
SIGRAD 2015
L. Kjelldahl and C. Peters (Editors)

Complete Quadtree Based Construction of Bounding Volume
Hierarchies for Ray Tracing

Ulises Olivares†1 Arturo García2 and Félix F. Ramos1

1 Departament of Electrical Engineering Center for Research and Advanced Studies of the National Polytechnic Institute, México
2 Intel Corporation

Abstract

This paper presents an efficient space partitioning approach for building high quality Bounding Volume Hierar-
chies using x86 CPU architectures. Using this approach a structure can be built faster than a binned-SAH heuristic
while the structure preserves its quality. This method consists of a hybrid implementation that uses binned-SAH
for the top level and a binary partitioning approach for the rest of the levels. As a result, this method produces
more regular axis-aligned bounding boxes (AABB) into a complete quadtree. Additionally, this approach takes
advantage of the 4-wide vector units and exploits the SIMD extensions available for current CPU architectures.
Using our construction approach a structure can be built up to three times faster than binned-SAH.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Three-Dimensional
Graphics and Realism—Raytracing

1. Introduction

Ray tracing is a rendering technique that produces high
quality images. Nevertheless, it requires a high computa-
tional cost to produce a single image. This have gener-
ated special interest in using compute-intensive architectures
such CPUs [WIK∗06, SSK07], GPUs [LGS∗09, ZHWG08]
based implementations or even specialized architectures
[NPP∗11,DFM13]. Current improvements have been proved
that is feasible to get interactive frame-rates even for com-
plex scenes [Wal12, GMOR14, PFL∗13].

However, although an acceleration structure decreases the
complexity of ray tracing, it requires some time to be built,
and this time depends on the quality of the construction and
consequently on the heuristic that a structure uses. The use
of sophisticated heuristics to estimate the cost of ray traver-
sal tends to have a negative impact in the construction times
but a positive impact in ray traversal performance, in an ana-
logue way simpler algorithms tend to have faster construc-
tion times but a poorer ray traversal performance. The ap-
proach proposed in this paper tries to find a trade-off be-
tween complex split methods and fast split methods (get

† PhD Student of Computer Science at CINVESTAV México

faster construction times while it maintains the quality of the
structure).

Currently, most of the research oriented to computer
graphics uses GPU architectures to get lower bounds of exe-
cution times. Since it is possible to adapt complex structures
to a linear representation [LGS∗09], GPUs have been the
compute-intensive architecture for excellence. Nonetheless,
Wald et al. [WWB∗14] have demonstrate that is possible to
get competitive frame-rates by exploiting full compute capa-
bility of current x86 CPU architectures.

This paper proposes a method for building Bounding Vol-
ume Hierarchies (BVHs) for ray tracing based on a hybrid
splitting approach. This approach uses binned-SAH for the
top level in order organize primitives coherently and then it
uses a binary split approach for the rest of the levels. This
partitioning scheme produces a regular data structure into a
complete quadtree, which ensures that all levels of the tree
will be completed. This construction takes advantage of the
4-wide vector units and exploits the SIMD extensions avail-
able for current x86 CPU architectures. Additionally, this
construction uses the integrated GPU on x86 architectures
to perform compute-intensive operations efficiently.

Chris
Typewriter

Chris
Typewriter
13

Chris
Typewriter

Olivares et al. / Complete Quadtree Based Construction of Bounding Volume Hierarchies for Ray Tracing

2. Construction Overview

This section addresses a new approach for the construction
of BVHs using a complete tree.

2.1. Complete Quadtree

In the construction approach presented by Garcia et al.
[GMOR14] one of the main problems was the overhead pro-
duced by sorting primitives in each level of the tree and it
produced lower construction times. In this paper, we pro-
posed an approach that avoids this overhead by using arith-
metic operations to select which primitives will be contained
in the left or right internal sub-trees. This partition scheme
is recursively applied until each level of the quadtree is
filled. Finally, this partition approach produces a complete
quadtree, this structure takes advantage of the 4-wide vector
units of x86 CPU architectures.

In order to have a complete tree, it is necessary to deter-
mine how many primitives will be stored on every branch of
the tree ensuring that only the deepest level could be incom-
plete.

