118831

from the controlers and from the Mission and
Environement models.

At the bottom right are environment components
which contain global parameters and models that can
be used by any other components using the Modelica
inner/outer mechanims. In these parts are represented
the World and Fluid system components of the MSL,
and other components dedicated to aircraft
environment (FlightPlan, Runway, RelativeWorld …)
but also other components with global domain specific
parameters and models (ECS, Braking system, Fuel
system…) Note that contrary to the Vehicle Interface
library where all connectors are single MSL
components, the physical connectors have been
replaced by composite connectors to limit the number
of connections between sub-systems, and to allow a
better flexibility when change of interface definitions.

5.1.2 Examples of elements: Mission Scenario

Figure 17. Mission and FlightPlan component icons

The Mission component is a key element of the global
model. It provides all information about the predefined
aircraft mission scenarios. It may define dynamic
scenarios with some information varying along time as
represented in the following figures.

Figure 18. Plots of Aircraft altitude and external
stagnation temperature

It is also simple to define stationary scenario if
needed with constant outputs. Within the information
provided by the Mission components, some
information generally depend only on flight phases or
are constant along time. There are then defined within
the Mission component through graphical user
interfaces such as represented in fig.19.

Figure 19. Configuration parameters for the ECS

The Mission model is connected to the FlightPlan

component which provides all consistent information
on Aircraft properties and associated external variables
(altitude, attitude, velocity, Mach number,
Temperatures, Pressures, Humidity …) which must
often be known by models of sub-systems.

Figure 20. Part of GUI of the FlightPlan model

The mission model may recover information from

sensors or from the different sub-systems models.
Among them, Aircraft phases are modeled by a
Modelica state diagram (Modelica synchronous), such
as the one represented in the following figure.

Figure 21. Simple Flight phases model

Poster Session

DOI
10.3384/ecp15118831

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

837

5.1.3 Examples of sub-system models: cabin

The cabin and cockpit may be modeled with different
level of details. For the RFI/RFP phases, where still
few detailed information are available, some simple
models as represented below may be sufficient. In this
model, crew and passengers (Pax) areas are represented
by only big thermo-fluid volumes externally connected
to other sub-systems.

Figure 22. Simple model for Cockpit and Cabin

Heat exchanges are modeled by prescribed heat
flows according to relation that here depends only on
the number of crew members and passengers and the
different other heat sources within the volumes and
exchange with boundaries. These heat exchanges are
here defined by parameters related to aircraft altitude
(ZALT) and external static temperature (SAT). These
two input parameters are provided by the Mission
component through the simulation control bus.

Parameters can be set manually by users. Here
below is presented the graphical user interface
available for the partners, that allows them to change
parameters if needed.

Figure 23. Cabin parameters available for Partners

In fact this component is also available at Aircraft

integrator facility, with more published parameters.

5.2 Library usage

Currently, systems requirements for performance
assessment, asked to partners, are provided as textual
format.

One of the purposes of the library is to provide more
formal requirements, as models, and tests that must be
completed by partners to verify the compatibility of
their solutions with requirements. They are the
translation in models of current textual requirements.

Below are presented scenario and checks that should
help checks of partner’s systems.

5.2.1 Global scenarios assessment

Within the Tests packages, are provided tests of sub-
systems and more global models for architecture
assessments of partner sub-systems. In this case, the
ECS and BAS (Bleed Air System) are sub-systems
which should be developed by partners. BAS provides
air from engines to different direct consumers like ECS
and WAIS (Wing Anti-Icing System).

Predefined scenarios are presented in the library
Tests package, as shows in fig.24.

Figure 24. Set of models for architecture assessment

Such a predefined scenario is represented in the

following figure. This part of the global architecture is
limited to BAS and ECS that should be developed by
partners (LTS …) and to the boundary sub-systems,
provided by the Aircraft Integrator as models.

Figure 25 Architecture FX_001 focus on BAS ans ECS

Elements of the model:
 (40): Scenario (Mission) and environment

 (2): Bleed Air System (BAS)

 (3): Environmental Control System (ECS)

 (30a et 30b): Propulsion System (Engines)

 (10a et 10b): Wing Anti-Icing System (WAIS)

 (1a et 1b): Cabin and Cockpit

 (4): Scoops

 (5): Air Distribution System

 (30c): Auxiliary Power Unit (APU)

Towards Enhanced Process and Tools for Aircraft Systems Assessments during very Early Design Phase

838 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118831

Figure 26. selection among replaceable models constrainted by the predefined interface

The aim of the test cases is to allow the partner to
check the behavior of their systems integrated with
boundary sub-systems, and adjust them to comply with
requirements. The different test cases must be
delivered by the partners as part of evidence of the
right technical choices made by them.

These test cases are also useful to guaranty that
models developed by partners are able to simulate
correctly with predefined boundary models, scenario
and solver configurations. This may serve as
acceptance tests of models at partner’s offices, which
must give the same results in similar conditions at
integrator facility, before final integration.

The models of partners will be used to study the
integration of partner sub-systems within the global
architecture with the interaction with more detailed
models only available at Dassault Aviation, with other
sub-systems, or to make trade-offs between different
architectures.

Figure 27. Partners models integrated within Dassault
Aviation environment (flat view)

According to analysis needs, partners should

provide models of sub-systems with different
characteristics, in particular with:

 The integration and connection of their models to
predefined interfaces (extended from Interfaces
connectors package). See example fig.28.

 The right level of details to get the right behavior
according to the specified analysis (stationary,
dynamics …)

 The required parameters and published variables,

 A clear designation. Each model must be clearly
identified like defined in the following table to
assure models versioning and traceability.

Table 1 Set of models involved within design.

Figure 28 Example of models which inherite of the same
interface

5.2.2 Sub-systems checks

It is required to provide models as Modelica models or
FMU embedded within Modelica.

The purpose of using Modelica and FMU is to use

standards. It is then important to be able to check that
Modelica models and/or FMUs are in accordance with
the specifications. For this, Modelica Association
provides tools to check theses compliances.

It is also requested to check each model

individually, using at minimum test benches provided
in the library, as represented in the following figure.

Poster Session

DOI
10.3384/ecp15118831

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

839

Figure 29 Bounday condition for ECS model.

5.3 Aircraft systems modeling

5.3.1 Aircraft modeling specificities

Aircraft systems simulations is a very complex activity,
mainly due to the wide range of the variable
trajectories, the diversity of media and also the
complexity coming with trade-offs analysis which
require multi system simulations with multi-levels of
details.

In Table 2, are listed some physical / thermo-
dynamical variable ranges in such systems.

Table 2 Ranges for variables in fluid circuits

D
o

m
a

in

V
a

ri
a

b
le

m
in

m
a

x

C
o

m
m

e
n

t

Air System

T - 100 °C +700 °C

Thermal-

pneumatics

P 0 mbar 50 bar

H 0 % 100 %

Pneumatics
T 70K 400K

P 0 bar 600 bar

Fuel System
T

-40°C /

(-55°C)
+70°C (+120°C)

Thermal

Hydraulics
P 0 bar 6 bar

Hydraulics
T -40 °C + 125 °C

P 0 bar 500 bar

Up to recently, traditional commercial tools

generally failed to solve such mathematical models.
Companies like LTS or Dassault Aviation have then
built their own tools (respectively EOLE and FAST for
steady-state assessments of air systems) or set of
dedicated tools to tackle the problem; but with
difficulties during initialization or convergence of
solvers.

For several years, Dassault Aviation and LTS have
been working to improve the situation, and came to test
and then use Modelica for physical system and some
control system modeling; and FMI for exchange of
models with IP management. Dassault Aviation started
tests during the project ITEA2 EUROSYSLIB, which
brought some Modelica libraries applicable for aircraft
systems simulation (T. Vahlenkamp et al, 2009; F.

Casella et al, 2009). But still with some restrictions of
use, so that complementary developments has been

carried out to try to lessen limitations. Nevertheless,
after several years of improvements of models, process
and tools, it is now possible to expect being able to
make multi-system simulations. In parallel, LTS has
worked during Cleansky with TUHH and owns now
multi-level models for fluid and control systems
simulations (P. Jordan et al, 2014), and in addition
process to speed up simulation by using surrogate
models.

Figure 30 Set of Modelica libraries used at Dassault
Aviation

5.3.2 Choice of tool

The integration tool during RFI/RFP phases could be
either Dymola or V6 DBM (Dymola Behavior
Modeling, which is integration of Dymola within the
Dassault Systèmes 3DExperience platform Catia V6)
depending on the needs. Until partner selection, it is
necessary that the tool that will run the models at
partner’s office could be easily integrated within
partner IT simulation network. If the partner doesn’t
use yet Catia V6 3DExperience, Dymola seems
currently less intrusive. Even if in the future, we could
imagine that Dymola workbench could be proposed
with remote access reached through a secured network.

5.3.3 Types of models

In TOICA, one of the targets is to be able to make
architecture trade-offs as close as possible to reality.

Therefore, it involves a set of heterogeneous models
made as Modelica libraries (sometimes encrypted),
FMUs (sometimes for integration, or co-simulation)
like those represented in the following figure.

Figure 31 Set of heterogeneous models involved within
air system design (TOICA use case)

Towards Enhanced Process and Tools for Aircraft Systems Assessments during very Early Design Phase

840 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118831

Several of these models are surrogate models built
from 3D CFD or FEA simulations, which could be
embedded either in Modelica or FMU like already
done in project CSDL (E. Thomas et al, 2012).

5.3.4 Problem to tackle

The remaining problem for simulation of complex
model is to get sufficiently quick simulations to be able
to make assessments and take decision on time.

Complexity could come from heterogeneity of
models, which leads to various dynamic phenomena
coupled together. It could also come from Modelica
power which allows strong coupling of dynamic
physical model to control model with discrete or
synchronous features. Finally, it could come from
FMU allowing transformation of models as black
boxes, which is not always compliant with efficient
simulations.

But before simulation, it is required to be able to
initialize the models. The convergence of Newton
Solver during initialization is a key challenge. It is
particularly important for fluid systems which often
lead to solve complex non-linear and stiff equations,
and numerical oscillations at the beginning of the
simulation.

Several strategies have been developed, such as the
homotopy method or with some decoupling especially
during initial phase.

All these simulation issues tend to find solutions
with improvement of Modelica tools and FMU
definition. But, it will be also mandatory to be able to
check easily that models are compliant with rules or
requirements. For this current development within the
project ITEA2 MODRIO, and initiated in
EUROSYSLIB to observe models and check
requirements will help designers.

6 From early design phase to detailed phase

6.1 Introduction

As soon as partners have been selected following RFP
phase, Development phase will surge and architecture
definition will continue to grow up to detail solution
and bring them to reality. It is then mandatory to use
strong process and associated tools to manage sub-
systems and partners all together and in a consistent
way, from top requirements to solutions as illustrated
in fig.34. For these activities Dassault Aviation, like
other Aircraft integrators, uses PLM environment
(Product Lifecycle Management).

The following picture illustrates how can be
managed information from an architecture level to
another with traceability links from high level
requirements to the DMU of the whole aircraft.

Within a previous project, CSDL, the links between
requirements and simulation has been already analyzed
successfully, but still with few models. The target of

TOICA is to develop the process and tools to enable
handling of more complex systems, close to actual
aircraft systems.

 Figure 32. RFLP process and need of systems analyses

6.2 PLM Integration

In Toica, one of the investigated major topics is to
build up a so called “Architect Cockpit” to help
Architects (at Aircraft level, sub-systems levels for
managing efficiently alternatives and trade-offs in a
collaborative way). The target is in particular to build-
up and demonstrate ability to manage in a collaborative
context models with multi-levels of details for making
trade-offs between architectures, with close operational
design.

Dassault-Aviation uses for this purpose the 3D
Experience platform from Dassault-Systèmes, which
tightly integrates traditional a common 3D Digital
Mock-Up (DMU) with system engineering activities,
including simulation. In particular it allows managing
roles of users, design workplace to work within defined
teams or to share information with other partners.

The purpose of this paragraph is to show that the
process and tools described before, dedicated to
RFI/RFP phases, are fully compatible with the
Development design phase, with a progressive and
smooth integration.

The architectures hierarchy defined in fig.1 has been
reproduced in Catia Systems, with two alternatives (a
traditional alternative, and a More Electrical one). One
of the alternatives is represented in the fig.34, with
highlight of the Air sub-system.

Figure 33. Representation of the traditional Architecture

Poster Session

DOI
10.3384/ecp15118831

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

841

As illustrated below, internal models and partner
models can be attached to each sub-systems or
equipments.

Figure 34. Replaceable models attached to ECS

Associated models, with their interfaces, are

integrated within each system as represented below.

Figure 35. One of the model attached to ECS

Even quickly described above, it can be shown that

the models for early phases and development phases
are managed in the same repository:

 Dassault Aviation framework, as encrypted
Modelica/Dymola libraries, provided to partners
can be generated automatically

 Models provided by partners can be quickly added
to the models attached to sub-systems in V6
3DExperience platform, and are automatically
compatible if partners have integrated then
according to required interfaces.

It is then possible to use V6 tools 3DExperience

environment to define and manage scenarios for testing
subsystems and making trade-offs, which can be
recorded in V6 database, to be modified or replayed
further as illustrated in (fig.36).

Figure 36. Scenario within V6 3D Experience

7 Conclusions

This paper has highlighted needs for aircraft systems
design. It has also described the new process being
developed within FP7 TOICA project. It brings out
solutions to allow easier handling of complex systems
assessments in a better and more flexible way.

In the current process, the aircraft architects ask
suppliers to provide models for multi-systems
assessments into Aircraft integrator office. This
process has two drawbacks. It is difficult to assure that
models will run in integrator’s facility, and this request
can’t be currently handled efficiently during very early
phases like RFI or RFP phases.

The new process, based on model exchanges using a
Modelica framework, allow more efficiency and
flexibility. As demonstrated, the workflow for
architecture and sub-system assessment is
straightforward compared to current one. In addition, it
may more deeply imply partners in assessment success,
and may allow finding more innovative solutions by
opening up aircraft requirements.

The process and associated tools are based on
current powerful capabilities of Modelica and FMI
which continue to improve to be able to manage
heterogeneous models required for Aircraft systems
assessment.

This paper has also briefly described some elements
of the further phases to show that the new process is
fully compatible, and takes advantage of tools
associated, to development phases.

Acknowledgements

This work was partially supported by the French
government through the FP7 TOICA (Thermal
Overall Integrated Conception of Aircraft) and
ITEA2 MODRIO (Model Driven Physical Systems
Operation) projects.

References

Martin Malmheden, Jean-Baptiste Quincy, Michel Ravachol,
Eric Thomas. “CSDL - Collaborative complex system
design applied to an aircraft system”. Modelica

Conference, No 9, pp. 855–865, 2012. DOI:
10.3384/ecp12076855

Mike Dempsey, Magnus Gäfvert, Peter Harman, Christian
Kral, Martin Otter, Peter Treffinger. “Coordinated
automotive libraries for vehicle system modeling”
Modelica Conference, No 5, pp. 33–41, 2006.

Gertjan Looye. “The New DLR Flight Dynamics Library”
Modelica Conference, No 6, pp. 193-2012, 2008

Philip Jordan, Gerhard Schmitz. “A Modelica Library for
Scalable Modeling of Aircraft Environmental Control
Systems”. Modelica Conference, No 10, pp. 599–608,
2014. DOI: 10.3384/ECP14096599

Bettina Oehler. “Modeling and Simulation of Global
Thermal and Fluid Effects in an Aircraft Fuselage”.
Modelica Conference, No 4, pp. 497-506, 2005.

Towards Enhanced Process and Tools for Aircraft Systems Assessments during very Early Design Phase

842 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118831

Thorben Vahlenkamp, Stefan Wischhusen “FluidDissipation
for Applications - A Library for Modelling of Heat
Transfer and Pressure Loss in Energy Systems”. Modelica

Conference, No 7, pp. 132-141, 2009. DOI:
10.3384/ecp09430012

Francesco Casella, Hilding Elmqvist, Rüdiger Franke, Sven
Erik Mattson, Hans Olsson, Martin Otter, Michael
Sielemann “Stream Connectors – An Extension of
Modelica for Device-Oriented Modeling of Convective
Transport Phenomena”. Modelica Conference, No 7, pp.
108-121, 2009. DOI: 10.3384/ecp09430078

Francesco Casella, Rüdiger Franke, Katrin Proelss, Martin
Otter, Michael Sielemann, Michael Wetter
“Standardization of Thermo-Fluid Modeling in
Modelica.Fluid”. Modelica Conference, No 7, pp. 108-
121, 2009. DOI: 10.3384/ecp09430077

Michael Wetter “Modelica Library for Building Heating,
Ventilation and Air-Conditioning Systems”. Modelica

Conference, No 7, pp. 393-402, 2009. DOI:
10.3384/ecp09430042

Daniel Bouskela, Laurent Chastanet, Audrey Jardin,
Sandrine Loembé, Thuy Nguyen, Nancy Ruel, Raphaël
Schoenig, Eric Thomas “Modelling of System Properties
in a Modelica Framework”. Modelica Conference, No 8,
pp. 497-506, 2011. DOI: 10.3384/ecp11063579

Martin Otter, Nguyen Thuy, Daniel Bouskela, Lena Buffoni,
Hilding Elmqvist, Peter Fritzson, Alfredo Garro, Audrey
Jardin, Hans Olsson, Maxime Payelleville, Wladimir
Schamai, Eric Thomas and Andrea Tundis “Formal
Requirements Modeling for Simulation-Based
Verification”. Modelica Conference, No 11, 2015.

Websites

Modelica Association website: www.modelica.org

FMI website: https://fmi-standard.org

ITEA2 EUROSYSLIB project: www.eurosyslib.org

ITEA2 MODELISAR project: www.modelisar.com

FP7 TOICA project: http://www.toica-fp7.eu/

ITEA2 MODRIO project: www.ITEA2.org/ Modrio

OMG SysML: www.omgsysml.org

List of Acronyms / Abbreviations

Acronym /

Abbreviation
Definition

A/C Aircraft

APU Auxiliary Power Unit

BAS Bleed Air System

CAB Cabin

CAU Cold Air Unit

CPCS Cabin Pressurization Control System

DASSAV Dassault Aviation abbreviation within TOICA

DMU 3D Digital Mock-Up

ECS Environmental Control System

FHA Functional Hazard Analysis

FMI / FMU Functional Mock-Up Interface / Unit

ICD Interface Control Document

IAMS Integrated Air Management System

IP Internal Property

Acronym /

Abbreviation
Definition

LTS Liebherr Aerospace Toulouse

MSL Modelica Standard Library

Pax Passengers

PLM Product Lifecycle Management

RFI / RFP Request For Information / Proposal

WAIS Wing Anti-Ice System

Annexe

Figure 37. Library content

Poster Session

DOI
10.3384/ecp15118831

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

843

844 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Using FMI in a cloud-based Web Application for System

Simulation

Stefan Bittner Olaf Oelsner Thomas Neidhold

ITI GmbH, Germany, info@iti.de

Abstract

This paper presents a generic approach to combine cloud

computing and system simulation. It shows the benefits

of using FMI to deploy self-executing simulation units

on multiple machines. Besides managing the calcula-

tion itself, we also present a web interface for uploading,

managing and analyzing simulation models. To benefit

from available hardware resources in the cloud, an en-

gine is integrated which allows the definition of multi-

ple simulations with different parameter sets in a single

step.

Keywords: FMI, Cloud, Web, System Simulation, Param-

eter Study

1 Introduction

Simulation calculations can be very demanding for hard-

ware resources, such as computing power and disc space.

If these resources are not needed permanently, there may

be a conflict of insufficient resources to finish a project

within a certain time on the one hand, and paying too

much for resources on the other hand. Cloud computing

could be a solution here: cloud providers offer a wide

range of resources which can be allocated on demand

and used from anywhere around the globe.

However, reserving raw resources, such as a plain vir-

tual machine, and setting the simulation environment up

that is needed for a calculation can be a time consum-

ing task. Let alone additional licenses for the simulation

tools which would be necessary in order to run them on

the remote machine. Although easy to setup, remote re-

sources in the cloud are not a trivial task to deal with,

especially not for simulation engineers. Offering simu-

lation services over the web, which make use of available

cloud infrastructure, seems to be a much better approach.

The advantages and possibilities of such a service have

been presented in (Tiller, 2014). We are extending this

idea to a more generic approach: a web service based on

FMI itself instead of a specific simulation model where

the users are able to upload and share their own models

and results.

2 System Perspective

We have implemented different approaches in two

projects we are involved in, Cloud4e (Cloud4e, 2012),

funded by the Federal Ministry of Economics and Tech-

nology, and CloudFlow (CloudFlow, 2013), funded un-

der the 7th Framework Programme of the European

Commission. While in Cloud4e, a REST service

has been developed which communicates via the Open

Cloud Computing Interface (OCCI), in CloudFlow a

SOAP service is embedded in another service architec-

ture as part of workflows. Instead of explaining these

implementations in detail, which lies outside the scope

of this paper, we want to present a brief overview of the

underlying service architecture and how it works. For a

more detailed description, see (Limmer et al., 2014) and

(CloudFlow, 2013).

2.1 Architecture

The web service is consists of different services, each of

which is necessary to perform a specific task. A stor-

age service stores models and results and protects them

against unauthorized access. The calculations are run

by a calculation service which has access to the storage

in order to obtain the model, read its configuration and

write back result data. Everything is monitored by the

simulation web service. It manages models and data, au-

thorization and cloud resources. This service is the heart

of the architecture organizing everything that is neces-

sary for this service to work. Different application types,

such as web applications as well as desktop applications,

can communicate with the simulation web service to re-

quest data, upload models or submit simulation tasks to

be calculated by the underlying infrastructure.

Cloud Environment
CalculationService

Simulation Web

Service

Storage

FMU Data

Client

Web App

Desktop App

Web Server

CalculationService
Calculation Service

FMU DataFMU Data

Figure 1. Service architecture

DOI
10.3384/ecp15118845

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

845

Every component in the architecture may reside on a

different logical computer, but does not have to. For ex-

ample, the web server can be hosted on the same machine

as the simulation web service, while calculations can be

run on separate machines simultaneously or only on one

machine, one at a time. The web server shown in figure 1

provides a web interface, which serves as the front end

for the user, and is discussed in detail later on.

The future architecture might include other services

as well, for example external authentication and storage

services.

3 User Perspective

The user does not have to care about the underlying sys-

tem, with one exception: since allocated resources cost

money, it is desirable to know and control how much re-

sources are in use or will be in use. This is only one ex-

ample that shows that a stable communication between

system and user has to be established. This is realized

through a web application which is connected to the ser-

vice and provides a web platform based on HTML5 and

JavaScript. As such, it is accessible through any mod-

ern browser from any device connected to the internet.

It provides the user view and control of the simulation

service: its content and its state.

Models, Tasks, Simulations When an FMU is up-

loaded, it is embedded in a model where it serves as

the description of the simulation model. This descrip-

tion can then be used to create multiple instances of the

model called "‘tasks"’. A task contains a description

for each parameter representing a configuration of the

model. They belong to one model at any time.

For the system simulation service, a task is an exe-

cutable unit: it references an existing FMU and contains

a description of its parameters. It is used as input for the

calculation service. The results are assigned to the task

as simulations which in turn contain the corresponding

parameter and result set. Why is there a parameter con-

figuration in the task and a parameter set in the simula-

tion? They may differ, and a task may contain multiple

simulations as described later on.

Project

Model

FMU

Task

Parameter

defin ition

Simulation

Parameterset

Results

1 * 1 *

1

*

Figure 2. The FMU is embedded in a simple structure to sup-

port access management and multiple simulation results.

Projects and Users Models can be assigned to projects

in order to organize and share them. While this mecha-

nism can be used for collaborative work and project man-

agement, it is also possible to give other users restricted

access to models, for example, to the simulation results

without rights to modify the model. Possible restrictions

are shown in table 1.

Project Model

General

Create Upload

Delete Open

Delete

Contents

Add models Modify tasks

Remove models Execute tasks

Right management

Add/Remove users Modify access rights

Table 1. Access rights for projects and models which can be

granted to users and user groups

We think that implementing a reliable project and user

management adds a significant value to simulations in

the cloud. Sharing models and presenting results are true

benefits besides the use of external resources for the cal-

culations themselves. However, user and access manage-

ment is still under development.

Vision:

Simulation Expert

Modeling
Account Manager
Result Analysis

Engineer
Parameter Variation, Optimization

Project Manager

Presentation

Sales Team

Dimensioning

Upload

DS

Figure 3. Scenarios for sharing simulation models in the

cloud.

Configuring multiple Simulations The parameter

configuration of a task may contain range expressions

for one or more parameters. A range expression de-

fines more than one value for this parameter. There

are currently two options available: comma separated

list (<value>,<value>) and sequence constructor

(<startValue>:<stepSize>:<endValue>). When

multiple parameter values are defined, the simulation ser-

vice creates a parameter set for each combination, which

Using FMI in a Cloud-based Web Application for System Simulation

846 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118845

results in a vast number of simulations. Each of them is

calculated and, after that, part of the result of the corre-

sponding task.

Figure 4. Defining multiple parameters values with the result

of 200 different parameter sets.

3.1 Web Interface

The web interface, a .Net MVC web application, gives

access to the contents of the simulation service through

any modern web browser. After logging in, the user has

access to the contents and functions he is authorized to

use. The SignalR library allows for a bidirectional com-

munication between client and server, providing a user

experience similar to desktop applications. As the main

interface between user and simulation service, the web

application allows the user to manage models and tasks,

request calculations and results.

Model Management The model list shows projects

and models and allows the user to create new projects,

move models from one project to another and upload

an FMU from the local disk to create a new model. A

preview is provided for each model showing the embed-

ded image of the model and information, such as author,

date of creation and number of tasks. Each model can be

deleted and opened here.

Figure 5. Web interface: List of models and model preview.

Task Management Once opened, the model contents

are displayed in the web application. The taskbar al-

lows the user to create and delete tasks as well as start,

stop and reset the calculation state of each task. Each

task contains a parameter configuration which can be

modified as long as the task has not been executed. If

available, the model structure is displayed in the center.

Model elements can be selected to filter the list of param-

eters.

Figure 6. Web interface: Task list and parameters, interactive

image of the model in the center.

Result Analysis The result panel contains a graph

where the transient results of one or more output param-

eters are displayed. This may be a set of curves per out-

put parameter when multiple tasks are selected for result

analysis, while each of them may contain multiple simu-

lations. Such a set of results also contains a set of param-

eter configurations, one for each simulation. The range

of varying parameters can be modified using a slider con-

trol which changes the number of curves visible in the re-

sult graph. A CSV file download is available for further

analysis.

Figure 7. Web interface: result view.

4 The Role of FMI

In this scenario, two sides had to be addressed: creat-

ing a scalable service structure capable of running in a

cloud environment, and creating a web application to ac-

cess simulation parameters and results. FMI works ei-

ther way: while the XML model description can be used

to create a generic interface to access model contents,

the integrated solver can be embedded in web services

and deployed on any machine. Furthermore, there is no

restriction to the contents and size of the model as long

Poster Session

DOI
10.3384/ecp15118845

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

847

as it meets the FMI specification. No additional depen-

dencies or libraries are needed: everything is packed into

the FMU which, of course, can be downloaded and inte-

grated in other toolchains as well.

SimulationX Model

SimulationX Desktop Application Executable Model (FMU) Browser with HTML5 Front-End

SimulationX

• C-Code Export

• Definition of a Parameter Set

• Compilation

• Upload

• Access Services

• Upload

Configuration

• Download Results

Parameters Results

Executable

Model

Solver

Figure 8. FMI in the cloud: scenario using SimulationX

FMI in the Cloud To run an FMU on a machine in

the cloud, a web service had to be implemented which is

able to consume the C interface, run as a master for the

functional mockup unit and communicate over the web.

Since the simulation solver is embedded in the FMU, this

service is only an adapter between the FMU and other

web services.

Model Description and User Interface The model

description itself can be used to create a generic user in-

terface to visualize and gain access to parameters and

result variables exposed by the FMU. Different units can

be used to display/define parameter values if these units

are available in the model description. Optional contents

can be added to the FMU’s resources folder to be used

in the web interface. For example, SimulationX adds an

image and interaction map of the model.

Parameter Definition

Parameter Set

Results

FMU

Application
Simulation

Service
XML C

Figure 9. FMU between application and simulation service

5 Conclusion

This paper presents a web application using a cloud ser-

vice architecture to manage, store and perform simu-

lation calculations and their results. FMI 1.0 for Co-

Simulation is the key technology for the simulation part

of the service. It offers an easy-to-use scenario to deploy

calculations on remote machines and contains a descrip-

tion to generate a generic web interface. This allows us to

support a wide range of simulations, especially because

creating FMUs using the FMI specification is supported

by a growing community of simulation tool vendors.

There is currently still some work to be done, espe-

cially regarding user access management. For the future,

this service can be extended, for example, to combine

FMUs for online co-simulations, or integrating other ser-

vices, such as PLM services, where FMUs are integrated

together with other information to represent a product

lifecycle.

References

Cloud4e. Trusted Cloud Computing for Engineering, 2012.

URL http://www.cloud4e.de/. Funded by the Fed-

eral Ministry of Economics and Technology (BMWi).

CloudFlow. Computational Cloud Services and Workflows

for Agile Engineering, 2013. URL http://www.

eu-cloudflow.eu/. Funded under the 7th Framework

Programme of the European Commission.

S. Limmer, A. Ditter, M. Srba, S. Thomas, A. Schneider,

S. Rülke, O. Oelsner, A. Uhlig, S. Schmitz, D. Fey, and

C. Boehme. The Project Cloud4E – Cloud Solutions for

Engineers. Lecture Notes in Computer Science, 2014.

T. Neidhold, S. Bittner, and O. Oelsner. SimulationX Goes

Online – A Web Platform for Cloud-Based Simulation. In

ITI Symposium. ITI GmbH, 2014.

T. Neidhold, O.Oelsner, S. Bittner, A. Ditter, and D. Frey.

Rechnen in der Wolke. Digital Engineering, 2015.

M. Tiller. Vehicle Thermal Management – A Case Study in

Web-Based Engineering Analysis. Proceedings of the 10th

International ModelicaConference, 2014.

Using FMI in a Cloud-based Web Application for System Simulation

848 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118845

Anticipatory Shifting – Optimization of a Transmission Control

Unit for an Automatic Transmission through Advanced Driver

Assistance Systems
Salim Chaker1 Michael Folie2 Christian Kehrer1 Frank Huber2

1 ITI GmbH Dresden, Germany, {chaker,kehrer}@itisim.com

2 IPG Automotive GmbH, München, Germany {michael.folie,frank.huber}@ipg.de

Abstract

By integrating system simulation with vehicle
dynamics into real-time environments, it is possible to
simulate the physically correct behavior of vehicle
components and also adjust it to the required operating
strategies depending on external factors. Multi-physics
system simulation for realistic representations of
powertrains and their behavior combined with dynamic
driving simulation allows for optimizations of the
transmission control unit for an automatic transmission
by employing advanced driver assistance systems for
an increased efficiency through anticipatory shifting.

Realistic load cases that are based on measured data
help optimize fuel consumption and driveline
dynamics with respect to the control algorithms by
using variation calculations with variable transmission
parameters. This works also the other way around
when control algorithms are validated and optimized
quickly and free of risk as part of rapid prototyping.

Keywords: Automatic Transmission, Advanced Driver

Assistance Systems, CarMaker, SimulationX,

Modelica, FMI

1 Introduction

During the development of modern transmissions in
the automotive sector – as for any technical system –
there is a growing complexity caused by more and
more features and functionalities. In order to get
reliable test results for making a profound decision, it
is inevitable to integrate such interacting functionalities
into a virtual prototype, which has already become
common practice. Especially advanced driver
assistance systems monitoring the surrounding area
through a number of sensors to generate an
environmental model for situation-based
interpretations contribute to the growing relevance of
simulation solutions.

The more and more diverse interactions between the
many sub-systems spanning across various physical
domains, such as mechanics, electronics, hydraulics or
control engineering, can be modeled in an object-
oriented way including their dynamic effects. With a
higher efficiency in mind, these multi-physics models
are used for various scenarios during the development
and analysis of new transmissions, such as
hybridization, cylinder deactivation or the integration

of advanced driver assistance systems. The optimal
utilization of available potentials can only be achieved
by combining means of transmission tuning and
optimizing operating strategies. As a consequence,
advanced driver assistance systems are more and more
developed with the focus not only on safety aspects,
but also on the reduction of fuel consumption and on
anticipatory driving. Many functionalities and
applications are already in use or are being developed.
Tools which can perform certain tasks of engineers in a
virtual world including software development,
applications and testing are becoming increasingly
indispensable. The objective of the work presented in
this paper is to develop a virtual verification
environment for gearbox control algorithm with focus
on fuel consumption.

2 Modeling an 8-speed automatic

transmission

2.1 Modeling paradigm

For the representation of technical systems, there are a
number of modeling options available. A principle
categorization may be based on the interactions within
a model. Signal-based modeling (e.g. Matlab/Simulink,
ETAS ASCET) shows the functional correlations
based on the principles of control engineering by using
blocks with inputs and outputs. This includes the
direction of effect and thus the solution direction, i.e.
causal modeling. As real physical systems barely show
a direction of effect, it is often necessary to solve the
differential equation systems that describe the technical
system. Especially complex systems with multiple
components which are connected on a differential-
algebraic level may push single-oriented models
towards their limits.

Acausal approaches are not subject to such
limitations so that also huge systems can be modeled
intuitively. Instead of inputs and outputs, there are
connectors functioning as interfaces for flux variables
(e.g. current, inertia, force) und potential variables (e.g.
voltage, angle, distance). The overall equation system
is a result from the inner system equation of the
components and the equations from the connections
(potential variable equation, flux variable balance).
This declaratively described equation system is
symbolically transformed and solved in advance

DOI
10.3384/ecp15118849

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

849

allowing for a very time-efficient simulation. The most
prominent example for object-oriented, acausal
modeling is the Modelica language (P. Fritzson, 2004).

The major features of both signal-oriented and
object-oriented acausal modeling are listed below (tab.
1) for the respective representative Matlab/Simulink
and Modelica/SimulationX (ITI GmbH 2013). For

modeling the transmission’s control loop, object-
oriented modeling is the preferred option, while signal-
oriented modeling in Matlab/Simulink is the tool of
choice for vehicle parts related to control engineering
(engine and transmission control units, operating
strategies).

Acausal, object-oriented

modeling (Modelica/SimulationX)
Causal, signal-oriented

modeling (Matlab/Simulink)

• Direct implementation of differential-algebraic
equations to describe technical systems

• Free solution direction (acausal modeling with
differential-algebraic equations)

• Symbolic analysis and forward solution of the
equation systems (order reduction), then
numeric integration (→ minimizing the
computational effort)

• Easy creation of complex systems by connecting
them through interfaces similar to real systems

• Models with identical structure to real systems
(high model readability)

• Class structure and inheritance (high re-
usability, extendibility)

• The implementation of differential-algebraic
equations requires reformulating/rearranging
them in order to define the solution direction (or
re-modeling an inverse model if needs be)

• Numeric solution block by block, no analytic
summary or forward solution

• Time-consuming creation of complex systems
through manual solution of the involved
differential equation systems

• High level of abstraction of the real physical
system (bad model readability)

• No inheritance or class structure (bad re-
usability and extendibility)

Table 1: Comparison of modeling paradigms

2.2 Model of the 8HP transmission

The ZF 8HP is an 8-speed automatic transmission by
ZF Friedrichshafen AG. The transmission consists of
four planetary gear sets and five shift elements (three
multiple plate clutches and two brakes). Figure 1
shows the interaction between the many different
elements involved. Gears are changed by opening and
closing the shift elements. Depending on the selected
gear, the shift elements are open or closed in order to
achieve a certain transmission ratio by adapting the
distribution of force through the planetary gears. This
is handled by a transmission control unit which was
modeled in Matlab/Simulink to take advantage of the
benefits of signal-oriented modeling.

Figure 1. Transmission diagram of the ZF 8HP automatic
transmission

SimulationX is a continuous CAE solution for
acausal/object-oriented modeling, simulation and
analysis of physical effects. The tool comprises ready-
to-use model libraries for 1D and 2D mechanics, 3D
multibody systems, power transmission, hydraulics,
pneumatics, thermodynamics, electronics, electric
drives, magnetics and control engineering. The 8HP
transmission including its hydraulic actuator structure
was modeled in SimulationX with elements from the
1D rotatory mechanics library and with signal blocks
(see Fig. 2). The model received also an interface for
inputs and outputs matching those of the gearbox
modeled on the open integration and test platform
CarMaker in order to allow for a seamless integration.

Anticipatory Shifting - Optimization of a Transmission Control Unit for an Automatic Transmission through
Advanced Driver Assistance Systems

850 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118849

Figure 2. SimulationX model of ZF’s 8HP automatic
transmission.

The desired gear or sequence of gears for dynamic gear
changes can be assigned to the mechatronics module
schaltLogikVerz (see left side of Figure 2) that
implements the controls of the brakes (A, B) and the
clutches (C, D, E) of the 8HP transmission. Clutch and
brakes were modeled with elastic friction points
including signals for (de-)activating the torsional flux
between the drive components through a controller.

2.3 Model exchange via FMI

Due to the high interoperability between SimulationX
and CarMaker, it was an easy choice to go for a dual
approach combining the benefits of both tools. In order
to implement such a simulation concept, model
exchange capabilities or a coupled simulation between
the chosen tools is inevitable. This has the following
advantages:

• Platform independent availability of
component models for OEMs

• Black box models for IP protection during
model exchange between companies

• Option to use models from different modeling
environments with certain characteristics and
benefits that can improve the model quality
and simulation efficiency

• Re-usability of models regardless of the
modeling environment (FMI (Functional
Mock-up Interface) standard [3]) as well as
easy testing and validation of models

• Realization of distributed simulations for
coupled models from different domains and
for the optimal utilization of the available
resources

This principle was further promoted with the FMI
standard specified in the MODELISAR project [3].
This interface standard allows for transfers
functionalities of an entire SimulationX model in a
FMU (Functional Mock-up Unit). Other simulation
environments (e.g. CarMaker) can then instantiate the
generated FMU and can access the unit’s
functionalities through the FMI interface (FMI
Association, 2010). There are two types of the FMI

standard: FMI for model exchange and FMI for co-
simulation (see Figure 3).

Figure 3. FMI code export for model exchange and for
co-simulation.

While for FMI for model exchange, the model’s
behavior is exported as C code and entirely integrated
and simulated in the target simulation environment,
FMI for co-simulation involves two or more simulation
tools that are coupled with each other. The model’s
behavior is exported as C code together with the
solver. The generated FMU for co-simulation runs as a
slave in the target simulation environment and
exchanges the computed results at discrete
communication points with the master environment.
Between these points, the individual solvers compute
the sub-systems independently from each other.

3 Integration and test platform CarMaker
CarMaker and the related products TruckMaker and
MotorcycleMaker offer plausible models for driving
physics and driving environment as well as virtual
drivers capable of performing relevant maneuvers of
ordinary drivers, but also of test drivers. As a test
platform, CarMaker provides also maneuver
characterizations based on real driving behavior. Also
complex open and closed loop test scenarios can be
realized.

Besides vehicle and driver models, CarMaker also
includes a complete environment simulation with
streets (curves, traffic signs, traffic lights etc.), moving
traffic with near field sensors and the integration with
digital maps (e.g. ADAS-RP by HERE, Google Earth).
This creates a very realistic representation of the
desired test environment. CarMaker also allows for a
consistent implementation of the X-in-the-loop
approach (XiL) (Figure 4). The XiL method permits
early integration into the complete vehicle and
comprehensive validation of relevant system
components, be it as model, software or hardware (B.
Schick, 2013).

Poster Session

DOI
10.3384/ecp15118849

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

851

Figure 4. XiL permits early verification of systems.
CarMaker provides the necessary interfaces to integrate
all relevant components and systems into the virtual
vehicle.

As an open integration and test platform, CarMaker
offers an interface architecture tailored to the needs of
the automotive industry (Figure 5). At the click of a
button, models, software components and actual
vehicle components are integrated into so-called digital
prototypes – from the single component to integrated
systems. If necessary, individual powertrain
components, the chassis, assistance or control systems,
for instance, but also concepts of operations or display
functions can be integrated (B. Schick, 2012). The
virtual integration is the basis for the analysis of
occurring influences of the tested components and
functions on the vehicle’s behavior. Flaws in the
development process can thus be identified early on
(S.-A. Schneider, 2012).

Figure 5. Realistic interfaces with gearbox components
are necessary for an easy and continuous integration.
Additional inputs and outputs can be included.

The digital prototype systems can be verified as a
whole during virtual test driving. Such test drives can
be repeated and modified if needed, while the test
results are valid up to the physical limits. Virtual test
driving and realistic driving scenarios permit
evaluations of new developments across the entire V
model (H. Palm, 2013).

4 Driver assistance systems in the

powertrain and the gearbox

Today’s automatic transmissions must meet various
requirements, such as weight, design space and shift
comfort, but also aspects for reduced fuel consumption.
As mentioned earlier, assistance systems can register
and interpret environmental information and pass it on
as data to systems and components.

