
SIGRAD 2015
L. Kjelldahl and C. Peters (Editors)

Exact Bounding Spheres by Iterative Octant Scan

Thomas Larsson

School of Innovation, Design and Engineering
Mälardalen University, Sweden

Abstract
We propose an exact minimum bounding sphere algorithm for large point sets in low dimensions. It aims to reduce
the number of required passes by retrieving a well-balanced set of outliers in each linear search through the
input. The behaviour of the algorithm is mainly studied in the important three-dimensional case. The experimental
evidence indicates that the convergence rate is superior compared to previous exact methods, which effectively
results in up to three times as fast execution times. Furthermore, the run times are not far behind simple 2-pass
constant approximation heuristics.

Categories and Subject Descriptors (according to ACM CCS): F.2.2 [Analysis of algorithms and problem com-
plexity]: Nonnumerical Algorithms and Problems—Geometrical problems and computations; I.3.5 [Computer
Graphics]: Computational Geometry and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

The bounding sphere appears to be a ubiquitous tool for cre-
ating coarse conservative representations of more detailed
and complicated geometric objects, such as polygon meshes
and point clouds. The spheres are often arranged in a hier-
archical data structure, the sphere tree, that provides a pow-
erful representation of a complex object at various levels-of-
detail [BO04]. Numerous applications in optimization, ge-
ometry, computer graphics, simulation, and games bear wit-
ness of the popularity of the bounding sphere. Not surpris-
ingly, the optimal bounding sphere is known by many names,
including minimum enclosing ball (MEB), minmax location,
1-center, and minimum covering sphere. To find it, we need
to determine the point that minimizes the maximum distance
to the input elements [EH72].

The advantages of using the sphere as a container stem
from its simple shape, which gives a low storage cost and
makes geometrical operations uncomplicated and fast. On
the other hand, the main criticism concerns the quite poor fit
it provides of the enclosed objects, which under certain dif-
ficult conditions makes the sphere inappropriate as a bound-
ing volume [GLM96]. Even so, by combining the sphere
with some other shape to provide a more flexible and finer
approximate representation, much of the beneficial features
of the sphere may still be exploited also in difficult scenar-
ios. Such combinations have been utilized successfully to

speed up neighbour queries [KS97], ray tracing [WHG84],
and collision detection [LAM09, CWK10].

Of course, to support bounding spheres, an appropri-
ate construction algorithm is needed. It is straightforward
to use a simple constant approximation method, which
given n points in dimension d scans the input one or two
times [ZZC06, Rit90]. However, since the main deficiency
of the bounding sphere has to do with its size, any excessive
space may be troublesome. The goal of this paper is to pro-
pose an algorithm that allows minimum bounding spheres to
be computed rapidly enough for real-time computer graphics
and simulation applications.

It is well-known that the MEB of a point set P =
{ p0, p1, ..., pn−1 } ⊂ Rd is unique and defined by a support
set of up to d + 1 points on its surface. Most previous ex-
act methods target low-dimensional instances of the prob-
lem. A notable exception is the procedure given by Fischer
et al. [FGK03]. Otherwise, computing the exact minimum
sphere is doable in expected linear time in fixed dimension
using Welzl’s randomized algorithm [Wel91]. Although it
has been demonstrated that this approach can be accelerated
in practice by move-to-front and pivoting heuristics [Gär99],
it may still require quite many passes over the input, and
the computation of intermediate solutions may also involve
solving numerous primitive cases to find valid support sets.

Chris
Typewriter
9

Chris
Typewriter

T. Larsson / Exact Bounding Spheres by Iterative Octant Scan

In the important three-dimensional case, we can use a
more balanced way of retrieving outliers, i.e., points located
outside the intermediate solutions, which is based on subdi-
viding the space into octants during the linear scans of the
input. In this way, the number of required passes can be re-
duced considerably, which in turns leads to fewer compu-
tations of intermediate solutions. Note that the same princi-
ple can be utilized more generally in dimensions beyond the
third by subdividing the linear searches into hyper-octants,
also known as orthants. However, their number grows expo-
nentially with the dimension.

Based on these observations, we propose an exact MEB
algorithm with an improved convergence rate and faster run
time. Experimental validation confirms its efficiency and ro-
bustness in the three-dimensional case.

2. Algorithm

Conceptually, the algorithm is very simple. An initial min-
imum sphere is defined around a constant number of input
points. The input is then scanned to find the farthest outlier
in each octant using the current center as the origin for the
search, which gives up to eight outliers in each pass. The ten-
tative sphere is then updated to the next intermediate solution
by taking these outliers in consideration. This procedure is
repeated iteratively until no outliers can be found, meaning
that the smallest possible sphere with a valid support set has
been found. We refer to this approach as the Iterative Octant
Scan algorithm.