Assuming that the number of leaf nodes N, is greater or
equal than 4 (branching factor), where k represents the radix
of the most significant bit of the binary representation of N,
and r represents the complement r = |N|− 2k (Figure 1 de-
picts the binary representation of the number of primitives).
Then, it can be two different cases: the binary representa-
tion of N is 10...2 or is 11...2, This binary representation
follows a big endian order where the most significant bit is
on the left side. In the first case, there are not enough leafs to
fully complete the left side and thus the right side should be
full, if N = 2k + r then we should have 2k−1 + r leafs on the
left side and 2k−1 on the right side In the second case, there
are enough leafs to complete the left side and thus will have
2k leafs while the right side will hold r leafs, for this case,
r ≥ 2k−1.

The process just described provides the rules to determine
the spatial partition (cut) in a given axis, it is represented by
these two cases:

|N|= 2k + r (1)

|N|=
{

10...2, (2a)

11...2, (2b)

10...2 =

{
2k−1 + r, for le f t (3a)

2k−1, for right (3b)

11...2 =

{
2k, for le f t (4a)

r, for right with r ≥ 2k−1 (4b)

Lets assume there exist 13 primitives in a scene, so the
number of primitives is given by |N| = 2k + r = 13 from
this formula we can obtain the most significant radix of the
binary representation 2k = 23 = 8 and Finally, it is easy to
obtain the r value from the original equation 1, r = |N| −
2k = 5. Following the partition rules, we can calculate the
number of primitives that will be contained in the left and
right sides respectively.

Figure 1: Binary representation of primitives to obtain 2k,
where k = radix digit.

2.2. Hybrid Construction

We employed a hybrid construction to take advantage of a
complex split method that produce high quality Bounding
Volume Hierarchies [Wal07] binned-SAH and a fast binary
split approach that produces a complete tree just described
above. We employed a binned-SAH on the top of the tree
and the binary partitioning for the rest of the tree. The first
partition ensures that coherent primitives are contained in
the same bounding box and then, the binary split approach
ensures that the tree structure will be a complete tree.

Figure 2: Hybrid Construction Approach. It uses binned-
SAH for the top of the tree and our binary partitioning ap-
proach for the rest of the tree.

2.3. Space Partitioning

Once we have selected the number of primitives that every
side will have, the next step is to decide which primitives will
be stored in the left side and which will be stored int the right
side. To do so, we find the lowest and highest values of the
coordinates of the primitive centers using the axis that has
the longest range, we select the primitives with the lowest
value on that axis to be in the left side and the rest in the
right side. Geometrically, we are selecting the longest side
of the bounding box that contains all the primitive centers,

Chris
Typewriter
14

Olivares et al. / Complete Quadtree Based Construction of Bounding Volume Hierarchies for Ray Tracing

and splitting the primitives based on the order given by the
projection of the centers on that side. Using this method will
generate boxes that tend to be more regular, by reducing the
length of the longest side.

Once the complete tree is built we know how many primi-
tives will be contained in each node, then we need to perform
the space partition in order to assign the primitives to each
node. The space partitions are executed on the longest axis
in order to improve the traversal performance by localizing
the major density of adjacent primitives in the left branch of
the tree.

The space partitioning is done following these steps:

1. Find the longest axis
2. Map Primitives
3. Split primitives

2.3.1. Find the Longest Axis

This is determined by doing a parallel reduction based on an
algorithm presented by Hillis et al. [HS86] to sum an array of
n numbers that can be computed in time O(logn) by organiz-
ing the addends at the leaves of a binary tree and performing
the sums bottom-up at each level of the tree in parallel. Our
function returns the longest axis by calculating the max and
min values in x, y and z of an array of primitives, then the
function calculates the distance between the max and min
points for each axis and returns the axis that has the longest
distance.

This compute-intensive operation was parallelized using
Open CL and the integrated Graphics Processor Unit on x86
Intel current architectures (see Figure 3). Using the inte-
grated GPU avoids communication latency which is implied
when information is being transferred from the CPU to GPU
using the PCI communication bus.

Figure 3: Shared memory on Intel architecture [Cor14].