The following section focuses primarily on shift
strategies for which the mechanics module
schaltLogikVerz received additional software modules.
It demonstrates how these functionalities can be
ensured and optimized in virtual test drive scenarios.
This involved the transmission model needs to be
integrated as a SimulationX FMU with the controller
logic for the gearbox as a Simulink FMU in CarMaker.
The software for the shift strategies has access to
additional environmental information (Figure 6):

• Curvature of street curves

• Slope of the street

• Distance to the vehicle in front

CarMaker obtains the information about curvature and
slope from the navigation system via the standardized
ADASIS protocol. The distance to the vehicle in front
is determined through a radar or camera model. All
data captured through sensors are passed on to the
transmission’s software and can be processed.

Figure 6. Information captured through sensors and
passed on to the transmission’s software.

The aforementioned information can now be used for
the development of such features as:

• Avoiding gear changes in a curve or finishing
a gear change before the next curve,

• Engaging idle mode downhill to benefit from
coasting,

• Using recuperation during deceleration or
downhill to keep distance to the vehicle in
front or to charge the battery.

Anticipatory Shifting - Optimization of a Transmission Control Unit for an Automatic Transmission through
Advanced Driver Assistance Systems

852 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118849

The last two requirements are complementary. On the
one hand, the kinetic energy should be used more
effectively and the friction effects in the transmission
should be reduced to a minimum, while on the other
hand the battery should be charged through the wheel
movements. A side-effect of this is that the engine
slows down the vehicle which makes using additional
external braking redundant at times, e.g. to keep the
distance to the vehicle in front. Variation calculation
can now help find the best gear change strategies for
various slopes and distances to the vehicle in front. The
integration of the transmission’s plant model and
software can be combined into various MiL, SiL, HiL,
especially test bench, scenarios:

• MiL involves the transmission model and the
software to be integrated in CarMaker as an
FMU.

• SiL replaces the transmission’s software with
a production code which can be integrated in
CarMaker as C code or as an AUTOSAR
FMU.

• In the next step, the transmission software is
replaced with a real control unit as part of a
HiL setup.

• At the end, also the gearbox FMU is replaced
with a real gearbox on a test bench.

CarMaker remains the integral tool throughout all
development stages. The test cases created in the MiL
phase as well as the vehicle model and the
parameterization can now be used in all of the shown
phases. The generated data reflects a high degree of
reproducibility and is also suitable for testing and
improving the transmission’s software. The
transmission test bench allows for certain physical
effects to be included in the transmission model, which
in turn contributes to a higher quality of the
transmission control software.

It is then possible to also include the driver in
further analyses. He can choose from either manual
mode for overtaking maneuvers, for example, or switch
to cruise or eco mode. These options can also be
combined in several variations of different tracks and
distances to the vehicle in front. That results in a large
number of tests which can only be conducted in a
reasonable fashion through MiL or SiL scenarios due
to performance aspects. HiL and the test bench are only
employed to test load cases for current, pressure and
momentum, but also for certain limits of the defined
spaces in order to minimize the number of tests.

Finally, driver input as well as vehicle and
transmission data can be captured during the real test
drive. The driver input and the velocity are used as
input signals for the simulation in all phases in order to
be able to compare the results from the various
simulations with the actual test drive. Only a profound

model calibration can make a solid basis for variation
calculations that are true to life.

5 Summary and outlook

The combination of shorter development cycles, an
ever-growing model complexity, the level of detail and
variation as well as the vast amount of reliable analyses
to be conducted early on in the development process
poses a huge challenge to an engineer’s daily routine
nowadays. Modeling, simulating and processing input
data as well as the representation of the generated
results in a digestible way require much effort. The
object-oriented, acausal modeling approach meets the
needs of the user, and the intelligent optimization
algorithm delivers an efficient simulation. Due to the
advantage of this modeling paradigm, more and more
heterogeneous domains are combined with each other
and simulated in just one model. The simulation
performance with heterogeneous models reaches its
technical limits. The implementation of a distributed
simulation, however, through co-simulation as
described above, for example, offer an excellent
opportunity to master such challenges.

The separate integration of transmission and
software offers several benefits – e.g. the reduction of
the number of pre-defined variants or a quick way of
virtually testing new concepts. Comparing real and
simulated driving behavior creates a valid basis for
virtual test driving. As a consequence, it is now not
only possible to test and optimize safety relevant
functions early on and efficiently in a closed toolchain,
but also aspects of driving comfort and fuel
consumption.

The described concepts also allow for fuel saving
display functions in vehicles with manual
transmissions. Such could include for example „Foot
off the gas“ or „Shift to idle mode“. Other fuel saving
features could be integrated with driver assistance
sensors. Traffic sign and traffic light detection could be
used to increase efficiency for coasting and
recuperation phases. These ideas will be part of future
developments. They will also focus on other aspects of
virtual testing and the optimization of operating
strategies for hybrid and non-hybrid vehicles, such as
Car2X or car2car. After all, it is those test drives that
are difficult or even impossible to conduct in real life
that are the driving factor in the field of virtual
validation.

References

 P. Fritzson. Principles of Object-Oriented Modeling and
Simulation with Modelica No 2.1, 2004.

ITI GmbH. SimulationX User Manual, Dresden 2013.
FMI Association. Functional Mock-up Interface,

MODELISAR (070006), 2010.
B. Schick. Mission V-Process Enhancement by Integrated

Vehicle Performance Evaluation within an Entire X-
in-the-Loop Process, Keynote SIAT ARAI, 2013.

Poster Session

DOI
10.3384/ecp15118849

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

853

B. Schick, V. Leonhard u. S. Lange. Vorausschauendes
Energiemanagement im virtuellen Fahrversuch. ATZ
No 4: 328 – 333, 2012.

S.-A. Schneider, B. Schick, H. Palm. Virtualization,
Integration, and Simulation in the Context of Vehicle
Systems Engineering, embedded world 2012, 2012.

H. Palm, J. Holzmann, A.-S. Schneider, H.-M. Koegeler.Die
Zukunft im Fahrzeugentwurf, Systems-Engineering-
Basierte Optimierung, ATZ No 6: 512– 517, 2013.

Anticipatory Shifting - Optimization of a Transmission Control Unit for an Automatic Transmission through
Advanced Driver Assistance Systems

854 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118849

Simulation of distributed energy storage in the residential sector

and potential integration of gas based renewable energy

technologies using Modelica

Praseeth Prabhakaran Wolfgang Koeppel Frank Graf

German Technical and Scientific Association of Gas and Water (DVGW) Research station, Engler-Bunte Institut,

Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany, prabhakaran@dvgw-ebi.de

Abstract

In-order to analyse the distributed supply and storage

of energy in decentralised clusters, Modelica has been

used to model buildings with micro Combined Heat and

Power (µ-CHP) systems as their primary heat energy

source. The classification of the buildings involve gen-

eralising their size based attributes. Therefore, different

buildings, appropriate µ-CHP systems used inside them,

the components for heat and electrical energy storage as

well as associated control systems are modelled. The

output power of µ-CHP systems and the dimensions of

the storage units are chosen corresponding to the build-

ing size to account for space heating, warm water de-

mand and electrical energy storage requirements. The

control strategy used is heat prioritised where the power

generated is either used in-house or fed back into the

grid. Following the modelling of components, decen-

tralised storage potential is analysed using distributed

Power-to-Heat (PtH) as a storage strategy. To store

the electrical energy locally, battery models are inte-

grated with a power interface system. As an initial part

of analysing distributed storage potential, various house

types with µ-CHP units are simulated with measured

weather dependent boundary conditions. Subsequently,

potential integration of distributed storage into a larger

storage strategy involving the electrical grid and the gas

grid is discussed where the µ-CHP units could act as an

interface enabling a symbiotic relationship between the

power grid and the gas grid. Keywords: micro CHP,

Energy storage, Power to Heat, Building simulation

1 Introduction

Studies regarding the implementation of smart energy

systems based on decentralised production and con-

sumption of energy show that new technologies like Mi-

cro Combined Heat and Power (µ-CHP) hold great po-

tential. From the studies conducted in Germany, it is

evident that the heat demand alone accounts for almost

1

Figure 1. Energy usage in German Houses. Translated

from (Krause, 2011)

78% of the total energy costs (Figure 1). Experimen-

tal studies regarding the implementation of µ-CHPs in

residential clusters have established test subjects having

high energy conversion efficiencies from 80% (Ren and

Gao, 2010) up to 90% (VDI, 2013) and reduction in CO2

emissions up to 42.5% (VDI, 2013). µ-CHP implemen-

tation studies done in Japan (Aki, 2007) also concluded

that such systems are penetrating rapidly into the main-

stream households and that it would have a positive sta-

bilising effect on the electricity grid. Further, in com-

bination with heat storage, they also provide cost effi-

cient means of storing surplus energy from the grid lo-

cally (the surplus energy has to be first distributed). Dis-

tributed storage also involves analysis of various scenar-

ios like peak energy supply and demand, duration of the

day when the grid has surplus energy, the proportion in

which it needs to be shared to various households and

finally the methods of decentralised storage itself. Fur-

ther, to analyse buildings as clusters at the regional level,

not only should different buildings be incorporated into

the model but also must the analysis focus on the perfor-

DOI
10.3384/ecp15118855

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

855

mance of different combinations of individual buildings

when µ-CHP units are used as their primary heat source.

The dynamic simulation of a total system (Figure 2) con-

sisting of the gas grid, the power grid and the residential

sector is essential to analyse the time dependant energy

demand and supply behaviour of all the individual com-

ponents. The development of relevant control systems on

the other hand could control the interaction between the

components which is important for the ground level im-

plementation of such systems. A preliminary assumption

could also be made that such storage methods would re-

quire lesser infrastructure and construction investment as

most of the components are already constructed. How-

ever it needs to be further studied. This requires simu-

Figure 2. Concept diagram of distributed storage strategy

lations involving houses with µ-CHPs, their respective

control systems and additional components. To analyse

the buildings as a cluster, other parameters like geometric

attributes of the buildings, details regarding the building

materials and the energy usage patterns of the inhabitants

also need to be analysed. Various models for calcula-

tion and simulation have already been suggested. The

ESP-r model (Beausoleil-Morrison et al., 2012) presents

an insight into the use of µ-CHP co-generation system

combined with a storage unit in the household sector.

In Modelica, µ-CHPs have been analysed in individual

buildings in the residential sector with heat controlled

and power controlled techniques (Stinner and Mueller,

2012). Further, libraries like the Modelica Buildings Li-

brary (Wetter, 2009) are available to analyse various sys-

tems possible in individual buildings using components

for air based and water based heating systems, airflow

controls and room to surrounding heat transfer models.

The focus of this study however is not the in-depth anal-

ysis of the individual components themselves but how

well the different aspects could be synchronised into a

distributed storage strategy.

2 Modelling

In this study, modelling involves four steps as detailed

below:

• Modelling the residential buildings

• Modelling the µ-CHP systems used inside the resi-

dential buildings

• Modelling the various auxiliary components and

control systems

• Categorising buildings and re-dimensioning the

components used in them according to their energy

demands to develop a storage strategy

An example of a house system is depicted in Figure 3.

Here, the µ-CHP is the main heat production unit and

from it, the heated water is transported to the tank where

it is stored. The stored water is responsible for both

space heating as well as satisfying the warm water de-

mand. The space heating system includes the tank, the

radiator and the pump in closed cycle while the warm

water system is in open cycle where water is taken from

the storage tank for tasks like showering or washing and

the tank is later replenished to compensate for the water

taken. The total warm water requirement per day is esti-

mated for each household and a single tank is used. This

means that the tanks used are over-dimensioned to ac-

commodate enough water for satisfying both space heat-

ing as well as warm water requirements.

Figure 3. Screen shot of system model in Dymola.

2.1 Modelling the residential buildings

In the modelling of the residential buildings (Figure 4),

when assumed that the hottest temperature is that of the

heater surface and the coldest is the environmental tem-

perature outside, heat is transferred from the heater to the

Simulation of Distributed Energy Storage in the Residential Sector and Potential Integration of Gas-based
Renewable Energy Technologies using Modelica

856 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118855

room and is then lost to the outside atmosphere through

the walls. Here, either one or multiple walls may face

the outside environment which is also taken into account

while modelling the various house types. However, due

to the complexities involved in the integration of various

heating and ventilation subsystems and due to the fact

that the focus of the study is more towards large scale

distributed storage, detailed HVAC models like (Wetter,

2009) are not used. The flow control systems includ-

ing the valves, tubes and heat exchanger models are ei-

ther directly used from the Thermopower library (Casella

and Leva, 2003) or modified from it. The modifications

mostly lie in the calculation of the overall heat trans-

fer coefficients. The heat transfer coefficients are cal-

culated using the Nusselt number correlations for spe-

cialised cases as mentioned in the VDI Heat Atlas (VDI,

2010).

2.2 Heat Transfer

Heat is transferred from the surrounding to the house

through the house walls, doors and windows in the di-

rection of decreasing temperature. A room is concep-

tualised as having 6 wall surfaces each modelled with

separate boundary conditions depending on the layout of

the room. Additionally, there are doors, windows and

openings. The geometry of all solid surfaces are de-

fined using their respective areas and thickness values.

Figure 4 shows the heat transfer through one such wall

Figure 4. Concept of heat transfer used in building modelling

surface. As it depends on various factors like radiation,

use of forced convection ventilation systems and the arbi-

trary opening and closing of doors and windows, the heat

transfer correlations are difficult to be accurately calcu-

lated by incorporating all details. Therefore, the over-

all heat transfer coefficient used is taken directly from

experimental studies (Causone et al., 2009) and (Defra-

eye et al., 2011) where the thermal properties of build-

ings were measured with and without furniture in nor-

mal usage conditions. This simplification also reduces

the computing effort involved in calculating the individ-

ual contributions of various small heat sources. Arbi-

trary opening and closing of doors and windows is also

accounted for. Here, the flow heat transfer is coupled

with a Boolean signal which is active only as long as the

doors or windows are open and the daily time of win-

dow and door opening and closing times are given as a

time averaged value that repeats periodically during the

simulation.

2.3 Modelling the µ-CHP systems

The µ-CHP unit is modelled using a heat exchanger

concept. This assumes heat recovery from the µ-CHP

system without modelling the combustion or working-

cycle related details (or detailed electrochemical mod-

elling in case of a fuel cell). This means that in con-

trast to the building models, modelling the µ-CHP unit

involves leaving out certain geometric as well as perfor-

mance related parameters. The simplified model how-

ever is validated using the in house lab facilities. Heat

production is already assumed in the µ-CHP systems and

only the heat recovery is modelled. In the µ-CHP unit,

the power production is calculated directly using manu-

facturer provided efficiency equations without modelling

associated components like generators or circuits. In this

study, all µ-CHP units used are internal combustion en-

gines based on the Otto Cycle as they were validated.

2.3.1 Validation and categorisation of the CHP

Model

For the validation of the µ-CHP models, the GasPlus-

Lab in Karlsruhe is used which is an in-house facility

for experimenting on real time µ-CHP units. In-order to

validate the simulation results, an experiment was car-

ried out using a µ-CHP unit having similar parameters

under the same initial and boundary conditions as in the

simulation. The inlet flow rate of water into the µ-CHP

heat recovery unit, the outlet flow rate as well as the in-

let and outlet temperatures were measured in the experi-

ment. The same procedure was imitated in the simulation

model. All the geometric parameters that were possi-

ble to be measured in the experimental model were com-

pared to the ones in the mathematical model and the rest

were either assumed from manufacturer specifications or

back calculated. The dynamic results of the test set-up

as well as the simulation results were compared to val-

idate the model (Figure 5). It has to be noted that due

to the limitations of measuring equipment, the measure-

ment intervals chosen were different from intervals used

in the simulation. Therefore, the values missed in be-

tween were interpolated. Still, the deviation of the sim-

ulation results from the measured values stay within a

range of +/- 3 degC. This deviation may be attributed to

the simplification of geometry in the mathematical model

Poster Session

DOI
10.3384/ecp15118855

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

857

Figure 5. Measured CHP output fluid temperature for both the

experimental and the simulation model.

or the use of simpler heat transfer coefficients.

3 Control system

One of the important aspects of this study has been the

development of a control system that not only satisfies

the heating requirements of the building which includes

both space heating as well as warm water demand but

also helps in the distributed storage of energy. The

main challenge encountered in designing the control sys-

tem was that all the following parameters defined below

needed to be controlled simultaneously:

• Heating requirements of the room

• Warm water requirements of the room

• Storage of surplus electrical energy as heat

• Management of locally produced electrical energy

(From µ-CHP)

As the requirements for each of the above mentioned as-

pects were different, a central system to control all the

factors simultaneously could not be used. Instead, three

separate control systems were developed for heating re-

quirements, storage requirements and heat-electricity in-

terface respectively.

3.1 Heat management strategy

Heat management essentially involves controlling both

the space heating as well as hot water demand of the

household. In the models used in this study, a single cen-

tral tank is used for both. Two separate control systems

are used for heat management:

• Hysteresis controller which switches the µ-CHP on

and off to maintain the tank temperature levels.

• A continuous PID controller that controls the fluid

flow rate into the radiator in-order to maintain a

constant room temperature.

Figure 6. Hysteresis controller (top figure) switching on the

main CHP unit (middle figure) with periodical working of the

additional heat boiler (bottom figure).

Figure 6 shows the hysteresis controller that works be-

tween two temperature levels. For the fluid inside the

tank, the upper cut-off and the lower cut-off limit tem-

peratures are set initially and the hysteresis controller

switches the µ-CHP on when the lower limit has been

crossed and switches it off when the upper limit has been

breached. Perfect mixing and a single uniform temper-

ature is assumed for the fluid in the tank. It is to be

noted here that the use of surplus power to heat boil-

ers may cause the tank temperature to rise beyond the

control value. (The additional boiler switches off how-

ever below the safety limit for fluid temperature inside

the tank). Warm water demand per household per day is

estimated from statistical data. From the main tank, the

quantity of hot water corresponding to this heat demand

is periodically released to a sink for the entire simulation

period. The room temperature control uses a different

approach. Here, the focus is to keep the room tempera-

ture constant at 18 deg C independent of outside weather

fluctuations. This means that for space heating, contin-

uous control is necessary. Therefore, a PID controller is

used to control the inlet fluid flow into the radiator. Fig-

ure 7 shows the implementation of continuous control.

When the temperature outside the room falls, heat is lost

through the walls to the surroundings thereby lowering

the room temperature. The PID controller then increases

the inlet mass flow rate of hot fluid into the radiator till

the room temperature gets back to the desired value.

Simulation of Distributed Energy Storage in the Residential Sector and Potential Integration of Gas-based
Renewable Energy Technologies using Modelica

858 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118855

Figure 7. PID Controller flow regulation (middle figure) and

the room temperature maintained as a result (bottom figure).

3.2 Power management strategy

As a heat prioritised strategy is used in this system,

power management involves analysing scenarios where

power produced in the µ-CHP system could be used di-

rectly or stored whenever it is available. The battery

Figure 8. Charging and discharging cycle of battery.

model is a modified version of the energy storage model

(Einhorn et al., 2011) . An automated control system has

not been implemented here which means that the control

is based on a set of pre defined rules (defined below):

• The µ-CHP produces power and the battery needs

to be charged

• The µ-CHP does not produce power but the battery

needs to be charged

• The µ-CHP produces power but the battery is also

full and in discharge mode

• The µ-CHP is off and the battery is full and in dis-

charge mode

It is assumed that one of the above situations is present

at any time during the simulation. Rules are defined sep-

arately for all the four cases and a summary is explained

in Table 1. Figure 9 depicts the screen-shot of the elec-

tricity management system. A detailed dynamic model

Figure 9. Screen-shot of the power interface system

incorporating all the household appliances has not been

implemented for electricity management. The average

electrical load for each household is calculated using a

time averaged constant value based on experimental data

and it is given as an input.

Table 1. Power management scenarios situation and reac-

tion. C:CHP power production Boolean, B:Battery Charging

Boolean

Situation Reaction

C1B1 Battery charged with CHP power

C1B0 Power returned to the grid

C0B1 Battery charged from main supply

C0B0 House supplied by battery discharge

4 Energy distribution and storage us-

ing power to heat conversions

The concept of distributed power to heat has been de-

picted in Figure 10. In the first step, surplus energy at

the grid level is proportioned dynamically and in real

time based on the individual energy requirements of each

house type (and also the number of houses in each type).

Poster Session

DOI
10.3384/ecp15118855

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

859

Subsequently, the individual proportions of distributed

energy are stored locally using power to heat conver-

sions. Finally, when the de-central units also have sur-

plus power due to the working of the µ-CHP systems in

heat prioritised mode, the surplus energy produced lo-

cally is either returned to the grid or used in other forms

of storage (when both the grid and the houses have sur-

plus energy).

Figure 10. Concept of distributed energy sharing, localised

storage and surplus energy return using house clusters (types

H1 to H5).

4.1 Power to heat systems

As power to heat conversions are used for energy storage

in individual houses, apart from the main µ-CHP unit, an

additional boiler is also integrated into the system which

works only when the main grid has surplus power. To

analyse power to heat systems, it is assumed that a part of

the surplus energy available in the grid has already been

correctly proportioned and transmitted to the house. The

storage tank is designed to store heat both from the µ-

CHP unit and the surplus energy heater simultaneously.

Figure 11 explains the concept further. Here, the dura-

tion of µ-CHP operation is controlled using the hystere-

sis controller but additional heat energy is stored when-

ever it is available as long as the safety limit temperature

of the systems are not breached (in this particular study, a

boolean pulse was used to denote the availability of sur-

plus grid energy at regular daily periodic intervals). As a

result, the number of times the µ-CHP unit has to switch

on daily is also reduced. This increases the overall life

of the µ-CHP unit which is an important justification for

its purchase initially. The experience from real life tests

conducted at the GasPlusLab in Karlsruhe indicate that

intermittent switching on and off of µ-CHP units is not

desirable as it may lead to higher repair and maintenance

costs. Additionally, in a grid connected scenario where

µ-CHP units are operated part time and other renewable

energy sources are used when they in turn are cheaper

to produce, it is is also not necessary to operate the de-

central units all the time if an overall optimised operation

is desired.

Figure 11. Simultaneous switch on of extra boiler and main

mCHP unit for power to heat storage.

5 First results: Simulation of the

household types

For decentralised storage systems, the accurate real time

distribution of surplus energy in the grid also involves the

accurate real time estimation of the demand arising from

various households. To develop a decentralised storage

strategy, two possible scenarios are analysed in the sim-

ulation of houses with µ-CHP systems:

1. Simulation of houses with µ-CHP systems using an

additional heater with on/off control for surplus en-

ergy storage

2. Simulation using only µ-CHP systems that could

be operated dynamically between part load and full

load mode depending on storage requirements

5.1 Test case 1: Simulation of house types us-

ing µ-CHP systems with additional boiler

The initial set of simulations were carried out for a clus-

ter with all the five household types. All the household

types were given temperature boundary conditions based

Simulation of Distributed Energy Storage in the Residential Sector and Potential Integration of Gas-based
Renewable Energy Technologies using Modelica

860 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118855

Table 2. Categorisation of building types

House name H1 H2 H3 H4 H5

No: Inhabitants 2 3 4 5 7

Floor Area [m2] 110 160 320 430 900

on measured weather data available for Karlsruhe. The

thickness of the insulation materials and the materials

used for construction (doors, windows, walls and insu-

lation) were kept uniform for all the house types. This

means that only the dimensions of the different house

types differ and they are defined in Table 2. The control

systems are the same as described in earlier sections. The

simulation is done for a year with location based mea-

sured weather data (The dynamic weather fluctuations

were incorporated using temperature boundary condi-

tions, see Figure 12). Figure 13 shows the yearly dy-

namic output of the respective in-house radiators when a

constant temperature is maintained in the room. The dy-

Figure 12. Measured temperature at hourly intervals between

August 2013 and 2014.

namic estimation of the heat load defined in Figure 13 is

satisfied using heat recovery from a CHP system. This

dynamic estimation of the house energy load is per-

formed only as a capability demonstration. The results

could be made more accurate if more details regarding

construction materials of the actual buildings, the energy

usage behaviour of the inhabitants, the actual geometries

of the buildings, the number of buildings in each type

and location based weather data are incorporated into the

simulation.

5.2 Test case 2: Simulation part-load capable

µ-CHP systems

The dynamic operation of the µ-CHP system between

part load and full load depending on heating and stor-

Figure 13. The variation of heating load among different types

of houses.

age requirements is also a possibility in the future. Al-

though presently available residential µ-CHP systems do

not have such a capability, in the future, if such systems

are available, it would offer the option to control the

entire decentralised storage system dynamically. Such

systems also offer advantages in buildings with multi-

ple families and multiple users with different energy us-

age patterns as real-time increase or decrease of output

would be possible according to the varying load. For this

reason, a conceptual model is also created using a µ-

CHP system that could dynamically work between part

load and full load. This is accomplished by replacing the

on-off switch of the µ-CHP system using a continuous

PID controller. The initial results of simulations involv-

ing part load operation is depicted in Figure 14.

Figure 14. Dynamic Part load operation of CHP units showing

variation in power production. (TGB Indicates buildings using

part load capable µ-CHP systems)

Poster Session

DOI
10.3384/ecp15118855

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

861

6 Future and prognosis

As shown in Figure 2, the availability of heat storage

tanks in residential applications as well as batteries for

electrical storage could be used for short term and lo-

calised storage of either heat, electricity or both. But a

larger strategy involving the gas grid and the power grid

could offer other potential advantages like integration of

different renewable energy sources and fewer infrastruc-

ture requirements.

Figure 15. Planned future synchronisation between the elec-

trical and gas networks.

Integration of other renewable technologies

One possibility of implementing the distributed surplus
energy storage is by real time distribution of energy us-
ing the power grid and localised storage (PowertoHeat
or Batteries). However, there is also another possibility
for local energy production which could potentially be
largely (or even completely) independent of the power
grid. This requires new technologies like Power to Gas
(PtG) systems (Jentsch, 2015) that initially convert sur-
plus power to H2 and inject it directly into the gas-grid as
long as the procedures involved comply with the respec-
tive gas norms. Another possibility is to use technolo-
gies like methanation to convert H2 to CH4 which could
then be injected into the grid. Injection of Bio-Gas into
the main gas grid is also presently being done on a large
scale. The most important motivation is that as long as
gas based CHP systems are used in the residential sector,
it could be efficiently complimented by gas based storage
technology at the grid level. This is because the gas con-
verted using Power to Gas or methanation technologies
could be stored in normal containers without huge infras-
tructure requirements longer than any conventional elec-
trical energy storage technology and the gas is also eas-
ily transportable through the gas network to the houses
when heat or power demand arises locally. Studies at
DVGW are presently focussed on the optimal quantity
of H2 that could be safely injected into the main gas grid
without affecting the calorific values of the transported
gases (Burmeister et al., 2012) and also the technologies
and energy requirements for methanation and optimal in-
jection of Biogas into the gas grid. However, it has to be
emphasised that there is no single storage solution that
could satisfy all the stochastic storage requirements si-

multaneously. The integration of renewable energy and
the development of associated storage systems may re-
quire a combination of many strategies like power to heat
conversions, power to gas production, methanation, dis-
tributed energy storage or other storage methods. The
study carried out is an important capability demonstrator
and an initial step in the overall strategy of integrating
the gas grid, the electricity grid, the residential sector and
probably the mobility sector too into an interacting unit
where members have a symbiotic relationship. More im-
portantly optimising their interactions in the future could
possibly be one of the more realistic options for large
scale energy storage without having huge infrastructure
demands.

References

Hirohisa Aki. The penetration of micro CHP in residential

dwellings in Japan. 2007 IEEE Power Engineering Society

General Meeting, PES, pages 1–4, 2007. ISSN 1932-5517.

doi:10.1109/PES.2007.385625.

Ian Beausoleil-Morrison, Michaël Kummert, Francesca Mac-

Donald, Romain Jost, Timothy McDowell, and Alex Fer-

guson. Demonstration of the new ESP-r and TRN-

SYS co-simulator for modelling solar buildings. En-

ergy Procedia, 30:505–514, 2012. ISSN 18766102.

doi:10.1016/j.egypro.2012.11.060.

Frank Burmeister, , Jens Senner, Janina Brauner, and Rolf Al-

bus. Potenziale der Einspeisung von Wasserstoff ins Erdgas-

netz – eine saisonale Betrachtung. Energie, 4:52–57, 2012.

Francesco Casella and Alberto Leva. Modelica open

library for power plant simulation: design and exper-

imental validation. Proceedings of the 3rd Interna-

tional Modelica Conference, pages 41–50, 2003. URL

http://scholar.google.com/scholar?hl=

en&btnG=Search&q=intitle:Modelica+open+

library+for+power+plant+simulation+:

+design+and+experimental+validation#0.

Francesco Causone, Stefano P. Corgnati, Marco Filippi, and

Bjarne W. Olesen. Experimental evaluation of heat trans-

fer coefficients between radiant ceiling and room. En-

ergy and Buildings, 41(6):622–628, 2009. ISSN 03787788.

doi:10.1016/j.enbuild.2009.01.004.

Thijs Defraeye, Bert Blocken, and Jan Carmeliet. Convective

heat transfer coefficients for exterior building surfaces: Ex-

isting correlations and CFD modelling. Energy Conversion

and Management, 52(1):512–522, 2011. ISSN 01968904.

doi:10.1016/j.enconman.2010.07.026. URL http://dx.

doi.org/10.1016/j.enconman.2010.07.026.

M. Einhorn, F. V. Conte, C. Kral, C. Niklas, H. Popp, and

J. Fleig. A Modelica Library for Simulation of Elecric

Energy Storages. Proceedings 8th Modelica Conference,

pages 436–445, 2011. doi:10.3384/ecp11063436. URL

http://www.ep.liu.se/ecp_article/index.

en.aspx?issue=63;article=48.

Simulation of Distributed Energy Storage in the Residential Sector and Potential Integration of Gas-based
Renewable Energy Technologies using Modelica

862 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118855

Mareike Jentsch. Wirtschaftlicher Einsatzbereich von PtG

- Energiespeichern im erneuerbaren Stromversorgungssys-

tem. In Internationale Energiewirtschaftstagung an der TU

Wien IEWT 2015, pages 1–12, Vienna, 2015.

H Krause. Krause H, Erler F. Bewertung der Energiever-

sorgung mit leitungsgebundenen gasförmigen Brennstof-

fen im Vergleich zu anderen Energieträgern (Teil I), AP4:

,Freiberg, Germany, Nachfragestruktur, Bedarfs- und Be-

standsanalyse. (G 5/04/09-TP1-C), 2011.

Hongbo Ren and Weijun Gao. Economic and environmental

evaluation of micro CHP systems with different operating

modes for residential buildings in Japan. Energy and Build-

ings, 42(6):853–861, 2010. ISSN 03787788.

Sebastian Stinner and Dirk Mueller. Thermal Simulation

of Power-Controlled Micro-CHP Systems for Residen-

tial Buildings. Proceedings 9th Modelica Conference,

pages 935–940, 2012. doi:10.3384/ecp12076935. URL

http://www.ep.liu.se/ecp_article/index.

en.aspx?issue=76;article=97.

VDI. VDI Heat Atlas. Technical report, 2010.

URL http://www.springer.com/de/book/

9783540778769#aboutBook.

VDI. Statusreport 2013 Mikro-Kraft-Wärme-

Kopplungsanlagen. Technical report, 2013. URL

http://www.vdi.de/presse/artikel/

statusreport-2013-zu-mikro-kraft-waerme-kopplungsanlagen/.

Michael Wetter. Modelica Library for Building

Heating, Ventilation and Air-Conditioning Sys-

tems. Proceedings 7th Modelica Conference, pages

393–402, 2009. doi:10.3384/ecp09430042. URL

http://www.ep.liu.se/ecp_article/index.

en.aspx?issue=043;article=44.

Poster Session

DOI
10.3384/ecp15118855

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

863

864 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Test of Basic Co-Simulation Algorithms Using FMI

Kosmas Petridis1 Christoph Clauß2
1Robert Bosch GmbH, Corporate Sector Research and Advance Engineering, Robert-Bosch-Campus 1, 71272 Renningen,

Germany, kosmas.petridis@de.bosch.com
2Fraunhofer IIS EAS, Zeunerstrasse 38, 01069 Dresden, Germany,

christoph.clauss@eas.iis.fraunhofer.de

Abstract

Since the FMI technology gains ground in industrial
environment, the demand for robust co-simulation
increases. In a master-slave concept the master
algorithms define the quality of a co-simulation whereas
the properties of the coupled FMUs for co-simulation
restrict the variety of possible master algorithms. In this
paper an existing experimental master tool with three
basic master algorithms was improved to support FMI
2.0 as well as 1.0. For testing more than 20 Modelica
examples were developed from which FMUs for co-
simulation were generated by established simulation
tools (e.g., Dymola, SimulationX). The examples
demonstrate differences of the three master algorithms.
Recommendations for tearing as well as improving the
master algorithms are given.
Keywords: Co-Simulation; FMI; master algorithm;

1 Introduction

Nowadays simulation is of crucial importance in the
development of mechatronic and cyberphysical
systems. The main characteristic of such systems is that
they consist of components of different physical
domains like hydraulic, mechanic, electronic, and
software. Through the strong coupling between the
components the isolated investigation of single
components is not sufficient. In fact the overall system
has to be investigated. This means that we need to
simulate the complete system. In general, the
components are modelled and simulated in different
established simulation tools. One commonly used
method to simulate the complete system is co-
simulation which can be classified into two types: the
direct coupling between tools and the export and import
of the simulation model into the other tool. To do this,
there exist a lot of proprietary commercial and self-
developed solutions but all of them are only applicable
on a limited number of tool combinations. In addition
these solutions need a high effort in maintenance
because of the proprietary interface to the different
simulation tools. A further disadvantage of these
solutions is that the algorithms used for the coupling are
strongly coupled with the interface. In addition usually
only standard algorithms based on a constant macro

step size are used. To avoid these limitations the
Functional Mock-up Interface (FMI) was developed as
an interface standard which allows the exchange and
co-simulation of models. The standard allows the use
of different coupling algorithms within the same
interface. The coupling algorithms themselves are not
part of the standard. Because of the increasing number
of simulation tools, which support this standard, and the
need from an industrial point of view (Bertsch et al,
2014) FMI represents a promising industry standard for
model exchange.

2 Co-Simulation in Industrial Environment

One example where co-simulation is used to analyze the
system is the simulation of injection valves (Petridis,
2013). The following physical domains are simulated
with different simulation tools:

 Hydraulics and mechanics

 Electromagnetics and power electronics
Numerous additional examples for co-simulation like
the simulation of high-pressure pumps, breaking
systems, etc. exist.

Based on these applications we determined the
following coupling cases:

 Simulator specific model with one imported FMU

 Simulator specific model with more than one
imported FMU

 Software in the loop (SIL) platform with control
algorithms and one or more FMU plant models

Thereby the type of coupling can be distinguished by:

 Coupling in one direction (see Figure 1) or with
feedback (see Figure 2). The last one is also known
as cycle.

 Analog coupling quantities (displacement, force,
etc.) or discrete coupling quantities (sensor or actor
signals)

The different simulation models can have the properties:

 Algebraic system without solver

 Differential or differential algebraic equation
including solver (based on constant or variable
solving step size) or without solver

DOI
10.3384/ecp15118865

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

865

FMUFMU

Figure 1. One directional coupling between two FMUs.

FMUFMU

Figure 2. Coupling with feedback between two FMUs.

The described coupling configurations are an
incomplete snapshot based on the current co-simulation
applications. But it is a very useful orientation to
determine the requirements on coupling algorithms.

3 Basic Co-Simulation Algorithms

Assume, m simulators ܵ ௜, 	݅ ൌ ͳሺͳሻ݉, are to be coupled.
Sometimes, such a simulator ௜ܵ is called “slave”.
Typically, it is “packaged” in a FMU. These simulators
are assumed to exchange altogether n coupling variables ݔ௝ሺݐሻ ∈ ܴଵ, 	݆ ൌ ͳሺͳሻ݊, ݐ ∈ ሾͲ, ܶሿ, which are time
dependent. Some of the coupling variables are input
variables for a simulator ௜ܵ, other coupling variables are
output variables. It is assumed that no input variable is
output variable of the same simulator. ሾͲ, ܶሿ is the time
interval to be simulated. If ݔ ൌ ሺݔଵ, ,ଶݔ	 	 … , ௡ሻ்ݔ	 ∈ ܴ௡
is the vector of all coupling variables then the call of
each single simulator can be described by ݔ ൌܳ௜ ௜ܵሺ ௜ܲݔሻ. ௜ܲ is a ሺ݌௜ ൈ ݊)-matrix with one “1” at each row and all
other entries identical zero. It denominates which
coupling variable is the input of the simulator ௜ܵ. ௜ܵ has ݌௜ input variables. ܳ௜ is a ሺ݊ ൈ ”௜)-matrix with one “1ݍ
at each column and all other entries identical zero. It
denominates which coupling variable is the output of the
simulator ௜ܵ. ௜ܵ has ݍ௜ output variables. Since each
coupling variable is output of exactly one simulator, ∑ ௜௠௜ୀଵݍ ൌ ݊ holds. Furthermore, the ሺ݊ ൈ ݊)-matrix ܳ ൌ ሺܳଵ, ܳଶ,…,	ܳ௠ሻ has exactly one “1” in each
column and in each line. Since no input variable is
assumed to be an output variable of the same simulator ௜ܲܳ௜ ൌ ௜݌being a ሺ ߠ holds with ߠ ൈ .௜)-zero-matrixݍ
The matrices ௜ܲ and ܳ௜ describe the connection graph,
that means how the input variables and output variables
of each simulator are connected.

To illustrate the notation of coupling, the following
example is given in Figure 3. We have ݉ ൌ ʹ simulators ଵܵ and ܵଶ with ݊ ൌ Ͷ coupling variables ݔ ൌሺݔଵ, ,ଶݔ	 ,ଷݔ	 ଵ݌ ସሻ். ଵܵ hasݔ ൌ ͳ input variables and ݍଵ ൌ ͵ output variables. Thus the dimension of ଵܲ is ሺͳ ൈ Ͷ) and the dimension of ܳଵ is ሺͶ ൈ ͵). The

matrices are ଵܲ ൌ ሺͲ		Ͳ		Ͳ		ͳሻ and ܳଵ ൌ ቌͳ Ͳ ͲͲ ͳ ͲͲͲ ͲͲ ͳͲ	ቍ. ܵଶ has ݌ଶ ൌ ͵ input variables and ݍଶ ൌ ͳ output
variables. Thus the dimension of ଶܲ is ሺ͵ ൈ Ͷ) and the
dimension of ܳଶ is ሺͶ ൈ ͳ). The matrices are ଶܲ ൌ൭ͳ Ͳ ͲͲ ͳ ͲͲ Ͳ ͳ				ͲͲͲ൱ and ܳଶ ൌ ቌͲͲͲͳ	ቍ. The input variables of

ଵܵ are described with ଵܲݔ ൌ ݔସ and of ܵଶ with ଶܲݔ ൌ൭ݔଵݔଶݔଷ൱. The output of ଵܵ is given by the ሺ͵ ൈ ͳሻ-vector

ଵܵሺ ଵܲݔሻ and of ܵଶ by the ሺͳ ൈ ͳ) dimensional ܵଶሺ ଶܲݔሻ.
The multiplication of these terms with the
corresponding matrix ܳ ܳଵ ଵܵሺ ଵܲݔሻ ൌ ቌͳ Ͳ ͲͲ ͳ ͲͲͲ ͲͲ ͳͲቍ ଵܵ൫ሺݔସሻ൯

 ܳଶܵଶሺ ଶܲݔሻ ൌ ቌͲͲͲͳቍ ܵଶ ቌ൭ݔଵݔଶݔଷ൱ቍ

corresponds to a mapping of the outputs of each
simulator to the coupling vector ݔ.

FMUFMU

1S 2S

1x

2x

3x

4x

Figure 3. Example to describe the notation

Using this notation the task of the coupled simulation

can be described as the following task: Find ݔ∗ which
solves: ݔ∗ ൌ ෍ ܳ௜ ௜ܵሺ ௜ܲݔ∗ሻ௠

௜ୀଵ (1)

In general, this equation is a nonlinear equation in the
space of time dependent functions. All solution methods
which are available to solve nonlinear equations should
be checked to solve this equation.

First fixed point iteration methods are possible which
take equation (1) “as it is”. There are several
approaches. With k being the iteration index, and ݔ଴ሺݐሻ ൌ ൫ݔଵ଴ሺݐሻ, … , ,ሻ൯ݐ௡଴ሺݔ ݐ ∈ ሾͲ, ܶሿ the initialization
of coupling variables, the Gauss-Jacobi method can be
characterized by ݔ௞ାଵ ൌ ෍ ܳ௜ ௜ܵሺ ௜ܲݔ௞ሻ	௠

௜ୀଵ (2)

Test of Basic Co-Simulation Algorithms Using FMI

866 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118865

In this case the simulators ௜ܵ can operate in parallel,
since all simulators access to the same vector of
coupling variables ݔ௞.