This technique of incrementally enlarging the sphere
and maintaining a valid support set follows Gärtner’s ap-
proach [Gär99]. Since P is a finite set and the radius is mono-
tonically increasing without ever exceeding the wanted min-
imum radius, the iterations can be repeated until the exact
minimum sphere is obtained. In his approach, however, only
“the most promising” point, i.e., the point with largest dis-
tance from the current center, is added in each iteration. By
collecting a more complete view of the remaining outliers in
each scan, the convergence rate can be improved. The fol-
lowing pseudocode describes the algorithm at a high level:

ITERATIVEOCTANTSCANMEB(P)
1. S,c,r← SOLVESAMPLEDMEB(P, m)
2. repeat
3. Q,h← FARTHESTOCTANTPNTS(c,r,P)
4. if Q = ∅ then exit loop
5. S← S∪Q
6. S,c,r← SOLVEMEB(S)
7. return c,r

The algorithm starts off by defining a MEB with center c
and radius r around a constant number of points drawn ran-
domly from the input set P = { p0, p1, . . . , pn−1 }. When n is
large, we use the constant m = 20. The candidate support set
S is also initialized with the supporting points of this initial

Figure 1: Illustration of the rapid progress of the iterative
octant scan approach when applied on the Flowerpot mesh.
The left image shows the initial sampled ball. Then the mid-
dle and right images show the intermediate solutions found
in iteration 1 and 2, respectively. In iteration 3, a slightly
larger ball is found (which looks just like the right image).
Finally, iteration 4 simply detects that this is the final MEB.

MEB. Although it would be enough to base the initialization
on a single input point, say by c← p0, r← 0, and S← p0,
the sampled MEB approach generally helps in reducing the
number passes, without introducing much overhead.

Then the main loop is executed (Lines 2–6). On Line 3,
a simple linear scan of the input is performed. The subrou-
tine locates a set Q with up to eight extremal outliers, one
from each octant, using c as the origin. Here extremal outlier
refers to the input point that maximizes the Euclidean dis-
tance ‖pi− c‖ =

√
(pi− c) · (pi− c) per octant. However,

only points pi satisfying ‖pi− c‖> r are possible candidates
for being extremal in any one of the octants. This condition
is used to effectively filter the points, and only actual out-
liers are examined in more detail with respect to the octants
they belong to. In fact, this linear scan is highly efficient with
an almost negligible overhead compared to the standard ap-
proach of only finding the actual farthest outlier, which of
course is always included among the octant points selected
here.

Given that no outlier is found, the sought MEB has been
found. This condition for termination is tested on Line 4.
Otherwise, the set of outliers Q is added to the candidate
support set S (Line 5), and the next intermediate solution is
found by calling a subsidiary MEB solver that is able to han-
dle the “low-level” primitive operations efficiently (Line 6).
For more details, see Gärtner’s treatment of how to robustly
solve the primitive operations under floating point arith-
metic [Gär99]. After this the main loop repeats until the ex-
act solution is obtained. Figure 1 shows rendered images that
illustrate the fast convergence of the algorithm in a specific
case.

Clearly, S is a superset of the actual support set S′ that
defines the intermediate solutions. It is possible to reduce
the size of S by assigning S← S′ in the solver, which ensures
|S| ≤ d + 1 at the beginning of the next iteration. However,
we have chosen to keep them around, since this can speed up
the convergence for certain inputs, and the overhead of this
appears to be insignificant for large n in 3D.

Chris
Typewriter
10

Chris
Typewriter

T. Larsson / Exact Bounding Spheres by Iterative Octant Scan

Figure 2: Some of the triangle meshes used to benchmark the algorithms.

Octant Scan MEB Farthest Point MEB Ritter’s method
Mesh n k r t (ms) k r t (ms) k r t (ms)
Lucy 14,027,872 3 872.73962 80 6 872.73962 150 2 966.03467 60
Vase 4,609,442 4 13.769305 43 9 13.769305 78 2 16.842354 19
David 4,129,614 4 2713.4316 34 6 2713.4316 47 2 2842.9419 18
Goblet 1,008,772 4 15.644787 9.0 13 15.644787 24 2 18.267401 4.1
Blade 882,954 2 334.75421 3.8 3 334.75421 5.9 2 345.73364 3.8
Candlestick 456,482 3 37.304390 2.7 6 37.304390 5.0 2 39.363644 1.9
Flowerpot 410,482 4 26.173567 3.2 7 26.173563 5.0 2 32.095146 1.7
Hand 327,323 2 3.508905 1.2 4 3.508905 2.2 2 3.508966 1.4

Table 1: Minimum bounding sphere computation for n points in 3D. For each tested algorithm, the number of passes k, the
resulting radius r, and the sequential run time t in milliseconds (ms) are listed.