2.3.2. Map Primitives

Garcia et al. [GMOR14] proposed a fast data parallel radix
sort implementation to sort the primitives against the split
axis in ascending order based on the centroids. Nonetheless,
this sorting caused an overhead during the construction. As
an alternative we proposed a simplest approach that map a
primitive to a BVH node using arithmetic operations.

Assuming that it is necessary to take the first L primitives
among N and the range of the values is [a,c], it is selected
a value to be the pivot that makes a cut proportional to L/N

and move all the primitives that are lower or equal to the
pivot to the left and the rest to the right. As a result primitives
are partitioned in two ranges [a,b] and (b,c]. If L denotes
the number of primitives contained on the first range, and
L′ denotes the number of primitives contained on the second
range, then there exist two cases, this method guarantees that
the left side is always complete:

L′ = L (5)

L > L′ (6)

In the first case, no further movements are needed, in the
second case, it is necessary to update the lowest limit of our
current range as the lowest value that we moved to the right
and update L as L− L′ and N as N− L′. In the third case,
b has to be updated as the highest value that we moved to
the left and N has to be updated as L′. It is important to
note that in every step we are removing at least one element
from the array of primitives, this ensures that the algorithm
will finish. Also, it can be observed that the complexity of
the expected time will be similar to the expected cost for
quickselect algorithms, which is O(N) for every level.

2.3.3. Split Primitives

This step is straight forward because the split was calculated
previously when the tree was pre-built to determine the num-
ber of primitives for each sibling node. Then, we apply the
partition process described in the equations 2a and 2b, we
get that the first primitives of the array will be assigned to
the right node and the rest to the left node. After that, this
rule is applied again in a recursive way until the four nodes
in the quadtree are completed.

3. Results

This section exhibits the performance numbers of the Com-
plete BVH structure rendering 3D models in a ray tracing
application. The metrics taken compared the construction
time and rendering frame rate against benchmarks obtained
by State of the art acceleration structures on x86 architec-
tures [WWB∗14]. The tests were executed in a 2.5 GHz 8X
Intel Core i7 CPU with 16Gb of DDR3 RAM compiled as
32-bit application using the ispc intel compiler.

The models used are Stanford Bunny (69,451 primitives),
Crytek Sponza (279,163 primitives) and Happy Buddha
(1,087,716 primitives). Figure 4 shows three-dimensional
models rendered at 1024x1024 pixels. Tables 1 and 2 show
that the proposed method offers lower construction times
up to three times faster than binned-SAH. As a counter-
part, binned-SAH construction has better ray traversal per-
formance.

Chris
Typewriter
15

Olivares et al. / Complete Quadtree Based Construction of Bounding Volume Hierarchies for Ray Tracing

Table 1: Construction time for diverse scenes.

Scene Hybrid Builder Binned-SAH Builder
[Our Method] Embree BVH4. [WWB∗14]

Ring(6 K) 2.829 ms 2.17 Mprims/s 7.840 ms 0.77 Mprims/s
Stanford Bunny(69 K) 10.850.48 ms 7.05 Mprims/s 33.083 ms 2.09 Mprims/s
Crytek Sponza(279 K) 43.657 ms 6.39 Mprims/s 179.598 ms 1.55 Mprims/s
Stanford Buddha(1 M) 174.170 ms 6.24 Mprims/s 403.810 ms 2.69 Mprims/s

Figure 4: Ring Model (6K), Stanford Bunny (69K), Crytek
Sponza (279K) and Stanford Happy Buddha (1M) ray-traced
using a Complete BVH4 acceleration structure at 1024 X
1024 pixels.

Table 2: Ray traversal performance for diverse scenes.

Scene Hybrid Builder Binned-SAH
[Our Method] [WWB∗14]

Ring(6 K) 154.075 fps 156.213 fps
Stanford Bunny(69 K) 120.523 fps 136.254 fps
Crytek Sponza(279 K) 5.03 fps 20.624 fps
Stanford Buddha(1 M) 2.01 fps 6.05 fps

4. Conclusions

This work presented a novel hybrid partitioning approach to
build high quality BVH structure. It also presented an ef-
ficient process using SIMD extension to build the structure.
The partition method took full advantage of current x86 CPU
and integrated GPU architecture. We also presented very
competitive build times of this construction. Ray traversal
performance of this structure needs some improvements in
order to increase the current frame-rate. The Complete BVH
partitioning offers fast build times for high quality struc-
tures, efficient memory storage and provides high perfor-
mance traversal for rigid objects. For future work we will
apply this acceleration method in combination with predic-
tive and adaptive strategies for accelerating the rendering of
dynamic scenes.