Another variant is the Gauss-Seidel method (GSM)
which needs an a priori defined calling sequence ݎ ൌሺݎଵ, … , ௠ሻ of the simulators. Each simulator uses theݎ
results of the already called simulators. One iteration
step is finished if all simulators have been called. The
Gauss-Seidel method can be summarized by ߦଵ ∶ൌ ௞ݔ

௜ାଵߦ ∶ൌ ܳ௥೔ܵ௥೔൫ ௥ܲ೔ߦ௜൯ ൅ ௜ߦ െ ܳ௥೔ܳ௥೔்ߦ௜ 	 								݅ ൌ ͳሺͳሻ݉

(3)

௞ାଵݔ ∶ൌ ௠ାଵߦ
The sequence ݎ is defined by analyzing the matrices ௜ܲ
and ܳ௜ which is the same as to analyze the connection
graph. The sequence shall be chosen such that as many
as possible input coupling variables are “updated”
before the simulation of each slave simulator.

A special case of the Gauss-Seidel method takes one
iteration (ݔ଴ → ”ଵ) only. That means that no “trueݔ
iteration takes place. This method is sufficient if a
sequence r of simulator calls can be found at which each
simulator takes input values only which are outputs of
before called simulators.

Equation (1) can be reordered into 	Ͳ ൌ ∗ݔ െ ෍ ܳ௜ ௜ܵሺ ௜ܲݔ∗ሻ ൌ:௠
௜ୀଵ ∗ݔ െ (4) 		∗ݔܵ

To find a “root” of (4) Newton like methods can be
applied, e.g. the classical Newton-Raphson method
(NRM): ݔ௞ାଵ ൌ ሺ߲߲ܵݔ െ ݔሻିଵሺ߲߲ܵܫ ௞ݔ െ (5)			௞ሻݔܵ

In addition, for all groups of methods (2), (3), (5) many
modifications are known (Schwetlick, 1979), e.g. the
introduction of damping methods which limit large
changes of the solution between two iterations.

So far all of these methods are applied to the complete
functions ሺݐሻ, ݐ ∈ ሾͲ, ܶሿ. This results in waveform
relaxation methods and waveform Newton methods
respectively which operate with functions within a
function space on the time interval ሾͲ, ܶሿ.

Since FMI is not designed to exchange function space
variables but values at certain time points the time
interval is segmented into subintervals (communication
intervals) ሾͲ, ܶሿ ൌ 	 ∪ ሾݐ௖ , ௖ is aݐ ௖ାଵሿ. Each timeݐ
communication point at which the simulation of all slave
simulators ௜ܵ	is stopped for the exchange of values
between the master and the slave simulators. ݄௖ ൌ ௖ାଵݐ	 െ ௖ is the communication step size (macroݐ
step size) between communication points which can be
variable or constant. The above described task of
simulator coupling (1) is solved for each communication
interval ሾݐ௖ , ௖ାଵሿ. The simulation of a slave simulatorݐ

௜ܵ	within a communication interval is performed by the
FMI doStep function. Both the methods (2) and (5) need
repeated simulations of communication intervals, the
“FMUState” must be stored (GetFMUState) and used
again (SetFMUState).

The presented approaches yield a high variety of
methods which have to be chosen depending on the
properties of the simulation task and the restrictions of
the FMUs to be coupled. A master should offer many
coupling algorithms to be able to choose the best
suitable one for a special coupling task. General criteria
for the quality of master algorithms are the performance
(it touches questions like this: are slave simulations
repeated within communication intervals?), the
correctness of the results (it touches questions of
stability with respect to the communication step size) as
well as the robustness (is an algorithm suitable for a
large class of simulation tasks?). The choice of an
ideally adapted master algorithm is an active field of
research.

4 Tool for Testing Co-Simulation

Algorithms

In (Bastian et al, 2011) a prototypical master tool for co-
simulation is presented which was developed in the
MODELISAR project by Fraunhofer IIS EAS Dresden.
The aim was to investigate basic co-simulation
algorithms while the Functional Mockup Interface was
being created. The prototypical master tool coupled
slaves written in C via a provisional interface which
possessed the main functionality of FMI 1.0.

Recently, this “EAS master tool” was improved by
supporting both the FMI 1.0 and FMI 2.0 for co-
simulation. Furthermore, a graphical user interface for
convenient handling was added. Currently, there are
efforts to unify the interface of controlling master
algorithms via an XML-File. These efforts are also
supported in a preliminary way. This improved EAS
master opens the opportunity to thoroughly test its
master algorithms, since examples can be modeled
easily using Modelica, and exported as FMU for co-
simulation with commercial simulation tools (e.g.,
Dymola, SimulationX). These FMUs can be coupled via
the EAS master tool.

Figure 4. Graph window of the master GUI

Poster Session

DOI
10.3384/ecp15118865

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

867

The EAS master tool is controlled by a configuration
text file with the following structure:

nval 2
nsim 2
tstart 0.0
tend 10.0
tstepmax 0.001
tstepstart 0.001
MasterMode 2
MasterDebug 2
OutputGnuplot 1
it_max_steps 100
it_tol_abs 1.0E-6
it_tol_rel 1.0E-4
simulator 0 fmus/part1.fmu
simulator 1 fmus/part2.fmu
graph #val #sim -1(out)/1(in) valueref
0 0 -1 r part1.out_y.value
0 1 1 r part2.in_y.value
1 1 -1 r part2.out_i.value
1 0 1 r part1.in_i.value
end
priority #sim priority
0 0
1 0
end
cycles #prior 0(no)/1(yes)
0 1
end

The configuration file contains the number of coupling
variables (nval), the number of FMUs (nsim), the
simulation time interval ([tstart, tend]), the
communication step size (tstepmax, tstepstart), the
choosen master algorithm (mastermode), some
numerical parameters, the paths to the FMUs, the
connection graph, and information on directions
(priority) and cycles in the graph. The graphical user
interface generates the configuration file.

The “EAS master tool” comprises the following
algorithmic approaches:

 Constant communication step size
It is user-defined before simulation. Though
variable communication step size basing on
Richardson extrapolation was investigated
successfully (Schierz et al, 2012; Schierz, 2013) it
is not yet integrated into the tool.

 Sequence of calling the simulators
The sequence ݎ ൌ ሺݎଵ, … , ௠ሻ of calling theݎ
simulators is not yet automatically generated. It is to
provide by the user.

 Gauss-Seidel method (3)
It is applied to each communication interval. This
method requires the FMUs to be able to repeat the
simulation of communication intervals (repeated
doStep calls).

 Gauss-Seidel method (3) with one iteration step
(GS1)

This simplified algorithm comes to a result in any
case. But if there are cyclic dependencies the result
may be no solution. Provided that the dependency
sequence r is correct this method finds a solution if
there are no cyclic dependencies.

 Newton-Raphson method (5)
This method requires repetitions of simulating
communication intervals (repeated doStep calls
over the same communication interval). The
Jacobian is calculated applying difference quotients
which needs additional simulations. Jacobians
delivered by the FMU are not yet evaluated.

 Directed graph with included cycles
The dependencies between the simulators form a
graph. The tool supports a unidirectional graph with
included cycles. The iterating methods specified
above can be restricted to the cycles, whereas GS1
is applied to the non-cyclic parts generally.

The “EAS master tool” solely interprets the

information on the slave simulators given by FMI.
Further information on the solution method used within
the FMU is not exploited.

5 Application Test Examples

The „EAS master tool“ was applied to a lot of small test
examples which address more or less different
difficulties or aspects of co-simulation. Each example
was first modeled using Modelica tools (Dymola,
SimulationX) without partitioning to generate the
reference solution. Second, the example was split, and
each part was exported as an FMU. Using the master
tool the FMUs were coupled, and the example was
simulated using the three above mentioned basic
algorithms.

Table 1 gives an impression of the behavior of the

three basic algorithms. The following subsections
present four of the examples (row 7, 10, 5, and 23 in

Table 1) in more detail. Finally, the last subsection
collects some recommendations for succeeding co-
simulations.

Table 1. Algorithm test results

Addressed Purpose

C

y

c

F

M

U

G

S

1

G

S

M

N

R

M
1 straightforward system

with correct calling
sequence, no difficulties

0 7 ⋎ ⋎ ⋎

2 linear system,
diagonally dominant
matrix, iterations needed

1 5 d ⋎ ⋎

3 digital and analog
variables, events

1 3 d d d

Test of Basic Co-Simulation Algorithms Using FMI

868 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118865

4 like 2, but not
diagonally dominant

1 5 w w ⋎

5 like 2, time dependent
matrix, which loses
diagonal dominance, see
section 5.3

1 5 w w ⋎

6 precision test, “too
large” communication
step size

0 3 d d d

7 precision test, iterations
needed, see section 5.1

1 3 d ⋎ ⋎

8 precision test, iterations
needed

1 3 d ⋎ ⋎

9 nonlinear equation,
iteration needed,

1 3 w ⋎ ⋎

10 changing signal flow
due to varying resistors,
but fixed directions for
FMI, see section 5.2

1 3 w e ⋎

11 like 10, but changed
fixed directions

1 3 w e ⋎

12 like 10, further changed
fixed directions

1 3 d ⋎ ⋎

13 like 10, further changed
fixed directions

1 3 w e ⋎

14 extended circuit with
changing signal flow,
but fixed directions for
FMI

1 6 d ⋎ ⋎

15 like 10, jumping input
variables, events should
be hit

1 3 w e ⋎

16 Rossler DAE, large
simulation interval,
iterations needed

1 3 w d d

17 retarding DAE 0 2 ⋎ ⋎ ⋎

18 like 5, other time
dependent matrix, which
loses diagonal
dominance

1 5 w w ⋎

19 linear equation, not
contractive matrix

0 2 d d ⋎

20 like 7, extended, test of
initialization

1 4 e e e

21 higher index problem
due to wrong signal
flow direction; correct,
that no FMU exportable

1 2 e e e

22 like 21, suitable
direction

1 2 ⋎ ⋎ ⋎

23 “nearly” higher index
problem, like 21, see
section 5.4

1 2 d d ⋎

Legend: Cyc – number of cycles, FMU – number of
FMUs, GS1 – Gauss-Seidel method with one iteration,
GSM – iterating Gauss-Seidel method, NRM – Newton-
Raphson method, ⋎ – correct, d – small differences
compared with unpartitioned reference solution, w –
completely wrong result, e – error, or simulation fails,
or FMU not exportable. The difference between “d” and
“w” is estimated subjectively to give a rough impression
whether the calculated solution is “far away” or “near”
the correct solution.

5.1 Precision Test Example

The equations according to Table 2 are segmented such
that the equations of each row in the table are simulated
with their own simulator within an FMU. The columns
“In” and “Out” describe the coupling variables.

Table 2. Equations of the precision test example

In Equations Out ݔଶ ݔଵ ൌ െݔଶ ݔଵ ݔଵ ߲ݔଶ߲ݐ ൌ ,ଵݔ ଶሺͲሻݔ ൌ ͳ ݔଶ ݔଶ ݁ି௧ െ ଶݔ ൌ ݕ ݕ

This example (row 7 in Table 1) is designed such that 	ݕሺݐሻ is zero. Therefore, the magnitude of y is an
indicator of precision of the numerical solution. All
three implemented methods calculate the correct result.
Both GSM and NRM are similar precise (Figure 5), but
GS1 is more inaccurate (Figure 6). The communication
step size was 0.1.

Figure 5. y(t) calculated by GSM and NRM

Figure 6. y(t) calculated by GS1

5.2 Varying Resistors

This example (Figure 7, row 10 of Table 1) from the
electronic domain is designed such that the voltage 	݅ݒ
alternately depends on ݔͳ or ݔʹ. The reason for this
behavior is the variation of the resistances of var1 and
var2 (Figure 8).

Poster Session

DOI
10.3384/ecp15118865

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

869

Figure 7. Circuit with varying resistors

Figure 8. Varying resistances

Similar to Table 2 the equations of this example are
presented in Table 3.

Table 3. Equations of the varying resistors example

In Equations Out݅ݒ Ͳ.ͷሺ߲ݔଵ/߲ݐሻ ൅ ଵݔ െ ݅݅ଵ െ sinሺ ሻݐߨ͵ ൌ Ͳ ሺ݅ݒ െ ଵሻ/ሺͳͲͲͲݔ sinሺͲ.ʹݐߨሻ ൅ ͳͲͲͳሻൌ ݅݅ଵ
݅݅ଵ

ሻݐ߲/ଶݔͲ.ͷሺ߲ ݅ݒ ൅ ଶݔ െ ݅݅ଶ െ sinሺ ሻݐߨʹ ൌ Ͳ ሺ݅ݒ െ ଶሻ/ሺെͳͲͲͲݔ sinሺͲ.ʹݐߨሻ ൅ ͳͲͲͳሻൌ ݅݅ଶ
݅݅ଶ ݅݅ଵ,	 ݅݅ଶ	 Ͳ.ͲͲͲͳሺݔଷ െ ሻ݅ݒ ൅ Ͳ.Ͳͳሺ߲ݔଷ/߲ݐሻ ൌ Ͳ ݅݅ଵ ൅ ݅݅ଶ െ Ͳ.ͲͲͲͳሺݔଷ െ ሻ݅ݒ ൌ Ͳ
 ݅ݒ

Because of the varying resistances no unique exchange
direction of coupling variables is possible. Therefore,
both GSM and GS1 do not converge. Only NRM
calculates a correct result (Figure 9).The trajectory is not
quite smooth due to a large communication step size of
0.1.

Figure 9. Coupling variable vi(t)

5.3 Linear System of Equations

In the following linear system of equations (row 5 of
Table 1) the matrix varys depending on the time.
Therefore, a similar behaviour like in Section 5.2 can be
observed.

Table 4. Linear system of equations

In Equations Out

ଵݎ ൌ ͳ, ݎଶ ൌ ଷݎ	,ݐ ൌ ͳ ݎଵ, ,ଷݎ ,ଶݔଷݎ ,ଷݔ ଵݔ͵ ଵݎ ൅ ሺͲ.ͳ ൅ ଶݔሻݐ ൅ Ͳ.ʹݔଷ ൌ ,ଵݔ ଵݔ ଵݎ ,ଷݔ ଵݔଶ Ͳ.ͳݎ ൅ ଶݔ͵ ൅ ሺͲ.ͳ ൅ ଷݔሻݐ ൌ ,ଵݔ ଶݔ ଶݎ ,ଶݔ ଷ ሺͲ.ͳݎ ൅ ଵݔሻݐ ൅ Ͳ.ʹݔଶ ൅ Ͷݔଷ ൌ ,ଵݔ ଷݔ ଷݎ ,ଶݔ ଵݔ ଷݔ ൅ ଷݔଶ൅ݔ ൌ ݕ ݕ

Five FMUs are coupled according to Table 4. Both
GSM and GS1 do not converge, since due to the time
dependence the fixed point iteration is not contractive
for increasing ݐ. The NRM calculates the correct result
(Figure 10).

Figure 10. Result variable y(t)

5.4 Resistor-Capacitor-Circuit

This example (row 23 in Table 1) from the electric
domain is a simple resistor-capacitor-circuit where the
resistor is divided into two parts. The equations are
allocated to two FMUs according to Table 4.

Table 4. Equations of the Resistor-Capacitor-Example

In Equations Out ݅ ݅ሺͳ െ ܴ௉௔௥௧ଶሻ ൌ ݕ െ ݑ ݑ ൌ ݂݅ ݐ ൏ ʹ Ͷ൑	݂݅	݁ݏ݈݁	Ͳ	݄݊݁ݐ Ͷ	݁ݏ݈݁	ʹ	݄݊݁ݐ	ݐ
 ݕ

݅ ݕ ∙ ܴ௉௔௥௧ଶ ൌ ݔ െ െ݅ ,ݕ ൌ ሺͲሻݔ ,ݐ݀/ݔ߲ ൌ ʹ
݅

The DAE index of the second FMU is one. But the

smaller ܴ௉௔௥௧ଶ becomes the “closer” the index gets to
two, which occurs if ܴ௉௔௥௧ଶ is zero. Therefore,
difficulties in the coupled simulation arises, if ܴ௉௔௥௧ଶ is
small. The corresponding result with ܴ௉௔௥௧ଶ ൌ Ͳ.ͲͲͳ
obtained by the generating tool without partitioning is
shown in Figure 11.

Test of Basic Co-Simulation Algorithms Using FMI

870 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118865

Figure 11. Reference solution Resistor-Capacitor-Circuit

For this example GSM fails. GS1 produces an
extremely increasing result. The result of Newton’s
method is not quite exact due to a large communication
step size of 0.1 (Figure 12). If the step size is reduced to
0.001 the reference values are met, c.f. Figure 13. There
are further investigations necessary to identify the
influence of a “nearly” high index to properties of the
coupled simulation.

Figure 12. Result using NRM, step size 0.1

Figure 13. Comparison NRM, step sizes 0.1 and 0.001,
separated into two diagrams, x(t) above, i(t) below.

5.5 Recommendations

The experience collected in checking test examples so
far can be summarized in the following
recommendations.
Essential for successful co-simulation is an intelligent
tearing:

 Closely interacting parts should not be separated.
Tearing is recommended at points where a signal
flow direction is clearly recognized. The coupling
variable should be output variable at that FMU
which calculates it “significantly”. If the
propagation direction of a variable changes during
simulation it should not become a coupling variable.

 An output coupling variable of an FMU should have
no influence to the input variables of the same FMU.
At least such reactions should be delayed.

 Sometimes it is essential to transfer both the value
and the derivative(s) of coupling variables. This

should be checked at each coupling variable, e.g.
using test simulations.

Often these recommendations regarding tearing cannot
be followed, since FMUs for components may be
predetermined by specialized simulation tools. In such
cases it is advantageous to revise the definition of
interfaces.

Furthermore, a suitable choice of master algorithm
parameters is important:

 The communication step size should be small
because of numerical reasons, and large because of
performance. The estimation of time constants, and
test simulations can help to choose a reasonable step
size. If time events (changing of discrete variables)
are known they should coincidence with end points
of communication intervals.

 Cycles in the connection graph should be handled
using a small communication step size.

 If the GSM diverges both the tearing and the
definition of the direction of coupling variables
should be checked.

The following points are necessary to improve the

master algorithms of the test tool:

 Both the calling sequence of the FMUs and cycles
in the connection graph should be defined
automatically.

 It should be possible to apply different algorithms to
cycles. Sometimes an algorithm should be changed
during simulation.

 Variable communication step size should be
introduced.

 More algorithmic parameters for the coupling
methods should be introduce to adapt algorithms to
given co-simulation tasks. Otherwise such
adaptions should be done as automatically as
possible to unburden the user.

6 Conclusion

For co-simulation of two or more FMUs three basic
algorithms were described. These obvious algorithms
can be a starting point for developing further coupling
algorithms. Some ideas are presented.

It has to be further examined which other existing
coupling algorithms can be described with the notation
introduced in chapter 3, e.g. the asynchronous method
(Petridis et al, 2008; Petridis, 2013). Additionally it has
to be checked if other algorithms can be implemented
with the existing FMI standard.

The algorithms were implemented in a master tool for
testing. This master tool supports FMI 1.0 as well as
FMI 2.0. It is desirable to implement further and
modified algorithms which can be optimal adapted to
given simulation tasks.

Poster Session

DOI
10.3384/ecp15118865

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

871

Many small coupling examples were developed
which address special issues. These examples should be
extended in future. The examples show the different
behavior of the basic algorithms. The Newton-Raphson
method turns out to be one of the most powerful
algorithms, but its performance is usually bad.
Therefore, improved algorithms should be developed.

Generally, the master tool should become more
„intelligent“. It is to investigate whether internal
information (the method used, the actual internal step
size, numerical properties, …) of the slave simulation
within an FMU should be transferred to the master. This
could help the master algorithms to be adapted better.
Otherwise, a master should be capable of acting without
any FMU-internal information. Both directions seem to
be needed.

The presented examples are a good starting point for
the FMI cross checking, because until now only single
FMU are tested. With the presented examples in
combination with the FMI Test Library (Otter, 2014) the
coupling and with this the capability of master
algorithms can be tested.

Acknowledgements

The authors are much obliged to Prof. Martin Arnold,
Halle, as well as to Dr. Tom Schierz, Gilching, for any
cooperation.

References

Jens Bastian, Christoph Clauss, Susann Wolf, Peter
Schneider. Master for CoSimulation Using FMI. 8th
International Modelica Conference, Dresden, March 20-22,
2011.

Christian Bertsch, Elmar Ahle, Ulrich Schulmeister. The
Functional Mockup Interface – seen from an industrial
perspective. 10th International Modelica Conference, March
10-12, Lund, Sweden, pp. 27-31, 2014.

FMI project website, https://www.fmi-standard.org/

Martin Otter. Modelica FMI Test Library. In: Tutorial:
Functional Mockup Interface 2.0 and HiL Applications of
the International Modelica Conference, Lund, Sweden,
2014

Kosmas Petridis. Synchrone und asynchrone Verfahren zur
gekoppelten Simulation mechatronischer Systeme. VDI
Verlag, 2013.

Kosmas Petridis, Andreas Klein, Michael Beitelschmidt.
Asynchronous method for the coupled simulation of
mechatronic systems. In: PAMM Volume 8 (2008) Nr. 1

Tom Schierz. Modulare Zeitintegration gekoppelter
Differentialgleichungssysteme in der technischen
Simulation. Fortschr.-Ber. VDI Reihe 20 Nr. 447.
Düsseldorf: VDI Verlag 2013.

Tom Schierz, Martin Arnold and Christoph Clauß. Co-
simulation with communication step size control in an FMI
compatible master algorithm. In: Proceedings of the 9th
International Modelica Conference, Munich, Germany,
2012.

Hubert Schwetlick. Numerische Lösungen nichtlinearer
Gleichungen. Deutscher Verlag der Wissenschaften, Berlin,
1979, und R. Oldenbourg Verlag München, Wien, 1979.

Test of Basic Co-Simulation Algorithms Using FMI

872 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118865

Experimental Calibration of Heat Transfer and Thermal Losses

in a Shell-and-Tube Heat Exchanger

Javier Bonilla1,2 Alberto de la Calle1,2 Margarita M. Rodríguez-García1

Lidia Roca1,2 Loreto Valenzuela1

1CIEMAT-PSA, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas - Plataforma Solar de
Almería, Spain, {javier.bonilla, alberto.calle, margarita.rodriguez, lidia.roca,

loreto.valenzuela}@psa.es
2CIESOL, Solar Energy Research Center, Joint Institute University of Almería - CIEMAT, Almería, Spain

Abstract

Many commercial solar thermal power plants rely on
thermal storage systems in order to provide a stable and
reliable power supply. The heat exchanger control strate-
gies, to charge and discharge the thermal storage system,
strongly affect the performance of the power plant. With
the aim of developing advanced control strategies, a dy-
namic model of a shell-and-tube heat exchanger is being
developed. This heat exchanger belongs to the CIEMAT-
PSA molten salt testing facility. The goal of this facil-
ity is to study thermal storage systems in solar thermal
power plants. During experimental campaigns perfor-
mance losses with respect to design performance were
noticed in the heat exchanger. Therefore and in order
to develop an accurate heat exchanger model, thermal
losses as well as heat transfer correlations on both fluid
sides have been calibrated against experimental data.
Keywords: calibration, heat exchanger, heat transfer

correlation, thermal losses, JModelica.org

1 Introduction

Many factors such as, environmental issues, concern
about sustainability and rising cost of fossil fuels are
presently encouraging research and investment into re-
newable resources. Renewable energy power plants face
the main problem of dispatchability of demand due to
the variability of their power sources. Nevertheless, solar
thermal power plants are appropriate for large-scale en-
ergy production since they efficiently store heat in Ther-
mal Energy Storage (TES) systems. Thus, many com-
mercial solar thermal power plants rely on this technol-
ogy (Herrmann and Kearney, 2002).

The performance of solar thermal power plants with
TES systems is highly influenced by the heat exchanger
control strategies applied in the charging and discharging
processes (Zaversky et al., 2013). Therefore, advanced
control strategies may improve the performance of the

whole plant. For this reason, a dynamic heat exchanger
model is being developed. This heat exchanger is part of
the CIEMAT-PSA molten salt testing facility. This multi-
purpose molten salt testing facility is devoted to evaluate
and control the heat exchange between molten salt and
different kind of heat transfer fluids which could be used
in solar thermal power plants.

During experimental campaigns, performance losses
were noticed in the heat exchanger with respect to de-
sign performance. A dynamic heat exchanger model is
being developed in order to evaluate such losses (Bonilla
et al., 2015). This paper shows the followed procedure
to calibrate heat exchanger thermal losses as well as heat
transfer correlations for both fluid sides.

The paper is organized as follows, section 2 briefly
describes the experimental plant and the heat exchanger.
Section 3 carries out an analysis of heat transfer in the
heat exchanger. Once this analysis is completed, heat
transfer correlations in the literature are examined in sec-
tion 4, thermal losses are estimated against experimental
data in section 5 and heat transfer coefficients are also es-
timated by means of calibrating heat transfer correlations
in section 6. Finally, main conclusions together with on-
going work tasks are presented in section 7.

2 Experimental Plant

A multipurpose molten salt testing facility, with the goal
of studying TES system, was set up at Plataforma So-
lar de Almería (PSA), division of CIEMAT, the public
research center for Energy, Environmental and Techno-
logical Research, which is owned by the Spanish govern-
ment. The CIEMAT-PSA molten salt testing facility can
evaluate and control the heat exchange between molten
salts and potential heat transfer fluid for solar thermal
power plants, i.e. thermal oil and pressurized gases (air,
CO2, etc.). In order to use pressurized gases, this facility
is connected to the innovative fluids test loop facility by
means of a CO2 - molten salt heat exchanger. This last fa-

DOI
10.3384/ecp15118873

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

873

Figure 1. CIEMAT-PSA molten salt testing facility.

Figure 2. Thermal oil - molten salt heat exchanger.

cility comprises two parabolic-trough collectors and al-
low studying pressurized gases as heat transfer fluids, for
further information consult Rodríguez-García (2009).

The CIEMAT-PSA molten salt testing facility, shown
in figure 1 is composed by hot and cold molten salt tanks,
a CO2 - molten salt heat exchanger, a thermal oil loop,
two flanged pipe sections and the electrical heat tracing.
The thermal oil loop comprises a thermal oil expansion
tank, a centrifugal pump, an oil heater, molten salt and
oil air coolers and a thermal oil - molten salt heat ex-
changer. This last heat exchanger is the one considered
in this work, it is described in section 2.2 and it is shown
in figure 2.

2.1 Operating Modes

The multipurpose molten salt testing facility can work in
four different operating modes.

• Mode 1. Energy from the innovative fluids test loop
is used to charge the molten salt TES system by
means of the CO2 - molten salt heat exchanger.

• Mode 2. The molten salt is cooled down by the air
cooler system.

• Mode 3. The TES system is charged with energy
coming from the thermal oil loop by means of the
thermal oil - molten salt heat exchanger.

• Mode 4. This mode discharges the TES system
by means of the thermal oil - molten salt heat ex-
changer and thus heating up thermal oil.

For further details about the facility and operating
modes consult Rodríguez-García and Zarza (2011) and
Rodríguez-García et al. (2014).

2.2 Thermal Oil Loop Heat Exchanger

The thermal oil loop heat exchanger is composed of
two counter-flow multi-pass shell-and-tube units, see fig-
ure 2. The shell-side fluid is molten salt, in particular
solar salt (60 % NaNO3 and 40 % KNO3), whereas the
tube-side fluid is the commercial Therminol VP-1 ther-
mal oil, due to its high pressure (max. 15 bar). The heat
exchanger nominal operating conditions in mode 3 are
shown in table 1. Each unit of the heat exchanger was
designed following a Tubular Exchanger Manufacturers
Association (TEMA) design, in paticular a N-type front
end stationary head, F-type shell and U-type rear end sta-
tionary head (NFU) design. Both units have drainage
pipes at the rear end of the heat exchanger and are tilted
2◦ in order to facilitate their drainage. The F-type shell
has two shell passes defined by a longitudinal baffle as
well as two tube passes in U shape. The F-type shell is
the most common and economical heat exchanger design

Lo
ng

itu
di

na
l

ba
e

Ve
rt
ic
al

 s
eg

m
en

ta
l

ba
es U shape

S shape

Vertical

ba
e cut

Figure 3. S-shaped and U-shaped paths along the shell side of
one unit in the heat exchanger (Bonilla et al., 2015).

Experimental Calibration of Heat Transfer and Thermal Losses in a Shell-and-Tube Heat Exchanger

874 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118873

Table 1.Heat exchanger nominal operating conditions-mode 3

Feature Shell side Tube side
Fluid Solar salt Therminol VP-1
Inlet mass flow rate 2.08 kg/s 1.57 kg/s
Inlet pressure 2 bar 14 bar
Outlet pressure 1.6 bar 13.97 bar
Inlet temperature 290 ◦C 380 ◦C
Outlet temperature 373 ◦C 313 ◦C

used at commercial parabolic-trough solar thermal power
plants (Herrmann et al., 2004). Thirty-nine vertical seg-
mental baffles per shell pass, with vertical baffle cuts,
force the shell-side fluid to follow a S-shaped path (see
figure 3) in order to increase the convective heat transfer
coefficient which has its highest value in cross flow. In
counter flow, the tube-side fluid enters the inlet nozzle,
flows along the tube bundle turning around due to the
longitudinal baffle and the U-tube design, finally leaving
the heat exchanger through the outlet nozzle.

3 Heat Transfer Analysis in the Heat

Exchanger

Since performance losses in the heat exchanger were no-
ticed, a heat transfer analysis considering experimen-
tal data was performed. First of all, the instrumenta-
tion installed in the facility was checked. According
to the International Electrotechnical Commission (IEC)
584.3 norm, the allowable manufacturing tolerance of
the K-type class 2 thermocouples is up to ±3 ◦C at heat
exchanger nominal operating conditions (see table 1).
Nevertheless, thermocouples are periodically checked
against a certified reference standard and measurements
are adjusted by means of polynomials functions, there-
fore measurement uncertainties are reduced. Both flow
meters are Yokogawa GS01F06A00-01E 50 mm volu-
metric vortex flow meters which have an error of up to
1 % according to the manufacturer specifications.

Secondly and due to the fact that thermocouples are
not installed precisely at the inlet and outlet of the heat
exchanger but rather at a certain distance, thermal losses
by convection and radiation in piping along the distance
between the heat exchanger and thermocouples were es-
timated according to eq. 1.

Q̇pipe,loss = Q̇pipe,conv + Q̇pipe,rad , (1)

Q̇pipe,conv = hconvApipe(Tpipe −Tamb), (2)

Q̇pipe,rad = hradApipe(Tpipe −Tsky). (3)

The piping comprises an insulated metallic tube which
is protected with a thin aluminum layer. The pipe sub-
script denotes the most outer part of the pipe. Nomen-
clature is shown in table 2. Sky temperature (Tsky) is as-
sumed to be 10 ◦C lower than ambient temperature. The

Table 2. Nomenclature

Latin letters
Variable Description Units
A Area [m2]
C Heat capacity [J/K]
cp Specific heat capacity [J/(kg K)]
d Diameter [m]
D Characteristic dimension [m]
f Friction factor [-]
G Mass velocity [kg/(m2 s)]
h Heat transfer coefficient [W/(m2 K)]
j Chilton-Colburn j factor [-]
K Thermal conductivity [W/(m K)]
l Length [m]
m Mass [kg]
ṁ Mass flow rate [kg/s]
n Number of measures [-]
Nu Nusselt number [-]
Pr Prandtl number [-]
Q̇ Heat flow rate [W]
Re Reynolds number [-]
t Time [s]
T Temperature [K]
V̇ Volumetric flow rate [m3/s]
x1 · · ·x4 Calibration coefficients [-]
y Coefficient in φ [-]

Greek letters
Variable Description Units
ε Emissivity [-]
σ Stefan-Boltzmann constant [W/(m2 K4)]
δ Deviation [%]
φ Viscosity correction factor [-]
ρ Density [kg/m3]
µ Dynamic viscosity [kg/(m s)]
Subscript Description Subscript Description
amb Ambient cond Conduction
conv Convection exp Experimental
f luid Fluid in Inlet
ins Insulation loss Losses
ms Molten salt oil Thermal oil
out Outlet pipe Piping
rad Radiation sim Simulated
sky Sky w Tube wall

heat transfer coefficient for natural convection of air over
the pipe (hconv) was considered 6 W/(m2 K) and Apipe de-
notes the outer surface area of the piping. The radiation
heat transfer coefficient (hrad) is calculated according to
eq. 4, where aluminum emissivity (εpipe) was assumed to
be 0.09.

hrad = εpipeσ
T 4

pipe −T 4
sky

Tpipe −Tsky

. (4)

The outer surface piping temperature (Tpipe) is calculated
considering that thermal losses are the same as heat con-

Poster Session

DOI
10.3384/ecp15118873

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

875

duction through the pipe, as it is shown in eq. 5,

Q̇pipe,cond = Q̇pipe,conv + Q̇pipe,rad , (5)

where Q̇pipe,cond is defined by eq. 6. It is assumed that the
inner metallic tube wall temperature is the same as the
fluid temperature (Tf luid,in), hcond is given by eq. 7, where
Kins is the thermal conductivity of the insulation, lins is
the insulation thickness and Acond is the heat conduction
area.

Q̇pipe,cond = Apipehcond(Tf luid,in −Tpipe), (6)

hcond =
KinsAcond

lpipeApipe

. (7)

Therefore Tpipe is calculated by eq. 8,

Tpipe =
hcondTf luid,in +hconvTamb +hradTsky

hcond +hconv +hrad

. (8)

Once thermal losses are calculated (Q̇pipe,loss), the desir-
able temperature, Tf luid,out or Tf luid,in, depending on the
position of the thermocouple with respect to the heat ex-
changer can be calculated considering eq. 9. The in and
out subscripts refer to the inlet or outlet of the pipe.

Q̇pipe,loss = ṁ f luidcp, f luid(Tf luid,out −Tf luid,in). (9)

The specific heat capacity of the fluid (cp, f luid) can be
calculated from thermodynamic properties of the par-
ticular fluid under consideration, Therminol VP-1 ther-
mal oil (Solutia, 2008) or solar salt (Zavoico, 2001; Ferri
et al., 2008) thermodynamic properties.

Once thermal losses in piping have been estimated,
thermal oil (Q̇oil) and molten salt (Q̇ms) heat flow rates
inside the heat exchanger should have close values in
steady-state conditions, otherwise this means there are
thermal losses in the heat exchanger. Heat flow rates in-
side the heat exchanger have been calculated considering
the energy balance equation in both fluids, according to
eqs. 10 and 11. The in and out subscripts refer to the heat
exchanger, i.e. at the inlet or outlet of the heat exchanger.

Q̇oil = ṁoilcp,oil(Toil,out −Toil,in), (10)

Q̇ms = ṁmscp,ms(Tms,out −Tms,in). (11)

Thermal oil and molten salt heat flow rates have been
evaluated considering experimental data. The deviation
between both heat flow rates has been calculated accord-
ing to eq. 12.

δ = 100

∣

∣Q̇oil − Q̇ms

∣

∣

1
2(Q̇oil + Q̇ms)

. (12)

Thermal oil and molten salt heat flow rate uncertainties
inside the heat exchanger have been calculated according

Table 3.Standard uncertainties in heat flow rate variables

Var.
Standard uncertainty

Comments
Value Reference

T 0.42 ◦C Absolute Periodically checked.
V̇oil 0.75 % Relative Manufacturer specs.
V̇ms 1.00 % Relative Manufacturer specs.
ρ 0.50 % Relative (Janz et al., 1972)
cp 1.55 % Relative (Gomez et al., 2012)

170

180

190

200

210

H
e

a
t

fl
o

w
 r

a
te

 (
kW

)

Heat flow rates (Q̇oil, Q̇ms)

Q̇oil Q̇ms

12:30 12:45 13:00 13:15 13:30 13:45 14:00 14:15
Local time (h)

6

8

10

12

14

16

Pe
rc

e
n

ta
g

e
 (

%
)

Deviation (δ) and Uncertainty (U95)

δ U95(Q̇oil - Q̇ms)

Figure 4. Steady-state case: thermal oil and molten salt heat
flow rate deviation.

to the ISO/IEC Guide 98:-3:2008 Uncertainty of mea-
surement (GUM) (International Organization of Stan-
dardization, 2008). Standard uncertainties of variables
involved in eqs. 10 and 11 are given in table 3, consider-
ing volumetric flow meters for both fluids (ṁ= ρV̇). The
uncertainty at a level of confidence of 95 % (coverage
factor k = 2) of the difference between thermal oil and
molten salt heat flow rates, considering mode 3 nominal
operating conditions, is U95(Q̇oil − Q̇ms) = 5.70%. Fig-
ure 4 shows both heat flow rates with their uncertainty
bounds in an steady-state experiment at mode 3 nominal
operating conditions. It can be seen in Figure 4 that there
are thermal losses in the heat exchanger. Therefore ther-
mal losses must be estimated in order to calculate heat
transfer coefficients for this heat exchanger. Section 5
presents how thermal losses have been estimated, but be-
fore that, section 4 introduces which expressions for heat
transfer correlations have been considered.

4 Heat Transfer Correlations

Experimental heat transfer correlations are commonly
used in engineering calculations of heat transfer. In order
to develop such heat transfer correlations, it is required
to perform experiments to obtain experimental data and

Experimental Calibration of Heat Transfer and Thermal Losses in a Shell-and-Tube Heat Exchanger

876 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118873

also to correlate experimental data with appropriate ex-
pressions which involve dimensionless numbers. Those
expressions are obtained from mass, energy and momen-
tum conservation equations. A common expression to
calculate the heat transfer coefficient in fully developed
turbulent flow is the Chilton-Colburn j-analogy for mass
(eq. 13) and heat (eq. 14).

j =
f

8
, (13)

j =
Nu

RePr1/3
, Re ≥ 10000, 0.7 ≤ Pr ≤ 160. (14)

Eq. 15 is derived from eqs. 13 and 14, since normally
the friction factor depends on the Reynolds number, f =
f (Re). Therefore, the Nusselts number depends on the
Reynolds and Prandtl numbers, Nu = f (Re,Pr), and x1,
x2 are commonly constant coefficients.

Nu = x1Rex2Pr1/3. (15)

With the Nusselts number, the heat transfer coefficient
is calculated by eq. 16, where D is the characteristic di-
mension.

h = Nu
K

D
. (16)

Different heat transfer correlations derive from eq. 15,
such as Colburn (Çengel, 2006) and Dittus and Boelter
(1930) correlations. A better accuracy for estimating the
heat transfer coefficient was achieved by means of the
Prandtl (1910) analogy. Petukhov (1970) improved the
latest, which was modified in Gnielinski (1976) as eq. 17,

Nu =

f

8
(Re−1000)Pr

1+12.7
√

f/8(Pr2/3 −1)

[

1+
(

d

l

)2/3
]

,

2300 ≤ Re ≤ 10000, 0.5 ≤ Pr ≤ 200.

(17)

Eq. 17 was derived considering fluid flow in straight
ducts. Although this correlation is a good approxima-
tion for the tube side of heat exchangers, the coefficients
appearing on it can be adjusted experimentally, since
fluid flow path in heat exchangers is commonly complex
(Taler, 2013). Eq. 18 shows Gnieliniski correlation with
two coefficients that could be adjusted (x3, x4). Such
coefficients have different values in the Prandtl analogy,
Petukhov, and Gnielinski correlations, therefore they are
suitable coefficients to be tuned.

Nu =

f

8
(Re− x3)Pr

1+ x4
√

f/8(Pr2/3 −1)

[

1+
(

d

l

)2/3
]

. (18)

An equivalent expression to eq. 16, and commonly used
to calculate the ideal cross-flow heat transfer coefficient
in the shell side of heat exchangers, is given by eq. 19,

h =
jcpG

Pr2/3
. (19)

This expression is used in the Bell-Delaware method,
among others. The ideal heat transfer coefficient is mod-
ified for the presence of streams by means of correc-
tions factors, such as corrections factors for baffle cut
and spacing, baffle leakage, bundle bypass flow, vari-
able baffle spacing in the inlet and outlet sections, ad-
verse temperature gradient buildup in laminar flow, etc.
Check the Taborek implementation of the Bell-Delaware
method (Thulukkanam, 2013) for further information.

The mass velocity (G) takes into account the tube bank
inside the shell. The ideal Colburn j factor for the shell
side is expressed as eq. 20,

j = x1Rex2 , (20)

where x1 and x2 are constant values within an interval
of Reynolds numbers. The Reynolds number is usually
calculated by eq. 21,

Re =
GD

µ
. (21)

There are other versions of eqs. 17 and 19 which incorpo-
rate the viscosity correction factor (φ), eq. 22, in order to
take into account the viscosity gradient at the wall (µw)
versus the viscosity at the bulk mean temperature (µ) of
the fluid. The y coefficient usually depends on the ratio
between viscosities (Wichterle, 1990), authors propose
different values in the literature.