Finally, we note that it is trivial to modify the termination
criterion on Line 4 of the exact algorithm to create an alter-
native algorithm that reports (1+ ε)-approximate solutions
for any given ε > 0. The current farthest point distance h
from c is already known by Line 3. Given that h≤ (1+ ε)r,
the requested approximation is fulfilled and we can simply
return the center c and radius h. This alternative may be used
to speed up the computations, depending on the context.

3. Experiments

The presented algorithm was implemented in C++ and com-
piled in Visual Studio 2013. All tests were performed on a
PC with a 2.80 GHz Intel Core i7-4810MQ CPU and 32
GB RAM under Windows 7. The input set was stored in a
flat array of 3D points using single precision (32 bits) float-
ing point numbers to represent the coordinates. The auxil-
iary MEB solver, however, used double precision to produce
the intermediate solutions. All runs were executed single-
threaded without vectorization. Note, however, that the dom-
inating operation, the retrieval of the octant points with the
largest distance from the current center, is susceptible of par-
allelization, an opportunity which we leave for future explo-
ration (see some further comments about this in Section 4).

To challenge the proposed Octant Scan MEB method, we
benchmarked it against two other well-known reference al-
gorithms. The first competing strategy, called Farthest Point
MEB, was basically Gärtner’s algorithm [Gär99]. To make
a fair comparison, however, we used our own adaptation,
which shared as much source code as possible with the pro-

posed algorithm. In this way, it also benefited from the same
effective initialization of the first intermediate solution based
on sampling. In fact, the only difference is that it calls a stan-
dard farthest point routine instead of searching for the far-
thest octant points. The second competing strategy was Rit-
ter’s algorithm, which is extremely fast since it only uses two
simple passes [Rit90]. The correctness is ensured by overes-
timating the radius using a greedy update strategy in the final
pass (which is also used in [ZZC06]).

A set of complex triangle meshes were chosen as bench-
mark problems. Several of the used meshes are well-known
models from the Stanford 3D Scanning Repository and the
Large Geometric Models Archive at Georgia Tech. The other
used data sets will also be made publicly available. Rendered
images of some of the included meshes are shown in a Fig-
ure 2. We measured the number of passes k counted as the
number of linear scans through the input points performed
by the algorithm as well as the execution time t in millisec-
onds. The results are given in Table 1.

The experimental results indicate that the iterative octant
scan method finishes in fewer passes than the competing ex-
act method in each case. As shown by the Goblet model, the
difference can be more than a factor of 3 (which led to a
speedup of 2.7). The reported minimum radii were consis-
tent between the two methods. Only very minor differences
due to floating point rounding errors have been observed (as
in the case of Flowerpot).

As expected, Ritter’s approach, with its fixed two passes,
gave a more predictable performance. In most cases, it had

Chris
Typewriter
11

Chris
Typewriter

Chris
Typewriter

T. Larsson / Exact Bounding Spheres by Iterative Octant Scan

the fastest execution, but for the Hand model our exact
method was actually faster. Overall, the speedup for Ritter
versus the exact octant scan method was in the range of 0.9–
2.3. However, Ritter’s method overestimated the radius by a
factor of 1.0–1.23 for the included test cases. This may be
reasonable in certain applications, where exact solutions are
not mandatory, but note that a radius increased by a factor of

3
√

2≈ 1.26 doubles the volume in 3D.

To examine the correctness and robustness of our im-
plementation, a brute force testing procedure was followed.
Millions of random inputs with n∈ [10,100] points in a cube
were tested. In each case, it was confirmed that all points
reside in the returned sphere (we used a small tolerance to
account for minor rounding errors). The computed ball was
also compared to the one given by Gärtner’s publicly avail-
able miniball software. This testing procedure provoked no
errors apart from very small differences in the returned radii
apparently resulting from minor floating point rounding er-
rors in the exact solver.

4. Conclusions

The proposed algorithm is able to find optimal bounding
spheres of large point sets in just a few passes in the three-
dimensional case (2–4 simple scans are often sufficient). Its
usage of only k calls to a MEB solver on small subproblems
to get the intermediate solutions further contributes to its
high performance. To the best of our knowledge, this is the
first exact algorithm with an execution speed that is almost
comparable to that of naive constant approximation heuris-
tics. In fact, when we ran the (1+ ε)-approximate version
of our algorithm with ε = 10−2, it was faster than Ritter’s
method in five out of the eight test cases, while it still pro-
duced smaller spheres in all eight test cases.