Acknowledgments

The authors would like to thank the Stanford Computer Lab-
oratoryfor the Happy Buddha and the Bunny models, Crytek
for the Sponza model. Last but not least the CONACYT for
its financial support.

References
[Cor14] CORPORATION I.: Getting the most from opencl 1.2:

How to increase performance by minimizing buffer copies on in-
tel processor graphics, 2014. 3

[DFM13] DOYLE M. J., FOWLER C., MANZKE M.: A hardware
unit for fast sah-optimised bvh construction. ACM Trans. Graph.
32, 4 (July 2013), 139:1–139:10. 1

[GMOR14] GARCÍA A., MURGUIA S., OLIVARES U., RAMOS
F. F.: Fast parallel construction of stack-less complete lbvh trees
with efficient bit-trail traversal for ray tracing. In Proceedings of
the 13th ACM SIGGRAPH International Conference on Virtual-
Reality Continuum and Its Applications in Industry (New York,
NY, USA, 2014), VRCAI ’14, ACM, pp. 151–158. 1, 2, 3

[HS86] HILLIS W. D., STEELE JR. G. L.: Data parallel algo-
rithms. Commun. ACM 29, 12 (1986), 1170–1183. 3

[LGS∗09] LAUTERBACH C., GARLAND M., SENGUPTA S.,
LUEBKE D., MANOCHA D.: Fast bvh construction on gpus. In
In Proceedings of the EUROGRAPHICS âĂŹ09 (2009). 1

[NPP∗11] NAH J.-H., PARK J.-S., PARK C., KIM J.-W., JUNG
Y.-H., PARK W.-C., HAN T.-D.: T&ıengine: Traversal and in-
tersection engine for hardware accelerated ray tracing. In Pro-
ceedings of the 2011 SIGGRAPH Asia Conference (New York,
NY, USA, 2011), SA ’11, ACM, pp. 160:1–160:10.

[PFL∗13] PARKER S. G., FRIEDRICH H., LUEBKE D., MOR-
LEY K., BIGLER J., HOBEROCK J., MCALLISTER D., ROBI-
SON A., DIETRICH A., HUMPHREYS G., MCGUIRE M., STICH
M.: Gpu ray tracing. Commun. ACM 56, 5 (May 2013), 93–101.
1

[SSK07] SHEVTSOV M., SOUPIKOV A., KAPUSTIN A.: Highly
parallel fast kd-tree construction for interactive ray tracing of dy-
namic scenes. Comput. Graph. Forum 26, 3 (2007), 395–404.
1

[Wal07] WALD I.: On fast construction of sah-based bounding
volume hierarchies. In Proceedings of the 2007 IEEE Symposium
on Interactive Ray Tracing (Washington, DC, USA, 2007), RT
’07, IEEE Computer Society, pp. 33–40. 2

[Wal12] WALD I.: Fast construction of sah bvhs on the intel many
integrated core (mic) architecture. IEEE Trans. Vis. Comput.
Graph. (2012), 47–57. 1

[WIK∗06] WALD I., IZE T., KENSLER A., KNOLL A., PARKER
S. G.: Ray tracing animated scenes using coherent grid traversal.
ACM Trans. Graph. 25, 3 (July 2006), 485–493. 1

[WWB∗14] WALD I., WOOP S., BENTHIN C., JOHNSON G. S.,
ERNST M.: Embree: A kernel framework for efficient cpu ray
tracing. ACM Trans. Graph. 33, 4 (July 2014), 143:1–143:8. 1,
3, 4

[ZHWG08] ZHOU K., HOU Q., WANG R., GUO B.: Real-time
kd-tree construction on graphics hardware. ACM Trans. Graph.
27, 5 (Dec. 2008), 126:1–126:11. 1

Chris
Typewriter
16

Chris
Typewriter

Chris
Typewriter

Chris
Typewriter

Chris
Typewriter