φ =

(

µ

µw

)y

. (22)

5 Calibration of Thermal Losses

Eq. 11 has been modified in order to account for thermal
losses from the shell-side fluid to the ambient and eq. 23
has been obtained.

Q̇ms = ṁmscp,ms(Tms,out −Tms,in)+Qloss. (23)

Convective heat losses have been roughly approximated
considering the shell-side (Tms) and ambient (Tamb) tem-
peratures in the Newton’s law of cooling, as shown in
eq. 24. The shell-side temperature is the arithmetic mean
temperature between the inlet and outlet molten salt tem-
peratures in the heat exchanger. Aloss is the outer surface
area of the whole heat exchanger.

Q̇loss = hlossAloss(Tms −Tamb). (24)

The heat transfer coefficient (hloss) has been defined con-
sidering eq. 19. The characteristic dimension is the inner
equivalent hydraulic diameter of the shell side, x1 and x2
from eq. 20 have been calibrated considering experimen-
tal data. Three different experimental data sets in steady
state with different flow conditions have been used in
the calibration process, where (ṁoil ,ṁms) = [(1.4 kg/s,
2.0 kg/s), (1.4 kg/s, 3.2 kg/s), (1.95 kg/s, 2.0 kg/s)].

Poster Session

DOI
10.3384/ecp15118873

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

877

185

190

195

200

205

210

215
H

e
a
t

fl
o
w

 r
a
te

 (
kW

)
Heat flow rates (Q̇oil, Q̇ms)

Q̇oil Q̇ms

0

2

4

6

8

10

Pe
rc
e
n
ta
g
e
 (

%
)

Deviation (δ) and Uncertainty (U95)

δ U95(Q̇oil - Q̇ms)

12:30 12:45 13:00 13:15 13:30 13:45 14:00 14:15
Local time (h)

7.710

7.715

7.720

7.725

7.730

7.735

h
lo
ss

 (
W

/(
m

2
K

))

Thermal losses heat transfer coefficient (hloss)

Figure 5. Steady-state case with thermal losses: thermal oil
and molten salt heat flow rate deviation.

For the calibration of the x1 and x2 parameters, the
JModelica.org tool (Åkesson et al., 2010) has been used.
The optimization problem was formulated according to
eq. 25, where n is the number of measures and ti repre-
sents a time instant.

min
x1,x2

n

∑
i=0

(Q̇oil(ti)− Q̇ms(ti,x1,x2))
2. (25)

The Nelder-Mead simplex optimization algorithm (Conn
et al., 2009) performed the calibration process, the three
considered experimental data sets are equally distributed,
therefore each of them has n/3 measures. As a result of
the calibration, the following values were obtained: x1 =
1.1858 and x2 =−0.9545. Therefore, eq. 20 is modified
as eq. 26,

jloss = 1.1858Re−0.9545
loss . (26)

Heat flow rates from experimental data presented in sec-
tion 3 are evaluated in figure 5, but in this case consid-
ering thermal losses according to eqs. 23, 24, 19 and 26.
It can be seen that there is a good agreement between
both heat flow rates since the difference is lower than the
uncertainty.

Figure 6 shows heat flow rates in an experiment repli-
cating cloud disturbances in the solar field, since the in-
let thermal oil temperature was reduced and then set it
back to its original value. Figure 7 shows another ex-
periment where steps in thermal oil and molten salt mass
flow rates were applied. It can be seen in both figures
that in steady state the deviation between both heat flow
rates is lower than the uncertainty. It can be also inferred
from the three experiments that the thermal losses heat
transfer coefficient does not vary much and a constant
value of 7.725 W/(m2 K) could be assumed.

0

50

100

150

200

250

H
e
a
t

fl
o
w

 r
a
te

 (
kW

)

Heat flow rates (Q̇oil, Q̇ms)

Q̇oil Q̇ms

0

5

10

15

20

Pe
rc
e
n
ta
g
e
 (

%
)

Deviation (δ) and Uncertainty (U95)

δ

U95(Q̇oil - Q̇ms)

11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30
Local time (h)

7.65

7.70

7.75

7.80

7.85

7.90

7.95

h
lo
ss

 (
W

/(
m

2
K

))

Thermal losses heat transfer coefficient (hloss)

Figure 6. Cloud disturbances case: thermal oil and molten salt
heat flow rate deviation.

140
160
180
200
220
240
260
280
300

H
e
a
t

fl
o
w

 r
a
te

 (
kW

)
Heat flow rates (Q̇oil, Q̇ms)

Q̇oil Q̇ms

0
2
4
6
8
10
12
14

Pe
rc
e
n
ta
g
e
 (

%
)

Deviation (δ) and Uncertainty (U95)

δ U95(Q̇oil - Q̇ms)

13:00 13:30 14:00 14:30 15:00 15:30 16:00
Local time (h)

7.65
7.70
7.75
7.80
7.85
7.90
7.95
8.00

h
lo
ss

 (
W

/(
m

2
K

))

Thermal losses heat transfer coefficient (hloss)

Figure 7. Mass flow rate steps case: thermal oil and molten
salt heat flow rate deviation.

6 Heat Transfer Calibration

A simplified dynamic heat exchanger model has been
considered in order to calibrate heat transfer correlations
for the tube side as well as for the shell side. This
dynamic model was presented in Correa and Marchetti
(1987). It is a dynamic distributed parameter model,
where each cell or Control Volume (CV) is a small
lumped parameter counter-flow heat exchanger model.
This model considers the thermal capacitance of the tube
bundle but it neglects that of the shell metallic parts and
there is neither pressure loss at the shell side nor at the
tube side, thus inlet and outlet mass flow rates are equal.
Eqs. 27 and 28 represent the energy balance for the tube
side and the shell side respectively in each cell of the
model.

Experimental Calibration of Heat Transfer and Thermal Losses in a Shell-and-Tube Heat Exchanger

878 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118873

Coil

dToil,out

dt
= ṁoilcp,oil(Toil,in −Toil,out)+ Q̇oil , (27)

Cms

dTms,out

dt
= ṁmscp,ms(Tms,in −Tms,out)+ Q̇ms, (28)

where heat capacities are defined by eqs. 29 and 30,

Coil = moilcp,oil +
1
2

mwcp,w, (29)

Cms = mmscp,ms +
1
2

mwcp,w, (30)

and heat flow rates by eqs. 31 and 32,

Q̇oil = hAw(Tms,out −Toil,out), (31)

Q̇ms = hAw(Toil,out −Tms,out)− Q̇loss. (32)

The overall heat transfer coefficient (h) can be calculated
by eq. 33,

1
h
=

1
hoil

+
1

hms

, (33)

and thermal losses by eq. 24. Thermal losses have been
already calibrated in section 5 and are included in the
model by means of eqs. 24, 19 and 26.

Several heat transfer correlations have been imple-
mented in the model and compared against experimen-
tal data. In the shell side: Gaddis and Gnielinski (VDI,
2010), the Bell-Delaware method (Thulukkanam, 2013)
and a correlation proposed in Serth (2007) which is
a curve fit from data provided in Kraus et al. (2002),
whereas in the tube side: Gnielinski (1976), Dittus and
Boelter (1930) and Hausen (1943) correlations have been
also tested.

However, simulation results did not agree with ex-
perimental data. This is because there are performance
losses in this heat exchanger (Bonilla et al., 2015). The
most common causes for deterioration in performance
of F-shell heat exchangers are thermal leakage or phys-
ical leakage due to the longitudinal baffle (Mukherjee,
2004) together with fouling, corrosion, design errors and
fabrication issues. Additionally, two potential issues
were identified with this heat exchanger, as presented
in Rodríguez-García et al. (2014). One of them is the
bypass of molten salt through the drainage channels and
the other one is the nitrogen accumulation inside the shell
due to the heat exchanger tilt angle. Further investigation
is necessary, but in order to have an available dynamic
model of the heat exchanger, heat transfer correlations
have been calibrated with experimental data.

The shell-side heat transfer coefficient (hms) is defined
considering eq. 19. The characteristic dimension is the
outer tube diameter of the tubes in the tube bundle. The
tube-side heat transfer coefficient (hoil) is defined con-
sidering eq. 18, where the characteristic dimension is
the inner tube diameter and the friction factor has been
calculated considering the Filonenko (1954) correlation,
eq. 34,

fw = (1.82logReoil −1.64)−2. (34)

The remaining coefficients, x1, x2 (from eq. 20), x3 and
x4 (from eq. 18) have been calibrated considering exper-
imental data.

In Correa and Marchetti (1987), the number of cells
was the number of baffles plus one multiply by the num-
ber of tube passes, however in our case that could make
a total of 160 CVs, since the studied heat exchanger has
39 baffles per unit with two passes per unit. In order to
reduce the time required for the calibration, the number
of cells has been set to 80 CVs. Comparing simulation
results, it can be stated that the maximum difference in
outlet molten salt and thermal oil temperatures between
the 160-CV and 80-CV models is lower than 1 ◦C.

The JModelica.org tool has been also used to perform
the calibration process with the same experimental data
sets and algorithm than for the calibration of heat losses.
The optimization problem was formulated according to
eq. 35.

min
x1···x4

n

∑
i=0

((Toil,out,exp(ti)−Toil,out,sim(ti,x1,x2))
2+

(Tms,out,exp(ti)−Tms,out,sim(ti,x3,x4))
2).

(35)

As a result of the calibration, the following values were
obtained: x1 = 3.2470, x2 = −1.1077, x3 = 1792 and
x4 = 29.93. Therefore, eqs. 20 and 18 are modified as
eqs. 36 and 37,

jms = 3.2470Re−1.1077
ms , (36)

Nuoil =

fw

8
(Reoil −1792)Proil

1+29.93
√

fw/8(Pr
2/3
oil −1)

[

1+
(

dw

lw

)2/3
]

.

(37)

The three cases, previously analyzed in section 5, are
also presented in this section in terms of temperature.

Figure 8 shows, for the steady-state case, the exper-
imental inlet, experimental outlet and simulated outlet
molten salt and thermal oil temperatures together with
temperature differences between experimental and sim-
ulated outlet temperatures for both fluids. It can be seen
that there is a good agreement, where the maximum dif-
ference between experimental and simulated outlet tem-
perature for both fluid is lower than 3 ◦C. Figure 9 shows
inlet mass flow rates and heat transfer coefficients for
both fluids. Same information is shown in Figures 10
and 11, but in this case for the experiment which repli-
cates cloud disturbances. The experimental and simu-
lated outlet temperature differences for both fluids are
lower than 5 ◦C in general, only when the inlet thermal
oil temperature is decreased (12:40 in Figure 10), the dy-
namic model reacts much faster than the real system in
terms of thermal oil outlet temperature. This must be
further studied, it might be related to unmodeled dynam-
ics, such as the inlet and outlet channels in the tube side
of each unit in the heat exchanger, approximate heat ca-
pacities or to issues in the thermocouple. Finally, same
information is also shown for the case of mass flow rate

Poster Session

DOI
10.3384/ecp15118873

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

879

280

290

300

310

320

330

340

350

360

T
e
m

p
e
ra

tu
re

 (
◦ C

)

Molten salt temperatures
Tms,exp,in Tms,exp,out Tms,sim,out

310

320

330

340

350

360

370

380

T
e
m

p
e
ra

tu
re

 (
◦ C

)

Thermal oil temperatures
Toil,exp,in Toil,exp,out Toil,sim,out

12:45 13:15 13:45 14:15
Local time (h)

−3

−2

−1

0

1

2

T
e
m

p
e
ra

tu
re

 d
if
fe

re
n
ce

 (
◦ C

)

Experimental and simulated temperature differences
∆Tms ∆Toil

Figure 8. Steady-state case: temperatures.

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

M
a
ss
 f
lo
w
 r
a
te
 (
kg
/s
)

Mass flow rates
ṁoil,exp,in ṁms,exp,in

12:45 13:15 13:45 14:15
Local time (h)

100

120

140

160

180

200

220

240

260

280

H
e
a
t
tr
a
n
sf
e
r
co
e
ff
ic
ie
n
t
(W

/(
m

2
 K
)) Heat transfer coefficientshoil hms

Figure 9. Steady-state case: mass flow rates and heat transfer
coefficients.

280

290

300

310

320

330

340

350

360

T
e
m

p
e
ra

tu
re

 (
◦ C

)

Molten salt temperatures
Tms,exp,in Tms,exp,out Tms,sim,out

300

310

320

330

340

350

360

370

380

390

T
e
m

p
e
ra

tu
re

 (
◦ C

)

Thermal oil temperatures
Toil,exp,in Toil,exp,out Toil,sim,out

11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30
Local time (h)

−10

−5

0

5

10

15

T
e
m

p
e
ra

tu
re

 d
if
fe

re
n
ce

 (
◦ C

)

Experimental and simulated temperature differences
∆Tms ∆Toil

Figure 10. Cloud disturbances case: temperatures.

1.2

1.4

1.6

1.8

2.0

2.2

M
a
ss
 f
lo
w
 r
a
te
 (
kg

/s
)

Mass flow rates
ṁoil,exp,in ṁms,exp,in

11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30
Local time (h)

100

150

200

250

300

H
e
a
t
tr
a
n
sf
e
r
co

e
ff
ic
ie
n
t
(W

/(
m

2
 K
)) Heat transfer coefficientshoil hms

Figure 11. Cloud disturbances case: mass flow rates and heat
transfer coefficients.

Experimental Calibration of Heat Transfer and Thermal Losses in a Shell-and-Tube Heat Exchanger

880 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118873

280

290

300

310

320

330

340

350

360

T
e
m

p
e
ra

tu
re

 (
◦ C

)

Molten salt temperatures
Tms,exp,in Tms,exp,out Tms,sim,out

310

320

330

340

350

360

370

380

T
e
m

p
e
ra

tu
re

 (
◦ C

)

Thermal oil temperatures
Toil,exp,in Toil,exp,out Toil,sim,out

13:30 14:00 14:30 15:00 15:30 16:00
Local time (h)

−6

−5

−4

−3

−2

−1

0

1

2

3

T
e
m

p
e
ra

tu
re

 d
if
fe

re
n
ce

 (
◦ C

)

Experimental and simulated temperature differences
∆Tms ∆Toil

Figure 12. Mass flow rate steps case: temperatures.

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
a
ss

 f
lo

w
 r
a
te

 (
kg

/s
)

Mass flow rates
ṁoil,exp,in ṁms,exp,in

13:30 14:00 14:30 15:00 15:30 16:00
Local time (h)

100

150

200

250

300

350

400

H
e
a
t
tr

a
n
sf

e
r
co

e
ff
ic

ie
n
t
(W

/(
m

2
 K

)) Heat transfer coefficientshoil hms

Figure 13. Mass flow rate steps case: mass flow rates and heat
transfer coefficients.

steps in both fluids, as shown in Figures 12 and 13, where
the experimental and simulated outlet temperature differ-
ences for both fluid are lower than 5.5 ◦C. There are two
issues that must be studied in this case. The first one is
the dynamic model response to the thermal oil mass flow
rate step (14:05 in Figure 12), again the dynamic model
is faster than the real system. And the second one is the
increase in molten salt outlet temperature (15:00 in Fig-
ure 12), when the molten salt mass flow rate is decreased
(see Figure 13). This behavior does not occur in the real
system.

7 Conclusions and Ongoing Work

This paper has shown a methodology to estimate thermal
losses and heat transfer correlations using Modelica and
JModelica.org rather than final results, since further ex-
perimental campaigns in the facility are required in order
to calibrate, if necessary, and validate the developed cor-
relations in a wider range of operating conditions. Nev-
ertheless, experimental data has been used to fit param-
eters in commonly used heat transfer correlation expres-
sions and simulation results have been compared against
experimental data with a good agreement.

Ongoing work includes integrating the calibrated cor-
relations in a more detailed model of the heat exchanger
(Bonilla et al., 2015), improving the detailed model con-
sidering a more detailed shell model as well as tube bun-
dle model applying the cell method but particularized
for a F-shell heat exchanger, as demonstrated in Zaver-
sky et al. (2014), studying the causes of the performance
losses in the heat exchanger and performing additional
experimental campaigns to validate the results.

References

J. Åkesson, K. E. Årzén, M. Gäfvert, T. Bergdahl, and
H. Tummescheit. Modeling and optimization with Opti-
mica and JModelica.org-Languages and tools for solving
large-scale dynamic optimization problems. Computers and

Chemical Engineering, 34(11):1737–1749, 2010. ISSN
00981354. doi:10.1016/j.compchemeng.2009.11.011.

J. Bonilla, M.-M. Rodríguez-García, L. Roca, and L. Valen-
zuela. Object-Oriented Modeling of a Multi-Pass Shell-and-
Tube Heat Exchanger and its Application to Performance
Evaluation. In 1st Conference on Modelling, Identification

and Control of Nonlinear Systems (MICNON), pages 107 –
112, Saint-Petersburg, Russia, 2015.

Y. A. Çengel. Heat Transfer: A Practical Approach (3rd

edition). McGraw-Hill series in mechanical engineering.
McGraw-Hill, 2006. ISBN 9780072458930.

A. Conn, K. Scheinberg, and L. Vicente. Intro-

duction to Derivative-Free Optimization. Soci-
ety for Industrial and Applied Mathematics, 2009.
doi:10.1137/1.9780898718768.

D. J. Correa and J. L. Marchetti. Dynamic Simulation of Shell-
and-Tube Heat Exchangers. Heat Transfer Engineering, 8
(1):50 – 59, 1987. doi:10.1080/01457638708962787.

Poster Session

DOI
10.3384/ecp15118873

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

881

F. W. Dittus and L. M. K. Boelter. Heat transfer in automo-
bile radiators of the tubular type. University of California

Publications in Engineering, 2(1):443–461, 1930. ISSN
07351933. doi:10.1016/0735-1933(85)90003-X.

R. Ferri, A. Cammi, and D. Mazzei. Molten salt mixture
properties in RELAP5 code for thermodynamic solar ap-
plications. International Journal of Thermal Sciences,
47(12):1676–1687, December 2008. ISSN 12900729.
doi:10.1016/j.ijthermalsci.2008.01.007.

G. K. Filonenko. Hydraulic drag in pipes. Teploenergetika, 1
(4):40 – 44, 1954.

V. Gnielinski. New equations for heat and mass transfer in tur-
bulent pipe flow and channel flow. International Chemical

Engineering, 2(16):359–368, 1976.

J. C. Gomez, G. C. Glatzmaier, and M. Mehos. Heat Ca-
pacity Uncertainty Calculation for the Eutectic Mixture of
Biphenyl / Diphenyl Ether Used As Heat Transfer Fluid. So-

larPaces Conference, (September), 2012.

H. Hausen. Darstellung des Wärmeüberganges in Rohren
durch verallgemeinerte Potenzbeziehyngen. VDI - Ver-

fahrenstechnik, 4:91–98, 1943.

U. Herrmann and D. W. Kearney. Survey of Thermal Energy
Storage for Parabolic Trough Power Plants. Journal of Solar

Energy Engineering, 124(2):145, 2002. ISSN 01996231.
doi:10.1115/1.1467601.

U. Herrmann, B. Kelly, and H. Price. Two-tank molten
salt storage for parabolic trough solar power plants. En-

ergy, 29(5-6):883–893, April 2004. ISSN 03605442.
doi:10.1016/S0360-5442(03)00193-2.

International Organization of Standardization. ISO/IEC Guide
98-3:2008 Uncertainty of measurement – Part 3: Guide to
the expression of uncertainty in measurement (GUM:1995).
Technical report, Switzerland, 2008.

G. J. Janz, U. Krebs, H. F. Siegenthaler, and R. P. T. Tomkins.
Molten Salts: Volume 3 Nitrates, Nitrites, and Mixtures:
Electrical Conductance, Density, Viscosity, and Surface
Tension Data, 1972. ISSN 00472689.

A. D. Kraus, A. Aziz, and J. Welty. Extended Surface Heat

Transfer. Wiley, 2002. ISBN 9780471436638.

R. Mukherjee. Does Your Application Call for an F-Shell Heat
Exchanger? CEP magazine, (April):40–45, 2004.

B. S. Petukhov. Heat Transfer and Friction in Turbulent
Pipe Flow with Variable Physical Properties. Advances

in Heat Transfer, 6(C):504–564, 1970. ISSN 00652717.
doi:10.1016/S0065-2717(08)70153-9.

L. Prandtl. Eine Beziehung zwischen Warmeaustausch und
Stromungswiderstand der Flussigkeiten. Physik Z, 11:1072
– 1075, 1910.

M.-M. Rodríguez-García. First Experimental Results of a PTC
Facility Using Gas as the Heat Transfer Fluid. In 15th So-

larPACES Conference, Berlin, Germany, 2009.

M.-M. Rodríguez-García and E. Zarza. Design and Con-
struction of an Experimental Molten Salt Test Loop. In
17thSolarPACES Conference, Granada, Spain, 2011.

M.-M. Rodríguez-García, M. Herrador-Moreno, and E. Zarza
Moya. Lessons learnt during the design, construction and
start-up phase of a molten salt testing facility. Applied

Thermal Engineering, 62(2):520–528, January 2014. ISSN
13594311. doi:10.1016/j.applthermaleng.2013.09.040.

R. W. Serth. Process Heat Transfer: Principles and Applica-

tions. Elsevier Science, 2007. ISBN 9780123735881.

Solutia. Therminol VP-1 heat transfer fluid - Vapour and Liq-
uid phases. Technical bulletin 7239115C, 2008.

D. Taler. Experimental determination of correlations for av-
erage heat transfer coefficients in heat exchangers on both
fluid sides. Heat and Mass Transfer/Waerme- und Stof-

fuebertragung, 49(8):1125–1139, 2013. ISSN 14321181.
doi:10.1007/s00231-013-1148-5.

K. Thulukkanam. Shell and Tube Heat Exchanger Design. In
Heat Exchanger Design Handbook, Second Edition, Dekker
Mechanical Engineering, pages 237–336. CRC Press, 2013.
ISBN 978-1-4398-4212-6. doi:doi:10.1201/b14877-6.

VDI. VDI Heat Atlas. Springer, 2nd edition, 2010. ISBN
9783540778769.

K. Wichterle. A theoretical viscosity correction factor for
heat transfer and friction in pipe flow. Chemical Engineer-

ing Science, 45(5):1343 – 1347, 1990. ISSN 00092509.
doi:10.1016/0009-2509(91)85083-A.

F. Zaversky, M. M. Rodríguez-García, J. García-Barberena,
M. Sánchez, and D. Astrain. Transient behavior of
an active indirect two-tank thermal energy storage sys-
tem during changes in operating mode - An application
of an experimentally validated numerical model. En-

ergy Procedia, 49:1078–1087, 2013. ISSN 18766102.
doi:10.1016/j.egypro.2014.03.117.

F. Zaversky, M. Sánchez, and D. Astrain. Object-oriented
modeling for the transient response simulation of multi-
pass shell-and-tube heat exchangers as applied in active in-
direct thermal energy storage systems for concentrated so-
lar power. Energy, 65:647–664, February 2014. ISSN
03605442. doi:10.1016/j.energy.2013.11.070.

A. B. Zavoico. Solar Power Tower - Design Basis Document.
Technical Report SAND2001-2100, Sandia National Labo-
ratories, Albuquerque, USA, 2001.

Acknowledgments

This research has been funded by the EU 7th Framework
Programme (Theme Energy 2012.2.5.2) under grant
agreement 308912 - HYSOL project - Innovative Con-
figuration of a Fully Renewable Hybrid CSP Plant and
the Spanish Ministry of Economy and Competitiveness
through ERDF and PLAN E funds (C.N. SolarNOVA
ICT-CEPU 2009-02).

Experimental Calibration of Heat Transfer and Thermal Losses in a Shell-and-Tube Heat Exchanger

882 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118873

Suitability of Different Real-Time Solvers for a Model-Based

Engineering Toolchain using Industrial Rexroth Controllers

Nils Menager1 Rüdiger Kampfmann1 Niklas Worschech1 Lars Mikelsons1

1Bosch Rexroth AG, Lohr a. Main, Germany {nils.menager, fixed-term.ruediger.kampfmann,

niklas.worschech, lars.mikelsons}@boschrexroth.de

Abstract

Due to the increasing complexity of technical systems,
model-based engineering is getting more and more im-
portant during the development process of new products.
The code generation from models and the usage of this
code on hardware targets is one important feature of
model-based development. To execute this code on the
hardware device, a simulation runtime is additionally
required, which offers numerical methods to solve the
model equations. To use generated code on a controller,
the simulation has to be executed in real-time, which
is a huge requirement for the solver. In this work, a
Modelica-based open source toolchain for model-based
engineering with Rexroth controllers is presented, which
is used for virtual commissioning of a typical hydro-
mechanical system on a standard Rexroth PLC. There-
fore, instead of parameterizing the controller directly on
the real system, the control algorithm on the PLC is con-
nected to the system model, which is additionally exe-
cuted on the controller in parallel to the existing PLC
application. Doing this, the commissioning times can be
reduced significantly, as the commissioning process can
already be started during the build-up of the system using
a simulation model of the system. As hydro-mechanical
systems are in general mathematically stiff, the choice of
the solver for the system model equations is not arbitrary.
In this work, five different real-time solvers, beginning
with a simple explicit Euler through to more complex
linearly implicit methods, are tested on a single hydraulic
axis. Furthermore, typical issues like state events as well
as algebraic loops are discussed in context of real-time
simulation requirements.

Keywords: Real-time simulation, Modelica, Hardware-

In-The-Loop, code generation, model-based engineer-

ing, real-time solver

1 Introduction

The increasing complexity of technical systems nowa-
days requires a change from conventional development
methods towards model-based engineering. This means,

that the entire development process through to the com-
missioning of the system is supported by models. A
consistent application of this approach reduces time and
costs, for example by shorter iterations and avoiding
multiple implementations. An important component of
model-based engineering is code generation, meaning
the generation of code out of simulation and engineer-
ing tools.

The generated code can be used for different fields of
application. One important field is Rapid Control Proto-
typing. During the development process of a new tech-
nical system, generally, a simulation model of the plant
and the controller is set up inside a simulation environ-
ment. Later, during the commissioning of the system,
the control algorithm has to be implemented on the hard-
ware controller. Here, until now, the existing model is
not used any further. Instead, the controller architecture
is implemented from scratch inside the development en-
vironment of the controller, which leads to some serious
drawbacks. First, a re-implementation of existing code
always means extra time and costs, which are not neces-
sary. Second, as the existing code is re-implemented in
another language (mostly PLC programming languages),
it cannot be guaranteed, that the newly implemented con-
troller behaves in the same way as the previously de-
signed controller inside the simulation environment. Of
course, a re-implementation of code always means a po-
tential error source. To avoid these disadvantages, it is
desirable to use the already existing model also on the
hardware controller. This can be realized by generating
code from the controller model.

Besides the use of controller models directly as con-
troller on a hardware PLC, there are several other fields
of application to use simulation models on industrial
controller hardware. One is the usage of simulation mod-
els in parallel to the control algorithm on the controller
for system diagnosis. The difference between the sim-
ulated behavior and a measurement on the real system
may imply different errors inside the real system.

Furthermore, it is possible to detect even upcoming er-
rors, which can reduce downtimes of systems and hence

DOI
10.3384/ecp15118883

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

883

reduces costs. It is imaginable to use the simulation
model also for the control of the system using modern
control strategies like Model Predictive Control. Here,
with help of a dynamic model, which is set up during the
development process anyway, the future behavior of the
system is precalculated. This precalculation, in combi-
nation of a measurement of the current system behavior,
is then used to determine an optimal control input to the
system for the next time step.

There are already possibilities to generate code from
simulation models and to run this code on real-time
targets, for example using a toolchain based on MAT-
LAB/Simulink. For Bosch Rexroth, this toolchain has
some serious disadvantages. One is the fact, that the for-
mer described toolchain causes high costs due to the li-
cence fees. Standard Rexroth customers have often no
possibility to buy the software, which means that this
toolchain is not accessible for them. Furthermore, the
code generation module of Simulink is a black box. It is
not possible to modify the code generation, for example
if already existing basic functions (e.g. from an applica-
tion programming interface) of the controller should di-
rectly be integrated into the generated code. Another dis-
advantage is the release frequency of MATLAB/Simulink
(in general two new releases per year). As it remains un-
clear, whether there were changes inside the code gener-
ation module, all existing models have to be tested again
with every new release of MATLAB/Simulink.

To avoid the disadvantages of the Simulink toolchain,
an alternative toolchain based on Modelica models has
been developed. This toolchain allows the user to exe-
cute Modelica models directly on Rexroth control hard-
ware. To run the models on the controller, a simulation
runtime is additionally necessary. Bosch Rexroth devel-
opes an own simulation runtime, written in C++. The
simulation runtime manages the simulation, includes the
numerical methods to solve the equations, is responsible
for the data handling during the simulation and handles
occuring events.

As the models should, for example, be used to control
systems on real hardware targets, it is mandatory to run
the execution of the controller model in real-time. The
real-time simulation of a model is a huge requirement
for the solver, as most of the common numerical meth-
ods (implicit methods like CVode and Radau) to solve the
occuring equations cannot be used anymore, as they con-
tain iterative elements, which make the execution time
non-predictable. Hence, in this work, it is investigated,
which numerical methods are suitable to simulate hydro-
mechanical systems, which are in general mathemati-
cally stiff, under consideration of real-time requirements.
Therefore, five different numerical ODE solver are com-
pared regarding the suitability and accuracy of the solu-
tion.

1.1 Outline of this paper

This paper is structured as follows. In the second sec-
tion, the toolchain for model-based engineering using
Modelica models is described. The third chapter deals
with numerical methods for real-time simulation. In
this chapter, a short mathematical background on the
methods is given. In the fourth chapter, a virtual com-
missioning of a commonly occuring hydro-mechanical
system (single axis system) is performed on a Bosch
Rexroth XM22 industrial controller. Therefore, the sim-
ulation model of the system is executed in parallel to the
controller code on the PLC. This is realized using the
toolchain described before. It is investigated, which of
the real-time solver presented in chapter 3 can be used to
simulate the system properly. The fifth section summa-
rizes the results of the application on the test example and
rates the different solver regarding their suitability for
real-time simulations on industrial hardware controllers.
This contribution ends with an outlook on further inves-
tigations.

2 Toolchain for model-based engi-

neering

As already described in the introduction, one main
toolchain used for model-based engineering is based on
MATLAB/Simulink for the code-generation. Customers
of small and medium-sized enterprises have often no
possibility to use MATLAB/Simulink due to high licence
fees. Furthermore, a toolchain based on a commercial
tool has the disadvantage, that the models are in general
encapsulated inside this tool. For an integrated, model-
based engineering it is necessary to exchange models
with other tools. Therefore, a tool independent de-
scription language is essential. Hence, an alternative
toolchain has been developed. The requirements on this
toolchain are discussed in the following section, while
the realization of this toolchain is described after that.

2.1 Requirements on the toolchain

Bosch Rexroth offers both controller for industrial (e.g.
Rexroth IndraControl XM22) and mobile (e.g. BODAS
RC controller) applications. Hence, one requirement for
the toolchain is to support both controller types without
modifications on the controller. Further requirements re-
sult from the disadvantages already discussed in the in-
troduction. The code generation should be modifiable
and offer the possibility to add existing functions to the
generated code. Additionally, the toolchain should not
be mainly based on commercial tools, but on open stan-
dards. This is necessary to avoid external dependencies.
Last but not least, the toolchain should be easy to use, so
that engineers can intuitively make use of it.

Suitability of Different Real-Time Solvers for a Model-Based Engineering Toolchain using Industrial Rexroth
Controllers

884 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118883

Modelica Model OpenModelica Compiler

IndraWorksIndraControl XM22

WindRiver
Workbench

Figure 1. Structure of the Modelica-based toolchain

2.2 Realization of the toolchain

To avoid high costs and to allow an easy and uncompli-
cated re-use of models, the developed toolchain is based
on Modelica models. Modelica is a modelling language,
therefore, to generate executable code, a Modelica com-
piler is necessary. There exist both commercial (e.g. Dy-
mola) and open source (e.g. OpenModelica) compiler. In
this toolchain, of course, the open source OpenModelica
compiler is used. One part of the compiler is the code
generation. At this point, Bosch Rexroth has an own
C++ code-generation. As this code generation module
is self-written, it can easily be modified, for example if
existing C/C++ libraries of the hardware should be used.

The generated C++-code from the code generation
contains only the model. In order to execute this model,
a simulation runtime is needed. The simulation runtime
contains the numerical methods to solve the model equa-
tions and manages the simulation. This simulation run-
time is also developed at Bosch Rexroth. Hence, it di-
rectly supports the generated code from the OpenModel-
ica compiler. Both parts, the generated C++ code of the
model and the C++ code of the simulation runtime, have
then to be compiled for the control target. Therefore, a
second compiler is needed. Each controller type, the in-
dustrial and the mobile controller, has its own operating
system. Thus, a hardware-specific compiler is necessary.

The industrial controller used in this contribution is a
Rexroth IndraControl XM22. This hardware is equipped
with an Intel Atom x86 processor (1300 MHz). It works
with the real-time operating system VxWorks. To gen-
erate executable code for this OS, the Windriver Work-
bench compiler is used. Using the Windriver Workbench
compiler, both, the generated model code and the sim-
ulation runtime are compiled into a library, which is
then, using the functionality of the Motion Logic Pro-

gramming Interface (Engels and Gabler (2012)), inte-
grated into a PLC project. The MLPI is an in-house
developed interface (available in different languages as
C/C++, C#, LabView, Matlab) to access controller func-

tionalities from outside. This includes for example read-
ing/writing controller parameters and variables, starting
and stopping applications, triggering tasks or executing
motion commands. Additionally, MLPI can be used
to link externally implemented code to a PLC function
block. For setting up Rexroth industrial PLCs, Indra-

Works as development platform is used. The function
block has input and output variables, which allow the
data exchange between the simulation model and the
PLC program. The PLC project running on the controller
may then contain different function blocks, some of them
implemented in IEC 61131 code and some of them im-
plemented in C/C++. The structure of the toolchain is
shown in Figure 1.

The basis of the mobile controller is the TriCore chip.
Executable code for this target can be generated using
the HighTec TriCore compiler. It is necessary to use a
C-API, which contains all the essential functions needed
for e.g. creating tasks or apply programs to tasks. The
C-API and both, the generated code from the model and
the simulation runtime, are compiled into a .hex-file us-
ing the HighTec TriCore compiler. This file can then be
flashed onto the device using the development platform
BODAS service.

Note, that this toolchain fulfills all the requirements
discussed before. Due to the usage of the open source
OpenModelica compiler, the toolchain is less cost-
intensive. Furthermore, it is fully compatible to the
main controller types (industrial and mobile controller)
available at Bosch Rexroth without any modifications on
the hardware. Because of the own in-house developed
code generation module and simulation runtime, needed
changes, for example to use already existing external li-
braries, can easily be integrated. As the generated code is
integrated into the existing development platforms of the
controller, the engineer can keep on working in his famil-
iar tool, e.g. in case of the industrial controller, the gener-
ated code is simply connected to a function block instead
of programming the code in IEC 61131 languages. All
features of the development platform, like diagnosis or
visualization features, can be used in its entirety.

3 Introduction on numerical real-

time solver

The main focus in the development of ODE solvers,
which are suitable for industrial problems, was to re-
duce the average computation time, while maintaining
accuracy and robustness. Therefore, the widely spread
solvers like Dassl or Radau use techniques like adap-
tive step-size control, i.e. only using small stepsizes,
when necessary, or updating the Jacobian only, when
convergence fails. This yields robust as well as effective
solvers.

Poster Session

DOI
10.3384/ecp15118883

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

885

Unfortunately, the requirements for a real-time solver
are tremendously different. A solver of this kind has to
guarantee that one timestep is always finished in limited
time, i.e the real-time cycle. Thus always the worst case
runtime has to be considered. If a small stepsize is re-
quired at a certain step, for example in order to maintain
stability, this stepsize can be used everywhere, because
the real-time solver has to provide enough computation
time for the smallest required stepsize. With the same ar-
guments the Jacobian, if needed in the algorithm, can be
updated in every step. But there still remains a problem:
the common, i.e. implicit, solvers also require solving of
at least one nonlinear system. These systems require an
iterative algorithm like Newton’s method. Unfortunately,
convergence in a certain number of iterations cannot be
guaranteed.

Hence summing up all requirements, a real-time
solver is a fixed step solver without nonlinear systems.
Obviously, explicit Runge-Kutta methods fullfill these
requirements. Thus the easiest deputy of that family, the
Euler forward, is one of the most spread solvers for real-
time simulation. Unfortunately, explicit methods come
along with limited stability issues. This is especially a
problem while dealing with stiff systems, for example
hydro-mechanical problems. In section 4 it is investi-
gated, whether they can deal with a hydraulic single axis.
Therefore, the forward Euler and the classical 4th-order
Runge Kutta are tested. Additionally highly stable meth-
ods for real-time simulation are needed, in order to han-
dle stiff problems. Usually implicit Runge Kutta meth-
ods come along with good stability issues, but also with
nonlinear systems (Cellier and Kofman (2006)).

Linearizing the Runge Kutta methods yields the fam-
ily of Rosenbrock methods, also known as linear implicit
Runge Kutta methods. They exhibit the same stability
properties, while avoiding nonlinear systems. In the next
subchapter a short overview of the methods used is given.

Further problems for real-time solvers are algebraic
loops and events, because they can also require iterative
algorithms. State events are discussed in the following
sections. Nonlinear algebraic loops always require itera-
tive algorithms like Newton’s method. This means that a
worst case runtime cannot be guaranteed anymore. Thus
the models simulated in this contribution are free of this
kind of problem.

3.1 Rosenbrock methods

For the model equation, given in state space form:

∂y

∂ t
= f (y, t) y

(

t0
)

= y0

f : Rn
×

[

t0,∞
]

→ R
n t0 ∈ R y0 ∈ R

n

The simplest deputy of the Rosenbrock family is the lin-
ear implicit Euler, which is defined as:

(

1

h
I −

∂ f

∂y

(

tn,yn

)

)

u = f
(

tn,yn

)

+
∂ f

∂ t

(

tn,yn

)

yn+1 = yn +u

For higher order methods more stages are re-
quired. Therefore the efficient implementation of
(Hairer and Wanner (2002)) is used. One step is given
by:

(

1

hγii

I −
∂ f

∂y

(

tn,yn

)

)

ui = f

(

tn +αih,yn +
i−1

∑
j=1

ai ju j

)

+
i−1

∑
j=1

ci j

h
u j + γih

∂ f

∂ t

(

tn,yn

)

i = 1, . . . ,s

yn+1 = yn +
s

∑
j=1

m ju j,

whereas γi j,αi,ci j,mi are constants. Using special sets
of constants, methods of different orders can be obtained.
In this contribution, Rosenbrock methods requiring one,
two and three function evaluations per step are consid-
ered. The Rosenbrock method with one function evalua-
tion is the linear implicit Euler described before and has
therefore order one. One additional function evaluation,
together with the constants of ROS3P (Lang and Verwer
(2001)) yields a method of order three, while a method
of order four (ROS4L) can be obtained with three func-
tion evaluations and the constants of the L-stable method
described in (Hairer and Wanner (2002)). All methods
used here are A-stable, the latter is even L-stable. Note,
that using these Rosenbrock methods, the number of
necessary function evaluations is reduced by one, due
to a smart choice of the constants (Hairer and Wanner
(2002)).

The occuring Jacobian is numerically approximated
using forward finite differences and is updated once
a step. For some applications, using coloured Jaco-
bians, the number of function evaluations can be reduced
(Braun et al. (2012)).

3.2 State events

For each state event a corresponding zero function and a
boolean condition variable are generated. When a certain
state event occurs, the corresponding function changes
its sign and the condition variable becomes true. Usu-
ally in offline simulation, iterative algorithms like the
Bisection method are used to localize the zero crossing.
For real-time applications this algorithms cannot be used
due to their iterative components. Therefore, two simple

Suitability of Different Real-Time Solvers for a Model-Based Engineering Toolchain using Industrial Rexroth
Controllers

886 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118883

methods were implemented to localize the state events
without iterative parts.

The first approach is probably the simplest event han-
dling. A change of sign of the zero function is just recog-
nized and the corresponding condition variable is set to
true. No zero search algorithm is executed. Afterwards,
the equations are evaluated repeatedly until a consistent
status is reached. This means, that all condition vari-
ables do not change anymore. This procedure is known
as event iteration and is required because the occurrence
of one event might trigger another event. This approach
corresponds to replacing all state events in the Model-
ica model with the noEvent operator. Hence, the accu-
racy of this method is strictly limited. Also two or more
occuring zero crossings within one step cannot be han-
dled. The big advantage of this approach is that there is
only little additional effort and simple models with state
events can be simulated.