In the future, we would like to extend this paper by in-
cluding more variants of the algorithm and by considering
the behaviour more generally in low dimensions, say when
d ≤ 10. The same basic procedure can be applied, but in di-
mension d, there are 2d hyper-octants to consider. Of course,
this exponential growth seems problematic, but for large
data sets, the approach may still be useful beyond the three-
dimensional case. Additional filtering heuristics can also be
designed to improve the performance, for instance by ex-
ploiting inherent spatial coherence in the data sets.

Furthermore, the possibilities for parallelizing the com-
putations look compelling (cf. [KWL10, KL14]). The iter-
ative octant scan method seems amenable for modern ar-
chitectures supporting hierarchical levels of parallelism. By
using a divide and conquer strategy, vectorized local scans
can be performed on subsets of the input, and the results
merged using a suitable reduction technique. In the end, this
would hopefully lead to a fast and scalable data-parallel so-
lution. This is definitely needed for massive data sets, such as
scanned point clouds, which may contain billions of points.

Acknowledgements

The author is supported by the Swedish Foundation for
Strategic Research through grant no. IIS11-0060. The mod-
els Lucy and David were kindly made available by the Stan-
ford Computer Graphics Laboratory, the latter through the
Stanford Digital Michelangelo Project Archive. The Blade
and Hand models were provided by the Large Geometric
Models Archive at Georgia Tech.

References
[BO04] BRADSHAW G., O’SULLIVAN C.: Adaptive medial-axis

approximation for sphere-tree construction. ACM Transactions
on Graphics 23, 1 (Jan. 2004), 1–26. 1

[CWK10] CHANG J.-W., WANG W., KIM M.-S.: Efficient col-
lision detection using a dual OBB-sphere bounding volume hier-
archy. Computer Aided Design 42, 1 (2010), 50–57. 1

[EH72] ELZINGA J., HEARN D.: The minimum covering sphere
problem. Management Science 19, 1 (1972), 96–104. 1

[FGK03] FISCHER K., GÄRTNER B., KUTZ M.: Fast smallest-
enclosing-ball computation in high dimensions. In In Proceed-
ings of the 11th Annual European Symposium on Algorithms
(ESA) (2003), Springer-Verlag, pp. 630–641. 1

[Gär99] GÄRTNER B.: Fast and robust smallest enclosing balls.
In Proceedings of the 7th Annual European Symposium on Algo-
rithms (1999), Springer-Verlag, pp. 325–338. 1, 2, 3

[GLM96] GOTTSCHALK S., LIN M. C., MANOCHA D.: OBB-
Tree: a hierarchical structure for rapid interference detection. In
Proceedings of the 23rd annual conference on Computer graph-
ics and interactive techniques (1996), pp. 171–180. 1

[KL14] KÄLLBERG L., LARSSON T.: Accelerated computation
of minimum enclosing balls by GPU parallelization and distance
filtering. In Proceedings of SIGRAD 2014 (June 2014), pp. 57–
65. 4

[KS97] KATAYAMA N., SATOH S.: The SR-tree: an index struc-
ture for high-dimensional nearest neighbor queries. In Proceed-
ings of the 1997 ACM SIGMOD international conference on
Management of data (1997), ACM, pp. 369–380. 1

[KWL10] KARLSSON M., WINBERG O., LARSSON T.: Parallel
construction of bounding volumes. In Proceedings of SIGRAD
2010 (November 2010), pp. 65–69. 4

[LAM09] LARSSON T., AKENINE-MÖLLER T.: Bounding vol-
ume hierarchies of slab cut balls. Computer Graphics Forum 28,
8 (2009), 2379–2395. 1

[Rit90] RITTER J.: An efficient bounding sphere. In Graphics
Gems, Glassner A., (Ed.). Academic Press, 1990, pp. 301–303.
1, 3

[Wel91] WELZL E.: Smallest enclosing disks (balls and ellip-
soids). In New Results and New Trends in Computer Science,
Maurer H., (Ed.), vol. 555 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 1991, pp. 359–370. 1

[WHG84] WEGHORST H., HOOPER G., GREENBERG D. P.: Im-
proved computational methods for ray tracing. ACM Transac-
tions on Graphics 3, 1 (1984), 52–69. 1

[ZZC06] ZARRABI-ZADEH H., CHAN T. M.: A simple stream-
ing algorithm for minimum enclosing balls. In Proceedings of the
18th Canadian Conference on Computational Geometry (2006),
pp. 139–142. 1, 3

Chris
Typewriter
12