The second approach used is based on linear interpo-
lation. If a zero function changes its sign, the zero cross-
ing is located with linear interpolation. Afterwards, by
using linear interpolation, the states at the time of the
zero crossing are computed and the corresponding con-
dition is set to true. Then also the equations are eval-
uated repeatedly until a consistent status is reached as
mentioned above. Because only a smaller step than the
desired stepsize was executed, the simulation time is not
synchronous to the controller clock anymore. Therefore
the stepsize of the next step is increased. This procedure
only requires one integration and interpolation per step,
so that again not much additional effort is added for the
event handling. As mentioned above, using the absolute
time has to be avoided. In this case, the time relative
to the last succesful step is sufficient. For some prob-
lems, especially when the zero functions show nearly lin-
ear behaviour, this method provides quite good results.
Also multiple zero crossings in one step can be handled.
One big problem of this approach is that the occurrence
of events in one step after another may lead to the fact,
that the simulation time and the real time cannot get syn-
chronous anymore.

The main disadvantage of this two approaches is that,
without iterative algorithms, no certain accuracy can be
guaranteed for the location of the zero crossings. This
yields not only bad simulation results but also can cause
inconsistent switching, i.e the event iteration is not con-
verging and has to be aborted after a certain number of
steps. In this case, the simulation cannot be proceeded.
Also only one event per integration step can be handled.
This drawbacks have to be avoided at the model side. It
is obvious that not all models can be simulated in real
time due to their complexity. Therefore, the models have
to be simplified for online simulation. Summing up, for
applications which should run a long time, like control

algorithms, state events have to be strictly avoided. How-
ever, for applications which only run a certain time, like
the plant model for the virtual commissioning presented
in this contribution, state events can be tolerated, as long
as the models can be simulated during the required time.

4 Virtual commissioning of a single

axis system on a Rexroth PLC

In this contribution, a virtual commissioning of a hydro-
mechanical system is performed, outlining the advan-
tages of model-based engineering methods. As system,
a single hydraulic axis is considered. The Modelica rep-
resentation of this system is shown in Figure 2. The
model contains a differential cylinder, a valve to con-
trol the volume flow, the pressure supply and the tank,
and sensors to measure the piston position and the pres-
sures in chamber A and B, respectively, of the cylinder.
As already mentioned in section 3, for this contribution,
the components of the system model are simplified with
respect to events and hence do not contain any friction.
The cylinder model does consider end stops, but the cy-
clinder is only moved inside its feasible range anyway.
As controller, a P controller with velocity feed forward
and active damping, is used, which is also available in-
side the simulation environment. This motion controller
has three inputs and one output. As input, the pressures
in cylinder chambers A and B and the current piston po-
sition of the cylinder are required. The calculated output
is the valve command value. Overall, there are four con-
trol parameter to choose. As desired aim of the control, a
velocity profile for the cylinder piston is predefined. To
avoid a re-implementation of the control algorithm on
the PLC, the described toolchain is used to transfer the
simulation model of the controller on the PLC. The inte-
gration into the PLC project is realized using a function
block, which includes the required inputs and outputs,
which are used to pass the signals of the machine to the
control algorithm and get the command values from the
controller.

Until now, following the standard product develop-
ment process, the two phases system design and com-

missioning are handled independently and consecutively.
Hence, the commissioning of the system, which means
the testing and optimization of the controller code, which
is executed in real time on industrial control hardware,
can be started not until the entire system is built up and
supplied with electricity. At this time, the system is al-
ready built inside the customers buildings and therefore
ties up capital and space. If the controller code can be
tested in parallel to the system design and before the real
system is built up, the overall project time can be signif-
icantly reduced.

In order to test the controller code without having the

Poster Session

DOI
10.3384/ecp15118883

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

887

position_sensor

s

P T

A B

differential_cylinder

pressure_gauge_A

pBpA

u

s

tankpressure_supply

pressure_gauge_B

Figure 2. Simulation model of the single axis system

real system, the simulation model of the system is used
to virtually commission the controller. There are several
possibilities to perform the virtual commissioning. First,
it is possible to run the simulation inside the simulation
environment on a basic desktop computer. The hard-
ware controller is then connected to the computer using
a Hardware-In-The-Loop-setup. This approach has the
disadvantage, that the simulation of the system is not ex-
ecuted in real time. Therefore, to synchronize the simu-
lation and the hardware controller, the controller has to
be slowed down to the simulation speed (Hofmann et al.
(2015)). Hence, the real-time capability can not be veri-
fied using this strategy. A second possibility is to run the
simulation on a special real-time hardware. With this ap-
proach, the real-time capability can be investigated, but
additional hardware, which is only used for the commis-
sioning, is necessary, which leads to high costs. This
drawback can be avoided, if the PLC itself is used as
real-time platform. As this hardware exists anyway to
run the controller code, the simulation code of the plant,
which is necessary for the virtual commissioning, can be
executed in parallel on the same hardware. Thus, no ad-
ditional hardware is needed in this case.

The simulation model of the system, which is avail-
able in Modelica, is also attached to a function block in-
side IndraWorks using the toolchain described in section
2.2. The three inputs of the controller are connected to
the corresponding outputs of the function block contain-
ing the simulation model. In the same way, the output
of the controller function block is connected to the in-
put of the plant function block. To simulate the system
behaviour properly, the calculation has to happen in real
time. As the hydro-mechanical system is mathematically
stiff, the used solver has to be chosen deliberately. The
cycle time for the controller and the step size for the sim-
ulation is set to 1 ms.

4.1 Investigation on different solvers for the

simulation

In a first step, before the virtual commissioning is per-
formed, it is investigated, which solver is suitable to
simulate the plant model and offers the best accuracy.
Therefore, only the simulation of the system, without
influences from the controller, is considered. This is
necessary, because the controller can, under certain cir-
cumstances, compensate potential errors of the numeri-
cal method.

Hence, a special stimulus (sine with frequency f =
0.5Hz and amplitude ŷ = 2) is applied to the input of the
system, which is the input on the valve. The simulation
results using the different solvers are finally compared
to reference results. Reference results are obtained us-
ing the CVode solver in an offline simulation. Figure
3 shows the reference result for the output variable, the
piston position of the cylinder.

Five different solver, the explicit Euler method, the
explicit 4th order Runge-Kutta method as well as three
different linear implicit Rosenbrock methods (order one,
three and four), are used to simulate the single axis
model.

4.1.1 Explicit methods

The Euler forward method is an explicit method and
the easiest way to solve differential equations. There-
fore, this numerical method is often used for real-time
simulation. Because of the limited stability region
(Cellier and Kofman (2006)), this method is not suitable
for solving mathematically stiff systems like the hydro-
mechanical single axis system. Using the forward Eu-
ler method in order to simulate, some variables attain
physically nonsensical values (e.g. negative pressures).
Hence, the simulation fails.

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

Time [s]

P
is

to
n

 P
o

s
it
io

n
 [

m
]

Figure 3. Reference result Piston Position generated with
CVode

Suitability of Different Real-Time Solvers for a Model-Based Engineering Toolchain using Industrial Rexroth
Controllers

888 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118883

The explicit 4th order Runge Kutta method is also not
suitable for stiff systems and shows the same behaviour
as the forward Euler. Using this method, the simulation
fails for the same reasons as mentioned above.

4.1.2 Rosenbrock methods

The Rosenbrock methods of order one, three and four
can be used to simulate the system. In order to evaluate
the accuracy of the method, the difference between the
simulation result using each solver and the reference re-
sult is plotted. This difference can be seen in Figure 4.
For the simulation, a step size of h = 20ms is used.

4.2 Investigation on event handling using the

example of a bouncing ball

The implemented event handling is tested in combina-
tion with the bouncing ball example. Both approaches
described in chapter 3, with and without interpolation of
the zero function, illustrate the physical effect, as soon as
the ball hits the underground. But there are differences,
when it comes to accuracy. The bouncing ball model is
simulated for 0,75 s with a cycle time of 10ms and the
ROS4L. During this time, the ball hits the ground exactly
once. Figure 5 shows the simulation results.

Without any interpolation, the event is detected 39mm
below the underground (red curve). When using a lin-
ear interpolation to determine the zero crossing more
precisely, the penetration of the ball can be reduced to
10−9 mm (blue curve). Even though the good accuracy
might result from the fact, that the zero function for this
example does not differ much from a straight line, it can
be seen, that the linear interpolation yields convenient
results, at least for some problems.

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5
x 10

−3

Time [s]

D
if
fe

re
n

c
e

 t
o

 r
e

fe
re

n
c
e

 r
e

s
u

lt
 [

m
]

Figure 4. Difference between Rosenbrock methods and ref-
erence result [red: linear-implicit Euler; green: Rosenbrock
method order 3 (ROS3P); blue: Rosenbrock method 4 (L-
stable)]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time [s]

P
o
s
it
io

n
 [
m

]

Figure 5. Bouncing Ball [red: with interpolation of zero func-
tion; blue: without interpolation of zero function]

In case, that more complex systems with multiple
events are regarded, this simple state-event handling does
not work. This applies for example for a complex stick-
slip friction model. Hence, such effects are not included
in the single axis model used in this contribution.

4.3 Practical application of the virtual com-

missioning

For the virtual commissioning, the stimulus described in
section 4.1 is removed and the model is coupled with the
controller on the PLC and then simulated in real time.

As the explicit methods fail to solve the plant model
equations anyway, only the Rosenbrock methods are
considered for the virtual commissioning. Within these
methods, the main computational effort is not induced
by the methods themselves, but through the function and
Jacobian evaluations. Hence, in order to achieve the de-
sired cycle time of 1 ms, the linear implicit Euler method
is chosen for the virtual commissioning of the single
axis, because it needs only one function and Jacobian
evaluation per step. As shown in the passage above, this
method yields the worst results, however the accuracy is
still good enough for this problem.

Figure 6 shows the results of the virtual comission-
ing. The actual position of the piston and the desired one
show a very good agreement. So the parameterization of
the controller is appropiate for this problem and the con-
troller can be used on the real system. Using the method
of virtual commissioning, the commissioning time can
be reduced significantly. Even though the control algo-
rithm is tested and parameterized after the virtual com-
missioning, a fine adjustment of the control parameters
has to be performed, as soon as the control hardware is
connected to the real machine. This is necessary, be-

Poster Session

DOI
10.3384/ecp15118883

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

889

0 1 2 3 4 5 6 7 8 9
−20

0

20

40

60

80

100

120

Time [s]

P
is

to
n
 p

o
s
it
io

n
 [
m

m
]

Figure 6. Comparison of the desired and actual behaviour
after performing the virtual commissioning; used numerical
method: Rosenbrock order 1

cause the behaviour of the virtual plant differs from the
real system due to model inaccuracies.

5 Conclusion

In this work, a toolchain to run Modelica models on real
hardware controller is presented. This toolchain allows
the user to link both, the C/C++ code generated from
the Modelica models and a simulation runtime to exe-
cute the simulation, to a PLC function block. Using this
toolchain, it is possible to realize a virtual commission-
ing. The method of virtual commissioning allows the en-
gineer to test and optimize the controller code before the
real system exists. The controller on the PLC is therefore
connected to the simulation model, which is running on
the PLC, instead of the real system. The PLC acts in this
case as both, a classical PLC for the control tasks and a
real-time hardware target to simulate the virtual plant, at
the same time. To run the simulation in real time, special
numerical methods with real-time capability are neces-
sary.

Therefore, different real-time solver were compared.
In a first benchmark, the accuracy of the solver was an-
alyzed on a mathematical stiff hydro-mechanical system
(single axis system). It was shown, that explicit integra-
tion methods, such as the commonly used Euler forward
and explicit Runge Kutta methods, fail to solve the oc-
curing model equations and are therefore not usable for
the simulation of plant models. The Rosenbrock meth-
ods presented in section 3.1, on the other hand, are in
general suitable to solve stiff differential equations. As
expected, the accuracy of the result depends on the or-
der of the numerical method. The higher the order of the
method, the smaller the error for a constant step size (see
Figure 4).

When using simulation models on a hardware in real
time, some issues have to be considered. While state
events have to be strictly avoided, if the model, e.g. a
control algorithm, is proposed to run within a real life
application, they can be tolerated in models, which are
only used for testing in a defined time range. This applies
to the plant model used for the virtual commissioning.

6 Outlook

A different approach is, instead of designing a separate
control algorithm like the P controller with velocity feed
forward, to use the plant model directly for the control
realizing a Model Predictive Control. Using this method,
an optimal control problem has to be solved in every real-
time cycle. The solution of the optimal control problem
is equivalent to the optimal control input to the system
in the next time step. The computation of the dynamic
optimization problem is very time-consuming, which is
a huge challenge.

Plant models, which contain numerous events, are still
a problem for numerical real-time solvers. To improve
the performance of the Rosenbrock methods in combi-
nation with state events is still an open task. As it is
described, several state events like end stops (e.g. in the
cylinder or the ground in the bouncing ball example) can
be handled already now. Other events, especially deriv-
ing from friction, do not work properly today.

Especially if small cycle-times are required for the
control, efficient code is essential to reduce simulation
times. For the simulation of the models on the hardware
target, the entire simulation runtime, which is also used
for offline simulations, is utilized. This runtime contains
features, like writing output files or dynamic state selec-
tion, which are not necessary for real-time simulations.

References

W. Braun, S. Gallardo-Yances, K. Link, and B. Bachmann.
Fast simulation of fluid models with colored jacobians. In
Proceedings of the 9th Modelica Conference, Munich, Ger-

many, Modelica Association, 2012.

F. E. Cellier and E. Kofman. Continuous System Simulation.
Springer, 2006.

E. Engels and T. Gabler. Universelle Programmierschnittstelle
für Motion-Logic Systeme. In Struktur, Funktionen und

Anwendung in Forschung und Lehre, Tagungsband AALE,
2012.

E. Hairer and G. Wanner. Solving Ordinary Differential

Equations II - Stiff and Differential-Algebraic Problems.
Springer, 2002.

Suitability of Different Real-Time Solvers for a Model-Based Engineering Toolchain using Industrial Rexroth
Controllers

890 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118883

A. Hofmann, S. Schweig, and L. Mikelsons. Virtuelle Inbe-
triebnahme mechatronischer Systeme unter Einbeziehung
realer Industriesteuerungen von Bosch Rexroth. In
Tagungsband Mechatronik 2015, VDI Mechatroniktagung

2015 am 12.-13. März 2015 in Dortmund, 2015.

J. Lang and J. Verwer. ROS3P - an accurate third-order Rosen-
brock solver designed for parabolic problems. BIT Numeri-

cal Mathematics, 41(4):731–738, 2001.

Poster Session

DOI
10.3384/ecp15118883

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

891

892 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Integrated Engineering based on Modelica

Andreas Hofmann1 Nils Menager1 Issam Belhaj2 Lars Mikelsons1

1Bosch Rexroth AG, Germany, {andreas.hofmann7,nils.menager,
lars.mikelsons}@boschrexroth.de

2Dassault Systèmes, France, Issam.Belhaj@3ds.com

Abstract

The academic society claims the use of virtual engineer-
ing (i.e. simulation) since many years. Nevertheless, it is
de facto rarely ever used in the automation industry. This
paper presents an approach and a toolchain for an in-
tegrated, digital engineering workflow including virtual
commissioning, shown at a real industrial example. In
particular, a new method for virtual commissioning that
allows to drop all real-time requirements is presented.

Cyber-physical production systems rising with the
concepts of industry 4.0 have a complexity that conven-
tional engineering methods cannot bear. Therefore, the
time has come to finally use model-based systems en-
gineering methodologies that were proposed years ago,
e.g. (Verein Deutscher Ingnieure (2004)). Nevertheless,
the automation industry acts very conservative towards
new technology. This is mainly due to the distrust that
model-based methods can be used in an economic man-
ner. Within the development cycle in the automation in-
dustry CAD models are used, since they save costs com-
pared to construction by hand. During other stages of
the development cycle, virtual models are considered to
be of little or no use, since the effort for modeling those
images of real systems is assumed to excel the benefits.
This prejudice can only be overcome by lowering the ef-
fort for modeling or increasing the value of generated
models.

In this paper models generated in early development
phases are re-utilized within later stages of the devel-
opment cycle, like application engineering and commis-
sioning. The re-use of models for virtual commission-
ing is in particular possible due to coupling of a Rexroth
PLC and a (possibly non real-time) Modelica simulation
using a new Modelica library. In order to obtain an devel-
opment cycle that is as integrated as possible, transitions
between different phases in the development cycle are
tackled. First, starting with CAD data it is shown how
to automatically generate a physical representation of a
machinery in Modelica. Using the physical interfaces
of Modelica the model can easily be extended by drive
models from component manufacturers. In combination

with Bosch Rexroth PLCs, a transition towards the com-
missioning phase without further adaptions (e.g. com-
plexity reduction for real-time application) is possible
employing a new Modelica library. To show the entire
potential of an integrated engineering workflow based on
Modelica, an approach for creating control code based
on a Modelica model of the control algorithm is given.
By demonstrating those methods in the industrial appli-
cation example of a bottling machine, it is disclosed that
the assumptions of a high effort for creating simulation
models, as mentioned introductory, can be disproved.

Keywords: integrated engineering, virtual commission-

ing, code generation, RFLP

1 Introduction

1.1 Motivation

Industry 4.0 is the central topic in automation indus-
try. Controlled plants are replaced by highly automated,
networking and self-regulating cyber-physical systems.
Conventional development methods do not match for this
complexity. Instead, those new rising challenges need to
be faced by new product development methods.

Model-based System Engineering is something very
natural. Before building a machine or more general
a technical system in nearly every case a model is set
up. However, in the automation industry in many cases
this model is a mind model rather than a virtual model.
Clearly, most of the benefits that apply for virtual models
also hold for mind models, but to a lower extend. Thus
the benefits of simulation (low cost experiments, avail-
able at any time, ...) are well known and highly valued,
but the effort for virtual modeling is estimated higher
than the saving in time.

Within a typical development cycle in the automation
industry, simulation models are used for the 3D design.
However, during the dimensioning of suitable compo-
nents simulation is utilized only sometimes. During the
control design of the complete system virtual models are
hardly ever used. The reason for using models for the

DOI
10.3384/ecp15118893

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

893

design is quite obvious; using a CAD software clearly
saves a lot of time compared to construction with pencil
and paper. Nevertheless, a dynamic model helps to avoid
over-dimensioning and thus may save costs. Last but not
least usually it is not worth the effort setting up a model
for control design.

Within the automation industry simulation will only
earn its space if the benefits, i.e. the savings in time at
last, outperforms the effort that is required for creating
virtual images of the technical system. Currently, the
effort for modeling is felt as very high, because every
role in the development cycle models start from scratch.
Models from other engineering phases are not re-used,
sometimes even models from other engineering disci-
plines are ignored. Nevertheless, in order to successfully
develop those cyber-physical systems that are rising as
mentioned initially, an interaction of the different physi-
cal domains is required.

By extensive recycling of simulation models the cost
for developing those virtual images can be reduced sig-
nificantly. Utilizing Modelica as modeling language ren-
ders this re-use possible. Models can not only be trans-
ferred and used between different domains easily. Mod-
elica also, since it is a describing language that needs
a compiler to generate executable code anyway, can be
used as basis for code generation for hardware targets
like PLCs. Through its open interfaces it is also possible
to include external libraries that provide features further
than for dimensioning of a machinery. The models can
also be re-used for virtual commissioning in coupling
with real industry controls.

By integrating Modelica in the model-based sys-
tem engineering methods, like the RFLP approach,
a distinct improvement towards willingness to simu-
late of the automation industry can be made. Das-
sault Systèmes 3DEXPERIENCE platform (3DXP), see
(Dassault Systèmes (2015)), that incorporates the RFLP
approach in combination with Modelica, allows on the
one hand to work with a clearly structured cross-domain
development process and on the other hand renders the
re-use of simulation models and the extend of model-
based engineering towards the stages of application en-
gineering and virtual commissioning possible.

1.2 Outline

In the following section a short overview about the RFLP
approach is given. Although this method alone is not
suitable lowering the perceived effort for creating vir-
tual models, using Modelica as modeling language al-
lows to extend the benefits, especially for automation in-
dustry. Section 3 focuses on the area of code generation
for PLCs based on Modelica models. After a general
definition of code generation is given and possible fields

of application are discussed, a toolchain is presented,
which can be used to execute arbitrary C/C++ code on a
Rexroth PLC. The subsequent chapter addresses the idea
of virtual commissioning. Basic concepts are described
and a new approach with focus on model-based system
engineering is given. In section 5, the previously de-
scribed technologies are combined in an example. Start-
ing from CAD, the approach of integrated model-based
engineering is shown for a bottling machine. In the last
chapter the integrated engineering methodology is sum-
marized and the paper is closed with an outlook about
further development.

2 The RFLP Approach

During the process of product development, nowadays,
several disciplines interact with each other. Since it is
difficult to manage such concurrent multidisciplinary en-
gineering processes it is necessary to provide products
that meet the customer requirements or to create a struc-
tured development process in order to integrate all the
disciplines and specialty groups into a coherent team
effort. The RFLP approach, c.f. (Kleiner and Kramer
(2013)) (Requirements engineering, Functional design,
Logical design, Physical design) as system engineering
process based on the V-cycle design process, see Figure
1, permits to simplify matters by defining a system based
on its fundamental aspects through essential views and
their relations.

Figure 1. The steps of RFLP within the V-cycle design pro-
cess.

Facilitating cross discipline communication between
customers, different engineering departments, partners
and suppliers, the RFLP approach provides a common
view to all. RFLP ensures traceability and provides deci-
sion support in a highly collaborative environment. Fur-
thermore, this methodology ensures that the final prod-
ucts meet the customers requirements in a cost effective,
timely and qualitatively efficient way.

Within the requirement engineering customer and
stakeholder needs are defined. Characteristics and activi-
ties the system has to satisfy are concentrated. Hence, the

Integrated Engineering based on Modelica

894 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118893

approach permits following the life cycle of each require-
ment and validating each step of the engineering process.
Additionally, requirements that contain physical quanti-
ties can be directly linked to those models of functional
design, in which their implementation is intended.

In the functional design phase all capabilities of the
technical system are decomposed into elementary func-
tions. The intention of the technical system is formal-
ized into a structure that can be allocated to technical
solutions. Behavior models can be part of the functional
design defining how components transform inputs to out-
puts. Thereby, a validation of requirements is rendered
possible.

From the functional decomposition the logical archi-
tecture of the technical system is derived in the logical

design phase. Different technological solutions corre-
sponding to required functions are analyzed and com-
pared during this step. Each technical solution is based
on subsystems, components and their interfaces accord-
ing to the technical requirements, customer needs and
expected functions. Like in the functional design phase,
behavior models can also be embedded into each logi-
cal component. The logical design is the main structure
during the conceptional phase. Based on modular defi-
nitions, all different engineering disciplines are brought
together.

Within the physical design, an entire virtual represen-
tation of the real technical system is modeled. The log-
ical components are expanded by the dynamic charac-
teristics. Mechanical models are for instance established
with CAD, wires can be included, electrical drive behav-
ior imaged or hydraulic flow represented. Eventually, the
behavior of the holistic, complete cross-domain techni-
cal system can be verified against the requirements, that
were defined during the requirement engineering.

2.1 3DEXPERIENCE Platform

Although RFLP can support to keep the product devel-
opment cycle of a technical system clearly arranged, the
limitations of virtual models that were initially intro-
duced still remain. Furthermore, the re-use of models
especially in the logical and physical phase can be diffi-
cult, if no elementary interfaces are given.

Dassault Systèmes incorporates the RFLP approach
within their Business experience platform 3DXP. Since
this tool provides all the different steps of product devel-
opment, the interface issue between the different steps
of RFLP vanishes. Furthermore, 3DXP uses Modelica
for the logical and physical modeling of the technical
system. This allows on the one hand to re-use the cre-
ated connections from the logical model to the physical
model and on the other hand an integration of differ-
ent domains can be easily performed, since Modelica is

the most sophisticated modeling language for modeling
complex cross-domain physical models.

2.2 Extending 3DXP towards an holistic

model-based engineering

Apart from the previously stated advantages of RFLP
over the product development process, the integration
of Modelica offers further possibilities. As described at
the beginning, effort for creating virtual models hinders
many customers from automation industry to use those
methods. However, this effort can be significantly re-
duced by expanding the use of virtual models and by re-
utilizing simulation models for this enhancements. Es-
pecially in the automation industry, where the area of ap-
plication engineering and commissioning are one main
focus during development, simulation offers vast bene-
fits.

3 Code generation

This section deals with code generation as a character-
istic of model-based engineering. In the first part, the
definition and important fields of application are dis-
cussed. After that, a toolchain to use code generation
with Rexroth industrial controllers is presented.

3.1 Definition and fields of application

To realize an integrated model-based development, code
generation out of simulation models is one important key
feature. Code generation allows the transfer of knowl-
edge from one development phase into following ones,
e.g. between the system design and the commission-
ing. This technique makes it possible to re-use informa-
tion, which is already available during the design phase
and generally stored in a simulation model, during the
commissioning. Generated code can be used for various
fields of application.

The most common one is Rapid Control Prototyping.
Nowadays, new technical systems are, in a first step,
mostly designed virtually using modeling and simula-
tion. Therefore, a simulation model of the system is set
up inside a simulation environment. To investigate the
dynamical behaviour of the plant, a control algorithm
is added inside the simulation environment. After the
system is completely designed and tested virtually, these
models are in general not used any further. Instead, the
control algorithm is re-implemented from scratch using
PLC programming languages. Besides the fact, that a
re-implementation needs additional time and therefore
causes costs, it is always a potential error source. These
disadvantages can be avoided, if the already existing con-
troller inside the simulation model is re-used. This can

Poster Session

DOI
10.3384/ecp15118893

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

895

be realized by generating code out of the model and exe-
cuting it on the PLC.

Besides the use of controller models on the PLC, it
is also possible to use plant models on the PLC. One
field of application is model-based diagnosis. The plant
model is simulated in parallel to the operation of the ma-
chine. The model is used to calculate the expected dy-
namical behaviour of the machine, while the actual be-
haviour is gathered using sensors. As soon as differences
between the calculated and measured values occur, this
may refer to an error inside the machine. In case, that
special error models are available, even the specific error
type might be determined.

Code generation out of plant models can also be used
for modern control strategies like Model Predictive Con-
trol. Model Predictive Control solves an optimal control
problem (dynamic optimization problem) in every cycle
online on the controller. The differential equations of
the system, which are included in the model, are used
as constraints of the optimization problem. The solution
of the problem is an optimal input on the system in the
next time step and minimizes a user-defined cost func-
tion, which includes the control aim.

Modelica models are perfectly suitable for code gener-
ation. As Modelica is a describing language, a compiler
is needed to generate executable code. If the commercial
Dymola compiler is used, C code is generated. In case of
the OpenModelica compiler, both, C and C++ code, can
be selected. While the Dymola code generation is a black
box and can therefore not be modified, the code genera-
tion inside the OpenModelica compiler is template-based
and can be easily adapted. This allows to generate spe-
cific code even for different hardware targets.

3.2 Toolchain for code generation using the

OpenModelica compiler

Bosch Rexroth has an own code generation module in-
side the OpenModelica compiler, which generates C++
code. Using a flag, it is possible to generate code for
specific industrial PLCs (e.g. IndraControl XM22). In
comparison to an offline simulation, several functions of
the application programming interface (API) of the con-
troller have to be integrated into the code. The generated
code contains only the model. Additional information,
how the occuring model equations should be solved, is
not included in the model. Therefore, a simulation run-
time is necessary. This runtime includes the numerical
integration methods and manages the entire simulation,
e.g. handles occuring events. Bosch Rexroth developes
also a runtime, written in C++, which supports the simu-
lation of models generated from OpenModelica.

For the execution of Modelica models on industrial
controllers, a toolchain is available, see (Menager et al.
(2015)). This toolchain uses the OpenModelica com-
piler, which generates C++ code as described before. To
run this code on the hardware, the code has to be com-
piled for the operating system on the controller. Bosch
Rexroth industrial controllers use VxWorks as real-time
operating system. Hence, to execute the code, a Vx-
Works compiler is needed. In this toolchain, the Win-
dRiver VxWorks compiler is used to compile both, the
model code and the simulation runtime, into a library.
Using the Motion Logic Programming Interface (MLPI),
which is used as interface to the controller, the code can
be simply connected to an existing PLC application. The
integration is realized with a function block, which of-
fers the inputs and outputs for the data exchange between
the executed code and the PLC. Additional information
about MLPI can be found in (Engels and Gabler (2012)).

Of course, not only code generated from the Open-
Modelica compiler can be executed on the PLC. In gen-
eral, any C or C++ code can be run on the hardware.
This includes the C code, which is generated from Dy-
mola. However, this code has to be modified manually
to implement the necessary interfaces of the controller’s
application programming interface.

4 Virtual Commissioning

4.1 Fundamentals of Virtual Commissioning

Up to 25% of the project period of a plant and therefore
a big share of the costs are needed for commissioning.
Especially troubleshooting of controller application soft-
ware dominates this part of the engineering process, see
Figure 2.

project period commissioning process control

15-25%

up to 90 %
for

commissioning
of electrics
and control

up to 70%
for

software bugs

Figure 2. Amount of commissioning time on product develop-
ment period, based on (VDW (1997))

Although software is a central issue already, com-
missioning times will most likely increase with Industry
4.0. The rise of connected, highly automated and cyber-
physical systems will increase the number of software
parts within a plant and thus have significant impact on
commissioning times. This is, on the one hand, based
on growing contents of software in mechanical and au-
tomation industry as well as horizontal and vertical net-
working, cf. (BMBF, 2013). On the other hand increas-

Integrated Engineering based on Modelica

896 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118893

modeling VC com.

production/
assembly

design

design
saving
in time

time

i

procedure
withouth

VC

procedure
with VC

effort benefit

simulation
commissioning

production/
assembly

Figure 3. The basic idea of virtual commissioning, based on
(Wünsch (2008))

ing complexity of software projects will also lead to ris-
ing commissioning times. The method of virtual com-
missioning can help reduce commissioning times signif-
icantly.

In this context virtual commissioning (VC) is under-
stood as a method for testing functionality respectively
operation sequence of a plant with the assistance of a
model of the system. Basic idea of the VC is the cou-
pling of the simulation model to a real or virtual control.
Using simulation, the operability of the control applica-
tion can be checked in early stages of the development.
Software errors can be eliminated during production and
assembly of the plant and time as well as expenses can
be saved during the real commissioning, see Figure 3.

Furthermore, VC assists to increase the quality of the
control application, c.f. (Wünsch (2008)). However, in
order to obtain valid results the VC approach has to se-
cure that the deterministic and consistent behavior of the
PLC is represented.

4.2 Interaction between Simulation and Con-

trol

In the area of automation industry VC is typically used
in the context of coupling a simulation model of the
plant to a virtual or real PLC. Hence, the two approaches
Hardware-in-the-Loop (HiL) and Software-in-the-Loop
(SiL) are common.

Software-in-the-Loop describes the coupling of a vir-
tual model of the plant with a virtual image of the con-
trol. Since there is no real hardware control within the
setup, all models can be simulated on the same computer
and no real-time requirements prevail. It follows that ar-
bitrary complex models can be used for this kind of VC
and especially models from previous engineering steps
are suitable. However, this setup does not ensure de-
terministic execution of the control application. A full
check of the system behavior is not possible.

Hardware-in-the-Loop is a VC approach in which a
real PLC is coupled with a simulation model of the plant.
Therefore a real-time bus and a real-time operating sys-
tem is required. Of course the simulation model also has
to satisfy this demands. Hence, models from other stages
of the product development process are not suitable. The
body of acquired knowledge in form of the simulation
model needs to be discarded and a new virtual represen-
tation of the plant is required. Though, in contrast to SiL,
determinism is provided, since the real control is part of
the infrastructure.

In the context of an integrated engineering approach
as stated preliminary, none of the prevalent methods is
eligible. Either the validity of the simulation is not suf-
ficient or simulation models from previous engineering
steps can generally not be used.

4.3 Extending virtual commissioning to-

wards MBSE

Typical coupling strategies are very limited in a simu-
lation based development approach. In order to use VC
within a model-based system engineering approach, both
benefits of SiL and HiL need to be joined. For Bosch
Rexroth PLCs this can be achieved using their Open-
Core Interface. Bosch Rexroth OpenCore Interface, c.f.
(Bosch Rexroth (2015)), is a universal port with direct
access to the control and motion kernel of Rexroth in-
dustrial controls. With this technology applications can
be written, using high level languages like Java or C++,
that allow to join drive and control systems and conven-
tional IT environments, see (Engels and Gabler (2012)).
For the purpose of virtual commissioning the Open-
Core interface is implemented in Modelica in the library
mlpi4Modelica whic allows to access the control within
a simulation.

Virtual commissioning with Bosch Rexroth PLCs is
based on HiL abrogating the real-time requirements.
This is achieved using the OpenCore technology which
can interact with the motion kernel of the control. This
allows to set the control in some simulation mode and
tasks that are triggered by the motion cycle event, man-
aged by the internal clock of the PLC, are no longer exe-
cuted cyclically. Instead they are activated by an external
trigger signal from the simulation and are launched, pre-
cisely once, during the next motion cycle. Thus the real-
time requirements repeal and the complex infrastructure
with real-time operating system and real-time bus can
be replaced by a general simulation pc and a common
ethernet connection. However, the consistent and deter-
ministic behavior of the control is secured. Triggering
the control from the simulation allows to utilize arbitrary
complex models of the plant, which are in general not
real-time capable.

Poster Session

DOI
10.3384/ecp15118893

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

897

4.4 Modelica library mlpi4Modelica

The library mlpi4Modelica provides functionality to di-
rectly access Bosch Rexroth PLCs and read as well as
change symbol variables or parameters within the PLC
program. The library itself is divided into three parts.

Figure 4. Parameter window of the MotionLogicProgram-
mingInterface model

The first part is a component called MotionLogicPro-
grammingInterface, which creates the connection to the
PLC, c.f. Figure 4 over ethernet connection and thus is
mandatory. Currently up to five industry controls can be
connected. However, this limitation is due to Modeli-
cas GUI-performance and more controls could be easily
added by extending the component.

The second part of the mlpi4Modelica library is rep-
resented by the model mlpiCoupler and the package IO-
Coupler4Modelica. The former serves as a gate, which
uses the connection data from MotionLogicProgram-
mingInterface, and converts the signals into valid in-
formation for the PLC. It also translates the Modelica
datatypes to the required datatypes on the control if pos-
sible. Furthermore, the mlpiCoupler enables/disables the
simulation mode of the control and regulates the trigger
signal. The package IOCoupler4Modelica includes an
analog and a digital interface model, that can be con-
nected to the mlpiCoupler. Within those, for every in-
put and output, the parameter name or symbol variable
name on the control respectively the PLC program is de-
fined. Using the modelica language element connector-
Sizing allows on the one hand to have not linked inputs
and on the other hand to have multiple interface models
connected to the mlpiCoupler, c.f. Figure 5. As a con-
sequence, arbitrary signals can be exchanged with the
PLC.

The last portion of the library is the Library package,
which contains all functions of the OpenCore Interface
that are required for simulation purpose. Those func-
tions, originally written in the language C, are wrapped
within Modelica and allow to write own models that can
access the control or the PLC application. In addition to
this, when using a C/C++ code generation, this renders

Figure 5. Example model with use of the mlpiCoupler and two
interface models.

creating of controller modules or even PLC application
directly from the model possible as described in Section
3. It is also depicted in the following section.

5 Application Example

Bottling machines, see Figure 6, serve as good example
for performing the previously described steps and exten-
sions.

1
23

4

Figure 6. Image of the complete bottling machine, consist-
ing of a rinsing machine (1), a filling machine (2), a capping
system (3) and a labeling machine (4).

In this contribution the model-based system engineer-
ing approach is shown for the filling part. However, all
steps are also suitable for the other machines since the
methodology is, as stated before, of general purpose.
The challenge in this kind of machinery is to have the
bottle infeed system, the rotary filler and the bottle out-
feed synchronized. Since every part has its own driving
motor, the synchronization has to be performed by the
PLC. However, since each motor has its own position
and velocity control, the interaction has to be further in-
vestigated in order to eliminate errors due to contouring
errors.

5.1 Development of the bottling machine

model

The generation of dynamic models of the machinery is
one big task, that hinders the use of simulation models.
Within 3DXP this problem can be eliminated, at least for
the mechanical part. Having the CAD data of the tech-
nical system available in 3DXP, a mechanical Modelica

Integrated Engineering based on Modelica

898 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118893

model (joints, bodies, e.c.) based on the library CATIA-
MultiBody can be generated, see Figure 7.

'GlobalBody''GlobalBody'

'prd00002399__1''prd00002399__1'

''''

'1_''1_'

a
b

a
b

a
b

a
b

Figure 7. 3D model of the infeed system (left) and the gener-
ated Modelica model (right).

Driven joints within the 3D model are represented by
joints with flanges. Therefore, a simple extension of this
mechanical model is possible.

For the filling machine, as described here, the driven
joints are connected to motor models from Bosch
Rexroth, that contain motor specific characteristics, like
torque and motor speed limitations and fine interpolation
that is done by a motor controller.

The whole setup of the dynamic model of the filling
machine can be seen in Figure 8.

infeed

outfeed

filler

rotation angle

rotation angle

rotation angle

world

x

y

motorAndControllerAxis3

motorAndControllerAxis2

motorAndControllerAxis1

Figure 8. Dynamic model of the filling machine, divided into
the mechanical model derived from CAD and the Rexroth drive
models.

One can clearly see, that the motor inputs are not con-
nected, at this point. For now, the model needs to be
tested with synthetic stimuli. For the virtual commission-
ing of the complete system later on, it will be coupled to
the real nominal axis values of the PLC and therefore
receive real values.

5.2 Control design for the bottling machine

The control algorithm for the functionality of the bot-
tling machine can be held simple. It consists basically
of the states Initial, Manual, Synchronization, Automatic
and Stop, see Figure 9, and was implemented in Mod-
elica using the new State Machines language elements,
(Modelica Association, 2014), (Elmqvist et al., 2012).

Figure 9. State machine of the bottling machine.

The transitions between the individual states are
switched depending on the values of the boolean vari-
ables start and automaticMode.

State Initial

This state is active during boot up of the machinery and
stays active until a transition either to State Manual (start
== true && automaticMode == false) or State Synchro-
nization (start == true && automaticMode == true) ap-
plies. Within this state, all three axis (infeed, filler and
outfeed) of the filling machine keep in a resting position.

State Stop

Whenever the machine is running, either in state Man-
ual, Automatic or Synchronization and a change to

Poster Session

DOI
10.3384/ecp15118893

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

899

any other running state or State Stop is applied, the
State Stop is reached. All running axes are shut down.
Switchover from State Manual (automaticMode == true ||
start == false) or State Synchronization (automaticMode
== true || start == false) does shut down all axes indi-
vidually. Transition from State Automatic (automatic-
Mode == false || start == false) decelerates all shafts syn-
chronously. After all axis remain in a resting position,
the state automatically changes to state Initial.

State Manual

Within state Manual, all three axes of the bottle filling
machine can be individually moved, depending on the
values of boolean variables axisInfeed, axisFiller and ax-

isOutfeed in combination with a real variable manual-

Speed. This can be useful for manual positioning or test-
ing of desired motor speeds.

State Synchronization and State Automatic

If the State changes from Initial to Synchronization, all
Axis are moved to a synchronized position and the active
state changes to State Automatic. Within the latter, all
axis are accelerated in sync to a desired speed. This state
represents the normal production of bottles.

All movements of axes that have been described pre-
viously are implemented using the Modelica library
mlpi4Modelica. As a result, the complete state machine
model can be used directly as a model for the real PLC.
After generating C-Code from a model the compiled
code can be transferred to the PLC as object program.
In order to change values on the variables, e.g. manual-
Speed, some functions block are created, see 3.

5.3 Virtual commissioning of the plant

In order to validate the behavior of the previously de-
scribed controller algorithm and to examine the contour-
ing error, that might inhibit a valid synchronization, the
dynamic model is coupled to the real PLC. The inter-
connection is realized by the components of the library
mlpi4Modelica, as described in section 4.

The output values from the mlpiCoupler are the axis
nominal values that are calculated internally by the PLC.
Those values are input for the internal interpolation of
the drive models (motor and motor controller) from
Bosch Rexroth. Their output torque drives the different
mechanical parts of the filling machine. For synchro-
nization the current angle of each axis is transferred to
the PLC, see Figure 10.

After fully parametrizing the drive controller, the con-
touring error stays below a permitted deviation and the
synchronization is not inhibited, c.f. Figure 11. Also the
controller application module that was generated from
the state machine model is working properly.

infeed

outfeed

filler

rotation angle

rotation angle

rotation angle

world

x

y

Rexroth

Analog Dword

motorAndControllerAxis3

motorAndControllerAxis2

motorAndControllerAxis1

Figure 10. The complete dynamic model of the filling machine
during virtual commissioning phase.

Figure 11. Filling machine in synchronized motion.

6 Conclusion and Outlook

The re-use of simulation models offers huge potentials.
Utilizing those models in multiple phases of the product
development cycle enhances productivity and reduces
costs as well as time. Of course, the effort for creat-
ing the virtual images of a technical system remains.
However, compared to the additional benefits that are
available at no cost, this effort loses significance. Us-
ing Modelica as modeling language within the RFLP ap-
proach renders those enhancements of model use over
the whole development cycle possible. In this contribu-
tion, code generation is used to create controller modules
or whole PLC applications from simulation models. Fur-
thermore, using the simulation model of the plant instead
of the real machinery, the commissioning can be per-
formed virtually without having produced any part yet.
This is demonstrated using a bottling machine. Starting
from the requirements and functional model of the plant,
the steps of dynamic model generation, control code de-
velopment from simulation model and virtual commis-
sioning are described.

The benefit of simulation models does not reach the
end of the line with commissioning. Since control code

Integrated Engineering based on Modelica

900 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118893

can be generated from the Modelica model, it is also pos-
sible to run the simulation model on the controller during
production. This enables features like model-based diag-
nosis or model predictive control. Also the generation of
complex robot transformations which are elaborately de-
rived by hand, can be automated using simulation models
and Modelica.

References

BMBF. Umsetzungsempfehlung für das Zukunftsprojekt Indus-

trie 4.0. German Feder Ministry of Education and Research,
2013.

Bosch Rexroth. Engineering Network: community for soft-
ware developers. http://www.boschrexroth.com/
network, 2015. Accessed 19-May-2015.

Dassault Systèmes. 3DEXPERIENCE plat-
form. http://www.3ds.com/about-3ds/

3dexperience-platform/, 2015. Accessed 19-
May-2015.

Hilding Elmqvist, Fabien Gaucher, Sven Erik Mattsson, and
Francois Dupont. State machines in modelica. Proceedings

of 9th International Modelica Conference, 2012.

Elmar Engels and Thomas Gabler. Universelle Programmier-

schnittstelle für Motion-Logic Systeme : Struktur, Funktio-

nen und Anwendung in der Forschung und Lehre. Tagungs-
band AALE 2012, 2012.

Sven Kleiner and Christoph Kramer. Model Based Design with
Systems Engineering Based on RFLP Using V6. Proceed-

ings of the 23rd CIRP Design Conferenc, 2013.

Nils Menager, Lars Mikelsons, and Niklas Worschech. Model-
based engineering using Rexroth controllers and open stan-
dards. Tagungsband Mechatronik 2015, 2015.

Modelica Association. Modelica language specification 3.3 re-
vision 1, 2014.

VDW. VDW-Bericht: Abteilungsübergreifende Projektierung

komplexer Maschinen und Anlagen. WZL, 1997.

Verein Deutscher Ingnieure. VDI 2206: Entwick-
lungsmethodik für mechatronische Systeme, 2004.

Georg Wünsch. Methoden für virtuelle Inbetriebnahme au-

tomatisierter Produktionssysteme. Herbert Utz Verlag,
2008.

Poster Session

DOI
10.3384/ecp15118893

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

901

902 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Coupling Model Exchange FMUs for

Aggregated Simulation by Open Source Tools

Pukashawar Pannu1 Christian Andersson1,2 Claus Führer1 Johan Åkesson2

1Centre for Mathematical Sciences, Lund University, Sweden
2Modelon AB, Sweden

Abstract

The Functional Mock-up Interface standard allows to
generate stand-alone sub-systems which can be simu-
lated and verified individually. In this paper we present a
design of a model aggregation which allows to simulate
several Functional Mock-up Units as a coupled model.
The formulation is based on Assimulo as a numeri-
cal integration environment. Assimulo problem classes
are extended to a class for aggregated problems which
collects information provided by the Functional Mock-
up Units through the tool PyFMI together with Python
based problem classes defined by Assimulo. This allows
to set-up test environments of complex models composed
of several sub-systems.
Keywords: FMI, Jacobian, Algebraic loops, Events,

Model Exchange 2.0, Assimulo

1 Introduction

The Functional Mock-up Interface (FMI) (Blochwitz
et al., 2012) has gained momentum in simulation of
dynamical systems and in exchanging dynamic simula-
tion models between tools. The standard has proven to
be highly successful as it fills a gap where there were
costly custom integrations before. The open source tools
PyFMI 1 together with Assimulo (Andersson et al., 2015)
provide a solid foundation for performing simulations
and experiments on single Functional Mock-up Units
(FMUs).

A key feature that is currently lacking is the ability
to easily simulate coupled systems and thus fully taking
advantage of the standard.

In this article, an extension to the open-source tools
PyFMI and Assimulo is presented that allows for simu-
lation of coupled model exchange FMUs following the
FMI 2.0 standard. The extension enables coupling of
FMUs and models written directly in Python to a so-
called aggregated model.

1http://www.pyfmi.org PyFMI - Version 2.1. Accessed,
2015-05-18

The dynamical models considered here can be de-
scribed as,

˙̄x = f̄ (x̄, ū) (1a)

ȳ = ḡ(x̄, ū) (1b)

where x̄ represents the states, ū the input signal and ȳ the
output, consistent with the FMI.

Commonly, a full system model is represented by sev-
eral stand-alone sub-systems coupled together by cou-
pling equations to a model for a global system. This re-
sults in the following general system description,

ẋ = f (x,u,w) (2a)

y = g(x,u,w) (2b)

u = c(y,w) (2c)

where x represents the combined states from the separate
models. The local inputs for the ith model, ū[i], has here
been separated into two vectors, ū[i] = [û[i], ŵ[i]], and sub-
sequently combined into the global vectors (for N mod-
els), u = [û[1], . . . , û[N]] and w = [ŵ[1]

, . . . , ŵ[N]]. This as
to separate between inputs determined by the coupling,
u, and external inputs acting on the coupled system, w.
In general the external inputs can not only influence the
model behaviour directly but also the coupling, Eq (2c),
which is highlighted in Section 3.

When solving a coupled system, an approach is co-
simulation as is explored in (Andersson, 2013) where
the systems have their own integrator and the focus is on
communication between systems. In this paper however,
the focus is on coupling model exchange FMUs under a
single solver.

2 Concept

The idea is to take N coupled sub-systems, either FMUs
or Python models, and aggregate them into a single sys-
tem and treating the final full system as any other model.
In order to facilitate the general description of a sub-
system, as is defined in FMI, for the aggregated system,

DOI
10.3384/ecp15118903

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

903

care needs to be considered in how for example the Ja-
cobian is defined. The Jacobian is a necessity when us-
ing implicit methods for solving the resulting system and
is discussed in Section 2.3. Additionally, the events for
each sub-system and external events need to be consid-
ered, discussed in Section 2.2, as well as algebraic loops
which can occur due to the coupling, Section 2.4.

Now, looking at N sub-systems,

˙̄x[1]1 = f̄
[1]
1 (x̄

[1]
1 , û

[1]
1 , ŵ

[1]
1) (3a)

ȳ
[1]
1 = ḡ

[1]
1 (x̄

[1]
1 , û

[1]
1 , ŵ

[1]
1) (3b)

ū
[1]
1 = c̄

[1]
1 (ȳ[1], ŵ

[1]
1) (3c)

...

˙̄x[N]
N = f̄

[N]
N (x̄

[N]
N , û

[N]
N , ŵ

[N]
N) (4a)

ȳ
[N]
N = ḡ

[N]
N (x̄

[N]
N , û

[N]
N , ŵ

[N]
N) (4b)

ū
[N]
N = c̄

[N]
N (ȳ[N]

, ŵ
[N]
N) (4c)

and the resulting aggregated system,

ẋ = f (x,u,w) =






f̄
[1]
1 (x̄

[1]
1 , û

[1]
1 , ŵ

[1]
1)

...

f̄
[N]
1 (x̄

[N]
1 , û

[N]
1 , ŵ

[N]
1)




 (5a)

y = g(x,u,w) =






ḡ
[1]
N (x̄

[1]
N , û

[1]
N , ŵ

[1]
N)

...

ḡ
[N]
N (x̄

[N]
N , û

[N]
N , ŵ

[N]
N)




 (5b)

u = c(y,w) =






c̄
[1]
1 (ȳ[1], ŵ

[1]
1)

...

c̄
[N]
N (ȳ[N]

, ŵ
[N]
N)




 (5c)

The vectors x, y, u and w of the aggregated system are
defined as:

x =






x̄
[1]
1
...

x̄
[N]
N




 , y =






ȳ
[1]
1
...

ȳ
[N]
N




 , u =






û
[1]
1
...

û
[N]
n




 ,w =






ŵ
[1]
1
...

ŵ
[N]
N






2.1 Aggregated Problem

Using the open-source tools PyFMI together with
Assimulo, an FMU can be accessed from Python
together with being solved using solvers available
in Assimulo. With this in mind two Assimulo
problem classes have been worked on. One that
creates an input/output problem structure called
ExplicitProblemModel. The other aggregates
several FMUs, or ExplicitProblemModels,

to one large problem that can be integrated us-
ing one of Assimulos available solvers, called
AggregatedProblem. For simplicity an al-
ready existing problem class, ExplicitProblem,
was extended to handle the aggregation. To define an
aggregated problem class some basic data is required:

• Aggregated states.

• RHS (Right-Hand-Side) function of aggregation.

• Coupling handling.

Through PyFMI there exists already a wrapper in-
terface that can load an FMU ME 2.0 and inte-
grate it using Assimulo. When instantiating the
AggregatedProblem class a list of FMUs is pro-
vided from which the initial states are easily accessible
and aggregated,

f o r model in models :

a g g r e g a t e d _ x 0 a g g r e g a t e mode l .x0

The crucial part of the aggregated problem class is how
to handle the right hand side function. The first major
difference between an aggregated problem and an As-
simulo problem is the presence of couplings. For each
call to the RHS, coupling terms must be up to date. The
condition can be satisfied by updating the coupling rela-
tions within the RHS-function.

Since the separate problem classes already have an
RHS-function structure, computing the RHS-function of
the aggregated system is simply to call the RHS-function
of each sub-system,

s e t _ c o n n e c t i o n s ()

f o r model in models :

a g g r e g a t e d _ r h s a g g r e g a t e m o d e l . r h s

Coupling handling is done in set_connections(). For

simple cases when for example system A input u
[A]
2 needs

inputs from system B output y
[B]
4 , the function simply sets

u
[A]
2 = y

[B]
4 . However, this is not always the case which is

further discussed in Section 2.4.
For implicit solvers a Jacobian is required and must be

provided by AggregatedProblem. More advanced
models require AggregatedProblem to take into ac-
count events and algebraic loops. The three mentioned
topics are affected by aggregation and are discussed in
the following sections.

2.2 Events

Many models include discontinuities. One way of in-
tegrating such systems is by using events (Eich-Soelner
and Führer, 1998) which requires that a set of event in-
dicators are monitored during the integration. The inte-
gration is interrupted when conditions on the event indi-

Coupling Model Exchange FMUs for Aggregated Simulation by Open Source Tools

904 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118903

cators are violated and the event (discontinuity) is appro-
priately handled, finally the integration is restarted. Most
of the solvers available in Assimulo have this functional-
ity (Fredriksson et al., 2014).

The aggregated problem can access event indicators
of an FMU. When asked for event indicators by an As-
simulo solver the AggregatedProblem combines all
event indicators from the sub-systems and hands them
to the solver. Once an event has been detected and
the integration stopped, the problem class identifies the
triggered event and calls the corresponding sub-system’s
event handling.

Another type of events in FMUs are time events,
which are known at the start of a simulation. They split
up the integration into segments by setting up end times
for the simulation at which point an event is handled (An-
dersson, 2013). This could be, for instance, a force peri-
odically applied to the system. It is up to the aggregated
system to search through all sub-systems for the closest
time event to define the end time of the next integration
segment and handle the event.

From the Assimulo problem design it is simple to add
events to a problem. For the aggregated problem, adding
of events would be to add external events to a coupled
system. Events can not only be provided through the
sub-systems but also through how the system is coupled.
Consider a pendulum with no knowledge of its surround-
ings. Now, in the system model the pendulum is posi-
tioned such that its degree of freedom is limited by for
instance positioning close to a wall. The limitation can
be considered as an external event that needs to be taken
into account. In the problem formulation this is easily
done by providing extra sets of event indicators for the
integrator to monitor.

2.3 Jacobian

When solving an ODE the Jacobian can be explicitly pro-
vided or numerically approximated. For an uncoupled
input/output system where the inputs are only time de-
pendent the Jacobian, ∂ f̄

∂ x̄
, is computed. When looking at

a coupled system the dynamic changes. Due to coupling
some input terms are state dependent instead of time de-
pendent as in the uncoupled case. Consider the coupled
system,

ẋ = f (x,u,w) (6a)

y = g(x,u,w) (6b)

u = c(y,w) (6c)

Inserting Eq (6c) into Eq (6a) and Eq (6b) gives:

ẋ = f (x,c(y),w) (7a)

y = g(x,c(y),w) (7b)

Differentiating Eq (7a) with respect to x yields:

J =
∂ f

∂x
+

∂ f

∂c

∂c

∂y

∂y

∂x
(8)

The term ∂y
∂x

is found by differentiating Eq (7b):

∂y

∂x
=

∂g

∂x
+

∂g

∂c

∂c

∂y

∂y

∂x
(9)

Solving for ∂y
∂x

gives:

∂y

∂x
=

(

I −
∂g

∂c

∂c

∂y

)
−1

∂g

∂x
(10)

Resulting in the Jacobian:

J =
∂ f

∂x
+

∂ f

∂c

∂c

∂y

(

I −
∂g

∂c

∂c

∂y

)
−1

∂g

∂x
(11)

For the system to be solvable there is necessary condition
that (I − ∂g

∂c
∂c
∂y
) is non singular. The ∂g

∂c
term handles the

coupling relations and ∂c
∂y

the sub-system feed-through
terms.

With FMI 2.0 models have an option to provide
directional derivatives. In case they are provided
AggregatedProblem uses directional derivatives to
approximate the aggregated Jacobian matrix. If direc-
tional derivatives are unavailable a forward difference
scheme is applied. The same applies for non-FMI mod-
els.

2.4 Algebraic Loops

When a system contains feed-through, i.e. when the par-
tial derivative of Eq (6b) with respect to u is not the zero
matrix, then, in general, an equation system needs to be
solved to maintain consistent input and output values sat-
isfying,

y = g(x,u,w) (12a)

u = c(y,w). (12b)

By rewriting Eq (12a) to,

y−g(x,c(y,w),w) = 0 (13)

the algebraic loop can be solved by an iterative method.
AggregatedProblem creates a residual function of
the left-hand-side of Eq (13) and uses the Kinsol solver
in Assimulo to solve the problem. Kinsol is a non-
linear algebraic equation solver, part of the SUNDIALS
suite (Hindmarsh et al., 2005). When the outputs are
known, Eq (12b) is used to update the inputs.

2.5 Workflow

The simulation flow of coupled systems using the aggre-
gated problem class and an Assimulo solver is illustrated
in Figure 1. The simulation flow is essentially equiva-
lent to that of simulating an ODE with Assimulo, how-
ever, some nodes are affected by aggregation and these
are coloured blue in the figure.

Poster Session

DOI
10.3384/ecp15118903

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

905

Figure 1. Assimulo simulation flow of coupled systems using
FMUs, Assimulo problems and the aggregated problem class.
The blue color represents nodes that are affected by aggrega-
tion.

3 Examples

In this section, the proposed framework is demonstrated.
The ability to couple model exchange FMUs is shown
together with coupling of FMUs with models directly
defined in Python. Additionally, simulation of coupled
models with externally defined events is demonstrated.

3.1 Coupled Pendula

This example demonstrates how two FMUs, each de-
scribing a pendulum, are coupled to an aggregated
model. The full system consists of two pendula coupled
by a force and excited by two inputs acting on the pivots.

The pendulum, with mass 1 kg and length 1 m, is de-
scribed by,

˙̄x1 = x̄3 (14a)
˙̄x2 = x̄4 (14b)
˙̄x3 = ū1 −2x̄1λ + ū2 (14c)
˙̄x4 =−g−2x̄2λ + ū3 (14d)

0 = x̄2
1 + x̄2

2 −1 (14e)

ȳ1 = x̄1 (14f)

ȳ2 = x̄2 (14g)

where x̄1, x̄2 are positions and x̄3, x̄4 velocities relative to

the pendulum’s pivot. The inputs are forces, ū2 and ū3,
acting on the body’s center and an acceleration, ū1 due
to a forced motion of the pivot. The outputs, ȳ, are the
positions.

In order to couple two pendula, i = [1,2], the input
vector is split for each pendulum into external excitations
and inputs determined by the coupling,

ū[i] = [ū
[i]
1

︸︷︷︸

ŵ[i]

, ū
[i]
2 , ū

[i]
3

︸ ︷︷ ︸

û[i]

]. (15)

The two pendula are coupled by a linear spring which is
determined by the equation, u = c(y,w),








û
[1]
2

û
[1]
3

û
[2]
2

û
[2]
3







= k








ȳ
[1]
1 −a+w1 − (ȳ

[2]
1 −b−w2)

ȳ
[1]
2 − ȳ

[2]
2

−(ȳ
[1]
1 −a+w1 − (ȳ

[2]
1 −b−w2))

−(ȳ
[1]
2 − ȳ

[2]
2)








︸ ︷︷ ︸

=:ρ

(16)

where k is the stiffness ratio. Variable a represents the
pivot points x-coordinate of the left pendulum and b the
point of the right pendulum. The external input vector is,

w = [w1,w2, ŵ
[1]
, ŵ[2]]. (17)

The setup is shown in Figure 2. As previously men-
tioned, it is necessary to include the external inputs into
the coupling as is made evident in this example. Note
also, that in this example ŵ[i] has to be chosen as ẅ[i].

Figure 2. Two pendulums coupled via a spring.

The pendulum is modelled in the Modelica language
and using the open-source tool JModelica.org (Åkesson
et al., 2010) the Modelica model is compiled into an
FMU. The tool is responsible for transforming the pen-
dulum which is described as a DAE of index 3 into an
ODE that FMI supports.

The aggregated system was integrated using Assimulo
CVode solver with tolerances atol = rtol = 10−8 for 5

Coupling Model Exchange FMUs for Aggregated Simulation by Open Source Tools

906 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118903

seconds and the Jacobian approximated with forward dif-
ferences. Initital conditions for the system,

x̄
[1]
1 = 1 (18)

x̄
[1]
2 = 0 (19)

x̄
[2]
1 =−1 (20)

x̄
[2]
2 = 0 (21)

note that the initial conditions are from the reference
point of each pendulums pivot. The pivot points are lo-
cated at (−2,0) for the left pendulum and (2,0) for the
pendulum to the right. As external forces acting on the
pivots the sin(t) function was chosen. Stiffness ratio of
the spring is set to k = 1.0 N/m.

As reference a monolithic model of the system was
created in Modelica and simulated in Dymola (Dassault
Systèmes, 2016) using the solver Dassl with tolerance
tol = 10−12. Error of both pendulums x, y positions is
presented in Figure 3 in log-scale.

0 1 2 3 4 5
time (s)

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

E
rr

o
r

Error of x, y Positions of FMU Coupled Pendula Problem

x
[1]
1

x
[1]
2

x
[2]
1

x
[2]
2

Figure 3. Error of x, y positions of aggregated coupled pen-
dulum described in Section 3.1, simulated with CVode with
atol = rtol = 10−8 for 5 seconds. x

[i]
1 denotes the x-coordinate

and x
[i]
2 the y of model i. Model [1] is the pendulum to the left

and [2] the one to the right.

3.2 Coupled Pendula with Different Model

Types

Three aggregated systems of coupled pendulas were
modelled and compared to a monolithic reference model.
The first system built by two FMU models modelled in
Modelica and compiled with JModelica.org. The second
by two Assimulo models and the third with the left pen-
dulum as an Assimulo model and the right pendulum as
an FMU. For this example the pendulums were modelled
as ODEs in polar coordinates with unit mass and length,

˙̄x1 = x̄2 (22a)
˙̄x2 = (−g+ ū3)sin(x̄1)+(ū2 + ū1)cos(x̄1) (22b)

ȳ1 = x̄1 (22c)

where g is gravitational acceleration, x̄1 is angular dis-
placement with respect to the pivot point, x̄2 angular ve-
locity. The inputs ū2 and ū3 are forces acting on the bob
horizontally and vertically respectively. ū1 is an input
of acceleration due to a forced motion of the pivot. The
output, ȳ1, is the angular displacement.

Similarly to the example described in Section 3.1 the
input vector is split into external excitations and inputs
by coupling.

ū[i] = [ū
[i]
1

︸︷︷︸

ŵ[i]

, ū
[i]
2 , ū

[i]
3

︸ ︷︷ ︸

û[i]

]. (23)

The linear spring coupling the two pendulas is deter-
mined by,








û
[1]
2

û
[1]
3

û
[2]
2

û
[2]
3







= k








(sin(ȳ
[1]
1)−a+w1)− (sin(ȳ

[2]
1)−b−w2)

(−cos(ȳ
[1]
1)− (−cos(ȳ

[2]
1))

−((sin(ȳ
[1]
1)−a−w1)− (sin(ȳ

[2]
1)−b−w2))

−((−cos(ȳ
[1]
1)− (−cos(ȳ

[2]
1)))








︸ ︷︷ ︸

=:ρ

(24)

where k is the stiffness ratio. Variables a and b represent
the pivot points x-coordinate for the left-hand-side and
right-hand-side pendulas respectively. The external input
vector is,

u1 = [w1,w2, ŵ
[1]
,

ˆw[2]]. (25)

As with example in Section 3.1, ŵ[i] has to be chosen as
ẅ[i].

Initial conditions for the aggregated system were cho-
sen for the pendulas to mirror each other with angles π

2
and −

π
2 for the left and right pendulas and zero initial

angular velocity.

x̄
[1]
1 =

π

2
(26a)

x̄
[1]
2 = 0 (26b)

x̄
[2]
1 =−

π

2
(26c)

x̄
[2]
2 = 0 (26d)

As external force exciting the pendula pivots a sin(t) sig-
nal was chosen and the springs stiffness ratio k = 1.0
N/m.

The aggregated system was integrated using the
CVode solver in the Assimulo package with tolerances,
atol = rtol = 10−8 for a time of 5 seconds and the Ja-
cobian approximated using forward differences. Results
were then compared to a reference where the coupled
pendulas were modelled as a monolithic system in Mod-
elica and simulated with Dassl in Dymola using toler-
ance tol = 10−12. Figure 4 shows the error in log-scale
of the angle x̄

[1]
1 of all three systems compared to the con-

trol. The same plot for angle x̄
[2]
1 is shown in Figure 5.

Poster Session

DOI
10.3384/ecp15118903

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

907

0 1 2 3 4 5
time (s)

10-11

10-10

10-9

10-8

10-7

10-6

10-5

E
rr

o
r

Angle x [1]
1 Error of Coupled Pendula System

Coupled FMUs
Coupled Assimulo Problems
Mixed FMUs and Assimulo Problems

Figure 4. Error of angle x
[1]
1 of aggregated FMU, Assimulo

and mixed systems, simulated for 5 seconds with tolerances
atol = rtol = 10−8 with CVode solver in Assimulo package.

0 1 2 3 4 5
time (s)

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

E
rr

o
r

Angle x [2]
1 Error of Coupled Pendula System

Coupled FMUs
Coupled Assimulo Problems
Mixed FMUs and Assimulo Problems

Figure 5. Error of angle x
[2]
1 of aggregated FMU, Assimulo

and mixed systems, simulated for 5 seconds with tolerances
atol = rtol = 10−8 with CVode solver in Assimulo package.

3.3 Coupled Pendula Impact on Wall

The aggregated system constructed with two FMUs in
Section 3.1 is here reused with the addition of discon-
tinuities as two walls are externally placed in the path
of the two pendulums’ swinging motion. One wall for
each pendulum. This as to highlight the possiblity of
externally adding state events to the coupled problem.
Also the external forces acting on the pivots have been
removed.

When the bob hits the wall a discontinuity occurs.
This is handled by defining event indicators that trigger
an event when the impact occurs. Event indicators are
defined as zero-crossings as,

event [i] = wall[i]− x̄
[i]
1 (27)

where wall[i] is the x-coordinate of the wall blocking
pendulum [i]. The impact itself is elastic and the event
handling is done by simply reversing the velocity of the
bob. For the pendulum to the left a wall is placed di-
rectly below the pivot point and the impact occurs when

0 1 2 3 4 5
time (s)

1.0

0.5

0.0

0.5

1.0

D
is

p
la

ce
m

e
n
t

in
 x

-c
o
o
rd

.
w

it
h
 r

e
sp

e
ct

 t
o
 p

iv
o
t

p
o
in

t

x Coordinates of Coupled Pendulums with Impact on Walls

x
[1]
1

wall[1]

x
[2]
1

wall[2]

Figure 6. Shows the x-coordinate displacement, with respect
to their own pivots, of the pendulums [1], to the left, and [2],
to the right, has they hit a wall. The horizontal lines represent
walls blocking each pendulums path.

the bobs x-coordinate reaches x̄
[1]
1 = 0 with respect to

its pivot. The right-hand-side pendulum wall is placed
slightly to the right of its pivot and the bob impacts the
wall when its x-coordinate reaches x̄

[2]
1 = 0.3 with re-

spect to its pivot. Initial conditions and parameters are
the same as for the example described in Section 3.1.

The aggregated system was integrated with the
CVode solver with tolerances atol = rtol = 10−8 for 5
seconds. Figure 6 shows the x-coordinate displacement
with respect to each pendulums pivot. The two horizon-
tal lines represent each pendulums respective walls.

4 Conclusion

In this paper, a framework has been presented for simu-
lation of coupled systems by aggregation. Care needs to
be taken when a coupled system contains feed-through as
an equation system needs to be solved in order to com-
pute the derivatives of the system. This puts a condition
on the sub-system feed-through terms that also presents
itself when computing the Jacobian.

The sub-system events are handled by aggregation.
A benefit of this approach is that events from all sub-
systems together with external events can be monitored
at once and handled through the aggregated system. Ex-
ample described in Section 3.3 shows that external events
can be added to an aggregated coupled system.

The FMI has all functionality needed to carry out the
presented scheme. By combining the discussed ideas
with Assimulo and allowing direct coupling of FMUs
and Python based problems one gets a flexible and pow-
erful environment for solving coupled dynamical prob-
lems.

Coupling Model Exchange FMUs for Aggregated Simulation by Open Source Tools

908 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118903

References

Christian Andersson. A Software Framework for Implementa-

tion and Evaluation of Co-Simulation Algorithms. Licenti-
ate thesis, Centre for Mathematical Sciences, Lund Univer-
sity, Lund, Sweden, 2013.

Christian Andersson, Claus Führer, and Johan Åkesson. As-
simulo: A unified framework for ode solvers. Math. Com-

put. Simulat., 2015. doi:10.1016/j.matcom.2015.04.007. In
press.

Torsten Blochwitz, Martin Otter, Johan Åkesson, Mar-
tin Arnold, Christoph Clauss, Hilding Elmqvist, Markus
Friedrich, Andreas Junghanns, Jakob Mauss, Dietmar
Neumerkel, Hans Olsson, and Antoine Viel. Functional
mockup interface 2.0: The standard for tool independent ex-
change of simulation models. In In 9th International Mod-

elica Conference 2012. Modelica Association, 2012.

Dassault Systèmes. Dymola - Multi-Engineering Modeling
and Simulation - Version 2016. http://www.dymola.
com/, 2016. Accessed: 2015-08-01.

Edda Eich-Soelner and Claus Führer. Numerical Methods in

Multibody Dynamics. European Consortium for Mathemat-
ics in Industry (ECMI). Teubner, 1998. ISBN 3-519-02601-
5.

Emil Fredriksson, Christian Andersson, and Johan Åkesson.
Discontinuities handled with events in Assimulo. In Hu-
bertus Tummescheit and Karl-Erik Årzén, editors, Proceed-

ings of the 10th International Modelica Conference, num-
ber 96 in Linköping Electronic Conference Proceedings,
pages 827–836. Linköping University Electronic Press,
Linköpings universitet, 2014. URL http://dx.doi.

org/10.3384/ECP14096827.

Alan C. Hindmarsh, Peter N. Brown, Keith E. Grant, Steven L.
Lee, Radu Serban, Dan E. Shumaker, and Carol S.
Woodward. Sundials: Suite of nonlinear and differ-
ential/algebraic equation solvers. ACM Trans. Math.

Softw., 31(3):363–396, September 2005. ISSN 0098-3500.
doi:10.1145/1089014.1089020.

Johan Åkesson, Karl-Erik Årzén, Magnus Gäfvert, Tove
Bergdahl, and Hubertus Tummescheit. Modeling and opti-
mization with Optimica and JModelica.org—languages and
tools for solving large-scale dynamic optimization problem.
Comput. Chem. Eng., 34(11):1737–1749, November 2010.
doi:http://dx.doi.org/10.1016/j.compchemeng.2009.11.011.

Poster Session

DOI
10.3384/ecp15118903

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

909

910 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

An Aeronautic Case Study for Requirement Formalization and

Automated Model Composition in Modelica

Wladimir Schamai
1
 Lena Buffoni

3
 Nicolas Albarello

2
 Pablo Fontes De Miranda

2
 Peter Fritzson

3

1
Airbus Group Innovations, Germany wladimir.schamai@airbus.com

2
Airbus Group Innovations, France { pablo.fontes-de-miranda, nicolas.albarello}@airbus.com

3
IDA, Linköping University, Sweden, {lena.buffoni,peter.fritzson}@liu.se

Abstract

Building complex systems from models that have been

developed separately without modifying existing code

is a challenging task faced on a regular basis in

multiple contexts including design verification. To

address this issue an approach has been developed for

automating dynamic system model composition by

defining the minimum set of information that is

necessary to the composition process. In this paper a

design and implementation of this approach for

standard Modelica is presented in the context of an

application case study – the verification of a new

design for spoiler activation against requirements.

Keywords: bindings, requirements, model composition,

design verification

1 Introduction

Complex cyber-physical systems within safety critical

application domains such as avionics need to take a lot

of standard and specifications into account (Kepurch,

2010). For complex system, design verification is often

challenging due to large number of requirements to be

tested. For such systems an automated approach for

connecting together system and requirement models is

necessary.

Design verification takes place in system

development steps starting from early concept

evaluation to detailed system component design. The

purpose of the presented approach to support design

verification activities
1
 by automating the task of

simulation model composition.

This paper builds upon an approach that enables

automated composition of models by expressing the

minimum of information necessary to compose the

models automatically (Schamai, 2013). In our case

study, we show how binding specification can be

defined using standard Modelica language (Modelica

Association, 2012; Fritzson 2014), and show how the

algorithm for automated binding generation can be

implemented in OpenModelica. In contrast to an

1
 Note, since this contribution focuses on implementing of

approach that is based on defining interfaces that

models have to implement, this approach enables the

integration and/or composition of models without the

need for modifying those models. This means that

requirement models and system models can be

developed separately and existing models can be used

without any modifications.

Explicitly exposing and grouping the information

that is needed to interconnect the models will reduce

analysis work. For example, when several requirements

need the same information the same binding

specification can be reused.

Additionally, automated generation of binding

expressions reduces the risk of introducing errors and

reduces modeling effort, in particular in models with

highly interrelated components and/or complex binding

expressions.

In the case study presented here we wish to verify a

particular system design for spoiler activation,

represented by a Modelica model, against requirements

that are formalized in Modelica using the Modelica

Requirements Library (Otter et al, 2014).

This paper is organized as follows: Section 2

presents the case study used in the paper. Section 3

describes the proposed syntax for defining bindings

and illustrates it on the case study. Section 4 discusses

the implementation of the algorithm for binding

generation, and finally Section 5 summarizes the

results presented in the paper.

2 Case Study Description

The selected case study is the design verification of the

secondary flight system of an aircraft.

The secondary flight control system allows

modifying the wing geometry, and consequently the

aerodynamic behaviour of the aircraft, during the

different flight phases and notably at take-off and

landing. It is composed of spoilers, flaps and slats.

DOI
10.3384/ecp15118911

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

911

Figure 1. Flight Control System

On the Airbus A350 XWB, some new functions have

been attributed to the SFCS system (Strüber, 2014):

• DFS (Differential Flap Setting): possibility of a

differential inboard/outboard deflection for loads

and drag control

• VC (Variable Camber): Uniform flaps deployment

in cruise for drag control

• ADHF (Adaptive Dropped Hinge Flaps): the gaps

between the flaps and the spoilers are optimized to

reduce turbulences at high and medium speed.

These new functions induced a new architecture of the

system and new control logics which both need to be

tested.

Figure 2. ADHF configurations

In this new architecture, the actuation of the flaps is

done by an actuation chain made of:

• Hydraulic motors

• Electrical motors

• Gears

The actuation of the spoilers is done via actuators

being servo controlled actuators (SCA) or Electric

Backup Hydraulic Actuators (EBHA). In order to

simulate the system behaviour a Modelica model has

been developed. The inputs of the system are flap

commands, aerodynamic loads on surfaces (flaps and

spoilers), and failures of some components. The model

essentially uses blocks from the Modelica Standard

Library except blocks modeling hydraulic components

which were developed specially for this application.

For confidentiality reasons, the content of the model

cannot be disclosed.

2.1 Requirements Formalization

A system is developed based on requirements which

are captured up-front typically using natural language

(Hull, 2005). To test requirements they need to be

formalized, i.e., they need to be translated into a

machine readable form. In our case study we use the

new Modelica Requirements Library (Otter et al, 2014)

developed in the MODRIO project and the extension

for calling blocks as functions implemented in

OpenModelica (Buffoni and Fritzson, 2014).

In the following we show some examples of natural

language requirements and their corresponding

versions in Modelica. Each requirement is modeled

such that it explicitly specifies the inputs it requires for

evaluation. These inputs will need to be provided by

the system or test scenario models. Further, each

requirement has an explicit status attribute which is

the requirement verdict that can take the values

undecided, violated or satisfied.

Req.001 “The torque of any ADGB electrical motor

shall not be superior to 20 N.m for more than 1 sec.”

This is translated into the following Modelica

model.

model R1
 …
 input Torque ADGBtorque = 0;
 constant Torque maxTorque = 20;
 constant Duration maxDurationForTorqueOvershoot = 1;

 Property status(start = Property.Undecided, fixed = true);

 Modelica_Requirements.ChecksInFixedWindow.MaxDuration ma

xDuration(durationMax=maxDurationForTorqueOvershoot,check=c

ondition.y);
 Modelica_Requirements.Sources.BooleanExpression condition(y=

ADGBtorque >= maxTorque);
equation
 status = maxDuration.y;
 connect(condition.y, maxDuration.condition);
end R1;

The R1 model has one input ADGBtorque. It is the

actual torque of any electrical motor. The value will

need to be provided the R1 instance by the system

model when testing this requirement using simulations.

Figure 3. R1 Modelica model

Figure 3 shows the graphical view of the R1 model. It

has two components: Condition and maxDuration

from the Modelica Requirements Library. The

condition component outputs true if the actual

torque of the motor is greater than the defined

threshold and false otherwise.

maxDuration

check

condition.y

maxOvershoot s

<=
condition

ADGBtorque >= maxTorque

7 spoilers

An Aeronautic Case Study for Requirement Formalization and Automated Model Composition in Modelica

912 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118911

This output is used as input for the maxDuration

component that outputs the status of the requirement

violation. At the very beginning, as long as the

condition is false it outputs undecided. This is

because at this point the requirement was not yet

evaluated. As soon as the condition returns true the

maxDuration component will return violated if the

condition was true for longer than 1 sec. or

satisfied otherwise.

Figure 4. R1 test results

Req.002 “The time of any action of flaps actuation

(extension/retraction) shall be less than 50 sec.”.

model R2
 …

 input Boolean isFlapsActuationAction = false;
 constant Duration maxDuration = 50;

 Property status(start = Property.Undecided, fixed = true);

 Modelica_Requirements.ChecksInFixedWindow.MaxDuration ma

xDuration1(durationMax=maxDuration,check=condition.y);
 Modelica_Requirements.Sources.BooleanExpression condition(y=i

sFlapsActuationAction);
equation
 connect(condition.y, maxDuration1.condition);
 status = maxDuration1.y;
end R2;

Figure 5. Req 002 Modelica model

The input to this model is

isFlapsActuationAction. It is a Boolean type

value to be provided by the system model when testing

this requirement using simulations. Note that at this

point it is not clear how to determine whether the flaps

actuation action takes place.

In fact there may be several ways of accessing this

information of one system design model, and there

may be several system design alternative models. It is

the task of the person who develops the design models

to specify how this data can be accessed. Section 3

discusses how this can be done.

Figure 5 shows the graphical view of the R2 model.

It includes two components: condition and

maxDuration which are instances of models from the

Modelica Requirements Library. The condition

component outputs true as long as the action flaps

actuation action takes place (i.e., extension or

retraction) and false otherwise. This output is used as

input for the maxDuration component that outputs

the status of the requirement violation.

At the very beginning, as long as the condition is

false it outputs undecided. This is because at this

point the requirement was not yet evaluated at all. As

soon as the condition the flaps actuation action starts,

the maxDuration component will measure the time. It

returns satisfied if the action took less than 50 sec.

and violated otherwise.

Figure 6. Req 002 test results

Req.003 “The flap angle shall be comprised in the

range [-5°;35°]”.

model R3
 …

 input Angle flapAngle;

 Property status(start = Property.Undecided, fixed = true);

 Modelica_Requirements.LogicalBlocks.WithinBand band1(u_max

=35, u_min=-5, u=flapAngle);
equation
 if (not band1.y) then
 status = Property.Violated;
 else
 status = Property.Satisfied;
 end if;
end R3;

The input for the model R3 is the flapAngle. Since

there will be several flaps this requirement will need to

be checked (i.e., instantiated) for each flap. The model

WithinBand from the Modelica Requirements library

is used for computing the verdict for this requirement.

maxDuration1

check

condition.y

maxDuration s

<= condition

isFlapsActuationAction

Poster Session

DOI
10.3384/ecp15118911

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

913

Figure 7. Req 003 Modelica model

The status can be evaluated at any time right from the

beginning, i.e., there will be no time instant at which

the status is undecided.

Figure 8. Req 003 test results

Req.004 “When the flap is moving, the distance

(gap) between a flap and its spoiler shall be less than

10 cm”.

Req.005 “When the flap is not moving, the distance

(gap) between a flap and its spoiler shall be less than 3

cm”.

The formalization of the requirements Req.004 and

005 is similar to Req.006 (see below).

Req.006 “The effort between a flap and its spoiler

shall be less than 1000N”.

model R6

 …

 input Force forceBetweenFlatAndItsSpoiler=0;
 constant Force maxAllowedForce=1000;

 Property status(start = Property.Undecided, fixed = true);

 Modelica_Requirements.LogicalBlocks.LessThreshold l(threshold

=maxAllowedForce, u = forceBetweenFlatAndItsSpoiler);

equation
 if not l.y then
 status = Property.Violated;
 else
 status = Property.Satisfied;
 end if;
end R6;

Figure 9. Req 006 Modelica model

Figure 10. Req 006 test results

Req.015 “The high lift system shall be able to hold

the high lift surfaces in their current position:

• Under all load conditions;

• Under all relevant environmental conditions;

• After total loss of electric and hydraulic power

(permanent or transient).

model Requirement_15
…
 input Boolean hydraulicFailure;
 input Boolean electricalFailure;
 input Angle outboardValue;
 input Angle inboardValue;

parameter Real minDerivative = 0.01 "Values in degrees/s";
Property status(start = Property.Undecided, fixed = true);

Modelica_Requirements.ChecksInFixedWindow.During during1(ch

eck=not (flapsMoving.y));
Modelica_Requirements.Sources.BooleanExpression totalFailure(y

= hydraulicFailure and electricalFailure);
 Modelica_Requirements.Sources.BooleanExpression flapsMoving(

y=abs(der(SI.Conversions.to_deg(outboardValue))) > minDerivativ

e or abs(der(SI.Conversions.to_deg(inboardValue))) > minDerivati

ve);

equation
status = during1.y;

end Requirement_15;

Req.016 “Transients in normal system operations

and in case of failure shall not cause excessive loads to

components.”

This requirement is quite challenging to formalize

since the conditions of excessive loads for each

component must be defined.

The following formalization of the requirement uses

arrays to gather variables coming from the different

instances of the different components (ADGBs, flaps,

PCU brakes). The binding mechanism will feed these

inputs with the corresponding variables depending on

the number of instances present in the model. The

PropertyAnd block synthesizes the values of the

different statuses with a 3-valued “and” logic.

band1

35

-5

maxAllow edForce

l

An Aeronautic Case Study for Requirement Formalization and Automated Model Composition in Modelica

914 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118911

model Requirement_16
…
 input Angle flapSpeed[:]; //left and right, inboard and outboard
 input Real ADGB_MotorTorque[:]; //left and right
 input Real ADGB_BrakeTorque[:]; //left and right
 input Real PCU_BrakeTorque[:]; //green and yellow brakes

 parameter Torque maxMotorTorque = 20;
 parameter Real maxDerivative = 2;
 parameter Torque maxADGB_BrakeTorque = 1e6;
 parameter Torque maxPCU_BrakeTorque = 1e6;

 Property status(start = Property.Undecided, fixed = true);

 Property ADGB_MotorStatus[size(ADGB_MotorTorque,1)];
 Property ADGB_BrakeStatus[size(ADGB_BrakeTorque,1)];
 Property PCU_BrakeStatus[size(PCU_BrakeTorque, 1)];
 Property flapOverspeedStatus[size(flapSpeed, 1)];

 Modelica_Requirements.LogicalBlocks.PropertyAnd andStatus(nu

=size(ADGB_MotorTorque,1)+size(ADGB_BrakeStatus, 1)+size(P

CU_BrakeStatus, 1)+size(flapOverspeedStatus, 1));

equation
 andStatus.u = cat(1,ADGB_MotorStatus,ADGB_BrakeStatus,PCU

_BrakeStatus,flapOverspeedStatus);
 andStatus.y = status;

 for i in 1:size(ADGB_MotorTorque,1) loop
 if abs(ADGB_MotorTorque[i])>maxMotorTorque then
 ADGB_MotorStatus[i]=Property.Violated;
 else
 ADGB_MotorStatus[i]=Property.Satisfied;
 end if;
 end for;

… (same for ADGB_BrakeTorque, PCU_BrakeTorque and

flapSpeed)

end Requirement_16;

Req.032 “A single electrical failure shall not

prevent an inboard flaps only movement.”

model Requirement_32

…
 input Boolean electricalFailure;
 input Boolean hydraulicFailure;
 input Angle outboardValue;
 input Angle inboardValue;
 input Integer mode; //mode as computed by SFCC

 Property status(start = Property.Undecided, fixed = true);

 parameter Real minDerivative = 0.01 "Value in rad/s";

 Boolean inboardMovement = abs(der(inboardValue))>= minDeriv

ative;
 Boolean outboardMovement = abs(der(outboardValue))>= minDer

ivative;

equation
 if (mode == 2 and electricalFailure) then //mode 2 = Inboard Differ

ential Flap Setting
 if (inboardMovement and not
 (outboardMovement)) then
 status = Property.Satisfied;
 else
 status = Property.Violated;

 end if;
 else
 status = Property.Undecided;
 end if;

end Requirement_32;

Figure 11. Req 032 Modelica Model

In this formalization, a mode computed by the main

control computer is used to check if a “inboard flap

only movement” is commanded (mode 2). Other

implementation could be possible but this one was

chosen for its simplicity.

Figure 11. Req 032 test results

The last figure shows the results of a real scenario of

system utilization. The model was excited with a pulse

entry with 20 degrees of amplitude to move the inboard

flaps, with no commands given to the outboard flaps.

Also, during the simulation there are cases of an

electrical failure distributed in a pulse form.

The requirement is violated during the simulation of

the model since the outboard flaps continue to move

during the electrical failures. This is due to an error in

the model or in the system design and shall be

investigated.

2.2 Verification Scenario Formalization

Scenarios are defined to stimulate the system in

different conditions. These scenarios are defined as

Modelica models providing inputs to the system model

(flap commands, loads, failures…).

0 25 50 75 100

-10

-5

0

5

10

15

20

25

0 20 40 60 80 100

1

2

3

4

Violated

Undecided

scenario_16_1.system.control.pRIMandsFCC.Mode

requirement_32.status

Outboard Flap Angle

Inboard Flap Angle

Poster Session

DOI
10.3384/ecp15118911

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

915

Figure 12. Modeling of a scenario

The scenarios must be defined so that requirements are

verified (i.e. some scenarios permit the verification of

the requirement). For this, a verification table can be

created. This table defines which scenario should

permit the verification of which requirements. After

simulation of all scenarios, the value of the

requirement will permit to check if the table is correct

(i.e. to check if the scenarios have triggered the

verification of the requirements.

 Sc01 Sc02 … Sc15 Sc16

R001 X X

R002 X X

…

R032 X X

Table 1. Verification table

3 Binding definition

This section describes the syntax for specifying the

mediators and generating the bindings. In contrast to

our previous proposals for representing bindings which

relied either on either the use of an XML

representation or on extensions to the Modelica

language, the proposal presented in this paper is fully

compliant with standard Modelica and relies on records

to represent the binding information.

Clients, in this case requirements, require certain

data. A record for representing the client, specifies the

information necessary from the client side:

record Client "Client is a model or component that requires a modifi

er (i.e. a binding)"
 extends Modelica.Icons.Record;

 String id "A qualified name for the client";

 String template = "" "A transformation that can be applied to the

generated binding expression for this client. If left empty, no transf

ormation will be applied.";

 Boolean isMandatory = false "Defines if the client must to be bo

und or if a binding is optional.";
 end Client;

A number of fields that are optional have predefined

values, so that they do not need to be specified if not

relevant for a specific binding.

Providers make data available to clients. The

information specified by a provider is defined in the

record below:

 record Provider "Provider specifies how to access data required for

 clients that are linked to the mediator this provider is used for."
 extends Modelica.Icons.Record;

 String id "A qualified name for the provider. ";
 String template = "" "Code snippet with placeholders used for ge

nerating part of binding expression. If left empty, no transformation

 will be applied.";

 end Provider;

Clients and providers do not know each other a

priori. In order to relate a set of clients and a set of

providers, we use the mediators, defined by the record

below:

 record Mediator "Mediator captures data required for inferring bin

ding expression for referenced clients using referenced providers."
 extends Modelica.Icons.Record;

 String name = "" "Reflects what is needed by referenced clients.

Optional.";
 String mType = "" "Reflects the type required by referenced clei

nts. Optional.";

 String template = "" "A transformation that can include calls to fu

nctions that can handle unsorted arrays(e.g., add(:), max(:), toArray(

:), etc.). If left empty, no transformation will be applied.";

 Client clients[:] "List of clients.";
 Provider providers[:] "List of providers.";

 end Mediator;

A more detailed description of the mediator concept

can be found in (Schamai, 2013).

3.1 Binding Specification

Section 2.1 shows examples of formalized

requirements. The corresponding requirement models

from require the following data:

• Current distance between flap and its spoiler (for

R4.distanceBetweenFlapAndItsSpoiler and R5.

distanceFlapSpoiler)

• Current flap angle (for R3.flapAngle)

• Current force between flap and its spoiler (for

R6.forceBetweenFlapAndItsSpoiler)

An Aeronautic Case Study for Requirement Formalization and Automated Model Composition in Modelica

916 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118911

• Current torque of electrical motor

(R1.ADGBtorque)

• Flap is moving (for R4.isFlapMoving and

R5.isFlapMoving)

The system model determines which of the

requirements will be tested and how they will be

combined with scenario models. Furthermore, there

might be requirements which are repeatedly imposed

on system parts of the same kind that exist inside the

system model (e.g., there are several flaps in our

model).

The purpose of the binding specification is to

capture the minimum information in order to enable

creating any combination of the system model and a set

of requirements such that they will be bound correctly

in an automated fashion, as well as to enable

determining how many times a particular requirement

needs to instantiated.

In order to do so, the user will now define mediators

(Schamai et al, 2014). In our example the mediators

reflect (i.e., contain information about) what data will

need to be provided by the system model in order to

enable testing of particular requirements (the clients).

Consider the mediator M1. It defines that any

instance of the requirement models

R4.distanceBetweenFlapAndItsSpoiler and

R5.distanceFlapSpoiler (clients) have to be

bound
2
 to some other components in order to retrieve

the value during simulating. The value can be accessed

inside the instance of the type Spoilers.

Spoiler_SC.elastoGap (provider) by using its sub-

component elastoGap.s_rel (captured by the

template attribute) whereby getPath() will be

replaced by the instance path of the provider model.

Other mediators are defined in a similar way.

 record M1
 import BindingDefinition.*;
 import Req.*;
 import SpoilerActuation_v7.*;

 extends Mediator(
 name = "Current distance between flap and its spoiler",
 mType = "Modelica.SIunits.Distance",
 clients = {
Client(id="R4.distanceBetweenFlapAndItsSpoiler",
isMandatory=true),
Client(id="R5.distanceFlapSpoiler",
isMandatory=true)},
 providers = {
Provider(id="Spoilers.Spoiler_SC.elastoGap",
template="getPath().elastoGap.s_rel")});
 end M1;

record M2
…
 extends Mediator(
 name="Current flap angle",

2
 This is indicated by the attribute isMandatory=true

 mType="Modelica.SIunits.Angle",
 clients={Client(id="R3.flapAngle", isMandatory=true)},
 providers={Provider(id="Flaps.Flap.FlapAngle")});

end M2;

record M3
 …
 extends Mediator(
 name="Current force between flap and its spoiler",
 mType="Modelica.SIunits.Force",
 clients={Client(id="R6.forceBetweenFlatAndItsSpoiler",
isMandatory=true)},
 providers={Provider(id=" Spoilers.Spoiler_SC.elastoGap",
template="getPath().flange_a")});

end M3;

record M4
…

 extends Mediator(
 name="Current torque of electrical motor",
 mType="Modelica.SIunits.Torque",
 clients={Client(id="R1.ADGBtorque", isMandatory=true)},
 providers={
Provider(id="Flaps.ActuationChainComponents.MotorModel.flange

_b", template="getPath().tau")});

end M4;

record M5
…
 extends Mediator(
 name=" Flap is moving",
 mType="Boolean",
 clients={
 Client(id="R4.isFlapMoving", isMandatory=true),
 Client(id="R5.isFlapMoving",isMandatory=true)},
 providers={
 Provider(id="Control.SFCC.Mode", template="getPath() <> 4")

});
end M5;

record M6
…

 extends Mediator(
 name="Flaps actuation action is taking place",
 mType="Boolean",
 clients={Client(id="R2.isFlapsActuationAction",
isMandatory=true)},
 providers={Provider(id="Control.SFCC.Mode",
template="getPath() <> 4")});

end M6;

4 Binding generation

Once the bindings are specified a verification model

can be created containing the system model and the

requirements to be verified.

model VeM01

 import Req.*;
 import SpoilerActuation_v7.*;
 System sm_system;

 R1 r1; R2 r2; R3 r3; R4 r4; R5 r5; R6 r6;

end VeM01;

Poster Session

DOI
10.3384/ecp15118911

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

917

The system model imports the packages where the

mediators that can be used in the binding computation

are defined.

The OpenModelica API has been extended with a

call: inferBindings(systemModel, program);

The call accepts as arguments the name of

systemModel as well as the environment (here

program) with all the loaded classes where it will look

for the mediator definitions and update the

systemModel with the binding expressions in the

form of modifiers.

Figure 13 Binding generation in OpenModelica

The algorithm for binding generation is implemented

in OpenModelica as it is defined in (Schamai et al,

2014). First an instance tree is built for the model to be

bound (see Figure 14). This instance tree is represented

in an internal data structure and all the clients and

providers are identified by checking whether they

match the client or provider paths defined in any

mediators. For instance mediator M4 specifies only

one client : Client(id="R1.ADGBtorque", isMandatory=true)

and therefore ADGBtorque will be marked as a client

in the instantiation tree. All the mediator data is also

stored in an internal structure with references to all the

instances of clients and providers found for each

mediator.

Once all the internal structures are created, for each

client the bindings are computed by localizing all the

providers. If more than one provider is present then a

template must be defined in the mediator to describe

how the inputs from different clients must be

combined. In mediator M4 we only have one provider

defined:
Provider(id="Flaps.ActuationChainComponents.MotorModel.flange

_b", template="getPath().tau")

As in the model we have two instances of

MotorModel, right and left, two provider instances will

be found by the algorithm.

The getPath() call is replaced with the path of the

component instance in the environment, in this

example
sm_system.flaps.actuationChain.ADGB_Left.motorModel.flange_b

and sm_system.flaps.actuationChain.ADGB_Right.motorModel

.flange_b and the template is used to generate a binding

expression, in this case to point to tau inside each of the

providers.

Figure 14 Instantiation tree

The algorithm figures out the required number of

requirement instantiations and generates the binding

expressions. For instance, in this example we need two

instances of R1, one for each motor and as the model

used in this use case has four flaps, four instances of

R4 will be needed. Binding expressions are

implemented as modifiers that will be applied to the

components and sub-components of systemModel.

If the algorithm cannot find a binding for a

mandatory client, or several binding are possible for

the same client, the result will be an error message.

Update Bindings

VeM01

req1
sm_system

ADGBtorque

…

…
…

(client)

LeftMotorModel RightMotorModel

Flange_b

(provider)
Flange_b

(provider)

…

An Aeronautic Case Study for Requirement Formalization and Automated Model Composition in Modelica

918 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118911

Similarly, when several instances of requirements that

require more than one input need to be generated, user

involvement may be needed to indicate how to

correctly pair up the providers. In future versions of

the implementation, support for storing and reusing

user decisions will be implemented through the use of

annotations.

For example, regarding the system model specified

for this case study, the algorithm will generate the

following binding expressions:

model VeM01
 import Req.*;
 import SpoilerActuation_v7.*;

 System sm_system;

 R1 req_001_0_r1(ADGBtorque = sm_system.flaps.actuationChain.

ADGB_Left.motorModel.flange_b.tau);

 R1 req_001_1_r1(ADGBtorque = sm_system.flaps.actuationChain.

 ADGB_Right.motorModel.flange_b.tau);
 R2 req_002_r2(isFlapsActuationAction = sm_system.control

.pRIMandsFCC.Mode <> 4);
 R3 req_003_0_r3(flapAngle = sm_system.flaps.FlapLI.FlapAngle);
 R3 req_003_1_r3(flapAngle

 = sm_system.flaps.FlapLO.FlapAngle);
 R3 req_003_2_r3(flapAngle = sm_system.flaps.FlapRI.FlapAngle);
 R3 req_003_3_r3(flapAngle

= sm_system.flaps.FlapRO.FlapAngle);
 R4 req_004_0_r4(distanceBetweenFlapAndItsSpoiler =

sm_system.LISpoiler.elastoGap.elastoGap.s_rel,

isFlapMoving =

sm_system.control.pRIMandsFCC.Mode <> 4);
 R4 req_004_1_r4(distanceBetweenFlapAndItsSpoiler =

sm_system.LOSpoiler.elastoGap.elastoGap.s_rel,

isFlapMoving =

sm_system.control.pRIMandsFCC.Mode <> 4);
 R4 req_004_2_r4(distanceBetweenFlapAndItsSpoiler =

 sm_system.RISpoiler.elastoGap.elastoGap.s_rel,

isFlapMoving =

sm_system.control.pRIMandsFCC.Mode <> 4);
 R4 req_004_3_r4(distanceBetweenFlapAndItsSpoiler =

 sm_system.ROSpoiler.elastoGap.elastoGap.s_rel,

isFlapMoving =

sm_system.control.pRIMandsFCC.Mode <> 4);
 R5 req_005_0_r5(distanceFlapSpoiler =

 sm_system.LISpoiler.elastoGap.elastoGap.s_rel,

isFlapMoving =

sm_system.control.pRIMandsFCC.Mode <> 4);
 R5 req_005_1_r5(distanceFlapSpoiler =

sm_system.LOSpoiler.elastoGap.elastoGap.s_rel,

isFlapMoving =

sm_system.control.pRIMandsFCC.Mode <> 4);
 R5 req_005_2_r5(distanceFlapSpoiler =

sm_system.RISpoiler.elastoGap.elastoGap.s_rel,

isFlapMoving =

sm_system.control.pRIMandsFCC.Mode <> 4);
 R5 req_005_3_r5(distanceFlapSpoiler =

 sm_system.ROSpoiler.elastoGap.elastoGap.s_rel,

isFlapMoving =

sm_system.control.pRIMandsFCC.Mode <> 4);
end VeM01;

Once the bindings are defined, if we want to modify

the system design, for instance adding backup

components to the system or modifying the number of

flaps, then the bindings can be regenerated with no

additional effort.

Moreover, bindings can be used in batch testing to

automatically generate verification models with

different scenarios and different requirement subsets.

This is something that would be difficult to do using

explicit interfaces.

5 Conclusion

In this paper we have presented:

• A new application of design verification on an

industrial case study in the field of aeronautics.

• The use of the new requirement modeling library

for formalizing the requirements of the case study.

We have shown that the binding approach is fully

compatible with the new Modelica Requirements

library.

• A modified version of the syntax for representing

binding specification that is fully compliant with

standard Modelica syntax, meaning that binding

specifications can be edited and visualized in any

Modelica tool. In order to support the binding

generation, a tool has to simply implement the

binding algorithm in (Schamai, 2014).

• An implementation of the binding algorithm in

OpenModelica

The binding approach does not assume prior

knowledge of each other by the respective models and

therefore increases decoupling and allows reuse of

existing models and libraries. As mediators can be

defined in several steps this means that different people

can provide the information necessary to connect the

models at different stages in the design process.

Moreover, the binding algorithm is general and can

be used for binding models in other contexts than

requirement verification. Furthermore, it enables a

formal traceability between client and provider models.

For example, determining which requirements are

implemented in the system design model at hand can

be achieved by looking at the bindings for mandatory

requirement clients.

The case study is work in progress, but it has

already allowed to detect a number of relevant issues in

the model.

Clearly, the effectiveness of the presented approach

is jeopardized when bindings are specified such that

they result into too many ambiguous matches to be

resolved by user manually. Such situation should be

detected. Possible resolution could include: Providing

hints for modifying the binding specifications;

Enabling user to add more information to the binding

specification for handling special cases; Or supporting

the user by providing the list of all possible

combinations to choose from. More complete results,

for example, the evaluation of this approach on real

projects with large number of requirements is still

subject to future work.

Poster Session

DOI
10.3384/ecp15118911

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

919

Acknowledgements

This work is partially supported by the EU INTO-CPS

project and the ITEA 2 MODRIO project via the

Swedish Government (Vinnova) and the German and

French Government.

References

Lena Buffoni and Peter Fritzson. Expressing Requirements

in Modelica. In Proceedings of the 55th International

Conference on Simulation and Modeling (SIMS 2014),

Aalborg, Denmark, October 21-22, 2014.

Peter Fritzson. Principles of Object Oriented Modeling and

Simulation with Modelica 3.3: A Cyber-Physical

Approach. 1250 pages. ISBN 9781-118-859124, Wiley

IEEE Press, 2014.

Hull, E., Jackson, K., and Dick, J. Requirements En-

gineering. Springer, 2005.

Kapurch, S. NASA Systems Engineering Handbook. DIANE

Publishing Company, 2010. URL http://

books.google.se/books?id=2CDrawe5AvEC.

Martin Otter, Lena Buffoni, Peter Fritzson, Martin Sjölund,

Wladimir Schamai, Alfredo Garro, Andrea Tundis, Hilding

Elmqvist. D2.1.1 – Modelica Extensions for Properties

Modelling, Part IV: Modelica for Properties Modeling.

Internal Report, ITEA2 MODRIO project, Sept. 2014.

Modelica Association. Modelica, A Unified Object-Oriented

Language for Systems Modeling, Language Specification,

Version 3.3, May 9, 2012.

https://www.modelica.org/documents/ModelicaSpec33.pdf

Wladimir Schamai. Model-Based Verification of Dynamic

System Behavior against Requirements. Ph.D. thesis,

Method, Language, and Tool Linköping: Linköping

University Electronic Press, Dissertations, 1547, 2013..

Wladimir Schamai, Lena Buffoni, and Peter Fritzson, An

Approach to Automated Model Composition Illustrated in

the Context of Design Verification. Journal of Modeling,

Identification and Control, Volume 35- 2, pages 79—91,

2014.

H. Strüber The Aerodynamic Design of the A350 XWB-900

High Lift System. 29th Congress of the International

COuncil of the Aeronautical Sciences. St Petersburg,

2014.

An Aeronautic Case Study for Requirement Formalization and Automated Model Composition in Modelica

920 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118911

FastHVAC - A library for fast composition and simulation of

building energy systems

Sebastian Stinner Markus Schumacher Konstantin Finkbeiner Rita Streblow

Dirk Müller

RWTH Aachen University, E.ON Energy Research Center, Institute for Energy Efficient Buildings and Indoor

Climate, Aachen, Germany

{sstinner, mschumacher}@eonerc.rwth-aachen.de

Abstract

This paper describes the implementation of a Modelica

library that is designed to enable fast composition and

simulation of building heating, ventilation and air con-

ditioning (HVAC) systems. The library is based on an

approach which is focusing on the thermal behavior of

the components. Compared to existing libraries, it has

no information about the pressure of the system. This

approach limits the applicability of the library, but de-

creases the computational effort as well as the time to

set up a model. Nonetheless, the simulation results are

comparable to simple HVAC system models based on

Modelica.Fluid .

Keywords: HVAC, building performance simulation,

building energy systems, city district simulation

1 Introduction

The dynamic simulation of building energy systems,

including HVAC technologies, is gaining importance

in recent years. Various open source libraries for

the simulation of HVAC systems are available today

(AixLib, Buildings, BuildingSystems, IDEAS) (Fuchs

et al., 2015; Wetter et al., 2014; Nytsch-Geusen et al.,

2013; Baetens et al., 2015) and will be unified in the

context of the IEA EBC Annex 60 activities (Annex60,

2015; Wetter et al., 2015). The applications of the sim-

ulation models range from the rapid prototyping of new

components and systems, over development of advanced

control systems to reuse of models during operation for

fault detection and diagnostics (Wetter, 2009).

In recent years, applications for BES system mod-

els have been extended to analyze entire city districts

(Müller et al., 2015). This is especially important, when

considering the interconnection of buildings, which can

be in terms of district heating networks or the electrical

grid. In this field, measures like Demand Side Manage-

ment (DSM) (Müller et al., 2015) are expected to become

more important in the future. The simulative analysis of

these (large) energy systems with implemented thermal

storages, as well as heat generators, e.g. heat pumps and

combined heat and power plants, requires the analysis of

large equation systems and might lead to unreasonable

computational effort.

Furthermore, the simulation of (especially closed) hy-

draulic circuits, whose models are based on the pack-

age Modelica.Fluid of the Modelica Standard Library

(MSL) shows considerable difficulties. In particular, the

steady-state initialization of these systems can be a crit-

ical issue. Singularities in the solution can arise. These

singularities do not occur in single component testing,

but in the composition of the closed hydraulic cycle.

For inexperienced users, this behavior can be confus-

ing (Casella, 2012). Even if the aforementioned phe-

nomenon is encountered by experienced users, it might

be a challenging task to set the initialization values prop-

erly. Especially in cases where the thermal investiga-

tion of energy systems is focused, it requires additional

expenditure without benefit. Furthermore, the compu-

tational effort can be a critical factor, depending on the

size of the observed system. The number of initialization

variables can grow very fast (Casella et al., 2011). In case

of a city district analysis, this becomes a very critical is-

sue, as the building energy systems should probably be

parameterized automatically with little manual input. As

most of the critical problems in HVAC simulations arise

due to pressure calculations, the authors developed an

additional library for the simulation of building energy

systems that takes into account the whole thermal behav-

ior, while reducing the information about the hydraulic

circuit to the mass flow rate. The introduced library is

particularly suitable for applications such as rapid pro-

totyping of new energy systems and the development of

advanced control systems for heat generators.

In the following, we will introduce the approach that

forms the basis for all simulation models in the presented

library. First, all required equations and base classes are

introduced. Afterwards, we give an overview of the li-

brary itself and the included packages with a selection

of the models. The developed library enables the user

DOI
10.3384/ecp15118921

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

921

for fast composition and simulation of building energy

systems. However, the accuracy of the simulated models

has to be verified. This is shown in chapter 4 by a com-

parison of a building energy system modeled with both

the Modelica.Fluid components and the components

of the new library, called FastHVAC .

2 Modelling principles

The models of the FastHVAC library are designed based

on standard mass and energy balances in individual com-

ponents. Each component includes a volume, whose

temperature, specific heat capacity (thus also enthalpy)

and density is considered to be homogenous. To have

the ability to interconnect different components, a new

connector, that only transports the required information

between the components, has been developed. This con-

nector is called EnthalpyPort. It carries the following

information:

• the mass flow rate in kg/s: designed as a flow vari-

able, from the connection point into the component

• the thermodynamic temperature in K

• the specific enthalpy of the fluid in J/kg as a stream

variable

• the (constant) specific heat capacity of the fluid in

J/(kg K)

Here, the specific heat capacity is a redundant infor-

mation. It is needed for development purposes of the

FastHVAC library. After completition of the develop-

ment phase, the variable will be removed. With known

temperature difference, mass flow rate and the specific

heat capacity, it is possible to calculate the heat flow at

each time step. Considering the component’s thermal

behavior, it facilitates the fault detection of models.

To make use of the aforementioned variables, balance

equations for each component are formulated in accor-

dance with Figure 1.

∑ ṁi = 0 (1)

This equation defines that the fluid mass in the compo-

nents does not change over time and entering mass flows

have to leave through another connection.

Furthermore, the energy balances are formulated:

c1 = c2 = c (2)

T2 = heatPort.T ; (3)

h2 = c ·T2 (4)

Q̇ = ṁ · (h2 −h1) (5)

,T

Figure 1. Exemplary scheme of the model EnergyBalance

The model EnergyBalance is based on the equations

(1) to (5) and forms the basis for further components.

Here, for entering flows index 1 is used and index 2 for

outgoing flows, see Figure 1.

In case of hydraulic networks with multiple branches

it is necessary to split off and merge the mass flows.

Since there is no temperature change, the splitting of

mass flows is described by the standard mass balance:

ṁin =
n

∑
i=1

ṁout,i (6)

Tin = Tout cin = cout hin = hout (7)

Merging the entering mass flows with different tem-

peratures requires a calculation of the outgoing temper-

ature. The temperature of the outgoing flow is obtained

by balancing the mass and enthalpy flows:

ṁout =
n

∑
i=1

ṁin,i (8)

Ḣout =
n

∑
i=1

Ḣin,i (9)

Tout =
Ḣout

cp · ṁout

(10)

If a certain heat capacity is available in the

component due to fluid content, the component

HeatTransfer.Components.HeatCapacitor from

the package Modelica.Thermal of the MSL, is intro-

duced. Following this approach, we assure that the tem-

perature dynamics within the component are properly

represented and the leaving fluid has the actual compo-

nent fluid temperature.

As many of the components (e.g. heat generators,

pipes) have a capacity and need an energy balance as

well, a combination of both systems is implemented

forming the model WorkingFluid. This component

is basically equivalent to the Vessels.ClosedVolume

model of the Modelica.Fluid package within the

MSL. The WorkingFluid model has a HeatPort_a

connection to the outside, where heat can be injected or

removed from the component.

FastHVAC - A Library for Fast Composition and Simulation of Building Energy Systems

922 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118921

The commonly used fluid in building heating systems

in Germany is water. However, within the operating

range of standard systems, the fluid properties underly

only marginal changes. Therefore, we assume for the

first version of the FastHVAC library properties like den-

sity, specific heat capacity and thermal conductivity to be

constant.

3 Library for building HVAC

systems

3.1 Packages of the FastHVAC library

The FastHVAC library is organized into the packages

shown in Figure 2. Most packages contain a package

BaseClasses, which comprises essential models for

the individual components.

FastHVAC.BaseClasses.EnergyBalance

 .WorkingFluid

FastHVAC.Components.HeatGenerators

 .Storage

 .Pipes

 .Pumps

 .Valves

 .HeatExchanger

 .Sources

 .Sinks

 .Sensors

FastHVAC.Examples

FastHVAC.Interfaces

FastHVAC.Media

Figure 2. Package structure of the FastHVAC library, current

state. Only the major packages are shown.

3.1.1 Package BaseClasses

The package BaseClasses contains the models

EnergyBalance and WorkingFluid, which represent

the principles described in section 2.

3.1.2 Package Components

The classes that form the core of the FastHVAC library

can be found in the package Components . These can

be organized into components for generation, storage

and distribution of thermal energy. Besides, there are

additional packages that enable device control systems

by measurements or are necessary to form proper en-

ergy balances at the system boundaries. In the following,

these individual components will be briefly introduced.

• The generation of thermal energy can be repre-

sented by three different technologies, namely a

Boiler, CHP or HeatPump component. Addition-

ally, we include the model of a Solar.Thermal as

a renewable source of heat production, which can

be directly coupled to a test reference year (TRY)

(DWD, 2011) based weather component.

• The model Storage is the implementation of a

stratified water storage tank with variable dimen-

sions. The tank loading and unloading can occur

either directly via mass flow injection or indirectly

via up to two heating coils. The number of connec-

tion pairs for direct loading and unloading cycles

is variable. The position of the connection pairs is

variable as well and can be adjusted to individual

purposes. A more detailed description and assess-

ment of this component is shown in section 4.1.3.

• To cover the distribution of produced thermal en-

ergy to a room or building, further models are intro-

duced. The model Pumps is used to generate a heat-

ing fluid mass flow through the system, whereas the

model Pipes is used to direct the fluid to its des-

tination and provide a physical connection to the

ambient (e.g. air or soil). Since no pressure calcu-

lations are performed in the FastHVAC approach,

the fluid mass flow rate is an external input to the

Pump model and can be ideally set. Valves are

needed to split off and merge fluid mass flows in

multiple circuits. Due to the missing pressure infor-

mation, the valve functionality is based on external

signals. Considering a two-way valve, an equiva-

lent mass flow rate to the valve opening can be cal-

culated, e.g. by using a valve characteristics func-

tion. The calculated mass flow rate is used as the

external input for the Pump model. If one closed

loop with two branches is considered, a three-way

valve can be used as well as two pumps inside each

branch. The three-way valve divides the incoming

mass flow rate into two flows. The ratio can be con-

trolled by an external input. In case of more than

two branches within one closed loop, a combina-

tion of three-way valves and pumps can be used.

• In cases where a conductive heat transfer has

to be considered, e.g. in a domestic hot water

(DHW) station, the model DHWHeatExchanger in

the package HeatExchanger is applied. To supply

the building with heat for space heating, a model

for radiators called Radiator_ML is incorporated

in the package HeatExchanger . Several parame-

ters of the heat exchangers, for instance dimensions

and discretization, can be adjusted.

• To enable the consideration of non-circular energy

flows across the system boundaries, such as the flow

of fresh water from public supply into the DHW

Poster Session

DOI
10.3384/ecp15118921

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

923

system, Sources and Sinks are available within

the library. These models are comparable to the

Modelica.Fluid components.

• For device control purposes, measurement tools

like a temperature sensor and a mass flow sensor

are available within the package Sensors .

3.1.3 Other packages

The package Examples contains example applications

for each component that illustrate the typical use, test

and validation cases. The package Interfaces con-

tains connectors to build interconnections between indi-

vidual components. This means especially the connector

EnthalpyPort and the derived connectors. The pack-

age Media contains data records of different medium

models.

4 Example applications

As the models created with the FastHVAC approach

should not change the physical behavior of a con-

sidered system, we compare them to implementations

with other models. For comparison purposes, each

component is modeled based on Modelica.Fluid

(HVAC component) as well as on the new approach

(FastHVAC component). In the following, we will use

the Modelica.Fluid based approach as reference.

First, different single components will be analyzed

separately. In this case, the boiler, the radiator and

the heat storage are shown. For each component,

a Modelica.Fluid based model is compared to a

FastHVAC model. For the boiler and the radiator,

both models have exactly the same functionality and

parameters. In the case of the heat storage, an open

source model is used for the comparison. We use a

model from the Buildings library (Wetter et al., 2014)

for verification of the FastHVAC model. Afterwards, we

will present the comparison results of a whole building

energy system. It is a heat supply system for a dwelling,

which comprises a heat consumer, heat generator, heat

exchanger and a pipe network.

4.1 Heat supply components for a dwelling

For verification purposes, we will compare the dy-

namic thermal behavior of each component in sim-

ple test cases. The utilized medium record for

Modelica.Fluid based components is the simple liq-

uid water with constant properties (incompressible).

The record values for FastHVAC.Media are identi-

cal to ConstantPropertyLiquidWater data from

Modelica.Media.Water within MSL (specific heat

capacity, density, thermal conductivity). In the follow-

ing, the different test cases are introduced.

4.1.1 Test case: Boiler

The heat generation is provided by a gas fired boiler. The

boiler model is able to vary the flow temperature by mod-

ulating operation, e.g. to hold a certain flow temperature

in case of varying return mass flow rate or return tem-

perature. The observed time period is set to 1 d and the

simulation resolution to 60 s.

In this test case, the flow temperature and mass flow

rate are constant while the heating power is increasing

linearly from 30 % to 100 % within 10 h. Furthermore,

the boiler is switched off for 5 h after every 5 h of oper-

ation.

In Figure 3 the simulation results of both approaches

are shown. The boiler return temperature is the variable

of comparison. For this rather simple test case, the re-

sults are identically equal.

0 3 6 9 12 15 18 21 24
280

290

300

310

320

330

340

350

360

time in h

 r
e
tu

rn
 t
e
m

p
e
ra

tu
re

 i
n
 K

HVAC
FastHVAC

Figure 3. Boiler return temperature

4.1.2 Test case: Radiator

The heat distribution to the dwelling is provided by a ra-

diator and is based on radiative and convective heat trans-

fer. In this case, the thermal output of the radiator is de-

termined by the building heating load. During nighttime,

the heating load is higher than during daytime, mainly

because of the absence of solar gains. In the considered

case, the flow temperature signal is a sine wave with a

period of 24 h. This should emulate a dynamic operation

of the system. The mass flow rate and ambient tempera-

ture are constant. The observed time period is again set

to 1 d and the simulation resolution to 60 s.

Target variables are the return temperature and the

thermal output of the radiator. The comparative simu-

lation shows identical results, see Figure 4.

4.1.3 Test case: Heat storage

A heat storage is not part of the closed heat supply sys-

tem considered in section 4.2, but it is an important

FastHVAC - A Library for Fast Composition and Simulation of Building Energy Systems

924 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118921

0 3 6 9 12 15 18 21 24
330

335

340

345

350

time in h

 r
e
tu

rn
 t
e
m

p
.
in

 K

HVAC
FastHVAC

0 3 6 9 12 15 18 21 24

1.4

1.6

1.8

2

2.2

time in h

h
e
a
t
fl
o
w

 i
n
 k

W

HVAC
FastHVAC

Figure 4. Return temperature and thermal output of radiator

component in general. For instance, in case of DSM,

a thermal storage is necessary to decouple heat genera-

tion from heating demand. The heat transfer between the

individual storage layers is based on conductance, buoy-

ancy and enthalpy flow. Heat losses through the wall are

accounted for as well.

The storage model Fluid.Storage.Stratified

within the Buildings library is based on the same

heat transfer principles (Wetter, 2015a). Therefore,

we compare the storage following the FastHVAC

approach, to the Buildings storage model for ver-

ification purposes. It is important to note that the

storage wall construction of the considered mod-

els differs in its structure. In case of the model

Buildings.Fluid.Storage.Stratified,

the whole storage wall is represented by the

model ThermalConductor of the package

Modelica.Thermal.HeatTransfer.Components.

In contrast, the storage wall of the FastHVAC

component consists of a tank wall and a tank

insulation. Both, the wall and insulation are

represented by a combination of the models

ThermalConductor , HeatCapacitor of the package

Modelica.Thermal.HeatTransfer.Components

and additionally a model for heat convection. All other

parameters and model details are identical. Both storage

models are parameterized with the same dimensions,

five layers and the same characteristical time constant

for mixing. The ambient temperature is set constant.

The considered case shows a typical use case of a heat

storage tank. The storage is first on standby mode fol-

lowed by an alternating unloading and loading opera-

tion. This operation is modeled as a pulse signal, which

is changing the flow temperature. The mass flow rate

is modeled as a pulse signal as well. The amplitude

changes between zero, in case of standby mode, and the

nominal mass flow rate of the loading and unloading cy-

cle.

Variables of interest are the top and bottom layer tem-

peratures and the heat losses. Figure 5 shows the simu-

lated dynamic temperatures of the top and bottom stor-

age layer. The results are comparable, especially dur-

ing the loading and unloading operation. For clarifica-

tion, the temperature differences are shown in Figure 5

as well. The differences fade out when coming closer

to a steady-state. The coefficient of determination is in

both cases nearly 1. Due to different wall constructions,

the dynamic heat losses are different, as shown in Figure

6. However, the mean values are in a comparable range,

with those of the Buildings component slightly higher.

0 12 24 36 48 60 72
310

320

330

340

350

time in h

 t
e
m

p
e
ra

tu
re

 i
n
 K

ref. top FastHVAC top ref. bot. FastHVAC bot.

0 12 24 36 48 60 72
−0.1

0

0.1

0.2

0.3

time in hte
m

p
e
ra

tu
re

 d
if
f.
 i
n
 K

top layer
bottom layer

Figure 5. Absolute temperatures and temperature differences

of top and bottom storage layers

0 12 24 36 48 60 72
60

65

70

75

80

85

90

95

100

105

110

time in h

h
e

a
t

lo
s
s
e

s
 i
n

 W

ref.
ref. mean
FastHVAC
FastHVAC mean

Figure 6. Storage heat losses to ambient

4.2 Heat supply system for a dwelling

The considered model of a dwelling heat supply system

following the FastHVAC approach is shown in Figure 7.

The models Boiler and Radiator_ML are already in-

troduced. The dwelling as a heat consumer is represented

by the model thermalZonewhich is freely available

in the open-source model library AixLib (Fuchs et al.,

2015). This model describes the thermal building behav-

ior under given environmental conditions (Lauster et al.,

Poster Session

DOI
10.3384/ecp15118921

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

925

2014). In this case, we consider a single-family house

with an insulation standard corresponding to the year

2002. The model weather represents the environment.

Based on a TRY of the Germany’s National Meteorolog-

ical Service, weather data input signals (e.g. ambient air

temperature, solar irradiation) are fed into the building

model (DWD, 2011). The model pID controls the room

temperature by varying the fluid mass flow through the

boiler. The model controllerBoiler controls the ra-

diator flow temperature by adapting the thermal output

of the boiler.

pump_load

EBC

thermalZone
degC

weather

AirvtempF

SkyvradF

TerrestFvradF

innerLoad

k=f

innerLoad

k=fventilationRate

k=9Fc

p
IDP

ID

T_roomSet

k=x7HFfcvMvxf

radiator_MLboiler

thermalZoneFT

T_room

KT

T
_

b
o

ile
rF

lo
w

K

T

T_radiatorFlow

K

T

T_radiatorReturn

k=9F9c89

gain

tank

workingFluid

fi
x
e

d
H

e
a

tF
lo

w

Q
_

fl
o

w
=

9

p
ip

e
x

controllerBoilercontrollerBoiler

HHHFfc

T_flowSet

true

booleanExpression

pipef

pipeH

p
ip

e
Q

Figure 7. Model of heat supply system

In case of a closed thermo-hydraulic circuit with an in-

compressible fluid based on Modelica.Fluid, a pres-

sure reference is necessary to avoid a structural singular-

ity (Wetter, 2015b). For this reason, an adiabatic tank

model is used within the Modelica.Fluid based vari-

ant. For closed thermo-hydraulic circuits, based on the

new approach, these kind of measures are not necessary.

However, for the observed case, it is considered for com-

parison purposes. The additional fluid content which is

brought to the system by pipes and the tank has an influ-

ence on the dynamic behavior of this system. To take this

fluid content into account, the models tank and pipe

which contain the component workingFluid are ap-

plied. In order to achieve adiabatic conditions for these

components, the heat transfer to the environment is set to

zero or is disabled.

In this heat supply system, the room temperature is

set to 294.15 K. The radiator flow temperature is set to

333.15 K. The simulated time period covers one year and

the output resolution is 1 h. Variables of interest are the

boiler gas demand, the room temperature and the fluid

mass flow.

In case of the fluid mass flow, the simulated results

have no significant differences. Figure 8 shows a scat-

ter plot of the dynamic fluid mass flow rate of both ap-

proaches. In the range of lower mass flow rates, there is

a minor deviation. Nevertheless, the coefficient of deter-

mination is approximately 1.

The deviation of the mass flow rates arises in cases of

closed hydraulic circuits. The initial conditions of hy-

draulics in case of the Modelica.Fluid based variant

(e.g. dp_small, m_flow_small, m_flow_start,

etc.) have an influence on this deviation. The initial hy-

draulics settings cannot be set randomly due to the ini-

tialization difficulties mentioned in the introduction.

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.01

0.02

0.03

0.04

0.05

0.06

F
a

s
tH

V
A

C
,
m

a
s
s
 f
lo

w
 i
n

 k
g

/s

HVAC, mass flow in kg/s

Figure 8. Comparison of fluid mass flow rates

294 296 298 300 302 304 306 308
294

296

298

300

302

304

306

308

HVAC, room temp. in K

F
a
st

H
V

A
C

,
ro

o
m

 t
e
m

p
.
in

 K

Figure 9. Comparison of room temperatures

0 60 120 180 240 300 360
0

1

2

3

4

5

6

7

8

9

10

time in d

 g
a

s
 d

e
m

a
n

d
 i
n

 M
W

h

HVAC
FastHVAC

Figure 10. Boiler gas demand

Due to the minor deviation of the mass flow rate, the

simulated dynamic room temperatures differ as well. A

scatter plot of the simulation results is shown in Figure

FastHVAC - A Library for Fast Composition and Simulation of Building Energy Systems

926 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118921

9. However, the coefficient of determination is approxi-

mately 1. There is no active cooler inside the system. For

this reason, the room temperature in the summer period

is higher than the room set temperature.

The minor mass flow rate deviation has almost no in-

fluence on the boiler gas demand. Figure 10 shows the

gas demand for the whole simulation period. In this case,

the coefficient of determination is approximately 1 as

well, with a negligible error for the annual gas demand.

Having a look at the simulation speed, we see a ma-

jor improvement with the FastHVAC library. In case of

the Modelica.Fluid based system, we found a com-

putational effort of 379 seconds, compared to 79 seconds

following the new approach.

5 Conclusions and work in progress

In this paper, we presented the design of a building

HVAC library. This library is particularly suitable for ap-

plications such as rapid prototyping of innovative energy

systems and the development of advanced control sys-

tems for heat generators. It is designed to decrease com-

putational effort, while maintaining the result quality of

more complex libraries. As stated in the case study, the

simulation speed can be increased noticeably following

our new approach. Nevertheless, the results are almost

identical to more complex approaches, with coefficients

of determination of approximately 1 for individual com-

ponents as well as on system level. The modelling prin-

ciple can be transferred to additional components. The

presented models can be utilized to perform city district

simulations. Thereby, measures like DSM can be evalu-

ated.

In future work, we will extend the media represen-

tations to media with temperature dependent properties.

Additionally, further components will be added, enabling

the analysis of a greater variety of building and district

energy systems.

References

Annex60. IEA EBC Annex 60 Modelica library, 2015.

URL https://github.com/iea-annex60/

modelica-annex60.

Ruben Baetens, Roel De Coninck, Filip Jorissen, Damien Pi-

card, Lieve Helsen, and Dirk Saelens. OpenIDEAS - an

open framework for integrated district energy assessments.

In Proceedings of the 14th IBPSA Conference, 2015. (sub-

mitted).

Francesco Casella. On the formulation of steady-

state initialization problems in object-oriented models of

closed thermo-hydraulic systems. pages 215–222. 2012.

doi:10.3384/ecp12076215. URL http://www.ep.

liu.se/ecp_home/index.en.aspx?issue=76.

Francesco Casella, Michael Sielemanny, and Luca Savold-

elli. Steady-state initialization of object-oriented

thermo-fluid models by homotopy methods. 2011.

URL https://www.modelica.org/events/

modelica2011/Proceedings/pages/papers/

04_2_ID_131_a_fv.pdf.

Deutscher Wetterdienst DWD. Aktualisierte und erweitere

Testreferenzjahre (TRY) von Deutschland für mittlere und

extreme Witterungsverhältnisse. Technical report, Bun-

desinstitut für Bau-, Stadt- und Raumforschung, 2011.

Marcus Fuchs, Ana Constantin, Moritz Lauster, Peter Rem-

men, Rita Streblow, and Dirk Müller. Structuring the build-

ing performance Modelica model library AixLib for open

collaborative development. In Proceedings of the 14th

IBPSA Conference, 2015. (submitted).

Moritz Lauster, Jens Teichmann, Marcus Fuchs, Rita Stre-

blow, and Dirk Mueller. Low order thermal network mod-

els for dynamic simulations of buildings on city district

scale. Building and Environment, 73:223–231, 2014. ISSN

03601323. doi:10.1016/j.buildenv.2013.12.016.

Dirk Müller, Antonello Monti, Sebastian Stinner, Tim

Schlösser, Thomas Schütz, Peter Matthes, Hen-

ryk Wolisz, Christoph Molitor, Hassan Harb, and

Rita Streblow. Demand side management for city

districts. Building and Environment (In Press),

DOI: http://dx.doi.org/10.1016/j.buildenv.2015.03.026,

2015. ISSN 0360-1323.

doi:http://dx.doi.org/10.1016/j.buildenv.2015.03.026. URL

http://www.sciencedirect.com/science/

article/pii/S0360132315001432.

Christoph Nytsch-Geusen, Jörg Huber, Manuel Ljubijankic,

and Jörg Rädler. Modelica buildingsystems - eine mod-

ellbibliothek zur simulation komplexer energietechnischer

gebäudesysteme. Bauphysik, 35(1):21–29, 2013. ISSN

1437-0980. doi:10.1002/bapi.201310045. URL http:

//dx.doi.org/10.1002/bapi.201310045.

Michael Wetter. Modelica Library for Building Heating, Ven-

tilation and Air-Conditioning Systems. Lawrence Berke-

ley National Laboratory. Environmental Energy Technolo-

gies Division and Distributed by the Office of Scientific and

Technical Information, U.S. Dept. of Energy, Berkeley and

Calif and Oak Ridge and Tenn, 2009.

Michael Wetter. Modelica buildings library 2.0.0, 2015a.

URL http://simulationresearch.lbl.gov/

modelica/FrontPage.

Michael Wetter. Buildings library user guide: 2. best practice,

2015b. URL http://simulationresearch.lbl.

gov/modelica/userGuide/bestPractice.

html#thermo-fluid-systems.

Michael Wetter, Wangda Zuo, Thierry Stephane Nouidui,

and Xiufeng Pang. Modelica Buildings library. Journal

of Building Performance Simulation, 7(4):253–270, 2014.

doi:10.1080/19401493.2013.765506.

Michael Wetter, Christoph van Treeck, and Jan Hensen.

IEA EBC Annex 60, 2015. URL http://www.

iea-annex60.org/index.html.

Poster Session

DOI
10.3384/ecp15118921

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

927

928 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118

Open Source Library for the Simulation of Wind Power Plants

Philip Eberhart1 Tek Shan Chung1 Anton Haumer2 Christian Kral1

1TGM Wien XX, College of Engineering, Austria, dr.christian.kral@gmail.com
2OTH Regensburg, Germany, anton.haumer@oth-regensburg.de

Abstract

This paper presents the new open source Modelica li-

brary WindPowerPlants. For the economic assessment of

either a wind power plant or an entire wind park, the ac-

curate prediction of the energy output is essential. Such

prediction is usually performed by means of calculations

based on statistical wind data. The proposed WindPow-

erPlants library is capable of assessing the energy output

both for statistical and real wind data based on time do-

main simulations.

In the presented version of the library wind turbine

models are modeled with pitch control. The generator

models have variable speed and an optional connector to

the mains. The entire library is based on power balance

conditions and losses are fully neglected. Yet, the library

can be extended towards more detailed models consider-

ing different types of losses.

The structure and components of the library are pre-

sented. Simulations examples are shown and compared

with reference data. The applicability of the proposed

WindPowerPlants library is demonstrated and possible

enhancements are discussed.

Keywords: Wind power pants, pitch control, variable

speed, energy, power, statistical wind data

1 Introduction

Wind power significantly contributes to the total electric

energy generation in Europe. Since the economic

assessment of future wind power plants is essential,

accurate calculations and simulations are needed to

predict the energy output of these plants. Therefore,

the modeling and simulation of wind power plants is

continuously under research. Particular aspects are

the wind turbine characteristics (Anderson and Bose

(1983); Heier (2009); Ahmed et al. (2014)), the in-

tegration of generator models (Mihet-Popa et al.

(2004); Yin et al. (2007)), control (Catana et al. (2010);

Merabet et al. (2011); Muyeen (2012); Mehdi et al.

(2013); Alizadeh and Yazdani (2013)), grid integration

(Yuan and Li (2014)) and stability (Du et al. (2014)).

Modelica is particularly suitable to the simulation

of wind power plants due to the multi physical do-

main approach. In Petersson et al. (2012) vertical axis

wind power plants and their control aspects are investi-

gated. A paper on variable speed wind turbine models

in power system dynamics simulations is published in

Enge-Rosenblatt and Schneider (2008). In Strobel et al.

(2011) a Modelica library for offshore wind turbines in-

cluding structural coupling is presented.

The WindPowerPlants library was developed during

a Diploma project at the Technical Engineering Col-

lege, TGM. For the development of the library Open-

Modelica was used. The library is published under the

Modelica license 1.1 and available through GitHub at

https://github.com/christiankral/windpowerplants. The

main motivations for developing the presented library

were:

• Investigate control mechanisms of wind power

plants

• Support teaching activities in simulation

• Provide an open source library that may initiate fur-

ther developments

The proposed library does not model all the controllers

that a real wind power plant has. Instead, the intention

was to model the overall behavior of wind power plants

in such a way, that the major operating conditions are

fulfilled. Therefore, only mechanical dynamics are taken

into account. Electrical transients are fully neglected.

There is yet an electrical interface available to couple

electrical networks with one or more wind power plants.

This electrical interface to the mains is based on a quasi

static multi phase connector.

The WindPowerPlants library is based time domain

simulations. Time domain simulations allow a higher

flexibility for the investigation of different scenarios than

statistical investigations. For example, the impact of time

(and temperature) dependent air densities can be investi-

gated. Due to the openness of Modelica, the wind power

plant simulation can also be combined with electrical

network aspects such as dynamics, stability, etc.

The paper is organized as follows: In Section 2 an

overview of the library structure is presented. Section

3 presents the uncontrolled and controlled wind turbine

DOI
10.3384/ecp15118929

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

929

Figure 1. Structure of the WindPowerPlants library

models. The variable speed generator models with and

without electrical mains connector are explained in Sec-

tion 4. In Section 5 the structure of the power plants

including the control of the generator is shown. Sec-

tion 6 presents statistical and real wind data sources and

Section 7 compares simulation examples with reference

data.

2 Library Structure

The WindPowerPlants library contains models of entire

wind power plants including components. Generic plant

models with variable speed generators are located the

package Plants, as shown in Fig. 1.

Package Components contains two models of wind

turbines, one with pitch angle input, and another with

controlled pitch angle. Until now two generic vari-

able speed generator models are implemented. The first

model converts the mechanical power to a power signal

connector. The second generator model is equipped with

a quasi static three phase connector to the mains and ne-

glects all losses.

In package Blocks the controllers, limits, and blocks

for the calculation of physical relationships are located.

Package Records contains data records of different

wind turbines and the optimum pitch angles to max-

imize the power coefficient and thus power output.

WindSources are the data sources of wind velocity

signals.

3 Wind Turbines

For a given wind speed v the total kinetic power of the

wind is

Pw =
1

2
ρ

πD2

4
v3
, (1)

where ρ is the density of air and D is the rotor diam-

eter. A wind turbine cannot convert the entire kinetic

wind power, but only a fraction. This fraction is repre-

sented by the power coefficient cp. The harvested power

is thus determined by the product cpPw. The theoretical

limit of the power coefficient, cp,max =
16
27

≈ 0.5926, was

determined by Betz; see Heier (2009). The power co-

efficient of a real wind turbine is always less than this

theoretical limit. The actual power coefficient cp relies

on the design of the wind turbine and, e.g., the pitch an-

gle. In the proposed wind turbine models it is assumed

that the pitch angle (or blade angle) β of the blades can

be controlled. The pitch angle is the angle of rotation

of the blades to control the utilized power. The alterna-

tive of stall controlled turbines is not yet included in the

WindPowerPlants library. Future wind turbine models

may just be modeled by the power coefficient as func-

tion of wind speed, since these characteristica are often

provided by wind plant manufacturers.

3.1 Turbine Behavior

The power coefficient of wind turbines as function of the

pitch angle is usually modeled by empiric equations as

provided by Heier (2009):

cp = c1

(

c2

λ1

− c3β− c4

)

e
−

c5
λ1 + c6λ1 (2)

λ1 =
1

1

λ+0.089
−

0.035

β3 +1

(3)

In these equations c1, . . . ,c6 are turbine specific per unit

coefficients and λ1 is the internal wind tip ratio which in

turn relies on the tip speed ratio

λ =
ωD

2v
(4)

Open Source Library for the Simulation of Wind Power Plants

930 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118929

Table 1. Wind turbine coefficients of different literature refer-

ences

Heier (2009) Thongam et al. (2009)

c1 0.5 0.5176

c2 116.0 116.0

c3 0.4 0.4

c4 5.0 5.0

c5 21.0 21.0

c6 0.0 0.006795

Figure 2. Curves of constant power coefficients, cp, as a func-

tion of the tip speed ratio, λ, and the pitch angle β for the wind

turbine coefficients given by Heier (2009)

and the pitch angle β in degrees. The tip speed ratio is

the ratio of the peripheral speed over wind speed. The

peripheral speed equals the angular velocity ω times half

the diameter.

The wind turbine coefficients c1, . . . ,c6 also reflect the

actual geometry of the blades. Examples of turbines

from Heier (2009) and Thongam et al. (2009) are com-

pared in Tab. 1. For the wind turbine coefficients given

by Heier (2009) curves of constant power coefficients are

depicted in Fig. 2. The bold black curve in this figure in-

dicates the curve of maximum cp for variable tip speed

ratio. This curve represents the optimum pitch angle as

function of tip speed ratio. The bold black curve is ap-

proximated by a third order polynomial function

βopt = p1λ3 + p2λ2 + p3λ+ p4. (5)

The polynomial coefficients p1, . . . , p4 are stored in a pa-

rameter record matching the turbine model and have to

be determined by a pre-processing tool. From Fig. 2

it is also obvious that there is the region for λ < 7.3

where β = 0 leads to the optimum power coefficient. For

λ > 18.5 the pitch angle β = 0 leads to the optimum

power coefficient; this region is, however, not depicted

in Fig. 2.

The approximation of the power coefficient in (2) and

(3) has the drawback that negative pitch angles cause

non-meaningful results – even though negative pitch an-

gles are used in practice. However, the actual wind

power shall be limited by positive values to avoid plausi-

bility problems,

P = max(0,cpPw). (6)

3.2 Uncontrolled Wind Turbine

The signal inputs of the uncontrolled wind turbine

model are the wind velocity v and the pitch angle

β. The turbine model also has a rotational connector

taken from Modelica.Mechanics.Rotational.

Interfaces. When the wind velocity exceeds a cer-

tain threshold, the turbine reaches the power limiting

range. In this case the boolean output limit becomes

true. Additional signal outputs are the tip speed ratio,

λ, and the angular velocity, ω.

The uncontrolled wind turbine model is coded textu-

ally. The most relevant equations are:

// Tip speed ratio

lambda * v = w * D / 2;

// Power coefficient of the turbine

cp = WindPowerPlants.Functions.cpVal

(turbineData,lambda,beta);

// Power of wind

powerWind = 0.5 * Modelica.Constants.pi

* rho * (D / 2) ^ 2 * v ^ 3;

// Power harvested by power coefficient

power = max(0, cp * powerWind);

// Set boolean indicator if power

// limiting range is reached

limit = power >= powerMax or pre(limit)

and power >= 0.99 * powerMax;

// Angular velocity

w = der(phi);

// Power balance

power = tau * w;

In order to operate the uncontrolled wind turbine

model, signal inputs for the wind velocity, v, and the

pitch angle, β, are required. In a simulation model of

a full wind power plant the pitch angle shall be provided

by a controller. Based on the uncontrolled wind turbine

model a standard controlled wind turbine model is in-

cluded in the library.

3.3 Controlled Wind Turbine

The standard controlled wind turbine model provided in

the PowerPlantsLibrary and shown in Fig. 3 utilizes the

uncontrolled turbine model of Subsection 3.2. In this

model the pitch angle β is controlled for two different

operating ranges of the wind turbine. The two different

ranges are indicated by the boolean output limit of the

uncontrolled wind turbine model:

• optimum power coefficient range: limit =

false

• power limiting range: limit = true

Poster Session

DOI
10.3384/ecp15118929

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

931

Figure 3. Controlled wind turbine

In the optimum power coefficient range the pitch an-

gle β is determined by the polynomial approximation de-

scribed in Subsection 3.1. This task is accomplished by

the block turbineControlVal depicted in Fig. 3.

The actual pitch angle is then limited by the interval

[0°,90°]. After limiting β, a first order delay is used to

smoothen the pitch angle response. In a real wind power

plant the pitch angle slope is limited. For simplicity rea-

sons, a first oder delay is used in the WindPowerPlants

library.

When the wind turbine is in the power limiting range,

the pitch angle has to be controlled such way that the ac-

tual power P does not exceed the maximum power Pmax.

The maximum power Pmax is a parameter of the wind

turbine model. In the power limiting range the relative

power deviation

∆p =
P

Pmax

−1 (7)

is controlled to be zero. For this purpose a fast limiting

integral controller is used which processes (7).

4 Variable Speed Generators

The implemented variable speed generators are generic.

This means, that typical electrical characteristics of ei-

ther induction or synchronous generator are not taken

into account. The generator models solely rely on power

balances and no losses are taken into account.

In the actual implementation the maximum angular

velocity of the generator is not limited. However, a real

generator does have a maximum angular velocity and

frequency, respectively. The difference between the real

and the modeled behavior are

• different tip speed ratios,

• different power coefficients,

Figure 4. Generic variable speed generator model

Figure 5. Generic variable speed generator model with elec-

trical connector to the mains

but the output power is the same, since the maximum an-

gular velocity occurs in the power limiting range. There-

fore, there is no difference in the total energy output.

Each of the two variable speed generator models

shown in Fig. 4 and 5 have one signal input connector:

the reference torque. The reference torque is determined

by the torque controller of the power plant. In the generic

generator models the torque signals are converted into

a physical connector quantities. This means for each

model, that the reference torque and the actual torque

are always equal. A power sensor is used to provide

the power output connector with the actual mechanical

power. The total inertia of the generator is considered.

In the generator model with electrical connector

to the mains (Fig. 5) a power balance model is uti-

lized using a quasi static multi phase connector from

Modelica.Electrical.QuasiStationary.

MultiPhase.Interfaces. In the current imple-

mentation it is assumed that a grid inverter controls

the reactive power Q to be zero. The output of the

power sensor is used to operate an ideal electrical multi

phase power source which generates real power. In the

WindPowerPlants library two ideal power sources are

provided. The power source WindPowerPlants.

Components.IdealRealPower used in Fig. 5 uti-

lizes the voltage and current space phasor Haumer et al.

(2008). The current space phasor is controlled in such

a way that the power input signal of the source and the

Open Source Library for the Simulation of Wind Power Plants

932 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118929

Figure 6. Model of a generic power plant

total real power of all phases are equal. This requires

the current space phasor to be aligned with voltage

space phasor in order to achieve zero reactive power.

In the alternative power source WindPowerPlants.

Components.IdealRealPowerImpedance

shown in Fig. 1 the real power is controlled by means

of a multi phase conductor to achieve 100 % power

balance between the signal input and the three phase

electrical power. However, the limitation of Q = 0 can

be overcome in the future by also controlling the reactive

power. By controlling the reactive power the voltage of

the wind power plant can be controlled.

5 Wind Power Plants

5.1 Model Structure

The structure of the generic power plant models with and

without electrical connector to the mains are depicted in

Fig. 6 and 7, respectively. The reason why both models

are named generic, is that they are based on a generic

variable speed generator.

The input connector of the power plant model is the

wind speed. The wind speed is connected with the wind

turbine model which converts the fraction cp of the ki-

netic wind power Pw into mechanical power P according

to (6). The wind turbine model is connected with an iner-

tia, representing the rotating inertias of the wind turbine

and the gear with respect to the wind turbine rotational

angular velocity. The ideal gear represents the multi

stage planetary gear of the real wind power plant. The

generator is directly coupled to the high speed side of the

gear. The torque input of the generator is controlled by

the block angularVelocityControl. The torque

control is then limited by a rotor speed dependent torque

limiter in order to avoid negative rotor speed and high

torque dynamics around zero speed.

Figure 7. Model of a generic power plant with electrical mains

connector

5.2 Angular Velocity Control

In the angular velocity control of the generator two dif-

ferent wind speed regions are distinguished. In the

stand still region, for wind speeds v< vmin, the wind tur-

bine is controlled towards zero angular velocity ωref and

thus zero reference tip speed ratio, λref. The wind speed

vmin represents the cut-in speed of the turbine which is

in the range of approximately 4m/s. In the power gen-

erating region, for v ≥ vmin, regular power conversion

occurs. The cut-out speed is currently not considered in

the control.

In the implemented control strategy the reference

value of the tip speed ratio, λref, is set depending on the

wind speed region. For the stand still region λref =0 is

chosen. For the power generating region the reference

tip speed ratio is derived from the optimum power coef-

ficient as described in Section 3. The optimum power co-

efficient is the maximum cp as a function of the actual tip

speed ratio; see the bold black curve in Fig. 2. The maxi-

mum power coefficient is indicated by two variables, λopt

and βopt. However, as the variable λopt represents the op-

timum tip speed ratio, the optimum pitch angle, βopt, is

automatically determined from the polynomial approxi-

mation of maximum cp values indicated by (5). This way

the control always achieves the highest power coefficient

in the optimum power coefficient range.

In Fig. 8 the reference tip speed ratio, λref, is the output

of block switch1. From the reference and actual tip

speed ratio the deviation of the reference and actual tip

speed ratio

∆λ = λref −λ (8)

is calculated. This deviation corresponds with the angu-

Poster Session

DOI
10.3384/ecp15118929

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

933

Figure 8. Angular velocity control of wind turbine

lar speed deviation

∆ω =
2v∆λ

D
(9)

according to (4). The calculation of (9) is achieved by

the block angularVelocity in Fig. 8. The angular

speed deviation ∆ω is fed to the reference input of a PI

controller. As the used PI controller has both a reference

and a sensor input, the sensor input set to zero, as the dif-

ference of these reference and sensor signal are already

determined by (9). The output of the PI controller is the

reference torque of the generator.

5.3 Torque Limitation

The torque output of the angular velocity control is lim-

ited to avoid significant dynamics around zero speed and

for negative speeds. Since the electric machine is oper-

ated as generator, the mechanical power

Pm = τω (10)

is negative. The generator is operated at positive angu-

lar speed ω and thus torque τ is negative. Torque lim-

itation, however, is implemented as function of speed.

The characteristic of the torque limiter is shown in Fig. 9

for the input torque τ = −10kNm and a torque limit of

τref = 10kNm. However, In the investigated case the

reference speed ωref = 50π rad s−1. For positive speeds

greater than 2% of the reference speed the torque is not

limited. The range between zero angular speed and 2%

of the reference speed torque is limited by the steep lin-

ear curve shown in Fig. 9. In the negative speed range –

which shall never be reached – torque is limited linearly

towards the negative reference angular velocity.

6 Wind Sources

In the WindPowerPlants library two different wind

sources are provided.

torqueLimiter.tauLimited vs torqueLimiter.w

to
rq

u
e
L
im

it
e
r.

ta
u

L
im

it
e
d
 (

N
m

)

-10,000

-8,000

-6,000

-4,000

-2,000

0

torqueLimiter.w (rad/s)

-200 -150 -100 -50 0 50 100 150 200

Figure 9. Characteristic of the torque limiter

6.1 Real Wind Data

The first wind data source reads a data file with at least

two columns. The first column represents time (in sec-

onds) and the second column is the actual wind velocity

(in m/s). The real data wind source model is directly

derived by a CombiTimeTable, limited to on single

parameter: the file name.

6.2 Statistical Wind Data

The second wind source provides the wind speed as func-

tion of time, calculated by the discrete Rayleigh distribu-

tion

dk =
π

2

k∆v2

v2
m

exp

(

−
π

4
·

k2∆v2

v2
m

)

. (11)

In this equation k is the interval index, considering n in-

tervals in total. The speed interval

∆v =
vmax

n
(12)

is derived from the maximum speed and vm represents

the average value of all wind speeds. The variables dk

represent the relative duration of each wind interval with

index k. The sum of all distributions is equal to one,

n

∑
k=1

dk = 1. (13)

For a time domain representation the total time period T

is utilized. In a sequence of n different wind speeds

vk = k ·∆v (14)

the duration of the respective wind speed is the deter-

mined by dkT . An example of a histogram of Rayleigh

distributed wind data is shown in Fig. 10. The respec-

tive wind speeds versus time are depicted in Fig. 11. For

a particular index k and the accessory wind speed (14)

the distribution dk determines the duration for which the

wind speed is constant. After this duration the next wind

Open Source Library for the Simulation of Wind Power Plants

934 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118929

Figure 10. Histogram of Rayleigh distributed wind speed for

vmax = 20m/s, vm = 7m/s and n = 20

*

rayleigh.velocity [m/s]

0

5

10

15

20

time [s]

0 20 40 60 80 100

Figure 11. Rayleigh distributed wind speeds in the time do-

main for vmax = 20m/s, vm = 7m/s, n = 20 and a period

T = 100s

speed index is processed up to index n. This procedure

may be continued periodically. Due to the characteristic

of the Rayleigh distribution higher wind speeds and in-

dexes, respectively, give rise for a lower distribution and

thus for shorter duration of a constant speed. This is why

the curve shows the steepest rise towards the end of the

period T .

7 Application Examples

In order to validate the developed wind power plant mod-

els, reference calculation data of planned wind power

plants are compared with simulation results. An exam-

ple of a simulation model is depicted in Fig. 6. The ref-

erence calculation data used in this paper are provided

from the authorities of the province of Lower Austria.

Reference data are available from two different wind

farms. From the two wind farms altogether three ref-

erence power plants are selected. The two wind farms

are not explicitly named in this paper to protect wind

farm operator data. Instead name synonyms are used.

The reference power data were calculated by the appli-

Figure 12. Simulation experiment with statistical wind data

Table 2. General and technical data of the reference wind

power plants

case

unit A B C

Wind farm PD PD SP

Plant number 1 2 15

Manufacturer Vestas – type V112 V112 V90

Power rating MW 3 3 2

Gear ratio 112.8 112.8 112.8

Rotor diameter m 112 112 90

Height of hub m 135 135 125

cants of the wind farms using the software WAsP (Wind

Atlas Analysis and Application Program). The general

and technical data of the investigated wind power plants

and are summarized in Tab. 2. The simulations are per-

formed in OpenModelica on a notebook computer with

Intel CoreTM2 Duo CPU T7250 operated at 2 GHz and

2 GB of main memory.

A comparison of the power plant data, and the refer-

ence and simulation data is presented in Tab. 3. The an-

nual energy harvest is indicated as total Energy in MWh

divided by one year (1a), i.e., the physical quantity of

power. The deviations of the simulation results are in the

range of ±7%. The main causes of these deviation are:

• The exact characteristic of the power coefficient of

Table 3. Variables and calculation data of reference (ref) and

simulation (sim) wind power plants

case

quantity unit A B C

air density ρ kg/m3 1.198 1.198 1.198

average wind speed vm m/s 6.95 7.12 7.30

maximum wind speed vmax m/s 25 25 25

number of speed intervals n 25 25 25

interval of investigation h 8760 8760 8760

sampling interval s 10 10 10

CPU time s 104 104 104

power (reference) MWh/a 10122 10636 6488

power (simulation) MWh/a 9497 9905 6869

absolute power deviation MWh/a –625 –731 +381

relative power deviation % –6.2 –6,8 +5.9

Poster Session

DOI
10.3384/ecp15118929

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

935

the wind turbine is not known; all simulations re-

sults are achieved using the wind turbine parame-

ters of Heier (2009)

• The reference data are based on real measured

wind speed data whereas the simulations rely on a

Rayleigh distribution of the wind speed

Considering on what information is available on the

reference power pants, the quantitative simulation results

are sufficiently accurate.

8 Conclusion

A new open source Modelica library for the simulation of

wind power plants is presented. The library structure and

the main components are explained. The control strate-

gies of the pitch angle and the angular velocity of the

wind turbine are described. Three reference wind power

plants are compared with simulation results. The average

power deviations of the simulations from the reference

data are in the range of ±7%.

References

S. Ahmed, M.A Rashid, S.B. Yaakob, and A Yusof. Pitch an-

gle control of a grid connected wind turbine. Intelligent and

Advanced Systems (ICIAS), 2014 5th International Confer-

ence on, pages 1–6, June 2014. doi: 10.1109/ICIAS.2014.

6869523.

O. Alizadeh and A. Yazdani. A strategy for real power control

in a direct-drive pmsg-based wind energy conversion sys-

tem. Power Delivery, IEEE Transactions on, 28(3):1297–

1305, July 2013. ISSN 0885-8977. doi: 10.1109/TPWRD.

2013.2258177.

P.M. Anderson and Anjan Bose. Stability simulation of wind

turbine systems. IEEE Transactions on Power Apparatus

and Systems, PAS-102(12):3791 – 3795, 12 1983. ISSN

0018-9510. doi: 10.1109/TPAS.1983.317873.

I. Catana, C. A. Safta, and V. Panduru. Power optimization

control system of wind turbines by changing the pitch angle.

U.P.B. Sci. Bull., Series D, 72(1):141–148, 2010.

Zhaobin Du, Jingshang Chen, Yaopeng Huang, Peng Shen,

and Shangyun Liu. The research of simplification of

doubly-fed wind turbine in the small signal stability analy-

sis. Power and Energy Engineering Conference (APPEEC),

2014 IEEE PES Asia-Pacific, pages 1–6, Dec 2014. doi:

10.1109/APPEEC.2014.7066161.

Olaf Enge-Rosenblatt and Peter Schneider. Modelica wind tur-

bine models with structural changes related to different op-

erating modes. Modelica Conference, 2008.

A. Haumer, C. Kral, J. V. Gragger, and H. Kapeller. Quasi-

stationary modeling and simulation of electrical circuits us-

ing complex phasors. International Modelica Conference,

6th, Bielefeld, Germany, pages 229–236, 2008.

Siegfried Heier. Windkraftanlagen: Systemauslegung, Netzin-

tegration und Regelung. Vieweg + Teubner, 5 edition, 2009.

Mehdi, Allagui1, Othman B.k, Hasnaoui, Jamel, and Belhadj.

Exploitation of pitch control to improve the integration of a

direct drive wind turbine to the grid. J. Electrical Systems,

9(2):179–190, 2013.

A Merabet, J. Thongam, and J. Gu. Torque and pitch an-

gle control for variable speed wind turbines in all operating

regimes. Environment and Electrical Engineering (EEEIC),

2011 10th International Conference on, pages 1–5, May

2011. doi: 10.1109/EEEIC.2011.5874598.

L. Mihet-Popa, F. Blaabjerg, and I Boldea. Wind turbine

generator modeling and simulation where rotational speed

is the controlled variable. Industry Applications, IEEE

Transactions on, 40(1):3–10, Jan 2004. ISSN 0093-9994.

doi: 10.1109/TIA.2003.821810. Wind turbine control pitch

power torque.

S.M. Muyeen. Wind Energy Conversion Systems. Springer,

2012. ISBN 978-1-4471-2201-2.

Joel Petersson, Hubertus Tummescheit, Pär Isaksson, and Jo-

han Ylikiiskilä. Modeling and simulation of a vertical

wind power plant in dymola/modelica. Proceedings of

the 9 th International Modelica Conference, 2012. doi:

10.3384/ecp12076631.

M. Strobel, F. Vorpahl, C. Hillmann, X. Gu, A. Zuga, and

U. Wihlfahrt. The onwind modelica library for offshore

wind turbines – implementation and first results. Modelica

Conference, 2011.

J.S. Thongam, P. Bouchard, H. Ezzaidi, and M. Ouhrouche.

Wind speed sensorless maximum power point tracking con-

trol of variable speed wind energy conversion systems.

Electric Machines and Drives Conference, 2009. IEMDC

’09. IEEE International, pages 1832–1837, May 2009. doi:

10.1109/IEMDC.2009.5075452.

Ming Yin, Gengyin Li, Ming Zhou, and Chengyong Zhao.

Modeling of the wind turbine with a permanent magnet syn-

chronous generator for integration. Power Engineering So-

ciety General Meeting, 2007. IEEE, pages 1–6, June 2007.

ISSN 1932-5517. doi: 10.1109/PES.2007.385982.

Xibo Yuan and Yongdong Li. Control of variable pitch and

variable speed direct-drive wind turbines in weak grid sys-

tems with active power balance. Renewable Power Gener-

ation, IET, 8(2):119–131, March 2014. ISSN 1752-1416.

doi: 10.1049/iet-rpg.2012.0212.

Open Source Library for the Simulation of Wind Power Plants

936 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118929

	Session 2A: FMI 1
	Experience with Industrial In-House Application of FMI
	A Novel Proposal on how to Parameterize Models in Dymola Utilizing External Files under Consideration of a Subsequent Model Export using the Functional Mock-Up Interface
	Design Choices for Thermofluid Flow Components and Systems that are Exported as Functional Mockup Units
	FMI for Physical Models on Automotive Embedded Targets

	Session 2B: Building Energy Applications 1
	Methodology for Obtaining Linear State Space Building Energy Simulation Models
	Simulation Speed Analysis and Improvements of Modelica Models for Building Energy Simulation
	Energy Efficient Design for Hotels in the Tropical Climate using Modelica
	Presentation, Validation and Application of the DistrictHeating Modelica Library

	Session 2C: Simulation Techniques
	Multi-Mode DAE Systems with Varying Index
	Internalized State-Selection: Generation and Integration of Quasi-Linear Differential-Algebraic Equations
	Fractional-Order Modelling in Modelica
	Modelica Library for Feed Drive Systems

	Session 2D: Automotive Applications 1
	Model-based Development of a Holistic Thermal Management System for an Electric Car with a High Temperature Fuel Cell Range Extender
	Predicting the Effect of Gearbox Preconditioning on Vehicle Efficiency
	Model Based Development of Future Small Electric Vehicle by Modelica
	Modelling of Torque-Vectoring Drives for Electric Vehicles: a Case Study

	Session 3A: FMI 2
	Co-Simulation of Hybrid Systems with SpaceEx and Uppaal
	Automated Deployment of Modelica Models in Excel via Functional Mockup Interface and Integration with modeFRONTIER
	An Open-Source Graphical Composite Modeling Editor and Simulation Tool Based on FMI and TLM Co-Simulation
	The Modelica Language and the FMI Standard for Modeling and Simulation of Smart Grids

	Session 3B: Building Energy Applications 2
	Coupled modeling of a District Heating System with Aquifer Thermal Energy Storage and Absorption Heat Transformer
	Energy-Efficient Design of a Research Greenhouse with Modelica
	Production Planning for Distributed District Heating Networks with JModelica.org
	Hardware-in-the-Loop-Simulation of a Building Energy and Control System to Investigate Circulating Pump Control Using Modelica

	Session 3C: Modelica Language & Compiler Implementation 1
	Automatic GPU Code Generation of Modelica Functions
	Constructs for Meta Properties Modeling in Modelica
	Flattening of Modelica State Machines: A Practical Symbolic Representation
	Exploiting Repeated Structures and Vectorization in Modelica

	Session 3D: Automotive Applications 2
	High Fidelity Multibody Vehicle Dynamics Models for Driver-in-the-Loop Simulators
	Modeling and Validation of a Multiple Evaporator Refrigeration Cycle for Electric Vehicles
	Modeling the Effects of Energy Efficient Glazing on Cabin Thermal Energy & Vehicle Efficiency

	Session 4A: Optimization Applications and Methods
	A Framework for Nonlinear Model Predictive Control in JModelica.org
	A Toolchain for Solving Dynamic Optimization Problems Using Symbolic and Parallel Computing
	NMPC Application using JModelica.org: Features and Performance

	Session 4B: Control Applications 1
	A Modelica Library for Manual Tracking
	Model-based control with FMI and a C++ runtime for Modelica
	Nonlinear Dynamic Inversion Control for Wind Turbine Load Mitigation based on Wind Speed Measurement

	Session 4C: Novel Modelica Applications and Libraries
	Free Modelica Library for Chemical and Electrochemical Processes
	Modeling Biology in Modelica: The Human Baroreflex
	A City Traffic Library

	Session 4D: Building Energy Applications 3
	An Open Toolchain for Generating Modelica Code from Building Information Models
	Lessons Learnt from Network Modelling of a Low Heat Density District Heating System
	Modelica based Design and Optimisation of Control Systems for Solar Heat Systems and Low Energy Buildings

	Session 5A: Control Applications 2
	How to Shape Noise Spectra for Continuous System Simulation
	Dynamic Modelling of a Flat-Plate Solar Collector for Control Purposes

	Session 5B: Mechanical Systems
	Generic Modelica Framework for MultiBody Contacts and Discrete Element Method
	Different Models of a Scaled Experimental Running Gear for the DLR RailwayDynamics Library

	Session 5C: Modelica Language & Compiler Implementation 2
	Efficient Compilation of Large Scale Dynamical Systems
	Simulation of Large-Scale Models in Modelica: State of the Art and Future Perspectives

	Session 5D: Electrical Systems
	Developing Mathematical Models of Batteries in Modelica for Energy Storage Applications
	Average Model of a Synchronous Half-Bridge DC/DC Converter Considering Losses and Dynamics

	Session 7A: Aerospace Applications 1
	Modeling and Simulation of Liquid Propellant Rocket Engine Transient Performance Using Modelica
	Model Based Specifications in Aircraft Systems Design

	Session 7B: Electrical Machines
	Multi Electrical Machine Pre-Design Tool with Error Handling and Machine Specific Advanced Graphical Design Aid Features Based on Modelica
	Enhancements of Electric Machine Models: The EMachines Library

	Session 7C: 3D Representations for Modelica Models
	Simulation of Piping 3D Designs Powered by Modelica
	3D Schematics of Modelica Models and Gamification

	Session 7D: Virtual Test Benches
	Holistic Virtual Testing and Analysis of a Concept Hybrid Electric Vehicle Model
	Modeling of an Automatic Transmission for the Evaluation of Test Procedures in a Virtual End-of-Line Test Bench

	Session 8A: Aerospace Applications 2
	A New Fault Injection Method for Liquid Rocket Pressurization and Feed System
	Automated Safety Analysis by Minimal Path Set Detection for Multi-Domain Object-Oriented Models
	High-fidelity Modelling of Self-regulating Pneumatic Valves

	Session 8B: Power, Energy & Process Applications 1
	Dynamic Modeling of a Central Receiver CSP System in Modelica
	Modeling of Linear Concentrating Solar Power using Direct Steam Generation with Parabolic-Trough
	Transient Simulation of the Power Block in a Parabolic Trough Power Plant

	Session 8C: Safety & Formal Methods
	Fault Detection and Diagnosis with Modelica Language using Deep Belief Network
	Formal Requirements Modeling for Simulation-Based Verification
	Towards a Formalized Modelica Subset

	Session 8D: Thermofluid Systems, Models and Libraries 1
	Fundamental EoS Implementation for {Water+Ammonia} in Modelica
	MultiComponentMultiPhase - A Framework for Thermodynamic Properties in Modelica
	Modeling of the German National Standard for High Pressure Natural Gas Flow Metering in Modelica

	Session 10A: Testing & Diagnostics
	Automatic Regression Testing of Simulation Models and Concept for Simulation of Connected FMUs in PySimulator
	Abrasive Waterjet Intensifier Model for Machine Diagnostics
	Optimica Testing Toolkit: a Tool-Agnostic Testing Framework for Modelica Models

	Session 10B: Power, Energy & Process Applications 2
	Status of the TransiEnt Library: Transient Simulation of Coupled Energy Networks with High Share of Renewable Energy
	Mathematical Model of Soot Blowing Influences in Dynamic Power Plant Modelling
	Flexibilization of Coal-fired Power Plants by Dynamic Simulation

	Session 10C: Modelica Tools
	Where impact got Going
	Visualizing Simulation Results from Modelica Fluid Models Using Graph Drawing in Python
	Reuse of Physical System Models by means of Semantic Knowledge Representation: A Case Study applied to Modelica

	Session 10D: Thermofluid Systems, Models and Libraries 2
	Mass Conserving Models of Vapor Compression Cycles
	EPSILON Modelica Library for Thermal Applications
	Multi-Objective Optimization of Dynamic Systems combining Genetic Algorithms and Modelica: Application to Adsorption Air-Conditioning Systems

	Poster Session
	A new Modelica Electric and Hybrid Power Trains Library
	Initiatives for Acausal Model Connection using FMI in JSAE (Society of Automotive Engineers of Japan)
	Dynamical Model of a Vehicle with Omni Wheels: Improved and Generalized Contact Tracking Algorithm
	Kansei Modeling for Delight Design based on 1DCAE Concept
	A Modelica Library Organization Method Supporting Online Modeling and Simulation
	Control Development and Modeling for Flexible DC Grids in Modelica
	Towards Enhanced Process and Tools for Aircraft Systems Assessments during very Early Design Phase
	Using FMI in a Cloud-based Web Application for System Simulation
	Anticipatory Shifting - Optimization of a Transmission Control Unit for an Automatic Transmission through Advanced Driver Assistance Systems
	Simulation of Distributed Energy Storage in the Residential Sector and Potential Integration of Gas-based Renewable Energy Technologies using Modelica
	Test of Basic Co-Simulation Algorithms Using FMI
	Experimental Calibration of Heat Transfer and Thermal Losses in a Shell-and-Tube Heat Exchanger
	Suitability of Different Real-Time Solvers for a Model-Based Engineering Toolchain using Industrial Rexroth Controllers
	Integrated Engineering based on Modelica
	Coupling Model Exchange FMUs for Aggregated Simulation by Open Source Tools
	An Aeronautic Case Study for Requirement Formalization and Automated Model Composition in Modelica
	FastHVAC - A Library for Fast Composition and Simulation of Building Energy Systems
	Open Source Library for the Simulation of Wind Power Plants

